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Preface

Visual cryptography (VC) is a new form of secret sharing technique, where no
computation is needed for decryption. The decryption can be done by stacking the
shares or simple OR/XOR operations. This type of crypto-system is especially
attractive for computation-limited environment, such as mobile devices or
authentication without computation. It has found many applications including but
not limited to privacy protection for biometric identification, bar code security,
online evaluation and electronic voting, anti-counterfeiting and commodity tracing,
etc. This book comprehensively covers the important efforts in improving the visual
quality of images in visual cryptography, with a focus on the cases with grayscale
images. We not only cover schemes in traditional VC and extended VC for binary
secret image, but also cover topics for grayscale secret image and latest develop-
ment in analysis-by-synthesis approach.

This book distinguishes itself from the existing literature in three ways. First, it
not only reviews traditional VC for binary secret image, but also covers recent
efforts in improving visual quality for grayscale secret image. Second, not only
traditional quality measures are reviewed, but also measures that were not used for
measuring perceptual quality of decrypted secret image, such as Radially Averaged
Power Spectrum Density (RAPSD) and residual variance, are employed for eval-
uating and guiding the design of VC algorithms. Third, unlike most visual cryp-
tography books following a mathematical formal style, this book tries to make a
balance between engineering intuition and mathematical reasoning. All the targeted
problems and corresponding solutions are fully motivated by practical applications
and evaluated by experimental tests, while important security issues are presented
as mathematical proof. Furthermore, important algorithms are summarized as
pseudo-codes, thus enables the readers to reproduce the results in the book.
Therefore, this book serves as a tutorial for readers with engineering background as
well as for experts in related areas to understand the basics and research frontiers in
visual cryptography.

vii



An open source project was built on GitHub to accompany this book, which
includes implementation of most algorithms covered in this book in MATLAB and
related images and data. Please visit the following URL: https://github.com/
yanbinhit/GrayscaleVisualCryptography.

The key features of this book include:

1. First book focusing on the topic of perceptual quality in VC.
2. First book comprehensively reviewing and discussing perceptual quality

improvement of decrypted grayscale secret images.
3. First book employing perceptual quality measures, such as RAPSD for halftone

image, to guide the design and evaluation of grayscale VC.
4. Good balance between engineering intuition and mathematical reasoning.
5. Suitable for both engineers targeting at fast implementation and researchers

targeting at catching up the latest development in VC.
6. Matlab code for almost all major algorithms.

Qingdao, China Bin Yan
Melbourne, Australia Yong Xiang
Wuhan, China Guang Hua
February 2019

viii Preface

https://github.com/yanbinhit/GrayscaleVisualCryptography
https://github.com/yanbinhit/GrayscaleVisualCryptography


Acknowledgements

This work was supported by the National Natural Science Foundation of China
(NSFC) (No. 61272432) and the Shandong Provincial Natural Science Foundation
(No. ZR2014JL044). Yong Xiang’s work is partially supported the Australian
Research Council under Grant LP170100458. Guang Hua’s work is partially sup-
ported by Hubei Provincial Natural Science Foundation of China
(No. 2018CFB225).

ix



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Brief History of Visual Cryptography . . . . . . . . . . . . . . . . . . . . . 1
1.2 Applications of Visual Cryptography . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Online Transaction Security . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Privacy Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Barcode Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 Electronic Voting System Security . . . . . . . . . . . . . . . . . . 9
1.2.5 E-Commerce Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Classification of Visual Cryptography Algorithms . . . . . . . . . . . . 10
1.4 Remark and Introduction to Chapters . . . . . . . . . . . . . . . . . . . . . . 11
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Basic Visual Cryptography Algorithms . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Framework of Visual Secret Sharing . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 A Note on Color Convention . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Deterministic Visual Cryptography . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Probabilistic Visual Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Random Grid Visual Cryptography . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Generalized Random Grid . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Security Issue in Visual Cryptography . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Strong Security and Weak Security . . . . . . . . . . . . . . . . . . 28
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Digital Halftoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Introduction to Digital Halftoning . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Bi-level Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xi



3.3 Ordered Dithering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Clustered Dot Dithering . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Dispersed Dot Dithering . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Error Diffusion and Its Mathematical Model . . . . . . . . . . . . . . . . . 41
3.4.1 Error Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Direct Binary Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.1 Direct Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Fast Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Quality Measures for Halftone Image . . . . . . . . . . . . . . . . . . . . . 49
3.6.1 Fidelity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.2 Blue Noise and Spectral Characterization . . . . . . . . . . . . . 50
3.6.3 Residual Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Improving Visual Quality for Share Images . . . . . . . . . . . . . . . . . . . 55
4.1 Binary Visual Cryptography with Meaningful Shares:

Extended VC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.1 Basic Extended VC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.2 User-Friendly Random Grid . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.3 Pixel Swapping Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Error-Diffusion Based Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 SIPs and ABPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.2 Constrained Error Diffusion . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Extended VC with a Hidden Watermark . . . . . . . . . . . . . . . . . . . 65
4.3.1 Simultaneous Encoding of Secret and Watermark . . . . . . . 66
4.3.2 Extension to N[ 2 Shares . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.3 Constrained Error Diffusion . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.4 Experimental Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.5 Attacks on SIPs and ABPs . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Improving Visual Quality for Probabilistic and Random Grid
Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1 (k, n)-Threshold VC for Grayscale Image . . . . . . . . . . . . . . . . . . . 75
5.2 Probabilistic VC for Grayscale Secret Image . . . . . . . . . . . . . . . . 78

5.2.1 Wang’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 AbS-Based Probabilistic VC . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Random Grid VC for Grayscale Secret Image . . . . . . . . . . . . . . . 87
5.3.1 Applying Binary Scheme to Grayscale Image . . . . . . . . . . 87
5.3.2 Blue Noise Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.3 AbS-Based Algorithm for Random Grid Visual

Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xii Contents



5.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Improving Visual Quality for Vector Schemes . . . . . . . . . . . . . . . . . 97
6.1 Vector Visual Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1 Hou’s Block Encoding Algorithm . . . . . . . . . . . . . . . . . . . 98
6.1.2 Lee’s Block Encoding Algorithm . . . . . . . . . . . . . . . . . . . 102
6.1.3 Vector VC for Binary Secret Image . . . . . . . . . . . . . . . . . 105

6.2 Local Blackness Preserving Visual Cryptography . . . . . . . . . . . . . 107
6.2.1 VC Encryption and Local Blackness Preservation . . . . . . . 107

6.3 AbS-Based Vector VC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Conclusion and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.1 Block Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2.2 Color VC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2.3 VC for QR Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2.4 Grayscale Secret and Cover Images . . . . . . . . . . . . . . . . . 119
7.2.5 Tradeoff Between Security and Perceptual Quality . . . . . . . 119
7.2.6 Printer Model and HVS Model . . . . . . . . . . . . . . . . . . . . . 119

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Contents xiii



Acronyms and Abbreviations

ABP Auxiliary Black Pixel
AbS Analysis-by-Synthesis
AM Amplitude Modulation
BER Bit Error Rate
CIP Cover Information Pixel
DBS Direct Binary Search
DC Direct Current
DDF Directional Distribution Function
FRGVSS Friendly Random Grid Visual Secret Sharing
HPSNR Human Peak Signal-to-Noise Ratio
HVS Human Vision System
IID Independent and Identically Distributed
MSE Mean Squared Error
MSSIM Mean Structure Similarity
NTF Noise Transfer Function
PDF Probability Density Function
PSD Power Spectral Density
PSF Point Spread Function
PSNR Peak Signal-to-Noise Ratio
QR Quick Response
RAPSD Radially Averaged Power Spectrum Density
RG Random Grid
RNBED Random Noise Balanced Error Diffusion
SIP Secret Information Pixel
SNR Signal-to-Noise Ratio
STF Signal Transfer Function
VC Visual Cryptography
VSS Visual Secret Sharing

xv



Notations

Matrices/Vectors

a; b; . . . Coefficients or scalar parameters
a; b; . . . Scalars
A;B General sets
N Set of nonnegative integer numbers, i.e., natural numbers

0; 1; 2; . . .f g
Zn Set 0; 1; . . .; n� 1f g
C Complex number
R Real number
i; j; k; l;m; n General index to vector/matrix, limits of index
M;N; L;K Dimension and length variables, M;N 2 Zþ
a; b Boldface lowercase letters, vectors, e.g., a ¼ a1; . . .; aNð ÞT
A;B Boldface uppercase letters, Matrices, digital images
ak The k-th column of a matrix
Ak;l The ðk; lÞ-th sub-matrix of matrix A, the ðk; lÞ-th block of image A
f�gT Transpose operator
f�g� Complex conjugate operator
h�; �i Inner product operator
�k kp ‘p-norm

Probability

PrðAÞ Probability of event A that is a subset of sample space
UðAÞ Uniform distribution over the set A
Nðl; r2Þ Gaussian distribution, mean l and variance r2

xvii



Operators

Script letters Fð�Þ; Gð�Þ General operators or functions
� Convolution operator
roundf�g Rounding to the nearest integer
b�c Rounding to the nearest integer towards �1
1 An all-one vector with an appropriate length
� Stacking operation
, Equal by definition

Signal Processing

a½i� The i-th components of a signal vector a having finite or infinite length
a i; j½ � The ði; jÞ component of a two-dimensional signal or image A
a n½ � A sample at position n, where n½ � ¼ ½i; j�

Boolean Operation

a _ b Boolean OR operation between two Boolean variables a and b
�a Boolean NOT operation on a Boolean variable a

xviii Notations



Chapter 1
Introduction

1.1 Brief History of Visual Cryptography

The history of visual cryptography (VC) or visual secret sharing (VSS) can be traced
back to 1987, when the random grid algorithms were introduced in Kafri and Keren’s
work [26]. But this new type of secret sharing was first formally introduced by Naor
and Shamir in their seminal work in [35], where theVCproblemwith pixel expansion
is defined, constructed and analyzed. Naor and Shamir constructed several (n, n)-
threshold and (k, n)-threshold schemes, with optimality in terms of contrast and
pixel expansion. Later, in 1996, the (k, n)-threshold scheme was extended to more
general access structure in Ateniese et al.’s work [3]. The operation in decoding
these shares is stacking, which is equivalent to logical ‘OR’ operation if black pixel
is represented by ‘1’. Another type of ‘stacking’ operation, XOR (exclusive or), is
introduced by Tuyls et al. by considering a system based on light polarization [43].
This type of VC also attracts attentions from many researchers due to its perfect
recovery property [15, 45, 50].

Three important problems in VC act like pushing forces to advance this research
area, including:

• Reducing pixel expansion;
• Improving quality of the shares and the stacking result of the shares;
• Security problem.

To reduce pixel expansion, there are three basic routes: the probabilistic VC, the
random grid VC and the block VC.

1. Probabilistic VC. The first route is the probabilistic VC approach. Ito trans-
formed the Naor and Shamir’s pixel-expanded VC to a probabilistic one [23].
Yang formally defined the probabilistic VC problem and provided constructions
that don’t rely on the deterministic VC [54].Wang et al. extended the probabilistic
VC to encode the grayscale secret image directly [5, 32, 46].

2. Random grid VC. In Kafri and Keren’s 1987 paper, three (2, 2)-threshold ran-
dom grid VC algorithms were proposed [26]. These algorithms were extended to
gray/color image and (n, n)-threshold by Shyu [40, 41] in 2007 and 2009. Later,
the more general (2, n), (n, n) and (k, n)-threshold algorithms were constructed
by Chen and Tsao [8, 9] in 2009 and 2011. In 2013, Wu and Sun generalized

© Springer Nature Singapore Pte Ltd. 2020
B. Yan et al., Improving Image Quality in Visual Cryptography,
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2 1 Introduction

the classical random grid VC, where the probability of white pixels on the first
share can be larger than the default value 1/2 that is assumed by previous algo-
rithms [47]. Using this extension, the contrast for (2, n) schemes can be further
improved. In 2014, Hou et al.’s work further pushed the quality to the theoretical
maximum [21].

3. Block VC. Block VC was developed for solving the VC problem for grayscale
images.Using blockVC, the local structures can be taken into considerationwhen
designing VC algorithm [10, 13, 20, 42]. In 2005, Hou et al. extended the basic
Ito algorithm to vectorVC [20]. In 2007, Tu andHou improved blockVCby block
classification. Their algorithm can ensure that the frequency of basis matrix for
black pixel is related to the local feature of this block. So the contrast is guaranteed
for each type of block globally. For grayscale secret image, Chen et al. designed
vector VC for grayscale image directly [10]. However, each block is processed
independently so that the loss of contrast in one block cannot be compensated
by other blocks. In 2014, Lee used an implicit histogram equalization in block
encoding to extend the histogram of the target image [27]. From 2016 to 2018,
Yan et al. developed AbS-based approach, that can improve the quality of the
recovered secret image directly [51, 52]. The loss of contrast in one block can be
compensated by other adjacent blocks.

The second driving force is improving visual quality in VC. Due to the strict
security condition imposed on VC, the quality of the recovered secret image has a
lower contrast than the secret image. The loss of contrast is especially severe when
one uses probabilistic schemes (probabilistic VC and random grid VC), and when
one uses grayscale secret and cover images. To improve visual quality, there are two
branches: improving visual quality for binary secret/cover image, and improving
visual quality for halftone and grayscale secret image.

1. For binary secret/cover image. In 2012, Liu et al. comprehensively investigated
the image quality improvement problem [31], mainly for binary secret image. In
2013, Wu et al. proposed algorithms for improving the quality of random grid
schemes, using noise balanced error diffusion and void and cluster algorithms,
respectively [48, 49]. The noise balanced error diffusion was further improved
by Yan et al. in [53].

2. For halftone and grayscale secret image. There are two different schemes,
sample-based scheme and block-based scheme. For sample-based schemes, in
Muecke’s thesis andBlundo et al.’s 2000 paper, they constructedVC for grayscale
image having more than two levels [5, 32], which is later improved by Wang et
al. and transformed to a probabilistic one [46]. These schemes designed basis
matrices for each gray level of a sample. The block-based schemes designed
basis matrices for blocks with different features, such as the vector VC reviewed
in previous section on reducing pixel expansion. For the same pixel expansion,
in general, the block-based approach provides better visual quality.

The third driving force is various security problems in VC. Security is a central
issue of VC, as with other cryptographic tools. Here we briefly outline some research
focuses along this direction.
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1. Weak security. In 2012, Iwamoto’s work shows that if we relax requirement on
security, then it is possible to improve contrast and reduce pixel expansion [22,
24]. Similar suggestions are also proposed by Liu et al., when studying block
encoding VC [31].

2. Cheating problem. Participants may collude to generate fake shares, such that,
when stacking the fake shares with the shares from victim participant, a fake
secret is reconstructed. To combat such an attack, in 2006, Horng et al. designed
two authentication based cheating prevention VC algorithms [12, 19, 30]. In
2010, Prisco and Santis designed (2, n)-threshold and (n, n)-threshold cheat-
ing prevention schemes [38]. In 2011, Liu et al. extended the design to general
access structure, which also avoided some of the drawbacks in previous cheating
prevention VC algorithms.

The research of VC has attracted attentions of researchers from diverse fields,
including cryptography, image processing, digital halftoning and multimedia secu-
rity. Various different new types of VC algorithms are proposed as solutions to apply
in different scenarios, such as progressive VC [18, 25, 28], VC with reversing [16,
44], etc. Considering the focus of this book, improving visual quality of recovered
image, we direct the readers to other monograph for compressive review of these
important topics [15, 29].

1.2 Applications of Visual Cryptography

In recent years, VC has been developed to be one of the building blocks in many
solutions to security problems. In this subsection, we review some of the applications
of VC in payment security, privacy protection, source tracing and its combination
with QR (Quick Response) code.

1.2.1 Online Transaction Security

Nowadays, online transaction is one of the major transaction methods due to the
widely use of e-commerce. Such transactions include online banking, online payment
on an e-commerce platform, payment by scanning a QR code using a payment App,
and payment using an online social network App. For these transactions to be secure,
one must ensure that both the hardware and the software are secure so that there are
no Trojan horses residing in it. A Trojan horse is a malicious program, in hardware
or in software, residing in a client or a sever, trying to compromise the security of a
computer system or a communication system.

However, considering the diverse sources of Apps and softwares installed on a
computer or cellphone, one cannot guarantee that his/her device is Trojan-free. Using
such insecure devices, how to ensure that the transaction is safe? A Trojan horse may
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(a)

(b)

Fig. 1.1 A Trojan horse may modify or forge messages between client (user’s computer) and bank
sever. a A Trojan horse (Tom) modifies a message from user Alice’s computer to bank sever. b A
Trojan horse (Tom) pretends to be Alice and forges a message to bank sever

monitor all messages from bank sever to a user’s device and may be able to modify
these messages. There are two common attacks on the communication between the
bank sever and the client computer, as illustrate in Fig. 1.1. In Fig. 1.1a, an honest user
Alice uses her computer to send amessage to the bank sever, asking it to transfer 100$
to Bob. But this message is intercepted by a Trojan horse residing in her computer.
Herewe denote the Trojan horse as Tom. Trojan horsemodifiedAlice’smessage to be
‘Transfer 100$ to Tom’. In a second scenario, as shown in Fig. 1.1b, the Trojan horse
Tom pretends to be Alice, and sends a message to bank sever, asking it to transfer
100$ from Alice’s account to Tom’s account. The first scenario asks for message
authentication to ensure that the messages between the sever and the client are not
modified. The second scenario asks for person identification, so that the sever can
ensure that it is talking to the right person.

Visual cryptographyprovides solutions to combating these attacks, thus can ensure
that we can make online transactions on an insecure device, such as computer,
smart phone, smart card terminal, etc. This protocol was first proposed by Naor
and Pinkas [34] and was further developed by Borchert and Reinhardt in [6], and by
Pape in [37]. We briefly outline their solutions to authentication and identification in
the following steps.

1. Before the transaction starts, the bank sever generates a random grid (random
black/white dots) as the first share, which is then printed on a transparency, and
distributed to Alice. Alternatively, the random grid image can be sent to Alice in
a secure email, and Alice can print it out on a transparency. Such a transparency
can be seen in Fig. 1.2a.
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2. To transfer 100$ to Bob, Alice starts the transaction by logging into the online
bank webpage (or App), and filling in the receiver’s (Bob) bank account and the
amount to transfer, as shown in Fig. 1.2b. Alice’s bank account is 0001 and the
receiver’s bank account is 0002. The amount to transfer is indicated by a $ sign.
Then Alice sends this message to the bank sever.

3. After receiving the request from Alice, the bank sever generates a TAN (trans-
action authentication number) as part of the secret message, and sends back the
second share of this secret message, asking Alice to verify the message she sent
and identifying if Alice is a person or a Trojan horse. The second share has
totally random appearance, as shown in Fig. 1.2c. A Trojan horse, without share
1, cannot obtain the plain text encrypted in this random image. If the share 1 is
distributed to Alice in electronic form and is stored in computer disk as a file,
then the Trojan horse should have chance to read and use it. So, the key to using
this protocol is the printed share, which is later stacked on screen by human user.
This blocks the possibility of stealing by the Trojan horse.

(a)

(c) (d)

(b)

Fig. 1.2 A solution to online transaction on an insecure device using VC. a The share transparency
Alice obtained from bank. b Transaction request from Alice to bank sever. c Message from sever
to Alice in encrypted form. d Decrypted message by stacking the first share owned by Alice (a
transparency) with the second share received from the sever
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4. After receiving the share 2 in Fig. 1.2c, Alice stacks her share (share 1) with the
share on the screen (share 2). The secret verification request will reveal itself,
as shown in Fig. 1.2d. This request from the bank asks Alice to confirm the
destination of the money transfer, i.e., Bob’s bank account, and also the amount
to be transfered. It also asks Alice to input a TAN using a soft keyboard that
is part of this secret request. The arrangement of the digits in the keyboard is
random, so that a Trojan horse cannot figure out the TAN from the positions of
the mouse click by Alice. Alice inputs the TAN (here it is 23) by clicking this
random keyboard, and the bank will receive the position coordinates of the clicks.

5. After the bank sever receives the position coordinates of the clicks, it can check
its local soft keyboard and decode the TAN. By comparing the decoded TAN
and the local TAN, the sever is able to judge if it is talking to Alice, not the
Trojan. Furthermore, the sever can make sure that the message from Alice is not
modified by either the Trojan or an active attacker monitoring the communication
link between Alice and itself.

The advantage of this protocol is its ability to combat any Trojan residing in user’s
device. In this aspect, it is advantageous to shortmessage based authentication, where
the short message can also be read by an App or a Trojan horse in the same smart
phone. It is also safer than the CAPTCHA (Completely Automated Public Turing
test to tell Computers and Humans Apart), since an image recognition algorithm can
be built into a Trojan horse to help it to recognize the CAPTCHA. Drawbacks of this
protocol are the distribution, storage, and alignment of the shares during decoding.

1.2.2 Privacy Protection

Another application of VC is privacy protection. Personal privacy, such as biomet-
ric data (fingerprint, face template, finger vein, iris, etc.), medical information and
personal financial information, contains sensitive personal information that should
be owned only to the owner himself/herself. The issue here is that, these informa-
tion is also important to access control and disease diagnosis. So, privacy protection
addresses the ways to protect personal privacy without hindering legitimate usage of
these information.

Visual cryptography provides solutions to privacy protection in several scenarios.
This subsection reviews some applications in privacy protection for biometric data
and medical data [1, 2, 4, 39, 56].

The biometric feature is unique and cannot be easily changed during life time.
So, unlike password, once it is leaked, one cannot come up with another one. But
face and fingerprint are used so common today, such as paying by face scanning.
For these applications, there are two steps involved: the enrollment step and the
authentication step. During the enrollment step, the biometric data is recorded and
the features are extracted. These features, usually referred to as template, are stored in
a database.During authentication, such as entrance control byfingerprint recognition,
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Fig. 1.3 A visual cryptography solution to privacy protection of fingerprint image

a live fingerprint is taken from the visitor and the biometric features are extracted.
These live features are then compared with the template stored in the database. The
biometric templates are usually stored in a central database owned by a company [39].
Any successful attack to these databases may lead to leakage of user’s privacy. Ross
and Othman proposed to use VC to split a biometric image into two shares to protect
privacy. For example, for fingerprint recognition, this idea is shown in Fig. 1.3.

During enrollment step, the fingerprint image is split into two meaningless shares
by VC encoding algorithm. Each share contains totally random patterns and is stored
in a separate database. Even if one of the database is attacked, only one share is leaked
to the attacker.However, fromonly one share, it is not possible to gain any information
about the fingerprint. During authentication process, such as person verification, the
two fingerprint shares are loaded from the two databases. After VC decoding, one
may reconstruct the fingerprint enrolled, i.e., the template. Then this template is
matched to a live fingerprint. Using such a system, the privacy of the fingerprint is
ensured even though one of the database is not secure. In general, for (k, n)-threshold
VC, this system may resist successful attacks to up to k − 1 databases.

Similar system can also be used in securing medical or health care data [4, 56].
Yang et al. considered the scenario that two or more hospitals need to share their
medical images, such as CT (computed tomography), X-ray, etc. But sharing these
images between two private systems directly is usually difficult. On the other side,
uploading all images to a public system is insecure. Yang et al. proposed to use a
random grid type algorithm to generate the two shares of the medical image.

Referring to Fig. 1.4, hospital 1 has amedical equipment. After themedical equip-
ment generates the medical image, it uses a random key K to generate the the first
share image, the master share. Using master share and the medical image, the VC
encoding algorithm can generate the second share, which is called the key share.
The master share is not totally random, but is generated by a pseudo random number
generator. Anyone having the key K can generate themaster share. TheMaster share,
or the key K , is stored in private database 1 in hospital 1. The key share is uploaded
to public system. Thus, leakage of key share from the public system won’t lead to
lose of private information. When another hospital, hospital 2, needs to access the
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Fig. 1.4 A visual cryptography solution to privacy protection of medical image

medical image, and after authentication, the key share is sent to private system in
hospital 2. The key K , which is significantly shorter than the master share, is also
sent to the private system 2. Using this key, private system 2 can generate the master
share. Finally, private system 2 is able to stack the two shares to recover the medical
image. This system has two advantageous features. First, the medical image is secure
to information leakage from the public database. Second, only the key that is used
to generate the master share needs to be sent, which is fast and efficient.

1.2.3 Barcode Security

QR code is widely used for online and offline payment, especially in China and other
east Asian countries. A QR code is a two-dimensional bar code, which can store
numbers, URL, or even text. In [17], Fang designed a VC scheme to share a QR
code. The QR code image is used as the secret image to VC encoder. The two shares
contain random binary pattern, but the function patterns are reserved. By scanning
one share, the scanning App cannot find anything and reports a decoding failure. But
after stacking the shares, the contents of the QR code can be decoded by a standard
QR decoder.

Similar ideas are also used in [11, 14]. A secret QR code is split into several share
QR codes. Each share QR code is a legitimate one. So each QR code can be scanned
and decoded. The decoded message is irrelevant to the secret message. Once we
stack all the shares, we get another QR code image. Scanning this QR image, we
may decode the secret message. The advantage of Chow’s and Cheng’s scheme over
Fang’s is the cover QR codes, which behave like normal QR code, as illustrated in
Fig. 1.5.
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Fig. 1.5 Application of VC to QR code sharing

1.2.4 Electronic Voting System Security

For online voting, voting by participants not living in a neighboring region, attackers
may use phishing attack (a fake voting website) to collect personal confidential
information. To prevent such an attack, the login password for the legal votingwebsite
is split into two shares. One share is sent to the voter’s email address, and the other
share is stored within the voting website. To log into the voting website, the voter
needs to provide his user name and the first share. From the user name, the website
will find the second share in its database. After stacking the two shares, the password
will reveal itself [36].

To prevent multiple voting, each voter is provided with a unique voting ID card.
He/She can execute voting only after his/her identity is verified. Naidu et al. proposed
using visual cryptography to design such a mechanism [33]. Each user is identified
by his/her fingerprint. During enrollment process, the voter’s fingerprint is taken and
split into two shares. One share is stored in a voting ID card (a smart card), and
the other share is stored in the voting sever. This can ensure that if either the voting
ID card is lost or the databased is attack, no information about the user’s privacy is
leaked. During voting process, the two shares are gathered in a voting station and
stacked to produce a fingerprint image. This fingerprint is compared with the live
fingerprint taken at the voting station.

In a similar scenario as [33], Chaum used VC to design a mechanism such that
the voter will get a receipt after voting [6, 7]. Using this receipt, he/she can ensure
that his/her voting is counted. But this receipt should not reveal which candidate the
voter has voted.
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1.2.5 E-Commerce Security

An E-commerce system may have a built-in deposit account and is usually protected
by login username-password pair. This database of password is usually the target of
attacks since it contains hash value of the login information. To secure this password,
Yang et al. proposed a systemusingVCand optical character recognition (OCR) [55].
Only one share is stored in the database of the website, the other share is hold by
the user. To log into the website, the user provides his/her share that will be stacked
with the share stored in the database. An OCR system then can be used to recognize
the password from the stacking result.

Onemajor concern of online shopping is fake commodity. For example, cellphone
is usually assigned with a unique serial number (SN), so that after receiving the
cellphone, the buyer may verify the SN printed at the back of the cover from the
manufacturer’s website. But this SN number is in plain text and can be easily copied
to fake cellphone. In [57], Yang et al. designed an anti-counterfeiting mechanism
for cellphone. The SN image is split into two shares. One share is printed within the
cellphone, and the other share is stored in the manufacturer’s database. To verify his
cellphone, the user upload his share to verification website and the staking result is
sent back to the user’s cellphone. This stacking result reveals the true SN number,
and can be compared to the one printed on the cellphone cover.

As a secret sharing mechanism, visual cryptography is suitable for applications
involving splitting one secret into multiple shares and distributing to multiple par-
ticipants. Furthermore, decoding involves collaboration between these participants
and no key is needed. This is different from encryption, where a key is needed for
encryption and decryption.

We end this subsection by noting that in some of these applications, either the
secret image or the cover images are grayscale images. For applications involving
recognition on the stacking result, the image quality must be good enough. For exam-
ple, in the application where one needs to do face recognition, fingerprint recognition
or OCR on stacking result, the stacking result must retain high fidelity with the orig-
inal secret image. This motivates our focus in this book: improving image quality in
visual cryptography.

1.3 Classification of Visual Cryptography Algorithms

Considering the diverse types of VC algorithms developed over the last thirty years, it
is difficult to classify a VC algorithm into just one type. As discussed above, there are
three important factors to consider when designing a VC algorithm: pixel expansion,
perceptual quality, and security. So the VC algorithms can be classified according to
the combination of the above properties.

Based on the way the basis matrices are used and pixel expansion, one can classify
the VC algorithms to deterministic, probabilistic or random grid. The deterministic
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VC uses all columns of a basis matrix so it has pixel expansion. The probabilistic
and random grid approach have no pixel expansion.

Based on the type of ‘stacking’ operation, wemay classify the algorithms as based
on ‘OR’ operation or ‘XOR’ operation.

Based on the type of the secret image, one may classify the VC algorithms as
designed for binary secret image, halftone secret image, grayscale secret image or
color secret image.

Based on the whether the shares are meaningful, one may classify a VC algo-
rithm as ordinary VC havingmeaningless shares, or extended VC havingmeaningful
shares.

1.4 Remark and Introduction to Chapters

In this book, we focus on VC algorithms satisfying strong security and no pixel
expansion. The secret image is a grayscale image, whereas the shares are meaning-
less. Under these conditions, we review important efforts in improving the visual
quality of the reconstructed secret image.

This book consists of seven chapters and the topics are arranged as follows.
In Chap. 2, after introducing the basic framework of visual cryptography, we

review the three basic VC schemes, the classic deterministic VC, the probabilistic
VC and the random grid VC. The security issue including the weak security and
replacement attacks will also be briefly reviewed.

InChap. 3,we introduce the problemof digital halftoning and important halftoning
schemes, including simple bi-level quantization, ordered dithering, error diffusion
and direct binary search. The quality measures for halftone image are also reviewed.
Furthermore, we introduce the residual variance measure that will be used to eval-
uate the quality of recovered secret image in VC. The purpose of this chapter is to
introduce to the reader a self-contained background for digital halftoning. For the VC
algorithms we are focusing to, the secret images and/or cover images are grayscale
images.

In Chap. 4, we introduce important algorithms in improving visual quality for
the share images in extended VC, i.e., VC with meaningful shares. For binary cover
image,we introduce three important algorithms, the basic extendedVC, user-friendly
random grid, and pixel swapping algorithm. For halftone shares, we introduce error
diffusion based algorithms, and an improvement of this algorithm by including a
hidden watermark, for authentication purpose.

In Chap. 5, we introduce the VC problem for grayscale secret image. Then the
efforts in improving size-invariant VC are reviewed. For probabilistic VC, Wang’s
size-invariant algorithm and our analysis-by-synthesis algorithmswill be introduced.
For random grid VC, we introduce the blue noise approach and our analysis-by-
synthesis approach.

In Chap. 6, the vector VC approach will be comprehensively reviewed. For
halftone secret image, we introduce Hou’s block encoding algorithm, Lee’s block
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encoding algorithm, and our local blackness preserving algorithm. From Lee’s work,
we formally define the vector VC scheme, which is then improved by a vector VC
in the analysis-by-synthesis framework.

The Chap. 7 concludes this book with a short summary and discussion of future
works.
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Chapter 2
Basic Visual Cryptography Algorithms

2.1 Framework of Visual Secret Sharing

In a (k, n)-threshold visual cryptography (visual secret sharing) problem [13], a secret
image s is shared between n parties, called participants. Each participant obtains one
share image. If less than k shares are obtained, it is not possible to infer s from them.
But, if k or more than k shares are obtained, then the secret s can be revealed by
stacking these shares, producing different average brightnesses for the white secret
pixels and black secret pixels. For visual cryptography, the shares are usually printed
on transparencies, and decoding corresponds to stacking the shares. The stacking
result is called the target image.

The above threshold schemes can be extended tomore general access structure [1].
There are two sets of participants, the forbidden set �Forb, and the qualified set �Qual.
For a group of participants P, if P ∈ �Forb, then it should be impossible to infer s
from the shares owned by these participants. If P ∈ �Qual, then by stacking all the
shares owned by these participants, the content of the secret should be recovered
with sufficient contrast.

For example, for a (3, 3)-threshold scheme, we have

�Qual = {{1, 2, 3}} , (2.1)

�Forb = {{1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3}} . (2.2)

2.1.1 A Note on Color Convention

For monochrome, there are two conventional ways of numerical representation of
colors. For the first approach, the axis is lightness, where larger value corresponds
to brighter color. Such a convention is widely used in digital image processing and
digital display. For the second approach, the axis represents the amount of absorption
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of light, where larger value corresponds to darker color. Such a convention is adopted
in printing, visual cryptography and QR (Quick Response) code.

Visual cryptography, in its strict sense, needs to print its shares on transparencies.
So, larger value should correspond to higher darkness. In this book, we adopt this
convention. If an image is normalized to the range [0, 1], then ‘0’ corresponds to the
brightest color (White) and ‘1’ (for normalized image) or ‘255’ (for 8-bit represen-
tation) corresponds to the darkest color (Black). In summary, we use the following
numerical representation of pixels:

� ↔ 1, (2.3)

� ↔ 0. (2.4)

2.2 Deterministic Visual Cryptography

Deterministic VC is the type of VC proposed by Naor and Shamir [13]. The prefix
‘deterministic’ is used here to distinguish it from the probabilistic schemes. Please
note that deterministic doesn’t mean that every step of the algorithm is deterministic.
For deterministic VC, each secret pixel is represented by a block on share images.
Usually, the shape of the block is a square, in order to preserve the aspect ratio of
objects in the secret image onto the target image.

2.2.1 Introduction

A simple example is shown in Fig. 2.1. When sharing a white pixel s = 0, one ran-
domly chooses one row from the second and the third rows in Fig. 2.1, and distributes
the second column to Share 1 and the third column to Share 2. The final stacking
result is a 2 × 2 block with two black pixels, as shown in the last column. Similarly,
while sharing a black pixel s = 1, one randomly chooses one row from the fourth
and the fifth rows of the table, and distributes the second column to Share 1 and the
third column to Share 2. The final stacking result is a 2 × 2 block with four black
pixels, as shown in the last column. So, one secret pixel is expanded to a block having
four pixels, or equivalently, one secret pixel is represented by four sub-pixels.

If we look at one share, no matter whether a white pixel is shared or a black pixel
is shared, we always see roughly equal number of the following two types of blocks
on each share:

A1 =
[
0 1
1 0

]
, A2 =

[
1 0
0 1

]
. (2.5)

Thus, by checking only one share, it is impossible to tell if a black pixel is shared or
a white pixel is shared. This is the security consideration in visual cryptography. But



2.2 Deterministic Visual Cryptography 17

if we check the target image, the block corresponding to white secret pixel has two
black pixels, while the block corresponding to the black secret pixel has four black
pixels. Thus, one can distinguish between the black region and the white region of
the secret image by checking the target image. This is the contrast consideration in
visual cryptography.

When designing a deterministic VC algorithm, the blocks corresponding to a
secret pixel are usually vectorized and organized into a matrix. For example, the two
blocks in (2.5) are represented as a matrix

C =
[
vec(A1)

T

vec(A2)
T

]
, (2.6)

where each block Ai , i = 1, 2, is stretched to a column vector by function vec(Ai ),
transposed, and filled into one row of C. So, each row of C should be distributed to
one share and then reshaped to appropriate shape. For the design of VC algorithm,
the reshaping is not a central issue. So, it is usually omitted when defining the VC.

For the example in Fig. 2.1, we have the following matrices:

C0 = {
C0

1,C
0
2

} =
{[

0 1 1 0
0 1 1 0

]
,

[
1 0 0 1
1 0 0 1

]}
,

C1 = {
C1

1,C
1
2

} =
{[

0 1 1 0
1 0 0 1

]
,

[
1 0 0 1
0 1 1 0

]}
.

(2.7)

Fig. 2.1 A demonstration of (2, 2)-threshold deterministic VC. The pixel expansion is 4
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When sharing a secret pixel s ∈ {0, 1}, we randomly (with equal probabilities) choose
one matrix from the set Cs and distribute the first row of that matrix to Share 1, and
distribute the second row to Share 2. How the shares reshape the vector to a block is
not a central issue here. If we check only one row of the matrices, say first row, then
we have

Ĉ0 = {[
0 1 1 0

]
,
[
1 0 0 1

]}
, (2.8)

Ĉ1 = {[
0 1 1 0

]
,
[
1 0 0 1

]}
. (2.9)

These two sets are equivalent in the sense that, (1) they have the same matrices, and
(2) the frequencies of these matrices are equal, since we choose matrices in each set
with equal probabilities. So by checking only one share, one cannot tell if s = 0 or
s = 1. After stacking two rows of the matrices in set C0, the number of black pixels,
which is also the Hamming weight of the resulting vector, is 2. But for C1, it is 4. So
from the stacking result one can tell whether s = 0 or s = 1.

2.2.2 Definition

LetH(v) be the Hamming weight of a Boolean vector v, i.e., the number of 1s in v.
Based on the above explanation, the (k, n)-threshold VC can be formally defined by
the following definition [13]:

Definition 2.1 (k, n)-threshold VC: A (k, n)-threshold VC consists of two collec-
tions of n × mmatricesC0 andC1. To share awhite (black resp.) pixel, one randomly
chooses one matrix from C0 (C1 resp.). Each row of the chosen matrix is distributed
to one share. The following two conditions should be satisfied:

1. Contrast condition: For any C ∈ C0, let C = [
cT1 , . . . , cTn

]T
, where ci is the

i-th row of matrix C. Then, the stacking of any k rows or more satisfies
H(∨k

j=1ci j ) ≤ d − α, where i1, . . . , ik are k randomly chosen row indices. For
any C ∈ C1,H(∨k

j=1ci j ) ≥ d.

2. Security condition: For any q < k randomly chosen shares {i1, . . . , iq} ∈
{1, 2, . . . , n}, the two collections of matrices Ĉ0 and Ĉ1, obtained by restricting
each matrix to the rows i1, . . . , iq , should be indistinguishable. Namely, Ĉ0 and

Ĉ1 should contain the same matrices with the same frequencies.

The parameter m is pixel expansion rate and parameter α gives the minimum differ-
ence in Hamming weight between the stacking result for a black secret pixel and the
stacking result for a white secret pixel.
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2.2.3 Constructions

The construction of the two sets of matrices C0 and C1 can be based on two basis
matrices B0 and B1. After designing B0 (B1 resp.), C0 may include all column
permutations of B0 (B1 resp.). For a matrix B0 ∈ Z

n×m
2 , there are m! matrices in

corresponding C0.
One optimal construction for (n, n)-threshold scheme was proposed by Naor and

Shamir [13]. It starts with a set having n components, which is called a ground set.
Let the set be W = {e1, . . . , en}, which has 2n subsets. Among these subsets, let
U1, . . . ,U2n−1 be the 2n−1 subsets with even cardinality, and let V1, . . . ,V2n−1 be the
2n−1 subsets with odd cardinality. Then we obtain two basis matrices B0 and B1 as
follows:

B0[i, j] =
{
1, if ei ∈ U j ,

0, otherwise.

B1[i, j] =
{
1, if ei ∈ V j ,

0, otherwise.

(2.10)

Then the set ofmatricesC0 (C1 resp.) is obtained by all possible column permutations
of B0 (B1 resp.).

For example, Let n = 3 and m = 4, then we use the ground setW = {e1, e2, e3}.
So, we have the following subsets:

U1 = {e1, e2} , U2 = {e1, e3} , U3 = {e2, e3} , U4 = ∅,

V1 = {e1} , V2 = {e2} , V3 = {e3} , V4 = {e1, e2, e3} .

From (2.10), we get two basis matrices:

B0 =
⎡
⎣ 1 1 0 0
1 0 1 0
0 1 1 0

⎤
⎦ , B1 =

⎡
⎣ 1 0 0 1
0 1 0 1
0 0 1 1

⎤
⎦

The set of matrices C0 (C1 resp.) contains 2n−1! = 4! = 24 matrices that are all
possible column permutations of the matrix B0 (B1 resp.).

Naor and Shamir proved that this scheme is optimal, in that it has the minimum
pixel expansion m and maximum contrast α for a given n:

Theorem 2.1 ([13])For any (n, n)-threshold deterministic VC, the contrast is upper
bounded by 1/2n−1, and the pixel expansion m is lower bounded by 2n−1.

Proof for security and contrast condition can be found in [13], which is thus
omitted here. We also direct the reader to [13] for more general constructions such
as (k, n)-threshold scheme.

An experimental result using the scheme in Fig. 2.1 is shown in Fig. 2.2.
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Fig. 2.2 Experimental result for (2, 2)-threshold VC constructed by Naor and Shamir. a Secret
image. b Share 1. c Share 2. d Target image. Please note that the sizes of the shares and target
images are four times of the size of the secret image

2.3 Probabilistic Visual Cryptography

The probabilistic VC is build upon the deterministic VC and its original purpose is
to produce size-invariant shares [9, 18], i.e., shares having the same size as the secret
image.

Ito et al. transformed the deterministic VC into probabilistic counterpart. The sets
of matrices C0 and C1 are the same as those constructed for deterministic VC. But
Ito et al. used it in a probabilistic way. This algorithm is summarized in Algorithm1.

If the two sets of matrices C0 and C1 are constructed by permuting columns of
two basis matrices B0 and B1, then one can safely choose C0 = B0 and C1 = B1 in
Algorithm 1.
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Algorithm 1 (k, n)-threshold probabilistic VC constructed by Ito et al. [9].
Require:

Binary secret image: x [n] ∈ {0, 1}.
Two sets of matrices C0 and C1.

Ensure:
n binary share images: s1 [n] , . . . , sn [n].

1: Randomly choose two matrices C0 ∈ C0 and C1 ∈ C1.
2: for each pixel n do
3: if x [n] = 0 then
4: c ← Randomly select one column of C0.
5: else
6: c ← Randomly select one column of C1.
7: end if
8: si [n] ← ci , where i = 1, . . . , n.
9: end for

Fig. 2.3 Experimental result for (2, 2)-threshold probabilistic VC constructed by Ito et al. a Share
1. b Share 2. c Target image

Using the basis matrices

B0 =
[
1 0
1 0

]
, B1 =

[
1 0
0 1

]
,

the experimental result is shown in Fig. 2.3. Compared with the deterministic result,
we see that the average contrasts on target images are indistinguishable. But, for
deterministic VC, the black and white pixels are more evenly distributed in region
corresponding to white secret pixels. In contrast, we see many black clusters for
probabilistic VC. This is due to the probabilistic use of the basis matrices.

Yang formally defined the (k, n)-threshold probabilistic VC scheme and con-
structed various solutions. We briefly review this definition and a (n, n)-threshold
scheme.

The definition of (k, n)-threshold probabilistic VC can be explained as follows.
The core to the probabilistic VC is two collection of vectors,C0 andC1. The elements
of each set are n-dimensional vectors. Suppose that the set C0 contains n0 vectors
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and the set C1 contains n1 vectors, where n0 may not be equal to n1. For example, if
we take n = 3, we may have

C0 =
⎧⎨
⎩

⎡
⎣0
0
0

⎤
⎦ ,

⎡
⎣ 1
1
0

⎤
⎦ ,

⎡
⎣ 1
0
1

⎤
⎦ ,

⎡
⎣ 0
1
1

⎤
⎦

⎫⎬
⎭ , C1 =

⎧⎨
⎩

⎡
⎣ 1
0
0

⎤
⎦ ,

⎡
⎣ 0
1
0

⎤
⎦ ,

⎡
⎣ 0
0
1

⎤
⎦ ,

⎡
⎣1
1
1

⎤
⎦

⎫⎬
⎭ .

(2.11)
When sharing a secret pixel s ∈ {0, 1}, a vector is randomly chosen from Cs , and
the rows of this vector are randomly permuted. Then the i-th element is assigned
to share i . For each vector c = [c1, . . . , cn]T ∈ Ci , we can calculate the stacking
result L (c) = c1 ∨ . . . ,∨cn . So, we have two sets L0 and L1 derived from C0 and
C1, respectively, where

Li = {L(c),∀c ∈ Ci } , i = 0, 1. (2.12)

Each set Li contains stacking results for all vectors in set Ci . For the example in
(2.11), we have L0 = {0, 1, 1, 1} and L1 = {1, 1, 1, 1}.1

If the following two conditions are satisfied, then this scheme is called a (n, n)-
threshold probabilistic VC.

1. Contrast condition: Let pb be the proportion of white pixels in the set Lb. Then
the two sets C0 and C1 must satisfy p0 ≥ pTH and p1 ≤ pTH − α, for some
threshold pTH > 0 and contrast α > 0.

2. Security condition: For q < k and any subset
{
i1, . . . , iq

} ⊂ {1, 2, . . . , n}, the
probabilities p0 and p1 should be the same. More specifically, for each vector
c ∈ Ci , if we retain only the components whose indices are in

{
i1, . . . , iq

}
, we

get two new sets Ĉ0 and Ĉ1, and two corresponding sets L̂0 and L̂1. The p0 and
p1 obtained from L̂0 and L̂1 should be equal.

For the example in (2.11), one can verify that for k = 3, p0 = 1/4 and p1 = 0. Thus
we can set pTH = 1/4 and α = 1/4.

Yang constructed (2, n), (n, n) and (k, n)-threshold schemes for probabilistic VC.
Here we outline his (n, n)-threshold scheme since it is relevant to our AbS scheme
in later chapters.

Let μi, j be the set of vectors in C j whose Hamming weight is i , i.e.,

μi, j = {
c ∈ C j , such that H(c) = i

}
, (2.13)

whereH(c) returns Hamming weight of vector c. Then, the two sets C0 and C1 can
be constructed as:

1Please note that calling Li a set is not mathematically vigorous, since the elements in Li are allowed
to be the same. We stick to this notation since it is widely used in the literature of probabilistic VC.
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Fig. 2.4 Experimental result for (3, 3)-threshold probabilistic VC constructed by Yang [18]. a
Share 1. b Share 2. c Share 3. d Stacking result of share 1 and share 2. e Stacking result of share 1
and share 3. f Stacking result of three shares

C0 = {μi0, i = even, and i ∈ {0, . . . , n}} , (2.14)

C1 = {μi1, i = odd, and i ∈ {0, . . . , n}} . (2.15)

This construction is shown to have threshold pTH = 1/2n−1 and contrastα = 1/2n−1.
For n = 3, the design result is shown in (2.11). Using this construction, the experi-
mental result is shown in Fig. 2.4.

2.4 Random Grid Visual Cryptography

The random grid (RG) based VC doesn’t rely on the basis matrices. A random grid
is a collection of black and white pixels located at regularly spaced points, usually
with equal probability. Using RG VC, the secret image is encoded as relationships
between two or more random grids.

The three (2, 2)-threshold RG VC algorithms proposed by Kafri and Keren [11]
were extended to gray/color image and (n, n)-threshold by Shyu [14, 15]. Later, the
more general (2, n), (n, n) and (k, n)-threshold algorithmswere constructed byChen
and Tsao [2, 3]. Wu and Sun generalized the classical random grid VC, where the
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probability of white pixels on the first share can be larger than the default value 1/2
that is assumed by previous algorithms [17]. This modification can help to increase
the contrast for (2, n) schemes. Recent effort by Hou et al. further push the quality
to the theoretical maximum [5].

The basic idea of (n, n)-threshold RG VC is to repeatedly split the secret image
and then the shares using (2, 2)-threshold RG VC [2]. After each iteration, a new
share is generated. So after n − 1 steps, n shares are generated. Here we summarize
the algorithm proposed by Chen and Tsao [2], using the notation in this book. The
basic (2, 2)-threshold RG VC is shown in Algorithm 2. The first share is a randomly
generated binary image, i.e., a random grid. Pixels are independent and identically
distributed (IID) with a uniform distribution over the set {0, 1}. The second share
encodes the secret image x as relationship between itself and the first share. If a black
pixel needs to be shared, then the pixel s2 [n] on the second share is complementary to
the corresponding pixel s1 [n] on the first share, i.e., s2 [n] = 1 − s1 [n]. Otherwise,
the pixel s2 [n] on the second share is the same as the corresponding pixel s1 [n] on
the first share, i.e., s2 [n] = s1 [n]. A simple demo is shown in Fig. 2.5.

Algorithm 2 (s1 [n] , s2 [n]) ← RandGrid22(x [n]): Basic (2, 2)-threshold random
grid VC (Algorithm 1 in [11]).
Require:

Binary secret image: x [n] ∈ {0, 1}.
Ensure:

Two binary share images: s1 [n] , s2 [n].
1: for each pixel n do

2: s1 [n]
I I D∼ U {0, 1}.

3: if x [n] = 0 then
4: s2 [n] ← s1 [n].
5: else
6: s2 [n] ← 1 − s1 [n].
7: end if
8: end for

Based on the (2, 2)-threshold random grid VC, the (n, n)-threshold random grid
VC can be constructed, as shown in Algorithm 3. In the first step, two shares are
generated using a (2, 2)-threshold random grid VC. Then, the second share is treated
as a newsecret image and is used to generate another two shares using (2, 2)-threshold
VC. So, this algorithm iteratively split one share into more shares, till the required
number of shares are obtained. An experimental result for (3, 3)-threshold random
grid is shown in Fig. 2.6.

The (2, n)-threshold random grid constructed by Chen and Tsao can be summa-
rized in Algorithm 4 [2]. In brief, to share a white pixel, the shares copy the random
grid (the first share). To share a black pixel, each share randomly generates its own
random gird. Thus when stacking, the average blackness for the region �0 is 1/2,
and the average blackness for the region �1 will increase with the number of shares,
thus producing contrast between region �0 and �1.
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Fig. 2.5 Experimental result for (2, 2)-threshold random grid. a Share 1. b Share 2. c Target image

Fig. 2.6 Experimental result for (3, 3)-threshold random grid. a Share 1. b Share 2. c Share 3. d
Stacking of share 1 and share 2. e Stacking of share 1 and share 3. f Stacking of three shares
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Algorithm 3 (n, n)-threshold random grid VC [2].
Require:

Binary secret image: x [n] ∈ {0, 1}.
Ensure:

n binary share images: s1 [n] , . . . , sn [n].
1: (s1 [n] , R1 [n]) ← RandGrid22(x [n]). // See Algorithm 2
2: for k ← 2 to n − 1 do
3: (sk [n] , Rk [n]) ← RandGrid22(Rk−1 [n]).
4: end for
5: sn [n] ← Rn−1 [n].

Algorithm 4 (2, n)-threshold random grid VC [2].
Require:

Binary secret image: x [n] ∈ {0, 1}.
Ensure:

n binary share images: s1 [n] , . . . , sn [n].
1: Define �0 = {n : x [n] = 0}, �1 = {n : x [n] = 1}.
2: for every pixel location n do

3: s1 [n]
I I D∼ U {0, 1}.

4: for k ← 2 to n do
5: if n ∈ �0 then
6: sk [n] ← sk−1 [n].
7: else
8: sk [n]

I I D∼ U {0, 1}.
9: end if
10: end for
11: end for
12: Output share images s1 [n] , . . . , sn [n].

The (k, n)-threshold random grid VC is also sample based. For a position n, a
secret pixel is repeatedly split into two sub-pixels, till we get k sub-pixels. Then, k
share images are randomly chosen and the k sub-pixels from last step are filled to
position n on these k shares. For the other n − k share images, the current position n
is filled with random bits. Repeat the above process, till all pixels are filled on each
share. This algorithm is summarized in Algorithm 5. To understand that the contrast
condition and security condition are satisfied, one can set k = n, then this algorithm
degenerates to Algorithm 3. For k < n, the other n − k shares acts as random noise.
So they won’t affect the security condition. When stacking, these noises decrease the
quality of the target image, but the contrast between white region and black region
is still nonzero.
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Algorithm 5 (k, n)-threshold random grid VC [3].
Require:

Binary secret image: x [n] ∈ {0, 1}.
Ensure:

n binary share images: s1 [n] , . . . , sn [n].
1: for every pixel location n do
2: (r1, r2) ← RandGrid22(x [n]).
3: for i ← 2 to k − 1 do
4: (ri , ri + 1) ← RandGrid22(ri ).
5: end for
6: � ← k random integers from {1, 2, . . . , n}.
7: for every i ∈ � do
8: si [n] ← ri .
9: end for
10: for every i /∈ � do

11: si [n]
I I D∼ U {0, 1}.

12: end for
13: end for
14: Output share images s1 [n] , . . . , sn [n].

2.4.1 Generalized Random Grid

Recall that, Wu and Sun generalized the classical random grid VC, where the prob-
ability of white pixels on the first share can be larger than the default value 1/2 that
is assumed by previous algorithms [17]. This modification can help to increase the
contrast for (2, n) schemes.

Our purpose here is to help the reader to understand the basic idea and implemen-
tation. A similar construction for probabilistic VC is also reviewed. Three algorithms
are introduced inWu’s work, including (2, 2)-threshold, (2, n)-threshold and (n, n)-
threshold algorithms. The (2, n) case can be summarized in Algorithm 6.

Algorithm 6 (2, n)-threshold generalized random grid VC [17].
Require:

Binary secret image: x [n] ∈ {0, 1}.
Probability of white pixels: p.

Ensure:
n binary share images: s1 [n] , . . . , sn [n].

1: for each position n do
2: Generate share 1: s1 [n] from {0, 1} with probabilities {p, 1 − p} .

3: if x [n] = 0 then
4: sk [n] ← s1 [n], for k = 2, . . . , n.
5: else
6: Generate share k: sk [n] from {0, 1} with probabilities {p, 1 − p} ., where k = 2, . . . , n.
7: end if
8: end for
9: Output share images s1 [n] , . . . , sn [n].
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Algorithm 6 says that, when sharing a white pixel x [n] = 0, one randomly gen-
erates a white pixel with probability p > 1/2 on share 1, then copies this pixel on
share 1 to other shares. So the stacking result is white with probability p, no matter
howmany shares are stacked as long as k > 2.When sharing a black pixel x [n] = 1,
all the shares randomly and independently generate a white pixel with probability p.
So, when stacking the shares, if more shares are involved, then the higher the chance
that the result is black. Thus, by stacking more shares, the contrast between white
secret bits and black secret bits becomes larger. For (2, 20)-threshold, and when 20
shares are stacked, the contrast can be as high as 0.8 [17].

A similar construction of (2, n)-threshold probabilistic VC may also be helpful
to understand why such a construction can help to improve contrast. For a (2, n)-
threshold probabilistic VC constructed in [9], the two basis matrices are

B0 =

⎡
⎢⎢⎢⎣
1 0 0 · · · 0
1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

⎤
⎥⎥⎥⎦ , B1 =

⎡
⎢⎢⎢⎣
1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎦ . (2.16)

If we look at each share, the proportion of white pixel is p = n−1
n and the proportion

of black pixel is 1
n . If d > 1 shares are stacked, for the region on the target image

that corresponds to the white secret pixels, the proportion of white pixels is n−1
n ,

no matter how many shares are stacked. But for the region on the target image that
corresponds to the black secret pixels, the proportion of white pixel is n−d

n , which
decreases with d. So, if more shares are stacked, the contrast between black region
and white region on the target image will increase.

2.5 Security Issue in Visual Cryptography

2.5.1 Strong Security and Weak Security

As a cryptography scheme, the security requirement is usually mandatory. So, when
designing a VC algorithm, one usually tries to maximize the contrast, under the
constraint of security. Some researchers also suggest that there are tradeoffs between
security, contrast and pixel expansion. If we relax the requirement on one aspect,
then maybe it is possible to improve the performance of the other two. For example,
if we relax requirement on security, then it is possible to improve contrast and reduce
pixel expansion [6, 10, 12].

For aVC scheme in its strict sense, the shares are usually printed on transparencies
and decoding is realized by stacking, and no computation is required for decoding. In
the definition of VC (Definition 2.1), for q < k shares, the two sets of sub-matrices
Ĉ0 and Ĉ1 are equivalent. So, an attacker, after obtaining Ĉ0 and Ĉ1, cannot tell if
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s = 0 or s = 1, no matter the computational abilities he may have at his disposal.
This is called strict sense security or unconditional security [6, 10]. For this security,
we assume that the attacker has infinite computational abilities.

However, considering the media of the shares and the decoding mechanism, it is
reasonable to assume that if the attacker only uses his vision system to find clue of
secret from the q < k shares, then the ‘computation’ devices are stacking operation
and HVS. Then if from the stacking result of the q < k rows of the matrices, one
cannot infer s, our algorithm is safe under these assumptions. We call this the weak
security.

Weak security was proposed by Liu [12] and Iwamoto [10] independently for
different types of VC systems. Liu’s work focuses on block encoding approach to
size-invariant VC, while Iwamoto’s works focus on size-expandedVC (deterministic
VC) for color image.Akey conclusion from theirwork is that, by relaxing the security
level to weak security, it is possible to improve the quality of the target image and
reduce the pixel expansion.

In what follows, we introduce three security issues:

1. Iwamoto’s weak security.
2. Liu’s weak security.
3. Replacement attack.

In order to introduce the concept of weak security, we need to formalize some
operations on the basis matrices: row restriction and row stacking, and introduce the
concept of equivalence between two sets of matrices [10].

For (k, n)-threshold scheme, a set of participants can be represented by P ={
i1, . . . , iq

} ⊂ {1, . . . , n}. Given a basis matrix B ∈ Z
n×m
2 , one can make another

matrix by restricting the rows of B to the rows specified in set P. This operation is
denoted by

B̂ = B�P�, (2.17)

with
B̂[�, j] = B[i�, j], (2.18)

where � ∈ {1, . . . , q} , i� ∈ P, and j ∈ {1, . . . , n} .

Another formal operation introduced by Iwamoto is stacking of rows of a matrix.
Let a matrix B be partitioned as

B =
⎡
⎢⎣
b1
...

bn

⎤
⎥⎦ ∈ Z

n×m
2 . (2.19)

Then, the stacking of rows of B is denoted as

η (B) = b1 ∨ . . . ∨ bn, (2.20)
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and the result is a 1 × m vector. Two matrices A and B are said to be equivalent if
one can be obtained by column permutation of the other, and is denoted as A ∼ B.
A set of matrices C that contains all possible column permutations of a given matrix
C is denoted as C = 〈C〉.

Iwamoto’s weak security is defined for color image. We tailor it here for binary
image. For binary (black and white) secret image, a deterministic VC scheme with
weak security can be defined as:

Definition 2.2 (k, n)-threshold VC with weak security is defined by two collec-
tions of matrices C0 = 〈B0〉 and C1 = 〈B1〉, such that the following two conditions
should be satisfied:

1. Contrast condition: For anyC ∈ C0, and a set of participantsP = {
i1, . . . , iq

}
,

where q ≥ k, they must satisfy: H (
η

(
C�P�

)) ≤ d − α. For any C ∈ C1,
H (

η
(
C�P�

)) ≥ d.
2. Security condition: For anyq < k and any set ofq participantsP = {

i1, . . . , iq
}
,

they must satisfy η
(
B0�P�

) ∼ η
(
B1�P�

)
.

Comparing Definitions 2.1 with 2.2, weak security only imposes restriction on
stacking result of q < k shares, while strong security requires that the two sets of
sub-matrices are distinguishable. From sub-matrix to stacking result (a vector) is a
many-to-one mapping. So, imposing restrictions only on mapping result leaves more
space and freedom in designing the basis matrices. From this consideration, it is
possible to improve the visual quality of the target image, by imposing only weak
security on the design.

Iwamoto also proved that, for binary secret image, weak security is equivalent to
strong security. Namely, for binary secret image, a VC algorithm can be designed
to meet the weak security requirement without sacrificing strong security. For color
secret image, however, an algorithm designed to meet the weak security may not be
strongly secure.

While Iwamoto’s work focuses on deterministic VC with pixel expansion, Liu’s
work focuses on block (multi-pixel) encoding, where all secret pixels in a block are
encoded together. The block encoding is shown in Fig. 2.7.

For block encoding, each block is treated as an encoding unit. Let � be a set of
indices for pixels in a block. Since the scheme is size-invariant, so the size of the
shares are the same as the size of the secret image. A block at �1 on secret image
corresponds to blocks at�1 on share images. Liu’s weak security for block encoding
can be summarized in Definition 2.3.

Definition 2.3 (k, n)-threshold block encodingwithweak security: Let the size of
each block� bem. Suppose that we have two blocks�1 and�2 on the secret image,
where H (x [�1]) > H (x [�2]). Each secret block x [�b] , b = 0, 1 is divided into
n share blocks s1[�b], . . . , sn[�b]. The following two conditions should be satisfied.

1. Contrast condition: For q ≥ k and any q shares i1, . . . , iq , the stacking result
should satisfy:

E
{H (

si1 [�1] ∨ . . . , siq [�1]
)}

> E
{H (

si1 [�2] ∨ . . . , siq [�2]
)}

, (2.21)
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Fig. 2.7 A demonstration of
block encoding approach to
size-invariant VC
(n = 2) [12]

where the expectation E is with respect to all possible stacking results at their
respective locations �b, b = 1, 2.

2. Security condition: for q < k and any q shares i1, . . . , iq , the stacking result
should satisfy:

E
{H (

si1 [�1] ∨ . . . , siq [�1]
)} = E

{H (
si1 [�2] ∨ . . . , siq [�2]

)}
,

V
{H (

si1 [�1] ∨ . . . , siq [�1]
)} = V

{H (
si1 [�2] ∨ . . . , siq [�2]

)}
,

where V denotes variance.

Liu’s definition of weak security also imposes requirement on stacking results,
instead of the collection of shares.

As is illustrated in Fig. 2.8, in replacement attack [4], an attacker is able to intercept
one copy of the shares, say share 1, and hence can produce a fake share 2 according
to his fake secret. Then he can send the fake share to the receiver. If the receiver stack
the share 1 with the fake share 2, then the fake secret will be revealed.
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Fig. 2.8 A demonstration of replacement attack

As a countermeasure to this attacking scenario, one can embed another secret
image, called a watermark, to serve as an authentication mechanism [7, 8, 16, 19].
This solution will be discussed in Chap.4.

2.6 Summary

This chapter reviewed three common VC frameworks, including deterministic VC,
probabilistic VC and random grid VC. Both the probabilistic VC and the random grid
VC are size-invariant. The concept of block encoding is also touched when intro-
ducing Liu’s weak security, which will be elaborated in later chapters. We focus on
intuitions behind the frameworks and examples, instead of mathematical vigor. The
notion of weak security is also briefly reviewed. Imposing weak security requirement
provides one possible way to improve visual quality of target image.
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Chapter 3
Digital Halftoning

3.1 Introduction to Digital Halftoning

Most printing devices and some display devices can only render limited number of
colors [9]. For example, a typical laser printer can only output a black dot or ‘no
dot’ at a time. In order to print grayscale images, we must quantize the input color to
coarser scales, such that the perceived color is still similar to the original color when
observed by human eyes.

In this chapter, we assume that the input image is a grayscale image and each
pixel is normalized to the range [0, 1]. If the pixel is quantized, 8-bit quantization is
assumed. The printer is assumed to be able to produce only two colors: black (black
dot) and white (no dot).

The image quantization problem then can be stated as follows: Given an input
grayscale image x[i, j], the quantizer produces a binary image y[i, j] ∈ {0, 1} such
that it is visually similar to the input image x[i, j] when viewing from sufficient
distance. Let H be a system representing the human visual perception, then the
digital halftoning problem can be formulated as an optimization problem:

min
y∈ZM×N

2

H {x − y} . (3.1)

where the images are of size M × N . Solving this optimization problem directly
is usually impractical due to the high dimensional searching space that has 2M×N

feasible solutions.
Many heuristic approaches are proposed for solving the halftoning problem in

(3.1), including constant threshold bi-level quantization, ordered dithering, error
diffusion and direct binary search (DBS).
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3.2 Bi-level Quantization

The simplistic approach is to quantize each sample independently using a bi-level
quantizer [6]:

y[i, j] =
{
1, if x[i, j] > T,

0, otherwise,
(3.2)

where T is a constant threshold. For this quantizer, the two reconstruction levels
are (y0, y1) = (0, 1) and the decision boundaries are (d0, d1, d2) = (0, T, 1). The
threshold T can be designed by minimizing the mean-squared error:

MSE(T ) =
1∑

i=0

∫ di+1

di

(x − yi )
2 pX (x)dx, (3.3)

where pX (x) is the PDF of the samples of the input image x . It can be modeled
as uniform distribution over the interval [0, 1], considering the wide varieties of
the histogram of natural images. By solving ∂MSE(T )

∂T = 0, one can easily find that
T = 1/2.

A halftoning result using bi-level quantizer on Lena image is shown in Fig. 3.1.
As can be seen, only some high contrast edges and textures are preserved, a lot of
low contrast details are lost. The halftone image is not visually similar to the original
grayscale image.

Several important properties of the grayscale images and halftone images are not
utilized in simple bi-level quantization halftoning. First, a grayscale image usually
consists of smooth regions separated by edges. Second, the HVS can only perceive
a local average of the halftone image in a small region, or equivalently, the HVS is a

Fig. 3.1 Halftoning by bi-level quantizer. a Original Lena image. b Halftone image
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low-pass system. One way to utilize these properties is to use a distributed multilevel
quantizer, where the quantization levels are spatially distributed in a small region.
This idea leads to ordered dithering.

3.3 Ordered Dithering

Considering the fact that theHVS is a low-pass system that only perceives the result of
local average, one can design a distributed multilevel quantizer in a small region. For
example, using a 2 × 2 block, we may design a five-level quantizer with thresholds
(1/8, 3/8, 5/8, 7/8) and reconstruction points (0, 1/4, 2/4, 3/4,1). Then the thresholds
are placed in a 2 × 2 block as:

T =
[
3/8 5/8
7/8 1/8

]
(3.4)

Suppose that the input value is a constant 2 × 2 block x:

x =
[
c c
c c

]
(3.5)

then we perform sample-wise quantization as in (3.2) as:

y[i, j] =
{
1, if c > T [i, j],
0, otherwise.

(3.6)

So, the number of black pixels in y will be approximately proportional to the value
of c in x. Or, one can think of the proportion of black pixels in y as representing
the reconstruction levels (0, 1/4, 2/4, 3/4, 1). Thus, by arranging the quantization
levels in a small block of thresholds, we get a distributed multi-level quantizer. The
reconstruction levels are the proportion of black pixels in the output block. This is
usually referred to as Ordered Dithering since we can consider the thresholds in T
as dithering of the constant threshold 1/2.

In general, for ordered dithering, the thresholds are specified by an index matrix.
For a L × L block, the index matrix contains a list of all the L2 integer numbers{
0, . . . , L2 − 1

}
. For example, for L = 2, the index matrix can be

I =
[
3 0
2 1

]
, (3.7)

which specifies the sequence of turning on the corresponding pixels to black. From
it, the threshold matrix can be determined:
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T [i, j] = I [i, j] + 1/2

L2
(3.8)

which gives the threshold matrix:

T =
[
7/8 1/8
5/8 3/8

]
(3.9)

In general, the size of the image is larger than the size of the threshold matrix.
So, the image is segmented into blocks having the same size of the threshold matrix,
and then we use the threshold matrix to quantize each block.

y[i, j] =
{
1, if x[i, j] > T [i mod L , j mod L],
0, otherwise.

(3.10)

The size of the threshold matrix is usually much larger than 2 × 2, such as 8 ×
8, 16 × 16 or even the size of the image to be processed. For such a large size,
the arrangement of thresholds is not a trivial issue. Different arrangements of the
quantization levels lead to different halftoning effects. If nearby quantization levels
are spatially close to each other, then we have clustered dot dithering. If nearby
quantization levels are located far away from each other, then we have dispersed dot
dithering.

3.3.1 Clustered Dot Dithering

The term ‘clustered dot’ comes from the fact that when using this dithering, the
black dots are clustered together when the image pixels are smoothly varying. For
this reason, changing the input gray level is equivalent to changing the size of the
whole clustered dot, and is usually called Amplitude Modulation (AM) [9].

To construct the index matrix, we start from the center of the matrix, and put the
integers from 0 to L2 − 1 into it, by following a spiral curve with increasing radius.
This is shown in Fig. 3.2.

Similarly, we can get index matrix for L = 8:

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

62 57 48 36 37 49 58 63
56 47 35 21 22 38 50 59
46 34 20 10 11 23 39 51
33 19 9 3 0 4 12 24
32 18 8 2 1 5 13 25
45 31 17 7 6 14 26 40
55 44 30 16 15 27 41 52
61 54 43 29 28 42 53 60

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(a) (b)

Fig. 3.2 Index matrix for 4 × 4 clustered dot dithering. a Index matrix. b Index matrix shown as
an image

Fig. 3.3 A 8 × 8 index
matrix for clustered dot
dithering, shown as a
grayscale image

which is shown as an image in Fig. 3.3
Using this index matrix, we halftone a test image having continuous varying gray

scale, as shown in Fig. 3.4. Visually, the size of the marco-dot is changing with
increasing blackness.

One drawback of clustered dot dithering, due to the dot-size modulation, is that
the halftone result has reduced resolution. The larger the size of the block, the lower
the resolution. This drawback can be remedied by dispersed dot dithering.
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Fig. 3.4 Clustered dot
dithering as amplitude
modulation. a Grayscale
image. b Halftone image

3.3.2 Dispersed Dot Dithering

For dispersed dot dithering, such as Bayer’s dithering, adjacent thresholds are sep-
arated as far as possible from each other. Bayer’s index matrix is defined recur-
sively [2], starting from trivial 2 × 2 index matrix

I2 =
[
1 2
3 0

]

and

I2n =
[
4In + 1 4In + 2
4In + 3 4In

]

for n = 2, 4, . . . . The 8 × 8 threshold matrix for dispersed dot dithering is shown
in Fig. 3.5a, and the halftone result for the grayscale image in Fig. 3.4a is shown
in Fig. 3.5b. Since the thresholds are separated from each other, different black-
ness corresponds to different frequency of black dots. The resolution is significantly
improved.
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Fig. 3.5 Dispersed dithering as frequency modulation (FM). a The threshold matrix. b Halftone
result

3.4 Error Diffusion and Its Mathematical Model

Instead of using a distributed quantizer with constant thresholds, error diffusion uses
adaptive threshold and it compensates quantization error locally. In this section, we
briefly review the error diffusion algorithm. To better understand the tone repro-
ducibility of error diffusion, we will also review a linear model for error diffusion.
This model will be used to show the contrast condition in AbS-based VC, in Chap. 5.

3.4.1 Error Diffusion

Ablockdiagram for error diffusionhalftoning is shown inFig. 3.6. Themodified input
signal x̂[i, j] is quantized by a simple bi-level and constant threshold quantizer Q,
and produces binary output image y[i, j]. The quantization error e[i, j] = y[i, j] −
x̂[i, j] is fed back to the input and distributed to neighboring un-quantized samples
using a diffusion filter h[i, j]. Thus, the quantization error can be compensated by
neighboring pixels. The received error for pixel [i, j] is thus

ê[i, j] =
∑

(k,l)∈N (i, j)

h[k, l]e[i − k, j − l], (3.11)

where N (i, j) is a small neighborhood around current pixel [i, j].
The diffusion filter, also called the diffusion kernel, plays an important role in the

quality of the halftone image. First, to ensure that all errors are distributed, the filter
coefficients must sum to 1, i.e.,
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Fig. 3.6 Block diagram for
error diffusion halftoning

Fig. 3.7 The Floyd and
Steinberg kernel

Fig. 3.8 Halftoning of test
image using error diffusion
and Floyd and Steinberg
kernel

∑
i

∑
j

h[i, j] = 1

The popular kernel proposed by Floyd and Steinberg is shown in Fig. 3.7 [3]. The
error e[i, j] at [i, j] will distribute a fraction of 7

16 to position [i, j + 1], a fraction
of 3

16 to position [i + 1, j − 1], etc.
Using the Floyd and Steinberg kernel, we halftone the continuous tone image

shown in Fig. 3.4a, the result is shown in Fig. 3.8. Compared to the result of dispersed
dithering in Fig. 3.5b, we see that error diffusion can render the continuous tone
better. However, one may notice that, for dark and bright region, there are worm-like
structures. These are usually called worm artifact.

Using larger mask can remove the artifact produced by the Floyd and Steinberg
mask, but requires higher computation load [5]. The Jarvis kernel is shown in Fig. 3.9
and the halftoning result using Jarvis kernel on the continuous tone image (Fig. 3.4a)
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Fig. 3.9 The Jarvis kernel

Fig. 3.10 Halftoning of test
image using error diffusion
and Jarvis kernel

is shown in Fig. 3.10. Comparing Figs. 3.10 and 3.8, we see that the ‘worm’ effect is
largely reduced.

The approach described by (3.11) is an error collection approach, or filtering
approach. In practice, the error diffusion algorithm is usually implemented as an
‘error pushing’ approach, which is described in Algorithm 7. The support � of the
diffusion kernel is defined in a coordinate system with the current pixel [i, j] at the
origin. For example, for Floyd and Steinberg kernel, the support is:

� = {[0, 1], [1,−1], [1, 0], [1, 1]} . (3.12)

3.4.2 Mathematical Model

The error diffusion loop, as a nonlinear feedback loop, is in general difficult to analyze
and design. To better understand the behavior of this loop, it is necessary to simplify
it into a linear one that still captures the essential features of its nonlinear counterpart.

Knox found that the error image e[i, j] is correlated with the input image, as
shown in Fig. 3.11. A linear model consisting of a linear term and an additive
noise term can better model the sharping effect from error diffusion halftoning [8].
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Algorithm 7 Implementation of error diffusion halftoning by pushing error forward.
Input:

grayscale image x[i, j] with size M × N .
Diffusion kernel h[k, l], where [k, l] ∈ � and � is support of the Kernel.

Output:
Halftone image y[i, j] with size M × N .

1: for each pixel [i, j] do
2: Quantize modified input: y[i, j] = Q (

x̂[i, j]).
3: Error calculation: e[i, j] = y[i, j] − x̂[i, j].
4: Error diffusion:
5: for every [k, l] ∈ � do
6: x̂[i + k, j + l] = x̂[i + k, j + l] − h[k, l]e[i, j].
7: end for
8: end for

Fig. 3.11 Error image from
error diffusion halftoning

Kite et al. confirmed this linear model and estimated parameters for the linear term
and the noise term [7]. This model will be used in our theoretic analysis in Chap. 5.

Referring to Fig. 3.6, the nonlinear quantizer y[i, j] = Q (
x̂[i, j]) can be approx-

imated by a linear model:

y[i, j] = γ x̂[i, j] + q[i, j], (3.13)

where the coefficient γ models correlation between the error image e[i, j] and the
input image x[i, j]. The term q[i, j] is used to account for the component that is
uncorrelated to the input.
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Fig. 3.12 Linear model for error diffusion halftoning

Next, we derive the transfer function for this system by following a similar
approach in [7]. The equivalent linear system in Fig. 3.12 has two inputs x[i, j]
and q[i, j], and one output y[i, j]. Recall that, for a linear system L and two input
signals x1[i, j] and x2[i, j], the output is

L (αx1[i, j] + βx2[i, j]) = αL (x1[i, j]) + βL (x2[i, j]) , (3.14)

where α and β are two scaling factors. So, the transfer function can be derived for
each of the two input signals.

By setting q[i, j] = 0, we get the system for signal path, as shown in Fig. 3.13a,
where γs is the scaling factor for signal path. Using Z-transform, this system can be
expressed by the following set of equations:

E(z) = (γs − 1) X (z) (3.15)

X̂ (z) = X (z) − H(z)E(z) (3.16)

Ys(z) = γs X̂(z), (3.17)

where z = (z1, z2) is the z variable for two-dimensional Z-transform, and Ys is the
system output for signal path. After some simple algebra, we get the output for signal
path:

Ys(z) = γs

1 + (γs − 1)H(z)
X (z). (3.18)

For noise path, we mute the signal input: x[i, j] = 0. The equivalent system is
shown in Fig. 3.13b, which is described by the following set of equations:

Yn(z) = γn Q̂(z) + Q(z), (3.19)

Q̂(z) = −H(z)E(z), (3.20)

E(z) = Yn(z) − Q̂(z), (3.21)

where γn is the scaling factor for the noise path, and Yn is the output for noise path.
Thus, the output signal for noise path is:
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(a) (b)

Fig. 3.13 Signal path and noise path of the linear model for error diffusion loop. a Signal path. b
Noise path

Yn(z) = 1 − H(z)
1 + (γn − 1) H(z)

Q(z). (3.22)

From (3.18) and (3.22), we get the overall output signal [7]:

Y (z) = γs

1 + (γs − 1)H(z)
X (z)

︸ ︷︷ ︸
Signal Transfer Function (STF)

+ 1 − H(z)
1 + (γn − 1) H(z)

Q(z)
︸ ︷︷ ︸

Noise Transfer Function (NTF)

.

(3.23)
The coefficient γs can be found by minimizing the error energy between y[i, j]

and γs x̂[i, j]:

min
γs

⎛
⎝ M∑

i=1

N∑
j=1

(
γs x̂[i, j] − y[i, j])2

⎞
⎠ , (3.24)

where the image is of size M × N . The estimated γs varies from image to image. For
Floyd-Steinberg filter, γs is close to 2. The coefficient γn for noise path was found
experimentally to be 1. Please refer to [7] for more results for different images and
diffusion filters.

By setting γs = 2 and γn = 1, and noting that H(z) is a low-pass filter with unity
DC gain, we observe the following from (3.23). First, the STF is a high-pass filter
with unity DC gain, which means that the loop can reproduce slow-varying signals
and sharpen fast-varying signal such as edges; Second, the NTF is also a high-pass
filter with zero DC gain, which means that DC component of the noise q[i, j] is
suppressed by the loop. High-frequency component of the noise is left in halftone
image. But, it can be filtered out by the equivalent low-pass filter of the HVS.
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3.5 Direct Binary Search

While the ordered dithering uses a distributed multi-level quantizer, and error dif-
fusion uses an adaptive bi-level quantizer, the DBS algorithm attempts to solve the
optimization problem in (3.1) directly [1]. DBS can be viewed as an iterative greedy
algorithm for solving (3.1).

To formulate the optimization problem, we must have a mathematical model
modeling how the HVS perceives a halftone image. The perception of black dot is
related to how a black dot is rendered, and how the HVS perceives dots.

A black pixel is rendered as a dot on paper. This dot has different sizes and shapes
depending the type of printers used, which can be described by a profile function
f (x), where x = (x1, x2) is the spatial coordinate on paper.When theHVS sees a dot,
this dot stimulate a region on retinal. So, a point is spread as a region (bell-shaped)
on retinal. The function modeling this is called a point spread function (PSF). The
net effect is that, the HVS only perceive a smoothed version of the dots. Let g(x)
be the PSF. Then, a black point goes through the composited system f (x) ⊗ g(x).
Here, we only use the sampled version of this composite filter. The sampled version
of the point profile and PSF are denoted as p [n] and hHVS [n], respectively.

Having obtained the sampled version of the PSF hHVS [n] and the point profile
p [n], we can formulate the optimization problem as follows. Let

h [n] = p [n] ⊗ hHVS [n]

be the combining effect of these two filters. Let x̂ [n] = x [n] ⊗ h [n] and ŷ [n] =
y [n] ⊗ h [n] be the sampled version of perceived grayscale image and halftone
image, respectively. Then, one chooses the halftone image y [n] to minimize

E = ∥∥x̂ [n] − ŷ [n]
∥∥2

(3.25)

= ‖x [n] ⊗ h [n] − y [n] ⊗ h [n]‖2 (3.26)

Direct solution by brute force approach is prohibitive since the searching space
is of order 2M×N for an image with size M × N .

The DBS approach is an iterative greedy algorithm. It starts with an initial y [n],
using one of the ordered dithering halftoning or error diffusion halftoning. It can
even be a randomly generated binary image. Then DBS iteratively improves the
initial image.

In each iteration, all image pixels are visited sequentially, by following a certain
scanning order. One pixel of output halftone image y [n] is determined in each step.
At each pixel location, DBS uses a small 3 × 3 neighborhood and tries 10 different
solutions to see which one can reduce the error in (3.25) to the lowest. These 10
solutions include toggling the center pixel (2 solutions) and exchanging the center
pixel with one of its eight neighbors (8 solutions). The trial solution resulting in the
lowest error E is retained for the current pixel (at pixel position n).
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The algorithm iterates till no change occur on y [n]. Upon termination, the final
y [n] is output as the final halftone image.

3.5.1 Direct Implementation

Based on the basic idea from last section, a direction implementation can be designed.
Let the matrix � denotes the set of coordinates for the eight neighbors:

� =
[−1 −1 −1 0 0 1 1 1

−1 0 1 −1 1 −1 0 1

]
= [�1, . . . ,�8] , (3.27)

where each column of� corresponds to displacement of one of the eight neighboring
pixels. Then one iteration of the DBS algorithm can be described by Algorithm 8.

Algorithm 8 y ← DbsIteration (x, y): One iteration of direct implementation of
DBS algorithm.
Input:

grayscale image x of size M × N .
Filter h ∈ R

L×L .
Halftone image y ∈ Z

M×N
2 .

Output:
Halftone image y ∈ Z

M×N
2 .

1: for each pixel n do
2: E0 = ‖(x − y) ⊗ h‖22.
3: for k = 1 to 8 do
4: yk = Exchange y [n] and y[n + �k ] in y.
5: Ek = ∥∥(

x − yk
) ⊗ h

∥∥2
2.

6: end for
7: y9 = Flip y [n] in y.
8: E9 = ∥∥(

x − y9
) ⊗ h

∥∥2
2.

9: k� = argmink=0,...,9Ek .

10: y = yk
�
.

11: end for

Using Algorithm 8 as a building block, we build the following iterative algorithm,
as described in Algorithm 9. Starting with an initial random binary image y0, the
algorithm processes the output halftone image several passes, until the number of
changes between two iterations falls below some threshold τ .
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Algorithm 9 Direct implementation of DBS algorithm.
Input:

Grayscale image x with size M × N .
Filter h ∈ R

L×L .
Threshold τ .

Output:
Halftone image y ∈ Z

M×N
2 .

1: Initialize halftone output y0 as a random binary image.
2: y1 = DbsIteration

(
x, y0

)
.

3: δ = ∥∥y0 − y1
∥∥2
2 .

4: while δ ≥ τ do
5: k = k + 1.
6: yk = DbsIteration

(
x, yk−1

)
.

7: δ = ∥∥yk − yk−1
∥∥2
2 .

8: end while
9: y = yk .

3.5.2 Fast Implementation

One drawback of the direct implementation is its high computational load. Within
one iteration and at each pixel location, every trial changes to y involves filtering
the whole image y with the filter h, in order to calculate related error Ek . Filtering
the whole image is actually not necessary, considering the fact that the support of
the filter h is much smaller than the size of the image. One typical value for the size
of support of h is L = 7, while the size of the image is typically M = N = 512.
So a change of a pixel on y at location n0 won’t affect the perceptual result at pixel
location n1 if they are separated more than � L

2 � away from each other.
Fast implementation of the DBS algorithms involves expressing the error energy

E as a function of correlations between the error and the filter kernel, and updating it
locally. For a comprehensive review of efficient implementation of DBS, the reader
is directed to [9].

3.6 Quality Measures for Halftone Image

A halftone image is intended for human observer, so the perceptual quality should be
evaluated by human. For this purpose, onemay use one of themany subjective quality
evaluation approaches, such as five-scale scoring, etc. However, such subjective
approaches are time consuming and are not appropriate to use in a halftone generation
algorithm. A model for the subjective evaluation is a better choice. There are two
main types of quality measures for halftone image. The first type is fidelity measure,
which measures the difference between the observed original image and observed
halftone image. For example, theMSE as used inDBS, and theHPSNR (Human Peak
Signal-to-Noise Ratio) measure to be introduced in this section. These measures are
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directly related to the human perception. The second type calculates the spatial and
spectral properties of a halftone random process, such as RAPSD. In the following
sections, we briefly review these two types of measures.

3.6.1 Fidelity Measures

The fidelity between the reconstructed image and the original grayscale image is
characterized by tone similarity and structural similarity. The tone similarity is mea-
sured by HPSNR [4], which is the PSNR between two smoothed images using the
lowpass filter model of the HVS. The structure similarity is measured by MSSIM
(Mean Structure Similarity).

To calculate the HPSNR, both the original image and the reconstructed image are
smoothed by a Gaussian filter. Then PSNR is calculated between these two smoothed
images:

HPSNR = 10 log10
M × N∑

∀n
∑

∀m∈N (n) w [m] (x [m] − y [m])2
, (3.28)

where M × N is the size of the image andN (n) is a neighborhood around the pixel
n. w [m] is the Gaussian filter model for the HVS. As a typical value, the standard
deviation of the Gaussian filter is σ = 2, so a 13 × 13 square neighborhood should
be chosen in order to cover the ±3σ range [4].

The MSSIM measure combines the local luminance comparison, local contrast
comparison and local correlation between two images into one metric [11].

When calculating the HPSNR and MSSIM, the dynamic range of the reference
image and the reconstructed image must be adjusted to be the same. HPSNR may
also be influenced by histogram equalization which is adopted by some algorithms
to enhance the perceptual quality.

3.6.2 Blue Noise and Spectral Characterization

A dither pattern from halftoning can be modeled as a spatial random process. The
spectral feature of this process correlates with its perceptual quality. To produce visu-
ally pleasing dither patterns, the minority pixels must be scattered as far as possible
from each other. This requirement is reflected as blue noise (or high frequency noise)
on the spectrum [9].

Without loss of generality, let φ[n] be a halftone process, and that the pixel n
is a minority pixel if φ[n] = 1. In order to estimate the power spectrum density
(PSD), φ[n] is divided into K overlapping segments, each having length N . We
get K sample vectors,

{
φ1, . . . ,φK

}
, then the PSD can be estimated by average
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periodograms method:

P̂( f ) = 1

K

K∑
i=1

∣∣F {
φi

}∣∣2
N

,

where F denotes 2D Fourier transform. The PSD is a two-dimensional statistics. By
partitioning the 2D frequency domain into a series of annular rings, we can get two
convenient 1D statistics: the radially averaged power spectrum density (RAPSD)
P( fρ) and anisotropy A( fρ). Let the radius and the width of the annular ring R( fρ)
be fρ and Δρ respectively, then

P( fρ) = 1∣∣R( fρ)
∣∣

∑
∀ f ∈R( fρ)

P̂( f ),

where
∣∣R( fρ)

∣∣ denotes the number of elements in the set R( fρ). For blue noise
pattern, the RAPSD has zero low-frequency component, and a peak at the principal
frequency, followed by flat high frequency region [10].

Strong anisotropy on halftone image results in annoying patterns, such as the
worm effect [9]. Thus, to produce visually pleasing halftone image, the dots should be
scattered apart and the scattering should be isotopic.Directional distribution function
(DDF) can be used to characterize the spatial anisotropy in a halftone image. In brief,
at each minority pixel, DDF partitions the directions into several sectors and counts
the number of minority pixels in each sector. For an isotropic halftone image, the
number of minority pixels in these sectors are roughly equal. This DDF function can
be plotted as histogram on polar coordinates.

3.6.3 Residual Variance

For most sample based VC, such as probabilistic VC and random grid VC, the target
image is not a blue noise pattern. Some algorithms may also produce near white
noise pattern, with clusters of white pixels and black pixels. After processing by the
HVS model, which is essentially a low-pass system, a significant amount of noise is
left within the frequency band to which the HVS is sensitive. For blue noise pattern,
only a small amount of noise is left within this frequency band.

So, if the testing image is a constant image, then one may use the residual noise
power after applying the HVS as a measure of perceptual quality. This is introduced
in [12] and is referred to as residual variance.

Let the target image be ŷ [n], and the HVS be simply modeled as a Gaussian
lowpass filter Gσ [n] with standard deviation σ. Then the noise that is ‘visible’ to the
HVS is

ȳ [n] = ŷ [n] ⊗ Gσ [n] . (3.29)
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The residual variance is calculated as variance of ȳ [n]:

VR = E
{
(ȳ [n] − E (ȳ [n]))2

}
. (3.30)

Obviously, if ŷ [n] is a blue noise pattern, then ȳ [n] is close to zero. So the smaller
the VR , the better perceptual quality.

Note that the residual variance is not the same as the MSE measure used by
DBS algorithm. MSE is calculated between smoothed grayscale image and halftone
image. But residual variance is calculated between smoothed halftone image and its
mean. Thus residual variance is not a fidelity measure, and is suitable only when one
uses constant test images.

Compared to RAPSD, the residual variance is a summary of the quality for each
gray level. So a 2D plot of the residual variance can help us to explore the qualities
for all possible gray levels, while RAPSD needs 3D plotting. But one should note
that residual variance only gives a summary of the amount of noise in low-frequency
band, so it cannot tell the distribution of the noise over the whole frequency band.

3.7 Summary

This chapter briefly review some important and classical halftoning techniques that
are widely used in VC for grayscale images, including simple bi-level quantization,
ordered dithering, error diffusion and DBS. All these types of halftoning techniques
are used by authors of VC research papers. Among them, error diffusion keeps a
good balance between computational efficiency and image quality and is the mostly
adopted approach. A linear model for error diffusion is also reviewed and is shown to
be useful to understand the sharpening effect in halftone image and tone reproduction
property. This later propertywill be used to prove the contrast condition inAbS-based
VC. Several quality measures, including HPSNR, RAPSD, DDF are reviewed for
later chapters.
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Chapter 4
Improving Visual Quality for Share
Images

4.1 Binary Visual Cryptography with Meaningful Shares:
Extended VC

Ordinary VC produces meaningless and noise-like shares, which makes it difficult
to manage the shares if more than one shares need to be stored. It is difficult for
the share manager to determine which share belongs to which secret image. Further-
more, during transmission, these meaningless shares may arouse the suspicions from
potential attackers.

An extended visual cryptography (extended VC), as proposed in [8], produces
meaningful shares (also called shadows). By using a tag image as the cover image,
the meaningful shares are easier to store or manage. Furthermore, the meaningful
shares may also act as a steganographic mechanism in visual cryptography and try
to hide the fact that the transmitted image is a share from visual cryptography. As a
result, the shares in extended VC are less likely to arouse suspicion from attackers
if their quality is high enough. For this purpose, the share should be perceptually as
close to the cover image as possible.

4.1.1 Basic Extended VC

A (2,2)-threshold extended VC was first introduced in Naor and Shamir’s 1994
seminal paper [8]. Let S be a secret image and C1 and C2 be two cover images.
The secret S is split into the two shares B1 and B2, where Bi has the appearance
of corresponding cover image Ci , respectively. In Naor and Shamir’s scheme, each
secret pixel is expanded to a 2 × 2 block. Let’s focus on one secret pixel S[i, j].
Let (c1, c2) be the two corresponding pixels on the cover images. To encode a white
secret pixel S[i, j] = 0, the encoder uses one of the following four basis matrices:
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M0
00 =

[
0 0 1 1
1 0 1 0

]
, M0

01 =
[
0 0 1 1
1 0 1 1

]
,

M0
10 =

[
1 0 1 1
0 0 1 1

]
, M0

11 =
[
1 0 1 1
1 0 1 1

]
,

(4.1)

where the basis matrixMs
c1c2 is for the case when the secret pixel equals to s and the

two corresponding cover pixels equal to c1 and c2, respectively. Similarly, to encode
a black secret pixel S[i, j] = 1, the encoder uses one of the following four basis
matrices:

M1
00 =

[
0 0 1 1
1 1 0 0

]
, M1

01 =
[
0 0 1 1
1 1 1 0

]
,

M1
10 =

[
1 1 1 0
0 0 1 1

]
, M1

11 =
[
0 1 1 1
1 1 1 0

]
,

(4.2)

After a basis matrix is chosen by the combination of S[i, j] = s,C1[i, j] = c1 and
C2[i, j] = c2, the columns of this matrix are permuted. Then, the first row is re-
organized into a 2 × 2 block and assigned to share B1, while the second row is
re-organized into a 2 × 2 block and assigned to share B2. By stacking two rows
of matrices M0

c1,c2 , the blackness is 3, while stacking two rows of matrices M1
c1,c2

produces blackness 4. So, the target image will reveal the secret image. Furthermore,
for ci = 1, the i-th row of corresponding Ms contains three black pixels, while for
ci = 0, the i-th row of corresponding Ms contains two black pixels. So, the shares
will resemble corresponding cover images.

Using the images in Fig. 4.1 as secret and cover images, we get the experimental
result in Fig. 4.2. While this algorithm shows acceptable result for binary cover
images, it is not directly applicable to halftone image.

The binary secret image and two halftone cover images are shown in Fig. 4.3. The
two share images and recovered target image are shown in Fig. 4.4. The share images
show reduced contrast. Some low contrast details are also lost.

Fig. 4.1 Binary test images for extended VC. a Secret image. b Cover image 1. c Cover image 2
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Fig. 4.2 Experimental result for extended VC using Naor and Shamir’s scheme. a Share 1. b Share
2. c Target image

Fig. 4.3 Binary and halftone test images for extended VC. a Secret image. b Cover image 1.
c Cover image 2

Fig. 4.4 Experimental result for extended VC using Naor and Shamir’s scheme and halftone cover
images. a Share 1. b Share 2. c Target image
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4.1.2 User-Friendly Random Grid

Naor and Shamir’s scheme is not size-invariant, because the size of the shares is
four times of the size of the secret and cover images. Chen proposed a random
grid based scheme, friendly random grid visual secret sharing (FRGVSS), which is
size-invariant [1].

Note that in an extended VC, each share has to carry two type of pixels: the secret
pixels and the cover pixels. The FRGVSS algorithm uses a probabilistic approach to
determine which pixel on a share is to carry the secret pixel and which pixel to carry
the corresponding cover pixel. With probability β, the share pixel carries a secret
pixel. When a secret pixel is chosen, an ordinary random grid algorithm is used to
generate two share pixels on two share images. With probabilities 1−β

2 , a cover pixel
is chosen (assuming (2,2)-threshold VC), then the corresponding share pixel will
reflect this cover pixel, and the other share will generate a black pixel to ensure that
the stacking result is black.

The parameter 0 < β < 1 controls the tradeoff between the quality of the share
images and the quality of the target image. Using a small β, only a small number of
pixels on a share are used to carrier the secret pixel, and a large number of pixels
are used to carry the corresponding cover pixels. So, we may expect that the share
images have a good quality (higher fidelity with the cover image), while the target
image has a worse quality.

Chen’s algorithm is summarized in Algorithm 10.
The experimental results for share images and target images are shown in Fig. 4.5

and Fig. 4.6, respectively, for different β. Obviously, we observe improved quality
for the share images for a smaller β. But this comes with the price of a lower contrast
in target image.

Fig. 4.5 Experimental result for extendedVCusingFRGVSSandhalftone cover images (β = 1/3).
a Share 1. b Share 2. c Target image
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Algorithm 10 FRGVSS: Friendly Random-Grid Based Visual Secret Sharing
Input:

Halftone cover images: C1 ∈ Z
Mc×Nc
2 ,C2 ∈ Z

Mc×Nc
2 ; {The set Z2 � {0, 1}}

Binary secret image: S ∈ Z
Mc×Nc
2 ;

Parameter β;
Output:

Share images: B1 ∈ Z
Mc×Nc
2 ,B2 ∈ Z

Mc×Nc
2 ;

1: for i ← 1 to Mc do
2: for j ← 1 to Nc do

3: k ← RandomSelect
(
{0, 1, 2} ,

{
β,

1−β
2 ,

1−β
2

})
4: if k = 1 then
5: B1[i, j] ← C1[i, j]
6: B2[i, j] ← 1
7: else if k = 2 then
8: B1[i, j] ← 1
9: B2[i, j] ← C2[i, j]
10: else
11: B1[i, j] ← RandomSelect

({0, 1} ,
{ 1
2 , 1

2

})
12: if S[i, j] = 1 then
13: B2[i, j] ← 1 − B1[i, j]
14: else
15: B2[i, j] ← B1[i, j]
16: end if
17: end if
18: end for
19: end for

{RandomSelect(A, B): randomly select an element from the set A with the corresponding prob-
abilities listed in set B.}

Fig. 4.6 Experimental result for extendedVCusingFRGVSSandhalftone cover images (β = 1/8).
a Share 1. b Share 2. c Target image

4.1.3 Pixel Swapping Algorithm

Another effort in improving the quality of share image is Lou’s pixel swapping
algorithm [7]. This algorithm is block-based and tries to re-arrange the locations
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of black pixels within a small block to make the target block as close to the secret
block as possible. If the secret block is a black block (i.e., containing only black
pixels), then among the two corresponding share blocks, we choose the one having
more black pixels to modify. The black pixels in this block is re-arranged, so that the
stacking result contains as many black pixels as possible. If the secret block is a white
block (i.e., containing only white pixels), then among the two corresponding share
blocks, we choose the one having more black pixels to modify. The black pixels in
this block is re-arranged, so that the stacking result contains as many white pixels as
possible. Obviously, this re-arrangement only guarantees best-effort approximation,
so the target image is only partially reconstructed.

The pixels are only moved around in a small block and the proportion of black
pixels is not changed, so the share image has a good visual quality. However, only
the secret block with all black pixels and the secret block with all white pixels are
approximated with best effort. From the stacking result, we may see interferences
from the cover image. Lou’s algorithm is summarized in Algorithm 11.

Algorithm 11 Visual cryptography based on pixel swapping [7]
Input:

Halftone cover images: C1 ∈ Z
Mc×Nc
2 ,C2 ∈ Z

Mc×Nc
2 ; {The set Z2 � {0, 1}}

Binary secret image: S ∈ Z
Mc×Nc
2 ;

Output:
Share images: B1 ∈ Z

Mc×Nc
2 ,B2 ∈ Z

Mc×Nc
2 ;

1: for i ← 1 to � Mc
2 � do

2: for j ← 1 to � Nc
2 � do

3: C1
i, j ← The (i, j)-th block of C1;

4: C2
i, j ← The (i, j)-th block of C2;

5: if
∑2

k=1
∑2

�=1 C
1
i, j [k, �] >

∑2
k=1

∑2
�=1 C

2
i, j [k, �] then

6: m ← C1
i, j ;

7: f ← C2
i, j ;

8: else
9: m ← C2

i, j ;

10: f ← C1
i, j ;

11: end if
12: if

∑2
k=1

∑2
�=1 S[k, �] = 4 then

13: Swap pixels in m to maximize
∑2

k=1
∑2

�=1 m̄[k, �] ∨ f̄ [k, �];
14: else if

∑2
k=1

∑2
�=1 S[k, �] = 0 then

15: Swap pixels in m to minimize
∑2

k=1
∑2

�=1 m̄[k, �] ∨ f̄ [k, �];
16: end if
17: Fillm and f into the corresponding positions in share images B1 and B2.
18: end for
19: end for

The testing result using Lou’s algorithm and halftone images is shown in Fig. 4.7.
As can be observed, the share images are visually very close to the corresponding
halftone images in Fig. 4.3, thanks to the local pixel swapping operation on halftone
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Fig. 4.7 Experimental result for extended VC using Lou’s pixel swapping algorithm and halftone
cover images. a Share 1. b Share 2. c Target image

shares. However, the target image is only partially reproduced. We see severe inter-
ferences from the cover images. So, Lou’s algorithm should be used when the user
concerns more about the quality of the share images than the target image.

Naor and Shamir’s algorithm, Chen’s algorithm and Lou’s pixel swapping use
binary or halftone image as cover image. The loss of details of the cover image due
to VC is not compensated by neighboring pixels. By integrating an error diffusion
halftoning process into the VC encoding, it is possible to compensate for the loss of
image quality from VC encoding.

4.2 Error-Diffusion Based Scheme

In this section, we introduce a constrained error diffusion approach to improve the
quality of share images [12, 15]. This algorithm uses small blocks as processing
units. In order to produce a meaningful share and to convey secret on shares, the
pixels on a share block should be classified into three types:

• Secret Information Pixels (SIPs). These pixels are used to carry the information
of the secret image, and are encoded according to ordinary binary VC encoding.

• Cover Information Pixels (CIPs). These pixels are used to carry the information
of the cover image.

• AuxiliaryBlack Pixels (ABPs). These pixels are set as black, so that after stacking
with another share, the resultant target pixel is black. TheCIPs andABPs are called
non-SIPs, since they don’t convey the secret information.

The reason for the above classification is that, for an extended VC, two contradict-
ing goals must be met. First, each share image should retain reasonably high visual
quality, and should be perceptually similar to the corresponding cover image. Second,
the recovered secret image and watermark image should be free from interference
from the shares.
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The first goal implies that only a small number of pixels on a share can be used
to carry the secret, while other pixels should be used to carry the information of
cover image. So, those pixels that are used to carry secret/watermark information are
SIPs, and all others are non-SIPs [12]. To meet the second goal, non-SIPs should be
stacked to be black. We must guarantee that for the two corresponding pixels on the
two shares, at least one is black. This can be done by using theABPs. The positions of
the ABPs on the two shares are complementary such that when stacking, the resultant
pixels are black. So if a pixel is ABP on one share, then the corresponding pixel on
the other share should be CIP. For this reason, determining the positions of ABPs on
one share is equivalent to determining the positions of CIPs on the other share. So,
we don’t need to determine the positions of CIPs.

In the VC encoder, one may first determine the ABPs to meet the second goal,
and then encode the secret into the SIPs. Finally, a constrained error diffusion can
be adopted to approach the first goal.

4.2.1 SIPs and ABPs

First, we need to determine the positions of SIPs and ABPs. Let the size of the cover
images be Mc × Nc. We encode 1 bit of secret image (i.e. 1 pixel) into a Q × Q
block in share images. So if the size of the share image is Ms × Ns , then it must
satisfy: Ms = �Mc

Q � and Ns = �Ms
Q �, where �x� returns the nearest integer towards

−∞.
In [12], the positions of the ABPs and SIPs are determined using a multi-tone

error diffusion. Here, we adopt a random approach. Using this random approach, we
can guarantee that there are exactly the required number of SIPs and ABPs in each
block, while the approach in [12] needs post-processing to guarantee this.

Let the number of SIPs in each block be γ, and the number of ABPs in each
block for each share be β. Then we collect all the SIPs positions into a set S, i.e.,
S � {(i, j); (i, j) is a SIP position}. Similarly we can collect all the ABPs in share
1 into a set A1 and all ABPs in share 2 into the set A2.

In each block, we must guarantee that the stacking of non-SIPs are black pixels,
then the ABPs of each share must have at least more than half of the non-SIPs. Since
there are totally Q2 − γ non-SIPs in each block, the minimum number of ABPs
should be β = � Q2−γ

2 	.
First, we arrange the pixels in a block using linear indexing. For example see the

indexing in Fig. 4.8a. Then let the vector p contain a random permutation of integer
numbers from 1 to Q2. For example, p = (1, 6, 2, 8, 4, 7, 9, 3, 5) for Q = 3. This
permutation should vary from block to block, so that the relative positions of SIPs
and ABPs in different blocks are different. Then as shown in Fig. 4.8a, take the first
γ indices as the indices for SIPs. The ABPs for share 1 is taken as (pγ+1, . . . , pγ+β),
while the ABPs for share 2 is taken as (pγ+β+1, . . . , pQ2) if Q2 − γ is even, and
as (pγ+β+1, . . . , pQ2 , pγ+1) if Q2 − γ is odd. Since the ABPs will be filled with
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black pixels, the stacking of share 1 and share 2 is guaranteed to be black for non-
SIPs. After allocating the SIPs and ABPs for both shares, we map the position to
two-dimensional index within the Q × Q block. This is shown in Fig. 4.8b.

Due to the random permutation, the above allocation of SIPs and ABPs is random
in nature. Even though this is not optimal in the sense that the SIPs and the ABPs are
not maximally separated from each other, but this algorithm still can provide satis-
fying result, as will be shown in experimental results. Besides, using this algorithm,
exactly γ SIPs and β ABPs are contained in each block. The method in [12] utilized
a multitoning process to help to allocate the SIPs and ABPs. But the multitoning
algorithm only guarantee that globally a fraction of γ/Q2 pixels are SIPs. So the
number of SIPs within a Q × Q block may not be exactly γ. Thus, post-processing
is needed to guarantee that exactly γ SIPs and β ABPs are contained in each block.
More importantly, from the security point of view, deterministic allocation of the
position for SIPs and ABPs is not secure. If an attacker has the knowledge of the
positions of SIPs and ABPs, then he can use it to prevent the recovery of the secret
image. On the contrary, using random allocation, the locations of the SIPs and ABPs
are unknown to the attacker if he doesn’t know the seed or key.

(a)

(b)

Fig. 4.8 Determining the SIPs and ABPs positions (Q = 3, γ = 4,β = 3)
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4.2.2 Constrained Error Diffusion

After filling in the SIPs and theABPs, the content of the secret image can be recovered
correctly. But the shares are still meaningless. To encode the cover images into the
shares, a constrained error diffusion halftoning method as described in [12] can be
used. Since the SIPs and ABPs are fixed now, the error diffusion is a constrained one:
some pixels are not allow to be changed by the diffusion process. This is illustrated
in Fig. 4.9, where the error is not allowed to diffuse to the SIPs and the ABPs.

As with ordinary error diffusion, the pixels of the gray image are visited using
raster scanning order. Let the function Fq [i, j], q = 1, 2 be a indicator function,
indicating whether the current pixel [i, j] is allowed to change or not:

Fq [i, j] =
{
0, if [i, j] ∈ S ∪ Aq;
1, otherwise.

If hi, j [k, �] is a diffusion coefficient for the diffusion mask located at pixel
[i, j], then in constrained diffusion, the modified diffusion coefficient is hi, j [k, �] =
hi, j [k, �] · Fq [k, �]. Namely, the diffusion coefficients to the SIPs and the ABPs are
set to be zero. Since the SIPs and ABPs are fixed now, the quantization process in
the original halftoning is modified to be

sq [i, j] = (
1 − Fq [i, j]

) · sq [i, j] + Fq [i, j] · Q (
cq [i, j]

)
,

where Q(x) quantizes x using a two level quantizer whose threshold equals to 127,
for a 8-bits quantized image. This quantizer skips the SIPs and ABPs.

The testing results for a (2, 2)-threshold scheme are shown in Fig. 4.10, using
parameters Q = 4, γ = 4, and β = 6. The target image in Fig. 4.10c doesn’t have
interference from the cover images. Furthermore, the share images have much better
appearance than the result of FRGVSS, as shown in Figs. 4.5 and 4.6.

Fig. 4.9 Constrained error
diffusion. The error at
position [i, j] is allowed
only to diffused to CIPs, and
is not allowed to diffuse to
SIPs or ABPs
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Fig. 4.10 Experimental result for extended VC using error diffusion and halftone cover images. a
Share 1. b Share 2. c Target image

4.3 Extended VC with a Hidden Watermark

Authentication1 of the shares is necessary when facing the replacement attack [2].
If an attacker is able to intercept one copy of the shares, say share 1, and hence
can produce a fake share 2 according to his fake secret. Then he can send the fake
share to the receiver. If the receiver stack the share 1 with the fake share 2, then
the fake secret will be revealed. As a countermeasure to this attacking scenario, one
can embed another secret image, called a watermark, to serve as an authentication
mechanism [3, 4, 10, 14].

In [2], Fang et al. constructed awatermark embedding algorithm toVC.But Fang’s
algorithm produces meaningless shares and the pixel expansion is 4 [2]. Recently,
Huang improved Fang’s algorithm such that there is no pixel expansion in VC [5].
But Huang’s algorithm still generates meaningless shares. Liu et al. proposed the
embedded extended visual cryptography, which is combined with the halftoning
process [6]. But the pixel expansion is not 1 and there is no watermark embedded.
Simultaneous embedding of both the secret and watermark into two meaningful
shares imposes too many constrains on the VC algorithm. Hence its design is more
complicated. In [7], Lou et al. proposes such a system. But unfortunately, on the
recovered secret and watermark images, there are severe interferences from the share
images. One need to carefully identify the secret/watermark image, especially when
the grayscale of the share is close to the grayscale of the secret or watermark images.

For an extended VC with a hidden watermark, we must satisfy the following
requirements: (1) The input cover image is a grayscale image; (2) The shares are
meaningful; (3) There is no pixel expansion. The size of the share images is the same
as the cover image; (4) No computation is needed during decoding; (5) Both the
secret and the watermark are encoded; (6) There is no interference from shares on
the stacking results.

1Adapted by permission from Springer Nature: Springer, Multimedia Tools and Applications, Vol.
75, No. 18, Size-invariant extended visual cryptography with embedded watermark based on error
diffusion, Bin Yan et al. ©, 2015.
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Fig. 4.11 Overall structure of the system

This section introduces one of our recent works on this topic [13]. The structure
of the overall system is shown in Fig. 4.11. A secret image S is encoded into two
sharesB1 andB2 such that the appearance of the shares looks similar to the two cover
images C1 and C2 respectively. Each share is transmitted independently through a
different channel. After receiving both shares, the receiver can stack them to recover
an image Ŝ that has the same information content as S. In addition, after stacking
B2 on a shifted B1, the recovered image Ŵ contains the same information content
as W . The cover images are grayscale images, while both the secret image and the
watermark image are binary.

4.3.1 Simultaneous Encoding of Secret and Watermark

The positions of SIPs and ABPs can be determined as in Sect. 4.2.1. After that, we
get the sets S,A1 and A2. In this section, we describe the encoding of both the secret
image and watermark into the SIPs positions. This process is based on the algorithm
proposed in [2]. But the algorithm in [2] is constructed for meaningless shares. For
meaningful shares, special care must be taken to the SIPs and the ABPs.

In order to embed the secret image and the watermark simultaneously, the posi-
tions of SIPs and ABPs must be modified. Remember that the SIPs and ABPs for
different block are different. So, when stacking the shares, the SIPs for the corre-
sponding pixels must be the same, and the ABPs for the corresponding pixels must
be complementary. To help the description of the proposed algorithm, we introduce
the following indicator matrices.

S = [s[i, j] ∈ {0, 1}]Mc×Nc
, s[i, j] = 1 if (i, j) ∈ S

A1 = [a1[i, j] ∈ {0, 1}]Mc×Nc
, a1[i, j] = 1 if (i, j) ∈ A1

A2 = [a2[i, j] ∈ {0, 1}]Mc×Nc
, a2[i, j] = 1 if (i, j) ∈ A2
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Each element in S indicates whether the current position is a SIP or not. Similarly,
each element in A1 indicates whether the current position in share 1 is an ABP or
not.

The following regions are also defined on the two shares, as shown in Fig. 4.12.
Let d be the amount of shift of share 1 when stacking with share 2 to recover the
watermark. Here we consider only horizontal shift and restrict its amount to be
d ≥ Nc

2 . Define

L1 = {(i, j); 1 ≤ j ≤ Nc − d} , R1 = {(i, j); Nc − d < j ≤ Nc} ,

L2 = {(i, j); 1 ≤ j ≤ d} , R2 = {(i, j); d < j ≤ Nc} .

First, the positions for the SIPs and ABPs for the two shares are generated accord-
ing to Sect. 4.2.1. Then we copy the position of SIPs in area R2 of share 2 to the
position of SIPs in area L1 of share 1, i.e.,

s[i, j] ← s[i, j − d + 1], d ≤ j ≤ Nc. (4.3)

So the SIPs positions in region R2 and L1 are the same. This will ensure that after
stacking the R2 and L1, the watermark Ŵ is revealed. To ensure that the ABPs on
the two shares are complementary, we have to copy the ABPs in L1 to the ABPs in
R2 on each share:

a2[i, j] ← a2[i, j − d + 1], d ≤ j ≤ Nc; (4.4)

a1[i, j] ← a1[i, j − d + 1], d ≤ j ≤ Nc. (4.5)

The case when d < Nc
2 and non-zero vertical shift can also be constructed simi-

larly, but is more involved. So we omit it here. After the above preprocessing, when

Fig. 4.12 Four regions definedon the two shares. In thefigure, two regions are plottedon share/cover
1 and two on share/cover 2, but the four regions are defined for each share/cover image
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stacking the two shares, the SIPs coincide and the ABPs are complementary for the
same position. So now we are ready to embed the secret image and the watermark.

Suppose that the basis matrices for bit ‘0’ and ‘1’ areM0 andM1 respectively [8].
For example, for a (2, 2) scheme, when γ = 4, we can use

M0 =
(
1 1 0 0
1 1 0 0

)
, M1 =

(
1 1 0 0
0 0 1 1

)
. (4.6)

If a bit ‘0’ is to be encoded, then the matrix M0 is chosen. After a random column
permutation Π(·), the first row is filled into the γ SIPs positions in the current block
of share 1, and the second row is filled into the γ SIPs positions in the current block
of share 2.

Since nowwe need to encode both the secret image andwatermark into the shares,
we have to treat each region differently. This is described by the following steps.

1. First, for region L2 on both share 1 and share 2, the SIPs are determined by the
corresponding pixels in the secret image. Let [k, �] be the index of the blocks,
which is also the index of the pixel in the secret image and the watermark image.
From the index of the pixels in the shares we can find the block index as k = � i

Q 	,
and � = � j

Q 	. If s[k, �] is ‘0’, then we fill in the SIPs with the rows of Π(M0)

in the two shares, where Π(M) denotes a random permutation of the columns of
the matrix M. Otherwise, the SIPs are filled with the rows of Π(M1).

2. Then, the SIPs in region R2 of share 2 are determined by the watermark image
W and the SIPs in region L1 of share 1. If the watermark bit w[k, �] is ‘0’, then
we fill the complement of the SIPs in L1 to region R2. Otherwise, the value of
the SIPs of share 1 are copied to share 2. This step encodes the watermark image
into the shares, so that stacking L1 and R2 reveals the watermark.

3. Finally, we determine the SIPs in region R2 in share 1 from the SIPs from the
same region in share 2 and the secret image. If the secret image bit s[k, �] is ‘0’,
then we fill the complement of the SIPs in region R2 in share 2 to region R2 in
share 1. Otherwise, the SIPs of share 2 is copied to share 1.

After the above steps, the SIPs and the ABPs of the two shares are determined.

4.3.2 Extension to N > 2 Shares

This algorithm can be extended to more than two shares. The baseline algorithm
is designed to generate N ≥ 2 shares [12], and our modification of the original
algorithm, i.e., the random allocation of SIPs and ABPs, doesn’t change the process
of encoding the secret, so our algorithm can also be extended to N > 2 shares.
Let’s use N = 3 as an instance and assume that the horizontal shift is d = Mc

2 . First,
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following the 3-out-of-3 scheme as described in [12], we can embed the left half of
the secret image, i.e., LS , into L1, L2 and L3. Then we stack share 2 and share 3 to
obtain a composite share. The left half of this composite share is already determined,
so we can use the watermark image as a ‘secret’ image and modify R1, so that the
stacking of R1 and L reveals the watermark image. Finally, we can embed the right
half of the secret image, i.e., RS , to the right half of composite share by modifying
R2 andR3. As the result of the above embedding processing, when stacking the three
shares, the secret image is revealed. When stacking share 1 with shifted share 2 and
share 3, the watermark image is revealed.

4.3.3 Constrained Error Diffusion

After encoding the secret image and watermark, the constrained error diffusion as
presented in Sect. 4.2.2 should be used to encode the cover pixels to CIPs.

4.3.4 Experimental Test

Two types of qualitymeasures should be considered in the experiments. Thequality of
the share image should be evaluated by measures for halftone images, such as PSNR
(Peak Signal to Noise Ratio) andMSSIM (Mean Structure Similarity) measures. The
quality of the target image should be evaluated by measures for binary images, such
as global contrast.

To measure the quality of the share images, we use the PSNR measure [9] and
the MSSIM measure [11]. Each share image Bk is compared with the correspond-
ing halftone image Hk obtained using ordinary error diffusion. Before calculating
the PSNR, each image is smoothed by a Gaussian filter with variance 4 and ker-
nel size 11 × 11. Then the PSNR value is calculated from the two filtered images.
While the PSNR value measures the tone consistency between the two images, the
MSSIM value measures the structure similarity between two images, which includes
luminance, contrast and structure correlation. When calculating MSSIM, the default
setting as recommended in [11] is adopted.

The following parameters are used in the experiment: Q = 4, γ = 2,β = 7,Mc =
Nc = 768 and d = Mc/2. The diffusion mask is the Floyd and Steinberg mask. For
the fundamental VC scheme, we choose the (2, 2) scheme with pixel expansion
2 [8]. The two cover images along with the secret image and the watermark image
are shown in Fig. 4.13.

The two share images are shown in Fig. 4.14. The PSNR values for the two shares
are 16.38 and 16.17 respectively. The MSSIM values are 0.2138 and 0.2142 respec-
tively. We also calculated the MSSIM values between the share and halftone image
after Gaussian smoothing, they are 0.6723 and 0.6744 respectively.
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The stacking result of the two shares is shown in Fig. 4.15a, which reveals the
content of the secret image. If we shift the share image in Fig. 4.14a by d and stack
it with the share image in Fig. 4.14b, then the content of the watermark image is
revealed, as shown in Fig. 4.15b. The results shown in Figs. 4.14 and 4.15 verify the
effectiveness of this algorithm.

The perceptual quality of the binary target image and extracted watermark can be
evaluated by the contrast. For the (2, 2) scheme, we can find the expression for the
contrast as follows. The contrast of the recovered VC secret, as defined in [15], is
the relative difference of 1’s between the representation of the black and the white
pixels. In our system, if the pixel expansion of the basic VC scheme is γ, and the
size of the block is Q × Q, then the contrast can be found to be

α = γ

2Q2
. (4.7)

Fig. 4.13 The images used in the experiments. a Cover image 1. b Cover image 2. c Secret image.
d Watermark Image. The secret image and watermark are resized to meet the size of the cover
images
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Fig. 4.14 The generated meaningful shares (γ = 2). a Share 1. b Share 2

Fig. 4.15 The recovered target image and watermark image. a Target image. bWatermark image

So if γ = 2 and Q = 4, then the contrast of the recovered secret and watermark is
1/16. If a contrast of 1/8 is needed, then for the same Q = 4, we should use γ = 4.

However, the improvement of the contrast of the recovered secret and watermark
usually result in decrease of the quality of the cover image. There is tradeoff between
quality of the share image and quality of target/watermark image. The quality of the
share is inherently limited by the number of non-SIPs and non-ABPs that are reserved
to carry the information of the cover image. So, as defined in [12], the quality index
is

s = Q2 − γ − β

Q2
.
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Then, for our (2, 2) scheme, it is not difficult to show the tradeoff between the contrast
α and this quality index s:

s =
{ 1

2 − α, if Q2 − γ is even;
1
2 − α − 1

Q2 , if Q2 − γ is odd.
(4.8)

The Eq. (4.8) can also be used to find the appropriate design parameters Q, γ and
β from the required quality index s and the requirement on the contrast α of the
recovered secret and watermark.

4.3.5 Attacks on SIPs and ABPs

If an attacker has access to one of the two shares, say share 1 (i.e., B1), then the
attacker can modify this share. In addition, if the allocation of SIPs and ABPs are
deterministic, then given the cover image, an attacker is able to find the exact locations
of the SIPs and the ABPs. The attacker can simply set all the SIPs to ‘0’ (black) and
leave the ABPs intact. Let’s call this modified share as B̂1. Then after stacking B2

with B̂1, all the pixels are black. Both the secret and the watermark will be destroyed.
Using the random allocation as in this work, the attacker cannot reproduce the

position of the SIPs and the ABPs without knowing the seed of the random permuta-
tion. Then the attacker’s knowledge about the SIPs is the relative ratio of SIPs within
a block, i.e., γ/Q2. His best attack is randomly choosing γ pixels in each block and
setting them to ‘0’. But the watermark can still be partially recovered.

4.4 Summary

This chapter reviews algorithms for improving the perceptual quality of share images
in extended VC. The classical Naor and Shamir’s scheme produces good result for
binary cover images, but is not directly applicable to grayscale or halftone cover
images. Size expansion of the share images with respect to the cover images is
another issue. Chen’s FRGVSS solved the issue of size expansion but still produce
relatively low quality share images. Lou’s pixel swapping algorithm produces good
perceptual quality on share images, but the target image has interferences from cover
images. Wang’s error diffusion algorithm works directly on grayscale image and can
compensate for the loss of visual quality due to VC encryption. We also present our
improvement by incorporating a hidden watermark for share authentication.
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Chapter 5
Improving Visual Quality for
Probabilistic and Random Grid Schemes

5.1 (k, n)-Threshold VC for Grayscale Image

For grayscale secret image, there are two traditional VC encoding schemes: (1)
Separate halftoning and VC encoding. (2) Direct block quantization and mapping.
As shown in Fig. 5.1.

For separate halftoning andVCencoding [5, 9, 13, 14, 19, 22], a digital halftoning
algorithm is applied to input grayscale image and covert it to binary or halftone image.
The halftone secret image then can be encoded by the three types of fundamental VC
schemes, as reviewed in Chap.1. This structure is shown in Fig. 5.1a. The advantage
of this approach is that one can use the many well-developed and analyzed VC
algorithms for binary secret image. For deterministic VC with pixel expansion, this
scheme indeed generates good visual quality on target image. But for probabilistic
VC and random grid VC, the visual quality of target image is usually far from
acceptable.

For direct block quantization and mapping scheme [2, 4], the halftoning step is
excluded. It intends to produce size-invariant shares. The grayscale image is seg-
mented into small blocks of square shape. The average intensity of the grayscale
image in a block is quantized andmapped to target block with number of black pixels
approximately proportional to the average intensity. This idea is shown in Fig. 5.1b.
In essence, it is equivalent to sub-sampling, quantization, followed by encryption
using size-expanded VC. This sub-sampling inevitably reduces the resolution of the
secret image, and the reduced resolution cannot be compensated by other adjacent
blocks.

One common feature of the above schemes is the halftone share images and target
image. This is necessary since one needs to stack the shares in order to recover
the secret image. So the general structure of a grayscale VC can be summarized in
Fig. 5.2. This diagram is featured with grayscale secret image, halftone share images
and halftone target image.

Following the general requirement on a typical VC scheme, we can define the VC
for grayscale image as follows:

© Springer Nature Singapore Pte Ltd. 2020
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(a)

(b)

Fig. 5.1 Classification of VC encoding for grayscale secret image. a Separate halftoning and VC
encoding. b Direct block quantization and mapping

Fig. 5.2 Block diagram for
a general VC with grayscale
secret image

Definition 5.1 ((k, n)-SIGHVC) Considering 8-bit quantized digital image x, let
the set of grayscales of the secret image be Z256, and those used by the VC
encoder be {0, 1}. Given two grayscale images, each having constant grayscales:
x1 [n] = g1 and x2 [n] = g2, and 0 ≤ g1 < g2 ≤ 255. Each image is divided into n
shares:

{
s11 [n] , . . . , s

1
n [n]

}
,
{
s21 [n] , . . . , s

2
n [n]

}
, and s�

i [n] ∈ {0, 1}. If the follow-
ing two conditions are satisfied, then the secret sharing algorithm is called a grayscale
halftone VC.

1. Contrast condition: Let q ≥ k, and i1, . . . , iq be q participants, then the stacking
of the q shares

z� [n] � ∨iq
i=i1

s�
i [n] , � = 1, 2, (5.1)

satisfies E (z1 [n]) < E (z2 [n]).

2. Security condition: Let i1, . . . , id be d participants and d < k, then, ∀n, the
following two random vectors are equivalent:

f1 = [
s1i1 [n] , . . . , s

1
id [n]

]T
, f2 = [

s2i1 [n] , . . . , s
2
id [n]

]T
, (5.2)

i.e., they have the same sample space and same probability distribution, and are
independent of n. Equivalently, given the random vector

f� �
[
s�
i1 [n] , . . . , s

�
id [n]

]
,
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where � = 1, 2, no additional information about x� [n] can be derived, i.e.,

Pr {x� [n] = g} = Pr {x� [n] = g | f�} , ∀g ∈ Z256.

As an example, we show that the random grid based VC for grayscale image in
[17] is a valid construction of (k, n) − SIGHVC . This algorithm is summarized in
Algorithm 12, which belongs to the type of separate halftoning and VC encoding, as
depicted in Fig. 5.1a. Without of loss of generality, we focus on the Algorithm1 in
[17].

Algorithm 12 Random grid VC for grayscale images [17].
Input:

Grayscale image x [n], with size M × N .
Output:

Binary share images: s1 [n] , s2 [n]
1: Halftone x [n] to a binary image y [n].
2: for each n do
3: s1 [n]

I I D∼ U {0, 1}: draw IID samples from the uniform distribution on set {0, 1}.
4: s2[n] ←

{
1 − s1[n], if y[n] = 1;
s1[n], if y[n] = 0.

5: end for

Theorem 5.1 The Algorithm 12 is a valid construction of (2, 2)-SIGHVC.

Proof Weshow that the contrast condition and the security condition inDefinition5.1
are satisfied.

(Contrast) If we use Algorithm 12 to encrypt two grayscale images with con-
stant levels g1 and g2, where g1 < g2, then we get shares

{
s11 [n] , s

1
2 [n]

}
and{

s21 [n] , s
2
2 [n]

}
respectively. The stacking of the two shares are z1 [n] = s11 [n] ∨

s12 [n] and z2 [n] = s21 [n] ∨ s22 [n]. Then,

E (z1 [n]) = Pr (z1 [n] = 1)

= 1 − Pr
(
s11 [n] = 0, s12 [n] = 0

)

= 1 − 1

2

{
Pr (y [n] = 0)Pr

(
s12 [n] = 0 | s11 [n] = 0, x [n] = 0

)}

−1

2

{
Pr (y [n] = 1) Pr

(
s12 [n] = 0 | s11 [n] = 0, y [n] = 1

)}

= 1 − 1

2
[g1 × 1 + (1 − g1) × 0] = 1

2
g1.

Similarly, E (z2 [n]) = 1
2g2. Since g1 < g2, so we have

E (z1 [n]) < E (z2 [n]) .
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The contrast condition is satisfied. Here we utilized the fact that, for a halftone image
y [n] representing a gray level g, we have E {y [n]} = g [12].

(Security) (1) If we take the first share, then from the generation of random grid,

we know that s11 [n]
I I D∼ U {0, 1} and s21 [n]

I I D∼ U {0, 1}, so it is obvious that the two
random variables s11 [n] and s21 [n] are equivalent. (2) If we take the second share, it
is sufficient to prove that Pr

(
s12 [n] = 0

) = Pr
(
s22 [n] = 0

)
.

Pr
(
s12 [n] = 0

) = Pr
(
s11 [n] = 0

)
Pr

(
s12 [n] = 0 | s11 [n] = 0

) +
Pr

(
s11 [n] = 1

)
Pr

(
s12 [n] = 0 | s11 [n] = 1

)

= 1

2
g1 + 1

2
(1 − g1) = 1

2
.

Similarly, Pr
(
s22 [n] = 1

) = 1
2 . So Pr

(
s12 [n] = 1

) = Pr
(
s22 [n] = 1

)
. Thus we con-

clude that the two random variables s12 [n] and s22 [n] are equivalent.
Since we have shown that Algorithm 12 satisfies both the contrast condition and

the security condition inDefinition 5.1, Algorithm12 is a valid construction of (2, 2)-
SIGHVC. �

5.2 Probabilistic VC for Grayscale Secret Image

In addition to the VC schemes depicted in Fig. 5.1, there are several recent efforts in
developing VC for grayscale images directly. This section reviewsWang’s algorithm
and our recent AbS-based probabilistic VC.

5.2.1 Wang’s Algorithm

Wang’s algorithm operates directly on grayscale image and halftoning is not needed
[20]. It also supports flexible pixel expansion for the probabilistic version. For size-
invariant scheme, we set the pixel expansion to be 1.

As with many probabilistic schemes, Wang’s algorithm is also based on basis
matrices of the corresponding deterministic VC for grayscale image. So the deter-
ministic scheme will be presented and then will be extended to probabilistic scheme,
as is done in [20].
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5.2.1.1 Deterministic VC for Grayscale Secret Image

The deterministic VC for grayscale secret image was developed by Muecke in [15]
andBlundo et al. in [1]. Following a similar idea frombinaryVC, theVC for grayscale
secret image with g gray levels can be defined in Definition 5.2.

Definition 5.2 (k, n,mg, g)-threshold VC for grayscale secret image [1, 15, 20]:
Let the number of gray levels of the secret image be g ≥ 2. The VC for grayscale
secret image consists of g basis matrices G0, . . . ,Gg−1. If a secret pixel with gray
level b ∈ {0, . . . , g − 1} is to be shared, then one randomly permutes the basis matrix
Gb, and distributes the i-th row to share i . The following two conditions should be
satisfied (using notation from Sect. 2.5).

1. Contrast condition: For anyq ≥ k, anyq participantsP = {
i1, . . . , iq

}
, and each

b ∈ {0, . . . , g − 2}, we have H (
η

(
Gb�P�

)) ≤ db − mgαb,b+1, and
H (

η
(
Gb+1�P�

)) ≥ db, where db is the threshold parameter, and αb,b+1 is the
contrast parameter.

2. Security condition: For any q < k, any q participants P = {
i1, . . . , iq

}
,

Gs�P� ∼ Gt�P�, for s 	= t .

Recall that H(x) returns the Hamming weight of a binary vector x, η(A) performs
row stacking operation, and G�P� is a sub-matrix of G by restricting to the rows
specified in set P.

The contrast condition ensures that, when enough shares are gathered, then one
can distinguish adjacent gray levels s and s + 1. The security condition ensures that,
with insufficient shares, one cannot infer the gray level s from the shares.

The construction of the VC scheme satisfying Definition5.2 relies on matrix
concatenation of basis matrices from binary VC. LetB0 andB1 be two basis matrices
for binary VC, where B0,B1 ∈ Z

n×m
2 , then the basis matrix Gb, b ∈ {0, . . . , g − 1}

can be constructed as

Gb =
⎡

⎣B0 · · ·B0︸ ︷︷ ︸
g−1−b

B1 · · ·B1︸ ︷︷ ︸
b

⎤

⎦ . (5.3)

Obviously, the larger the darkness b, the more usage of B1 in Gb. One problem
with this construction is the large pixel expansion. The pixel expansion is given
by mg = m × (g − 1), which increases with the number of gray levels. For typical
g = 256 and m = 4, we get mg = 1020. The share image is more than 1000 times
larger than the secret image! Each secret pixel is expanded to roughly a 10 × 10 block
on shares. Furthermore, since more gray levels are to be reproduced, the contrast
between adjacent levels are also reduced. It is shown that αb,b+1 = α

g−1 , where α
is the contrast for binary VC. Typical value of α is α = 1/2, then for g = 256, the
contrasts are only roughly 1/500. Note that this small contrast is under the condition
of a very large pixel expansion (1000 times).

As an example, consider a (2, 2) case. Let’s use the (2, 2)-threshold binary deter-
ministic VC with the following basis matrices:
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B0 =
[
1 0
1 0

]
, B1 =

[
1 0
0 1

]
.

We can construct the following basis matrices for g = 3 gray levels.

G0 =
[
1 0 1 0
1 0 1 0

]
, G1 =

[
1 0 1 0
1 0 0 1

]
, G2 =

[
1 0 1 0
0 1 0 1

]
.

5.2.1.2 Probabilistic VC for Grayscale Image

To resolve the pixel expansion in deterministic VC for grayscale image, Wang et al.
transformed the deterministic schemes in last section to a probabilistic scheme [20].
The basic idea is to use only mp of the mg columns of the basis matrices Gb, thus
producing a probabilistic VC with a smaller pixel expansion mp ≤ mg.

Let the set of basis matrices for a (k, n)-threshold VCwith grayscale secret image
beGb, b ∈ {0, . . . , g − 1}. Then, for each of the matrix, we get a set of matricesGb,
where each matrix in it is obtained by randomly samplingmp columns fromGb. The
encoding process for probabilistic VC is as follows. To share a pixel with gray level
b, one randomly chooses one matrix from the set Gb, and then distributes each row
to its corresponding share. This algorithm is summarized in Algorithm 13.

Algorithm 13 (k, n)-threshold probabilistic VC for grayscale image [20].
Input:

Grayscale secret image: x [n] ∈ {0, · · · , g − 1}.
Basis matrices: Gb, b ∈ {0, · · · , g − 1}.
mp: pixel expansion.

Output:
n binary share images: s1 [n] , · · · , sn [n].

1: for b ← 0 to g − 1 do
2: Gb ← all matrices by sampling mp columns of Gb.
3: end for
4: for every location n do
5: if x [n] = b then
6: Randomly choose one matrix from Gb.
7: Distribute i-th row to n-th block on Share si .
8: end if
9: end for
10: Output share images s1 [n] , · · · , sn [n].

Wang’s algorithm is shown to preserve the average contrast from deterministic
VC, no matter the value of the pixel expansionmp. However, one may notice that the
inherent tradeoff between pixel expansion and block variance is not resolved. The
block variance measures the variation of gray levels across different blocks on target
image for a given gray level on secret image [14]. Formp = mg , i.e., the deterministic
VC, the block variance is zero. But when mp deviates from mg, the block variance
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will increase. This is investigated by the measure recognition area in Wang’s work.
In essence, the recognition area is the smallest area required to recognize a given gray
level from the surroundings. Higher block variance calls for larger recognition area,
hence the target image has lower ability in rendering details in the original secret
image.

5.2.2 AbS-Based Probabilistic VC

Unlike1 the previous effectors in designing the VC for grayscale images, the AbS
(Analysis-by-Synthesis) approach intends to approximate the secret image using the
target image, by feeding the error back to the VC encoder [24].

The block diagram is shown in Fig. 5.3, which can be described by Algorithm 14.
The gamut mapping step is used to ensure that the input gamut is contained within

the output gamut. For the diffusion loop to be stable, it is shown that the output gamut
must be able to cover the input gamut [6, 21]. To determine the gamut mapping, we
must find the input gamut and output gamut. The input gamut is the whole range
of a grayscale image. For normalized image, this range is [0, 1], while for 8-bit
quantized image, this range is [0, 255]. In general, let this range be [Jmin, Jmax]. The
output gamut should be the average gamut since the output has average contrast of
1/2n−1 for the probabilistic algorithm build upon the basis matrices in (2.10). For this
(n, n)-threshold case, we can choose the output gamut [βmin,βmax] = [0, 1/2n−1].
The corresponding gamut mapping is an affine function:

x [n] = βmax − βmin

Jmax − Jmin
J [n] + βmin Jmax − βmax Jmin

Jmax − Jmin
. (5.4)

Gamut mapping functions other than the affine function can also be adopted here.
For example, the mapping G : [Jmin, Jmax] → [βmin,βmax] can be a nonlinear or an

Fig. 5.3 Block diagram for AbS-based probabilistic VC for grayscale image

1© 2019 IEEE. Reprinted, with permission, from IEEE Transactions on Image Processing, Vol. 28,
No. 2, Improving the Visual Quality of Size-Invariant Visual Cryptography for Grayscale Images:
An Analysis-by-Synthesis (AbS) Approach, Bin Yan et al.
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Algorithm 14 (n, n)-AbSProb: AbS-based Probabilistic VC for Grayscale Images.
Input:

Grayscale image J [n] ∈ Z256, with size M × N .
Two basis matrices for deterministic (n, n)-threshold binary VC: B0 and B1.

Output:
Binary share images: s1 [n] , · · · , sn [n]

1: Gamut mapping of J [n] to ensure stability.
2: for each pixel n do
3: Quantize x̂ [n] with codebook E = {0, 1}: y [n] ← QE(x̂ [n]).
4: Encode y [n] into s1 [n] , · · · , sn [n] using the (n, n)-threshold probabilistic VC: If y [n] =1

(0 resp.), randomly select one column from B1 (B0 resp.), permute the rows and assign them
to s1 [n] , · · · , sn [n], respectively.

5: Simulated stacking: ŷ [n] ← ∨n
i=1si [n].

6: Calculate the reconstruction error: e [n] ← x̂ [n] − ŷ [n].
7: Error diffusion: Push the error to all pixels in the neighborhood ofn, i.e., ∀m ∈ N(n), x̂ [m] ←

x̂ [m] + h [m] e [n] , where h [m] is the coefficient of the diffusion filter.
8: end for
9: Output the shares: s1, · · · , sn .

adaptive function, such as the affine mapping followed by histogram equalization
within the range [βmin,βmax].

The diffusion loop is similar to the loop in and error diffusion-based halftoning.
For example, one can use the Floyd and Steinberg’s kernel [7], the Jarvis’ kernel [10],
or the Stucki’s kernel [18].

To show that the Algorithm14 is a valid VC for grayscale image as defined in
Definition5.1, we must show that the security condition and contrast condition are
satisfied. For a vigorous proof, we direct the reader to [24]. Here we give an intuitive
explanation to security condition and another proof for the contrast condition.

For the security condition, we should note that the binary VC algorithm is chosen
to be a secure one. So from any q < k shares, one cannot infer the input to VC
encoder y [n]. Referring to Fig. 5.3, no matter how y [n] is obtained from J [n], as
long as we cannot infer y [n] from q shares, then it is impossible to infer J [n] from
the shares. So, given q < k shares, it is impossible to infer the gray level J [n].

For the contrast condition, we utilize the linear model for error diffusion depicted
in Fig. 3.12. Furthermore, the VC encoding and stacking should also be modeled.
For example, for (2, 2) case, given a black secret pixel, one will get a black target
pixel. Given a white secret pixel, the chances of getting a white target pixel is 1/2.
Thus, we can use a binary channel model as shown in Fig. 5.4. For (2, 2) case, we
should have p00 = 1/2, p01 = 1/2, and p11 = 1.

Note that the contrast condition is concerning the statistical average, so we only
need to focus on the average input/output. Focusing on statistical average, the com-
bination of VC encoding and stacking is equivalent to a linear function

E
{
ŷ [n]

} = κE {y [n]} . (5.5)
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Fig. 5.4 Binary
non-symmetric model for
VC encoding and stacking

Wewould like to note that, since the diffusion filter is shift invariant and preserves
DC, i.e.,

∑
∀m h [m] = 1, then

E(ê [n]) = E

(
∑

∀m
e [m] h [n − m]

)

= E(e [n])
∑

∀m
h [n − m] = E(e [n]). (5.6)

The above second equality holds because of the stationarity of e [n].
Next, we calculate E (e [n]) as follows.

E (e [n]) = E
(
x̂ [n] − ŷ [n]

)

= E
(
x̂ [n]

) − κE
(
γ x̂ [n] + q [n]

)

= E
(
x̂ [n]

)
(1 − κγ) − κE (q [n])

= (
g + E

(
ê [n]

))
(1 − κγ) − κE (q [n]) (5.7)

= g(1 − κγ) + E (e [n]) (1 − κγ) − κE (q [n]) (5.8)

From (5.7) to (5.8), we use the result from (5.6). Solving for E (e [n]), we obtain

E (e [n]| = 1 − κγ

κγ
g − 1

γ
E (q [n]) . (5.9)

Based on (5.9), it results in

E
(
ŷ [n]

) = κE (y [n]) = κE
(
γ

(
x [n] + ê [n]

) + q [n]
)

= κγ (g + E (e [n])) + κE (q [n])

= κγg + (1 − κγ) g − κE (q [n]) + κE (q [n])

= g.

Note that E (q [n]) can be nonzero. Since the noise transfer function (NTF) between
ŷ [n] andq [n] is high-pass (seeEq. (8) in [11]), this nonzeromeanvalue is suppressed
by the loop. Hence it doesn’t affect the mean value of the output ŷ [n].



84 5 Improving Visual Quality for Probabilistic and Random …

So, we have shown that the average value of the stacking result ŷ [n] is equal to
the input gray level. If we have two constant images x1 [n] = g1 and x2 [n] = g2
with g1 < g2, then it follows that E

(
ŷ1 [n]

)
< E

(
ŷ2 [n]

)
. So, the contrast condition

is satisfied. For a proof without assuming stationarity for e [n], please see [24].
The performance of theYang’s algorithm,Wang’s algorithm andAbS-based prob-

abilistic VC on constant grayscale image are shown in Fig. 5.5, Fig. 5.6, and Fig. 5.7,
respectively. It is evident that AbS-based probabilistic VC provides more uniform
and visually pleasing target image.

The RAPSD results are shown in Fig. 5.8, Fig. 5.9, and Fig. 5.10, respectively.
Comparing these three figures, we see that AbS-based probabilistic VC produces less
low-frequency noise. Low frequency noise is the major reason of quality degradation
on target image.

To further characterize the influence of low-frequency noise, we use the residual
variance measure introduced in Sect. 3.6 [24]. For the (2, 2)-threshold probabilistic
VC, the result is shown in Fig. 5.11.

For the fidelity test, we use the Baboon image as shown in Fig. 5.12. The HPSNR
is found to be 19.45dB and the MSSIM is 0.658. The result in Fig. 5.12e shows

Fig. 5.5 Experimental result for Yang’s (2, 2)-threshold probabilistic VC, using constant grayscale
images J [n] = g. a g=7/8. b g=1/2. b g=1/8

Fig. 5.6 Experimental result forWang’s (2, 2)-threshold probabilisticVC, using constant grayscale
images J [n] = g. The pixel expansion is 1 a g=7/8. b g=1/2. c g=1/8
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Fig. 5.7 Experimental result for (2, 2)-threshold AbS-based probabilistic VC, using constant
grayscale images J [n] = g. a g=7/8. b g=1/2. c g=1/8

Fig. 5.8 RAPSD result for
Yang’s (2, 2)-threshold
probabilistic VC, using
constant grayscale images
J [n] = g. From top g=7/8,
g=1/2 and g=1/8

that, AbS-based probabilistic reproduces more details on target image than Yang’s
probabilistic VC. One may also notice that, the darker regions are better reproduced
on target image. The white regions exhibit clusters of black and white pixels. This
can be remedied by AbS-based vector VC in next chapter.
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Fig. 5.9 RAPSD result for
Wang’s (2, 2)-threshold
probabilistic VC, using
constant grayscale images
J [n] = g. From top g=7/8,
g=1/2 and g=1/8

Fig. 5.10 RAPSD result for
(2, 2)-threshold AbS-based
probabilistic VC, using
constant grayscale images
J [n] = g. From top g=7/8,
g=1/2 and g=1/8
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Fig. 5.11 Residual variance
result for (2, 2)-threshold
probabilistic VC schemes,
using constant grayscale
images J [n] = g, g ∈ [0, 1]

5.3 Random Grid VC for Grayscale Secret Image

The random grid VC also suffers from bad visual quality for grayscale images. For
the random grid framework, we review three algorithms. The first one is the (n, n)-
threshold random gridVC constructed byChen and Tsao [3], which is the application
of binary scheme to halftoned grayscale image. The second one is a recent algorithm
constructed by Wu et al. [23], where efforts have been made to generate blue noise
shares. The third algorithm is the AbS-based approach, which intends to produce
blue noise target images directly.

5.3.1 Applying Binary Scheme to Grayscale Image

Application of random grid approach to grayscale images started from Shyu’s
work [17], where the (2, 2)-threshold random grid is extended to grayscale and
color secret images. The secret image is first converted to halftone image and then
binary random grid VC is applied to these halftone images. The special features
of the halftone image are not considered. An experimental result on Lena image is
shown in Fig. 5.13. Many details and low contrast edges are not visible in the target
image Fig. 5.13c.

5.3.2 Blue Noise Approach

Wu et al. propose to improve the random grid approach by producing blue noise
shares [22, 23]. In [22], the authors use a blue noise pattern generation algorithm—
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Fig. 5.12 Experimental result for (2, 2)-threshold AbS-based probabilistic VC, using Baboon
image. a Original secret image. b Halftone image. c Share 1. d Share 2. e Target image from
AbS-based probabilistic VC. f Target image using Yang’s algorithm
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Fig. 5.13 Experimental result for (2, 2)-threshold random grid, using halftone secret image. a
Share 1. b Share 2. c Target image

the void and cluster algorithm, as a post-processing step to generate random grid.
In [23], a random noise balanced error diffusion (RNBED) scheme is adopted. This
scheme is shown to improve the visual quality for binary image (binary logo, text,
or thresholded grayscale image) quite well. We briefly review the RNBED-based
algorithm.

The RNBED was originally proposed as a solution to data hiding in halftoning
process [16]. According to the bits to hide, one adjusts the threshold by injecting
noise into the image to be halftoned. Wu et al. modified the RNBED to generate
share image so that the black pixels are separated apart.

Recall from Sect. 3.4 the structure of error diffusion halftoning. The RNBED
injects random noise into this diffusion loop, as shown in Fig. 5.14. The parameter
α controls the strength of the IID random noise ζ[i, j] ∈ {0, 1}. To ensure that the
random grid y[i, j] has equal number of white pixels and black pixels, the input gray
level x[i, j] is set such that the average is 1/2. For example, one can use

x[i, j] I I D∼ U[0.5 − u, 0.5 + u] (5.10)

for a preselected parameter u.

Fig. 5.14 Block diagram for
random noise balanced error
diffusion (RNBED)
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The other ingredient is the classification of secret blocks according to the number
of black pixels in it. The collection of all blocks having t pixels and b black pixels
is denoted as a set Bt,b. It is expected that each type of block should be treated
differently since different number of black pixels are clustered together. So a strength
αb is designed for block type Bt,b, where b = 0, . . . , t − 1. Combining the RNBED
randomgrid generator and the (2, n)-threshold randomgridVC (Algorithm4),we get
the algorithm described in Algorithm15. The algorithm Rnbed (x [n] ,α) executes
one step of the RNBED algorithm using parameter α and output one sample y [n],
as shown in Fig. 5.14.

Algorithm 15 (2, n)-threshold random grid VC using RNBED [23].
Input:

Binary secret image: x [n] ∈ {0, 1}.
Parameters: u,α0, . . . ,α4.

Output:
n binary share images: s1 [n] , · · · , sn [n].

1: Block partition: Divide the image x [n] into non-overlapping 2 × 2 blocks, and classify each
block as one of the five types B4,b, b = 0, · · · , 4.

2: for k ← 1 to n do
3: gk [n]

I I D∼ U[0.5 − u, 0.5 + u],∀n.
4: end for
5: for each block B do
6: Set α = αb, if B ∈ B4,b, b = 0, . . . , 4.
7: for each pixel x [n] ∈ B do
8: if x [n] = 1 then
9: sk [n] ← Rnbed (gk [n] ,α) , k = 1, · · · , n.
10: else
11: d ∼ U {1, 2, · · · , n}.
12: sd [n] ← Rnbed (gd [n] ,α).
13: sk [n] ← sd [n] ,∀k ∈ {1, · · · , n} , and k 	= d.
14: end if
15: end for
16: end for
17: Output share images s1 [n] , · · · , sn [n].

Using parameter values u = 0.1, α0 = α4 = 0.26 and α1 = α2 = α3 = 0.25 as
suggested in [23], and using thresholded Lena image as secret image, we get the
experimental results as shown in Fig. 5.15, for (2, 2)-threshold case. We observe
that, for the region on the target image that corresponds to the white regions in the
secret image, the black pixels are evenly distributed. This can be understood from
Algorithm15. For a white secret pixel, one randomly chooses one random grid and
copies it to all other shares. If this random gird has evenly distributed black dots,
then the stacking results also have evenly distributed black dots.
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Fig. 5.15 Experimental result for (2, 2)-threshold RNBED random grid, using binary secret image.
a Share 1. b Share 2. c Target image

5.3.3 AbS-Based Algorithm for Random Grid Visual
Cryptography

In contrast to producing blue noise shares, the AbS framework can be considered
as utilizing the blue noise technique on the target image. Also, we note that two
blue noise patterns, when stacked or randomly sampled to form a third image, then
the resulting image is no longer of blue noise. This is illustrated in Fig. 5.16 of the
experimental result.

In this experiment, n blue noise patterns are generated using Random noise bal-
anced error diffusion (RNBED) [8, 16, 23]. Based on these n blue noise images,
another two images are generated. The first image is the stacking of these n blue
noise images. The second one is generated by random sampling from these blue
noise images at each pixel location. We then use RAPSD to characterize the spectral
property. The result is shown in Fig. 5.16.

When g ≤ 1
2 , even though the images B1 and B2 are blue noise, but the stacked

image shows significant spectral components in low frequency range.Asg approaches
1, the low frequency components decrease on the stacked image. This can be
explained as follows. When g is small (near zero), black pixels dominate, and stack-
ing will produce more black pixels on the stacked image. Note that the black pixels
on the two shares are independent of each other, so stacking is a random mixing
of black pixels from the two shares. This random mixing may produce clusters of
black pixels, thus increases the wavelength between the minority pixels (the white
pixels). This increase in wavelength is responsible for the significant low frequency
component on RAPSD of the stacked image. As g increases to be above 1

2 , white
pixels dominate and the black pixel is the minority pixel. Even though more black
pixels are produced after stacking, the wavelengths between the black pixels don’t
increased significantly.

The above analysis also verifies that the algorithms in [22, 23] produce good
results on binary image or thresholded grayscale image that are featured with large
and connected black regions and white regions. According to the encryption process,
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Fig. 5.16 The RAPSD of
blue noise patterns B1 and
B2, the stacked image and
random sampled image.
n = 2. From top to bottom,
the gray levels are
g = 1

8 , 1
4 , 1

2 , 3
4 , 7

8
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the reconstructed pixels corresponding to the white regions in the secret image are
equal to the corresponding pixels in the first share. So, if the first share is of blue noise,
then the reconstructed white area is blue noise. But this good performance cannot be
transferred to halftone image,where the gray level is represented as relative frequency
of occurrence of white and black pixels. Note that the halftone secret image can be
thought of as a random point process, so even though the shares are of blue noise, the
stacking operation is equivalent to using the white pixels to select the points in share
1 and ‘copy’ them to the reconstructed image. This random selection also destroys
the blue noise property. In addition, The low frequency noise due to random selection
doesn’t change with g.

These experimental results suggest that, for halftone secret image, instead of
producing blue noise shares, one should try to produce blue noise stacking result
directly.

Since the random grid approach is also pixel based, the block diagram for AbS-
based random grid VC is the same as that of the AbS-based probabilistic VC. Please
refer to Fig. 5.3. Here we specialize the block ‘VC Encoding’ and ‘Gamut Mapping’
for random grid VC.

A brief review of (n, n)-threshold can be found from Sect. 2.4 (Algorithm3). In
general, any (n, n)-threshold random grid VC can be used in AbS framework.

Next, we determine the gamut mapping for (n, n)-threshold random grid VC.
Since random grid VC is pixel based, it is not difficult to determine βmin =
E{ŷ [n] |y [n] = 0} = 0. To calculate βmax, we note that s1 [n] , . . . , sn−1 [n] can be
equivalently treated as independently generated. So,

βmax = γ · E{ŷ [n] |y [n] = 1} = γ Pr
{
ŷ [n] = 1 | y [n] = 1

}
(5.11)

= γ Pr
{∨n−1

i=1 si [n] = 1 | y [n] = 1
} = γ

n−1∏

i=1

Pr {si [n] = 1} (5.12)

= γ

2n−1
. (5.13)

γ is a user specified parameter [24]. So in the (n, n)-threshold AbS-based random
gridVC, the dynamic range of the inputmust bemapped into the range [βmin,βmax] =
[0, γ

2n−1 ], where γ ≤ 1.
The experimental result for AbS-based random grid VC is quite similar to the

experimental result for probabilistic VC (Figs. 5.6, 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12).
So we omit them. This similarity can be explained by the equivalence between
probabilistic VC and random grid VC established by Yang et al. [25].

5.4 Remarks

Probabilistic VC can effectively solve the size expansion problem, but it comes with
the price of bad visual quality, especially for grayscale secret image. Producing blue
noise pattern for share images is shown to be able to improve the quality of target
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image, but is not suitable for halftone image with complicated contents. We define
the grayscale VC directly and construct AbS-based probabilistic VC and AbS-based
random grid VC, in order to produce blue noise on target image. This framework
is shown to meet the requirement of a grayscale VC. One drawback of AbS-based
probabilisticVC is that the performancedeteriorates for bright region.Wealso remark
that, the AbS approach intends to let neighboring pixels to cooperate, in order to
improve the quality of the target image. This idea is similar to block encoding, or
vector VC, which will be introduced in next chapter.
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Chapter 6
Improving Visual Quality for Vector
Schemes

6.1 Vector Visual Cryptography

For the three classical VC schemes reviewed in Chap. 2, each secret pixel is inde-
pendently encoded. Vector visual cryptography, however, treats a block of pixels as
a unit and encodes them in one single step. By encoding a block, one can design VC
algorithms to transfer the local feature of that block to local feature of corresponding
block on target image, hence may get better perceptual quality for target image.

Focusing on size-invariant schemes, the assignment to shares from basis matri-
ces is probabilistic. So, the global contrast between black and white region is only
preserved in statistical sense, i.e., in the sense of the whole ensemble of black pixels
and white pixels. But locally, there is a large variation, or variance, in local contrast
distribution.

Considering the two existing problems outlined above: sample-wise encoding and
probabilistic approach, one possible solution is to encode a local block directly, so
that the local contrast can be better preserved [1, 2, 7, 11].

Hou et al. extended the basic Ito algorithm to vector VC [7]. Blocks having r
successive white/black pixels are taken from the image and encoded. This can ensure
that for r successive white/black blocks, the local contrast is guaranteed. But these r
white/black blocks may not be adjacent to each other. So, even though this scheme
is block-based, but the encoding of each type of block is still probabilistic and only
ensures that globally the contrasts between different types of blocks are preserved.

In [11], image blocks are classified according to the number of black pixels in
them. Then a counter is assigned to each block type. For example, for the type-b
block having b black pixels, Tu et al. use this counter to ensure that the basis matrix
B1 for black pixel is used exactly b times in encoding this type of block. Here the
contrast is guaranteed for each type of block, but is not guaranteed for a small local
region. This algorithm improves Hou’s algorithm, but the contrast is still a contrast
between different type of blocks that may not be spatially adjacent. Furthermore,
both Hou’s algorithm and Tu’s algorithm use halftone image as secret image.
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Chen et al. designed vector VC for grayscale image directly. The average gray
level of an image block is used to select the corresponding block on the stacked
image: an image block with darker average gray level is mapped to a block on the
stacked image having more black pixels in it [1]. However, each block is processed
independently so that the loss of contrast in one block cannot be compensated by
other blocks.

Loss of contrast due to VC is a key issue especially when the original secret image
already has a low contrast. In [8], an implicit histogram equalization is utilized in
block encoding to extend the histogram of the target image (after inverse halftoning).
But each block is still independently encoded.

To remedy the existing problems outlined above, we propose to use AbS frame-
work and vector VC. For halftone secret image, using local blackness preserving
VC [12], the loss of contrast in one block can be compensated by other adjacent
blocks. For grayscale secret image, an AbS-based vector VC can be used to let the
target image to approximate the secret image directly [13].

6.1.1 Hou’s Block Encoding Algorithm

Hou’s block encoding algorithmwas proposed in [6, 7, 11],whichwas later improved
by Liu et al. in [9]. These algorithms receive halftone image as secret image and
are based on block classification. Different encoding matrices are used for different
block types.

In Tu andHou’s work [11], the secret image is partitioned into small blocks of size
m = �2. Then these blocks are classified according to a local feature—the number
of black pixels b in it. Let x be such a small block, then the three types (or sets) are:

M0 =
⎧
⎨

⎩
x : such that

�∑

i=1

�∑

j=1

x[i, j] <
m

2

⎫
⎬

⎭
, (6.1)

M1 =
⎧
⎨

⎩
x : such that

�∑

i=1

�∑

j=1

x[i, j] = m

2

⎫
⎬

⎭
, (6.2)

M2 =
⎧
⎨

⎩
x : such that

�∑

i=1

�∑

j=1

x[i, j] >
m

2

⎫
⎬

⎭
. (6.3)

Let B0 and B1 be two basis matrices used in binary deterministic VC. For a block
x ∈ M0, one uses matrix B0. For a block x ∈ M2, one uses matrix B1. For a block x ∈
M1, one uses B0 and B1 alternately. This algorithm is summarized in Algorithm 16.

Tu and Hou’s algorithm uses different frequencies of B0 and B1 to generate con-
trast between different types of blocks. If all blocks of the same type, say M1, are
clustered together, then the generated contrast is significant enough to distinguish
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Algorithm 16 Block encoding algorithm proposed by Tu and Hou [11].
Input:

Halftone secret image: x [n].
Basis matrices B0,B1 for binary (k, n) threshold VC.

Output:
Share images :s1 [n] , · · · , sn [n].

1: Partition x into small blocks of size m = �2.
2: c ← 0.
3: for every block m do
4: b ← number of black pixels in block x [m].
5: switch (b)
6: case b < m/2:
7: B ← B0.
8: case b > m/2:
9: B ← B1.
10: default:
11: B ← Bc.
12: c ← 1 − c.
13: end switch
14: Randomly permute the columns ofB, and assign i-th row to share block si [m] , i = 1, · · · , n.
15: end for

this type from other types of blocks. But if the blocks belonging to M1 are scat-
tered randomly in an image, just like the case for halftone image, then the contrast
is usually not significant enough in a local region. Locally, one may not be able to
distinguish between type M0 block and type M1 block, since both of them can be
encoded by B0.

The algorithm in [6] is also a block encoding algorithm. The image blocks are
classified according to their blackness, i.e., the number of black pixels in it. For a
block with m pixels, one gets m + 1 types of blocks Mi , i = 0, 1, . . . ,m. Let B0

and B1 represent the basis matrices for white and black secret pixels in the basic
deterministic VC [10]. When encoding a type-i block, the basis matrix B1 is utilized

Fig. 6.1 Experimental result for Hou’s (2, 2)-threshold block VC, using binary secret image. a
Share 1. b Share 2. c Target image
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i times and the basismatrixB0 is utilizedm − i times. So in a ‘local’ neighborhood of
m blocks (same type), the contrast between black andwhite is maintained. Compared
to [11] that quantizes b to three levels, the algorithm in [6] doesn’t quantize b, but
tries to express all b types of blocks using different frequencies of B0 and B1. This
algorithm is summarized in Algorithm 17.

Algorithm 17 Block encoding algorithm proposed by Hou and Tu [6].
Input:

Halftone secret image: x [n].
Basis matrices B0,B1 for binary (k, n)-threshold VC.

Output:
Share images :s1 [n] , · · · , sn [n].

1: Partition x into small blocks of size m = �2.
2: Initialize counter ci ← 0,∀i ∈ {0, · · · ,m}.
3: for every block m do
4: b ← number of black pixels in block x [m].
5: if (cb mod m) < b then
6: B ← B1.
7: else
8: B ← B0.
9: end if
10: cb ← cb + 1.
11: Randomly permute the columns of B, and assign the i-th row to share block si [m] ,∀i =

1, · · · , n.
12: end for

The experimental result for (2, 2)-threshold case is shown in Figs. 6.1 and 6.2 for
binary and halftone secret images, respectively.

If we only look at type b block in secret image for a given b, then for every m
such blocks, the first b blocks are encoded using basis matrix B1 and the remaining
m − b blocks are encoded using basis matrix B0. So the distribution of B1 and B0

over all type b blocks is not uniform. Liu et al. modified this algorithm and made the

Fig. 6.2 Experimental result for Hou’s (2, 2)-threshold block VC, using halftone secret image. a
Share 1. b Share 2. c Target image
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distribution of B0 and B1 more even. In Liu’s algorithm [9], for a type b block, one
randomly chooses a matirx from {B1,B0} with probabilities

Pr {B1} = b

m
, Pr {B0} = 1 − b

m
. (6.4)

To make sure that for every m type-b blocks, the matrix B1 is used exactly b times,
the probabilities are modified to include the number of B1 already used till now. Let
ĉb be a counter that records the number of B1 already used till now for type b. Then
the probabilities are:

Pr {B1} = b − ĉb
m

, Pr {B0} = 1 − b − ĉb
m

, (6.5)

where 0 ≤ ĉb ≤ b. Using this probabilistic choice of B1 and B0, the distribution of
usage of these two basis matrices are even. In addition, it can guarantee that for a
consecutive m type-b blocks, the matrix B1 is used exactly b times. Liu’s modified
algorithm is summarized in Algorithm 18.

Algorithm 18 Block encoding algorithm proposed by Liu [9].
Input:

Halftone secret image: x [n].
Basis matrices B0,B1 for binary (k, n)-threshold VC.

Output:
Share images :s1 [n] , · · · , sn [n].

1: Partition x into small blocks of size m = �2.
2: Initialize counter cb ← m, ∀b ∈ {0, · · · ,m}.
3: Initialize counter ĉb ← b, ∀b ∈ {0, · · · ,m}.
4: for every block m do
5: b ← number of black pixels in block x [m].
6: r ← a random integer from {0, · · · , cb − 1}.
7: if r < ĉb then
8: B ← B1.
9: cb ← cb − 1.
10: ĉb ← ĉb − 1.
11: else
12: B ← B0.
13: cb ← cb − 1.
14: end if
15: if cb = 0 then
16: cb ← m, and ĉb ← b.
17: end if
18: Randomly permute the columns of B, and assign the i-th row to share block si [m] ,∀i =

1, · · · , n.
19: end for

The experimental result for (2, 2)-threshold case is shown in Figs. 6.3 and 6.4 for
binary and halftone secret images, respectively.
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Fig. 6.3 Experimental result for Liu’s (2, 2)-threshold block VC, using binary secret image. a
Share 1. b Share 2. c Target image

Fig. 6.4 Experimental result for Liu’s (2, 2)-threshold block VC, using halftone secret image. a
Share 1. b Share 2. c Target image

6.1.2 Lee’s Block Encoding Algorithm

Lee’s block encoding is also based on block classification. But there are two new
features compared with Hou’s scheme. The first one is the direct design of mapping
from secret image to target image, instead of using the combination of B0 and B1.
As a result, this mapping can render more gray levels. Second, there is an implicit
histogram equalization inside the scheme. Using this equalization, the loss of local
contrast can be improved especially for secret image having skewed histogram and
low contrast.

The block diagram for Lee’s algorithm is shown in Fig. 6.5. The grayscale secret
image is first classified to be one of the three types: left-skewed, right-skewed or
centered, according to the histogram. Based on this classification, one constructs a
mapping table from the secret blocks to the target blocks. The block VC encryption
step uses this mapping to execute encryption.
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Fig. 6.5 Block diagram for
Lee’s algorithm

The histogram classification can be done by dividing the domain of the histogram
into three equal intervals, and counting the number of pixels in each interval. Let
the range of the histogram be [0, 255] for a 8-bit quantized grayscale image, and the
histogram be h(x), x ∈ [0, 255]. Dividing this interval to three equal subintervals
Il = [0, 85], Ic = [86, 170], and Ir = [171, 255], then one can calculate:

hl =
∑

x∈Il
h(x), hc =

∑

x∈Ic
h(x), hr =

∑

x∈Ir
h(x). (6.6)

A histogram is classified as left-skewed if hl = max{hl, hc, hr }, etc.
According to the the type of the histogram, one can also construct a mapping table

from secret block to target block to stretch or equalize the histogram of target image
(after inverse halftoning). For a 2 × 2 block, the secret image block belongs to one
of the following according to the number of black pixels in it (we use ‘xByW’ to
denote a block with x black pixels and y white pixels).

x ∈ {0B4W, 1B3W, 2B2W, 3B1W, 4B0W } . (6.7)

But for target image, there are only three types of blocks

z ∈ {2B2W, 3B1W, 4B0W } . (6.8)

To make full use the output blocks, Lee et al. use the mapping as depicted in Fig. 6.6.
For example, for a secret image with left-skewed histogram, one uses the mapping in
6.6a. This mapping tries to produce more blocks of type 2B2W on target image. Note
that 2B2W is the brightest block that we can produce on target image. So using this
mapping, the histogram of the target image is sketched to the right. The histogram
(after inverse halftoning) is somewhat equalized.

The above mapping is between secret blocks and target blocks, which should be
realized by the VC encryption and stacking. For VC encryption, Lee et al. use the
following basis matrices
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(a)

(b)

(c)

Fig. 6.6 Mapping between secret block and target block in Lee’s algorithm. a For left-skewed
secret image. b For centered secret image. c For right-skewed secret image

B2B2W =
[
1 1 0 0
1 1 0 0

]

,

B3B1W =
[
1 1 0 0
0 1 1 0

]

,

B4B0W =
[
1 1 0 0
0 0 1 1

]

,

(6.9)

where the subscript indicates the pattern that can be produced on target image. For
example, for a left-skewed secret image, if the type of the secret block is 2B2W, then
according to Fig. 6.6, we should produce a 2B2W on target image. So, we choose
the basis matrix B2B2W , randomly permute the columns of it, and distribute each row
to one share.
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Fig. 6.7 Experimental result of Lee’s algorithm on a left-skewed image. a Secret image. b Share1.
c Share 2. d Target image. e Histogram

The experimental results forLee’s algorithmona left-skewed image and a centered
image are shown in Figs. 6.7 and 6.8. Since the secret image in Fig. 6.7 has a left-
skewed histogram, the whole image is biased to darker side. We may notice that the
target image inFig. 6.7d is brighter thanFig. 6.7a, due to the implicit equalization.The
secret image in Fig. 6.8 has a centered histogram. The target image in Fig. 6.8d shows
similar brightness and contrast as the secret image, due to the balanced mapping in
Fig. 6.6b.

6.1.3 Vector VC for Binary Secret Image

Inspired by Lee’s work, we can formally define vector VC, which will be improved
in AbS-based vector VC. The definition is in Definition 6.1.

Definition 6.1 A (n, n,m)-threshold vector VC is defined by a set of basis matrices
B1, . . . ,Bt and a mapping F from {0, . . . ,m} to
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Fig. 6.8 Experimental result of Lee’s algorithm on a centered image. a Secret image. b Share1. c
Share 2. d Target image. e Histogram

D = {
d : d = H (

Bi�{1, . . . , n}�) , i = 1, . . . , t
}
,

i.e., the set D contains all the possible number of black pixels that can be produced
by stacking the n rows of Bi , i = 1, . . . , t . When encoding a block y having b black
pixels, b ∈ {0, . . . ,m}, one uses the basis matrix BF(b). After random permuting the
columns, each row is assigned to a corresponding share s1, . . . , sn . The following
two conditions should be satisfied.

1. Contrast condition: Let B(y) be the number of black pixels in y. For any two
secret blocks y1 and y2 with B(y1) < B(y2), the stacking results are ŷ1 and ŷ,
respectively. We should have B(ŷ1) ≤ B(ŷ2).

2. Security condition: For any d < n and any d participants P = {i1, . . . , id},
Bi�P� ∼ B j�P�,∀i, j ∈ {1, . . . , t}, and i �= j .

Designing the basismatrices for vectorVC is quite similar to the designing of basis
matrices for grayscale secret image, as discussed inChap. 5when introducingWang’s
algorithm. The basic idea is concatenation of basis matrices for binary VC [13]. For
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example, thematrices in (6.11) is constructed by concatenating the two basismatrices
for binary VC: [

1 0
1 0

] [
1 0
0 1

]

The vector VC defined in this section is a building block for AbS-based vector
VC.

6.2 Local Blackness Preserving Visual Cryptography

The basic idea of local blackness preserving VC is to apply AbS framework to
halftone VC. The loss of contrast due to VC encryption and stacking is distributed
to and compensated by neighboring blocks. To improve contrast, we first equalize
the grayscale secret image and then use error diffusion algorithm to obtain a halftone
image. Then the blackness preserving VC is applied to this halftone image.

6.2.1 VC Encryption and Local Blackness Preservation

Let x [n] be the halftone secret image, obtained from equalizing and halftoning a
grayscale image. Let z [n] be the target image by stacking all the shares s1 [n] and
s2 [n]. Our purpose is to ensure that in a small region of z [n], the ratio between black
pixels and white pixels is the same as that of in the same region of x [n]. To attain
this goal, we take a small block of size K × K in x [n], say x, and encode it into
shares. But after stacking the shares, the corresponding block z may have different
blackness than x due to the loss of contrast in VC. Let’s use B(x) to measure the
number of black pixels in a block x, and let x and z be two corresponding blocks on
secret image and target image, respectively. If B(z) − B(x) = c, where c > 0, then
it means that the target block z has more black pixels than the corresponding secret
block x. To compensate for this increase of black pixels in current block, we borrow
c black pixels from the neighboring blocks. By doing this, we can preserve the local
blackness of the target image. The vector VC part is similar to the vector VC in last
section (Definition 6.1).

The key step in this algorithm is blackness compensation. An example is shown in
Fig.6.9 to illustrate the basic idea. The current block (marked with a dash rectangle)
has blackness 1 (Fig.6.9a). But after VC encoding and stacking, the blackness of
the stacking result is 2 (Fig.6.9b). If we leave the neighbors unchanged, then the
local blackness on the stacked image will be higher than that of the original halftone
image. To preserve the local blackness, one black pixel is borrowed from one of the
neighboring blocks. As to which black pixels to borrow, one natural way is to borrow
from a block with more black pixels. In this example, we see that the block right
below the current block has four black pixels. So we borrow one black pixel from
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(a) (b) (c)

Fig. 6.9 An example of local blackness preservation. a A neighborhood having five blocks, where
the current block is marked with dashed rectangle. b After VC encoding and stacking of current
block. c After borrowing one black pixel from a neighboring block, the one right below the current
block

this block by flipping one of its black pixels to white. Now, the current block has two
black pixels, and the block right below it has three black pixels. But the total number
of pixels in the whole neighborhood remains the same.

In this algorithm, we consider neighborhood system that is similar to those in
the error diffusion. The difference is that here each neighbor is a K × K block,
while in error diffusion, each neighbor is a pixel. After flipping a black pixel in a
neighboring block, we make the total number of black pixels unchanged in this small
neighborhood. In general, we may need to flip more than one black pixels in this
neighborhood, depending on the difference B(z) − B(x).

Let’s use (s1, s2) ← VcEnc (B) to denote VC encoding using a basis matrix B in
a deterministic VC. The first row of B is distributed to Share 1 and is then reshaped
as a block s1. The second row of B is distributed to Share 2 and is then reshaped as
a block s2.

We also need a bit flipping algorithm, which receives the four neighboring blocks
and flip one black pixel in one of the blocks having the largest number of black pixels.
Let this algorithm be denoted as

(
ẑ1, ẑ2, ẑ3, ẑ4

) ← BitFlipping (z1, z2, z3, z4). From
the four neighboring blocks z1, z2, z3, z4, we find the one having the maximum
number of black pixels:

k = argmax {B (zi ) , i ∈ {1, 2, 3, 4}} . (6.10)

If there is no black pixels to borrow, i.e., if

max {B (zi ) , i ∈ {1, 2, 3, 4}} = 0,

we return the original blocks: ẑi = zi , i = 1, 2, 3, 4. Otherwise, we flip an arbitrary
black pixel in block zk .

Let the three basis matrices used in vector VC be:

B2 =
[
1 1 0 0
1 1 0 0

]

,B3 =
[
1 1 0 0
0 1 1 0

]

,B4 =
[
1 1 0 0
0 0 1 1

]

, (6.11)
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Fig. 6.10 Experimental result of local blackness preserving VC algorithm on a grayscale image. a
Secret image. b Share1. c Share 2. d Target image

where the subscript describes the number of black pixels that can be produced by
stacking the two rows. Using the two algorithms VcEnc and BitFlipping as building
blocks, we can formally describe the local blackness preserving algorithm, as shown
in Algorithm 19.
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Algorithm 19 Local blackness preserving VC encoding [12].
Input:

Halftone secret image x [n] ∈ Z
M×N
2 .

Output:
Share images: s1 [n] ∈ Z

M×N
2 , s2 [n] ∈ Z

M×N
2 .

1: for every block m do
2: Nm ← block indices for the neighboring blocks of blockm.
3: if B (x [m]) = 4 then
4: (s1 [m] , s2 [m]) ← VcEnc(B4).
5: else if B (x [m]) = 3 then
6: (s1 [m] , s2 [m]) ← VcEnc(B3).
7: else if B (x [m]) = 2 then
8: (s1 [m] , s2 [m]) ← VcEnc(B2).
9: else if B (x [m]) = 1 then
10: (s1 [m] , s2 [m]) ← VcEnc(B2).
11: {xk,k ∈ Nm} ← BitFlipping ({xk,k ∈ Nm}).
12: else if B (x [m]) = 0 then
13: (s1 [m] , s2 [m]) ← VcEnc(B2).
14: {xk,k ∈ Nm} ← BitFlipping ({xk,k ∈ Nm}).
15: {xk,k ∈ Nm} ← BitFlipping ({xk,k ∈ Nm}).
16: end if
17: end for
18: Insert the share blocks s1 [m] , s2 [m] into share images s1 [n] and s2 [n] respectively.

The experimental result for the test image ‘man’ is shown inFig. 6.10. TheHPSNR
is found to be 19.84 and the MSSIM is 0.62. More comprehensive testing can be
found from [12].

6.3 AbS-Based Vector VC

The1 local blackness preservingVC is based on halftone secret image, not the original
grayscale secret image. To better represent the grayscale image on target image, one
should use the grayscale image directly. From previous two sections, we also see that
vector VC can preserve features of the secret block on target block, hence is able to
render details of the secret image. By combining the vector VC and AbS framework,
we can develop an AbS-based vector VC, so that we may get target image having
higher fidelity with the secret image.

The block diagram for vector VC is shown in Fig. 6.11. It consists of three major
steps: Pre-processing, Analysis and Synthesis.

1. The pre-processing performs gamut mapping and block partition. Recall that
using vector VC, the output gamut is usually smaller than the input gamut,

1© 2019 IEEE. Reprinted, with permission, from IEEE Transactions on Image Processing, Vol. 28,
No. 2, Improving the Visual Quality of Size-Invariant Visual Cryptography for Grayscale Images:
An Analysis-by-Synthesis (AbS) Approach, Bin Yan et al.
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Fig. 6.11 Block diagram for AbS-based vector VC

in terms of the average block blackness. So one must restrict the input to the
encryption algorithm to ensure the stability of the error diffusion loop [4]. The
block partition part split the secret image into small blocks. Each block is a
coding unit and is encrypted by vector VC.

2. The analysis step generates shares from pre-processed secret image. The mod-
ified secret image block x [n] is quantized by a vector quantizer to generate a
binary block. Then we use vector VC to encode the binary block into share
blocks si [n] , i = 1, . . . , n.

3. The synthesis step simulates the printing, stacking and human perception process
to generate a simulated target image ŷ [n]. Since the printing model and HVS
model can be incorporated into the diffusion filter, it is not shown in the synthesis
step.

The design of other component depends on the choice of vector VC. The def-
inition and construction of vector VC are introduced in Sect. 6.1.3. The steps for
implementing it is summarized in Algorithm 20, for the particular case of the basis
matrices defined in (6.11).

(a) (b)

Fig. 6.12 Vector quantization by inner block error diffusion. a Floyd-Steinberg error diffusion
kernel. b Inner block error diffusion
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Algorithm 20 Vector VC encoding.
Input:

Binary secret block y.
Basis matrices Bk , k ∈ {2, 3, 4}, as defined in (6.11).

Output:
Share blocks: s1, · · · , sn

1: switch (B(y))
2: case 4:
3: B ← B4.
4: case 3:
5: B ← B4.
6: case 2:
7: B ← B3.
8: case 1:
9: B ← B2.
10: case 0:
11: B ← B2.
12: end switch
13: Distribute the first row of row-permuted B to share block s1, and second row to s2.

Fig. 6.13 Vector error diffusion by pushing error forward

Fig. 6.14 Target image from AbS-based vector VC, where the secret image is a constant image
J [n] = g. a g = 7/8. b g = 1/2. c g = 1/8

The vector quantizer receives a of grayscale image block, and produces a binary
block. Given the statistics of the input block, we may be able to design an optimal
vector quantizer. Alternatively, given enough training samples (image blocks), one
can use the well-known LBG algorithm to train a codebook [5]. But these train-
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ings are time-consuming and are not easily generalized. We use an adaptive scalar
quantization approach. This adaptive quantizer is realized by a constant threshold
quantizer and error diffusion. For example, for a 2 × 2 block from image x, where the
upper-left corner is position [i, j]. We use the constant threshold 1/2 for this sample,
and get the quantization output x̂[i, j]. After quantizing x[i, j], the error e[i, j] =
x[i, j] − x̂[i, j] is distributed to positions [i, j + 1], [i + 1, j], [i + 1, j + 1] and
modify the samples at these positions. For position [i, j + 1], the error is only dis-
tributed to [i + 1, j], [i + 1, j − 1]within the same block. This is referred to as inner
block diffusion, as shown in Fig. 6.12.

The vector error diffusion diffuses error of current block to adjacent blocks. Recall
that, in an AbS approach, this error is the error between quantizer input and target
image. One of the well-developed vector error diffusion is proposed by Venkata and
Evan [3]. The basic idea is to first distribute the total error among blocks accord-
ing to the Floyd-Steinberg’s diffusion, and then distribute the allocated error to a
block evenly to all pixels in that block. Such an even distribution within a block is
advantageous when one intends to produce clustered dots. In this work, however, the
intention is to produce scattered dots for better visual quality. So we use sample-wise
error diffusion, as illustrated in Fig. 6.13. Since the current block represents the target

(a)

(c)

(b)

Fig. 6.15 RAPSD from AbS-based vector VC, where the secret image is a constant image J [n] =
g. Dashed curves show the RAPSD for halftone secret image. Solid curves show the RAPSD for
AbS-based vector VC. a g = 7/8. b g = 1/2. c g = 1/8
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Fig. 6.16 Experimental result for (2, 2)-threshold AbS-based vector VC, using Baboon image.
a Halftone of J [n] /2. b Share 1 (no equalization). c Share 2 (no equalization). d Target image
without equalization. e Target image of vector VC combined with equalization. f Target image
using Lee’s algorithm
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block, it is not possible to modify pixels in this block. The errors for all pixels in the
current block are distributed to nearby pixels in adjacent blocks.

Testing this algorithm on constant secret image, we obtain the results as shown in
Figs. 6.14 and 6.15. The black dots are evenly distributed on target image. The result
for RAPSD shows that, the AbS-based vector VC produces near zero low frequency
components.

For fidelity test, we use the Baboon image. The testing result is shown in Fig. 6.16.
The target image from AbS-based vector VC without equalization (Fig. 6.16d) is
visually close to the halftone result in Fig. 6.16a. Comparing the result in Figs. 6.16e
and 6.16f, we see that, by combining equalization with the AbS-based vector VC,
one can render more details on target image than Lee’s algorithm. For example, the
fine structure of the beard is better rendered in Fig. 6.16e.

In addition to the visual inspection, the HPSNR and MSSIM also show improved
performance than Hou’s algorithm [6] and Liu’s algorithm [9], on the Kodak test
database [13].

6.4 Remarks

Instead of encoding each secret pixel independently, block VC treats each secret
block as one encoding unit. Different types of blocks with different features are
encoded using different basis matrices, in a hope that these features are transfer to
target image. So, using block encoding and vector VC, the structure of the secret
image can be better utilized than sample based VC.

We should note that, even though the AbS-based approach gets better visual
quality for the target image, but currently it is limited to (n, n)-threshold VC. The
reason is that the encoder needs to know the stacking results. For the more general
(k, n)-threshold VC, there are

n∑

i=k

(
n
i

)

different ways to stack the shares. Extending the AbS-based vector from (n, n)

to (k, n), or more general access structure, is an interesting research direction for
improving visual quality in VC.
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Chapter 7
Conclusion and Future Works

7.1 Summary and Conclusion

Focusing on the strict sense visual cryptography using ‘OR’ operation in stacking
and grayscale secret image, this book comprehensively reviews important efforts in
improving visual quality of the target image.

After a short introduction to the history of VC, we introduced several practical
applications of VC, including online transaction security, privacy protection, and
electronic election, etc. From these applications, the quality of the target image arises
as a key problem to solve, especially for grayscale image with no pixel expansion.
In Chap. 2, We comprehensively reviewed the three types of classical VC for binary
image, namely, the deterministic VC, the probabilistic VC and the random grid
VC. The notions of weak security are also reviewed, which provide possible tradeoff
between security and perceptual quality. Tomove to the grayscale images, in Chap. 3,
we reviewed digital halftoning techniques, including bi-level quantization, ordered
dithering, error diffusion and DBS. Some quality metrics are also introduced to
guide our design of quality improvementVCalgorithms, includingRAPSD,HPSNR,
MSSIM and residual variance. Equipped with these background knowledge, we then
spent three chapters introducing important algorithms for improving visual quality.
In Chap. 4, we reviewed algorithms for improving the visual quality of the share
images in extended VC. In Chap. 5, we reviewed algorithms for improving visual
quality of probabilistic and random grid VC. In Chap. 6, we reviewed algorithms for
improving visual quality of vector VC using block-wise encoding.

From these comprehensive review, we note that designing VC for grayscale secret
image is quite different from designing VC for binary image. Several conclusions
can be drawn from the experimental results.

1. Sample-wise encoding that is used for binary secret image usually provides
inferior result on grayscale image than block encoding.

2. For grayscale and halftone secret image, one should use perceptual quality mea-
sures to evaluate the quality of the target image. Furthermore, a HVS model
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should be incorporated into the VC algorithms to better address the perceptual
quality.

3. Instead of focusing on a single secret pixel, the VC encoding algorithms that
consider local features of grayscale image and map these features directly to the
target image may produce better perceptual quality.

7.2 Future Works

Based on the above applications, review and conclusions, there are a few possible
future directions that may deserve more attentions.

7.2.1 Block Encoding

We saw that block encoding can produce target image with better perceptual quality.
A vector VC is formally defined in Chap. 6. But we notice that there are few works
in formalizing the notion of vector VC: clear definition, construction and vigorous
proof of security and perceptual quality. Hopefully, by clearly defining vector VC
and optimal construction, we may explore the theoretical limit of this approach.

For block encoding, it can map features of the secret block to features of the target
block. But currently, this feature is the ratio of black pixels. If more local features
can be utilized and preserved by this mapping on target image, then we may further
improve the quality of the target image.

7.2.2 Color VC

The notion of weak securities suggested by Iwamoto and Liu provides another pos-
sibility to improve the perceptual quality, especially for color secret image [5, 8].
However, Iwamoto’s work is limited to simple color patterns. Extending the color
image to color image of natural scene should be an interesting topic to explore.

Current efforts in VC for color image are limited to RGB and CMY color spaces
and per-channel encoding [3, 4, 6, 9, 11]. This usually requires to print one trans-
parency for each color channel. Developing a design framework that can encode
directly in a three-dimensional color space and produce only one transparency should
be a useful work, but it may not be trivial.
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7.2.3 VC for QR Code

The marriage between VC and QR code is a natural choice, considering that QR
code is so widely used nowadays as an information carrier. Current work is limited
to utilizing the error correction capabilities of the QR code to hide a secret QR code.
But thismay damage the error correctionmargin that theQR code is designed to have.
Utilizing other redundancies in QR code should be a possible direction to explore,
including redundancy of un-utilized code words and redundancy of colors.

Utilizing the color QR code to design color VC is also a topic worth exploring [1,
2]. Using a color space, more freedom may exist that one can utilize to improve the
perceptual quality.

7.2.4 Grayscale Secret and Cover Images

Currently, it is very difficult to use both grayscale secret image and cover images.
For grayscale secret image, the shares are limited to meaningless ones. For extended
VC with meaningful shares, the secret image is binary. By relaxing security level,
or using color encoding, is it possible to use both grayscale secret image and cover
image in a ‘OR’ operation-based VC? This is still not solved.

However, we notice that, for watermarking in halftone image, this is possible, such
as [10]. But the watermarking system puts more priorities on perceptual quality, so
that the security condition is very weak. This suggests that, if in a special scenario
where the security level can be compromised, then it is possible to further improve
the visual quality of the target image. The key is to find an application-specified
tradeoff.

7.2.5 Tradeoff Between Security and Perceptual Quality

The strict sense VC with strong security and the halftone watermarking in [10]
represent two ends of the security-quality tradeoff. Theoretically investigating the
tradeoff between security and perceptual quality should be conducted to establish a
foundation for such tradeoff.Using such a theoretical result, the designermaybewell-
aware that how much security should be sacrificed for a given quality improvement.

7.2.6 Printer Model and HVS Model

One of the advantage of AbS-based approach is that one can combine the printer
model and HVSmodel into the algorithm explicitly. For the AbS approach discussed
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in this book and in [12], these two models are implicitly combined, by using a low-
pass diffusion kernel.

To further develop AbS-based approach, onemay use HVSmodels, such as alpha-
stable model or mixture of Gaussian model [7]. Furthermore, one may develop a
DBS-like algorithm to directly optimization a target function that characterizes the
perceptual distortion between the secret image and the target image.

To end this chapter, we note that the above future research problems are only
problems directly related to the central topic of this book. Visual cryptography is
a fascinating research field, and more fruitful results are emerging inspired by new
applications in multimedia security.
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