

SwiftUI by Tutorials
By Antonio Bello, Bill Morefield, Audrey Tam & Sarah Reichelt

Copyright ©2023 Kodeco Inc.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express or implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

SwiftUI by Tutorials SwiftUI by Tutorials

 2

Table of Contents: Overview
Book License 14...

Before You Begin 15..

What You Need 16..

Book Source Code & Forums 17...

Section I: Diving Into SwiftUI 22...

Chapter 1: Introduction 23...

Chapter 2: Getting Started 26...

Chapter 3: Diving Deeper Into SwiftUI 52..............................

Chapter 4: Testing & Debugging 82...

Section II: Building Blocks of SwiftUI 107........................

Chapter 5: Intro to Controls: Text & Image 108...................

Chapter 6: Controls & User Input 149.....................................

Chapter 7: Introducing Stacks & Containers 201................

Section III: State & Data Flow 245......................................

Chapter 8: State & Data Flow — Part I 246............................

Chapter 9: State & Data Flow – Part II 274............................

Chapter 10: More User Input & App Storage 298...............

Chapter 11: Gestures 345...

Chapter 12: Accessibility 373..

Section IV: Navigation & Data Display 421......................

Chapter 13: Navigation 422...

SwiftUI by Tutorials

 3

Chapter 14: Lists 456..

Chapter 15: Advanced Lists 482...

Chapter 16: Grids 504..

Chapter 17: Sheets & Alert Views 524.....................................

Section V: UI Extensions 551..

Chapter 18: Drawing & Custom Graphics 552......................

Chapter 19: Animations 580..

Chapter 20: View Transitions & Charts 611..........................

Chapter 21: Complex Interfaces 644..

Section VI: SwiftUI for macOS 671.....................................

Chapter 22: Building a Mac App 672..

Chapter 23: Converting an iOS App to macOS 700............

Conclusion 730..

SwiftUI by Tutorials

 4

Table of Contents: Extended
Book License 14.

Before You Begin 15.

What You Need 16.

Book Source Code & Forums 17.
About the Authors 19.

About the Editors 20.

Section I: Diving Into SwiftUI 22.

Chapter 1: Introduction 23.
Book Structure 24.

About This Book 25.

Chapter 2: Getting Started 26.
Getting Started 28.

Creating Your UI 31.

Updating the UI 38.

Making Reusable Views 40.

Presenting an Alert 46.

Displaying the Target Values 47.

Making it Prettier 50.

Challenge 51.

Key Points 51.

Chapter 3: Diving Deeper Into SwiftUI 52.
Neumorphism 53.

Views and Modifiers 55.

Implementing Neumorphism 56.

Creating a Neumorphic Button 62.

Creating a Beveled Edge 66.

SwiftUI by Tutorials

 5

“Debugging” Dark Mode 69.

Modifying Font 73.

Adapting to the Device Screen Size 74.

Key Points 81.

Chapter 4: Testing & Debugging 82.
Different Types of Tests 83.

Debugging SwiftUI Apps 83.

Adding UI Tests 87.

Creating a UI Test 89.

Accessing UI Elements 91.

Reading the User Interface 92.

Fixing the Bug 94.

Adding More Complex Tests 95.

Simulating User Interaction 96.

Testing Multiple Platforms 99.

Debugging Views and State Changes 100.

Challenge 103.

Key Points 105.

Where to Go From Here? 106.

Section II: Building Blocks of SwiftUI 107.

Chapter 5: Intro to Controls: Text & Image 108.
Getting Started 109.

Text 113.

Image 126.

Brief Overview of Stack Views 130.

More on Image 132.

Splitting Text 137.

Label: Combining Image and Text 142.

Key Points 148.

Where to Go From Here? 148.

SwiftUI by Tutorials

 6

Chapter 6: Controls & User Input 149.
A Simple Registration Form 150.

Creating the Registration View 157.

Power to the User: The TextField 160.

Taps and Buttons 182.

Toggle Control 192.

Handling the Focus and the Keyboard 194.

Other Controls 196.

Key Points 200.

Where to Go From Here? 200.

Chapter 7: Introducing Stacks & Containers 201.
Layout and Priorities 202.

Stack Views 210.

Back to Kuchi 222.

The Lazy Stacks 239.

Key Points 243.

Where to Go From Here? 244.

Section III: State & Data Flow 245.

Chapter 8: State & Data Flow — Part I 246.
MVC: The Mammoth View Controller 247.

A Functional User Interface 248.

State 250.

Using Binding for Two-Way Reactions 261.

Key Points 273.

Where to Go From Here? 273.

Chapter 9: State & Data Flow – Part II 274.
The Art of Observation 275.

Sharing in the Environment 279.

Object Ownership 287.

Understanding Environment Properties 289.

SwiftUI by Tutorials

 7

Key Points 297.

Where to Go From Here? 297.

Chapter 10: More User Input & App Storage 298.
Creating the Settings View 299.

The Stepper Component 303.

The Toggle Component 306.

The Date Picker Component 308.

The Color Picker Component 320.

The Picker Component 321.

The Tab Bar 327.

App Storage 333.

SceneStorage 343.

Key Points 344.

Where to Go From Here? 344.

Chapter 11: Gestures 345.
Adding the Learn Feature 346.

Your First Gesture 363.

Custom Gestures 365.

Combining Gestures for More Complex Interactions 369.

Key Points 372.

Where to Go From Here? 372.

Chapter 12: Accessibility 373.
Using VoiceOver on a Device 374.

Accessibility in SwiftUI 378.

Accessibility API 380.

RGBullsEye 383.

Adapting to User Settings 395.

Kuchi 401.

MountainAirport 409.

Truly Testing Your App’s Accessibility 419.

SwiftUI by Tutorials

 8

Key Points 420.

Where to Go From Here? 420.

Section IV: Navigation & Data Display 421.

Chapter 13: Navigation 422.
Getting Started 423.

Creating Navigation Views 424.

Polishing the Links 430.

Building the Details View 432.

Building a NavigationStack 434.

Adding Items to the Navigation Bar 438.

Navigating With Code 441.

Navigating Using Code 445.

Using Tabbed Navigation 448.

Setting Tabs 451.

Setting Tab Badges 452.

Key Points 454.

Where to Go From Here? 455.

Chapter 14: Lists 456.
Iterating Through Data 457.

Making Your Data Work Better With Iteration 460.

Improving Performance 462.

Setting the Scroll Position in Code 463.

Creating Lists 467.

Building Search Results 469.

Building a Hierarchical List 472.

Grouping List Items 478.

Key Points 481.

Where to Go From Here? 481.

Chapter 15: Advanced Lists 482.
Adding Swipe Actions 483.

SwiftUI by Tutorials

 9

Pull to Refresh 488.

Updating Views for Time 493.

Searchable Lists 495.

Key Points 503.

Where to Go From Here? 503.

Chapter 16: Grids 504.
Building Grids the Original Way 505.

Creating a Fixed Column Grid 508.

Building Flexible Grids 511.

Interacting Between Views and Columns 513.

Building Adaptive Grids 517.

Using Sections in Grids 520.

Key Points 523.

Where to Go From Here? 523.

Chapter 17: Sheets & Alert Views 524.
Displaying a Modal Sheet 525.

Programmatically Dismissing a Modal 527.

Showing Partial Sheets 530.

Creating an Alert 534.

Adding an Action Sheet 539.

Using Alerts as Action Sheets 543.

Showing a Popover 546.

Key Points 550.

Where to Go From Here? 550.

Section V: UI Extensions 551.

Chapter 18: Drawing & Custom Graphics 552.
Using Shapes 553.

Using GeometryReader 562.

Using Paths 565.

Building the Pie Chart 568.

SwiftUI by Tutorials

 10

Adding a Legend 571.

Fixing Performance Problems 575.

Drawing High-Performance Graphics 575.

Key Points 579.

Where to Go From Here? 579.

Chapter 19: Animations 580.
Animating State Changes 581.

Adding Animation 582.

Animation Types 586.

Eased Animations 588.

Spring Animations 591.

Removing and Combining Animations 593.

Animating From State Changes 597.

Animating Shapes 598.

Cascading Animations 600.

Extracting Animations From the View 601.

Animating Paths 602.

Making Canvas Animations 606.

Key Points 610.

Where to Go From Here? 610.

Chapter 20: View Transitions & Charts 611.
Animating View Transitions 612.

Linking View Transitions 619.

Displaying Charts 624.

Creating a Bar Chart 626.

Bar Chart Colors and Annotations 631.

Defining Chart Axes 635.

Customizing the Chart Colors 638.

Key Points 643.

Where to Go From Here? 643.

SwiftUI by Tutorials

 11

Chapter 21: Complex Interfaces 644.
Building Reusable Views 645.

Showing Flight Progress 647.

Adding Inline Drawings 650.

Using a ViewBuilder 651.

Making the Timeline Generic 655.

Using Keypaths 657.

Using the Timeline 661.

Integrating With Other Frameworks 662.

Key Points 670.

Where to Go From Here? 670.

Section VI: SwiftUI for macOS 671.

Chapter 22: Building a Mac App 672.
The Default Document App 673.

Configuring for Markdown 674.

Markdown and HTML 678.

Adding the HTML Preview 680.

Adding a Settings Window 684.

Changing and Creating Menus 687.

Creating a Toolbar 691.

Markdown in AttributedStrings 697.

Installing the App 698.

Challenge: Add Another File Extension 699.

Key Points 699.

Where to Go From Here? 699.

Chapter 23: Converting an iOS App to macOS 700.
Getting Started 701.

Setting Up the Mac App 702.

Fixing the Build Errors 705.

Diagnosing the Crash 707.

SwiftUI by Tutorials

 12

Navigation in macOS 710.

Setting Frames 715.

Searching for Flights 718.

Awards View 723.

The Last Viewed Flight 725.

Challenge 728.

Key Points 728.

Where to Go From Here? 729.

Conclusion 730.

SwiftUI by Tutorials

 13

LBook License

By purchasing SwiftUI by Tutorials, you have the following license:

• You are allowed to use and/or modify the source code in SwiftUI by Tutorials in as
many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included
in SwiftUI by Tutorials in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from
SwiftUI by Tutorials, available at www.kodeco.com”.

• The source code included in SwiftUI by Tutorials is for your personal use only. You
are NOT allowed to distribute or sell the source code in SwiftUI by Tutorials
without prior authorization.

• This book is for your personal use only. You are NOT allowed to reproduce or
transmit any part of this book by any means, electronic or mechanical, including
photocopying, recording, etc. without previous authorization. You may not sell
digital versions of this book or distribute them to friends, coworkers or students
without prior authorization. They need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other
liability, whether in an action or contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

 14

Before You Begin

This section tells you a few things you need to know before you get started, such as
what you’ll need for hardware and software, where to find the project files for this
book, and more.

 15

iWhat You Need

To follow along with this book, you’ll need the following:

• A Mac running macOS Ventura (13.2) or later.

• Xcode 14.2 or later. Xcode is the main development tool for iOS. You’ll need
Xcode 14.2 or later to make use of SwiftUI and the latest features explained
throughout the book. You can download the latest version of Xcode from Apple’s
developer site here: apple.co/2asi58y — If you have an Apple Developer account,
you can also download any Xcode version here: apple.co/3GWcz96.

Note: The code covered in this book was developed and tested with Swift 5.5,
macOS Monterey and Xcode 13.1 — so even though you can work with slightly
earlier versions of them, we encourage you to update to those versions to
follow along the book without unexpected errors.

 16

iiBook Source Code &
Forums

Where to Download the Materials for This
Book
The materials for this book can be cloned or downloaded from the GitHub book
materials repository:

• https://github.com/kodecocodes/sui-materials/tree/editions/5.0

Forums
We’ve also set up an official forum for the book at https://forums.kodeco.com/c/
books/swiftui-by-tutorials. This is a great place to ask questions about the book or to
submit any errors you may find.

 17

“To Magdalena, Andrea and Alex. Thanks for your patience,
and for supporting me all the time, watching me tapping on

the keyboard all day long.”

— Antonio Bello

“To my parents for buying me that first computer when it was
a lot weirder idea than it is now. To them and rest of my family

for putting up with all those questions as a child.”

— Bill Morefield

“To the Kodeco (kodeco.com) community, who help create my
happy place.”

— Audrey Tam

“To Tim who has agreed to all my crazy computer purchases
for ever and who patiently listens to me complain about all my

bugs.”

— Sarah Reichelt

 18

About the Authors
Antonio Bello is an author of this book. Antonio has spent most of
his life writing code, and he’s gained a lot of experience in several
languages and technologies. A decade ago he fell in love with iOS
development, and that’s what he mostly works on since then,
although he’s always open for challenges and for playing with new
toys. When he’s not working, he’s probably playing drums or
making songs in his small, but well fitted, home production studio.

Bill Morefield is an author of this book. Bill has spent most of his
professional life writing code. At some point he has worked in
almost every language other than COBOL. He bought his first
Apple computer to learn to program for the iPhone and got hooked
on the platform. He manages the web and mobile development
team for a college in Tennessee, where he still gets to write code.
When not attached to a keyboard he enjoys hiking and
photography.

Audrey Tam is an author of this book. As a retired computer
science academic, she’s a technology generalist with expertise in
translating new knowledge into learning materials. Audrey now
teaches short courses in iOS app development to non-
programmers, and attends nearly all Melbourne Cocoaheads
monthly meetings. She also enjoys long train journeys, knitting,
and trekking in the Aussie wilderness.

Sarah Reichelt is an author of this book. She got hooked onto
trying to make computers do what she told them a very long time
ago and has never stopped loving it. She was inspired by Swift and
now by SwiftUI to learn a new approach to this, and is a keen
evangelist for developing Mac apps. When not at her computer,
Sarah loves coffee, puzzles, reading and cooking - the day hasn’t
started until the first cup of coffee is drunk and the crossword is
done!

SwiftUI by Tutorials About the Team

 19

About the Editors
Pablo Mateo is the final pass editor for this book. He is Head of
Customer Engagement at at one of the biggest Banks in the world,
and was also founder and CTO of a Technology Development
company in Madrid. His expertise is focused on web and mobile
app development, although he first started as a Creative Art
Director. He has been for many years the Main Professor of the iOS
and Android Mobile Development Masters Degree at a well-known
technology school in Madrid (CICE). He has a masters degree in
Artificial Intelligence & Machine-Learning and is currently
learning Quantum Computing at MIT.

Gustavo Graña is a Tech Editor for this book. He started coding
coding 20 years ago to solve daily problems he faced in the early
2000 to communicate, first with mIRC scripting language, but it
quickly evolved into a broader interest in other areas of
technology. He works with mobile since 2010 and with Swift since
2014. He is motivated by making an impact on the day-to-day with
technology, trying to make life easier for others. Outside the area
of technology, Gustavo is always eager to know how to have a
healthier life.

Jeremy Greenwood is a Tech Editor for this book. He brings over
20 years of experience in tech, building, testing, and innovating
digital products. His natural curiosity to understand the ins and
outs of his craft have given him expertise in all layers of the stack,
from hardware circuitry and embedded protocols to visual
experiences. Jeremy is passionate about taking product ideas from
the drawing board to digital screens and finds joy in the
opportunity to impact users through software. He is keen on the
details which elevate a project from ordinary to extraordinary.
When not working on software, Jeremy can most likely be found in
the woods on a trail, dreaming about creative solutions to everyday
problems.

SwiftUI by Tutorials About the Team

 20

Leanna Guzzi is the editor of this book. She has recently moved to
America with her husband and cat. She loves winter, cheese and all
things literature. When she isn’t empowering young minds and
convincing everyone to read, she is planning her next
snowboarding or adventure holiday.

SwiftUI by Tutorials About the Team

 21

Section I: Diving Into SwiftUI

Start your SwiftUI journey with the foundations you need.

 22

1Chapter 1: Introduction

“SwiftUI is an innovative, exceptionally simple way to build user interfaces across
all Apple platforms with the power of Swift.”

— Apple

SwiftUI is a new paradigm in Apple-related development. In 2014, after years of
programming apps with Objective-C, Apple surprised the world with a new open-
source language: Swift. Since its release, Swift has updated and evolved. And it is
becoming one of the most beloved and powerful programming languages today.

SwiftUI’s introduction in 2019 created another opportunity for a paradigm shift in
the industry. After years of using UIKit and AppKit to create user interfaces, SwiftUI
presented a fresh, new way to create UI for your apps. In many ways, SwiftUI is much
simpler and powerful than its predecessors, and even more, it is cross-platform over
the Apple ecosystem.

One of the most important things, though, is SwiftUI’s declarative nature. For years,
developers have worked with imperative programming models, dealing with state-
management problems and complex code. But now, you have in your hands a
declarative, straightforward way to build amazing user interfaces. And don’t worry; if
you loved working with UIKit or AppKit, rest assured that you can integrate those
frameworks with your SwiftUI code.

SwiftUI has been continuously improving throughout these years. Swift has become
one of the industry standards for progressive, modern programming languages. Now
that we are in the 5th edition of this book, we can confirm that SwiftUI is following
the same path.

 23

Come embark upon the exciting voyage waiting for you inside this book. You’ll learn
all the tips and tricks we have to share in this new way of creating user interfaces.
You´ll discover what SwiftUI has to offer, how powerful it is, and how quickly and
easy it is to start working with it.

Book Structure
The book is divided into six sections and twenty-two chapters in which you will learn
how to build great and engaging declarative user interfaces for your apps.

• Section I: Diving Into SwiftUI: The first four chapters will introduce SwiftUI.
You will work with a SwiftUI adapted version of our famous color-matching
tutorials game: BullsEye. You will start by learning the terminology, how to
preview your user interface in the canvas and how to use the power of reusable
modifiers. In this first section, you will even get started with testing and
debugging to create powerful tested apps.

• Section II: Building Blocks of SwiftUI: User interfaces require controls for users
to interact with them. Learn all you need to know about most of the available user
controls and input interfaces such as TextFields, Buttons, Toggles, Sliders, and
many more. Get to know the capabilities of vertical and horizontal stacks,
container views and dive deeper into modifiers and how to implement them. To do
so, you will work this time with Kuchi an impressive language flashcard app.

• Section III: State & Data Flow: Your app will probably not stick to a single view.
You must learn how to bind data to the UI, how reactive updates work and how to
manage state changes. You will keep improving the Kuchi app by adding more
advanced controls like calendar or color pickers. You´ll learn how to trigger
updates to the user interface, how to test it and how to implement gestures. And
to make it even better, you´ll learn how to navigate your app with VoiceOver and
how you can improve it with accessibility for people with certain disabilities.

• Section IV: Navigation & Data Display: To learn about navigation and how to
provide data to your users, you will build a flight-information app. Set a navigation
hierarchy to navigate through the different views. Create tabs and learn how to
display information in grids or lists. And become an expert on all of them. Alert
your users and pop up messages with Sheet and Alert Views. Many more advanced
concepts are waiting for you in these chapters!

SwiftUI by Tutorials Chapter 1: Introduction

 24

• Section V: UI Extensions: The airport app needs a more visual approach to
display all its information. So learn about graphics, gradients, and how to display
information with drawings and custom graphics. Make it more appealing by using
animations and adding transitions. And finally, get out of your comfort zone with
complex interfaces and learn more advanced concepts. After this, you will be able
to build almost any interface you can imagine.

• Section VI: SwiftUI for macOS: As you might know, SwiftUI is cross-platform, so
you can use it to develop apps for different Apple devices. Prepare a document-
based markdown app for macOS and check by yourself how easily you can transfer
all the knowledge you’ve been acquiring throughout the book to building macOS
apps with SwiftUI. And even better, learn how you can start with an existing iOS
app and how you can reuse the code, views, and assets and how easily you can
adapt it for the mac.

About This Book
We wrote this book with beginner-to-advanced developers in mind. The only
requirements for reading this book are a basic understanding of Swift and iOS
development. SwiftUI is a recent and new paradigm, so developers of all backgrounds
are welcome to discover this great technology with us. As you work through this
book, you’ll progress from beginner topics to more advanced concepts in a paced,
familiar fashion.

A great starting point before this book is our SwiftUI Apprentice book https://
www.kodeco.com/books/swiftui-apprentice. But if you’ve worked through our classic
beginner books — the Swift Apprentice: Fundamentals swift-apprentice-fundamentals
(swift-apprentice-fundamentals), _Swift Apprentice: Beyond the Basics https://
www.kodeco.com/books/swift-apprentice-beyond-the-basics and the UIKit
Apprentice https://www.kodeco.com/books/uikit-apprentice — or have similar
development experience, you’re also ready to read this book. You’ll additionally
benefit from a working knowledge of design patterns — such as working through
Design Patterns by Tutorials https://www.kodeco.com/books/design-patterns-by-
tutorials — but this isn’t strictly required.

SwiftUI by Tutorials Chapter 1: Introduction

 25

2Chapter 2: Getting Started

By Audrey Tam

SwiftUI is some of the most exciting news since Apple first announced Swift in 2014.
It’s an enormous step towards Apple’s goal of getting everyone coding; it simplifies
the basics so that you can spend more time on custom features that delight your
users.

If you’re reading this book, you’re just as excited as I am about developing apps with
this new framework. This chapter will get you comfortable with the basics of creating
a SwiftUI app and live-previewing it in Xcode.

 26

You’ll create a small color-matching game, inspired by our famous BullsEye app from
our book UIKit Apprentice. The goal of the app is to try and match a randomly
generated color by selecting colors from the RGB color space:

Playing the game

In this chapter, you will:

• Learn how to use the Xcode canvas to create your UI side-by-side with its code,
and see how they stay in sync. A change to one side always updates the other side.

• Create a reusable view for the sliders seen in the image.

SwiftUI by Tutorials Chapter 2: Getting Started

 27

• Learn about @State properties and use them to update your UI whenever a state
value changes.

• Present an alert to show the user’s score.

Time to get started!

Getting Started
Open the UIKit/RGBullsEye starter project from the chapter materials, and build
and run:

UIKit RGBullsEye starter app

This app displays a target color with randomly generated red, green and blue values.
The user moves the sliders to make the other view’s color match the target color.
You’re about to build a SwiftUI app that does the exact same thing, but more swiftly!

Exploring the SwiftUI Starter Project
Open the SwiftUI/RGBullsEye starter project from the chapter materials.

In the project navigator, open the RGBullsEye group to see what’s here: the
AppDelegate.swift, which you may be used to seeing, is now RGBullsEyeApp. This
creates the app’s WindowGroup from ContentView():

@main
struct RGBullsEyeApp: App {
 var body: some Scene {
 WindowGroup {
 ContentView()
 }
 }
}

SwiftUI by Tutorials Chapter 2: Getting Started

 28

The @main attribute means this structure contains the entry point for the app. The
App protocol takes care of generating the static main function that actually runs.
When the app starts, it displays this instance of ContentView, which is defined in the
ContentView file. It’s a struct that conforms to the View protocol:

struct ContentView: View {
 var body: some View {
 Text("Hello, world!")
 .padding()
 }
}

This is SwiftUI declaring that the body of ContentView contains a Text view that
displays Hello World. The padding() modifier adds 10 points padding around the
text.

There’s a Model group containing files that define a Game structure with properties
and methods and an RGB structure to wrap the red, green and blue color values. The
Color extension provides a custom initializer to create a Color view from an RGB
structure.

Previewing Your ContentView
In the ContentView file, below the ContentView structure, ContentView_Previews
contains a view that contains an instance of ContentView:

struct ContentView_Previews : PreviewProvider {
 static var previews: some View {
 ContentView()
 }
}

This is where you can specify sample data for the preview, and you can compare
different screen and font sizes. But where is the preview?

There’s a big blank space — the canvas — next to or below the code, with this at the
top:

Preview Resume button

SwiftUI by Tutorials Chapter 2: Getting Started

 29

Note: If your Xcode window’s width is less than its height, and the canvas
Layout setting is Automatic, the canvas appears below the code editor.

By default, the preview uses the currently active scheme’s run destination.

Click the refresh button and wait a while to see the preview:

Hello World preview

Explore the zoom buttons: Zoom Out, Zoom to 100%, Zoom to Fit and Zoom In.
Click the Selectable button below the preview, then click the Text view in the
canvas to see the padding box.

SwiftUI by Tutorials Chapter 2: Getting Started

 30

Note: If you don’t see the canvas or the refresh button, click the Editor
Options button and select Canvas:

Editor options

Note: Instead of clicking the refresh button, you can use the very useful
keyboard shortcut Option-Command-P. It works even if the refresh button
isn’t displayed immediately after you change something in the view.

Creating Your UI
Your SwiftUI app doesn’t have a storyboard or a view controller. The ContentView
file takes over their jobs. You can use any combination of code and drag-from-object-
library to create your UI, and you can perform storyboard-like actions directly in
your code! Best of all, everything stays in sync all the time!

SwiftUI is declarative: You declare how you want the UI to look, and SwiftUI
converts your declarations into efficient code that gets the job done. Apple
encourages you to create as many views as you need to keep your code easy to read.
Reusable parameterized views are especially recommended. It’s just like extracting
code into a function, and you’ll create one later in this chapter.

For this chapter, you’ll mostly use the canvas, similar to how you’d layout your UI in
Interface Builder (IB).

SwiftUI by Tutorials Chapter 2: Getting Started

 31

Some SwiftUI Vocabulary
Before you dive into creating your views, you need to know some vocabulary.

• Canvas and Minimap: To get the full SwiftUI experience, you need at least Xcode
11 and macOS 10.15. Then you’ll be able to preview your app’s views in the
canvas, alongside the code editor. Also available is a minimap of your code: It
doesn’t appear in my screenshots because I unchecked it in Editor Options.

• Modifiers: Instead of setting attributes or properties of UIKit objects, you can call
modifier methods for foreground color, font, padding and a lot more.

• Container views: If you’ve previously used stack views, you’ll find it pretty easy
to create this app’s UI in SwiftUI, using HStack and VStack container views.
There are other container views, including ZStack and Group. You’ll learn about
them in depth in Chapter 7: “Introducing Stacks & Containers”.

In addition to container views, there are SwiftUI views for many of the UIKit objects
you know and love, like Text, Button and Slider. The + button in the toolbar
displays the Library of SwiftUI views and modifiers, as well as code snippets, media,
color and symbols.

Creating the Target Color View
In RGBullsEye, the target color view, which is the color your user is trying to match,
is a Color view above a Text view. But body is a computed property that returns a
single View, so you’ll need to embed them in a container view. In this scenario, you’ll
use a VStack (vertical stack).

This is your workflow:

1. Embed the Text view in a VStack and edit the text.

2. Add a Color view to the stack.

SwiftUI by Tutorials Chapter 2: Getting Started

 32

Step 1: Make sure you’re in Selectable mode. Command-click the Hello World
Text view in the canvas — notice Xcode highlights the code line — and select Embed
in VStack:

Embed Text view in VStack

Note: If Command-click only shows the definition of Text, use Control-
Command-click instead. You just have a different setting in Xcode navigation
preferences.

The canvas looks the same, but there’s now a VStack in your code.

SwiftUI by Tutorials Chapter 2: Getting Started

 33

Change "Hello World" to "R: ??? G: ??? B: ???": You could do this directly in
the code, but, just so you know you can do this, open the Attributes inspector then
click the Text view in the canvas and edit the text in the inspector:

Edit text in the Attributes inspector.

Your code updates to match! Just for fun, change the text in your code and watch it
change in the canvas. Then change it back. Efficient, right?

Note: You can also Control-Option-click the Text view in the code editor to
open the SwiftUI inspector in-place. This should also work in the canvas, but
doesn’t (at time of writing). If you Command-click a view in the canvas, you
can select Show SwiftUI Inspector… from the menu.

Step 2: Click the + button in the toolbar to open the Library. Make sure the selected
library is Views, then search for color. Drag this object onto the Text view in the
canvas. While dragging, move the cursor down until you see the hint Insert Color in
Vertical Stack — not Add Color to a new Vertical Stack… — but keep the cursor
near the top of the Text view because you want to insert it above the text. Then
release the Color object.

Insert Color into VStack

SwiftUI by Tutorials Chapter 2: Getting Started

 34

And there’s your Color view inside the VStack, in both the canvas and your code!

Color view in VStack

The 0.5 values are highlighted because they’re just placeholders. For now, just accept
them by selecting each, then pressing Enter.

Note: In IB, you could drag several objects onto the view, then select them all
and embed them in a stack view. But the SwiftUI Embed command only works
on a single object.

SwiftUI by Tutorials Chapter 2: Getting Started

 35

Creating the Guess Color View
The guess color view looks a lot like the target color view, but with different text. It
goes below the target color view, so you’ll just add it to the VStack.

In the code editor, copy the Color and Text code, including the padding(), and
paste them below the padding() line. Or select the code and press Command-D to
duplicate it.

Change the string in the second Text view to "R: 204 G: 76 B: 178". These
sample values will create a bright fuchsia color :].

Your VStack now looks like this:

VStack {
 Color(red: 0.5, green: 0.5, blue: 0.5)
 Text("R: ??? G: ??? B: ???")
 .padding()
 Color(red: 0.5, green: 0.5, blue: 0.5)
 Text("R: 204 G: 76 B: 178")
 .padding()
}

Creating the Button and Slider
The color sliders and Hit me! button go below the color blocks so again, you’ll just
add them to your VStack.

Earlier, you dragged a Color view onto the canvas. This time, you’ll drag Slider and
Button views into your code.

Note: To keep the Library open, Option-click the + button.

Open the library and drag a Button into the code editor. Hover slightly below the
second padding line until a new line opens for you to drop the object.

SwiftUI by Tutorials Chapter 2: Getting Started

 36

If the button doesn’t appear right away, press Option-Command-P or click
Resume:

Add Button to code

Change the button label to "Hit Me!" and delete the Action placeholder, leaving
the closure empty.

Now that the button makes it clear where the VStack bottom edge is, drag a Slider
from the Library onto your canvas, just above the Button:

Insert Slider in Vertical Stack

Make sure the prompt says Insert Slider in Vertical Stack.

In the code editor, set the Slider value to .constant(0.5). You’ll learn why it’s not
just 0.5 in the section on Bindings.

Here’s what it looks like:

Button & Slider in VStack

SwiftUI by Tutorials Chapter 2: Getting Started

 37

Note: If your slider thumb isn’t centered, refresh the preview (Option-
Command-P) until it is.

Well, yes, you do need three sliders, but the slider values will update the UI, and this
is the topic of the next section. So you’ll get the red slider working, then extract it to
a reusable subview with parameters to create all three sliders.

Updating the UI
If the UI should update when a SwiftUI view property’s value changes, you designate
it as a @State property. In SwiftUI, when a @State property’s value changes, the view
invalidates its appearance and recomputes the body. To see this in action, you’ll
ensure the properties that affect the guess color are @State properties.

Using @State Properties
Add these properties at the top of struct ContentView, above the body property:

@State var game = Game()
@State var guess: RGB

You create a Game object to access the properties and methods required to display
and run the RGBullsEye game. Look at Model/Game to see one of these properties is
the target RGB object:

var target = RGB.random()

Creating game initializes the red, green and blue values of target to random values
between 0 and 1.

You also need a local RGB object guess to store the slider values.

You could initialize guess to RGB(), which initializes red, green and blue to 0.5 (the
color gray). I’ve left it uninitialized to show you what you must do if you don’t
initialize it.

SwiftUI by Tutorials Chapter 2: Getting Started

 38

Back in ContentView, scroll down to the ContentView_Previews struct, which
instantiates a ContentView to display in the preview. The initializer now needs a
parameter value for guess. Change ContentView() to this:

ContentView(guess: RGB(red: 0.8, green: 0.3, blue: 0.7))

These values will display the fuchsia color in the preview.

You must also replace the ContentView() initializer in the RGBullsEyeApp file.
This time, use the default initializer:

ContentView(guess: RGB())

When the app loads its initial scene, the slider thumbs will be centered. The guess
color starts out gray.

Updating the Color Views
Back in ContentView, edit the Color view above Text("R: ??? G: ??? B: ???")
to use the target property of the game object:

Color(rgbStruct: game.target)

You’re using the RGB struct initializer defined in Model/ColorExtension to create a
Color view with the target color values.

Press Option-Command-P to see a random target color in the preview.

Random target color

Note: The preview refreshes itself periodically, as well as when you click the
refresh button, so don’t be surprised to see the target color change, all by
itself, every so often.

Similarly, modify the guess Color to use the guess color values:

Color(rgbStruct: guess)

SwiftUI by Tutorials Chapter 2: Getting Started

 39

Refresh the preview to see the fuchsia color you set up in the preview ContentView:

Guess color set in preview

The R, G and B values in the guess Text view match the color, but you’ll soon make
them respond to slider values set by the user.

Making Reusable Views
Because the sliders are basically identical, you’ll define one slider view, then reuse it
for the other two sliders. This is exactly as Apple recommends.

Making the Red Slider
First, pretend you’re not thinking about reuse, and just create the red slider. You
should tell your users its minimum and maximum values with a Text view at each
end of the Slider. To achieve this horizontal layout, you’ll need an HStack.

Make sure the preview canvas is open, then Command-click the Slider view (in
code or canvas) and select Embed in HStack. Now, insert Text views above and
below (in code) or to the left and right (in canvas). Change the Placeholder text to 0
and 255, then update the preview to see how it looks:

Slider from 0 to 255

Note: You and I know the slider goes from 0 to 1, but the 255 end label and 0-
to-255 RGB values are for your users, who might feel more comfortable
thinking of RGB values between 0 and 255, as in the hexadecimal
representation of colors.

The numbers look cramped, so you’ll fix that and also make this look and behave like
a red slider.

SwiftUI by Tutorials Chapter 2: Getting Started

 40

First, in the code editor, Control-Option-click the HStack to open its attributes
inspector. In the Padding section, click the left and right checkboxes.

Add horizontal padding

Clicking the left or right checkbox adds the modifier padding(.leading) or
padding(.trailing) to HStack. Then, when you click the other (right or left)
checkbox, the padding value changes to .horizontal. And now there’s space
between the screen edges and the slider labels.

Note: The quickest way to add padding all around a view is to type .padding()
in the code editor. The attributes inspector is useful when you want to set
padding on only some edges.

Next, edit the Slider value and add a modifier:

Slider(value: $guess.red)
 .accentColor(.red)

The modifier sets the slider’s minimumTrackTintColor to red.

But what’s with the $guess? You’ll find out real soon, but first, check that it’s
working.

Down in the preview code, change the red value to something different from 0.8, like
0.3, then press Option-Command-P:

Red slider value 0.3

SwiftUI by Tutorials Chapter 2: Getting Started

 41

Awesome, guess.red is 0.3, and the slider thumb is right where you’d expect it to
be! The leading track is red, and the number labels aren’t squashed up against the
edges.

Bindings
So back to that $. It’s actually pretty cool and ultra-powerful for such a little
symbol. By itself, guess.red is just the value. It’s read-only. But $guess.red is a
read-write binding. You need it here to update the guess color while the user is
changing the slider’s value.

To see the difference, set the values in the Text view below the guess Color view:
Change Text("R: 204 G: 76 B: 178") to the following:

Text(
 "R: \(Int(guess.red * 255.0))"
 + " G: \(Int(guess.green * 255.0))"
 + " B: \(Int(guess.blue * 255.0))")

Here, you’re only using (read-only) the guess values, not changing them, so you don’t
need the $ prefix.

This string displays the color values of an RGB object as integers between 0 and 255.
The RGB struct includes a method for this. Replace the multi-line Text code with
this:

Text(guess.intString())

Press Option-Command-P:

R value 76 = 255 * 0.3

And now the R value is 76. That’s 255 * 0.3, as it should be!

Extracting Subviews
Next, the purpose of this section is to create a reusable view from the red slider
HStack. To be reusable, the view needs some parameters. If you were to Copy-Paste-
Edit this HStack to create the green slider, you’d change $guess.red to
$guess.green and .red to .green. So these are your parameters.

SwiftUI by Tutorials Chapter 2: Getting Started

 42

Make sure the preview canvas is open, then Command-click the HStack and select
Extract Subview:

Extract HStack to subview

This works the same as Refactor ▸ Extract to Function, but for SwiftUI views.

Name the extracted view ColorSlider.

Note: Right after you select Extract Subview from the menu, ExtractedView
is highlighted. If you rename it while it’s highlighted, the new name appears in
two places: where you extracted it from and also in the extracted subview,
down at the bottom of the file. If you don’t rename it in time, then you have to
manually change the name of the extracted subview in these two places.

Don’t worry about all the error messages that appear. They’ll go away when you’ve
finished editing your new subview.

Now add these properties at the top of struct ColorSlider, before the body
property:

@Binding var value: Double
var trackColor: Color

For the value property, you use @Binding instead of @State, because the
ColorSlider view doesn’t own this data. It receives an initial value from its parent
view and mutates it.

SwiftUI by Tutorials Chapter 2: Getting Started

 43

Now, replace value: $guess.red with $value and .accentColor(.red)
with .accentColor(trackColor):

Slider(value: $value)
 .accentColor(trackColor)

Then go back up to the call to ColorSlider() in the VStack. Click the Missing
arguments error icon to open it, then click the Fix button to add the missing
arguments. Fill in these parameter values:

ColorSlider(value: $guess.red, trackColor: .red)

Check that the preview still shows the red slider correctly, then Command-D this
line to create the other two sliders:

ColorSlider(value: $guess.green, trackColor: .green)
ColorSlider(value: $guess.blue, trackColor: .blue)

Refresh the preview to see all three sliders:

Three sliders

Everything’s working! You can’t wait to play the game? Coming right up!

First, set the guess parameter in previews to RGB():

ContentView(guess: RGB())

Live Preview
You don’t have to fire up Simulator to play the game: In the Preview toolbar, click
the Live Preview button:

Live preview button

Wait for the Preview spinner to stop; if necessary, click Try Again.

SwiftUI by Tutorials Chapter 2: Getting Started

 44

Now move those sliders to match the color!

Playing the game

Stop and think about what’s happening here. Compared with how the UIKit app
works, the SwiftUI views update themselves whenever the slider values change! The
UIKit app puts all that code into the slider action. Every @State property is a source
of truth, and views depend on state, not on a sequence of events.

How amazing is that! Go ahead and do a victory lap to the kitchen, get your favorite
drink and snacks, then come back for the final step! You want to know your score,
don’t you?

SwiftUI by Tutorials Chapter 2: Getting Started

 45

Presenting an Alert
After using the sliders to get a good color match, your user taps the Hit Me! button,
just like in the original UIKit game. And just like in the original, an Alert should
appear, displaying the score.

The RGB structure has a method difference(target:) to compute the difference
between the guess and target RGB objects, and the Game structure has a method
check(guess:) that uses difference(target:) to compute the score.

You’ll call check(guess:) in the action of your Button view:

Button("Hit Me!") {
 // action
}

A Button has an action and a label, just like a UIButton. The action you want to
happen is the presentation of an Alert view. But if you just create an Alert in the
Button action, it won’t do anything.

Instead, you create the Alert as a subview of ContentView, and add a @State
property of type Bool. Then you set the value of this property to true when you
want the Alert view to appear. In this case, you do this in the Button action. When
the user dismisses the alert, the value changes to false, and the alert disappears.

So add this @State property to ContentView, initialized to false:

@State var showScore = false

Then add the action code in your Button closure:

showScore = true
game.check(guess: guess)

There’s more than one way to configure a Button. The label can be either a single
object or a closure, usually containing an Image view and a Text view. The action can
be either a function call or a closure. If either the label or the action is a single
statement, you can put it in the parentheses. The other parameter can be a trailing
closure.

In this case, the label is just a String, so you put that in the parentheses and put the
action in the trailing closure. This is actually the default configuration when you add
a Button from the Library.

SwiftUI by Tutorials Chapter 2: Getting Started

 46

Finally, add this alert modifier to the Button (after its closing curly brace):

.alert(isPresented: $showScore) {
 Alert(
 title: Text("Your Score"),
 message: Text(String(game.scoreRound)),
 dismissButton: .default(Text("OK")) {
 game.startNewRound()
 guess = RGB()
 })
}

You pass the $showScore binding because its value will change when the user
dismisses the alert, and this changed value will update the UI: It will stop presenting
the alert.

When the Button action calls game.check(guess:), this method computes the
score for this round. You create a String from this number, to display in the alert’s
message.

The simplest Alert initializer has a default dismiss button with label “OK”, so you
only need to include the dismissButton parameter when you want to configure an
action. In this case, you start a new round, which sets a new target color. Then you
reset the guess color to gray.

Displaying the Target Values
There’s one last bit of functionality you need to implement. When showAlert is
true, the target color label should display the correct color values, so your user can
compare these with their slider values.

Make sure the preview canvas is open, then Command-click Text in this line:

Text("R: ??? G: ??? B: ???")

SwiftUI by Tutorials Chapter 2: Getting Started

 47

Select Make Conditional:

Embed Text view in an if-else

Note: SwiftUI has a lot of nested closures, so Xcode helps you keep your braces
in order. If you need to enclose more than one line of code in a closure, select
the other lines and press Option-Command-[or Option-Command-] to
move them up or down. These keyboard shortcuts are tremendously useful in
SwiftUI. If you need to look them up, they’re listed in the Xcode menu under
Editor▸Structure.

Now edit the if-else to look like this:

if !showScore {
 Text("R: ??? G: ??? B: ???")
 .padding()
} else {
 Text(game.target.intString())
 .padding()
}

When the user taps the button to show the alert, the target color label shows the
actual color values.

SwiftUI by Tutorials Chapter 2: Getting Started

 48

Refresh the live preview. You might have to turn off live preview, click Resume,
then turn on live preview. See how high you can score:

Score!

Hey, when you’ve got a live preview, who needs Simulator?

Note: As you develop your own apps, you might find the preview doesn’t
always work as well as this. If it looks odd, or crashes, try running in a
simulator. If that doesn’t work, run it on a device.

SwiftUI by Tutorials Chapter 2: Getting Started

 49

Making it Prettier
Your app has all its functionality, so now’s a good time to start improving how it
looks. Instead of colored rectangles, how about circles?

Replace the target Color view with this colored Circle:

Circle()
 .fill(Color(rgbStruct: game.target))

And similarly for the guess Color view:

Circle()
 .fill(Color(rgbStruct: guess))

Refresh the preview to admire your circles:

Color circles

In the next chapter, you’ll customize these circles a lot more, so it’s a good idea to
extract another subview.

SwiftUI by Tutorials Chapter 2: Getting Started

 50

Challenge

Challenge: Create a ColorCircle Subview
Create a ColorCircle subview so that you can replace the Circle().fill... lines
with these:

ColorCircle(rgb: game.target)
ColorCircle(rgb: guess)

The ColorCircle struct doesn’t need any bindings.

The solution is in the challenge/final folder for this chapter.

Key Points
• The Xcode canvas lets you create your UI side-by-side with its code, and they stay

in sync: A change to one side always updates the other side.

• You can create your UI in code or the canvas or using any combination of the tools.

• You organize your view objects with horizontal and vertical stacks, just like using
stack views in storyboards.

• Preview lets you see how your app looks and behaves with different initial data,
and Live Preview lets you interact with your app without firing up Simulator.

• You should aim to create reusable views. Xcode’s Extract Subview tool makes this
easy.

• SwiftUI updates your UI whenever a @State property’s value changes. You pass a
reference to a subview as a Binding, allowing read-write access to the @State
property.

SwiftUI by Tutorials Chapter 2: Getting Started

 51

3Chapter 3: Diving Deeper
Into SwiftUI
By Audrey Tam

SwiftUI’s declarative style makes it easy to implement eye-catching designs. In this
chapter, you’ll use SwiftUI modifiers to give RGBullsEye a design makeover with
neumorphism, the latest design trend.

 52

Neumorphism
Neumorphism gained popularity in 2020 as the new skeuomorphism, a pushback
against super-flat minimal UI. It can cause accessibility issues and is best used for
non-functional elements like your app’s color circles or in designs with obvious UI
elements.

A neumorphic UI element appears to push up from below its background, producing
a flat 3D effect. Imagine the element protrudes a little from the screen, and the sun
is setting northwest of the element. This produces a highlight on the upper-left edge
and a shadow at the lower-right edge. Or the sun rises southeast of the element, so
the highlight is on the lower-right edge and the shadow is at the upper left edge:

Northwest and southeast highlights and shadows

You need three colors to create these highlights and shadows:

• A neutral color for the background and element surface.

• A lighter color for the highlight.

• A darker color for the shadow.

This example uses colors that create high contrast, just to make it really visible. In
your project, you’ll use colors that create a more subtle effect.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 53

You’ll add highlights and shadows to the color circles, labels and button in
RGBullsEye to implement this Figma design:

Figma design

This design was laid out for a 375x812-point screen (iPhone 11 Pro or 13 mini),
although most of the screenshots use an iPhone 14 Pro (393 x 852). You’ll set up your
design with the size values from the Figma design, then change these to screen-size-
dependent values.

Note: Many developers skip the Figma/Sketch design step and just design
directly in SwiftUI — it’s that easy!

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 54

Views and Modifiers
Open the project in this chapter’s starter folder. It’s the same as the final challenge
project from the previous chapter, but ColorCircle is in its own file with a size
parameter, and Assets.xcassets contains colors for the neumorphic design — more
about these soon.

In the ContentView file, with the canvas open, click the + button or press
Command-Shift-L to open the Library:

Library of primitive views and modifiers

Note: To save space, I switched to icon view and hid the details.

A SwiftUI view is a piece of your UI: You combine small views to build larger views.
There are lots of primitive views like Text and Color, which you can use as basic
building blocks for your custom views.

The first tab lists primitive views, grouped as controls, layout, paint and other
views. Many of these, especially the controls, are familiar to you as UIKit elements,
but some are unique to SwiftUI. You’ll learn how to use them in upcoming chapters.

The second tab lists modifiers for controls, effects, layout, text, image and more. A
modifier is a method that creates a new view from the existing view. You can chain
modifiers like a pipeline to customize any view.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 55

SwiftUI encourages you to create small reusable views, then customize them with
modifiers for the specific context where you use them. And don’t worry, SwiftUI
collapses the modified view into an efficient data structure, so you get all this
convenience with no visible performance hit.

You can apply many of these modifiers to any type of view. And sometimes the order
matters, as you’ll soon see.

Implementing Neumorphism
Assets.xcassets contains Element, Highlight and Shadow colors for both light and
dark mode:

• Element: #F1F3F7; Dark: #292A2D

• Highlight: #FFFFFF (20% opacity); Dark: #3D3E42

• Shadow: #BDCDE1; Dark: #1A1A1A

The Model/ColorExtension file includes static properties for these:

static let element = Color("Element")
static let highlight = Color("Highlight")
static let shadow = Color("Shadow")

Shadows for Neumorphism
First, you’ll create custom modifiers for northwest and southeast shadows.

Create a new Swift file named ViewExtension and replace its import Foundation
statement with the following code:

import SwiftUI

extension View {
 func northWestShadow(
 radius: CGFloat = 16,
 offset: CGFloat = 6
) -> some View {
 return self
 .shadow(
 color: .highlight, radius: radius, x: -offset,
 y: -offset)
 .shadow(
 color: .shadow, radius: radius, x: offset, y: offset)

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 56

 }

 func southEastShadow(
 radius: CGFloat = 16,
 offset: CGFloat = 6
) -> some View {
 return self
 .shadow(
 color: .shadow, radius: radius, x: -offset, y: -offset)
 .shadow(
 color: .highlight, radius: radius, x: offset, y: offset)
 }
}

The shadow(color:radius:x:y:) modifier adds a shadow of the specified color
and radius (size) to the view, offset by (x, y). The default Color is black with opacity
0.33 and the default offset is (0, 0).

For your northwest and southeast shadow modifiers, you apply a shadow at the
view’s upper-left corner (negative offset values) and a different color shadow at its
lower-right corner (positive offset values). For a northwest shadow, the upper-left
color is highlight and the lower-right color is shadow. You switch these colors for a
southeast shadow.

The colored circles and button use the same radius and offset values, so you set these
as default values. Later on, the text labels need smaller values, which you’ll pass as
arguments.

It doesn’t matter which order you apply the shadow modifiers. I’ve ordered them
with the upper-left corner first, so it’s easy to visualize the direction of the
neumorphic shadow.

Setting the Background Color
For these shadows to work, the view background must be the same color as the UI
elements. Head back to ContentView to set this up.

You’ll use a ZStack to set the entire screen’s background color to element. The Z-
direction is perpendicular to the screen surface, so it’s a good way to layer views on
the screen. Items lower in a ZStack closure appear higher in the stack view. Think of
it as placing the first view down on the screen surface, then layering the next view on
top of that, and so on.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 57

So here’s what you do: Embed the VStack in a ZStack then add Color.element
before the VStack.

ZStack {
 Color.element
 VStack {...}
}

Refresh the preview. You layered the Color below the VStack, but the color doesn’t
extend into the safe area. To fix this, add this modifier to Color.element:

.ignoresSafeArea()

Note: You could add this modifier to ZStack instead of to Color, but then the
ZStack would feel free to spread its content views into the safe area, which
probably isn’t what you want.

Now your app looks the same as before, except the background is not quite white.
Next, you’ll give the color circles a border, then apply a highlight and shadow to that
border.

Creating a Neumorphic Border
The easiest way to create a border is to layer the RGB-colored circle on top of an
element-colored circle using — you guessed it — a ZStack.

In ColorCircle, replace the contents of body with the following:

ZStack {
 Circle()
 .fill(Color.element)
 .northWestShadow()
 Circle()
 .fill(Color(red: rgb.red, green: rgb.green, blue: rgb.blue))
 .padding(20)
}
.frame(width: size, height: size)

You embed Circle() in a ZStack, add an element-colored Circle before it, then
add padding to make the RGB circle smaller. To get the shadow effect, you apply
northWestShadow() to the border circle.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 58

Note: The modifier fill(_:style:) can only be applied to shapes, so
changing the order of modifiers flags an error:

Circle()
 .padding(20)
 .fill(Color(red: rgb.red, green: rgb.green, blue: rgb.blue))

Finally, you set both width and height to size.

If necessary, refresh the preview to see how this looks:

Neumorphic color circle on white background

Yes, there’s a shadow, but the ColorCircle preview has a white background, so you
don’t see the full effect of the shadow.

Scroll down to previews and change its contents to the following:

ZStack {
 Color.element
 ColorCircle(rgb: RGB(), size: 200)
}
.frame(width: 300, height: 300)
.previewLayout(.sizeThatFits)

You set the background color to element the same way as in ContentView. There’s
no safe area to worry about because the preview frame is already set big enough to
show off the shadow.

Neumorphic color circle on element-colored background

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 59

Against the not-quite-white background, the highlight on the upper left edge stands
out more and the shadow of the lower-right edge appears less dark. Comment out
and uncomment Color.element in previews to confirm this for yourself.

Now go back to ContentView and refresh its preview:

Neumorphic target color circle

Congratulations, your circles are now neumorphic!

Order of Modifiers
When you apply more than one modifier to a view, sometimes the order matters.

Modifiers like padding and frame change the view’s layout or position. Modifiers
like background or border fill or wrap a view. Normally, you want to set up a view’s
layout and position before you fill or wrap it.

For example, in ContentView, add a border modifier after the padding modifier of
Text(guess.intString):

.padding()

.border(Color.purple)

Border around padded text

The default amount of padding surrounds the Text view’s text, then you put a
purple border around the padded text.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 60

Now change the order:

.border(Color.purple)

.padding()

Padding around bordered text

If you apply the border first, it goes around the intrinsic area of the text. If you select
padding() in the code editor, you can see where it is, but all it does is keep the
neighboring elements at a distance.

Delete .border(Color.purple).

Some modifiers can only be applied to certain kinds of views. For example, these
modifiers can only be applied to Text views:

Text modifiers

Some, but not all, of these modifiers return a Text view. For example, font,
fontWeight, bold and italic modify a Text view to produce another Text view. So
you can apply these modifiers in any order.

But lineLimit returns some View, so this flags an error:

Text(guess.intString)
 .lineLimit(0)
 .bold()

And this order is OK:

Text(guess.intString)
 .bold()
 .lineLimit(0)

You’ll learn more about using modifiers in Chapter 5: “Intro to Controls: Text &
Image”.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 61

Creating a Neumorphic Button
Next, still in ContentView, let’s make your Hit Me! button pop!

To cast a shadow, the button needs a more substantial shape. Add these modifiers
below the action, before the alert:

.frame(width: 327, height: 48)

.background(Capsule())

You set the background to a capsule shape. Capsule is a RoundedRectangle with the
corner radius value set to half the length of its shorter side. It fills the frame you
specified.

The fill color defaults to primary which, in light mode, is black.

This is a neumorphic button, so add these modifiers to Capsule(), to set its fill color
to element and apply a northwest shadow:

.fill(Color.element)

.northWestShadow()

And here’s your neumorphic button:

Neumorphic button

Creating a Custom Button Style
When you start customizing a button, it’s a good idea to create a custom button
style. Even if you’re not planning to reuse it in this app, your code will be less
cluttered. Especially if you decide to add more options to this button style.

So create a new Swift file named NeuButtonStyle and replace import Foundation
with the following code:

import SwiftUI

struct NeuButtonStyle: ButtonStyle {
 let width: CGFloat
 let height: CGFloat

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 62

 func makeBody(configuration: Self.Configuration)
 -> some View {
 configuration.label
 // Move frame and background modifiers here
 }
}

ButtonStyle is a protocol that provides a ButtonStyleConfiguration with two
properties: the button’s label and a Boolean that’s true when the user is pressing
the button.

You’ll implement makeBody(configuration:) to modify label.

You already figured out how you want to modify the Button, so cut the frame and
background modifiers from the Button in ContentView and paste them below
configuration.label in NeuButtonStyle.

Then replace the frame’s width and height values with the corresponding properties
of NeuButtonStyle.

Your button style code now looks like this:

struct NeuButtonStyle: ButtonStyle {
 let width: CGFloat
 let height: CGFloat

 func makeBody(configuration: Self.Configuration)
 -> some View {
 configuration.label
 .frame(width: width, height: height)
 .background(
 Capsule()
 .fill(Color.element)
 .northWestShadow()
)
 }
}

Back in ContentView, modify the Button with this line of code:

.buttonStyle(NeuButtonStyle(width: 327, height: 48))

This width value works for iPhones like the iPhone 14. To support smaller or larger
iPhones, you’ll learn how to pass values that fit later on.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 63

Now refresh the preview. It should look the same as before:

Neumorphic button using NeuButtonStyle

But… it’s not the same. The button label is now black, not blue!

Fixing Button Style Issues
When you create a custom button style, you lose the default label color and the
default visual feedback when the user taps the button.

Label color isn’t a problem if you’re already using a custom color. If not, you would
just add this modifier to configuration.label in the NeuButtonStyle structure:

.foregroundColor(Color(UIColor.systemBlue))

However, the Figma design’s button text is black, so this isn’t a problem.

Now to tackle the visual feedback issue.

Creating a button style actually makes you responsible for defining what happens
when the user taps the button. In fact, the configuration label’s description is “a view
that describes the effect of pressing the button”.

Live-preview ContentView and tap the button: The button’s appearance doesn’t
change at all when you tap it. This isn’t a good user experience. Fortunately, it’s easy
to recover the default behavior.

Before you leave the ContentView file, click the pin button in the upper-left corner
of the canvas:

Pin the ContentView preview

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 64

You’re going to be working in the NeuButtonStyle file, making changes that affect
ContentView. Pinning its preview means you’ll be able to see the effect of your
changes without having to bounce back and forth between the two files.

Now, in NeuButtonStyle, add this line above the frame modifier:

.opacity(configuration.isPressed ? 0.2 : 1)

When the user taps the button, you reduce the label’s opacity, producing the
standard dimming effect.

Check this in the live preview of ContentView.

If you want to take advantage of your neumorphic button, you can turn off or switch
the direction of the shadow when the user taps the button.

In NeuButtonStyle, replace the contents of background with this:

Group {
 if configuration.isPressed {
 Capsule()
 .fill(Color.element)
 } else {
 Capsule()
 .fill(Color.element)
 .northWestShadow()
 }
}

Group is another SwiftUI container. It doesn’t do any layout. It’s just useful when you
need to wrap code that’s more complicated than a single view.

If the user is pressing the button, you show a flat button. Otherwise, you show the
shadowed button.

Tap the button in the live preview. Hold down the button to see the shadow
disappears.

A variation on this is to apply southEastShadow() when isPressed is true:

Group {
 if configuration.isPressed {
 Capsule()
 .fill(Color.element)
 .southEastShadow() // Add this line
 } else {
 Capsule()
 .fill(Color.element)

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 65

 .northWestShadow()
 }
}

Creating a Beveled Edge
Next, you’ll create a new look for the color circles’ labels. You’ll use Capsule again,
to unify the design. But you’ll create a bevel edge effect, to differentiate it from the
button.

Create a new SwiftUI View file and name it BevelText.

Replace the contents of the BevelText structure with the following:

let text: String
let width: CGFloat
let height: CGFloat

var body: some View {
 Text(text)
}

Back in ContentView, replace the Text views and their padding with BevelText
views:

if !showScore {
 BevelText(
 text: "R: ??? G: ??? B: ???", width: 200, height: 48)
} else {
 BevelText(
 text: game.target.intString(), width: 200, height: 48)
}
ColorCircle(rgb: guess, size: 200)
BevelText(text: guess.intString(), width: 200, height: 48)

BevelText views don’t need padding because their frame height is 48 points.

Now, in the BevelText canvas, select the Bevel Text preview so you can focus on it.
Replace the contents of previews with the following:

ZStack {
 Color.element
 BevelText(
 text: "R: ??? G: ??? B: ???", width: 200, height: 48)
}
.frame(width: 300, height: 100)

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 66

.previewLayout(.sizeThatFits)

You layer BevelText on top of the element-color background. This is your starting
point for creating a capsule with a bevel edge.

BevelText: Getting started

In the body of BevelText, add these two modifiers to Text:

.frame(width: width, height: height)

.background(
 Capsule()
 .fill(Color.element)
 .northWestShadow(radius: 3, offset: 1)
)

Refresh the preview. This is the outer capsule shape. It’s just a smaller version of
NeuButtonStyle:

Outer Capsule with northwest shadow

Now embed this in a ZStack so you can layer another Capsule onto it, inset by 3
points:

ZStack {
 Capsule()
 .fill(Color.element)
 .northWestShadow(radius: 3, offset: 1)
 Capsule()
 .inset(by: 3)
 .fill(Color.element)
 .southEastShadow(radius: 1, offset: 1)
}

Imagine the sun is setting in the northwest: It highlights the outer upper-left edge
and the inner lower-right edge and casts shadows from the inner upper-left edge and
the outer lower-right edge.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 67

To get this effect, you apply the southeast shadow to the inner Capsule.

BevelText: Finished

Note: Thanks to Caroline Begbie for this elegantly simple implementation.

And now, select the ContentView preview to enjoy the results:

Neumorphism accomplished!

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 68

“Debugging” Dark Mode
Remember that the color sets in Assets have dark mode values. What does this
design look like in dark mode?

It’s easy to preview in dark mode. Click the Device Settings button and switch on
Color Scheme: It defaults to Dark appearance:

Set preview's color scheme to Dark appearance.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 69

Thanks to the magic of color sets, you get dark mode shadows for free!

Neumorphism: Dark mode

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 70

There seems to be a problem, however. In live preview, tap Hit Me!. The alert’s color
scheme isn’t dark?!

Alert's color scheme isn't dark?!

I spent a lot of time trying to figure out a way around this. But this is a fine example
of why you shouldn’t rely entirely on the preview.

Build and run the app on the iPhone 14 Pro simulator. The first thing you notice is
the preview’s dark color scheme doesn’t affect the simulator.

Not a problem: Click the Environment Overrides button in the debug toolbar and
enable Appearance ▸ Dark:

Override color scheme while running in a simulator.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 71

Note: Apple has a list of EnvironmentValuesbuilt-in (https://apple.co/
2yJJk7T). Many of these correspond to device user settings like accessibility,
locale, calendar and color scheme.

Now the simulator displays the app in dark mode. Tap Hit Me!:

Simulator: Alert's color scheme is dark.

Dark mode, dark alert, just as it should be!

So if the preview doesn’t show what you expect to see, try running it on a simulated
or real device before you waste any time trying to fix a phantom problem.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 72

Modifying Font
You need one more thing to put the finishing touch on the Figma design: All the text
needs to be a little bigger and a little bolder.

In ContentView, add this modifier to the VStack that contains all the UI elements:

.font(.headline)

You set a view-level environment value for the VStack that affects all of its child views.
So now all the text uses headline font size:

Headline font size applies to all the text.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 73

You can override this overall Text modifier: Add this modifier to the HStack in the
ColorSlider structure:

.font(.subheadline)

Now the slider labels use the smaller, not-bold font:

Slider labels use subheadline font size.

Adapting to the Device Screen Size
OK, time to see how this design looks on a smaller screen. By default, the preview
uses the currently active scheme’s run destination. To check how your design fits in a
different screen, you can select a different run destination, or you can specify a
previewDevice for previews.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 74

Changing the Run Destination
Change the run destination to iPhone 14 Pro Max. Xcode takes a while to start up
this simulator in the background, and eventually the preview updates to use this
simulator:

Run destination: iPhone 14 Pro Max

The height of this screen is 932 points, so there’s more blank space. You could make
the circles larger. But by how much?

Specifying a previewDevice
When you install Xcode 14, there might be only a few iPhone simulators in the
destination run menu — mine lists only the iPhone 14 sizes and the SE 3rd
generation. But Apple’s support page lists all the iPhone models compatible with iOS
16 (https://apple.co/3l94uYm).

Check your destination run menu: Is iPhone 8 listed? If not, select Add Additional
Simulators…, type in iPhone 8, then click Create.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 75

Add additional simulator: iPhone 8

Now, add this modifier to ContentView(guess: RGB()):

.previewDevice(
 PreviewDevice(
 rawValue: "iPhone 8"))

Preview device: iPhone 8

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 76

The height of an iPhone 8 screen is only 667 points, so the top circle is clipped, and
only part of the button is visible. You can fix this problem by making the color circles
smaller. But by how much?

Calculating Size Proportions
In ContentView, add these properties below the @State properties:

let circleSize: CGFloat = 0.275
let labelHeight: CGFloat = 0.06
let labelWidth: CGFloat = 0.53
let buttonWidth: CGFloat = 0.87

I worked out these proportions from the original 375x812 Figma design, after
checking that the safe area height of an iPhone 13 mini is 728 points. These fractions
yield close to the values you hard-wired into your code: circleSize * 728 = 200.2,
labelHeight * 728 = 43.68, labelWidth * 375 = 198.75, buttonWidth * 375 = 326.25.

The button height is also labelHeight.

Now, if your code can detect the height and width of the screen size, it can calculate
the right sizes for these elements.

Getting Screen Size From GeometryReader
This is what you’ll do: Embed the ZStack in a GeometryReader to access its size
and frame values.

Note: Learn more about GeometryReader in Chapter 18: “Drawing &
Custom Graphics”.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 77

The Command-click menu has a handy catch-all item Embed…:

Embed ZStack in ... some container.

In ContentView, embed the top-level ZStack in this generic Container, then
change Container to GeometryReader:

GeometryReader { proxy in
 ZStack {

GeometryReader provides you with a GeometryProxy object that has a frame
method and size and safeAreaInset properties. You name this object proxy.

In the two ColorCircle initializers, replace size: 200 with

size: proxy.size.height * circleSize

In the three BevelText initializers, replace width: 200, height: 48 with

width: proxy.size.width * labelWidth,
height: proxy.size.height * labelHeight

Replace (NeuButtonStyle(...)) with

(NeuButtonStyle(
 width: proxy.size.width * buttonWidth,
 height: proxy.size.height * labelHeight))

Next, you’ll preview all three sizes — iPhone 8, iPhone 14 Pro and iPhone 14 Pro Max
— to check everything now fits.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 78

Previewing Different Devices
To see all three screen sizes at once, you could build and run the app on two
simulators. Instead, you’ll add previews to ContentView_Previews.

In previews, Command-click ContentView and select Group:

Embed ContentView in Group.

You’ve embedded ContentView in a Group.

Now, click anywhere in the ContentView line, then press Command-D to duplicate
just this one line.

Next, select the second ContentView line and its previewDevice modifier, then
press Command-D to duplicate these two lines. Add a line break to move the
duplicate to its own line.

You now have three ContentView items in a Group:

Group {
 ContentView(guess: RGB())
 ContentView(guess: RGB())
 .previewDevice(
 PreviewDevice(
 rawValue: "iPhone 8"))
 ContentView(guess: RGB())
 .previewDevice(
 PreviewDevice(
 rawValue: "iPhone 8"))
}

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 79

And the canvas shows three preview buttons:

Three preview buttons

The first preview button shows the first ContentView in the Group: This is the
currently selected run destination, which is still iPhone 14 Pro Max — the largest
screen size.

Change the first .previewDevice modifier to display iPhone 14 Pro:

ContentView(guess: RGB())
 .previewDevice(
 PreviewDevice(
 rawValue: "iPhone 14 Pro"))

Click the second preview button to see the iPhone 14 Pro preview, then click the
third preview button to view the iPhone 8 preview:

Previews of 14 Pro Max, 14 Pro and 8

It’s a tighter fit on the smallest iPhone, but everything’s visible, and the design
elements have resized to fit.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 80

Key Points
• SwiftUI views and modifiers help you quickly implement your design ideas.

• The Library contains a list of primitive views and a list of modifier methods. You
can easily create custom views, button styles and modifiers.

• Neumorphism is the new skeumorphism. It’s easy to implement with color sets
and the SwiftUI shadow modifier.

• You can use ZStack to layer your UI elements. For example, lay down a
background color and extend it into the safe area, then layer the rest of your UI
onto this.

• Usually, you want to apply a modifier that changes the view’s layout or position
before you fill it or wrap a border around it.

• Some modifiers can be applied to all view types, while others can be applied only
to specific view types, like Text or shapes. Not all Text modifiers return a Text
view.

• Create a custom ButtonStyle by implementing its makeBody(configuration:)
method. You’ll lose some default behavior like label color and dimming when
tapped.

• If the preview doesn’t show what you expect to see, try running it on a simulated
or real device before you waste any time trying to fix a phantom problem.

• Use GeometryReader to access the device’s frame and size properties.

SwiftUI by Tutorials Chapter 3: Diving Deeper Into SwiftUI

 81

4Chapter 4: Testing &
Debugging
By Bill Morefield

Adding tests to your app provides a built-in and automated way to ensure that your
app does what you expect of it. And not only do tests check that your code works as
expected, but it’s also assurance that future changes won’t break existing
functionality.

In this chapter, you’ll learn how to implement UI tests in your SwiftUI app, and what
to watch out for when testing your UI under this new paradigm.

 82

Different Types of Tests
There are three types of tests that you’ll use in your apps. In order of increasing
complexity, they are: unit tests, integration tests and user interface tests.

The base of all testing, and the foundation of all other tests, is the unit test. Each
unit test ensures that you get the expected output when a function processes a given
input. Multiple unit tests may test the same piece of code, but each unit test itself
should only focus on a single unit of code. A unit test should take milliseconds to
execute. You’ll run them often, so you want them to run fast.

The next test up the testing hierarchy is the integration test. Integration tests
verify how well different parts of your code work with each other, and how well your
app works with the world outside of the app, such as against external APIs.
Integration tests are more complex than unit tests; they usually take longer to run,
and as a result, you’ll run them less often.

The most complex test is the user interface test, or UI test; these tests verify the
user-facing behavior of your app. They simulate user interaction with the app and
verify the user interface behaves as expected after responding to the interaction.

As you move up the testing hierarchy, each level of test checks a broader scope of
action in the app. For example, a unit test would verify that the calculateTotal()
method in your app returns the correct amount for an order. An integration test
would verify that your app correctly determines that the items in the order are in
stock. A UI test would verify that after adding an item to an order, the amount
displayed to the user displays the correct value.

This chapter focuses on how to write UI tests for SwiftUI apps. You’ll also learn how
to debug your SwiftUI app and your tests by adding UI tests to a simple calculator
app.

Debugging SwiftUI Apps
Begin by opening the starter project for this chapter, and build and run the app; it’s a
simple calculator. The app also supports Catalyst, so it works on iOS, iPadOS and the
Mac. Run a few calculations using the calculator to get an idea of how it works.

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 83

Debugging SwiftUI takes a bit more forethought and planning than most tests
because the user interface and code mix together under the SwiftUI paradigm. Since
SwiftUI views are nothing but code, they execute just like any other code would.

Open SwiftCalcView and look for the following lines of code. They should be near
line 138:

Button {
 if let val = Double(display) {
 memory += val
 display = ""
 pendingOperation = .none
 } else {
 // Add Bug Fix Here
 display = "Error"
 }
} label: {
 Text("M+")
}
.buttonStyle(CalcButtonStyle())

This code defines a button for the user interface. The first block defines the action to
perform when the user taps the button. The next block defines what the button looks
like in the view. Even though the two pieces of code are adjacent, they won’t execute
at the same time.

Setting Breakpoints
To stop code during the execution of an app, you set a breakpoint to tell the
debugger to halt code execution when it reaches a particular line of code. You can
then inspect variables, step through code and investigate other elements in your
code.

To set a breakpoint, you put your cursor on the line in question and then press
Command + \ or select Debug ▸ Breakpoints ▸ Create Breakpoint at Current
Line from the menu. You can also click on the margin at the line where you want the
breakpoint.

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 84

Use one of these methods to set two breakpoints; one on the button, and then one
on the first line of code in the action: for the M+ button as shown below:

App breakpoints

Note: Prior to Xcode 13, you could run the preview in debug mode. Apple
removed this feature in Xcode 13 and you must run the app in the simulator or
a device to debug your app’s views. Breakpoints will be ignored by the preview.

Run your app. After a moment, the app reaches the breakpoint at the Text control
for the button. When it reaches the breakpoint for the Text(), execution pauses just
as it would with any other code.

When execution reaches a breakpoint, the app pauses and Xcode returns control to
you. At the bottom of the Xcode window, you’ll see the Debug Area consisting of
two windows below the code editor. If you don’t see the Debug Area, go to View ▸
Debug Area ▸ Show Debug Area or press Shift + Command + Y to toggle the
Debug Area.

The left pane of the Debug Area contains the Variables View. It shows you the
current status and value of active variables in your app. The right pane contains an
interactive Console, the most complex and powerful tool for debugging in Xcode.

Variables Console

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 85

Using breakpoints does more than halt code; it can also tell you whether or not the
execution of the app actually reached this piece of code. If a breakpoint doesn’t
trigger, then you know something caused the app to skip the code.

The mixing of code and UI elements in SwiftUI can be confusing, but breakpoints can
help you make sense of what is executing and when. If you add a breakpoint and it
never breaks, then you know that the execution never reached the declaration and
the interface will not contain the element. If your breakpoint does get hit, you can
investigate the state of the app at that point.

Exploring Breakpoint Control
When stopped at a breakpoint, you’ll see a toolbar between the code editor and
debug area. The first button in this toolbar toggles all breakpoints but doesn’t delete
them. The second button continues the execution of the app. You can also select
Debug ▸ Continue in the menu to continue app execution.

The next three buttons allow you to step through your code. Clicking the first
executes the current line of code, including any method or function calls. The second
button also executes the current line of code, but if there is a method call, it pauses
at the first line of code inside that method or function. The final button executes
code through to the end of the current method or function.

Debug bar

The next three buttons provide more insight into your app. The first, Debug View
Hierarchy, shows a 3d rendering of your app views you can manipulate. The second
button debugs the memory graph. This will show you the memory regions your app
is using and the size of each region. The final button allows you to override
environment settings such as dynamic type and apply accessibility options.

Continue execution of the app by using either the toolbar button or the menu. After
another short pause, you’ll see the view appear.

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 86

Tap the M+ button on the preview to see your breakpoint trigger. When it does, the
code pauses at the breakpoint on the first line of the Button’s action block.

At the (lldb) prompt in the console, execute the following:

po _memory

The po command in the console lets you examine the state of an object. Note the
underscore at the start of the variable name. For now, just know that within a SwiftUI
view you will need to prefix the name of the variable with an underscore. You’ll see
the result shows the contents of the memory state variable:

Debugger output

Adding UI Tests
There’s a bug in this code that you’ll notice when you Continue. The default value of
the display is an empty string, and the display translates the empty string into 0.
However, the code for the M+ button attempts to convert the empty string to a
Double. When that conversion fails, the value Error appears to the user.

Even if you don’t write a test for every case in your app, it’s a beneficial practice to
create tests when you find bugs. Creating a test ensures that you have, in fact, fixed
the bug. It also provides early notice if this bug were to reappear in the future. In the
next section, you’re going to write a UI test for this bug.

Note: Delete the breakpoints you just created. You can do so by right-clicking
on the breakpoint and choosing Delete Breakpoint. You can disable the
breakpoints by clicking on them. They should turn light blue. Press them again
whenever you want to reactivate them.

In the starter project, go to File ▸ New ▸ Target…. Select iOS and scroll down to find
the Test section. Click UI Testing Bundle and click Next.

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 87

Xcode suggests a name for the test bundle that combines the name of the project and
the type of test. Accept the suggestion of SwiftCalcUITests. Select SwiftCalc as the
Project and Target to be Tested. Finally, click Finish.

In the Project navigator, you’ll see a new group named SwiftCalcUITests. This new
target contains the framework where you build your UI tests; expand the group and
open SwiftCalcUITests.

You’ll see the file starts by importing XCTest. The XCTest framework contains
Apple’s default testing libraries. You’ll also see the test class inherits from
XCTestCase, from which all test classes inherit their behavior.

You’ll also see four default methods provided in the Xcode template. The first two
methods are an important part of your test process. The test process calls
setUpWithError() before each test method in the class, and then calls
tearDownWithError() after each test method completes.

Remember: a test should verify that a known set of inputs results in an expected set
of outputs. You use setUpWithError() to ensure your app is in this known state
before each test method begins. You use tearDownWithError() to clean up after
each test so that you’re back to a known starting condition for the next test.

Note the following line in setUpWithError():

continueAfterFailure = false

This line stops testing if a failure occurs. Setting this value to false stops the test
process after the first failure. Given the nature of UI testing, you will almost always
end up in an unknown state when a test fails. Rather than continue what are often
long-running tests for very little and potentially incorrect information, you should
stop and fix the problem now.

In this chapter, you won’t have any other setup or cleanup work to perform for your
tests.

The third method in the template is testExample(), which contains a sample test.
You’ll also see the method has a small gray diamond next to its name in place of the
line number; this means that Xcode recognizes it as a test, but the test hasn’t been
run yet. Once the test runs, the diamond will change to a green checkmark, if the test
passes, or to a white X on a red background after completion, if the test fails.

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 88

Test names must begin with test. If not, the testing framework ignores the method
and will not execute it when testing. For example, the framework ignores a method
named myCoolTest(), but it will execute testMyCoolCode().

Test names must start with 'test'. Note the lack of a diamond next to myCooltest()

Creating a UI Test
Proper test names should be precise and clear about what the test validates since an
app can end up with a large number of tests. Clear names make it easy to understand
what failed. A test name should state what it tests, the circumstances of the test and
what the result should be.

Rename testExample() to
testPressMemoryPlusAtAppStartShowZeroInDisplay(). Does that feel really
long? Test names are not the place or time for brevity; the name should clearly
provide all three elements at a glance.

A UI test begins with the app in the “just started” state, so you can write each test as
though the app has just started. Note that this doesn’t mean the app state is reset
each run. You use the setUpWithError() and tearDownWithError() methods to
ensure your app is in a particular known state before each test and to clean up any
changes made during the test. If you expect settings, data, configuration, location or
other information to be present at the time the test is run, then you must set those
up.

Clear the comments after the app.launch() command, and add a breakpoint at
app.launch() line in the test.

There are several ways to start UI tests. First, you can go to the Test Navigator by
pressing Command + 6 in Xcode. You’ll see your test along with the default
testLaunchPerformance() test. Hover your mouse over the gray diamond to the
left of the function name, and you’ll see a Play button.

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 89

If you hover over the name of the class or the testing framework either in the Test
Navigator or the source code, a similar Play button appears that will start a group of
tests to run in sequence.

Run test icon

This test isn’t complete, as it doesn’t test anything. This is a good time to run it and
learn a bit about how a test runs. For now, use either method to start your
testPressMemoryPlusAtAppStartShowZeroInDisplay() test.

Tests are Swift code, so you can debug tests just like you debug your app! You’ll
sometimes need to determine why a test doesn’t behave as expected. When the test
reaches the breakpoint, you’ll see execution stop, just as your breakpoint would
behave in any other code.

The main element you’ll want to explore is the app element where you placed the
breakpoint. Step over the command to launch the app using the toolbar button,
pressing F6 or selecting Debug ▸ Step Over in the menu. In the simulator, you’ll see
the app launch. Once you have the (lldb) prompt in the console, enter po app.

You’ll see output similar to the following:

po app command

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 90

You’re examining the app object, which you declared as an XCUIApplication, a
subclass of XCUIElement. You’ll be working with this object in all of your UI tests.

The app object contains a tree that begins with the application and continues
through all of the UI elements in your app. Each of these elements is also of type
XCUIElement. You’ll access the UI elements in your app by running filter queries
against the app object to select items in the tree that you see.

Next, you’ll see how to run a query to find buttons in the app.

Accessing UI Elements
Add the following code to the end of the test method:

let memoryButton = app.buttons["M+"]
memoryButton.tap()

XCUIApplication contains a set of elements for each type of user interface object.
This query first filters for only .buttons in the app. It then filters to the element
which has a label of M+.

SwiftUI apps render to the native elements of the platform; they’re not new
components. Even though SwiftUI provides a new way to define an interface, it still
uses the existing elements of the platform. A SwiftUI Button becomes a UIButton on
iOS and a NSButton on macOS. In this app, the filter matches the label you saw in
the output from po app.

Button, 0x600002498540, {{184.5, 102.5}, {45.0, 45.0}}, label:
’M+’

Once you have the button object, you call tap() on the button. This method
simulates someone tapping on the button. Delete the breakpoint on the app launch,
and re-run the test.

First test run

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 91

You’ll see the app start and run in the simulator as the test runs. If you watch the
simulator, you’ll see the display of the calculator show Error just as it did when you
ran it manually. Once the tests are done, the app will stop. You’ll see the gray
diamond changes into a green checkmark both next to the function and in the Test
Navigator.

The green check signifies a passed test. In this case, the test didn’t check anything.
The framework treats a test that doesn’t fail as a passing test.

In a UI test, the known set of inputs to your test is the set of interactions with the
app. Here you performed an interaction by tapping the M+ button, so now you need
to check the result. In the next section, you’ll see how to get the value from a
control.

Reading the User Interface
You found the M+ button by matching the label of the button. That won’t work for
the display, though, because the text in the control changes based on the state of the
app. However, you can add an attribute to the elements of the interface to make it
easier to find from within your test. Open DisplayView. In the view, look for the two
comments // Add display identifier and replace both with the following line:

.accessibilityIdentifier("display")

This method sets the accessibilityIdentifer for the resulting UI element.
Despite the name, VoiceOver doesn’t read the accessibilityIdentifer attribute;
this simply provides a way to give a UI element a constant identifier for testing. If
you don’t provide this identifier for an element, it will generally be the same as the
label for the control as it was with the M+ button.

Go back to SwiftCalcUITests. Add the following code at the end of
testPressMemoryPlusAtAppStartShowZeroInDisplay():

// 1
let display = app.staticTexts["display"]
// 2
let displayText = display.label
// 3
XCTAssert(displayText == "0")

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 92

You’ve written your first real test! Here’s what each step does:

1. You use the accessibility(identifier:) you added to find the display
element in your app.

2. The result of step 1 is an XCUIElement, as are most UI elements in a UI test. You
want to investigate the label property of the element which contains the text of
the label.

3. You use an assertion to verify the label matches the expected result. All testing
assertions begin with the prefix XCT — a holdover from Objective-C naming
conventions. In each test, you perform one or more assertions that determine if
the test passes or fails.

In this case, you are checking that the text for display is the string “0”. You already
know the result will be a failing test, but still, run the completed test to see what
happens. You’ll get the expected failure and see a white X on red.

Failed first test

Now that you have a test in place, you can fix the bug!

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 93

Fixing the Bug
Open SwiftCalcView, find the comment in the action for the M+ button that
reads // Add Bug Fix Here, and change the next line to read:

display = ""

Re-run the test. You’ll see that it passes.

First passing test

You may be wondering why you went through the extra effort: You changed one line
of code to fix the bug, but you added another framework to your app and had to write
five lines of code to create the test.

Although this may feel like a lot of work to prove that you’ve fixed a tiny issue, you’ll
find this pattern of writing a failing test, fixing the bug and then verifying that the
test passes, to be a useful pattern. Taking an existing app without tests, and adding a
test each time you fix a bug, quickly builds a useful set of tests for now, and more
importantly, for the future.

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 94

Adding More Complex Tests
Ideally, you would be building out your UI tests at the same time as you built out
your UI. This way, as your UI becomes more fleshed out, your test suite will expand
along with it. However, with the realities of modern development, you’ll usually be
adding tests after the application already exists.

Add a more complex test that verifies adding two single-digit numbers gives the
correct sum. Open SwiftCalcUITests and add the following test at the end of the
class:

func testAddingTwoDigits() {
 let app = XCUIApplication()
 app.launch()

 let threeButton = app.buttons["3"]
 threeButton.tap()

 let addButton = app.buttons["+"]
 addButton.tap()

 let fiveButton = app.buttons["5"]
 fiveButton.tap()

 let equalButton = app.buttons["="]
 equalButton.tap()

 let display = app.staticTexts["display"]
 let displayText = display.label
 XCTAssert(displayText == "8")
}

When you run the test, you might not expect it to fail. Three plus five does equal
eight, right? Take a moment to see if you can figure out why before continuing.

Your test compares the label of the display to the string 8. Place a breakpoint at
XCTAssert statement and rerun the test. Wait until execution stops at the
breakpoint. At the console prompt enter po displayText.

You’ll see the text of the display reads 8.0, not 8. A UI test focuses on the user
interface and not on the behind-the-scenes elements. A unit test, in contrast, would
check that the code properly calculated 3 + 5 = 8. The UI test should verify what the
user sees when performing this calculation.

Change the final line of the test to:

XCTAssert(displayText == "8.0")

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 95

Re-run the test, and you’ll see it passes now.

Passing test

XCTAssert() evaluates a condition and fails if it’s not true. If you had used the more
specific XCTAssertEqual(displayText, "8") for the initial assertion, it would
have provided the information you discovered using the debugger in the failure
message. You used XCTAssert() to explore debugging a failed test. Change your test
to XCTAssertEqual(displayText, "8.0") and verify it still passes.

Next, you’ll make a change to the user interface, and, because you want to form good
testing habits, you’ll add a test to verify the change.

Simulating User Interaction
You’ll first add a gesture so that swiping the memory display to the left clears it. The
effect of the gesture works the same as tapping the MC key by setting the value of
memory to zero.

Open MemoryView. At the top of the body definition, right before HStack, add a
gesture:

let memorySwipe = DragGesture(minimumDistance: 20)
 .onEnded { _ in

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 96

 memory = 0.0
 }

You can add this gesture to the memory display. Find the text // Add gesture here
and replace it with:

.gesture(memorySwipe)

Like with main display, you will also add an identifier to the memory display. Add the
following line below Text("\(memory)"):

.accessibilityIdentifier("memoryDisplay")

Build and run the app; type in a few digits and tap M+ to store the value in memory.
The memory display appears and shows the stored digits. Swipe the memory display
to the left, and verify the display clears.

Swipe app

Now, because you’re practicing good development and testing habits, you’ll add a UI
test to verify this behavior. The steps of the test replicate the actions you just
performed manually.

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 97

Open SwiftCalcUITests and add the following code after the existing tests:

func testSwipeToClearMemory() {
 let app = XCUIApplication()
 app.launch()

 let threeButton = app.buttons["3"]
 threeButton.tap()
 let fiveButton = app.buttons["5"]
 fiveButton.tap()

 let memoryButton = app.buttons["M+"]
 memoryButton.tap()

 let memoryDisplay = app.staticTexts["memoryDisplay"]
 // 1
 XCTAssert(memoryDisplay.exists)
 // 2
 memoryDisplay.swipeLeft()
 // 3
 XCTAssertFalse(memoryDisplay.exists)
}

You’ve seen most of this code before. Here’s what the new code does:

1. The exists property on an XCUIElement is true when the element exists. If the
memory display were not visible, then this assert would fail.

2. The swipeLeft() method produces a swipe action to the left on the calling
element. There are additional methods for swipeRight(), swipeUp() and
swipeDown().

3. The XCTAssertFalse() test acts as an opposite for XCTAssert. It succeeds when
the checked value is false instead of true. The swipe should set memory to zero
after the gesture, and the action should hide the memory display, wiping it out of
existence.

Run the test, and you’ll see it confirms that your UI works as expected.

There are many testing elements beyond those discussed in this chapter. Some of the
common attributes and methods that you haven’t had a chance to use in this chapter
are:

• .isHittable: An element is hittable if the element exists and the user can click, tap
or press it at its current location. An offscreen element exists but is not hittable.

• .typeText(): This method acts as though the user types the text into the calling
control.

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 98

• .press(forDuration:): This allows you to perform a one-finger touch for a
specified amount of time.

• .press(forDuration:thenDragTo:): The swipe methods provide no guarantee of
the velocity of the gesture. You can use this method to perform a more precise
drag action.

• .waitForExistence(): Useful to pause when an element may not appear on the
screen immediately.

You’ll find a complete list of methods and properties in Apple’s documentation at
https://developer.apple.com/documentation/xctest/xcuielement.

Testing Multiple Platforms
Much of the promise of SwiftUI comes from building apps that work on multiple
Apple platforms. Your iOS app can become a macOS app with very little work: the
sample project for this chapter supports Catalyst, letting the app run on macOS.
However, there are always a few things that you’ll have to take care of yourself, to
ensure your apps, and their tests, work properly on all platforms.

In Xcode, change the target device for the app to My Mac (Mac Catalyst). In the
project settings, select the SwiftCalc target. Choose Signing and Capabilities, set
Team and verify that Signing Certificate is set to Sign to Run Locally. Now build
and run the app to see it run for macOS.

You will learn about using SwiftUI with different operating systems in Chapter 22:
“Building a Mac App”. Since, as you expect, running on different platforms may
require tweaks to the user interface, testing the UI on various operating systems will
require different tests. Some UI actions translate directly; for instance, tapping a
button on an iOS device works just like clicking your mouse on a button would on
macOS.

With the target device still set to My Mac (Mac Catalyst), build and run your tests.
You’ll see XCTAssertFalse(memoryDisplay.exists) now fails. That’s because
there’s no equivalent to a .swipeLeft() action in macOS. Earlier versions of Xcode
would give you a compilation error: “Value of type ’XCUIElement’ has no member
’swipeLeft’” that made this clear.

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 99

The solution lies in Xcode’s conditional compilation blocks. These blocks tell Xcode
to only compile the wrapped code when one or more of the conditions are true at
compile time. A block begins with #if followed by a test. You can optionally use
#elseif and #else as with traditional if statements, and you end the block with
#endif.

You want to exclude the failing test when testing the app under Catalyst. Wrap the
testSwipeToClearMemory() test inside a targetEnvironment check to exclude
tests from Catalyst:

#if !targetEnvironment(macCatalyst)
 // Test to exclude
#endif

You can also specify the operating system as a condition. The operating system can
be any one of macOS, iOS, watchOS, tvOS or Linux. For example, to exclude tests
from watchOS, wrap the tests with a similar check that excludes watchOS:

#if !os(watchOS)
 // Your XCTest code
#endif

A best practice when designing UI tests for cross-platform apps is to keep tests for
specific operating systems together in a single test class. Use conditional
compilation wrappers to isolate the code to compile only under the target platform
and operating system.

Change your target device back to an iOS device before continuing to the next
section.

Debugging Views and State Changes
When debugging a SwiftUI app, you’ll often run into situations where performance
suffers because a view redraws more often than expected. Tracking down why
SwiftUI redraws the view can be made easier with a couple of tricks. You can use a
technique from Peter Steinberger (https://gist.github.com/steipete/
579edd8bd8b25dc8a89b546b54d9222f) to identify when a view redraws that assigns
a random background color to the view. Open DisplayView and add the following
code after the import statement:

extension Color {
 // Return a random color

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 100

 static var random: Color {
 return Color(
 red: .random(in: 0...1),
 green: .random(in: 0...1),
 blue: .random(in: 0...1)
)
 }
}

This code creates an extension for the Color type named random. Each time called, it
will present a new random color. When you apply it to a view, each time the view
redraws, it will receive a new background color making it easy to identify redrawn
views visually.

To use the extension, apply to a view as you would with any other color. At the end of
the HStack for the view, add the following code:

.background(Color.random)

Run the app and tap a few numbers buttons to change the display. You’ll see the
background color of the DisplayView change to a random color each time you tap a
button.

Random background color when view changes

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 101

While this can show you what view changes, it doesn’t tell you why. SwiftUI 3.0
introduced a new method to help solve that problem. You can use the new
Self._printChanges() method to determine what caused the view to redraw. Open
DisplayView and add the following code after the var body: some View
{ declaring the body property for the view:

let _ = Self._printChanges()

This odd-looking code tells SwiftUI to identify the change that led to SwiftUI
deciding to redraw the view. SwiftUI will display the name of the view and the
properties that changed each time it draws the view. Notice that the method begins
with an underscore hinting that you should only use this when debugging and
remove it from a finished app. You must place it inside the body property of the view
you want to monitor.

Run the app and again type a few buttons. You’ll still see the background color of the
display change with each tap. In the interactive console, you’ll see a message stating
the view that changed along with the property or properties that caused the view to
redraw with each tap.

Displaying properties that cause view to redraw

Don’t forget to take these out before you ship your app.

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 102

Challenge

Challenge: Add Swipe Gesture
As noted earlier, the swipe gesture to clear the memory doesn’t work under Catalyst.
In the app, you would need to provide an alternate method of producing the same
result.

For the Catalyst version of this app, add a double-tap gesture to the memory display
to accomplish the same result as the swipe gesture. Update
testSwipeToClearMemory() to check the functionality appropriately on each
environment.

Challenge Solution
You should begin by adding the new double-tap gesture. Change the current gesture
definition of memorySwipe in MemoryView to:

#if targetEnvironment(macCatalyst)
let doubleTap = TapGesture(count: 2)
 .onEnded { _ in
 self.memory = 0.0
 }
#else
let memorySwipe = DragGesture(minimumDistance: 20)
 .onEnded { _ in
 self.memory = 0.0
 }
#endif

This keeps the current swipe gesture on phones and tablets but creates a tap gesture
that expects two taps on Catalyst.

Now update the memory display to similarly use the correct gesture for each
environment:

#if targetEnvironment(macCatalyst)
Text("\(memory)")
 .accessibility(identifier: "memoryDisplay")
 .padding(.horizontal, 5)
 .frame(
 width: geometry.size.width * 0.85,
 alignment: .trailing
)
 .overlay(

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 103

 RoundedRectangle(cornerRadius: 8)
 .stroke(lineWidth: 2)
 .foregroundColor(Color.gray)
)
 // Add gesture here
 .gesture(doubleTap)
#else
Text("\(memory)")
 .accessibility(identifier: "memoryDisplay")
 .padding(.horizontal, 5)
 .frame(
 width: geometry.size.width * 0.85,
 alignment: .trailing
)
 .overlay(
 RoundedRectangle(cornerRadius: 8)
 .stroke(lineWidth: 2)
 .foregroundColor(Color.gray)
)
 // Add gesture here
 .gesture(memorySwipe)
#endif

SwiftUI doesn’t support putting a targetEnvironment() condition within the
modifiers to a view. That means you have to place the view twice, changing the
desired gesture in each. Normally, you would extract the view into a subview to
reduce the amount of code.

Lastly, remove any current target restrictions on the testSwipeToClearMemory()
test and replace memoryDisplay.swipeLeft() in the method with:

#if targetEnvironment(macCatalyst)
memoryDisplay.doubleTap()
#else
memoryDisplay.swipeLeft()
#endif

This will call the appropriate UI gesture on each environment. Run your test on both
My Mac and the iOS Simulator to validate your changes.

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 104

Key Points
• Building and debugging tests require a bit more attention due to the combination

of code and user interface elements in SwiftUI.

• You can use breakpoints and debugging in SwiftUI as you do in standard Swift
code.

• Tests automate checking the behavior of your code. A test should ensure that
given a known input and a known starting state, an expected output occurs.

• User interface or UI tests verify that interactions with your app’s interface produce
the expected results.

• Add an accessibilityIdentifer to elements that do not have static text for
their label to improve location for testing.

• You find all user interface elements from the XCUIApplication element used to
launch the app in the test.

• Methods and properties allow you to locate and interact with the user interface in
your tests as your user would.

• Different platforms often need different user interface tests. Use conditional
compilation to match tests to the platform and operating system.

• You can use Self._printChanges() to view the state change that causes the view
to redraw.

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 105

Where to Go From Here?
• This chapter provided an introduction to testing and debugging your SwiftUI

projects. Your starting point to go more in-depth should be Apple’s documentation
on XCTest at https://developer.apple.com/documentation/xctest.

• Our book iOS Test-Driven Development by Tutorials provides a more in-depth look
at testing iOS apps and test-driven development. You can find that book here:
https://www.kodeco.com/books/ios-test-driven-development-by-tutorials.

• You’ll also find more about testing in the WWDC 2019 video Testing in Xcode at
https://developer.apple.com/videos/play/wwdc2019/413/.

• You’ll find a lot more information about the Xcode debugger and using it in our
deep-dive book Advanced Apple Debugging & Reverse Engineering, available here:
https://www.kodeco.com/books/advanced-apple-debugging-reverse-engineering.

• Apple often releases new videos on the changes related to debugging each year at
WWDC. For 2019, there’s a video dedicated to Debugging in Xcode 11 at https://
developer.apple.com/videos/play/wwdc2019/412/.

• For 2021, there’s a video on breakpoint improvements at https://
developer.apple.com/videos/play/wwdc2021/10209/.

• Once you’re ready to go deeper into debugging, you’ll also want to watch LLDB:
Beyond “po” at https://developer.apple.com/videos/play/wwdc2019/429/.

• For more debugging memory use see: https://developer.apple.com/
documentation/xcode/gathering-information-about-memory-use.

SwiftUI by Tutorials Chapter 4: Testing & Debugging

 106

Section II: Building Blocks of
SwiftUI

Build on what you have learned in Section I to begin using SwiftUI in more complex
and advanced apps.

 107

5Chapter 5: Intro to
Controls: Text & Image
By Antonio Bello

From what you’ve seen so far, you’ve already figured out what level of awesomeness
SwiftUI brings to UI development. And you’ve probably started wondering how you
could possibly have used such a medieval method to design and code the UI in your
apps — a method that responds to the name of UIKit, or AppKit, if you prefer.

Armored Knights

In the previous chapters, you’ve only scratched the surface of SwiftUI and learned
how to create some basic UI. Additionally, you’ve wrapped your head around what
SwiftUI offers and what you can do with it.

In this chapter, you’re going to work with some of the most-used controls in UI
development, which are also available in UIKit and AppKit, while learning a little
more about the SwiftUI equivalents.

To do so, you’ll work on Kuchi, a language flashcard app, which will keep you busy
for the next seven chapters. Enjoy!

 108

Getting Started
First, open the starter project for this chapter, and you’ll see that it’s quite empty.
There’s almost no user interface; only some resources and support files. If you build
and run, all you’ll get is a blank view.

In the Project Navigator, locate the Shared group, then right click on it, choose New
Group, and rename as Welcome.

Create the Welcome group

Next right-click on it, and choose New File.

In the popup that comes next, choose SwiftUI View, then click Next.

Select SwiftUI View

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 109

Then type WelcomeView in the Save As field, ensure that both iOS and macOS
targets are selected, and click on Create. You now have a blank new view to start
with.

Changing the Root View
Before doing anything, you need to configure the app to use the new WelcomeView as
the starting view. Open KuchiApp.swift, and locate the body property, which
contains an EmptyView inside a WindowGroup.

var body: some Scene {
 WindowGroup {
 EmptyView()
 }
}

This code determines the view that’s created and displayed when the app is
launched. The view currently created is EmptyView, which is… well, an empty view:
the simplest possible view you could possibly use. Replace it with an instance of the
new view you’ve just created, WelcomeView:

WindowGroup {
 WelcomeView()
}

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 110

Now, if you compile and run, when the app starts, WelcomeView will be your first
view:

Hello World

While you’re on it, also replace EmptyView in the preview, which looks like:

struct KuchiApp_Previews: PreviewProvider {
 static var previews: some View {
 EmptyView()
 }
}

And, after the replacement, must look like:

struct KuchiApp_Previews: PreviewProvider {
 static var previews: some View {
 WelcomeView()
 }
}

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 111

WelcomeView!
Now, take a look at the newly created view. Open WelcomeView, and you will notice
there isn’t much in it:

• The WelcomeView struct, containing the body property, and a Text component.

• A preview provider named WelcomeView_Previews.

But that’s all you need to get started. body is the only thing a view requires — well,
besides implementing a great and stylish UI, but that’s your job!

In Xcode, make sure that you have the canvas visible in the assistant panel, and click
the resume button if necessary, to activate or reactivate the preview. You should see
a welcome message like this:

Hello World image

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 112

Text
Input requires context. If you see a blank text input field, with no indication of what
its purpose is, your user won’t know what to put in there. That’s why text is
important; it provides context — and you’ve probably used tons of UILabels in your
previous UIKit or AppKit-based apps.

As you’ve already seen, the component to display text is called, simply, Text. In its
simplest and most commonly used initializer, Text takes a single parameter: the text
to display. Change the string to “Welcome to Kuchi”:

Text("Welcome to Kuchi")

Xcode will automatically update the text shown in the preview. Nice! Simple stuff so
far, but every long journey always starts with a single step.

Welcome to Kuchi

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 113

Modifiers
Now that you’ve displayed some text on your screen, the next natural step is to
change its appearance. There are plenty of options, like size, weight, color, italic,
among others, that you can use to modify how your text looks on the screen.

Note: In the previous chapters, you’ve already learned how to use a modifier
to change the look or behavior of a view. A modifier is a View instance
method that creates a copy of the view, does something to the view copy (such
as changing the font size or the color), and returns the modified view.

Kuchi Package

To change the look of a Text instance, you use modifiers. But beyond that, more
generally, any view can be altered using modifiers.

If you want to make the text larger, say, 60 points, add the following font modifier:

Text("Welcome to Kuchi")
 .font(.system(size: 60))

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 114

Then bold the text by adding the next line:

Text("Welcome to Kuchi")
 .font(.system(size: 60))
 .bold()

Kuchi Steps

Then you can make it a nice red color:

Text("Welcome to Kuchi")
 .font(.system(size: 60))
 .bold()
 .foregroundColor(.red)

Next, you can center-align the text:

Text("Welcome to Kuchi")
 .font(.system(size: 60))
 .bold()
 .foregroundColor(.red)
 .multilineTextAlignment(.center)

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 115

And, finally, you can force it to be rendered in one line:

Text("Welcome to Kuchi")
 .font(.system(size: 60))
 .bold()
 .foregroundColor(.red)
 .multilineTextAlignment(.center)
 .lineLimit(1)

Kuchi Steps 2

Which doesn’t look nice… but it’s good to know that you can limit the number of
lines, considering that by default lineLimit is nil, meaning that the text will take as
many lines as needed.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 116

So it would definitely look better if you limit the number of lines to two:

Text("Welcome to Kuchi")
 .font(.system(size: 60))
 .bold()
 .foregroundColor(.red)
 .multilineTextAlignment(.center)
 .lineLimit(2)

Kuchi Steps 3

Although it’s safe to assume that default values for this UI component won’t change,
they might change in the future. For example, in SwiftUI 1.0 the default value for
lineLimit was 1, but it’s been changed to nil in 2.0. Likewise, the text alignment
was .center in SwiftUI 1.0, but it became .leading in 2.0.

That is to say it’s good practice to not rely too much on default values, because they can
change in future versions.

So far you’ve exclusively used code to add and configure modifiers, but SwiftUI, in
tandem with Xcode, offers two alternatives for the lazy, er, I mean efficient coders out
there.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 117

First of all, make sure the preview is in Selectable mode — new to Xcode 14, by
default the preview is displayed in Live (i.e. interactive) mode:

Canvas Selectable mode

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 118

Now you can inspect the the view in two different ways:

• With the canvas inspector popup, which appears when you Command-click on a
view component onto the canvas:

Canvas modifiers

• With the attributes inspector, which appears by pressing Option-Command-4,
and displays the modifiers for the view currently selected in the canvas:

Inspector modifiers

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 119

Text is such a simple component, but it has so many modifiers. And that’s just the
beginning! There are two categories of modifiers that SwiftUI offers:

• Modifiers bundled with the View protocol, available to any view.

• Modifiers specific to a type, available only to instances of that type.

View has lots of pre-made and ready-to-use modifiers that are implemented in
protocol extensions. For a full list, you can browse the documentation; in Xcode,
Option-click View in the source editor, and then click Open in Developer
Documentation.

XCode documentation

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 120

Browsing the documentation is always helpful when learning, but sometimes you
need a faster way to search for a modifier. Maybe you don’t remember the modifier’s
name, or maybe you are simply wondering if such a modifier exists.

Again, Xcode and SwiftUI can help with that! As you might remember from Chapter
3: Diving Deeper Into SwiftUI, Xcode now has a Modifiers Library, similar to the
Object Library available in older versions of Xcode.

To access the library, click the leftmost + button, located at the top-right corner of
your Xcode window. The library allows you to browse and search by name, and, most
importantly, groups all modifiers by category, so chances are that you’ll quickly find
what you’re looking for, if it actually exists.

Views and modifiers libraries

Note that the library also contains the Views Library, which you can use to browse
and select views, and drag them onto the canvas, for two-way user interface
development.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 121

Are Modifiers Efficient?

Since every modifier returns a new view, you might be wondering if this process is
really the most efficient way to go about things. SwiftUI embeds a view into a new
view every time you invoke a modifier. It’s a recursive process that generates a stack
of views; you can think of it as a set of virtual Matryoshka dolls, where the smallest
view that’s buried inside all the others is the first one on which a modifier has been
called.

Russian Dolls

Intuitively, this looks like a waste of resources. The truth is that SwiftUI flattens this
stack into an efficient data structure that is used for the actual rendering of the view.

You should feel free to use as many modifiers as you need, without reserve and
without fear of impacting the efficiency of your view.

Order of Modifiers

Is the order in which you invoke modifiers important? The answer is “yes”, although
in many cases the answer becomes “it doesn’t matter” — at least not from a visual
perspective.

For example, if you apply a bold modifier, and then make it red:

Text("Welcome to Kuchi")
 .bold()
 .foregroundColor(.red)

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 122

…or first make it red, and then bold:

Text("Welcome to Kuchi")
 .foregroundColor(.red)
 .bold()

…you won’t notice any difference.

Modifiers

However, if you apply a background color and then apply padding, you will get a
different result. .padding is a modifier that adds spacing between the view the
modifier is applied to and the view’s parent. Without parameters, SwiftUI adds a
default padding in all four directions, but you can configure that padding yourself.

Consider the following configuration below:

Text("Welcome to Kuchi")
 .background(Color.red)
 .padding()

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 123

You add a red background color to the text, and then apply padding. But if you invert
that order:

Text("Welcome to Kuchi")
 .padding()
 .background(Color.red)

You apply the padding first, resulting in a larger view, and then apply the red
background. You’ll immediately notice that the result is different:

Modifiers background

This is because the view where you apply the background color is different in each
case. Another way to look at it is that the view to which you apply the padding is
different.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 124

This is clearly visible if you set different background colors before and after applying
the padding:

Text("Welcome to Kuchi")
 .background(Color.yellow)
 .padding()
 .background(Color.red)

Modifiers color padding

The padding adds some space between the text and the edges of the view. When you
apply the background color before the padding, that modification is applied to the
view that contains the text, which is a view large enough to contain just the
displayed text and nothing more. The padding modifier adds a new view, to which
the second background color is applied to.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 125

Image
An image is worth a thousand words. That may be a cliché, but it’s absolutely true
when it comes to your UI. This section shows you how to add an image to your UI.

First, remove the welcome Text from body and replace it with an Image component
as shown below:

var body: some View {
 Image(systemName: "table")
}

This is what you’ll see on screen:

Raw image

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 126

Changing the Image Size
When you create an image without providing any modifiers, SwiftUI will render the
image at its native resolution and maintain the image’s aspect ratio. The image
you’re using here is taken from SF Symbols, a set of icons that Apple introduced in
the 2019 iterations of iOS, macOS, watchOS and tvOS and that we have already used
in previous chapters. For more information, check out the links at the end.

If you want to resize an image, you have to apply the resizable modifier, which
takes two parameters: an inset and a resizing mode. The resizing mode can be
either .tile or .stretch.

If you don’t provide any parameters, SwiftUI assumes no inset for all four directions
(top, bottom, leading and trailing) and .stretch resizing mode.

Note: If you don’t apply the resizable modifier, the image will keep its native
size. When you apply a modifier that either directly or indirectly changes the
image’s size, that change is applied to the actual view the modifier is applied
to, but not to the image itself, which will retain its original size.

So if images are worth a thousand words, then code examples must be worth a
thousand images! To embed an image in a square frame, 30 points wide and high,
you simply add the frame modifier to the image:

var body: some View {
 Image(systemName: "table")
 .frame(width: 30, height: 30)
}

The preview won’t show any difference; you’ll still see the image at its original size.
However, if you click the image to select it, Xcode will show the selection highlight as
a blue border:

Non-resizable image

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 127

The outermost view has the correct size, but, as you may have expected, the image
didn’t scale to match.

Now, prepend frame with the resizable modifier:

var body: some View {
 Image(systemName: "table")
 .resizable()
 .frame(width: 30, height: 30)
}

The output should be a lot closer to what you expected:

Resizable image

Note: You’ve given the image an absolute size, measured in points. However,
for accessibility reasons, and to help your app adapt to different resolutions,
orientations, devices and platforms, it’s always a good idea to let SwiftUI
decide how to scale images, and more generally, most of your UI content.
You’ll cover that briefly in this chapter, but you’ll go into scaling more in-
depth in the next chapter.

If you want to transform and manipulate that image to make it look like a bordered
and circular red-colored grid with a light gray background, add the following code after
.frame:

// 1
.cornerRadius(30 / 2)
// 2
.overlay(Circle().stroke(Color.gray, lineWidth: 1))
// 3
.background(Color(white: 0.9))
// 4
.clipShape(Circle())
// 5
.foregroundColor(.red)

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 128

Here’s what you’re doing:

1. You set the corner radius to half the size of the image.

2. Next, you add a thin gray border.

3. You then add a light gray background color.

4. Next, you clip the resulting image using a circle shape, which removes the excess
colored background.

5. Finally, you set the foreground color to red.

Here’s how the sequence of modifiers affects the resulting image at each step:

Image modifiers stack

It turns out one of the modifiers in the previous code is redundant. If you remove
that modifier, the resulting image is the same. Can you tell which modifier is
redundant?

It might not be obvious at first glance, but the corner radius, which makes the image
circular, actually clips the image. But isn’t that what the shape clipping at the 4th
line is doing? Try it out! Delete or comment out the corner radius modifier, and
you’ll see that the resulting image doesn’t change.

You can safely remove that line of code - But it’s good to know how to apply a corner
radius to a view.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 129

Last thought for this section: have you considered how easy it was to manipulate and
transform an image with just a few lines of code? How many lines of code would you
have written in UIKit or AppKit to achieve the same result? Quite a lot more, I
believe.

Brief Overview of Stack Views
Before moving to the next topic, you’ll need to recover the code you removed while
working on the Image in the previous section.

To add the Text view again, alter the implementation of body so it looks as follows —
here the Text font size has been reduced to from 60 to 30, otherwise it would look
too big compared to the image:

Image(systemName: "table")
 .resizable()
 .frame(width: 30, height: 30)
 .overlay(Circle().stroke(Color.gray, lineWidth: 1))
 .background(Color(white: 0.9))
 .clipShape(Circle())
 .foregroundColor(.red)

Text("Welcome to Kuchi")
 .font(.system(size: 30))
 .bold()
 .foregroundColor(.red)
 .lineLimit(2)
 .multilineTextAlignment(.center)

Note that this is not the correct way to add multiple subviews to a view. With a few
exceptions, the View’s body property expects one and only one subview.

In SwiftUI 1.0, the code above would have caused a compilation error, now it
compiles and even works in the simulator: all subviews will be stacked vertically.
However if you preview it in Xcode, it will show one preview per subview.

If you want to embed more than one subview in a view, you have to rely on a
container view. The simplest and most commonly used container views is the stack,
the SwiftUI counterpart of UIKit’s UIStackView.

Stacks come in 3 different flavors: horizontal, vertical and, for the lack of a better
term, on top of one another. For now we’ll use the horizontal version, which is the
SwiftUI counterpart of UIKit’s UIStackView in horizontal layout mode.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 130

Embed the two views into an HStack:

HStack {
 Image(systemName: "table")
 ...

 Text("Welcome to Kuchi")
 ...
}

Note: You’ll learn about HStack in Chapter 7: “Introducing Stacks &
Containers”. All you need to know right now is that HStack is a container
view, which allows you to group multiple views in a horizontal layout.

This is how the view looks like in the Xcode preview:

First hstack

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 131

More on Image
Two sections ago, you played with the Image view, creating an icon at the end of the
process. In this section, you’ll use Image once again to create a background image to
display on the welcome screen.

To do that, you need to know about another container view, ZStack, which stacks
views one on top of the other, like sheets of papers in a stack — that’s why it’s been
described with the on top of one another term.

This is different from HStack (and VStack, which you’ll meet later in this chapter)
which arranges views next to one another instead.

Since you need to add a background image, ZStack seems to fit the purpose. Embed
the HStack of the previous section inside a ZStack:

ZStack {
 HStack {
 ...
 }
}

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 132

Nothing changes in the canvas preview. Now, add this Image view before HStack, still
inside of the ZStack:

Image("welcome-background", bundle: nil)

Welcome

The image looks okay, but it has too much presence and color.

View and Image have a comprehensive list of modifiers that let you manipulate the
appearance of an image. These include opacity, blur, contrast, brightness, hue,
clipping, interpolation, and aliasing. Many of these modifiers are defined in the
View protocol, so they’re not limited to just images; you could, theoretically, use
them on any view.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 133

Use this image as a reference to see what each modifier does. I encourage you to add
modifiers one at a time in Xcode, to see the live result build up in the canvas
preview:

Background image modifiers

The final code for the image should look as follows:

// 1
Image("welcome-background", bundle: nil)
 // 2
 .resizable()

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 134

 // 3
 .scaledToFit()
 // 4
 .aspectRatio(1 / 1, contentMode: .fill)
 // 5
 .edgesIgnoringSafeArea(.all)
 // 6
 .saturation(0.5)
 // 7
 .blur(radius: 5)
 // 8
 .opacity(0.08)

Going over this code, here is what you just did:

1. This is the Image you’ve just added.

2. .resizable: Make it resizeable. By default, SwiftUI tries to use all of the space at
its disposal, without worrying about the aspect ratio.

3. .scaledToFit: Maximize the image so that it’s fully visible within the parent,
with respect to the original ratio.

4. .aspectRatio: Set the aspect ratio, which is 1:1 by default. Setting
contentMode to .fill makes the image fill the entire parent view, so a portion
of the image will extend beyond the view’s boundaries.

5. .edgesIgnoringSafeArea: Ignore the safe area insets, extending the view
outside the safe area, so that it occupies the entire parent space.

Here, you’re ignoring all edges, but it can also be configured on a per-edge basis.
To do that, you pass an array of the edges to
ignore: .top, .bottom, .leading, .trailing, but also .vertical
and .horizontal, which combine the two vertical and the two horizontal edges
respectively.

6. .saturation: Reduce the color saturation so that the image appears less vibrant.

7. .blur: Add some blur. Who doesn’t love blur?

8. .opacity: Make the image more transparent, which has the side effect of
dimming to make it a little less prominent.

Once again, there’s a redundant modifier in that view. Can you figure out which one
it was?

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 135

Yes, it’s the third line: the .scaledToFit modifier. You already made the image fit
the parent with .resizable, and then .aspectRatio makes the image fill the parent
instead. Comment the .scaledToFit modifier, and you’ll see that the final result
doesn’t change.

Can you guess what happens if you switch scaledToFit and aspectRatio? Would
you expect the final result to change?

You’ve probably figured it out already: scaledToFit overrides the fill mode set in
the previous line — so now that becomes the redundant modifier. However, if you
change the aspect ratio, to something like 2:

.aspectRatio(2 / 1, contentMode: .fill)

The result is quite different in this case, because you’re making the width twice as
wide, while keeping the height unaltered:

Custom ratio

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 136

That said, you can revert that aspect radio change, and safely delete the
redundant .scaledToFit. The code for the background would then look like the
following:

Image("welcome-background", bundle: nil)
 .resizable()
 .aspectRatio(1 / 1, contentMode: .fill)
 .edgesIgnoringSafeArea(.all)
 .saturation(0.5)
 .blur(radius: 5)
 .opacity(0.08)

Splitting Text
Now that the background image is in good shape, you need to rework the welcome
text to make it look nicer. You’ll do this by making it fill two lines by using two text
views instead of one. Since the text should be split vertically, all you have to do is
add a VStack around the welcome text, like so:

VStack {
 Text("Welcome to Kuchi")
 .font(.system(size: 30))
 .bold()
 .foregroundColor(.red)
 .multilineTextAlignment(.center)
 .lineLimit(2)
}

Next, you can split the text into two separate views:

VStack {
 Text("Welcome to")
 .font(.system(size: 30))
 .bold()
 .foregroundColor(.red)
 .multilineTextAlignment(.center)
 .lineLimit(2)
 Text("Kuchi")
 .font(.system(size: 30))
 .bold()
 .foregroundColor(.red)
 .multilineTextAlignment(.center)
 .lineLimit(2)
}

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 137

You may notice that the last three modifiers in each Text are the same. Since they
are modifiers implemented in View, you can refactor the code by applying them to
the parent stack view, instead of to each individual view:

VStack {
 Text("Welcome to")
 .font(.system(size: 30))
 .bold()
 Text("Kuchi")
 .font(.system(size: 30))
 .bold()
}
.foregroundColor(.red)
.multilineTextAlignment(.center)
.lineLimit(2)

This is a very powerful feature: when you have a container view, and you want one or
more modifiers to be applied to all subviews, simply apply those modifiers to the
container.

Note: You might be wondering why you didn’t do the same thing for the first
two modifiers of each contained view. Look at the documentation for .font
and .bold, and you’ll see that these are modifiers on the Text type. Therefore
they aren’t available on View and VStack.

To make the text appear nicer in respect to the image at its left, it’s better to make
the two text views left aligned instead of centered. Because of the refactoring you’ve
just done, you need to change that in one place only, instead of two:

.multilineTextAlignment(.leading)

But you may notice that it doesn’t work. That’s because you’ve split the text to two
different Text, and each one is sized accordingly to its content, so changing the text
alignment won’t have any visual effect.

In order to align the two Text views to the left, you have to change the alignment of
the views contained in the VStack, which, by default, are centered - unfortunately
there’s no modifier to change that, the only way is to specify the alignment in the
initializer.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 138

Remove the .multilineTextAlignment(.leading) modifier, and pass the
alignment parameter to VStack as follows:

VStack(alignment: .leading) {

The line limit is also no longer needed. You could just remove it, but that would
make the text free to span over multiple lines - unlikely to happen in this case, but
just in case you can just ask each Text view to stay in one line only, by changing 2 to
1:

.lineLimit(1)

The VStack code should now look like:

VStack(alignment: .leading) {
 Text("Welcome to")
 .font(.system(size: 30))
 .bold()
 Text("Kuchi")
 .font(.system(size: 30))
 .bold()
}
.foregroundColor(.red)
.lineLimit(1)

Wouldn’t it be nice if the two lines of text had different font sizes? To achieve this,
use the .headline style on the welcome text, replacing .font(.system(size:
30)) with the following:

.font(.headline)

For the Kuchi text, use a .largeTitle instead, replacing .font(.system(size:
30)) with the following:

.font(.largeTitle)

Finally, you’ll style the container slightly to make it a little less cramped. You’ll need
some padding between the image and the text; you can use the .padding modifier
and pass .horizontal, which adds padding horizontally on both sides. You could
alternately pass other edges, such as top or leading, either standalone or as an array
of edges. Also, you can specify an optional length for the padding. If you don’t
specify this, SwiftUI will apply a default.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 139

The code for the entire text stack should look like this:

VStack(alignment: .leading) {
 Text("Welcome to")
 .font(.headline)
 .bold()
 Text("Kuchi")
 .font(.largeTitle)
 .bold()
}
.foregroundColor(.red)
.lineLimit(1)
.padding(.horizontal)

The resulting view should appear as follows:

Welcome to Kuchi

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 140

Markdown
New to SwiftUI 3.0, Text now supports a subset of markdown, which is a markup
language for creating formatted text. If you don’t know what it is, check out the links
at the end of this chapter.

Usage of markdown is possible because of the additions made to the new
AttributedString type introduced in iOS 15 and macOS 12, which is the Swift
“native” counterpart of the NSAttributedString type that you’ve probably used in
the past. To make it clear, AttributedString is to NSAttributedString as String
is to NSString.

The two Text components you’ve used above use the .bold() modifier to make the
text bold. You can also get rid of it and use markdown to achieve the same result:

 Text("**Welcome to**")
 .font(.headline)
 Text("**Kuchi**")
 .font(.largeTitle)

Feel free to experiment with it and try other formatters, such as italic (*Kuchi* or
Kuchi) and strikethrough (~~Kuchi~~). But keep in mind that only the following
ones are currently supported:

• Bold

• Italic

• Strikethrough

• Inline code

• Link

Sorry, no ordered or unordered lists work as of now. :-[

Although in this simple example no method has a distinctive advantage over the
other, the real power of markdown becomes perceivable when you need to apply
formatting to substrings of a text.

For instance, if you want to print a text like “I am an awesome SwiftUI Software
Engineer”, using “native” SwiftUI you’d have to use three different Text
components (one for the unformatted text, one for the italic and one for the bold),
whereas using markdown you’d use one Text, with its text set to I am an
awesome **SwiftUI Software Engineer**.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 141

Note that Text interprets markdown only when used with string literals — if you
have your text stored in a variable or property, it won’t work. But fear not, there’s a
known workaround for that, which is to wrap the variable in an initializer, such as
Text(.init(myTextInAVariable)).

Accessibility With Fonts
Initially, all of your views that display text used a font(.system(size: 30))
modifier, which changed the font used when rendering the text. Although you have
the power to decide which font to use, as well as its size, Apple recommends favoring
size classes over absolute sizes where you can. This is why, in the previous section,
you used styles such as .headline and .largeTitle in place of .system(size: 30)

All sizes are defined in Font as pseudo-enum cases: They’re actually static
properties. UIKit and AppKit have corresponding class sizes, so you probably already
know a little bit about title, headline, body, or other properties like that.

Using size classes gives the user the freedom to increase or decrease all fonts used in
your app relative to a reference size: if the reference size is increased, all fonts
become larger in proportion, and if decreased, then the fonts become smaller. This is
a huge help to people with eyesight issues or visual impairments.

That was a long journey! The concepts here are pretty simple but necessary to get
you started in your SwiftUI development.

Before moving on, undo the changes to the Text components so they use .bold()
instead of markdown - This was a brief introduction markdown, but you won’t use it
in the Kuchi app.

Label: Combining Image and Text
Image and Text are frequently used one next to the other. Combining them is pretty
easy — you just need to embed them into an HStack. However, to simplify your
work, Apple has given you a component specifically for that purpose: Label.

Given the work you’ve done so far, resulting in a view with text and image, it’s time
to test this new component.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 142

Label has a few initializers, taking a raw string, and either a resource identifier or a
system image identifier. For example, to display welcome text along with a waving
hand icon, you’d write code like this:

Label("Welcome", systemImage: "hand.wave")

This displays a label as follows:

Label Example

It also allows you to provide your custom view for the text and image. Since you’ve
already put quite a lot of effort to customize your text and image, it’s the most
appropriate choice to follow.

This initializer takes two parameters: a title and an icon, and it looks like this:

init(title: () -> Title, icon: () -> Icon)

To see it in action, you need to refactor this code:

HStack {
 Image(systemName: "table")
 .resizable()
 .frame(width: 30, height: 30)
 .overlay(Circle().stroke(Color.gray, lineWidth: 1))
 .background(Color(white: 0.9))
 .clipShape(Circle())
 .foregroundColor(.red)

 VStack(alignment: .leading) {
 Text("Welcome to")
 .font(.headline)
 .bold()
 Text("Kuchi")
 .font(.largeTitle)
 .bold()
 }
 .foregroundColor(.red)
 .lineLimit(1)
 .padding(.horizontal)
}

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 143

So the Image goes to the Label’s icon parameter, and the VStack (along with its
modifiers) to the title parameter.

Change the above code (HStack included) to:

Label {
 // 1
 VStack(alignment: .leading) {
 Text("Welcome to")
 .font(.headline)
 .bold()
 Text("Kuchi")
 .font(.largeTitle)
 .bold()
 }
 .foregroundColor(.red)
 .lineLimit(2)
 .multilineTextAlignment(.leading)
 .padding(.horizontal)
// 2
} icon: {
 // 3
 Image(systemName: "table")
 .resizable()
 .frame(width: 30, height: 30)
 .overlay(Circle().stroke(Color.gray, lineWidth: 1))
 .background(Color(white: 0.9))
 .clipShape(Circle())
 .foregroundColor(.red)
}

Here’s what’s happening above:

1. This is the text component, consisting of two Texts embedded in a vertical stack.

2. Note how the Swift multiple closures syntax is used here.

3. This is the image component.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 144

After applying this change, you notice, however, that it doesn’t look very good: The
icon and the text are not vertically aligned.

Refactored with label

To fix this, you need to override the way the label arranges its components. You can
apply a style to a Label; the problem is that none of the available seems to fit with
your needs:

• DefaultLabelStyle: This is the default value, which corresponds to specifying no
style at all. It displays both the title and the icon.

• IconOnlyLabelStyle: This displays the icon only, ignoring the title.

• TitleOnlyLabelStyle: This displays the title only, hiding the icon.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 145

The good news is that if none fits, you can build your own. To create a custom style,
you need to create a struct that conforms to the LabelStyle protocol, which has one
requirement only:

func makeBody(configuration: Self.Configuration) -> Self.Body

Add a new file to the Welcome group using the Swift File template, and name it
HorizontallyAlignedLabelStyle.swift. Be sure to select both iOS and macOS
targets.

Next, create an empty skeleton for the style:

import SwiftUI

struct HorizontallyAlignedLabelStyle: LabelStyle {
 func makeBody(configuration: Configuration) -> some View {
 return EmptyView()
 }
}

The configuration parameter contains both the text and the icon parameters
passed to the Label initializer — all you have to do is embed them into an HStack:

func makeBody(configuration: Configuration) -> some View {
 HStack {
 configuration.icon
 configuration.title
 }
}

This solves the alignment issue, because HStack by default vertically aligns all its
children at the center.

And that’s all! You’ve created a custom style. To apply it, you need to add, you
guessed it, a modifier to the Label that you added earlier in WelcomeView.swift.

In WelcomeView, at the bottom of Label (after the last closing curly brace) add the
following modifier:

.labelStyle(HorizontallyAlignedLabelStyle())

As you can see, the modifier is named labelStyle(), and it takes an instance of a
label style, which, as mentioned earlier, is a type that conforms to the LabelStyle
protocol.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 146

This is how it looks:

Label with Custom Style

And yes, you don’t, and shouldn’t, see any difference to what you got in the version
without the Label.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 147

Key Points
• You use the Text and Image views to display and configure text and images

respectively.

• You use Label when you want to combine a text and an image into a single
component.

• Text natively “understands” markdown.

• You use modifiers to change the appearance of your views. Modifiers can be quite
powerful when used in combination, but remember to be aware of the order of the
modifiers, because in some cases it does matter.

• Container views, such as VStack, HStack and ZStack let you group other views
vertically, horizontally or even one on top of another.

Where to Go From Here?
SwiftUI is still fairly new and evolving as a technology. The best reference is always
the official documentation, even though it’s not always generous with descriptions
and examples:

• SwiftUI documentation: apple.co/2MlBqJJ

• The View reference documentation: apple.co/2LEh5Qs

If you want to take a look and browse through the SF Symbols image library:

• SF Symbols: apple.co/2YPtrIx

• SF Symbols App (download): bit.ly/3HjgBL0

To know more about Markdown, check out:

• Markdown on Wikipedia: bit.ly/2VBwiIt

• AttributedString: apple.co/3htf3B0

In the next chapter, you’ll learn about other UI components that are commonly used,
with particular attention to text fields and buttons.

SwiftUI by Tutorials Chapter 5: Intro to Controls: Text & Image

 148

6Chapter 6: Controls & User
Input
By Antonio Bello

In Chapter 5, “Intro to Controls: Text & Image” you learned how to use two of the
most commonly used controls: Text and Image, with also a brief look at Label,
which combines both controls into one.

In this chapter, you’ll learn more about other commonly-used controls for user
input, such as TextField, Button and Stepper and more, as well as the power of
refactoring.

 149

A Simple Registration Form
The Welcome to Kuchi screen you implemented in Chapter 5 was good to get you
started with Text and Image, and to get your feet wet with modifiers. Now, you’re
going to add some interactivity to the app by implementing a simple form to ask the
user to enter her name.

The starter project for this chapter is nearly identical to the final one from Chapter 5
— that’s right, you’ll start from where you left off. The only difference is that you’ll
find some new files included needed to get your work done for this chapter.

If you don’t want to keep working on your own copy, and prefer to use this chapter’s
starter project, you can skip to the A bit of refactoring below right away.

If you, on the other hand, prefer to keep working on your own copy of the project
borrowed from the previous chapter, you need to manually add to both iOS and
macOS targets the additional files needed in this chapter from the starter project:

• Shared/Profile/Profile.swift

• Shared/Profile/Settings.swift

• Shared/Profile/UserManager.swift

To do so, it’s better if you just add the Shared/Profile folder, so that Xcode can
create the Profile group, and automatically add all files in it contained without any
extra step. To do so:

• In the Project navigator right click on the Shared group.

• Choose Add files to “Kuchi” in the dropdown menu.

• Make sure that both iOS and macOS targets are selected.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 150

• Make sure that the Copy items if needed is enabled.

• Select the Profile folder from this chapter’s starter project, and then click Add.

Adding the Profile group

You will use these new files later in this chapter — but feel free to take a look.

A Bit of Refactoring
Often, you’ll need to refactor your work to make it more reusable and to minimize
the amount of code you write for each view. This is a pattern that’s used frequently
and often recommended by Apple.

The new registration view you will be building will have the same background image
as the welcome view you created in Chapter 5. Here’s the first case where refactoring
will come in handy. You could simply copy code from the welcome view and paste it,
but that’s not very reusable and maintainable, is it?

SwiftUI by Tutorials Chapter 6: Controls & User Input

 151

First of all, create a Components group in the Project navigator by right-clicking on
the Shared/Welcome group and choosing New Group.

Then, create a new component view by right-clicking the Components group, and
creating a new SwiftUI View named WelcomeBackgroundImage — again, be sure
to add to both targets, iOS and macOS.

Next, open WelcomeView, select the following lines of code, which define the
background image, and copy them:

Image("welcome-background")
 .resizable()
 .aspectRatio(1 / 1, contentMode: .fill)
 .edgesIgnoringSafeArea(.all)
 .saturation(0.5)
 .blur(radius: 5)
 .opacity(0.08)

Then, paste in the body implementation of WelcomeBackgroundImage the code
you’ve copied above (replacing the default Text it contains). The body should now
look as follows:

var body: some View {
 Image("welcome-background")
 .resizable()
 .aspectRatio(1 / 1, contentMode: .fill)
 .edgesIgnoringSafeArea(.all)
 .saturation(0.5)
 .blur(radius: 5)
 .opacity(0.08)
}

Now, go back to WelcomeView and replace the lines of code you previously copied
with the newly created view, so that it looks like this:

var body: some View {
 ZStack {
 WelcomeBackgroundImage()

 Label {
 ...

SwiftUI by Tutorials Chapter 6: Controls & User Input

 152

Make sure that you’ve enabled automatic preview (resume it if necessary), and you’ll
notice that nothing has changed, which is what you’d expect — because you
refactored your code without making any functional changes.

Refactored welcome view

Since the topic of this section is refactoring, you’ll go a step further and refactor:

• The icon image that’s displayed in the welcome view.

• The entire Welcome view, composed by the icon and the “Welcome to Kuchi” text.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 153

Exercise: Now that you’ve unlocked the SwiftUI refactoring ninja achievement,
why don’t you try to do the two refactoring on your own, and then compare
your work with how it’s been done below? You can name the two new views
LogoImage and WelcomeMessageView.

Refactoring the Logo Image

In WelcomeView.swift select the code for the Image:

Image(systemName: "table")
 .resizable()
 .frame(width: 30, height: 30)
 .overlay(Circle().stroke(Color.gray, lineWidth: 1))
 .background(Color(white: 0.9))
 .clipShape(Circle())
 .foregroundColor(.red)

Then:

• Copy the code to your clipboard.

• Replace the code with LogoImage().

• Create a new LogoImage.swift file in the Components group, using the SwiftUI
template.

• Replace the body implementation of LogoImage with the code you’ve copied from
the welcome view.

If you open WelcomeView and resume the preview, once again you won’t notice any
differences — which means the refactoring worked.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 154

Refactoring the Welcome Message

In WelcomeView, you’ll do this a bit differently:

• Command-Click on Label. A popup menu will appear:

Refactored subview

SwiftUI by Tutorials Chapter 6: Controls & User Input

 155

• Choose Extract Subview. Xcode will replace the selected component with
ExtractedView(), and will move its implementation at the end of the file, in a
new ExtractedView struct.

Refactored extracted subview

SwiftUI by Tutorials Chapter 6: Controls & User Input

 156

• If Xcode is not so kind to put the new view name in edit mode, right click on
ExtractedView and choose Refactor and then Rename.

• Type a new name in — Call it WelcomeMessageView and press Enter.

• Now you’re going to move it to a new file. Select the entire WelcomeMessageView
struct and cut it.

• Next, create a new WelcomeMessageView file in the Components group, using
the SwiftUI template.

• Replace the implementation of WelcomeMessageView with the code you’ve cut
from the welcome view.

Once again, if you open WelcomeView and resume the preview, you won’t notice
any difference.

Good job! You’ve just refactored the welcome view making it, and the components it
consists of, much more reusable.

Creating the Registration View
The new registration view is… well, new, so you’ll have to create a file for it. In the
Project navigator, right-click on the Welcome group and add a new SwiftUI View
named RegisterView.

Next, replace its body implementation with:

VStack {
 WelcomeMessageView()
}

SwiftUI by Tutorials Chapter 6: Controls & User Input

 157

And with a single line of code, you’ve just proved how easy and powerful a reusable
small components can be.

Initial Register View

You can also add a background view, which, thanks to the previous refactoring, is as
simple as adding a couple lines of code. Replace the body implementation with this
code:

ZStack {
 WelcomeBackgroundImage()
 VStack {
 WelcomeMessageView()
 }
}

SwiftUI by Tutorials Chapter 6: Controls & User Input

 158

Voilà, lunch is served. Faster than a microwave!

Microwave

If you try to run the app, you’ll notice it still displays the welcome view. Well,
probably you won’t notice that easily, because the two views look exactly the same.
But that’s not the point. :]

Anyway, the app is still configured to display the welcome view on launch. To change
that, open KuchiApp and replace WelcomeView with RegisterView:

var body: some Scene {
 WindowGroup {
 RegisterView()
 }
}

And do the same to the preview, so that it looks like:

struct KuchiApp_Previews: PreviewProvider {
 static var previews: some View {
 RegisterView()
 }
}

SwiftUI by Tutorials Chapter 6: Controls & User Input

 159

Power to the User: The TextField
With the refactoring done, you can now focus on giving the user a way to enter her
name into the app.

Registration form

In the previous section, you added a VStack container to RegisterView, and that
wasn’t a random decision, because you need it now to stack content vertically.

TextField is the control you use to let the user enter data, usually by way of the
keyboard. If you’ve built an iOS or macOS app before, you’ve probably met its older
cousins, UITextField and NSTextField.

In its simplest form, you can add the control using the initializer that takes a title
and a text binding.

The title is the placeholder text that appears inside the text field when it is empty,
whereas the binding is the managed property that takes care of the 2-way
connection between the text field’s text and the property itself.

You will learn more about binding in Chapter 8: “State & Data Flow — Part I”. For
now you just need to know that to create and use a binding you have to:

• Add the @State attribute to a property.

• Prefix the property with $ to pass the binding instead of the property value.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 160

So, add this property to RegisterView:

@State var name: String = ""

And then add the text field after WelcomeMessageView():

TextField("Type your name...", text: $name)

You’d expect a text field to appear in the preview, but nothing happens — it looks the
same as before. What gives?

A closer inspection reveals the problem: if you click TextField in the code editor,
you’ll notice that the text field gets selected in the preview — it’s just that it’s too
wide, as you can see from the blue rectangle:

Wide text field

SwiftUI by Tutorials Chapter 6: Controls & User Input

 161

Challenge: Can you figure out why is this happening? Hint: it’s caused by the
background image.

The reason is that the background image is configured with .fill content mode,
which means that the image expands to occupy as much of the parent view space as
possible. Because the image is a square, it fits the parent vertically, but that means
that, horizontally, it goes way beyond the screen boundaries.

The way to fix this is to avoid using a ZStack and to position the background view
behind the actual content using the .background modifier on the VStack instead.

Remove the ZStack from the register view, and then add
WelcomeBackgroundImage() as a .background modifier to the VStack:

var body: some View {
 VStack {
 WelcomeMessageView()
 TextField("Type your name...", text: $name)
 }
 .background(WelcomeBackgroundImage())
}

Note: In UIKit, views have a backgroundColor property, which you can use to
specify a uniform background color. The SwiftUI counterpart is more
polymorphic; the .background modifier accepts any type that conforms to
View, which includes Color, Image, Shape, among others.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 162

With this change, the text field is now visible, but the background looks too small.

Background too small

The reason is that VStack is not using the entire screen, but only what it needs to
render its content. In the picture above you can see its actual size, highlighted in
blue.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 163

To fix this problem, add two Spacers, one at the beginning and the other at the end
of VStack, as follows:

VStack {
 Spacer() // <-- 1st spacer to add

 WelcomeMessageView()
 TextField("Type your name...", text: $name)

 Spacer() // <-- 2nd spacer to add
} .background(WelcomeBackgroundImage())

You’ll know more about Spacer in the next chapter, what you need to know for now
is that it expands in a way to use all space at its disposal. With this change, now the
background images expand as expected.

Text field visible

SwiftUI by Tutorials Chapter 6: Controls & User Input

 164

Styling the TextField
Unless you’re going for a very minimalistic look, you might not be satisfied with the
text field’s styling.

To make it look better, you need to add some padding and a border. For the border,
you can take advantage of the .textFieldStyle modifier, which applies a style to
the text field.

Currently, SwiftUI provides four different styles, which are compared in the image
below:

Text field styles

The “no style” case is explicitly mentioned, but it corresponds to
DefaultTextFieldStyle. You can see that there’s no noticeable difference between
DefaultTextFieldStyle and PlainTextFieldStyle. However,
RoundedBorderTextFieldStyle presents a border with slightly rounded corners.
Note that there’s also a fifth style, SquareBorderTextFieldStyle, but it’s available
on macOS only.

For Kuchi, you’re going to provide a different, custom style. There are three options
for doing this:

• Apply modifiers to the TextField as needed.

• Create your own text field style, by defining a concrete type conforming to the
TextFieldStyle protocol.

• Create a custom modifier, by defining a concrete type conforming to the
ViewModifier protocol.

Whichever solution you choose, it consists of directly or indirectly applying a list of
modifiers in sequence, one after the other, so the most logical way to start is with the
first method.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 165

Apply the following modifiers to the text field:

.padding(
 EdgeInsets(
 top: 8, leading: 16, bottom: 8, trailing: 16))
.background(Color.white)
.overlay(
 RoundedRectangle(cornerRadius: 8)
 .stroke(lineWidth: 2)
 .foregroundColor(.blue)
)
.shadow(
 color: Color.gray.opacity(0.4),
 radius: 3, x: 1, y: 2)

The figure below shows the effect of each modifier:

Text field border style

SwiftUI by Tutorials Chapter 6: Controls & User Input

 166

This is what each does:

1. Creates an unmodified text field.

2. Adds padding of 16 points vertically, and 8 points horizontally.

3. Adds a non-transparent white background.

4. Creates an overlay for the border, using a rounded rectangle with a corner radius
of 8.

5. Adds a stroke effect to keep the border only, leaving the content behind visible.

6. Makes the border blue.

7. Adds a shadow.

You’ll notice that the text field has no spacing from the left and right edges; the
padding you added in Step 2 adds padding between the text field and the views it
contains. To add padding between the text field and its parent view, you’ll need to
add a padding modifier to the view that contains the text field, the VStack.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 167

In the containing VStack, right before .background(WelcomeBackgroundImage()),
but after the stack’s closing bracket, add the following:

.padding()

Form with padding

Creating a Custom Text Style
Now that you have a list of modifiers applied to the text field which provide a style
you like, you can convert this list into a custom text style, so that you can declare it
once and reuse every time you need it.

A custom text field style must adopt the TextFieldStyle, which declares one
method only:

public func _body(
 configuration: TextField<Self._Label>) -> some View

SwiftUI by Tutorials Chapter 6: Controls & User Input

 168

It receives the text field in the configuration parameters, to which you can apply as
many modifiers as you want, returning the resulting view.

In RegisterView, before the RegisterView struct, create a new custom text style:

struct KuchiTextStyle: TextFieldStyle {
 public func _body(
 configuration: TextField<Self._Label>) -> some View {
 return configuration
 }
}

Left as is, this text style doesn’t do anything, because it returns the same text field it
receives. To customize it, you need to add modifiers.

So, move the four modifiers you applied earlier to the text field to this method. In
RegisterView select and cut these lines:

.padding(
 EdgeInsets(
 top: 8, leading: 16, bottom: 8, trailing: 16))
.background(Color.white)
.overlay(
 RoundedRectangle(cornerRadius: 8)
 .stroke(lineWidth: 2)
 .foregroundColor(.blue)
)
.shadow(
 color: Color.gray.opacity(0.4),
 radius: 3, x: 1, y: 2)

and paste them into the KuchiTextStyle’s body implementation, after the return
configuration statement, so that it looks like:

public func _body(
 configuration: TextField<Self._Label>) -> some View {

 return configuration
 .padding(
 EdgeInsets(
 top: 8, leading: 16, bottom: 8, trailing: 16))
 .background(Color.white)
 .overlay(
 RoundedRectangle(cornerRadius: 8)
 .stroke(lineWidth: 2)
 .foregroundColor(.blue)
)
 .shadow(color: Color.gray.opacity(0.4),
 radius: 3, x: 1, y: 2)
}

SwiftUI by Tutorials Chapter 6: Controls & User Input

 169

What you are returning is the resulting text field after applying the four modifiers.

Now you can use this new style. Head back to RegisterView, and add it to the text
field, using the textFieldStyle modifier, so that it looks like:

TextField("Type your name...", text: $name)
 .textFieldStyle(KuchiTextStyle())

Here you create a new instance of KuchiTextStyle, and pass it to the
textFieldStyle. Simple!

If you look at the preview, you’ll see the same as before refactoring — nothing has
changed from a functional standpoint — which is expected.

Form with custom text style

SwiftUI by Tutorials Chapter 6: Controls & User Input

 170

Now, you don’t need this custom style anymore, because in the next section you’ll go
for the custom modifier path. Undo all the changes (pressing Control + Z
repeatedly) until you see the 4 modifiers applied again to the text field, and the
newly created KuchiTextStyle gone — verify that the RegisterView’s body
implementation is:

var body: some View {
 VStack {
 Spacer()

 WelcomeMessageView()
 TextField("Type your name...", text: $name)
 .padding(
 EdgeInsets(top: 8, leading: 16, bottom: 8, trailing:
16))
 .background(Color.white)
 .overlay(
 RoundedRectangle(cornerRadius: 8)
 .stroke(lineWidth: 2)
 .foregroundColor(.blue)
)
 .shadow(color: Color.gray.opacity(0.4),
 radius: 3, x: 1, y: 2)

 Spacer()
 }
 .padding()
 .background(WelcomeBackgroundImage())
}

Creating a Custom Modifier
The reason for preferring the custom modifier over the custom text field style is that
you can apply the same modifier to any view, including buttons — which, spoiler
alert, is what you’re going to do soon.

Add a new file to the Components group using the SwiftUI View template, and
name it BorderedViewModifier.

First, delete the autogenerated BorderedViewModifier_Previews struct, as you
don’t need it for a custom modifier. Next, change the protocol that
BorderedViewModifier conforms to, from View to ViewModifier:

struct BorderedViewModifier: ViewModifier {

SwiftUI by Tutorials Chapter 6: Controls & User Input

 171

A ViewModifier defines a body member, but instead of being a property, it’s a
function that takes content — the view the modifier is applied to — and returns
another view resulting from the modifier being applied to the content. You see a
recurring pattern because it’s conceptually similar to the custom text field style.

Replace the body property with the following function:

func body(content: Content) -> some View {
 content
}

The code, as is, returns the same view the modifier is applied to. Don’t worry, you’re
not done yet! :]

Go back to RegisterView, then select and cut again all modifiers applied to the text
field:

.padding(
 EdgeInsets(top: 8, leading: 16, bottom: 8, trailing: 16))
.background(Color.white)
.overlay(
 RoundedRectangle(cornerRadius: 8)
 .stroke(lineWidth: 2)
 .foregroundColor(.blue)
)
.shadow(
 color: Color.gray.opacity(0.4),
 radius: 3, x: 1, y: 2)

Next, switch back to BorderedViewModifier and paste these modifiers after
content:

func body(content: Content) -> some View {
 content
 .padding(
 EdgeInsets(top: 8, leading: 16, bottom: 8, trailing: 16))
 .background(Color.white)
 .overlay(
 RoundedRectangle(cornerRadius: 8)
 .stroke(lineWidth: 2)
 .foregroundColor(.blue)
)
 .shadow(
 color: Color.gray.opacity(0.4),
 radius: 3, x: 1, y: 2)
}

SwiftUI by Tutorials Chapter 6: Controls & User Input

 172

That’s it. Now you have a new custom modifier. To apply it, you need to create an
instance of ModifiedContent, a struct that comes with SwiftUI. Its initializer takes
two parameters:

• The content view

• The modifier

Reopen RegisterView, and embed the TextField in a ModifiedContent instance,
as follows:

ModifiedContent(
 content: TextField("Type your name...", text: $name),
 modifier: BorderedViewModifier()
)

After the preview updates, you see that the blue border is correctly applied. But hey,
let’s be honest, that code doesn’t look fantastic. Wouldn’t it be better if you could
replace it with a simpler modifier call, like any regular modifier call?

Turns out all you need to do is create a convenience method in a view extension.
Open BorderedViewModifier, and add the following extension at the end of the
file:

extension View {
 func bordered() -> some View {
 ModifiedContent(
 content: self,
 modifier: BorderedViewModifier()
)
 }
}

Now, you can go back to RegisterView and replace the ModifiedContent
component with the following:

TextField("Type your name...", text: $name)
 .bordered()

SwiftUI by Tutorials Chapter 6: Controls & User Input

 173

The preview will confirm that the modifier is correctly applied — and, you’ve already
guessed, what you see is the same as before, because, again, you haven’t applied any
functional change, just code refactoring.

Form custom modifier

SwiftUI by Tutorials Chapter 6: Controls & User Input

 174

Keyboard and Layout
If you run the app (making sure that the soft keyboard is enabled if you’re using the
simulator) you notice that when you tap the text field the keyboard is automatically
displayed, and the layout automatically adjusted to make sure that the text field is
visible and not covered by the keyboard itself.

However at a closer inspection you can notice that the background image slides to
the right when the keyboard appears, and moves back to its original position when it
disappears.

Background image sliding to the right

SwiftUI by Tutorials Chapter 6: Controls & User Input

 175

The reason behind that behavior is that the height of the view changes when the
keyboard is displayed, as you can see by inspecting the view hierarchy using Xcode’s
Debug View Hierarchy tool:

View height reduction when the keyboard is visible

SwiftUI by Tutorials Chapter 6: Controls & User Input

 176

One way to fix this is to embed the background image in a GeometryReader and
constraint its width. Open WelcomeBackgroundImage and replace the content of
the body property with the following code:

// 1
GeometryReader { geometry in
 Image("welcome-background")
 .resizable()
 .aspectRatio(1 / 1, contentMode: .fill)
 // 2
 .frame(width: geometry.size.width, alignment: .center)
 .edgesIgnoringSafeArea(.all)
 .saturation(0.5)
 .blur(radius: 5)
 .opacity(0.08)
}

The GeometryReader is a powerful (but not to be abused) tool that allows to use the
size and coordinates of its parent to constraint children views. You will learn more
about how SwiftUI layouts views in Chapter 7: “Introducing Stacks and
Containers”.

Here’s what you achieve with these two additions:

1. You wrap the image into a geometry reader.

2. You constraint the image to have the same width as the geometry reader’s
parent.

This gives the image the ability to expand its height to the maximum available to it,
corresponding to the height proposed by the geometry reader’s parent, making it
independent from the view that contains the keyboard, and its height in particular.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 177

Keyboard and Form Tuning
Now that the background is fixed, this is how the simple form built so far should look
like when running the app in the simulator, and with the soft keyboard enabled:

Wide text field

The action key on the keyboard is labelled return, but in some cases you want to
change it, so that it displays next if you have more fields you want to move the focus
to, or done when the field is the last of the form.

You can change the label of the action button in a very easy way, thanks to, you
guessed, a TextField’s modifier. Open RegisterView.swift and right after the text
field, but before the .bordered() modifier, add this line:

.submitLabel(.done)

SwiftUI by Tutorials Chapter 6: Controls & User Input

 178

This instructs the keyboard to show the text associated to the done action. You can’t
specify a custom label though: you are limited to the enum cases of the SubmitLabel
type: done, go, send, join, route, search, return, next and continue.

Note that changing the label won’t alter the key’s behavior — when you press the
done button, the keyboard will be dismissed as it did before the change. However you
can associate an action — more on that in the next section: “Taps and buttons”.

Another feature that SwiftUI offers is the ability to specify and determine at any time
which control has the focus. To achieve that, you need to add a property to the view -
it can be of any type, as long as it conforms to the Hashable protocol.

Spoiler alert: You will undo the changes you’re doing now, to implement at
the end of this same section an alternative version achieving the same result.

The most natural way to handle focus is by using an enum, with a case for each
control that can obtain the focus — in the case of this RegisterView there’s one field
only to enter the user’s name. So define an enum inside the RegisterView struct:

struct RegisterView: View {
 // Add this enum
 enum Field: Hashable {
 case name
 }
 ...
}

Next, add a property to the view, using the @FocusState attribute after name:

@FocusState var focusedField: Field?

Last, you need to create an association between the enum case and the text field —
this needs to be a two way binding, so that:

• When an enum case is assigned to focusedField, the associated component will
get the focus.

• When a component obtains the focus (in response to a user’s action), the
focusedField property will be set to its corresponding enum case.

The binding is done using, you guessed again, a modifier, which takes a focus state
property binding, plus a value which determines the value associated to the
component.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 179

Add the .focused modifier to the text field as follows:

TextField("Type your name...", text: $userManager.profile.name)
 // Add this modifier
 .focused($focusedField, equals: .name)
 .submitLabel(.done)
 .bordered()

With this modifier you’re telling SwiftUI:

• When focusField is .name, give this text field focus.

• When this field gets focus, set focusField to .name.

Now, if you run the app, you won’t notice any difference — that’s because you’ve
created the binding, but you’re not using yet. You could think of initializing the field
with a default value, so that a field has focus when the view is displayed, but that’s
considered an anti-pattern, and it won’t have any effect — feel free to try it.

What you can do in this simple form is to remove the focus from the text field when
the OK button is tapped. You’ll do that later in this chapter.

However, in this form you have one field only, so using an enum is a bit overkill,
don’t you agree? The Apple Engineers have thought about that, and implemented an
alternative way that relies on booleans rather than enums.

The idea is to bind a component to a boolean property. If you have multiple
components, you need a dedicated property for each component.

Since this solution is a better fit in the current scenario, let’s change the
implementation to use it:

• First of all, delete the Field enum altogether.

• Next, replace the focusField property with this new implementation:

@FocusState var nameFieldFocused: Bool

The new property is a boolean, so it can be either true or false, reflecting the
current focus state of the bound component, which can be with focus or without
focus.

As anticipated a few lines above, you’ll use the focus later in this chapter, when
discussing about submitting the form — be patient to see it in action.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 180

A Peek at TextField’s Initializer
TextField has several initializers, many available in pairs, with each pair having a
localized and non-localized version for the title parameter.

The version used in this chapter is the non-localized version that takes a title and a
binding for the editable text:

public init<S>(
 _ title: S,
 text: Binding<String>
) where S : StringProtocol

There are several other initializer overloads — one of which is the one taking an
additional closures that can be used to perform more processing before and after the
user input:

• onEditingChanged: Called when the edit obtains focus (when the Boolean
parameter is true) or loses focus (when the parameter is false).

Another pair of initializers take an additional formatter. The non localized version
has this signature:

public init<S, T>(
 _ title: S,
 value: Binding<T>,
 formatter: Formatter
) where S : StringProtocol

The differences from the other pair are such:

1. The formatter parameter, which is an instance of a class inherited from
Foundation’s abstract class Formatter. It’s usable when the edited value is of a
different type than String — for instance, a number or a date — but you can also
create custom formatters.

2. The T generic parameter determines the actual underlying type handled by the
TextField.

For more information about formatters, take a look at Data Formatting (https://
apple.co/2MNqO7q).

SwiftUI by Tutorials Chapter 6: Controls & User Input

 181

Another interesting overload takes a new pair of parameters that you can pass to the
initializer:

• prompt lets you pass a Text instance that will be used for the placeholder text —
The difference compared to the title parameter is that you can apply custom
formatting, such as changing font.

• label lets you pass a View which describes the purpose of the text field.

These two parameters are used in different ways depending on the platform where
the app runs:

• On macOS the label is displayed next to the leading edge of the text field, and the
prompt as the placeholder text.

• On iOS the label will be used as placeholder, if provided, otherwise the prompt will
be used.

Taps and Buttons
Now that you’ve got a form, the most natural thing you’d want your user to do is to
submit the form. And the most natural way of doing that is using a dear old submit
button.

The SwiftUI button is far more flexible than its UIKit/AppKit counterpart. You aren’t
limited to using a text label alone or in combination with an image for its content.

Instead, you can use anything for your button that’s a View. You can see this from its
declaration, which makes use of a generic type:

struct Button<Label> where Label : View

The generic type is the button’s visual content, which must conform to View.

That means a button can contain not only a base component, such as a Text or an
Image, but also any composite component, such as a pair of Text and Image controls,
enclosed in a vertical or horizontal stack, or even anything more complex that you
can dream up.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 182

Adding a button is as easy as declaring it: you simply specify a label and attach a
handler. Its signature is:

init(
 action: @escaping () -> Void,
 @ViewBuilder label: () -> Label
)

The initializer takes two parameters, which are actually two closures:

• action: The trigger handler.

• label: The button content.

Note: The tap handler parameter is referred to as action instead of tap or
tapAction — and if you read the documentation, it’s called a trigger handler,
not tap handler.

That’s because in iOS it’s a tap, but in macOS it can be a mouse click, in
watchOS a digital crown press, and so forth.

Note: The button initializer takes the trigger handler as the first parameter,
instead of the last, breaking the common practice in Swift of giving action
closures the last position.

This means that you can’t use the single trailing closure syntax. The reason is
very likely because that pattern changes in SwiftUI, where the last parameter
is always the view declaration — which, by the way, can use the same trailing
closure syntax. However you can always use the multiple trailing closure syntax,
new to Swift 5.3.

Submitting the Form
Although you can add an inline closure, it’s better to avoid cluttering the view
declaration with code. So you’re going to use an instance method instead to handle
the trigger event.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 183

In RegisterView add the button after the TextField:

Button(action: registerUser) {
 Text("OK")
}

Then, after the RegisterView struct, add this extension, containing the
registerUser() event handler:

// MARK: - Event Handlers
extension RegisterView {
 func registerUser() {
 print("Button triggered")
 }
}

Now run the app in the Simulator and when you press OK a message will be printed
to the Xcode console.

Button tap

Now that the trigger handler is wired up, you should do something more useful than
printing a message to the console. The project comes with a UserManager class that
takes care of saving and restoring a user and the user settings respectively to and
from the user defaults.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 184

UserManager conforms to ObservableObject, a protocol that enables the class to be
used in views. It triggers a view update when the instance state changes. This class
exposes two properties — profile and settings – marked with the @Published
attribute, which identifies the state that triggers view reloads.

That said, you can delete the name property in RegisterView, and replace with an
instance of UserManager:

@EnvironmentObject var userManager: UserManager

It’s marked with the @EnvironmentObject attribute because you’re going to inject
an instance of it once for the whole app, and retrieve it from the environment
anywhere it is needed. You will learn more about ObservableObject and
@EnvironmentObject in Chapter 9: “State & Data Flow — Part II”.

Next, in the TextField, you have to change the $name reference to
$userManager.profile.name, so that it looks like the following:

TextField("Type your name...", text: $userManager.profile.name)
 .focused($nameFieldFocused)
 .submitLabel(.done)
 .bordered()

Lastly, in registerUser() replace the print statement with this more useful
implementation:

func registerUser() {
 userManager.persistProfile()
}

Now, if you try to preview this view, it will fail. That’s because, as mentioned above,
an instance of UserManager should be injected. You do this in the
RegisterView_Previews struct, by passing a user manager to the view via
a .environmentObject modifier. Update the RegisterView_Previews
implementation so that it looks like this:

struct RegisterView_Previews: PreviewProvider {
 static let user = UserManager(name: "Ray")

 static var previews: some View {
 RegisterView()
 .environmentObject(user)
 }
}

SwiftUI by Tutorials Chapter 6: Controls & User Input

 185

Likewise, if you run the app in the Simulator, it will crash. The change you’ve just
made is only for the preview, and it doesn’t affect the running app. You need to make
changes in KuchiApp.swift as well. Open it and add this property and initializer to
KuchiApp:

 let userManager = UserManager()

 init() {
 userManager.load()
 }

This creates an instance of UserManager, and makes sure the stored user, if
available, is loaded. Next, use the environmentObject modifier on the
RegisterView instance to inject it:

var body: some Scene {
 WindowGroup {
 RegisterView()
 // Add this line
 .environmentObject(userManager)
 }
}

Last, you also need to update the app preview, which will crash if you don’t provide
the user manager like you did for RegisterView_Previews. Scroll down to the end
of the file and replace the whole KuchiApp_Previews with:

struct KuchiApp_Previews: PreviewProvider {
 static let userManager = UserManager(name: "Ray")
 static var previews: some View {
 RegisterView()
 .environmentObject(userManager)
 }
}

SwiftUI by Tutorials Chapter 6: Controls & User Input

 186

Styling the Button
The button is fully operative now; it looks good, but not great. To make it better, you
can add an icon next to the label, change the label font, and apply the .bordered()
modifier you created for the TextField earlier.

In RegisterView.swift, locate the button, and replace it with this code:

Button(action: self.registerUser) {
 // 1
 HStack {
 // 2
 Image(systemName: "checkmark")
 // 3
 .resizable()
 .frame(width: 16, height: 16, alignment: .center)
 Text("OK")
 // 4
 .font(.body)
 .bold()
 }
}
// 5
.bordered()

You should already be able to discern what this code does, but here’s a breakdown:

1. As previously stated, the label parameter can return multiple child views, but
here you’re using a horizontal stack to group views horizontally. If you omit this,
the two components will be laid out vertically instead.

2. You add a checkmark icon.

3. You make the icon resizable, centered, and with fixed 16×16 size. You need to
use .resizable() because otherwise the image would keep its original size, and
ignore the size of the view it is contained in.

4. You change the label font, specifying a .body type and a bold weight.

5. You apply the .bordered modifier that you’ve created earlier, to add a blue
border with rounded corners.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 187

If you did everything correctly, this is what your preview should look like:

Styled button

New to SwiftUI 3.0, you can also use a style thanks to the new .buttonStyle(_:)
modifier, which accepts an instance of a type conforming to the
PrimitiveButtonStyle protocol.

There’s a list of predefined styles with which you can immediately use, such as
bordered, borderedProminent, borderless, card, link and plain (note that each
platform uses a subset of them, so for example link and card are not available in
iOS). There’s also an automatic style, which you can use to let SwiftUI decide what’s
the most appropriate style to use, depending on which platform the app is running.

And, in case you’re wondering, you can also create your own style — in fact that
modifier just needs an object that conforms to PrimitiveButtonStyle, so it works
in a similar way to how custom styles are created for text fields, as you briefly saw in
the previous chapter.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 188

Reacting to Input: Validation
Now that you’ve added a button to submit the form, the next step in a reactive user
interface is to react to the user input while the user is entering it.

It might be quite useful for different reasons, such as:

• Validating the data while it is entered

• Showing a counter of the number of characters typed in

But the list doesn’t end there. The old way of monitoring the input entered by the
user in UIKit was either by way of a delegate or subscribing to a Notification Center
event. You’re likely tempted to look for a similar way to react to input changes, such
as a modifier that takes a handler closure, which is called every time the user presses
a key.

However, the SwiftUI way to monitor for input changes is different.

Say you want to validate the user input, and keep the OK button disabled until the
input is valid. In the old days, you’d subscribe for a value changed event, perform a
logical expression to determine whether to enable or disable the button, and then
update the button state.

The difference in SwiftUI is that you pass the logical expression to a button’s
modifier, and… there is no “and”. That’s all. When a status change occurs, the view is
rerendered, the logical expression is re-evaluated, and the button’s disabled status
is updated.

In RegisterView, add this modifier to the OK button:

.disabled(!userManager.isUserNameValid())

This modifier changes the disabled state. It belongs to the View protocol, so it
applies to any view. It takes one parameter only: a Boolean stating whether the view
is interactable or not.

When the user types in the TextField, the userManager.profile.name property
changes, and that triggers a view update. So, when the button is rerendered, the
expression in .disabled() is re-evaluated, and therefore the button state is
automatically updated when the input changes.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 189

In this app, the requirement for a name is that it has to be at least three characters
long — and this is what isUserNameValid() checks. Now you can run the app and
edit the name: you’ll notice that if the name length is less than 3, the button gets
disabled, and it’s enabled again as soon as you type the 3rd character in.

Button enabled or not

Reacting to Input: Counting Characters
If you’d want to add a label showing the number of characters entered by the user,
the process is very similar. After the TextField, add this code:

HStack {
 // 1
 Spacer()
 // 2
 Text("\(userManager.profile.name.count)")
 .font(.caption)
 // 3
 .foregroundColor(
 userManager.isUserNameValid() ? .green : .red)
 .padding(.trailing)

SwiftUI by Tutorials Chapter 6: Controls & User Input

 190

}
// 4
.padding(.bottom)

Going over this line-by-line:

1. You use a spacer to push the Text to the right, in a pseudo-right-alignment way.

2. This is a simple Text control, whose text is the count of characters of the name
property.

3. You use a green text color if the input passes validation, red otherwise.

4. This adds some spacing from the OK button.

You can now run the app, or enable live preview in Xcode, to see the counter in
action. As you type, it will display the number of entered characters, using a green
number, unless the count is less than 3, in which case it will turn red.

Name counter

SwiftUI by Tutorials Chapter 6: Controls & User Input

 191

Toggle Control
Next up: a new component. The toggle is a Boolean control that can have an on or
off state. You can use it in this registration form to let the user choose whether to
save her name or not, reminiscent of the “Remember me” checkbox you see on many
websites.

The Toggle initializer is similar to the one used for the TextField. One of its
initializers takes a binding and a label view:

public init(
 isOn: Binding<Bool>,
 @ViewBuilder label: () -> Label
)

For the binding, although you could use a state property owned by RegisterView,
it’s better to store it in a place that can be accessed from other views. The
UserManager class already defines a settings property dedicated to that purpose.

After the HStack you added earlier for the name counter, and before the Button, add
the following code:

HStack {
 // 1
 Spacer()

 // 2
 Toggle(isOn: $userManager.settings.rememberUser) {
 // 3
 Text("Remember me")
 // 4
 .font(.subheadline)
 .foregroundColor(.gray)
 }
 // 5
 .fixedSize()
}

SwiftUI by Tutorials Chapter 6: Controls & User Input

 192

Form toggle

The code is very simple and straightforward:

1. You need the spacer to add flexible spacing to the left, to push the toggle toward
the right, and make it right-aligned.

2. You create the Toggle component, binding to
$userManager.settings.rememberUser.

3. This is the label displayed before the component itself.

4. You alter the default style of the label to make it smaller and gray.

5. You ask the toggle to choose its ideal size. Without it, the toggle will try to
expand horizontally, taking all the available space.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 193

This change alone won’t actually add anything functional to the app, besides storing
the toggle state as a property. Replace the implementation of registerUser() with:

func registerUser() {
 // 1
 if userManager.settings.rememberUser {
 // 2
 userManager.persistProfile()
 } else {
 // 3
 userManager.clear()
 }

 // 4
 userManager.persistSettings()
 userManager.setRegistered()
}

In this updated version:

1. You check if the user chose whether to remember herself or not.

2. If yes, then make the profile persistent.

3. Otherwise, clear the user defaults.

4. Finally, store the settings and mark the user as registered.

To see this in effect, you need to run the app. The first time you run it, no user profile
will be stored. Enter a name, enable the “Remember me” toggle, and press OK; the
next time you launch the app, it will prefill the TextField with the name you
entered.

Handling the Focus and the Keyboard
Now that everything is wired up, and the buttons correctly handles the tap, let’s get
back to the focus. The form implemented in this registration view is very simple, so
there’s no advanced use of focus management, but there’s one thing you can do to
improve the user experience.

If you run the app in the simulator, and you tap the text field to edit the user’s name,
the text field obtains the focus, and the soft keyboard is displayed. When you tap the
OK button you notice that the text field still retains the focus, and the keyboard is
still on screen.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 194

Wouldn’t it be better, in terms of user experience, if the text field releases the focus,
and, consequently, the keyboard is automatically hidden?

Given the code you added earlier, the boolean property:

@FocusState var nameFieldFocused: Bool

And the .focused() modifier applied to the text field:

TextField("Type your name...", text: $userManager.profile.name)
 .focused($nameFieldFocused)
 .submitLabel(.done)
 .bordered()

If you want to release the focus, and automatically hide the keyboard, all you have to
do is to set that property to false. The proper place to do that is in the button’s
trigger handler (remember? It’s no longer called the tap handler :-)), which is the
registerUser method.

So set that property to false at the beginning of registerUser():

func registerUser() {
 // Add this line
 nameFieldFocused = false

 if userManager.settings.rememberUser {
 userManager.persistProfile()
 } else {
 userManager.clear()
 }

 userManager.persistSettings()
 userManager.setRegistered()
}

If you now run the app and tap the text field, when you tap the OK button the
keyboard is automatically dismissed and the text field loses the focus. Mission
accomplished!

One additional improvement is to make the keyboard’s Done button to replicate the
tap on OK. You can easily do it by using, could you guess? That’s right, a modifier.
Add this modifier to the text field:

TextField("Type your name...", text: $userManager.profile.name)
 .focused($nameFieldFocused)
 .submitLabel(.done)
 // Add this modifier
 .onSubmit(registerUser)

SwiftUI by Tutorials Chapter 6: Controls & User Input

 195

 .bordered()

With the .onSubmit() modifier you’re asking the text field to execute
registerMethod() when the submit button on the keyboard has been actioned.

Note that it also works if you press the Enter key on a physical keyboard (this is
useful when running on macOS), but also in iOS — in case you don’t have a keyboard
to connect to your phone, you can simply try in the simulator after connecting your
mac keyboard (I/O -> Keyboard -> Connect Hardware Keyboard from the menu, or
⌘+⇧+K, to toggle on and off).

Note that .onSubmit() is not a modifier that works on and with the keyboard only. It
comes into play when a control is submitted, whatever has been used for submitting
it — tapping the Done button of the soft keyboard does cause a submit, and so does
pressing the Enter key on a hardware keyboard, and similar equivalents for other
platforms.

And, not least important, .onSubmit() is part of the View protocol — that means it
is available to any view, although it has not much sense in some of them (think of a
label, for example).

Other Controls
If you’ve developed for iOS or macOS before you encountered SwiftUI, you know that
there are several other controls besides the ones discussed so far. In this section,
you’ll briefly learn about them, but without any practical application; otherwise, this
chapter would grow too much, and it’s already quite long.

Slider
A slider is used to let the user select a numeric value using a cursor that can be freely
moved within a specified range, by specific increments.

There are several initializers you can choose from, but probably the most used is:

public init<V>(
 value: Binding<V>,
 in bounds: ClosedRange<V>,
 step: V.Stride = 1,
 onEditingChanged: @escaping (Bool) -> Void = { _ in }
) where V : BinaryFloatingPoint, V.Stride : BinaryFloatingPoint

SwiftUI by Tutorials Chapter 6: Controls & User Input

 196

Which takes:

1. value: A value binding

2. bounds: A range

3. step: The interval of each step

4. onEditingChanged: An optional closure called when editing starts or ends

Below is an example of this in action:

@State var amount: Double = 0
...

VStack {
 HStack {
 Text("0")
 Slider(
 value: $amount,
 in: 0.0 ... 10.0,
 step: 0.5
)
 Text("10")
 }
 Text("\(amount)")
}

Slider

In this example, the slider is bound to the amount state property and is configured
with an interval ranging from 0 to 10, and increments and decrements in steps of 0.5.

The HStack is used to add two labels at the left and right of the slider, specifying
respectively the minimum and maximum values. The VStack is used to position a
centered Text control below the slider, displaying the currently selected value.

SwiftUI by Tutorials Chapter 6: Controls & User Input

 197

Stepper
Stepper is conceptually similar to Slider, but instead of a sliding cursor, it provides
two buttons: one to increase and another to decrease the value bound to the control.

There are several initializers, with one of the most common ones being this:

public init<S, V>(
 _ title: S,
 value: Binding<V>,
 in bounds: ClosedRange<V>,
 step: V.Stride = 1,
 onEditingChanged: @escaping (Bool) -> Void = { _ in }
) where S : StringProtocol, V : Strideable

This takes the following arguments:

1. title: A title, usually containing the current bound value

2. value: A value binding

3. bounds: A range

4. step: The interval of each step

5. onEditingChanged: An optional closure called when editing starts or ends

An example of its usage is:

@State var quantity = 0.0
...

Stepper(
 "Quantity: \(quantity)",
 value: $quantity,
 in: 0 ... 10,
 step: 0.5
)

Stepper

SwiftUI by Tutorials Chapter 6: Controls & User Input

 198

SecureField
SecureField is functionally equivalent to a TextField, differing by the fact that it
hides the user input. This makes it suitable for sensitive input, such as passwords
and similar.

It offers a few initializers, one of which is the following:

public init<S>(
 _ title: S,
 text: Binding<String>
) where S : StringProtocol

Similar to the controls described earlier, it takes the following arguments:

1. title: A title, which is the placeholder text displayed inside the control when no
input has been entered

2. text: A text binding

To use it for entering a password, you’d write something like:

@State var password = ""
...

SecureField.init("Password", text: $password)
 .textFieldStyle(RoundedBorderTextFieldStyle())

Password empty

Password entered

SwiftUI by Tutorials Chapter 6: Controls & User Input

 199

Key Points
Phew — what a long chapter. Congratulations for staying tuned and focused for so
long! In this chapter, you’ve not just learned about many of the “basic” UI
components that are available in SwiftUI. You’ve also learned the following facts:

• Refactoring and reusing views are two important aspects that should never be
neglected or forgotten.

• You can create your own modifiers using ViewModifier.

• To handle user input, you use a TextField component or a SecureField if the
input is sensitive.

• Buttons are more flexible than their UIKit/AppKit counterparts and enable you to
make any collection of views into a button.

• Validating input is much easier in SwiftUI, because you simply set the rules, and
SwiftUI takes care of applying those rules when the state changes.

• SwiftUI has other controls to handle user input, like toggles, sliders, and steppers.

Where to Go From Here?
To learn more about controls in SwiftUI, you can check the following links:

• Official Documentation: Views and Controls apple.co/2MQgZG1

• WWDC 2019 - SwiftUI Essentials apple.co/2Le3qy6

• More on the GeometryReader: bit.ly/3Rid2bn

In the next chapter, you’ll learn more about view containers. See you there!

SwiftUI by Tutorials Chapter 6: Controls & User Input

 200

7Chapter 7: Introducing
Stacks & Containers
By Antonio Bello

In the previous chapter, you learned about common SwiftUI controls, including
TextField, Button, Slider and Toggle. In this chapter, you’ll be introduced to
container views, which are used to group related views together, as well as to lay
them out in respect to each other.

Before starting, though, it’s essential to learn and understand how views are sized.

 201

Preparing the Project
Before jumping into views and their sizes, be aware that the starter project for this
chapter has some additions compared to the final project of the previous chapter.

If you want to keep working on your own copy, worry not! Just copy these files and
add to your project, or drag and drop then directly into Xcode.

• Practice/ChallengeView.swift

• Practice/ChallengesViewModel.swift

• Practice/ChoicesRow.swift

• Practice/ChoicesView.swift

• Practice/CongratulationsView.swift

• Practice/PracticeView.swift

• Practice/QuestionView.swift

• StarterView.swift

• HistoryView.swift

Layout and Priorities
In UIKit and AppKit, you were used to using Auto Layout to constrain views. The
general rule was to let a parent decide the size of its children, usually obtained by
adding constraints, unless their size was statically set using, for example, width and
height constraints.

To make a comparison with a family model, Auto Layout is a conservative model, or
patriarchal to both parents, if you prefer.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 202

SwiftUI works oppositely instead: The children choose their size, in response to a
size proposed by the parent. It’s more of a modern family model — if you have kids,
you know what I mean!

Size expectation

If you have a Text, and you put it in a View, the Text is given a proposed size when
the view is rendered, corresponding to the parent’s frame size. However, the Text
will calculate the size of the text to display and will choose the size necessary to fit
that text, plus additional padding, if any.

Layout for Views With a Single Child
Open the starter project and go to Practice/ChallengeView.swift, which is a new
view created out of the SwiftUI View template. You can see that it contains a single
Text:

struct ChallengeView: View {
 var body: some View {
 Text("Hello World!")
 }
}

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 203

If you reactivate the preview in Xcode, you’ll see the text displayed at the center of
the screen.

Note: Every view is positioned, by default, at the center of its parent.

Blank Hello World

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 204

This screenshot doesn’t give any indication about the Text’s frame size. Try adding a
red background:

Text("Hello World!")
 .background(Color.red)

Hello World 1

Now you can see that the Text sizes itself with the bare minimum to contain the text
it renders. Change the text to “A great and warm welcome to Kuchi”:

Text("A great and warm welcome to Kuchi")
 .background(Color.red)

You’ll see that the Text resizes its frame to accommodate the new content.

Hello World 2

The rules that SwiftUI applies to determine the size of a parent view and a child view
are:

1. The parent view determines the available frame at its disposal.

2. The parent view proposes that frame size to the child view.

3. Based on the proposal from the parent, the child view chooses its size.

4. The parent view sizes itself such that it contains its child view.

This process is recursive, starting at the root view, down to the last leaf view in the
view hierarchy.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 205

Note: Each modifier applied to a view creates a new view that embeds the
original view. The set of rules described above applies to all the views,
regardless of whether they are individual components, or views generated by
modifiers.

To see this in action, try specifying a fixed frame for Text, plus a new background
color:

Text("A great and warm welcome to Kuchi")
 .background(Color.red)
 // fixed frame size
 .frame(width: 150, height: 50, alignment: .center)
 .background(Color.yellow)

Hello World 3

Interestingly, you can see that the Text has a size that differs from the size of the
view created by the .frame modifier. This shouldn’t surprise you, because the four
rules described above are applied here:

1. The frame view has a fixed size of 150×50 points.

2. The frame view proposes that size to the Text.

3. The Text finds a way to display the text within that size, but using the minimum
without having to truncate (when possible).

Rule 4 is skipped, because the frame view already has a defined size. The Text
automatically arranges the text to display in two lines, because it realizes that it
doesn’t fit in a single line of maximum 150 points without truncation.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 206

If you expand the frame size, you have an additional proof of how views determine
their size. Try, for example, a larger 300×100 size:

.frame(width: 300, height: 100, alignment: .center)

Hello World 4

Now Text has enough width at its disposal to render the text in a single line.
However, it still occupies the exact space needed to render the text (in red
background), whereas the frame view uses the fixed frame size (in yellow
background).

Can you guess what happens if the size of the parent view is not enough to contain
the child view? In the case of a Text, it will just truncate the text. Try reducing its
frame size to 100x50:

.frame(width: 100, height: 50, alignment: .center)

Hello World 5

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 207

This happens in absence of other conditions, such as using
the .minimumScaleFactor modifier, which, if needed, causes the text to shrink up to
the scale factor passed as parameter, which is a value between 0 and 1:

Text("A great and warm welcome to Kuchi")
 .background(Color.red)
 .frame(width: 100, height: 50, alignment: .center)
 // Add this scale factor
 .minimumScaleFactor(0.5)
 .background(Color.yellow)

Hello World 6

Generally speaking, the component will always try to fit the content within the size
proposed by its parent. If the component can’t do that because it needs more space,
it will apply rules appropriate to, and strictly dependent from, the component type.

This reinforces the concept that, in SwiftUI, each view chooses its own size. It
considers proposals made by its parent, and it tries to adapt to that suggestion to the
best of its ability, but that’s always dependent on what type of component the view
is.

Take an image, for instance. In the absence of other constraints, it will be rendered at
its original resolution, as you can see if you replace the Text component with an
Image:

Image("welcome-background")
 .background(Color.red)
 .frame(width: 100, height: 50, alignment: .center)
 .background(Color.yellow)

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 208

This is the same image you used in Chapter 5: “Intro to Controls: Text & Image”.

Hello World 7

The red arrow highlights the 100×50 static frame, but you can see that the image has
been rendered at its native resolution, completely ignoring the proposed size — at
least in the absence of any other constraints, such as the .resizable modifier,
which would enable the image to automatically scale up or down in order to occupy
all the available space offered by its parent:

Image("welcome-background")
 .resizable()

Hello World 8

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 209

So, in the end, you realize that there’s no way for a parent to enforce a size on a
child. What a parent can do is propose a size, and eventually constrain the child
inside a frame of its choice, but that doesn’t affect the ability of the child to choose a
size that’s smaller or larger.

Some components, like Text, try to be adaptive by choosing a size that best fits with
the size proposed by the parent, but still with an eye to the size of the text to render.
Other components, like Image, instead simply disregard the proposed size.

In the middle, there are views which are more or less adaptive, but also neutral,
meaning that they don’t have any reason to choose a size. They will just pass that
decision to their own children, and size themselves to merely wrap their children.

An example is the .padding modifier, which does not have an intrinsic size — it
simply takes the child’s size, adds the specified padding to each of the four edges
(top, left, right, bottom), and uses that to create the view that embeds the child.

Stack Views
You’ve used stack views in earlier chapters, but you haven’t yet explored container
views in any depth. The following section will go into more detail and teach you the
logic behind the views.

Layout for Container Views
In the case of a container view, i.e., a view that contains two or more child views, the
rules that determine children’s sizes are:

1. The container view determines the available frame at its disposal, which usually
is the size proposed by the parent.

2. The container view selects the child view with the most restrictive
constraints or, in case of equivalent constraints, with the smallest size.

3. The container view proposes a size to the child view. The proposed size is the
available size divided equally by the number of (the remaining) children
views.

4. The child view, based on the proposal from the parent, chooses its size.

5. The container view subtracts from the available frame the size chosen by
the child view, and goes back to step no. 2, until all children views have
been processed.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 210

The differences between this and the case of views with a single child that you’ve
seen in the previous section are highlighted in bold text.

Back to the code! Restore the Text as it was before you replaced with the image, and
duplicate it inside an HStack:

HStack {
 Text("A great and warm welcome to Kuchi")
 .background(Color.red)
 Text("A great and warm welcome to Kuchi")
 .background(Color.red)
}
.background(Color.yellow)

You’ve already encountered HStack in the previous chapters, so you should know
that it lays out its children views horizontally. Since the two children are equal, you
might expect that they have the same size. But this is what you get instead (make
sure to not use a Pro Max iPhone to preview this content):

Hello World 9

Why is that? A step-by-step breakdown is necessary here:

1. The stack receives a proposed size from its parent, and divides it in two equal
parts.

2. The stack proposes the first size to one of the children. They are equal, so it
sends the proposal to the first child, the one to the left.

3. The Text finds that it needs less than the proposed size, because it must display
the text in two lines, and can format it such that the two lines have similar
lengths.

4. The stack subtracts the size taken by the first Text and proposes the resulting
size to the second Text.

5. The Text decides to use all the proposed size.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 211

Now try making the second Text slightly smaller, by replacing an m with an n, for
example, in the word warm:

Text("A great and warm welcome to Kuchi")
 .background(Color.red)
Text("A great and warn welcome to Kuchi") // <- Replace `m` with
 // `n` in `warm`
 .background(Color.red)

Being smaller now, the second Text takes precedence; in fact, it’s the first one to be
proposed a size. The resulting layout is this:

Hello World 10

You can experiment with the difference between longer and stronger texts in the two
Text controls if you like.

Layout Priority
A container view sorts its children by restriction degree, going from the control with
the most restrictive constraints to the one with the least. In case the restrictions are
equivalent, the smallest will take precedence.

However, there are cases when you will want to alter this order. This can be achieved
in two different ways, usually for different goals:

• Alter the view behavior via a modifier.

• Alter the view’s layout priority.

Modifier

You can use a modifier to make the view more or less adaptive. Examples include:

• Image is one of the least adaptive components, because it ignores the size
proposed by its parent. But its behavior drastically changes after applying the
resizable modifier, which enables it to blindly accept any size proposed by the
parent.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 212

• Text is very adaptive, as it tries to format and wrap the text in order to best fit
with the proposed size. But it becomes less adaptive when it’s forced to use a
maximum number of lines, via the lineLimit modifier.

Changes of the adaptivity degree directly affect a control’s weight in the sort order.

Priority

You also have the option of changing the layout priority using the .layoutPriority
modifier. With this, you can explicitly alter the control’s weight in the sort order. It
takes a Double value, which can be either positive or negative. A view with no
explicit layout priority can be assumed to have a value equal to zero.

Go back to the ChallengeView file, and replace the view content with a stack of
three Text copies. Make sure to use the iPhone 14 Pro for previewing, as other screen
sizes would probably show different results:

HStack(spacing: 2) {
 Text("A great welcome to Kuchi")
 .background(Color.red)

 Text("A great welcome to Kuchi")
 .background(Color.red)

 Text("A great welcome to Kuchi")
 .background(Color.red)
}
.background(Color.yellow)

Hello World 11

Now try some explicit priorities. You can use any scale when setting priorities; for
example, limit to values in the [0, 1] or [-1, +1] range, or go for integer values only,
and so forth.

What’s important is that Stack processes views starting from the absolute
highest down to the absolute lowest. If the absolute lowest is below zero, views
without an explicitly priority are processed before all the ones with negative value.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 213

Add a layout priority of 1 to the second Text:

HStack {
 Text("A great and warm welcome to Kuchi")
 .background(Color.red)

 Text("A great and warm welcome to Kuchi")
 .layoutPriority(1)
 .background(Color.red)

 Text("A great and warm welcome to Kuchi")
 .background(Color.red)
}

You can see that it is given the opportunity to use as much space as needed.

Hello World 12

Now try adding a negative priority to the first Text:

HStack {
 Text("A great and warm welcome to Kuchi")
 .layoutPriority(-1)
 .background(Color.red)

 Text("A great and warm welcome to Kuchi")
 .layoutPriority(1)
 .background(Color.red)

 Text("A great and warm welcome to Kuchi")
 .background(Color.red)
}

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 214

With this, you can expect it to be the last element to be processed.

Hello World 13

And in fact, it is given a very small width. To counterbalance that, the control
expands vertically.

There’s an important distinction between the two ways of altering the adaptive
degree: manually setting the layout priority doesn’t just alter the sort order,
but also the size that is proposed.

For views with the same priority, the parent view proposes a size that’s evenly
proportional to the number of children. In the case of different priorities, the parent
view uses a different algorithm: it subtracts the bare minimum size of all
children with lower priorities, and proposes that resulting size to the child (or
children, if more than one) having the highest layout priority.

Look again at the result of the previous example. HStack lays out controls
horizontally, so width is the most constraining size, because children views compete
for width, whereas they have virtually no constraints vertically.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 215

So, let’s focus on width:

1. HStack calculates the minimum width required by the child view with lower
priority. This happens to be the Text at the left, which has priority -1, and whose
width is determined by the text displayed vertically in full. It therefore occupies
the minimum possible width, highlighted in blue in the following zoomed-in
image:

Hello World 14

2. HStack finds the child view with highest priority, which is the middle Text,
having priority 1, the highest among its children.

Hello World 15

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 216

3. HStack assigns a virtual minimum width to all children views having a priority
lower than the maximum. The minimum width is the one calculated at step 1,
and the number of children views having lower priority is two:

• The Text at left with priority -1

• The Text at right with no priority set (which, by default, it means priority 0).

Hello World 16

4. Given the width at its disposal, for each child view with lower priority, HStack
subtracts its minimum width, which in this case is two times the minimum width
calculated at step 1. The resulting width is proposed to the child view with the
highest priority, the Text at center.

Hello World 17

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 217

5. The Text at center decides to take the width necessary to display the text in one
line.

Hello World 18

At this point, the stack can process the next view, which is the Text with priority 0,
at the right side. The algorithm is the same; what’s different is that the remaining
width is now:

1. The width at HStack’s disposal.

2. Minus the size already taken by the Text with priority 1.

3. Minus the minimum size required by the Text with priority -1.

Hello World 19

You see that the Text with priority 0 makes best use of the size at its disposal, by
wrapping its text across 4 lines. This leaves no size other components can compete
for, besides the bare minimum computed at step 1 of the previous list. That’s a
guaranteed size; it’s like having a guaranteed minimum salary, maybe extremely low,
but still guaranteed regardless of how greedy your superiors are!

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 218

The HStack and the VStack
HStack and VStack are both container views, and they behave in the same way. The
only difference is the orientation:

• HStack lays subviews out horizontally.

• VStack lays subviews out vertically.

AppKit and UIKit have a similar component, UIStackView, which works in dual
mode, having an axis property which determines in which direction its subviews are
laid out.

You’ve already seen HStack and VStack in this and in previous chapters. In many
cases, using the initializer that takes the content view only. In reality, it takes two
additional parameters, which come with default values:

// HStack
init(
 alignment: VerticalAlignment = .center,
 spacing: CGFloat? = nil,
 @ViewBuilder content: () -> Content
)

// VStack
init(
 alignment: HorizontalAlignment = .center,
 spacing: CGFloat? = nil,
 @ViewBuilder content: () -> Content
)

• alignment is the vertical and horizontal alignment respectively for HStack and
VStack, it determines how subviews are aligned, defaulted to .center in both
cases.

• spacing is the distance between children. When nil, a default, platform-
dependent distance is used. So if you want zero, you have to set it explicitly.

The content parameter is the usual closure that produces a child view. But
containers can usually return more than one child, as you’ve seen in the example of
this section where the HStack contains three Text components.

The @ViewBuilder attribute is what makes that possible: It enables a closure that
returns a child view to provide multiple children views instead.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 219

A Note on Alignment

While the VStack alignment can have three possible values — .center, .leading
and .trailing — the HStack counterpart is a bit richer. Apart from center, bottom
and top, it also has two very useful cases:

• firstTextBaseline: Aligns views based on the topmost text baseline view.

• lastTextBaseline: Aligns views based on the bottom-most text baseline view.

These come in handy when you have texts of different sizes and/or fonts, and you
want them to be aligned in a visually appealing fashion.

An example is worth a thousands words so, still in ChallengeView, replace its body
property with:

var body: some View {
 HStack() {
 Text("Welcome to Kuchi").font(.caption)
 Text("Welcome to Kuchi").font(.title)
 Button(action: {}, label: { Text("OK").font(.body) })
 }
}

This renders as a simple HStack with two Texts and a Button, each having a
different font size. If you preview it as-is, you see that the three children are
centered vertically:

HStack center

But that doesn’t look very good, does it? To make it look nicer, it would be better to
have the text aligned at bottom, which you can do by specifying the HStack
alignment in its initializer:

HStack(alignment: .bottom) {

But again, this isn’t very pleasing to the eye:

HStack bottom

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 220

And this is where the two baseline cases can come to the rescue. Try
using .firstTextBaseline:

HStack(alignment: .firstTextBaseline) {

The smaller text and the button are now moved up slightly to match the larger text’s
baseline. That looks much better, right?

HStack base

The ZStack
With no AppKit and UIKit counterpart, the third stack component is ZStack, which
stacks children views one on top of the other.

In ZStack, children are sorted by the position in which they are declared, which
means that the first subview is rendered at the bottom of the stack, and the last one
is at the top.

Interestingly, .layoutPriority applied to children views doesn’t affect their Z-
order, so it’s not possible to alter the order in which they are defined in the ZStack’s
body.

As with the other container views, ZStack positions its children views at its center
by default.

Speaking of size, if the HStack has its height determined by its tallest subview, and
the VStack has its width determined by its widest subview, both the width and
height of a ZStack are determined respectively by its widest and the tallest
subviews.

You’ll use ZStack in a moment to build a portion of the congratulations view in the
Kuchi app.

Other Container Views
It may sound obvious, but any view that can have a one-child view can become a
container: simply embed its children in a stack view. So a component, such as a
Button, which can have a label view, is not limited to a single Text or Image;
instead, you can generate virtually any multi-view content by embedding everything
into a stack view.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 221

Stack views can also be nested one inside another, and this is very useful for
composing complex user interfaces. Remember, however, that if a view becomes too
complex, it could (and should!) be split into smaller pieces.

Note: Stack views are limited to only containing 10 children. This is because
stack views, amoung other View types, are initialed with a @ViewBuilder,
which itself can be initialized with up to 10 views. At the time of this writing,
this is easily verifiable by creating a stack with 11 children. The compiler will
issue one of those cryptic error messages to tell you you’ve strayed too far.

Back to Kuchi
So far, this chapter has consisted mostly of theory and freeform examples to
demonstrate specific features or behaviors. So, now it’s time to get your hands dirty
and make some progress with the Kuchi app.

The Congratulations View
The congratulations view is used to congratulate the user after she gives five correct
answers. Open CongratulationsView and take a look at its content.

struct CongratulationsView: View {
 let avatarSize: CGFloat = 120
 let userName: String

 init(userName: String) {
 self.userName = userName
 }

 var body: some View {
 EmptyView()
 }
}

If this is the first time you encounter EmptyView, it’s just… an empty view. You can
use it as a placeholder everywhere a view is expected, but you don’t yet have any
view for it, either by design, or because you haven’t built it yet.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 222

Content in this view will be laid out vertically — so a good kick-off is adding a
VStack, replacing the empty view:

var body: some View {
 VStack {
 }
}

Next, add a static congratulations Text inside, using a large font size of gray color:

VStack {
 Text("Congratulations!")
 .font(.title)
 .foregroundColor(.gray)
}

Congratulations view

Right after that congratulations Text, add another smaller Text:

Text("You’re awesome!")
 .fontWeight(.bold)
 .foregroundColor(.gray)

Congrats View 2

The bottom of this view should contain a button to close the view and go back. Add
the following to the bottom of the stack:

Button(action: {
 challengesViewModel.restart()
}, label: {
 Text("Play Again")
})
.padding(.top)

The button label shows a simple “Play Again” message, and the action is to reset the
status of the challenge in the challengesViewModel property. But there’s a problem:
This property doesn’t yet exist in the view. So, you’ll need to add it.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 223

For now, you can add the property and initialize it inline, directly in
CongratulationsView.

struct CongratulationsView: View {
 // Add this property
 @ObservedObject
 var challengesViewModel = ChallengesViewModel()
 ...

In the next chapter, Chapter 8: “State & Data Flow — Part I”, you’ll see how you
can make this property an environment object, similarly to how you did with
UserManager in the previous chapter, Chapter 6: “Controls & User Input”.

This is how the congratulations view looks:

Congrats View 3

User Avatar

But let’s not stop there — surely you can make this look even better! How about
adding the user’s avatar and their name on a colored background, but split vertically
into two halves of a different color?

Something like this:

Congrats View 4

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 224

Vstack

It might look complicated at first glance, but it only consists of three layers:

1. The background, split in two halves of different colors

2. The user avatar

3. The name of the user

You might already have figured out that you need a ZStack to implement it.

Between the two Texts in the VStack, add the following code:

// 1
ZStack {
 // 2
 VStack(spacing: 0) {
 Rectangle()
 // 3
 .frame(height: 90)
 .foregroundColor(
 Color(red: 0.5, green: 0, blue: 0).opacity(0.2))
 Rectangle()
 // 3
 .frame(height: 90)
 .foregroundColor(
 Color(red: 0.6, green: 0.1, blue: 0.1).opacity(0.4))
 }

 // 4
 Image(systemName: "person.fill")
 .resizable()
 .padding()
 .frame(width: avatarSize, height: avatarSize)
 .background(Color.white.opacity(0.5))
 .cornerRadius(avatarSize / 2, antialiased: true)
 .shadow(radius: 4)

 // 5
 VStack() {
 Spacer()

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 225

 Text(userName)
 .font(.largeTitle)
 .foregroundColor(.white)
 .fontWeight(.bold)
 .shadow(radius: 7)
 }
 .padding()
}
// 6
.frame(height: 180)

Phew — that’s a lot of code! But don’t be intimidated — it’s mostly familiar code that
you’ve already used in the previous chapter. Here’s what’s happening:

1. You use a ZStack to layer content on top of one another

2. The bottom layer (the one added first) is the background, which is split into two
halves.

3. Each of the two halves has a fixed height of 90 points and different background
colors. This tells the VStack how tall it should be.

4. This is the user avatar, configured with a predefined size, and with a semi-
transparent background color, rounded corners and some shadow. Notice how
easy it is to customize an image!

5. The final VStack contains the name of the user, aligned to the bottom. The
Spacer is used to make sure that the Text is pushed to the bottom. More on
Spacer in a moment.

6. This entire ZStack is set to a fixed height.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 226

The resulting view should look like this:

Congrats View

Much nicer, right?

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 227

The Spacer View

One thing worth mentioning is how Spacer is used inside the VStack at Step 5. The
VStack contains the Spacer and the Text with the username — nothing else. So you
might wonder why it’s even necessary?

If you remove both the Spacer and the VStack, the user name would still be
displayed, but it would be centered vertically:

Congrats View 2

In order to push it down, you use a VStack, containing a Spacer at top and the Text
at bottom. The Spacer expands along the major axis of its containing stack (or in
both directions, if not in a stack) — so, as a side effect, it pushes the Text down.

Spacer

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 228

Following the layout rules described at the beginning of this chapter, this is how it
works:

1. The VStack is proposed a size by its parent, the ZStack.

2. VStack finds that the child view with less layout flexibility is the Text, so it
proposes a size. In the absence of layout priority, as in this case, the proposed
size is half the size at its disposal.

3. The Text computes the size it needs and sends the ticket back to the VStack.

4. The VStack subtracts the size claimed by the Text from the size at its disposal,
and proposes that to the Spacer.

5. The Spacer, being flexible and unpretentious, accepts the proposal.

Challenge: The view would look much better if the button were aligned to the
bottom of the screen. How could you do that?

There are probably several ways of achieving that result, but it can be done with
Spacers alone.

In order to push the button down, you need to add a Spacer between the button and
the text above it:

Text("You're awesome!")
 .fontWeight(.bold)
 .foregroundColor(.gray)

Spacer() // <== The spacer goes here

Button(action: {
 self.challengesViewModel.restart()
}, label: {
 Text("Play Again")
})

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 229

However, although you’ve achieved the desired result, something’s not quite right:

Congrats View 3

The button is now anchored to the bottom, but everything else has been pushed
toward the top. To fix that, all you have to do is add another Spacer before the first
Text in the VStack:

VStack {
 Spacer() // <== The spacer goes here

 Text("Congratulations!")
 ...

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 230

Mission accomplished!

Congrats View 4

You’re done with the congratulations view for now. It delivers the message nicely,
now you can take care of another view.

Completing the Challenge View
Earlier you’ve used ChallengeView as a playground to test code shown throughout
this chapter. Now you need to fill it with more useful code. The challenge view is
designed to show a question and a list of answers.

Both use views defined in QuestionView and ChoicesView. The answers view,
however, is hidden the first time the challenge view is shown, and it appears when
the user taps anywhere on the screen.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 231

First up, you need to add some properties that the view will need later. Open
ChallengeView and add the following two properties:

let challengeTest: ChallengeTest

@State var showAnswers = false

As with previous examples, the preview is complaining about something. In
ChallengeView_Previews, replace its entire implementation, including previews,
with:

// 1
static let challengeTest = ChallengeTest(
 challenge: Challenge(
 question: "おねがい　します",
 pronunciation: "Onegai shimasu",
 answer: "Please"
),
 answers: ["Thank you", "Hello", "Goodbye"]
)

static var previews: some View {
 // 2
 return ChallengeView(challengeTest: challengeTest)
}

Straightforward stuff here:

1. You create a challenge test to use in preview mode.

2. You pass that test to the view initializer.

ChallengeView is used inside PracticeView, and again, ChallengeView expects a
parameter that you need to pass in. Open PracticeView, and replace the
ChallengeView() line with:

ChallengeView(challengeTest: challengeTest!)

Force unwrapping is fine in this instance, as you’re checking for nil on the line
above.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 232

With all that setup out of the way, you’re ready to build the actual challenge view. As
previously mentioned, the view is designed to show a question and a list of answers.
To achieve this, replace the body of ChallengeView with:

var body: some View {
 // 1
 VStack {
 // 2
 Button(action: {
 showAnswers.toggle()
 }) {
 // 3
 QuestionView(question: challengeTest.challenge.question)
 .frame(height: 300)
 }

 // 4
 if showAnswers {
 Divider()
 // 5
 ChoicesView(challengeTest: challengeTest)
 .frame(height: 300)
 .padding()
 }
 }
}

Here’s what’s going on:

1. The two views are stacked vertically, so you use a VStack.

2. This button wraps the QuestionView, and on tap, it toggles the visibility of the
ChoicesView.

3. This is QuestionView which, as mentioned, is implemented in its own file.

4. There’s some conditional logic here to display ChoicesView only when
showAnswers is true.

5. This is ChoicesView, implemented in its own file too. It receives a challenge test
as a parameter, which you provide via an instance property.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 233

You can now enable the live preview mode in Xcode, and test what you’ve just
implemented. When you click on the previewed device screen, it will toggle the
visibility of the answers view.

Challenge View preview

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 234

Reworking the App Launch
With the challenge view now completed, you still need to work on two other parts of
the app in order to run:

1. Change the initial view when the app starts.

2. Amend WelcomeView.

The first part is very simple, as you’ve already done it in the previous chapters. Open
KuchiApp, and replace RegisterView() with StarterView(), leaving everything
else unaltered. This is what KuchiApp should look like:

@main
struct KuchiApp: App {
 let userManager = UserManager()

 init() {
 userManager.load()
 }

 var body: some Scene {
 WindowGroup {
 StarterView()
 .environmentObject(userManager)
 }
 }
}

Likewise, apply the same replacement to KuchiApp_Previews, so that it looks like:

struct KuchiApp_Previews: PreviewProvider {
 static let userManager = UserManager(name: "Ray")
 static var previews: some View {
 StarterView()
 .environmentObject(userManager)
 }
}

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 235

If you open StarterView, you see that it works as a proxy view, choosing which view
to display depending on a flag in the user manager:

var body: some View {
 if self.userViewModel.isRegistered {
 WelcomeView()
 } else {
 RegisterView()
 }
}

If isRegistered is true, it shows WelcomeView, otherwise RegisterView, which was
the view displayed at launch time, before you replaced it just a few moments ago.

Now, time to take care of WelcomeView. You need to change it so that it shows a
welcome message the first time it is displayed, and it goes to the practice view after.

Open WelcomeView, and add these three properties:

@EnvironmentObject var userManager: UserManager
@ObservedObject var challengesViewModel = ChallengesViewModel()
@State var showPractice = false

You’ve already used userManager and challengesViewModel elsewhere, there’s
nothing more to say here. showPractice is a state flag that you can use to determine
which view to show.

Because you introduced an uninitialized property (userManager) to the view, you
need to update WelcomeView_Previews to include this. In WelcomeView_Previews,
do this by adding the .environmentObject(UserManager()) modifier where
WelcomeView is instantiated. This is how it should look like:

struct WelcomeView_Previews: PreviewProvider {
 static var previews: some View {
 WelcomeView()
 .environmentObject(UserManager())
 }
}

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 236

Next, replace the body of WelcomeView with this:

var body: some View {
 if showPractice {
 // 1
 PracticeView(
 challengeTest: $challengesViewModel.currentChallenge,
 userName: $userManager.profile.name
)
 } else {
 // 2
 ZStack {
 WelcomeBackgroundImage()

 VStack {
 Text(verbatim: "Hi, \(userManager.profile.name)")

 WelcomeMessageView()

 // 3
 Button(action: {
 self.showPractice = true
 }, label: {
 HStack {
 Image(systemName: "play")
 Text(verbatim: "Start")
 }
 })
 }
 }
 }
}

The new logic is:

1. If the showPractice flag is true, you show PracticeView

2. Otherwise, go to the other path, showing a welcome message

3. This button is used to acknowledge the welcome message and start practicing, by
setting the showPractice flag when it is tapped.

With all this done, you can run the app.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 237

Congratulations on the achievement! Here are a few screenshots of how the app
looks.

Kuchi

Kuchi 2

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 238

The Lazy Stacks
Stacks are very useful to lay out views in one direction or another. In most cases,
they are all you need for that purpose. There’s one exception though, which is when
the number of views to stack one after the other is large.

If you have used either UITableView or NSTableView, you have probably figured out
where the problem is. A large number of views means a lot of processing to create
the views themselves, and a lot of memory to keep them all — if the user never
scrolls down or right to the last element, it would be a huge waste of CPU cycles and
memory.

So it’s better to load cells on demand, as needed, starting with the bare minimum to
keep the screen crowded, and keep loading other views as the user demands for
more.

This is what lazy stacks do. And unlike their energetic counterparts, the lazy ones
come in two flavors only, horizontal and vertical, respectively LazyHStack and
LazyVStack — if you think for a moment you realize that only a fool would stack
tens or hundreds of views one on top of another in the Z axis. :-]

Although you can add views to stack up manually, lazy stacks really shine when you
iterate over a data source, making the lazy stack an efficient data driven stack
component.

Practice History
To see lazy stacks in action, you’re going to build a history view that displays all the
recent challenges. Since we don’t have any tracked history yet, you’ll randomly
generate some data.

Open HistoryView and take a look at its content. It defines:

• History: A data structure for the history, consisting of a date and a challenge.

• random() and random(count:): A couple methods to generate some random
history.

All this content is stuff you should already be familiar with, so there’s no need for a
step by step guide to get there from an empty file.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 239

All that said, you can focus on the body property, which contains an EmptyView for
now. Replace that with an empty lazy vertical stack:

var body: some View {
 LazyVStack {
 }
}

Now you need to iterate over all elements of the history property, which for now is
randomly generated with a size of 2000 elements. To iterate, you might be tempted
to use a for-in statement, but you can’t - free to try, but all you’ll get is a
compilation error.

Instead you’ll use ForEach, which looks like a statement, but in reality it’s just a view
that can generate content dynamically. Its initializer takes three parameters:

init(
 _ data: Data,
 id: KeyPath<Data.Element, ID>,
 content: @escaping (Data.Element) -> Content
)

• data is the collection to iterate over.

• id is a key path of the element type, History in your case, pointing to a property
that can let each element of the collection to be uniquely identified - such
property must conform to Hashable

• content is the view for each element - defined in the form of a closure that takes
the element to display as parameter.

Inside the body of LazyVStack add the following:

ForEach(history, id: \.self) { element in
}

This loops through all elements of history, using the element itself as id - if you
look at the declaration of History, you see that it implements the Hashable
protocol.

To display the element, you can use the getElement(_:) method, which creates and
returns a simple cell:

ForEach(history, id: \.self) { element in
 getElement(element)
}

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 240

If you resume the preview, you’ll see this. Not bad at all!

Lazy Stack

If you enable the live preview, you notice that you cannot scroll — the content is
fixed. No worries, all you have to do is embed the stack into a scroll view:

ScrollView {
 LazyVStack {
 ForEach(history, id: \.self) { element in
 getElement(element)
 }
 }
}

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 241

Now the content is scrollable vertically. It would be nice to add a header — and that’s
dead easy to achieve, simply embed ForEach into a Section:

Section(header: header) {
 ForEach(history, id: \.self) { element in
 getElement(element)
 }
}

You pass the header property to Section, which defines a text view with a gray
background.

Lazy Stack with header

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 242

If you run it through live preview, you notice that the header scrolls with the rest of
the view — but it would be better if it would stay anchored to the top. For this you
can use the pinnedViews parameter of LazyVStack’s initializer to specify that
section headers must be pinned.

Add the pinnedViews parameter as follows:

LazyVStack(spacing: 0, pinnedViews: [.sectionHeaders]) {
 Section(header: header) {
 ForEach(history, id: \.self) { element in
 getElement(element)
 }
 }
}

Note that you can also define a footer in sections, and pin them as well.

Key Points
Another long chapter — but you did a great job of getting through it! A lot of
concepts have been covered here, the most important ones being:

• SwiftUI handles layout differently and more easily (at least, from the developer’s
point of view) than Auto Layout.

• Views choose their own size; their parents cannot impose size but only propose
instead.

• Some views are more adaptive than others. For instance, Text tries to adapt to the
size suggested by its parent, while Image simply ignores that and displays the
image at its native resolution.

• There are three types of stack views; VStack for vertical layouts, HStack for
horizontal layouts, and ZStack for stacking content on top of another.

• Stack views propose sizes to their children starting from the least adaptive to the
most adaptive.

• Horizontal and Vertical stack views also have lazy counterparts, which load
content on demand, as opposed to rendering everything upfront.

• The order in which children are processed by stack views can be altered by using
the layoutPriority modifier.

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 243

Where to Go From Here?
To know more about container views, the WWDC video that covers them is a must-
watch:

• WWDC 2019: Session 237 “Building Custom Views with SwiftUI” (https://apple.co/
2lVpSSc)

Also recommended is the official documentation, which currently is a bit lacking in
the verbosity department, but hopefully, that will improve soon.

• Stack Views: Official documentation (https://apple.co/2lXlbr1)

There are a few other container views that have not been covered in this chapter:

• Form

• Group

• GroupBox

You can check out the documentation for more information on these. Good luck in
your adventures with SwiftUI stack and container views!

SwiftUI by Tutorials Chapter 7: Introducing Stacks & Containers

 244

Section III: State & Data Flow

Learn how your user interface reacts to data flow and state changes.

 245

8Chapter 8: State & Data
Flow — Part I
By Antonio Bello

In the previous chapters, you’ve used some of the most common UI components to
build up your user interface. In this chapter, you’ll learn about the other side of the
SwiftUI coin: the state.

 246

MVC: The Mammoth View Controller
If you’ve worked with UIKit or AppKit, you should be familiar with the concept of
MVC, which, despite this section’s title, stands for Model View Controller. It’s
vulgarly known as Massive View Controller.

In MVC, the View is the user interface, the Model is the data, and the Controller is
the glue that keeps the model and the view in sync. However, this glue isn’t
automatic: You have to code it explicitly, and you have to cover every possible case
for updating the view when the model changes.

Consider a view controller with a name and a UITextField (or NSTextField, in the
macOS world):

class ViewController: UIViewController {
 var name: String?
 @IBOutlet var nameTextField: UITextField!
}

If you want name to be displayed in the text field, you have to manually copy it using
a statement like:

nameTextField.text = name

Likewise, if you want to copy the contents of the text field into the name property,
you have to manually do it with a statement like:

name = nameTextField.text

If you change the value in either of the two, the other doesn’t update automatically
— you have to do it manually, with code.

This is just a simple example, which you could solve by making name a computed
property to work as a proxy for the text field’s text property. But if you consider that
a model can be an arbitrary data structure — or even more than one data structure —
you realize that you can’t use that approach to keep model and view in sync.

Besides the model, the UI also depends on a state. Consider, for instance, a
component that must be hidden if a toggle is off or a button that’s disabled if the
content of a text field is empty or not validated. Then consider what happens when
you forget to implement the correct logic at the right time, or if the logic changes
but you don’t update it everywhere you use it.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 247

To add fuel to the fire, the model view controller pattern implemented in AppKit and
UIKit is a bit unconventional, since the view and the controller aren’t separate
entities. Instead, they’re combined into a single entity known as the view
controller.

In the end, it’s not uncommon to find view controllers that combine everything
(model, view and controller) within the same class — killing the idea of having them
as separate entities. That’s what caused the “Model” term in Model View Controller to
be replaced with “Massive”, making it a brand new fat pattern known as Massive View
Controller.

To sum up, this is how things worked before SwiftUI:

• The massive view controller problem is real.

• Keeping the model and UI in sync is a manual process.

• The state is not always in sync with the UI.

• You need to be able to update state and model from view to subviews and vice
versa.

• All this is error-prone and open to bugs.

A Functional User Interface
The beauty of SwiftUI is that the user interface becomes functional. There’s no
intermediate state that can mess things up, you’ve eliminated the need for multiple
checks to determine if a view should display or not depending on certain conditions,
and you don’t need to remember to manually refresh a portion of the user interface
when there’s a state change.

You’re also freed from the burden of having to remember to avoid circular references
in closures by using [weak self]. Since views are value types, captures happen
using copies rather than references.

Being functional, rendering now always produces the same result given the same
input, and changing the input automatically triggers an update. Connecting the right
wires pushes data to the user interface, rather than the user interface having to pull
data.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 248

That doesn’t mean that you can now look for a new job and change careers. :] You
still control how you implement the user interface and how to link data to the UI. It’s
just that it’s much simpler now, and much less error-prone. Not to mention that it’s
more elegant.

SwiftUI has many positive aspects — among them is that it’s primarily:

• Declarative: You don’t implement the user interface — you declare it.

• Functional: Given the same state, the rendered UI is always the same. In other
words, the UI is a function of the state.

• Reactive: When the state changes, SwiftUI automatically updates the UI — but
also the other way around, when the UI changes (typically in response to user
input), the state is automatically updated.

This chapter focuses mostly on the last aspect: Managing the relationship between
state and UI, and how to propagate state from a view to its subviews.

Now, open the starter project and build and run. You can use either the starter
project that comes with this chapter or the copy of the project you developed in the
previous chapter.

Proceed until you reach the challenge view, the first view in the picture below, which
displays a Japanese word. Tap it and it will display a list of three options for your
answer, as in the second view. If you tap the wrong option, it will display an error
message. Otherwise, you’ll see an alert that you’ve chosen the correct answer, shown
in the third view.

Initial Challenge View

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 249

And that’s it — there’s no option to move forward and try another challenge. You
need to fix that… and guess what, you’re going to use @State to do it.

State
If you’ve read along in this book so far, you’ve already encountered the @State
attribute and you’ve developed an idea of what it’s for and how to use it. But it’s
been an acquaintance — it’s time to let it become a friend.

Spoiler Alert: Now, you’ll try a few things to understand some of the concepts
of this chapter. Bear with it, the reason will be clear at the end.

The first thing you’ll do is add a couple of counters to keep track of:

• The number of answered questions.

• The total number of challenges.

Create a new SwiftUI View in the Practice group and name it ScoreView.

Next, add two properties to keep track of the number of answers and questions:

var numberOfAnswered = 0
var numberOfQuestions = 5

Then replace the auto-generated body with this:

var body: some View {
 HStack {
 Text("\(numberOfAnswered)/\(numberOfQuestions)")
 .font(.caption)
 .padding(4)
 Spacer()
 }
}

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 250

In Xcode, resume the preview. This is what you should see:

Score View

Now, embed this new view into ChallengeView by adding it after the button:

Button(action: {
 self.showAnswers.toggle()
}) {
 QuestionView(question: challengeTest.challenge.question)
 .frame(height: 300)
}
// -Insert this-
ScoreView()

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 251

The preview looks like this:

Challenge Score View

Go back to ScoreView, which will display the current progress calculated as the
number of challenges compared to the total number of challenges. For now, you only
want to simulate progress. To do this, you’ll add a button that increments the
number of challenges when you tap it.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 252

To achieve that, replace the body implementation with (and for now ignore the
compilation error):

var body: some View {
 // 1
 Button(action: {
 // 2
 self.numberOfAnswered += 1
 }) {
 // 3
 HStack {
 Text("\(numberOfAnswered)/\(numberOfQuestions)")
 .font(.caption)
 .padding(4)
 Spacer()
 }
 }
}

Here you’ve:

1. Added a button.

2. Incremented numberOfAnswered in its action handler.

3. Embedded the previous content in the button’s body.

Don’t waste time trying to resume the preview, because it won’t work; it doesn’t even
compile.

Score View error

Why is that? Simply, you can’t mutate the state of the view by modifying its
properties from inside the body.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 253

Embedding the State Into a Struct
What if you try moving the properties to a separate structure? Move
numberOfAnswered to an internal State struct and make it a property of the view:

struct ScoreView: View {
 var numberOfQuestions = 5

 // 1
 struct State {
 var numberOfAnswered = 0
 }

 // 2
 var state = State()

 var body: some View {
 ...
 }
}

As mentioned, here you:

1. Encapsulate numberOfAnswered into a struct.

2. Add a new property, an instance of that struct.

Next, update the text inside the HStack to reflect the property’s new location:

Text("\(state.numberOfAnswered)/\(numberOfQuestions)")

and the button’s action:

self.state.numberOfAnswered += 1

But when you try to compile, you get the same error. Unfortunately, this didn’t work,
either. That’s not surprising, because the struct is a value type and you’re still trying
to mutate the internal state of the view.

Embedding the State Into a Class
By replacing a value type with a reference type, however, things change considerably.
Try making State a class:

class State {
 var numberOfAnswered = 0
}

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 254

The error disappears and you can restore the preview, if Xcode has disabled. Try
enabling live preview:

Score view live preview

Now, you can tap the view and it reacts visually, by flashing, but the displayed text
doesn’t change. It’s anchored to 0/5.

Add a print statement to the button’s action handler, after you increment
numberOfAnswered:

self.state.numberOfAnswered += 1
print("Answered: \(self.state.numberOfAnswered)")

Run the app and tap the text and you’ll see the console displays a new value at every
tap. This means the state updates, but the view doesn’t.

Note: For this step, you’ll need to run in the simulator to see the output of the
print statement.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 255

This is actually the expected behavior if you’re using UIKit. If the model changes, it’s
your responsibility to update the relevant part of the user interface.

Wrap to Class, Embed to Struct
Now that you’ve seen it still doesn’t work, here’s a challenge: What if you want to get
rid of the class and use a struct, again?

If you’re wondering why you’d want to do that, it will become clear as you read
through this unconventional section of the chapter.

If you remember, the reason why the struct didn’t work earlier is because a struct is a
value type. Modifying a value type requires mutability, but the body cannot mutate
the struct that contains it.

To update without mutating, you simply have to wrap the mutating property into a
reference type — in other words, a class. So add this before ScoreView:

class Box<T> {
 var wrappedValue: T
 init(initialValue value: T) { self.wrappedValue = value }
}

This lets you wrap a value type (actually any type) inside a class. Now make State a
struct again and make its property an instance of Box<Int>:

struct State {
 var numberOfAnswered = Box<Int>(initialValue: 0)
}

Now, this will work because you can mutate the value contained in Box without
modifying numberOfAnswered. You’d mutate it only if you make it point to another
instance, but instead, you’re just going to update the instance that the property
points to.

Xcode is still showing you two compilation errors because you have to use the
wrappedValue property of Box rather than the Box instance itself. You’ll fix those
next. In the Button’s action closure, update the increment statement as follows:

self.state.numberOfAnswered.wrappedValue += 1

Here, you increment the wrappedValue of numberOfAnswered. Similarly, update the
print statement that comes next:

print("Answered: \(self.state.numberOfAnswered.wrappedValue)")

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 256

And, finally, the Text inside HStack:

Text("\(state.numberOfAnswered.wrappedValue)/\
(numberOfQuestions)")

If you run the app, you notice that the counter still doesn’t update when tapped, but
the incremented value is printed to the console.

The Real State
At this point, you can officially ask: What’s the point of all this discussion?

It’s time to replace State with a similar struct from SwiftUI. Delete the Box class you
added earlier, delete the State struct, and, finally, replace the state property with
the following property:

var _numberOfAnswered = State<Int>(initialValue: 0)

Note that you renamed the property by prefixing it with an underscore. The reason
why will be revealed soon.

Fix the compilation errors by renaming numberOfAnswered as _numberOfAnswered,
and removing state. This is how ScoreView should look now:

struct ScoreView: View {
 var numberOfQuestions = 5
 var _numberOfAnswered = State<Int>(initialValue: 0)

 var body: some View {
 Button(action: {
 self._numberOfAnswered.wrappedValue += 1
 print("Answered: \(self._numberOfAnswered)")
 }) {
 HStack {
 Text("\(_numberOfAnswered.wrappedValue)/\
(numberOfQuestions)")
 .font(.caption)
 .padding(4)
 Spacer()
 }
 }
 }
}

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 257

Build and run, then navigate to ChallengeView. If you tap the score view… magic!
The counter updates every time you tap it.

Score view updating

So, what’s State? From the official SwiftUI documentation at apple.co/2WrfKzk:

A property wrapper type that can read and write a value managed by SwiftUI.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 258

It’s like the Box inside the State struct you created earlier, but with the additional
capability that the view containing it can monitor it.

SwiftUI manages the storage of any property you declare as a state. When the
state value changes, the view invalidates its appearance and recomputes the
body. Use the state as the single source of truth for a given view.

Remember the term, single source of truth — you’ll meet it again soon, and
frequently.

When the wrapped value changes, SwiftUI re-renders the portion of the view that
uses that value.

You’ve used state variables in earlier chapters. Now, you might wonder: What’s the
relationship between State<Value>, the @State attribute and the $ operator?

Replace _numberOfAnswered with the following:

@State var numberOfAnswered = 0

This looks more familiar. You can now compile and run, and you’ll see that it still
works.

So what’s happening? The property declared with the @State attribute is a property
wrapper, and the compiler generates an actual implementation of State<Int> type,
prefixing the name by an underscore, _numberOfAnswered.

You can prove this by noting that you’re still referencing this property in body:

var body: some View {
 Button(action: {
 // 1
 self._numberOfAnswered.wrappedValue += 1
 // 2
 print("Answered: \(self._numberOfAnswered.wrappedValue)")
 }) {
 HStack {
 // 3
 Text("\(_numberOfAnswered.wrappedValue)/\
(numberOfQuestions)")
 .font(.caption)
 .padding(4)
 Spacer()
 }
 }
}

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 259

There are three places where you use _numberOfAnswered:

1. In the button’s action handler, to increment the counter of answers.

2. Still in the button’s action handler, to print that counter.

3. In the button’s embedded view, to display the number of answers against the
total number of questions.

You can now replace each of them with the actual property that you’ve declared,
numberOfAnswered. Just reference the property as-is. In the first two cases, replace it
with:

self.numberOfAnswered += 1
print("Answered: \(self.numberOfAnswered)")

The compiler will translate these into the actual statements, which increase and read
the wrappedValue of numberOfAnswered.

In the third case you do the same, replacing it with:

Text("\(numberOfAnswered)/\(numberOfQuestions)")

Compile and run the app. Once you navigate to ChallengeView, you won’t notice
any visual or behavioral change — which means that the replacement worked.

Now, you need to roll back the changes you added for testing purposes. Remove the
button and leave only its body, which consists of the HStack:

var body: some View {
 HStack {
 Text("\(numberOfAnswered)/\(numberOfQuestions)")
 .font(.caption)
 .padding(4)
 Spacer()
 }
}

What have you learned? If you have a property in your view, and you use that
property in the view’s body, when the property value changes, the view is
unaffected.

If you make the property a state property by applying the @State attribute, thanks to
some magic that SwiftUI and the compiler do under the hood, the view reacts to
property changes, refreshing the relevant portion of the view hierarchy that
references that property.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 260

Not Everything is Reactive
The score view defines two properties. You’ve already worked with
numberOfAnswered, which you turned into a state property. What about the other
one, numberOfQuestions? Why isn’t it a state property as well?

numberOfAnswered is dynamic, meaning that its value changes over the life of the
view. In fact, it increments every time the user provides a correct answer. On the
other hand, numberOfQuestions is not dynamic: It represents the total number of
questions.

Since its value never changes, you don’t need to make it a state variable. Moreover,
you don’t even need it to be a var — you can turn it into an immutable and initialize
it via an initializer.

Replace its declaration with:

let numberOfQuestions: Int

Next, you need to update the preview view by providing the new parameter, as
follows:

ScoreView(numberOfQuestions: 5)

Also apply the same change to the other place where you reference the view, in
ChallengeView. The compiler will help you find the exact line, just compile and
follow all the compilation errors.

Using Binding for Two-Way Reactions
A state variable is not only useful to trigger a UI update when its value changes; it
also works the other way around.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 261

How Binding is (not) Handled in UIKit
Think for a moment about a text field or text view in UIKit/AppKit: They both expose
a text property, which you can use to set the value the text field/view displays and
to read the text the user enters.

You can say that the UI component owns the data that it displays, or that the user
enters, in its text property.

To get a notification when that value changes, you have to use either a delegate (text
view) or subscribe to be notified when an editing changed event occurs (text field).

If you want to implement validation as the user enters text, you have to provide a
method that is called every time the text changes. Then you have to manually update
the UI. For example, you might enable or disable a button, or you could show a
validation error.

Owning the Reference, not the Data
SwiftUI makes this process simpler. It uses a declarative approach and leverages the
reactive nature of state properties to automatically update the user interface when
the state property changes.

In SwiftUI, components don’t own the data — instead, they hold a reference to data
that’s stored elsewhere. This enables SwiftUI to automatically update the user
interface when the model changes. Since it knows which views reference the model,
it can figure out which portion of the user interface to update when the model
changes.

To achieve this, it uses binding, which is a sophisticated way to handle references.

In Chapter 6: Controls & User Input, you played with a TextField in the Kuchi
app. You used a state property to hold the user’s name, which you later replaced with
an environment object.

Now, you’ll rework that form again, this time focusing exclusively on the text field.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 262

Open RegisterView in the Welcome folder and comment out RegisterView,
including its extension, and RegisterView_Previews, so that you can resume them
later. Then, add this simplified code:

struct RegisterView: View {
 var name: String = ""

 var body: some View {
 VStack {
 TextField("Type your name...", text: name)
 .bordered()

 }
 .padding()
 .background(WelcomeBackgroundImage())
 }
}

struct RegisterView_Previews: PreviewProvider {
 static var previews: some View {
 RegisterView()
 }
}

As soon as you do that, the compiler will complain about name not being a
Binding<String>. So, what’s a binding? According to the official documentation:

A binding is a two-way connection between a property that stores data, and a
view that displays and changes the data. A binding connects a property to a
source of truth stored elsewhere, instead of storing data directly.

You heard about this earlier, when you read that the component doesn’t own the
data, it holds a reference to the data that’s stored elsewhere. You’ll find out what
source of truth means soon.

So, a state property contains a binding in its projectedValue property. To fix that
here, change the type of the name property to State<String>:

var name: State<String> = State(initialValue: "")

Next, reference this property in the text field:

TextField("Type your name...", text: name.projectedValue)

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 263

Great, the compilation error disappears now. Enable the live preview and you can
interact with the text field and input some text.

Editing in a Text Field

However, you don’t have any proof that it actually works, so you’ll add a Text
component that displays the name after TextField:

Text(name.wrappedValue)

You don’t need the binding here because you only need to display the text without
modifying it, so you use the wrappedValue property.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 264

Resume live preview. Now, when you type any text, it replicates in the Text
component below TextField:

State and binding

This means that:

1. When the user modifies the text, TextField updates the underlying data using
the binding of the name state property.

2. When the data changes, the name state property triggers an update to all UI
components that reference the data.

3. The Text view receives the update request and updates its content by re-
rendering the value that the name’s wrappedValue contains.

Now that you’ve seen what a binding is and where it belongs, it’s better to get rid of
the State property declaration and use the more fascinating counterpart defined by
the corresponding attribute.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 265

Replace the name property declaration once again, this time with:

@State var name: String = ""

You access a binding by using the $ operator, so you can simply replace
name.projectedValue in the text field with $name:

TextField("Type your name...", text: $name)

To reference the value only, use the raw property name instead as if it were the value
instead of a wrapper.

Text(name)

Since you haven’t made any functional changes, just used a different sugar syntax,
you won’t notice any difference when you test the view in the live preview.

State and binding

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 266

The beauty of SwiftUI doesn’t end there. You can use a state property to declaratively
change the behavior or aspect of the user interface.

If you wanted, for example, to hide the text if the name length is less than three
characters, you can just surround it with an if statement:

if name.count >= 3 {
 Text(name)
}

That expression re-evaluates automatically when name changes. Besides declaring it,
you don’t have to do anything else — no subscription to a changed event, no logic to
manually execute. You simply declare it, and SwiftUI will take care of it for you.

Cleaning up

Before moving on to the next topic, delete the code that you added in RegisterView
and restore the code you commented out at the beginning of this section.

Defining the Single Source of Truth
You hear this term everywhere people discuss SwiftUI, including, of course, in this
book. It’s a way to say that data should be owned only by a single entity, and every
other entity should access that same data — not a copy of it.

It’s natural to find similarities between value and reference types. When you pass a
value type, you actually pass a copy of it, so any change made to it is limited to the
lifetime of the copy. It doesn’t affect the original. Likewise, changes made to the
original data don’t propagate and don’t affect the copy.

This is how you do not want to handle UI state because when you change the state,
you want that change to automatically apply to the user interface. If the data is a
reference type, every time you move data around, you’re actually passing a reference
to the data. Any change made to the data is visible from anywhere you access the
data, regardless of who made the actual change.

In SwiftUI, you can think of the single source of truth as a reference type with
attached behavior.

Earlier, you created ScoreView, where you ended up using a state property named
numberOfAnswered. The number of answered questions isn’t determined nor
changed in this view. Those actions take place in its parent view, ChallengeView,
even if indirectly.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 267

Consider ScoreView as an independent component of its own, unaware of why it’s
used and without a state. Here, you use it merely to display the number of completed
answers versus the total number of answers.

Open ChallengeView and add a new state property right after showAnswers:

@State var numberOfAnswered = 0

You might think that all you need to do now is to pass this property to ScoreView.
You actually do need to do that, but that’s not the only thing.

Test what happens if you only pass the property. In ScoreView, remove the inline
initialization of numberOfAnswered so that you’re forced to use an initializer:

@State var numberOfAnswered: Int

At the same time, you need to update the preview to provide that new parameter.
Replace its implementation with:

struct ScoreView_Previews: PreviewProvider {
 // 1
 @State static var numberOfAnswered: Int = 0

 static var previews: some View {
 // 2
 ScoreView(
 numberOfQuestions: 5,
 numberOfAnswered: numberOfAnswered
)
 }
}

Here you’re:

1. Creating a new state property.

2. Passing the new property to the ScoreView’s initializer.

Now, you need to update ChallengeView to pass the additional parameter as well.
Replace the line that uses ScoreView with:

ScoreView(
 numberOfQuestions: 5,
 numberOfAnswered: numberOfAnswered
)

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 268

So far, you don’t have a way to test if this works — and it shouldn’t. ChallengeView
has a button and an action handler in it. Add this line to temporarily increment the
property to the button’s action section:

self.numberOfAnswered += 1

Next, after ScoreView, add a text view showing the counter value:

Text("ChallengeView Counter: \(numberOfAnswered)")

Do the same in ScoreView, right before the spacer:

Text("ScoreView Counter: \(numberOfAnswered)")

Now, go back to ChallengeView and ensure that the live preview is active. Tap the
upper half of the screen repeatedly and you’ll notice that the ChallengeView
counter increments, but not the ScoreView counter.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 269

Why is that? A property marked as @State has, in reality, a State<Value> type,
which is a value type. When you pass it to a method, it actually passes a copy.

Since a state property owns the data, you’re also passing a copy of the data, so the
original and the copy have different lives.

In SwiftUI terms, by copying a @State property, you end up having multiple sources
of truth — or, if it helps you better understand the concept, multiple sources of
untruth. Every state property has its relative truth, which, at some point, won’t
match the other sources’ truth.

Here’s an example to clarify the concept. If you want to share the phone number of
your favorite pizza delivery with the rest of your family, you can write it on some
sticker notes and give one to each family member.

Here, you’re creating multiple sources of truth: If the phone number changes, not
everyone will know.

Instead of writing the phone number down, you can write on the note: “The phone
number is hanging on the fridge.” Now, the note on the fridge is a single source of
truth because everyone can update it and everyone is sure that the number is up to
date.

Back to your code. Instead of passing the data, you have to pass a reference to it. The
binding is the reference that you need. So go to ScoreView and update the state
property to be a binding instead:

@Binding var numberOfAnswered: Int

Both ChallengeView and the preview now report errors because ScoreView expects
a binding in its second parameter. You’ll handle ChallengeView first.

Just as you did in the previous example with the text field, you obtain a binding by
prefixing the property name with the $ operator. So replace the statement with:

ScoreView(
 numberOfQuestions: 5,
 numberOfAnswered: $numberOfAnswered
)

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 270

You need to repeat that same change in ScoreView’s preview. Once that’s done, try
ChallengeView using live preview. When you tap now, both counters update:

State and Binding 2

So what have you achieved?

1. You used a state variable to store the counter that tracks the number of answered
questions.

2. You passed a binding to ScoreView so it can access the same underlying data.

3. When you change the data, either through the state property or the binding
property, you made that change available to everyone who references that data.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 271

Cleaning up Again

In the section above, you added some temporary code that you can now remove.

In ChallengeView:

1. Remove numberOfAnswered, which you’ll rework soon:

@State var numberOfAnswered = 0

2. Remove the increment statement in the button’s action handler:

self.numberOfAnswered += 1

3. Use again the single parameter initializer for ScoreView:

ScoreView(numberOfQuestions: 5)

4. Remove the text control that prints the value of numberOfAnswered:

Text("ChallengeView Counter: \(numberOfAnswered)")

In ScoreView:

1. Make numberOfAnswered a state property again, instead of a binding:

@State var numberOfAnswered: Int = 0

2. Remove the other text control, which prints numberOfAnswered:

Text("ScoreView Counter: \(numberOfAnswered)")

3. In the preview struct, remove the second parameter passed to ScoreView’s
initializer:

ScoreView(numberOfQuestions: 5)

And that’s all. You used this temporary code to better understand the differences
between @State and @Binding, and how they relate with the concept of single source
of truth.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 272

Key Points
This was an intense and theoretical chapter. But in the end, the concepts are simple,
once you understand how they work. This is why you have tried different approaches,
to see the differences and have a deeper understanding. Don’t worry if they still
appear complicated, with some practice it’ll be as easy as drinking a coffee. :]

To summarize what you’ve learned:

• You use @State to create a property with data owned by the view where you
declare it. When the property value changes, the UI that uses this property
automatically re-renders.

• With @Binding, you create a property similar to a state property, but with the data
stored and owned elsewhere: in a state property or an observable object of an
ancestor view.

This is just half of what concerns state and data flow. In the next chapter you’ll look
at making your own reference types observable, and how to use the environment.

Where to Go From Here?
You’ve only covered a few of the basics of state so far. In the next chapter you’ll dive
deeper into state and data management in SwiftUI.

To get the most out of state with SwiftUI, there’s a wealth of material that continues
to grow and evolve. These include:

• SwiftUI documentation: apple.co/2MlBqJJ

• State and data flow reference documentation: apple.co/2YzOdyp

To become a power SwiftUI developer, you’d do well to check out the Combine
documentation: apple.co/2L7kWTy.

Last, the SwiftUI Attributes Cheat Sheet: bit.ly/35Xt7eU is a helpful reference.

SwiftUI by Tutorials Chapter 8: State & Data Flow — Part I

 273

9Chapter 9: State & Data
Flow – Part II
By Antonio Bello

In the previous chapter you learned how to use @State and @Binding, and the power
that they brought to you in a transparent and easy to use way.

In this chapter you’ll learn about other tools that allows you to make your own types
efficiently reactive, or reactively efficient. :]

Before diving into it, while you’re still dry, a word about the project. You can use the
starter project that comes with this chapter, but since it is an exact copy of the final
project from the previous chapter, you can also reuse what you’ve worked on, if you
prefer — no change needed.

 274

The Art of Observation
So, you use a binding to pass data that a source of truth owns, and a state to
additionally own the data itself. You have everything you need to create an awesome
user interface, right? Wrong!

Consider that you have a model made up of several properties and you want to use it
as a state variable. If you implement the model as a value type, like a struct, it works
properly, but it’s not efficient.

In fact, if you have an instance of a struct and you modify one of its properties, you
actually replace the entire instance by a copy of it with the updated property. In
other words, the entire instance mutates.

When you change a property of your model, you’d expect that only the UI that
references that property should refresh. In reality, you’ve modified the whole struct
instance, so the update will trigger a refresh in all places that reference the struct.

Depending on the use case, this could have a low impact or it could affect
performance considerably.

That doesn’t mean you shouldn’t use structs, just that you should avoid putting
unrelated properties in the same model. This prevents cases where updating a
property value triggers a UI update that doesn’t use that property.

If you implement your model as a reference type instead — that is, a class — it won’t
actually work. If a property is a reference type, it mutates only if you assign a new
reference. Any change made to the actual instance doesn’t change the property
itself, which means it won’t trigger any UI refresh.

Making an Object Observable
The good news is that you have four new types that come to your rescue. Given the
considerations expressed above, your custom model could:

• Be a reference type.

• Be able to specify which properties must trigger — or not trigger — UI updates.

You need the four new types to:

• Declare a class observable. This enables it to be used similarly to state properties.

• Declare a class property observable.

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 275

• Declare a property that’s an instance of an observable class type, observed.
That is, you have an observable class type, you have a property instance of that class,
and you want to make that property observed. This is what lets you use an
observable class as an observed property in a view.

There are already two classes in the Kuchi project that you can use as observable
objects: UserManager and ChallengesViewModel.

To make a class observable, make it conform to ObservableObject. The class
becomes a publisher. The protocol defines one objectWillChange property only,
which synthesizes automatically. That means you aren’t required to implement it —
the compiler will do it for you.

Open Profile/UserManager and look at the class declaration:

// 1
final class UserManager: ObservableObject {
 // 2
 @Published
 var profile: Profile = Profile()

 @Published
 var settings: Settings = Settings()

 @Published
 var isRegistered: Bool
 ...
}

Here you can see that:

1. The class conforms to ObservableObject, which makes it a publisher.

2. You define three properties and decorate them with the @Published attribute.
These properties work in a similar way as a state property does in a view.

The same considerations you made for state properties apply to published properties
as well:

• They should be value types, either basic data types or structures.

• With structures, it’s better to limit the number of properties they contain to the
minimum required, avoiding one-struct-for-all scenarios.

Once you have an observable class, using it is pretty simple — it’s just like using a
state variable.

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 276

Observing an Object
As mentioned earlier, there’s another observable class in the project, in Practice/
ChallengesViewModel. Its purpose is to define and serve challenges, which consist
of a Japanese word, its English translation and a list of potential answers. Only one
answer is correct.

There’s a property that contains the currently-active challenge:

@Published var currentChallenge: ChallengeTest?

As you see, it’s a published property (which, as stated above, is like a state property):

• It defines a single source of truth.

• It has a binding.

• Whenever it’s updated, it triggers a UI refresh that references it.

The most natural place to use this property is in the challenge view. Later, you’ll
realize that is not entirely true — in fact the view already contains a challenge
property. But for now, just pretend it is.

Open ChallengeView and add this property after the existing challengeTest:

@ObservedObject var challengesViewModel = ChallengesViewModel()

Next, replace the two occurrences of challengeTest with
challengesViewModel.currentChallenge!. The first is where you use
QuestionView:

QuestionView(question:
 challengesViewModel.currentChallenge!.challenge.question)

The second is a few lines below, where you use ChoicesView:

ChoicesView(
 challengeTest: challengesViewModel.currentChallenge!)

Run the app now and navigate to the challenge view. You won’t notice any
difference. Tapping the upper half of the view will toggle the choices view, as before.

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 277

You can, however, temporarily apply a change to the published property to verify
that changes are reflected to the UI. In the button’s action handler, call the view
model’s method to advance to the next challenge:

Button(action: {
 showAnswers.toggle()
 // 1
 challengesViewModel.generateRandomChallenge()
}) {
 QuestionView(question:
 challengesViewModel.currentChallenge!.challenge.question
)
 .frame(height: 300)
}

generateRandomChallenge() picks a new random challenge and puts it in
currentChallenge. Since the property changes, it triggers a UI refresh. Now, when
you run the app and tap the upper half of the view, it will switch to a new challenge.

Current selection

You obtained this by adding the @ObservedObject attribute to the
challengesViewModel property, instance of ChallengesViewModel. As mentioned
earlier, this class defines a @Published property named currentChallenge, which
you reference in the code (by passing it to QuestionView and ChoicesView).

When in the button tap handler you call generateRandomChallenge(), that
property is mutated, and that causes the places where it is referenced to redraw, so
both QuestionView and ChoicesView are refreshed, and that is what makes the new
challenge to be displayed.

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 278

However, ChallengeView is not the right place for ChallengesViewModel to reside,
so you better move it to a more appropriate place. Undo the changes made above by:

1. Deleting challengesViewModel.

2. Replacing the two occurrences of challengesViewModel.currentChallenge!
with challengeTest.

3. Deleting self.challengesViewModel.generateRandomChallenge() from the
button’s action handler.

Alternately, press Command-Z repeatedly until you undo all the changes.

Note: You have made this to see the differences between one approach and
the other. Sorry for making you go back, but this way it clarifies the next
explanation.

So, where should challengesViewModel go? PracticeView references
ChallengeView. It already contains two properties that are both bindings, so they
reference data stored elsewhere.

The purpose of this view is to display a challenge if the user hasn’t completed them
all. Otherwise, it will show a congratulations view.

WelcomeView, in turn, references PracticeView. You can see that it already contains
a challengesViewModel property, an instance of ChallengesViewModel. It’s also
declared as @ObservedObject, which enables its published properties to behave like
state properties.

So this is the right place where challengesViewModel should be, and it’s not a
coincidence that it is already declared and initialized there.

Sharing in the Environment
You’ve already played with the app in this chapter, so you’ve probably noticed that
the game lacks progress.

When you select the correct answer in a challenge, not much happens other than
getting a confirmation alert. The app should advance to the next challenge. You’ll fix
that next.

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 279

Open ChallengesViewModel and you’ll find two methods to log correct and
incorrect answers:

func saveCorrectAnswer(for challenge: Challenge) {
 correctAnswers.append(challenge)
}

func saveWrongAnswer(for challenge: Challenge) {
 wrongAnswers.append(challenge)
}

After saving a correct answer, you want to advance to the next challenge. There’s
another method in the class, generateRandomChallenge(), which is perfect for this
goal.

Now, you need to use these methods. It turns out, ChoicesView, the view where the
user selects one of the options, already uses them.

Look at the view implementation, and you’ll notice that:

• It has a challengesViewModel property, declared as @ObservedObject.

• It invokes generateRandomChallenge() in the Alert dismiss button’s handler.

• It invokes both saveCorrectAnswer() and saveWrongAnswer() in
checkAnswer(at:).

However, the app doesn’t work as expected; when you’ve completed one challenge, it
doesn’t advance to the next.

The reason is simple: You’re creating an instance of ChallengesViewModel here, but
also in WelcomeView. So they’re two different instances, and any change made to one
doesn’t propagate to the other.

This is about the source of truth discussed in the previous chapter — here you have
two different sources of truth, but there should be only one.

A possible solution is to pass challengesViewModel from WelcomeView down to
ChoicesView, via initializers — but that’s not elegant. Fortunately, there’s a better
way.

This might be a typical case where a singleton could do the job pretty well. But,
confidentially speaking, the singleton pattern is not the best pattern to use — it
creates unnecessary dependencies that you can easily avoid using other patterns,
such as dependency injection.

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 280

Environment and Objects
SwiftUI provides a way to achieve that. It’s not a dependency injection, just a way to
put an object into something like a bag and retrieve it whenever you need it. The bag
is called the environment, and the object an environment object.

This pattern uses two of the most popular SwiftUI ways to do things: a modifier and
an attribute.

• Using environmentObject(_:), you inject an object into the environment.

• Using @EnvironmentObject, you pull an object (actually a reference to an object)
out of the environment and store it in a property.

Once you inject an object into the environment, it’s accessible to the view and its
subviews, but it’s not accessible from the view’s parent and above.

Just to be sure, inject it into the root view for now. Open KuchiApp and, in body,
locate where StarterView instantiates. You’ll find that another object is injected
into the environment: an instance of UserManager. You’re going to use the same
pattern.

Add this line right after the userManager property declaration, at line 37:

let userManager = UserManager()
// Add this line
let challengesViewModel = ChallengesViewModel()

This creates a new instance of the challenges view model class. Now you can inject it
into the environment using the environmentObject(:_) modifier:

var body: some Scene {
 WindowGroup {
 StarterView()
 .environmentObject(userManager)
 // Add this line
 .environmentObject(challengesViewModel)
 }
}

Now all the views in the StarterView’s hierarchy have access to that instance.

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 281

Note: You’re injecting an unnamed instance into the environment. When you
pull it using the @EnvironmentObject, you just specify the instance type. This
is important to remember because it means that you can only inject one
instance per type into the environment. If you inject another instance, it will
replace the previous one.

Now, you have to make a change in all the places that use ChallengesViewModel. So
in WelcomeView, replace this property:

@ObservedObject var challengesViewModel = ChallengesViewModel()

with:

@EnvironmentObject var challengesViewModel: ChallengesViewModel

• You’re using the @EnvironmentObject attribute, specifying that this property
must be initialized with an instance of ChallengesViewModel taken from the
view’s environment.

• You no longer need to instantiate it because the property is initialized with an
existing instance — more precisely, the instance you created earlier in KuchiApp

Do the same property replacement in ChoicesView.

Now, build and run and test the app. When you provide a correct answer, it advances
to the next challenge.

Challenge sequence

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 282

However, there are two issues:

1. The answered challenges counter doesn’t update.

2. After five correct answers, it shows the congratulations view, but you can’t get
away from it. the Play Again button does nothing:

Congrats view

Environment and Duplicates (to Avoid)
So earlier you left the app with two issues that you’re going to get rid of now.

The latter (getting away from the congratulations view) is a simple fix. Open
Practice/CongratulationsView and locate the button at the bottom of the file. Its
action handler calls challengesViewModel.restart(), which seems the correct
way to exit the congratulations view and start over with a new challenge session.

If you look at challengesViewModel, you see that it’s an observed object
instantiated inline, whereas it should be taken from the environment, so that there’s
one single source of truth.

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 283

Replace it, as you did with the other cases, with:

@EnvironmentObject var challengesViewModel: ChallengesViewModel

Now, build and run and go to the end of the challenge session. When the
congratulations view displays, you can now tap the button to restart the session.

As for the other issue (the answered challenges counter not updating) open
Practice/ScoreView. You may notice that numberOfAnswered, which holds the
number of correct answers, is a state property, whereas, in order to function properly,
it should be passed as a binding from its superview — again, to comply with the single
source of truth rule.

You could be tempted to get the challenge view model from the environment, but
that would add an unnecessary dependency. This is a simple view that’s supposed to
display a pair of numbers, so it’s better to make it as dumb as possible.

To let the parent pass the parameter, you need to change it to a binding. In
numberOfAnswered, replace @State with @Binding and remove the initialization, so
it looks like:

@Binding var numberOfAnswered: Int

Now that the property is a binding, you must provide it in the initializer. In fact, the
preview now gives an error because of the missing argument. Just add it, passed as
binding:

ScoreView(
 numberOfQuestions: 5,
 numberOfAnswered: $numberOfAnswered
)

Likewise, ChallengeView, where you use ScoreView, gives a similar error, but you
don’t have any state or binding property to pass. So add a numberOfAnswered to
ChallengeView, as you did before:

@Binding var numberOfAnswered: Int

And pass it to ScoreView:

ScoreView(
 numberOfQuestions: 5,
 numberOfAnswered: $numberOfAnswered
)

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 284

The preview, again, isn’t happy about these changes, so you have to add some code
to make it compile. You need to pass a numberOfAnswered binding. You can add a
state property to ChallengeView_Previews

@State static var numberOfAnswered: Int = 0

Next, update the line where you use ChallengeView by passing the expected
parameter:

return ChallengeView(
 challengeTest: challengeTest,
 numberOfAnswered: $numberOfAnswered
)

Almost done. You use ChallengeView in PracticeView, so now the compilation
error affects this view. Repeat these familiar steps for the last time — promise!

Add a binding property to PracticeView:

@Binding var numberOfAnswered: Int

Pass the binding to the ChallengeView initializer:

ChallengeView(
 challengeTest: challengeTest!,
 numberOfAnswered: $numberOfAnswered
)

PracticeView_Previews already has a numberOfAnswered state property, so all you
need to do is to pass this new property as a binding to ChallengeView:

return PracticeView(
 challengeTest: .constant(challengeTest),
 userName: .constant("Johnny Swift"),
 numberOfAnswered: $numberOfAnswered
)

Now, WelcomeView is the last step of this recursive journey. In it, you already have
the challenges view model, taken straight from the environment — you just need to
add the property that needs to be passed down to ScoreView.

In ChallengesViewModel, you can see that there’s already a numberOfAnswered
computed property:

var numberOfAnswered: Int { return correctAnswers.count }

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 285

As you can see, it’s read-only (it implements a getter, but not a setter) — will it work
as a binding? Not so well. Go back to WelcomeView and pass this new property as a
binding to PracticeView:

PracticeView(
 challengeTest: $challengesViewModel.currentChallenge,
 userName: $userManager.profile.name,
 // Add this
 numberOfAnswered: $challengesViewModel.numberOfAnswered
)

The compiler will inform you that it’s a read-only property so it can’t be assigned.
How can you fix this?

Binding has a static method called constant() that creates a binding from an
immutable value. This looks like a solution! Replace that line with:

numberOfAnswered: .constant(challengesViewModel.numberOfAnswered
)

And voila, now it works!

Score Working

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 286

Object Ownership
In the previous sections you’ve seen that there are three different ways a view can
obtain an observable object:

• By receiving it in the initializer (usually a binding)

• By extracting it from the environment

• By creating an instance of itself (usually a state property)

In the first two cases, the object is owned by another entity, which can be a parent
view or the app (KuchiApp in our case), a dependency container, or the environment.

In the latter case, the instance is owned by the view, but you must not forget that a
view is a value type, and that a value type doesn’t really mutate: a new instance
incorporating the mutation is created. As a direct consequence, if a view has
ownership of a reference type, chances are that when the view mutates, the
referenced object is recycled, and a new instance is created.

This happens if the view instantiates a reference type itself, but it can also happen if
the reference type is passed via the initializer.

Compare this code:

struct SomeView: View {
 @ObservedObject var userManager = UserManager()
 ...
}

With:

struct SomeView: View {
 @ObservedObject var userManager: UserManager

 init(userManager: UserManager) {
 self.userManager = userManager
 }
}

• In the former case, userManager is instantiated every time an instance of
SomeView is created. This also includes cases where the view is re-rendered —
since it is a value type, re-rendering implies creating a new instance.

• In the latter case, whether userManager is created every time SomeView is
instantiated depends on where it is created.

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 287

Let’s look into that case — Now compare:

struct SomeOtherView: View {
 var body: some View {
 SomeView(userManager: UserManager())
 }
}

With:

struct SomeOtherView: View {
 let userManager = UserManager()

 var body: some View {
 SomeView(userManager: userManager)
 }
}

• In the former case, an instance of UserManager is created every time SomeView is
instantiated.

• In the latter case, UserManager is instantiated once, and that same instance is
always passed to every new instance of SomeView

So when passing an instance of a reference type to a view’s initializer, it’s good
practice to keep a reference by instantiating and assigning to a property (latter case),
rather than creating it in place, right where it is passed to the view (former case)

Generally speaking, passing an observable object via the initializer is not elegant,
unless really needed. If a view requires ownership of an observable object, then any
parent that uses that view should create the instance, keep a reference (as seen in
the previous code snippet, using the userManager property), and pass it down to the
initializer.

Since SwiftUI 2.0 you have a new way to solve issues of this type, where a view is the
owner of an observable object, but the observable object should not follow the view
lifecycle — which means, it should be instantiated once, regardless of how many
times the view that owns it is mutated.

The new way is called @StateObject, and you can think of it as a @State for
reference types. SwiftUI will make sure that when a view is mutated all its state
object properties are retained. It’s like having a static property bound to a mutating
value type — since mutation means new instance, SwiftUI takes case of transferring
instances of state objects from the mutating to the mutated instance of the value
type.

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 288

Using a state object, you solve the problem described above with just this code:

struct SomeView: View {
 @StateObject var userManager = UserManager()
 ...
}

Here the view creates and owns the instance of a reference type, and that instance is
carried over when the view is re-instantiated as a consequence to a state mutation
(i.e. at least one of its properties is updated). No more need of creating the reference
type instance elsewhere and pass it to the initializer.

Note that @StateObject is a brand new tool, not meant to be a replacement for
other tools. Use the proper tool for each problem:

• When you want a view to own an observable object, because it conceptually
belongs to it, your tool is @StateObject.

• When an observable object is owned elsewhere, either @ObservedObject or
@EnvironmentObject are your tools — choosing one or the other depends from
each specific case.

Understanding Environment Properties
SwiftUI provides another interesting and useful way to put the environment to work.
Earlier in this chapter, you used it to inject environmental objects that can be pulled
from any view down through the view hierarchy.

SwiftUI automatically populates the same environment with system-managed
environment values. The list is pretty long, and it’s available at apple.co/2yJO5C1.

For example, you’ll find a property that specifies which color scheme you’re using,
dark or light. This isn’t just informative — it’s reactive, meaning that if the property
value changes, it triggers a UI update wherever the property is used.

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 289

In Kuchi, you’re going to fix an issue in the challenge view: It doesn’t look good if
the device is in landscape mode:

Challenge view in landscape

To make it look better, you want to detect when the device orientation changes and
react to that change accordingly. Unfortunately, there’s no such property, at least not
an explicit one.

In fact, you can use verticalSizeClass, whose type is an enum. It states whether
the vertical size class of the device and orientation is .compact or .regular.

To read the property value and subscribe to changes, you have a new @Environment
attribute at your disposal so you can pass the property key path to it. So go ahead
and add this property to ChallengeView:

@Environment(\.verticalSizeClass) var verticalSizeClass

Although you can give the property any arbitrary name, it’s better to stick with the
original name specified in the key path, to avoid confusion. You don’t need to specify
the type; you already know it, since it’s an existing property.

Once you’ve done this, you can differentiate the layout depending on the value of
that property. Replace the entire body implementation with:

var body: some View {
 // 1
 if verticalSizeClass == .compact {
 // 2
 VStack {
 // 3
 HStack {
 Button(action: {
 showAnswers = !showAnswers
 }) {
 QuestionView(

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 290

 question: challengeTest.challenge.question)
 }
 if showAnswers {
 Divider()
 ChoicesView(challengeTest: challengeTest)
 }
 }
 ScoreView(
 numberOfQuestions: 5,
 numberOfAnswered: $numberOfAnswered
)
 }
 } else {
 // 4
 VStack {
 Button(action: {
 showAnswers = !showAnswers
 }) {
 QuestionView(
 question: challengeTest.challenge.question)
 .frame(height: 300)
 }
 ScoreView(
 numberOfQuestions: 5,
 numberOfAnswered: $numberOfAnswered
)
 if showAnswers {
 Divider()
 ChoicesView(challengeTest: challengeTest)
 .frame(height: 300)
 .padding()
 }
 }
 }
}

It seems there are a lot of changes, but really, it’s mostly duplicated code with some
adjustments:

1. Here, you check if the vertical class is compact. If it is, it means the device is in
landscape mode.

2. This is the view implementation for the landscape mode. You use the vertical
stack to display ScoreView at the bottom.

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 291

3. The horizontal stack just shows QuestionView and ChoicesView next to one
another.

4. This is the previous implementation, which is still good for portrait layout.

Now, build and run and go to the challenge view. When you change the device’s
orientation, the layout adapts automatically. Neat!

Challenge view in landscape

One thing that’s worth mentioning is that at any level in the hierarchy, you can
manually assign a different value to any environment property by using a view
modifier: .environment(_:_:).

You can test that by setting the vertical size class in one of ChallengeView’s parents.
Open WelcomeView and add this modifier to PracticeView:

PracticeView(
 challengeTest: $challengesViewModel.currentChallenge,
 userName: $userManager.profile.name,
 numberOfAnswered:
 .constant(challengesViewModel.numberOfAnswered)
)
// Add this modifier
.environment(\.verticalSizeClass, .compact)

You’re now forcing the vertical size class to be compact for PracticeView and all its
subviews down in the hierarchy. It takes the key path of the property to modify and
the new value — pretty intuitive. :]

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 292

Now, just build and run and you’ll have the proof: However you rotate the device,
ChallengeView always shows its landscape layout!

Fixed orientation

Remove that modifier once you’re done testing, since it’s not a “feature” you’d want
to leave in the app. :]

Creating Custom Environment Properties
Environment properties are so useful and versatile that it would be great if you could
create your own. Well, as it turns out, you can!

Creating a custom environment property is a two-step process:

1. You have to create a struct type that you’ll use as the property key, conforming to
EnvironmentKey.

2. You add the newly-computed property in an EnvironmentValues extension,
using the subscript operator to read and set values.

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 293

Some code is worth more than words. ScoreView has an immutable
numberOfQuestions property, which defines the number of challenges per session.

If you look at ChallengeView, you can see that it passes a constant instead of the
actual number defined in ChallengesViewModel. This is a good candidate to
demonstrate how to create and use a custom environment property.

Go to ChallengesViewModel and, at the beginning of the file, add this struct:

struct QuestionsPerSessionKey: EnvironmentKey {
 static var defaultValue: Int = 5
}

This defines:

• The key to use with the subscript operator.

• The default value assigned to the property, if it’s not explicitly initialized
elsewhere.

Next, you define the actual property. Add this code after the struct:

// 1
extension EnvironmentValues {
 // 2
 var questionsPerSession: Int {
 // 3
 get { self[QuestionsPerSessionKey.self] }
 set { self[QuestionsPerSessionKey.self] = newValue }
 }
}

So, to create the new property, you have to:

1. Create an EnvironmentValues extension.

2. Add a questionsPerSession computed property.

3. Use the QuestionsPerSessionKey type to access the property for both reading
and writing.

Now, add a property to ChallengesViewModel that defines the number of questions.
It’s better to make it read-only, so it can’t be changed from outside the class:

private(set) var numberOfQuestions = 6

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 294

In generateRandomChallenge(), it’s also better to replace the 5 constant with the
value of this property:

func generateRandomChallenge() {
 if correctAnswers.count < numberOfQuestions {
 currentChallenge = getRandomChallenge()
 } else {
 currentChallenge = nil
 }
}

This method generates a new challenge if the number of correct answers is less than
the number of questions. Otherwise, it sets currentChallenge to nil, indicating the
session is over.

In WelcomeView, add this new environment property to the PracticeView’s
environment so it will be available to PracticeView and all its subviews:

PracticeView(
 challengeTest: $challengesViewModel.currentChallenge,
 userName: $userManager.profile.name,
 numberOfAnswered:
 .constant(challengesViewModel.numberOfAnswered)
)
// Add this
.environment(
 \.questionsPerSession,
 challengesViewModel.numberOfQuestions
)

Now, you’re ready to use the new property. Go to ChallengeView and add this
property:

@Environment(\.questionsPerSession) var questionsPerSession

This pulls questionsPerSession from the environment. Compare it with the other
environment variable declared in the same file, verticalSizeClass. The only
difference is the name. Note how you don’t need to specify the type, since it’s
inferred from the questionsPerSession computed property you added earlier to the
EnvironmentValues extension.

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 295

Finally, in the two places that reference ScoreView, replace 5 with the new variable,
questionsPerSession:

ScoreView(
 numberOfQuestions: questionsPerSession,
 numberOfAnswered: $numberOfAnswered
)

Build and run; now, ScoreView reports the new number of questions (6 instead of
the previously hardcoded 5).

Custom environment property

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 296

Key Points
This was another intense chapter. But in the end, as with the previous one, concepts
are simple, once you understand how they work.

To summarize what you’ve learned:

• Using @ObservedObject, you can create a property, an instance of a class
conforming to ObservableObject. The class can define one or more @Published
properties. These work like state variables, except you implement them in a class
rather than within the view.

• With @StateObject you have the @State equivalent, but for reference types.

• You use @EnvironmentObject as a bag where you can inject observable objects.
You can then pull them from the view you injected them into and all its
descendants.

• @Environment lets you access a system environment value, such as colorScheme
or locale. You can create an environment property, which has all the advantages
of a binding, including reactivity.

• You can also use @Environment to create your own custom environment
properties.

Where to Go From Here?
This chapter completes the state and data flow topic — whereas in the previous
chapter you learned how to use observable properties in your views, and how to pass
them around, in this chapter you looked at defining and using your own observable
types, as well as getting your hands on environment properties.

Suggestions for what to read next are the same as the previous chapter, since, as just
said, they both are about the same macro-topic.

• SwiftUI documentation: apple.co/2MlBqJJ

• State and data flow reference documentation: apple.co/2YzOdyp

Being familiar with Combine can also be beneficial, so check out the documentation
at apple.co/2L7kWTy. You probably already know, but in case you don’t, this book
has a brother, Combine: Asynchronous Programming with Swift, which you can
find at https://bit.ly/3qTFPnG.

SwiftUI by Tutorials Chapter 9: State & Data Flow – Part II

 297

10Chapter 10: More User
Input & App Storage
By Antonio Bello

In the last two chapters, you learned how to use state and how easy it is to make the
UI react to state changes; you also implemented reactivity to your custom reference
types.

In this chapter, you’ll meet a few other input controls: lists with sections, steppers,
toggles and pickers. To do so, you’ll work on a new Kuchi app section dedicated to its
settings.

Since you’ll implement this new feature as a separate new view, you might think you
need to add some navigation to the app — and you’d be right. In fact, you’ll add tab-
based navigation later on.

For now, you’ll create a new setup view and make it the default view displayed when
you launch the app.

You’ll find the starter project, along with the final project, in the materials for this
chapter. It’s almost the same final project you left in the previous chapter, so feel
free to use your own copy that you’ve worked on so far. However, in this case, you
need to manually add the content of the Shared/Utils folder to the project, which
contains these three files:

• Color+Extension: contains some UIColor extension methods.

• LocalNotifications: helper class to create local notifications.

• Appearance: defines an enumeration used to describe the app’s appearance.

 298

Creating the Settings View
Before doing anything else, you must create the new settings view and make it the
default view displayed at launch.

Open the starter project or your project from the previous chapter. In the Shared
folder, create a new group, call it Settings, then create a new file inside it using the
SwiftUI template, and name it SettingsView.

New setting group

Now, to make Settings the initial view, open KuchiApp and, in body, replace the
code that instantiates StarterView, along with its modifiers, with:

SettingsView()

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 299

If you now run the app, it’ll show the classic, but never outdated, Hello, World!
message that every developer has met at least a hundred times in their developer
life.

Empty settings view

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 300

Now that everything is set up, you can focus on building the settings view. Your goal
is to create something that looks like this:

Final settings view

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 301

You can see that the view has:

• A Settings title.

• Three sections: Appearance, Game and Notifications.

• One or more items (settings) per section.

To implement this structure in UIKit, you would probably opt for a UITableView
with static content or a vertical UIStackView. In AppKit, you’d use a slightly similar
way.

In SwiftUI, you’ll use a List, a container view that arranges rows of data in a single
column. Additionally, you’ll use a Section for each of the three sections listed
above. This is just an implementation-oriented peek, and you’ll learn more about
lists in Chapter 14: “Lists”.

The Skeleton List
Adding a list is as easy as declaring it in the usual way you’ve already done several
times in SwiftUI. Before starting, resume the preview so you have visual feedback of
what you’re doing in real-time, step by step.

In the SettingsView’s body, replace the welcome text with:

List {
}

Next, add the title inside the List:

Text("Settings")
 .font(.largeTitle)
 .padding(.bottom, 8)

You’re using two modifiers to:

• Select the largeTitle text style.

• Add a bottom padding.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 302

Last, for now, add three sections after the Text, respectively, for appearance, game
and notifications:

Section(header: Text("Appearance")) {
}

Section(header: Text("Game")) {
}

Section(header: Text("Notifications")) {
}

Sections

The Stepper Component
It’s good practice to start from the beginning; in fact, you’ll start populating the …
erm … second section. :]

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 303

The Game section contains two settings, the first of which is the number of
questions. You remember from the previous chapters that a session is a sequence of
challenges, the number of which is set to six in ChallengesViewModel.

Because you like to win easily or because you like to put your name in the Guinness
World Records, you might want to model the number of questions per session
accordingly to your taste.

So the first setting you’ll add to the Kuchi app is to let you choose how many
questions you wish per session.

You could use a text field where you have to input a number manually. Still, you’d
need to add validation to ensure that the input is convertible to a positive integer —
there’s a better and more elegant control that fits.

As you might have already guessed by reading the title of this section, this control is
the stepper, aka a pair of buttons that allow you to increase or decrease an integer
value and an associated label. You’ve already briefly met the stepper in Chapter 6:
“Controls & User Input”.

Stepper

First, at the top of SettingsView, add a state variable to hold the number of
questions:

@State var numberOfQuestions = 6

Then, in the second section, Game, add this code:

// 1
VStack(alignment: .leading) {
 // 2
 Stepper(
 "Number of Questions: \(numberOfQuestions)",
 value: $numberOfQuestions,
 // 3
 in: 3 ... 20
)
 // 4
 Text("Any change will affect the next game")
 .font(.caption2)
 .foregroundColor(.secondary)
}

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 304

Here’s what’s going on:

1. Along with the stepper, you’re showing an informative label beneath it, so you’re
using a vertical stack to stack the stepper and the label, both aligned to the left.

2. This is the stepper, which has a label showing the currently selected number of
questions and a binding.

3. Look how cool this is! You’re forcing the stepper to stay in the 3-20 range, you
don’t need to validate it; you just prevent the user from choosing values outside
that range.

4. This is the informative label, properly stylized, below the stepper.

If you resume the preview, this is what you’ll see:

Number of questions

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 305

If you activate the live preview, you can play with the control to amend the property
value, and you can easily find that you can’t go beyond the limits defined by the 3-20
range you specified in the control declaration.

Note: Spoiler alert! You’ve added a state property, and it’s not the only one
you’ll add in this chapter. Although, for now, it works fine, it’s not the best way
to handle a state that must ideally survive app restarts. You’ll look into that
later in this chapter when discussing AppStorage.

The Toggle Component
The second setting you’ll add is a switch that enables or disables the Learning
section of the Kuchi app. Before you go and browse all the previous chapters to
search for something you might have forgotten, you should be aware that there’s no
such section yet, you’ll add it in the next chapter.

You’ve already used the toggle component in **Chapter 6: “Controls & User Input”
**to enable the “Remember Me” feature that allows the app to remember the user’s
name. So you should already know how to use it.

At the top of SettingsView, add a new piece of state:

@State var learningEnabled: Bool = true

Then, in the Game section, after the vertical stack, add this code:

Toggle("Learning Enabled", isOn: $learningEnabled)

You’re simply creating a toggle with a label and a binding.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 306

Now, if you resume the preview, you’ll see this:

Learning enabled

The settings view is taking shape!

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 307

The Date Picker Component
The following section you’ll take care of is Notifications. You might be wondering
what notifications have to do with Kuchi.

When you’re learning something new, and it requires constant effort, you must
dedicate time regularly. You can’t afford to skip practicing, and that mustn’t happen
just because you forget it!

So, ask the app to remind you.

To implement it, you only need two controls:

• A toggle to enable or disable the notification.

• A time picker to select the time of the day you want the reminder to show up.

Note: What we’re calling time picker is, in reality, a DatePicker configured
to handle the time component only. There’s no standalone time picker
component in SwiftUI.

Since both relate to the same settings, you’ll lay them out horizontally, so, you
guessed right, you’ll embed them in an HStack

First, in SettingsView add the following state property below the ones previously
added:

@State var dailyReminderEnabled = false

Then, in the Notifications section, add the following:

HStack {
 Toggle("Daily Reminder", isOn: $dailyReminderEnabled)
}

Here you’re using a toggle component to turn the daily reminder on and off.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 308

Now you can resume the preview and see the new toggle in place.

Notifications toggle

Currently, it does nothing, which is unsurprising, as you still need to add behavior to
its state change. More on that soon.

Now, you can add a time picker. Add this code after the reminder toggle:

DatePicker(
 // 1
 "",
 // 2
 selection: $dailyReminderTime
)

DatePicker has a few initializers, differing by whether they use a Text or a custom
View for the label and by the inclusion of a validity range or not.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 309

In the version you’ve used above:

1. You’re using the Text label, but since you already have a Text for the label, you
added it as part of the daily reminder switch, and you’re passing an empty string.

2. This is the binding to a state property you must add.

To get it to compile, add the new state property after dailyReminderEnabled:

@State var dailyReminderTime = Date(timeIntervalSince1970: 0)

Resume the preview, and enable live preview. Or, if you prefer, launch the app in the
simulator. Notice the two fields after the switch, one for the date and one for the
time.

Now, if you tap the date part of the component, it will display a pop-up to let you
choose a date. Likewise, tapping the time part will show a pop-up to select a time.
And needless to say, if you select a date or a time, it will automatically store to
dailyReminderTime.

Date picker

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 310

Date Picker Styles
In iOS, the date picker comes in three different styles, which you can configure using
the .datePickerStyle() modifier, similarly to how it works for TextField, which
you encountered in Chapter 6: “Controls & User Input”. The three styles are:

• CompactDatePickerStyle: This is what you’ll use in Kuchi. It consists of two
compact fields showing the selected date and time. When you tap one, it will
display a pop-up to edit the relevant part.

Compact date picker

• WheelDatePickerStyle: It’s the classic wheel where you can swipe up and down
to compose the date and time, field by field. If you’ve ever developed in UIKit, you
should know what it is. :]

Wheel date picker

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 311

• GraphicalDatePickerStyle: An embedded calendar component.

Graphical date picker

In macOS, there are three styles too:

• GraphicalDatePickerStyle: This is the macOS counterpart of the iOS style seen
above.

Graphical date picker macos

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 312

• FieldDatePickerStyle: This is a text field where you can type your date and/or
time.

Field date picker

• StepperFieldDatePickerStyle: This is similar to the previous one, but with a
stepper that lets you use your mouse to select values.

Stepper date picker

For both platforms, there’s an additional DefaultDatePickerStyle, which is an
alias for a style, but different per platform:

• In iOS, the default style is CompactDatePickerStyle.

• In macOS, it’s StepperFieldDatePickerStyle.

Configuring the Daily Reminder Time Picker
After some theory, it’s time to get back to Kuchi. The date picker with compact style
looks great, but there’s one issue: you don’t need the date. This picker is to select a
time of the day, but there’s no date component because you want it to remind you
every day.

This is very easy to achieve. The initializer takes an additional
displayedComponents parameter, which can be either .hourAndMinute, .date, or
both. In your case, you want it to be just hourAndMinute, so add it after selection:

DatePicker(
 "",
 selection: $dailyReminderTime,
 // Add this, but don't forget the trailing
 // comma in the previous line
 displayedComponents: .hourAndMinute
)

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 313

Now you can resume the live preview, or run the app if you prefer, and play with the
time picker.

Time picker

You probably noticed another problem while testing the app: if the switch is off, the
time picker should disable, but it always stays enabled instead. Thanks to SwiftUI’s
reactivity, this is very simple to achieve. Declare that the date picker’s enabled
property must follow the value of the switch’s value.

Add the following modifier to DatePicker:

.disabled(dailyReminderEnabled == false)

With it, you’re binding dailyReminderEnabled to the time picker’s disabled
property. Try it now; when you turn the switch off, the time picker will automatically
disable.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 314

Activating Notifications
Now that the user interface part of the time picker is complete, you need to make it
functional. The requirements are pretty simple:

1. If the daily notification switch turns on, create the daily notification.

2. If the time changes, cancel the previous notification and create a new one with
the updated time by selecting with the time picker.

3. If the daily notification switch turns off, cancel the current notification.

In UIKit and AppKit Jurassic worlds, you would probably hook to a value-changed
event and do the processing in there. You should already know that the SwiftUI way
of doing things is different and that, often, you can achieve the same goal in
different ways.

Both the switch and the time picker have an associated state variable each, which
holds the current selection. When the user changes the switch state, either turning
on or off, the component automatically updates the binding, which is the
dailyReminderEnabled property.

Adding a Custom Handler to the Toggle

It would be nice if you could intercept when the binding updates and inject a call to a
method that creates or removes a local notification. This is exactly what you’re going
to do now.

The toggle button is declared as:

Toggle("Daily Reminder", isOn: $dailyReminderEnabled)

Replace the $dailyReminderEnabled binding with an explicit binding, as follows:

Toggle("Daily Reminder", isOn:
 // 1
 Binding(
 // 2
 get: { dailyReminderEnabled },
 // 3
 set: { newValue in
 // 4
 dailyReminderEnabled = newValue
 }
)
)

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 315

If you remember when you met bindings a couple of chapters ago, a binding is a
property wrapper type that can read and write a value owned by a source of truth.
Here, the source of truth is dailyReminderEnabled, and you achieve the read and
write via two closures that you pass to the binding initializer:

1. This is the binding that you’re creating.

2. This is the get implementation, a closure that returns the source of truth’s value.

3. This is the set counterpart, where you set the value into the source of truth’s
wrapped value.

4. Here’s where you set the value.

Now if you enable live preview or run the app, you won’t notice any difference. This
implementation, left as is, doesn’t add anything new from a functional standpoint.

As mentioned earlier, you only want to inject a method call when a new value is set.
In the binding’s set closure, after setting the new value into
dailyReminderEnabled, add this method call:

configureNotification()

This method doesn’t exist yet, it will be responsible of creating or removing a
notification. Add it after body:

func configureNotification() {
 if dailyReminderEnabled {
 // 1
 LocalNotifications.shared.createReminder(
 time: dailyReminderTime)
 } else {
 // 2
 LocalNotifications.shared.deleteReminder()
 }
}

Depending on the value of dailyReminderEnabled:

1. Create a new reminder with the currently selected time.

2. Delete the reminder.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 316

Shared/Utils/LocalNotifications contains the details of how to schedule and
cancel a notification. However, the way a custom handler injects into a binding is a
little verbose. You could create a Binding extension method that automatically does
what you did with the custom getter and setter above. Still, there’s actually another
way that SwiftUI already provides: the onChange(of:perform:) modifier.

Restore the previous implementation of the Daily Reminder toggle so you use the
state variable and not the custom binding:

Toggle("Daily Reminder", isOn: $dailyReminderEnabled)

Now add to it a call to the modifier mentioned above, passing
dailyReminderEnabled as value and a call to configureNotification() as
closure:

.onChange(
 of: dailyReminderEnabled,
 perform: { _ in configureNotification() }
)

This tells SwiftUI: Hey, when dailyReminderEnabled changes, please execute this
closure. The value can be any type conforming to Equatable, so it’s not restricted to
state or binding only, and the closure takes the new value, of the same type, as a
parameter.

Adding a Custom Handler to the Time Picker

Now you need to replicate what you did to the toggle. Still in SettingsView, add the
same modifier to the DatePicker:

.onChange(
 of: dailyReminderTime,
 perform: { _ in configureNotification() }
)

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 317

The only difference is that you’re now monitoring dailyReminderTime instead of
dailyReminderEnabled.

Note that .onChange(of:perform:) is part of the View protocol so you can use it on
any view. You could, for example, move the two uses you’ve done above from their
respective components to HStack, Section or List. For example, in case you opt for
the section, the code would look like this:

Section(header: Text("Notifications")) {
 HStack {
 Toggle("Daily Reminder", isOn: $dailyReminderEnabled)
 DatePicker(
 "",
 selection: $dailyReminderTime,
 displayedComponents: .hourAndMinute
)
 }
}
.onChange(
 of: dailyReminderEnabled,
 perform: { _ in configureNotification() }
)
.onChange(
 of: dailyReminderTime,
 perform: { _ in configureNotification() }
)

Testing the Notifications

After all these changes, notifications are fully working. Every time the state of the
toggle or the time picker changes, you invoke configureNotification(), which
either cancels a schedule or schedules a new notification.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 318

After so much effort, you can see what you’ve achieved! You need to run the app on a
simulator or a device, notifications won’t work in live preview. Follow these steps:

1. Enable Daily Reminder.

2. Take note of your current time, and add one minute.

3. Tap on the time picker, and select that time.

4. Set the app to the background by going to the home screen.

5. Wait for the notification to appear.

Local notification

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 319

The Color Picker Component
Now swift … ehm, shift your focus on the app’s appearance. :]

In the next chapter, you’ll add a learning screen to the app where you can play with
swipeable cards. They have a solid background color, which was statically set to red
in previous iterations of this book.

Why not prepare a setting that allows the user to select a background color of their
choice, instead of defaulting to red?

To achieve that, you’ll use a ColorPicker. To store the selected color, you’re going
to need a state variable. Add the following to the top of SettingsView, right after
dailyReminderTime:

@State var cardBackgroundColor: Color = .red

Next, in the body under the Appearance section, add the color picker:

ColorPicker(
 "Card Background Color",
 selection: $cardBackgroundColor
)

And that’s it, very simple. The initializer takes three parameters:

• A label.

• A binding.

• An optional flag stating if opacity is supported, which, by default, is true.

There are several overloads with minor differences from each other. One that’s worth
mentioning allows you to specify a label as a view rather than a string, this is quite
common in SwiftUI’s components.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 320

You can run it in a simulator, a device, or live preview. When you tap the small
colored circle at the right, a pop-up displays, offering you several ways to choose a
color.

Color picker

It would be superfluous to say that when you select a new color, it’s automatically
set in the cardBackgroundColor state property.

The Picker Component
The last setting you’re offering to your users is the ability to select the app
appearance, either light or dark, a popular setting among modern apps.

You’ll give the user a set of three options to choose from:

• Light

• Dark

• Automatic

The last option is basically a way to say, “use the same appearance as configured in
the Settings app”.

To implement this setting you’ll be using the picker component, which is formally
described as a control for selecting a set of mutually exclusive values.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 321

Using it is very simple: you provide a binding that determines the currently selected
value and declare a set of mutually exclusive options.

A good way to start is by declaring the state variable. Add it after
numberOfQuestions:

@State var appearance: Appearance = .automatic

Appearance is an enum defined in Utils/Appearance, with three cases matching the
options mentioned earlier: .light, .dark and .automatic.

Since you’ll add a new component to the Appearance section, which already contains
the color picker, you must add a stack view to lay the two components out vertically.
So enclose the color picker in a VStack:

VStack(alignment: .leading) {
 ColorPicker(
 "Card Background Color",
 selection: $cardBackgroundColor
)
}

Now, before the color picker, add the new picker component:

// 1
Picker("", selection: $appearance) {
 // 2
 Text(Appearance.light.name)
 Text(Appearance.dark.name)
 Text(Appearance.automatic.name)
}

1. The first parameter passed to the picker initializer is a label, which you don’t
need here. There’s an initializer overload that accepts a custom view instead of a
text, so you’re free to customize the label as much as you like.

You have already figured out that the second parameter is the binding.

2. The content of the picker lists all possible options.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 322

This is how it looks:

Default picker

Be honest: it doesn’t look good, just a blank line with a disclosure icon. But there are
other problems: it needs to be actionable. If you run the app in the simulator, you’ll
notice you can’t select a new value.

Styling the Picker
In order to change the style, you have a modifier at your disposal. It’s an established
pattern in SwiftUI and should already look familiar to you. In this case, it’s
called .pickerStyle(_:).

You can browse the documentation to know all available styles at apple.co/3nyViIG.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 323

If you look at the screenshot at the beginning of this chapter, you’ll see that the
desired look for the appearance control is like a segmented control. To achieve that,
you can use SegmentedPickerStyle, which displays all options in a segmented
control.

Add this modifier to the picker:

.pickerStyle(SegmentedPickerStyle())

This changes the look of the picker to:

Picker segmented

Much better. However, if you run the app, you’ll notice that the following:

• It doesn’t highlight its default value, set in the appearance property initialization.

• It’s not actionable: It does nothing if you try to interact with it.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 324

Binding Options to the Picker State
If you look at the picker declaration, you can notice that:

• The currently selected item is bound to the appearance property.

• The list of items is just a list of strings (Appearance.light.name resolves to a
string).

Picker("Pick", selection: $appearance) {
 Text(Appearance.light.name)
 Text(Appearance.dark.name)
 Text(Appearance.automatic.name)
}

When you select an option, how would the picker know what to put into
appearance? Likewise, how does the picker know which corresponding item to select
if the code changes the appearance.So, you need to bind each picker option to a
specific value of its selection binding. In the case of this appearance picker, that
means binding each option to a case of the Appearance enum.

You can create that binding with the tag(:_) modifier, which differentiates and
identifies views in lists and pickers.

The tag modifier takes a value, which can be any type conforming to the Hashable
protocol. Enumerations automatically implement it so that you can use enum cases
out of the box.

For each of the three cases, add the tag modifier, passing the corresponding enum
case:

Text(Appearance.light.name).tag(Appearance.light)
Text(Appearance.dark.name).tag(Appearance.dark)
Text(Appearance.automatic.name).tag(Appearance.automatic)

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 325

Now when you run or live preview the app:

• You immediately see that .automatic is the preselected option. That’s because
you initialize appearance with that value.

• Whenever you tap a non-selected option, the selection changes and you have a
visual clue.

Settings view

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 326

Iterating Options Programmatically
A keen eye like yours has probably realized that:

• The picker options have the same format: A Text with a .tag modifier, fed with
data from enum cases.

• Enumerations in Swift are enumerable and iterable.

Even if you haven’t noticed, don’t worry, it’s not that obvious. Why, rather than
listing all options explicitly, you can’t iterate over them in a loop or similar?

Of course, the answer is yes, you can. You can leverage the CaseIterable protocol
and use the ForEach struct. Appearance already adopts CaseIterable, but if you
use this technique in your enumerations, remember to make them conform to that
protocol.

Replace the three options in the picker with the following:

ForEach(Appearance.allCases) { appearance in
 Text(appearance.name).tag(appearance)
}

It’s now more compact, easier to read and less error-prone. Not to mention that if
you decide to add 10 more enum cases, you won’t need to update this view: it’s
automatically populated, whichever the number of cases Appearance has.

The Tab Bar
Well done, now you’ve got a working settings view! But, currently, it’s the only view
that your app provides access to. At the beginning of this chapter, you replaced
StarterView with SettingsView as the only view. Of course, this doesn’t make
sense even in the least meaningless apps.

So, you need some navigation, and the tab bar fits perfectly with what you need —
also taking into account that, as mentioned earlier, you’ll add a new Learn section in
the next chapter.

For what matters in this chapter, your new tab bar needs to handle two views:

• StarterView

• SettingsView

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 327

You need a new view to host the tab bar, which acts as a master view that selects the
embedded view to display. There’s already a view in the project called HomeView,
located in the Shared folder, which contains an empty view.

Replace its body content with:

// 1
TabView {
 EmptyView()
}
// 2
.accentColor(.orange)

This is very simple, you are:

1. Creating a tab view; it only has an empty view for now.

2. Using the accentColor modifier, make the icon and text orange when the user
selects a tab.

Now you need to add the two tabs. The first is for the new settings view, so inside
TabView, replace EmptyView() with:

// 1
SettingsView()
 // 2
 .tabItem({
 // 3
 VStack {
 Image(systemName: "gear")
 Text("Settings")
 }
 })
 // 4
 .tag(2)

Adding a tab is pretty straightforward:

1. This is the view displayed when the tab is active.

2. You use the tabItem modifier to configure the tab.

3. You’re displaying an icon and a label below it, using a VStack to keep them
together.

4. This is the index of the settings tab. You’re assigning a value of 2 because it will
be the rightmost, i.e., the last. Afterward, you’ll add the next two tabs and the
other in the next chapter.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 328

If you resume the preview, this is what you’ll see:

Settings tab

To add the second tab, you first need to do some refactoring: In WelcomeView, you
have to replace the instance of PracticeView with the new HomeView.

To do so, first, open up WelcomeView. You see that in body the if branch shows
PracticeView — cut the following code:

PracticeView(
 challengeTest: $challengesViewModel.currentChallenge,
 userName: $userManager.profile.name,
 numberOfAnswered:
 .constant(challengesViewModel.numberOfAnswered)
)
 .environment(
 \.questionsPerSession,
 challengesViewModel.numberOfQuestions
)

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 329

And replace it with:

HomeView()

Next, go back to HomeView, and right before the SettingsView tab, paste the code
you cut above:

PracticeView(
 challengeTest: $challengesViewModel.currentChallenge,
 userName: $userManager.profile.name,
 numberOfAnswered:
 .constant(challengesViewModel.numberOfAnswered)
)
 .environment(
 \.questionsPerSession,
 challengesViewModel.numberOfQuestions
)

Because of missing properties, this creates a few things that you need to correct.
You’ll fix these soon. But first, you’ll finish the body of HomeView.

Before the environment modifier of PracticeView, add this code to configure the
tab:

.tabItem({
 VStack {
 Image(systemName: "rectangle.dock")
 Text("Challenge")
 }
})
.tag(1)

As done previously for the settings tab, this adds a new tab to the tab bar and assigns
a tag of 1. Since you order tabs by tag, the practice tab will appear before the settings
bar, for which you assigned a value of 2, which is the expected behavior.

To avoid any ambiguity, be sure that body looks like this:

TabView {
 PracticeView(
 challengeTest: $challengesViewModel.currentChallenge,
 userName: $userManager.profile.name,

numberOfAnswered: .constant(challengesViewModel.numberOfAnswered
)
)
 .tabItem({
 VStack {
 Image(systemName: "rectangle.dock")

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 330

 Text("Challenge")
 }
 })
 .tag(1)
 .environment(
 \.questionsPerSession,
 challengesViewModel.numberOfQuestions
)

 SettingsView()
 .tabItem({
 VStack {
 Image(systemName: "gear")
 Text("Settings")
 }
 })
 .tag(2)
}
.accentColor(.orange)

Next, you’ll fix those errors. HomeView requires two properties that you left in
WelcomeView. Go back to it, and copy them:

@EnvironmentObject var userManager: UserManager
@EnvironmentObject var challengesViewModel: ChallengesViewModel

Then paste them at the top of HomeView, before body. Since they are environment
objects, if you want to take a peek at how the view looks like using the preview, you
need to add them to the HomeView() initializer in HomeView_Previews.

Do so by replacing the contents of previews with:

HomeView()
 .environmentObject(UserManager())
 .environmentObject(ChallengesViewModel())

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 331

You can now resume the preview and see the new Challenge tab added at the left of
Settings.

Challenge settings tab

If you want to make things right, in WelcomeView, you notice that
challengeViewModel is no longer used so that you can delete the property.

There’s one last thing left, which you can see if you run the app: The settings view
displays instead of the HomeView you created earlier. At the beginning of this
chapter, you replaced the starter view with the settings view as the default view
displayed at launch — it’s time to restore that view.

Open KuchiApp and replace the content of WindowGroup with:

StarterView()
 .environmentObject(userManager)
 .environmentObject(challengesViewModel)

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 332

Now when you run the app, after the welcome view, you’ll see the HomeView with the
two tabs you added in this section.

One last adjustment to ensure everything works smoothly, you need to wire the tab
view to something so that it can remember what tab is currently active. If you look at
the tab view in the code, you’ll notice it has defined tabs. But no place stores the
currently selected tab or its index .

You need this because if TabView is re-rendered (or the entire HomeView), it would
forget the previously selected tab and just make the first one selected.

To keep track of the currently selected tab index, in HomeView add a state property
before userManager:

@State var selectedTab = 0

Next, pass a binding of it to the TabView’s initializer:

TabView(selection: $selectedTab) {

And that’s all. Amazingly simple!

App Storage
The settings view you’ve created in this chapter looks great, but it misses two
important points:

1. Changes are not persistent. If you change, for example, the number of questions
to 4, then you restart the app, the app will forget your change and will reinitialize
that value to 6.

2. Changes are not functional. If you change the number of questions to 4, then
switch to the Challenge tab, it will still display “0/6”, meaning it still uses 6 for
the number of questions to ask per session.

You would probably use UserDefaults to store user settings, and that’s what you’ll
do, just in a different way.

In fact, SwiftUI has introduced a new property wrapper that works like @State but
with the value read from and written to UserDefaults.

The attribute to use is @AppStorage, and you use it just like @State and @Binding,
except that you must provide a key representing the name under which you store the
value in the UserDefaults.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 333

Storing Settings to UserDefaults
Open SettingView and replace the line that declares where the state variable
numberOfQuestions with:

@AppStorage("numberOfQuestions")
var numberOfQuestions = 6

You pass the key as the first unnamed parameter, "numberOfQuestions" — it’s
common practice to avoid confusion with the same name for the key and the
property name.

You must also provide an initial value, which is stored in UserDefaults if the key
doesn’t exist yet, and you’re using the same value as before, which is 6.

You can also optionally pass an instance of UserDefaults, in which case it will be
used to read from and store to the handled value.

To verify that it works:

1. Launch the app.

2. Go to settings and change the number of questions to 4.

3. Wait a couple of seconds, writing to user defaults is not synchronous and
happens in the background.

4. Relaunch the app.

5. Go to settings: The number of questions is 4, meaning it remembered the change.

However, this change alone doesn’t fix the second issue. If you switch to the
Challenge tab, it still displays 0/6, meaning the number of questions hasn’t changed.

To fix that, open Practice/ChallengesViewModel, locate the numberOfQuestions
property, and apply the same changes you did in SettingsView, by turning the state
property into an app storage property and initializing it:

@AppStorage("numberOfQuestions")
private(set) var numberOfQuestions = 6

Now you have the same property, but in two different places:
ChallengesViewModel and SettingsView. Under the hood, the application stores
this property in the user defaults, ensuring that the single source of truth rule is not
violated. To make a comparison, @AppStorage looks more like a binding than a state
attribute.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 334

However, there are better approaches than this for several reasons, the first of which
is that you must provide an initial value in all cases. If you want to change it in the
future but forget to update in one place, you’ll have a different initial value
depending on which property you reference first.

So it’s better to keep one copy only and always reference that from elsewhere. Since
you already declared it there, the most suitable candidate is ChallengesViewModel.
So go ahead and remove the numberOfQuestions property from SettingsView.

The compiler will immediately inform you that something is wrong — you need to
change where you reference this property in order to point to the updated location.
The only control using it is the stepper, replace its code with:

Stepper(
 "Number of Questions: \
(challengesViewModel.numberOfQuestions)",
 value: $challengesViewModel.numberOfQuestions,
 in: 3 ... 200
)

The changes you’ve applied consist of replacing the two occurrences of
numberOfQuestions with challengesViewModel.numberOfQuestions.

But you also need to add a reference to challengesViewModel to SettingsView.
Add this property before learningEnabled:

@EnvironmentObject
var challengesViewModel: ChallengesViewModel

Lastly, for now, you also need to supply to the preview, which would otherwise make
previewing to crash. Go to the bottom of the SettingsView file and replace the
content of the previews property with:

SettingsView()
 .environmentObject(ChallengesViewModel())

You may notice that the compiler is still complaining about numberOfQuestions
having no access to the setter — that’s because you declare the property as
private(set). Just remove this access modifier so that it looks like this:

@AppStorage("numberOfQuestions")
var numberOfQuestions = 6

It might sound like everything is complete, but you need more. You need to do a few
other updates for the app storage variable to work correctly.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 335

If you open Shared/Practice/ScoreView, you’ll notice that it has a
numberOfQuestions property, which is immutable, and initialized when the view is
instantiated. If you want it to follow the value you can change in the settings view,
you need to turn it into a binding.

Replace:

let numberOfQuestions: Int

With:

@Binding var numberOfQuestions: Int

You also need to make the preview view compliant with this change. Add a state
property to it:

@State static var numberOfQuestions: Int = 6

Next, still, in the preview, update the value passed to the numberOfQuestions
parameter with the state property you’ve just created. previews should now look
like this:

ScoreView(
 numberOfQuestions: $numberOfQuestions,
 numberOfAnswered: $numberOfAnswered
)

You use ScoreView in ChallengeView, so you need to do some work on it too. It has
a questionsPerSession property, which is an environment variable:

@Environment(\.questionsPerSession) var questionsPerSession

As done for the settings view above, you need to delete it.

ChallengeView does not have a reference to ChallengesViewModel, so you inject it
from the environment. Add the property after verticalSizeClasses:

@EnvironmentObject
var challengesViewModel: ChallengesViewModel

Next, locate the two places where ScoreView is instantiated in the body
implementation, and update the reference to questionsPerSession to point to the
challenges view model:

ScoreView(

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 336

 // Update this parameter
 numberOfQuestions: $challengesViewModel.numberOfQuestions,
 numberOfAnswered: $numberOfAnswered
)

Almost done. In ChallengeView, before replacing with an app storage property, you
had an environment variable, and that environment variable must have been
injected from elsewhere. That elsewhere is HomeView, open it and delete these
lines under PracticeView:

.environment(
 \.questionsPerSession,
 challengesViewModel.numberOfQuestions
)

Now everything is set up. If available, this change will retrieve’ numberOfQuestion’
from the UserDefaults. Otherwise, it will initialize with the provided initial value.
Since in the previous run, you assigned a new value from the settings view, this is
what you’ll see in the challenge view if you run the app in the simulator:

Number of questions updated

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 337

Try changing its value again from settings, when you switch back to challenge, you’ll
find the new value updated.

Storable Types
If you have ever used UserDefaults, you know you can’t store any arbitrary type.
You’re restricted to:

• Basic data types: Int, Double, String and Bool.

• Composite types: Data and URL.

• Any type adopting RawRepresentable.

To store types that are not explicitly handled by AppStorage, you have two choices:

• Make the type RawRepresentable

• Use a shadow property

Using RawRepresentable

A real example of the former case is appearance, which is of the Appearance enum
type, hence not storable by default. However, if you open Shared/Utils/Appearance,
you’ll notice that the enumeration implicitly conforms to RawRepresentable,
having it as a raw value of Int Type. Remember, if you specify a raw value type for an
enum, it will automatically conform to RawRepresentable.

So in SettingsView make appearance an AppStorage property by replacing its
declaration line with:

@AppStorage("appearance") var appearance: Appearance
= .automatic

Note that even if the setting is permanently stored and remembered across app
relaunches, it won’t affect the actual app appearance, you’ll fix that later. Feel free to
verify that when you change its value and relaunch the app, it remembers the value
you selected and appears as selected in the settings view.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 338

Using a Shadow Property

In cases where a supported type is not an option and so is conforming to
RawRepresentable, you can declare a shadow property that is AppStorage friendly.

A real use case in Kuchi is for the dailyReminderTime property. You have already
declared it as state property and verified that it works with the date picker, but it’s of
Date type, which is not handled by AppStorage.

Without touching it, you add a new property using a type that’s handled by
AppStorage. You can convert a date into a double, and vice-versa, so you can use the
Double type.

In SettingsView, add this property after dailyReminderTime:

@AppStorage("dailyReminderTime")
var dailyReminderTimeShadow: Double = 0

This property will go to the UserDefaults, whereas dailyReminderTime is what’s
bound to the date picker. Now you need to link the two properties so that:

1. When you select a new time using the date picker, the new Date value is copied
into the shadow property, hence saved to UserDefaults.

2. When the value is read from UserDefaults and stored in the shadow property,
the dailyReminderTime is reinitialized properly.

For the first, DatePicker already has an explicit binding defined via the
onChange(of:perform:) modifier, which you needed in order to be able to update
the local notification every time you choose a new time.

All you need to do is to convert the new Date value to Double and store it in the
shadow property. Do it in the second onChange modifier, the one monitoring
dailyReminderTime, so that it looks like this:

.onChange(
 of: dailyReminderTime,
 perform: { newValue in
 dailyReminderTimeShadow = newValue.timeIntervalSince1970
 configureNotification()
 }
)

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 339

This copies the number of seconds since the midnight of Jan 1, 1970, as a double
value, into the shadow property.

For the second, you can take advantage of the .onAppear() modifier, taking a
closure that is executed every time the view displays. Add it after the onChange
modifiers:

.onAppear {
 dailyReminderTime = Date(timeIntervalSince1970:
dailyReminderTimeShadow)
}

With it, every time the Section displays, the value stored in the shadow property
converts to a date and stored into dailyReminderTime.

You need to turn the dailyReminderEnabled from state to app storage property, and
replace it with this line:

@AppStorage("dailyReminderEnabled")
var dailyReminderEnabled = false

Now you can verify that it works. Follow these steps:

1. Run the app, either in the simulator or device.

2. Go to the settings tab.

3. Enable daily reminders.

4. If it asks you to allow notifications, allow it.

5. Choose a time.

6. Relaunch the app.

7. Go to the settings view again.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 340

You can now see that the daily reminders setting is still enabled, and the date picker
shows the time you selected.

Testing daily reminder

Enabling Appearance

The last thing left for this chapter is that you need to make the picker you added at
the beginning of this chapter change the app’s appearance. Right now, if you change
it, it won’t have any effect.

Earlier, you turned the appearance property into an AppStorage property. That’s
just one aspect of it, you also need to react to its changes.

Since this is an app-wide setting, you need to work on the KuchiApp. Open KuchiApp
and add this property below userManager:

@AppStorage("appearance")

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 341

var appearance: Appearance = .automatic

To apply the appearance, there’s a modifier called .preferredColorScheme(_:).
You can apply it to any view, so you’re not limited to applying it to the entire app.
But in the case of Kuchi, that’s actually what you want to achieve.

The .preferredColorScheme(:_) modifier accepts a ColorScheme parameter,
which is an enum with two cases: .dark and .light — the Appearance modifier
defined in Kuchi, which adds a third .automatic case, exposes a getColorScheme()
method that converts from Appearance to ColorScheme.

Add this modifier to StarterView(), after the two environment objects:

.preferredColorScheme(appearance.getColorScheme())

Now you can run the app, go to the settings view, and change from light to dark
appearance, and vice-versa. Magically, but not surprisingly, the app will immediately
turn from light to dark back and forth, as expected.

Testing appearance

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 342

Note: If you set the appearance to automatic, you might need to relaunch the
app for the setting to take effect.

You can change the system appearance on your iPhone from the Settings app in the
Display & Brightness section.

If you’re using the simulator, instead, still in the Settings app, you need to look into
the Developer section. Alternatively, you can reach out the Feature → Toggle
Appearance menu item or its handy ⇧+⌘+E shortcut.

SceneStorage
Alongside AppStorage, SwiftUI also offers a @SceneStorage attribute that works like
@AppStorage, except that the persisted storage is limited to a scene instead of being
app-wide. This is very useful if you have a multi-scene app. Unfortunately, Kuchi
isn’t so you won’t cover it here. But it’s definitely beneficial for you to know! In the
Where to Go From Here sections, there’s a resource on learning more about both
AppStorage and SceneStorage.

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 343

Key Points
• In this chapter, you’ve played with some of the UI components SwiftUI offers by

using them to build a settings view in the Kuchi app. There are a few more, and
you can use the ones you’ve used here differently. Take, for example, the date
picker, which you can use to pick a date, a time, or both.

• You’ve looked at the three different styles of components; the stepper component,
the toggle component and the date picker.

• You’ve also witnessed how easy creating a tabbed UI is.

• Lastly, you used AppStorage to persist settings to the user defaults.

Where to Go From Here?
This is just a short list of documentation you can browse to know more about the
components you’ve seen here and what you haven’t.

• List: apple.co/2IhW0KW

• Section: apple.co/2JNAKOa

• SwiftUI Components: apple.co/39vBy50

• Picker and Picker Styles: apple.co/3nyViIG

• SceneStorage and AppStorage: apple.co/37lgyeG

SwiftUI by Tutorials Chapter 10: More User Input & App Storage

 344

11Chapter 11: Gestures

By Antonio Bello

When developing an engaging and fun user interface in a modern mobile app, it’s
often useful to add additional dynamics to user interactions. Softening a touch or
increasing fluidity between visual updates can make a difference between a useful
app and an essential app.

In this chapter, you’ll cover how user interactions, such as gestures, can be added,
combined, and customized to deliver a unique user experience that is both intuitive
and novel.

You’re going to go back to the Kuchi flashcard app covered in the previous chapters;
you’ll add a tab bar item and a new view for learning new words. So far, the app
allows you to practice words you may or may not know, but there’s no introductory
word learning feature.

There’s quite some work to be done in order to get the project ready to take gestures.
Exceptionally for this chapter only, you’ll find two starter projects under the starter
folder, contained in these folders:

• starter-chapter

• starter-gestures

 345

If you want to do all the preparatory work, either reuse the project you completed in
the previous chapter, or use the one contained in starter-chapter and keep reading.

If you want to skip the preparatory work and jump to gestures right away, then
skip the next Adding the Learn Feature section (but it’s recommended to at least
taking a quick look anyway) and start reading Your first gesture.

If you decided to take the blue pill, start by opening the starter project from the
starter/starter-chapter folder — or your own project brought from the previous
project if you prefer.

Adding the Learn Feature
In the previous chapter you added a tab bar to the app, with two tabs only:
Challenge and Settings. Now you’re going to add a 3rd tab, occupying the first
position in the tabs list, which will take care of the Learn section.

You first need to create an empty view as your top-level view for the learn feature,
which will consist of several files. You will place them in a new group called Learn.
This will sit at the same level as the existing Practice folder.

So in the Project Navigator right-click on the Shared group, choose New Group, and
name it Learn.

The view you’ll be building will be used for learning new words; therefore, it can
intuitively be called LearnView. So, go ahead and create a new SwiftUI view file
named LearnView inside the Learn group.

Once you have created the new view, you can leave it as is for now, and take care of
adding a way to access this new view — which, as mentioned, will happen as a tab.

Open HomeView and before the PracticeView tab add this new tab:

LearnView()
 .tabItem({
 VStack {
 Image(systemName: "bookmark")
 Text("Learn")
 }
 })
 .tag(0)

SwiftUI by Tutorials Chapter 11: Gestures

 346

If you resume the preview, this is what you’ll see:

The newly created learn tab

Creating a Flashcard
With the new Learn tab in place, the first component of the Learn feature you’ll be
working on is the flash card. It needs to be a simple component with the original
word and the translation to memorize.

When talking about the card, two distinct understandings within the app are useful
to recognize: the visual card (a UI component) and the card data (the state).

Both are integral to the card feature, and the card itself is a composite of both
elements. However, the visual card cannot exist without state; to start with, you need
a data structure that can represent the state.

SwiftUI by Tutorials Chapter 11: Gestures

 347

Using the Swift file template, create a new file in your Learn folder named
FlashCard. It’s going to be an empty struct for now — add it:

struct FlashCard {
}

Within the struct, you’ll need the data the user is trying to learn. In this case, it’s the
word. Add a property of type Challenge with the name card to your struct:

var card: Challenge

This is the basic data structure for your flashcard, but to make it useful for your
SwiftUI views, you’ll need a few more properties.

First, an id may be useful for iterating through multiple flashcards in a view. This is
best achieved by making a structure conform to the Identifiable protocol, as the
ForEach SwiftUI block will look for an id unless an explicit identifier has been
specified.

As there are no id generators within the app, you can simply rely on Foundation’s
UUID constructor to provide a unique identifier each time a FlashCard is created.
Add the following property to FlashCard:

let id = UUID()

As you can see, there’s no explicit use of the Identifiable protocol yet. This will be
covered shortly. The final step needed within your basic FlashCard state structure is
to add a flag called isActive. Add the following property:

var isActive = true

This is a simple property for filtering cards that are intended to be part of the
learning session.

The user may not want to go through a whole deck of cards that they already know
every time so this allows you to selectively filter cards whether through user curation
or internal logic. To ensure compliance with the Identifiable protocol, add it to
the struct declaration:

struct FlashCard: Identifiable {
 ...
}

SwiftUI by Tutorials Chapter 11: Gestures

 348

You don’t need to do anything extra to make FlashCard identifiable, but you will
want to make sure it’s Equatable. This will enable you to provide comparisons
quickly and easily in code, to ensure the same card is not duplicated, or that one card
matches another when relevant.

Add this extension after FlashCard:

extension FlashCard: Equatable {
 static func == (lhs: FlashCard, rhs: FlashCard) -> Bool {
 return lhs.card.question == rhs.card.question
 && lhs.card.answer == rhs.card.answer
 }
}

With this property, you’ll be able to use the == operator to compare two flash cards.

There you go; that’s your FlashCard state object defined and ready for use! The user
is not going to be learning one card at a time though, so you’ll need to build on this
object with the concept of a deck. There is a deck for the Practice feature of the app
as a simple array of cards, but the Learn feature has different needs so you’re going
to be more explicit with how the deck works this time.

Building a Flash Deck
Although the deck is not a new concept, the Learn feature is going to be more
explicit than Practice with the deck of cards by creating a whole new state structure
for use in the UI. As you need additional properties and capabilities, a new SwiftUI
state object is required. Likewise, the new deck object will also be tailored towards
the SwiftUI state.

Start by creating a new Swift file called FlashDeck inside the Learn group, using the
Swift File template. FlashDeck needs just a single property: an array of FlashCard
objects — Add the following class:

class FlashDeck {
 var cards: [FlashCard]
}

What makes the FlashDeck a powerful SwiftUI state object comes from two
modifications. The first will be from a constructor.

SwiftUI by Tutorials Chapter 11: Gestures

 349

Add the following:

init(from words: [Challenge]) {
 cards = words.map {
 FlashCard(card: $0)
 }
}

This constructor simply maps the words (Challenges) passed in into FlashCards.

The second power-up for the FlashDeck model comes from Combine. To make the UI
responsive to changes in the deck, the cards property will be prefixed with the
@Published attribute to allow subscribers of the model to receive notifications of
updates.

Change the cards property from:

var cards: [FlashCard]

Into:

@Published var cards: [FlashCard]

And finally, you need to extend the class to be an ObservableObject (as per
Chapter 9: "State & Data Flow - Part II"):

class FlashDeck: ObservableObject {
 ...
}

You now have your FlashCard and FlashDeck built and ready to go.

Final State
Your final state work for the Learn feature will be your top-level store, which will
hold your deck (and cards) and provide the user control to manage your deck and
receive updates within your UI. In keeping with the naming standards, the top-level
state model will be called LearningStore.

Create a new file name LearningStore in the Learn group, using the Swift File
template.

SwiftUI by Tutorials Chapter 11: Gestures

 350

Next, populate the file with the following:

class LearningStore {
 // 1
 @Published var deck: FlashDeck

 // 2
 @Published var card: FlashCard?

 // 3
 @Published var score = 0

 // 4
 init(deck: [Challenge]) {
 self.deck = FlashDeck(from: deck)
 self.card = getNextCard()
 }

 // 5
 func getNextCard() -> FlashCard? {
 guard let card = deck.cards.last else {
 return nil
 }

 self.card = card
 deck.cards.removeLast()

 return self.card
 }
}

Going over this step-by-step:

1. Like in FlashDeck, you’ll use Combine to provide @Published attributes to your
properties. The store will maintain the complete deck (deck),

2. … the current card (card),

3. … and the current score (score).

4. You add an initializer that sets up the deck.

5. You also add a convenience method, which will get the next card in the deck. It
does this by removing the last card of the deck and returning it.

SwiftUI by Tutorials Chapter 11: Gestures

 351

The final step of setting up this store is to make it conform to ObservableObject:

class LearningStore: ObservableObject {
 ...
}

Phew — that’s a lot of setup without any UI code, right? But you’ve now made a nice
foundation for building the view for the Learn feature.

Building the User Interface
The UI for the Learn feature will be formed around a 3-tier view. The first is your
currently empty LearnView. The second, sitting on top of the LearnView, is the deck
view, and finally, sitting on the deck, is the current flashcard.

You’ll start by adding the missing views: DeckView and CardView.

First up, still in the Learn group, create a SwiftUI view file named CardView using
the SwiftUI View template, and replace the contents of body with:

ZStack {
 Rectangle()
 .fill(Color.red)
 .frame(width: 320, height: 210)
 .cornerRadius(12)
 VStack {
 Spacer()
 Text("Apple")
 .font(.largeTitle)
 .foregroundColor(.white)
 Text("Omena")
 .font(.caption)
 .foregroundColor(.white)
 Spacer()
 }
}
.shadow(radius: 8)
.frame(width: 320, height: 210)
.animation(.spring(), value: 0)

This creates a simple red card view with rounded corners and a couple of text labels
centered on the card. You’ll be expanding on this view later in the tutorial.

SwiftUI by Tutorials Chapter 11: Gestures

 352

If you preview this in the Canvas you should see the following:

The deck card

Next up, the deck view. Create a SwiftUI file named (you guessed it) DeckView and
replace the contents of body with:

ZStack {
 CardView()
 CardView()
}

This is a simple view containing two cards, but you’ll flesh this view out shortly by
using the state objects you created earlier to support the loading of dynamically
generated cards into the learning flow.

As the cards are stacked on top of each other, previewing the deck view in the Canvas
will give you the same result as before.

SwiftUI by Tutorials Chapter 11: Gestures

 353

Next, you need to add DeckView to LearnView.

Go back to LearnView and replace the contents of body with the following:

VStack {
 Spacer()
 Text("Swipe left if you remembered"
 + "\nSwipe right if you didn’t")
 .font(.headline)
 DeckView()
 Spacer()
 Text("Remembered 0/0")
}

This is fairly simple: you have a Text label providing instructions, a score at the
bottom, and the DeckView in the center of the screen.

The learn view

SwiftUI by Tutorials Chapter 11: Gestures

 354

Adding LearningStore to the Views

Staying inside LearnView, you can add the store you previously created as a property
to the view:

@StateObject var learningStore =
 LearningStore(deck: ChallengesViewModel.challenges)

As LearningStore is a StateObject, it can be used within the LearnView to ensure
the view is rebuilt when any of the published properties change. With this setup, you
can even update the score Text at the bottom of the view.

Replace:

Text("Remembered 0/0")

With:

Text("Remembered \(learningStore.score)"
 + "/\(learningStore.deck.cards.count)")

That’s good for now. You’ll come back to LearnView later, but now DeckView needs
to be able to receive some of the data from within the LearningStore to pipe card
data through to the individual CardView components.

To enable this, open up DeckView and add the following at the top of the struct,
before body:

@ObservedObject var deck: FlashDeck

let onMemorized: () -> Void

init(deck: FlashDeck, onMemorized: @escaping () -> Void) {
 self.onMemorized = onMemorized
 self.deck = deck
}

You’re adding a FlashDeck property for getting the items the view will be
subscribing to, as well as a callback onMemorized, for when the user memorizes a
card. Both are passed in through a custom initializer.

SwiftUI by Tutorials Chapter 11: Gestures

 355

For the preview to still work, you need to update DeckView_Previews’s previews to
the following:

DeckView(
 deck: FlashDeck(from: ChallengesViewModel.challenges),
 onMemorized: {}
)

And finally, inside LearnView find DeckView() in the body and replace it with:

DeckView(
 deck: learningStore.deck,
 onMemorized: { learningStore.score += 1 }
)

Notice how you increase the score when the user memorizes the card. There’s not yet
a way to trigger the onMemorized, but you’ll be adding this later in the chapter.

Next up, getting the data from the learning store into the individual cards. To do so,
open up CardView and add the following to the top, before body:

let flashCard: FlashCard

init(_ card: FlashCard) {
 self.flashCard = card
}

Here you add a FlashCard property to the view and pass it in through the initializer.
The property isn’t a state object because you’re not planning on changing the value
of the FlashCard at any time; the card data is fixed for the lifetime of the object.

With an actual card model, you can also update the body of the view to use it.
Replace the contents of the view’s VStack content with:

Spacer()
Text(flashCard.card.question)
 .font(.largeTitle)
 .foregroundColor(.white)
Text(flashCard.card.answer)
 .font(.caption)
 .foregroundColor(.white)
Spacer()

Here you simply use the question and answer from the flashcard instead of
hardcoded values.

With the new initializer, you need to make an update to the places where CardView
is used, namely: CardView_Previews and DeckView.

SwiftUI by Tutorials Chapter 11: Gestures

 356

Inside CardView update CardView_Previews’s previews to:

let card = FlashCard(
 card: Challenge(
 question: "こんにちわ",
 pronunciation: "Konnichiwa",
 answer: "Hello"
)
)
return CardView(card)

Next, inside DeckView, you’ll need to modify the body to dynamically support
multiple CardViews. To add support for multiple CardViews, first add the following
helper methods at the bottom of the view:

func getCardView(for card: FlashCard) -> CardView {
 let activeCards = deck.cards.filter { $0.isActive == true }
 if let lastCard = activeCards.last {
 if lastCard == card {
 return createCardView(for: card)
 }
 }

 let view = createCardView(for: card)

 return view
}

func createCardView(for card: FlashCard) -> CardView {
 let view = CardView(card)

 return view
}

These methods help with creating a CardView using a FlashCard.

Then, replace the contents of body of the view with the following:

ZStack {
 ForEach(deck.cards.filter { $0.isActive }) { card in
 getCardView(for: card)
 }
}

Here the ForEach takes all active cards from the deck and creates a CardView for
each using the helper methods just created.

SwiftUI by Tutorials Chapter 11: Gestures

 357

Looking at the Canvas for either LearnView or DeckView, you should now see a card
like this:

Completed deck card

Applying Settings
In the previous chapter you added two settings that affect the Learning section:

• Learning Enabled, in the game category, used to enable or disable the learning
screen.

• Card Background Color in the appearance category, used to personalize the card
background.

Now it’s time to put them to use. The first thing to do is to expose both parameters
via the UserDefaults, turning them from @State into @AppStorage properties.

The first is very simple: In SettingsView replace the line where learningEnabled is
declared with:

@AppStorage("learningEnabled")
var learningEnabled: Bool = true

As for the other property, it’s of Color type, which is not a type that UserDefaults
can handle, so you have to either make it RawRepresentable, or use a shadow
property - see the previous chapter to know more about their differences.

You’ll use the latter method, by adding a shadow property of Int type. Add this
property before cardBackgroundColor:

@AppStorage("cardBackgroundColor")
var cardBackgroundColorInt: Int = 0xFF0000FF

SwiftUI by Tutorials Chapter 11: Gestures

 358

Next, in body add a new onChange(of:perform) modifier to List, right after the
other two that take care of daily reminder enabled and daily reminder time:

.onChange(of: cardBackgroundColor, perform: { newValue in
 cardBackgroundColorInt = newValue.asRgba
})

Last, in the .onAppear modifier, initialize the card background color from the
shadow property - add this after setting dailyReminderTime:

cardBackgroundColor = Color(rgba: cardBackgroundColorInt)

With these settings adjustment accomplished, you need to use them appropriately.

You use learningEnabled to enable or disable the learning section, and the easiest
way to achieve that is by showing or hiding the respective tab.

Open HomeView and add the same AppStorage property as defined in
SettingsView:

@AppStorage("learningEnabled")
var learningEnabled: Bool = true

Next, surround the first tab with an if statement, so that the tab is included only if
learningEnabled is true:

if learningEnabled {
 LearnView()
 .tabItem({
 VStack {
 Image(systemName: "bookmark")
 Text("Learn")
 }
 })
 .tag(0)
}

Note: For simplicity, you’re using an anti-pattern that has been discouraged in
the previous chapter — You are declaring the same learningEnabled app
storage property in two different places, and you’re going to do the same with
the other property, cardBackgroundColor. The solution is to move these
property to a dedicated data structure, as you did in the previous chapter by
using ChallengesViewModel to host them.

SwiftUI by Tutorials Chapter 11: Gestures

 359

Now run the app, go to the settings view, when you disable Learning Enabled you see
the Learning tab disappearing, whereas if you enable it, it will reappear.

Settings with learning disabled

Now to change the card background color, add a corresponding property to
CardView, in CardView:

@Binding var cardColor: Color

You declare it as a binding because you will pass it, so that the source of truth is
defined elsewhere — namely, in DeckView.

You might be tempted to do it directly in CardView, but that would be inefficient,
because you would read the same property from UserDefaults for each card, whereas
passing it from DeckView you’d read it once, and pass the same binding to all cards
via their respective initializers.

SwiftUI by Tutorials Chapter 11: Gestures

 360

Replace the CardView’s initializer to account for the new property:

init(
 _ card: FlashCard,
 cardColor: Binding<Color>
) {
 flashCard = card
 _cardColor = cardColor
}

Next, replace the statically-set red background color with the value of the newly
added property. In body, the Rectangle view has a .fill(Color.red) modifier —
replace it with:

.fill(cardColor)

Last for CardView, you need to amend the preview to handle the additional
parameter. Replace CardView_Previews content with:

@State static var cardColor = Color.red

static var previews: some View {
 let card = FlashCard(
 card: Challenge(
 question: "こんにちわ",
 pronunciation: "Konnichiwa",
 answer: "Hello"
)
)
 return CardView(card, cardColor: $cardColor)
}

Now open up DeckView and add this property:

@AppStorage("cardBackgroundColor")
var cardBackgroundColorInt: Int = 0xFF0000FF

You will use just the shadow property instead of adding a second property — you’ll
convert it to Color when passing to CardView.

Next, replace the createCardView(for:) implementation with:

func createCardView(for card: FlashCard) -> CardView {
 // 1
 let view = CardView(card, cardColor: Binding(
 get: { Color(rgba: cardBackgroundColorInt) },
 set: { newValue in cardBackgroundColorInt =
newValue.asRgba }

SwiftUI by Tutorials Chapter 11: Gestures

 361

)
)

 return view
}

Here you’ve passed the new cardColor parameter to the CardView initializer, using
an explicit binding.

You can now run the app, re-enable learning if it was still disabled, and pick a card
color of your choice — if you activate the Learning tab, you’ll see that cards are now
shown with the shiny newly selected background color.

Choosing the card background color

SwiftUI by Tutorials Chapter 11: Gestures

 362

Your First Gesture

Note: If you skipped the previous section and jumped straight into this, open
the updated starter project that you’ll find in the starter/starter-gestures
folder.

Gestures in SwiftUI are not that dissimilar from their cousins in AppKit and UIKit,
but they are simpler and somewhat more elegant, giving a perception amongst some
developers of being more powerful.

Although they’re not any better than their predecessors in terms of capability, their
SwiftUI approach makes for easier and more compelling uses for gestures where
before they were often nice-to-haves.

Starting with a basic gesture, it’s time to revisit CardView. Previously, you added
both the original word and the translated word to CardView, which is somewhat
useful. But what if the user wanted to test their knowledge without being given the
answer immediately?

It would be nice if the card had the original word, and then the translated word could
be displayed if needed.

To achieve this, you can add a simple tap gesture (literally a TapGesture) for this
interaction to happen. Taps are ubiquitous and necessary, so it’s a great place to start
with gestures.

Start by opening CardView, then add the following property stating whether the
answer has been revealed or not to the top of the view:

@State var revealed = false

Next, in the body add the following .gesture modifer at the bottom,
after .animation(_:):

.gesture(TapGesture()
 .onEnded {
 withAnimation(.easeIn, {
 revealed.toggle()
 })
})

SwiftUI by Tutorials Chapter 11: Gestures

 363

Here you’re using a pre-built gesture from Apple that adds a lot of convenience by
dealing with human tap gestures consistently across all apps. The onEnded block
enables you to provide additional code for what happens once the tap gesture has
ended. In this case, you’ve provided an animation that eases in (.easeIn) with the
revealed property being inverted.

Currently, inverting revealed does nothing, but what you want to do is have the
Text displaying the translation render only when revealed is true.

To achieve this, inside body, replace the following:

Text(flashCard.card.answer)
 .font(.caption)
 .foregroundColor(.white)

With:

if revealed {
 Text(flashCard.card.answer)
 .font(.caption)
 .foregroundColor(.white)
}

Try previewing the app in the Canvas with Live Preview and tapping the card. You
should see a rather fluid and pleasant ease-in animation for the translated word.
This is as simple as gestures get, and with the animation blocks, it provides a level of
fluidity and sophistication users will appreciate.

Tap gesture flow

Also notice how tapping the card multiple times in rapid succession will still give a
seamless animation experience.

Easy, right?

SwiftUI by Tutorials Chapter 11: Gestures

 364

Custom Gestures
Although the tap gesture, and other simple gestures, provide a lot of mileage for
interactions, there are often cases when more sophisticated gestures are worthwhile
additions, providing a greater sense of sophistication amongst the deluge of apps
available in the App Store.

For this app, you still need to provide an interaction for the user to declare whether
they’ve memorized a card or not. You can do this by adding a custom drag gesture
and evaluating the result based on the direction of the drag. That’s much more
complicated than a simple tap gesture but, thanks to the elegance of SwiftUI, it’s still
quite painless compared to previous methods of achieving the same thing.

The first step is adding an enum that denotes the direction a card is discarded in. In
DeckView add the following code before DeckView:

enum DiscardedDirection {
 case left
 case right
}

You could identify more complicated metrics for this interaction (up, down, …), but
this view only needs to understand two potential options.

Next, time to make cards draggable! In CardView add a new typealias and property
to the top of the view, just below the revealed property:

typealias CardDrag = (
 _ card: FlashCard,
 _ direction: DiscardedDirection
) -> Void

let dragged: CardDrag

Called dragged, this property accepts the card to be dragged and the enum result for
which direction the card was dragged in.

Next, update init to accept the dragged closure as a parameter:

init(
 _ card: FlashCard,
 cardColor: Binding<Color>,
 onDrag dragged: @escaping CardDrag = {_,_ in }
) {
 flashCard = card
 _cardColor = cardColor

SwiftUI by Tutorials Chapter 11: Gestures

 365

 self.dragged = dragged
}

Next up, you need to modify DeckView so it supports the new card functionality.
Open up DeckView and replace the implementation createCardView(for:) with
the following:

func createCardView(for card: FlashCard) -> CardView {
 let view = CardView(
 card,
 cardColor: Binding(
 get: { Color(rgba: cardBackgroundColorInt) },
 set: { newValue in cardBackgroundColorInt =
newValue.asRgba }
),
 onDrag: { card, direction in
 if direction == .left {
 onMemorized()
 }
 }
)

 return view
}

Here you add the onDrag callback to the CardView instance.

If the drag direction is .left, you trigger onMemorized(), and the counter in
LearningStore will be incremented by one — That’s because when instantiating
DeckView from LearView you passed a closure for the onMemorized parameter that
does that:

DeckView(
 deck: learningStore.deck,
 onMemorized: { learningStore.score += 1 }
)

The final step is to add the actual drag gesture. Go back to CardView, then add the
following property after revealed:

@State var offset: CGSize = .zero

You’ll use this offset to move the card to a new position.

Next up, creating the drag gesture. At the top of the body change the line:

ZStack {

SwiftUI by Tutorials Chapter 11: Gestures

 366

Into:

return ZStack {

You need to return the ZStack as you’ll be adding the drag gesture setup above it.
Right above this code line, and still inside the body, add the following:

let drag = DragGesture()
 // 1
 .onChanged { offset = $0.translation }
 // 2
 .onEnded {
 if $0.translation.width < -100 {
 offset = .init(width: -1000, height: 0)
 dragged(flashCard, .left)
 } else if $0.translation.width > 100 {
 offset = .init(width: 1000, height: 0)
 dragged(flashCard, .right)
 } else {
 offset = .zero
 }
 }

This DragGesture does most of the work for you, but there are a few things worth
noting:

1. With each movement recorded during the drag, the onChanged event will occur.
You’re modifying the offset property (which is an x and y coordinate object) to
match the drag motion of the user.

For example, if the user started dragging at (0, 0) in the coordinate space, and the
onChanged triggered when the user was still dragging at (200, -100) then the
offset x-axis would be increased by 200 and the offset y-axis would be decreased
by 100. Essentially this means the component would move right and up on the
screen to match the motion of the user’s finger.

2. The onEnded event occurs when the user stops dragging, typically when their
finger is removed from the screen. At this point, you want to determine which
direction the user dragged the card and whether they dragged it far enough to be
considered a decision (at which point you record the decision and discard the
card) or whether you consider it still undecided (at which point you reset the card
to the original coordinates).

You’re using -100 and 100 as the decision markers for whether the user selected
left or right during the drag, and that decision is being passed into the dragged
closure.

SwiftUI by Tutorials Chapter 11: Gestures

 367

That’s all you need for the drag gesture. Now you simply need to add it to the body as
a modifier along with the previously defined offset. Right
above .gesture(TapGesture(), add:

.offset(offset)

.gesture(drag)

The drag gesture can be passed into the gesture method as a parameter, and you
should see that the tap gesture is simply another gesture added to the object: there
is no conflict with including multiple gestures and stacking them up in an object if
needed.

There’s a spring animation also included to make the card spring back to position
smoothly — but it requires a small adjustment to work properly. It’s currently
specified as:

.animation(.spring(), value: 0)

But the value parameter should be a value that’s monitored for changes, so that the
animation is performed only when that value changes. Since you’re using offset to
calculate the position of the card, that’s the value to use. Change as follows:

.animation(.spring(), value: offset)

Now you can build and run to check your progress. You can now drag the card
around and swipe left and right.

SwiftUI by Tutorials Chapter 11: Gestures

 368

You can also try previewing LearnView using Live Preview and see the drag gesture
in action.

Card's drag gesture

But, what if you wanted to combine gestures?

Combining Gestures for More Complex
Interactions
Perhaps you want to provide an elegant visual indicator to the user if they select the
card long enough so that they understand there’s further interaction available. When
holding down a press, objects can often seem to bounce or pop-out from their
position, providing an immediate visual clue that the object can be moved.

SwiftUI by Tutorials Chapter 11: Gestures

 369

SwiftUI provides the ability to add such a change by combining two gestures. When
combining gestures, SwiftUI provides a few options about how they interact:

• Sequenced: a gesture that follows another gesture.

• Simultaneous: gestures that are active at the same time.

• Exclusive: gestures that can be both added, but only one can be active at a time.

You’re going to add a simultaneous gesture in this case because you want to provide
a simple clue to the potential of the possible drag gesture, without preventing the
drag gesture being invoked at the same time.

This may sound complicated, but it’s incredibly simple, as you’ll see.

First, add a new property to store the state of the drag gesture to CardView:

@GestureState var isLongPressed = false

You’ll notice a new state attribute called @GestureState. This attribute enables the
state of a gesture to be stored and read during a gesture to influence the effects that
gesture may have on the drawing of the view.

This property will be used to record whether the card has been pressed for a long
time or not, and will automatically be reset when the gesture is completed. If you use
a @State property instead, the property won’t be reset when the gesture has ended.

Next, at the top of the body, right below the setup of drag, add a new gesture for the
long press:

let longPress = LongPressGesture()
 .updating($isLongPressed) { value, state, transition in
 state = value
 }
 .simultaneously(with: drag)

Note how you’re creating a new gesture and combining it in simultaneous way with
another gesture, drag.

This gesture is a LongPressGesture: another consistent gesture provided by Apple.
In it, you’re using the updating body to bind a value to the state, and then adding
the previous drag gesture as a potential simultaneous gesture.

SwiftUI by Tutorials Chapter 11: Gestures

 370

To see it in action, at the bottom of body replace the previously created drag gesture:

.gesture(drag)

With:

.gesture(longPress)

.scaleEffect(isLongPressed ? 1.1 : 1)

Note that you’ve also added a scaleEffect modifier to increase the scale of the view
10% if the isLongPressed property is true.

Try it out, either by previewing LearnView or running the app in the Simulator. You
should now be able to press the card and see it scale, whilst still being able to drag it
left or right.

You may notice that no animation is applied to this pulse effect — but that’s easy to
fix. Just add an animation for it, linked to the isLongPressed property
after .scaleEffect(:_):

.animation(
 .easeInOut(duration: 0.3),
 value: isLongPressed
)

Now if you run or preview again, you’ll see that animation applied!

This is a simple, but effective simultaneous combined gesture written with just a
handful of code and a simple gesture modifier. Great job!

However you can see that the tap gesture to reveal the translation that you added
earlier no longer works: if you tap on the card, nothing happens — This happens
because the long press gesture hides it.

A quick way to fix this is to use the .simultaneousGesture(). Replace:

.gesture(TapGesture()
 ...
)

With:

.simultaneousGesture(TapGesture()
 ...
)

And the tap to reveal the translation gesture will work again!

SwiftUI by Tutorials Chapter 11: Gestures

 371

Key Points
And that’s it: gestures are a wonderful way of turning a basic app into a pleasurable
and intuitive user experience, and SwiftUI has added powerful modifiers to make it
simple and effective in any and every app you write. In this chapter you’ve learned:

• How to create simple gestures from Apple’s built-in library. Simply use the
gesture modifier along with the gesture to use.

• How to create custom gestures for more unique interactions.

• How to combine animations and gestures for more fluid experiences.

Where to Go From Here?
You’ve done a lot with gestures but there’s a lot more that’s possible. Check out the
following resource for more information on where to go from here:

SwiftUI gesture documentation: apple.co/3cBuVgd

SwiftUI by Tutorials Chapter 11: Gestures

 372

12Chapter 12: Accessibility

By Audrey Tam

Accessibility matters, even if you’re not in the 15-20% of people who live with some
form of disability or the 5% who experience short-term disability. Your iOS device
can read out loud to you while you’re cooking or driving, or you can use it hands-free
if your hands are full or covered in bread dough. Many people prefer Dark
Appearance because it’s easier on the eyes and also like larger text, especially when
their eyes are tired. And there are growing concerns about smartphone addiction. A
popular tip is to set your iPhone to grayscale (https://bit.ly/3hoVUPm)!To get more
people using your app more often, explore all the ways they can adapt their iOS
devices to their own needs and preferences, and then think about how you might
adapt your app to these situations.

Most app UIs are very visual experiences, so most accessibility work focuses on
VoiceOver — a screen reader that lets people with low to no vision use Apple devices
without needing to see their screens. VoiceOver reads out information to users about
your app’s UI elements. It’s up to you to make sure this information helps users
interact efficiently with your app.

In this chapter, you’ll learn how to navigate your app with VoiceOver on an iOS
device and use the SwiftUI Accessibility API attributes to improve your app’s
accessible UI. You’ll add labels that provide context for UI elements and improve
VoiceOver information by reordering, combining or ignoring child elements.

Apple’s investing a lot of effort in helping you improve the accessibility of your apps.
With SwiftUI, it’s easier than ever before. The future is accessible (https://bit.ly/
3htnuLe), and you can help make it happen!

 373

Using VoiceOver on a Device
Xcode has an Accessibility Inspector app you can open with Xcode ▸ Open
Developer Tool ▸ Accessibility Inspector. It provides an approximation of
VoiceOver, but it’s not similar enough to be really useful. Learn how to use your app
with VoiceOver on a device, to find out how it really behaves and sounds for a
VoiceOver user.

Setting up VoiceOver Shortcut
On your device, open Settings ▸ Accessibility ▸ Accessibility Shortcut, and select
VoiceOver. This enables you to switch VoiceOver on and off by triple-clicking the
device’s side button.

iPhone Settings: Accessibility shortcut includes VoiceOver.

SwiftUI by Tutorials Chapter 12: Accessibility

 374

Note: I check more than one shortcut option to avoid accidentally turning on
VoiceOver when I’m trying to use Apple Pay. You could turn on Settings ▸
Accessibility ▸ Touch ▸ Back Tap and set Double-tap or Triple Tap to
VoiceOver. Or just ask Siri to turn VoiceOver on or off.

Using VoiceOver
After setting up your shortcut(s), go back to Settings ▸ Accessibility, scroll down,
then use a shortcut to start VoiceOver. VoiceOver says it’s on, then says “Settings”.
Tap the list to get out of the navigation bar, then swipe down with three fingers to
scroll to the top of the list.

Note: If your screen locks on an iPhone with Face ID: Wake iPhone and glance
at it, then drag up from the bottom edge of the screen until you feel a
vibration or hear two rising tones.

Now practice some basic navigation in VoiceOver.

First, Swipe right until you reach VoiceOver. Double-tap anywhere to activate this
item.

SwiftUI by Tutorials Chapter 12: Accessibility

 375

A split-tap gesture is another way to activate an item: Touch and hold Speech with
one finger, then tap the screen with another.

VoiceOver ▸ Speech

Make sure the Detect Languages option is on. You’ll soon hear it in action.

Next, with two fingers, do a Z gesture. This takes you back to the previous screen.

SwiftUI by Tutorials Chapter 12: Accessibility

 376

Now, activate Verbosity: VoiceOver users can customize what VoiceOver reads out.
These are my settings:

VoiceOver verbosity settings used for this chapter

If your device’s settings are different, your VoiceOver might say slightly different
things.

Note: It’s OK to turn off VoiceOver while you select your Verbosity settings. ;]

SwiftUI by Tutorials Chapter 12: Accessibility

 377

To get back to the home screen, drag up from the bottom edge of the screen until you
feel a vibration or hear two rising tones. If you hear three rising tones, you’ll get the
app switcher.

There are many more gestures, and links to more information about VoiceOver, at
Learn VoiceOver Gestures on iPhone (https://apple.co/38PipsI).

Accessibility in SwiftUI
With SwiftUI, it’s easy to ensure your apps are accessible because SwiftUI does a lot
of the work for you. SwiftUI elements support Dynamic Type and are accessible by
default. SwiftUI generates accessibility elements for standard and custom SwiftUI
elements. Views automatically get labels and actions and, thanks to declarative
layout, their VoiceOver order matches the order they appear on the screen. SwiftUI
tracks changes to views and sends notifications to keep VoiceOver up to date on
visual changes in your app.

When the accessibility built into SwiftUI doesn’t provide the right information in the
right order, you’ll use the SwiftUI Accessibility API to make your accessible elements
understandable, interactable and navigable:

• Understandable: In this chapter, you’ll learn what SwiftUI generates for
VoiceOver from SwiftUI element initializers. Then, to clarify or add context to
accessible elements, you’ll override the generated default labels. You’ll customize
the accessibility labels and values, hiding elements that provide unnecessary or
redundant information, and moving some information to hints that the user hears
only if they seem unsure.

SwiftUI by Tutorials Chapter 12: Accessibility

 378

• Interactable: Aim to give your accessible elements appropriate default actions
and create custom actions to simplify interaction for users of assistive technology.
When your app has custom actions like context menus, double-tap-hold can
display them. For example, in Maps with VoiceOver on, double-tap-hold an
annotation to see the usual context menu.

In VoiceOver, double-tap-hold annotation to show context menu.

• Navigable: You’ll change the order that VoiceOver visits elements, and you’ll
group elements to reduce the number of steps and speed up navigation for
VoiceOver users.

The amount of work for each accessible element could be as little as a few words or
lines of code. Or you might need to refactor or add code, or even change a navigation
link or alert into a modal sheet.

SwiftUI by Tutorials Chapter 12: Accessibility

 379

Most of the time, you’ll add accessibility to your app without changing its
appearance and behavior for users who aren’t using VoiceOver. But sometimes,
something you do for VoiceOver will inspire an improvement to your visual UI.

Accessibility API
Now that you’ve gotten comfortable splashing around in the deep end of
accessibility, it’s time to dive into some details about the SwiftUI Accessibility API.

When a user of your app turns on an iOS assistive technology like VoiceOver, they’re
actually interacting with an accessible user interface that iOS creates for your app.
This accessible UI tells a VoiceOver user about the accessible elements of your UI
— what they are and how to use them.

Every accessible UI element has these two attributes:

• Frame: The element’s location and size in its CGRect structure.

• Label: The default value of an element’s label — the label, name or text used to
create the element. Apple’s programming guide (https://apple.co/2WWrKtq)
provides guidelines for creating labels and hints.

Depending on its nature, a UI element might have one or more of these three
attributes:

• Traits: An element can have one or more traits, describing its type or state. The
list of traits (https://apple.co/34VNb1X) includes isButton, isModal, isSelected
and updatesFrequently. SwiftUI views have default traits. For example, a Trait of
Toggle is Button. You can add traits with accessibility(addTraits:) or
remove them with accessibility(removeTraits:). VoiceOver reads out an
element’s traits, so never include them in its label.

• Value: A UI element has a value if its content can change. If the default value isn’t
meaningful to VoiceOver users, use accessibilityValue(_:) to create a more
useful value. For example, Slider values often need context to convey any
meaning to your users.

• Hint: This attribute is optional. If the user doesn’t do anything after VoiceOver
reads a label, VoiceOver reads the hint. Use accessibilityHint(_:) to describe
what happens if the user interacts with the element.

SwiftUI by Tutorials Chapter 12: Accessibility

 380

The accessible UI doesn’t change anything in your app’s visible UI, so you can add
more information, in a different order, than what your other users see.

Note: There is one more accessibility attribute: identifier. This is only used
in UITests. You would set an identifier for an element that doesn’t have an
accessibility label, or if an element’s accessibility label is too long or
ambiguous.

SwiftUI: Accessibility by Default
Open your Kuchi app or open the project in the starter folder, then open Shared/
Welcome/RegisterView and locate the “Remember me” Toggle:

Toggle(isOn: $userManager.settings.rememberUser) {
 Text("Remember me")
 .font(.subheadline)
 .foregroundColor(.gray)
}

There’s no explicit accessibility code here, just the type of element — Toggle — and
its Text label. Yet, VoiceOver reads this as Remember me, switch button, off, double-tap
to toggle setting because SwiftUI generates an accessibility element.

Xcode has an Accessibility inspector, to the left of the Attributes inspector. Under
the right conditions, it shows you an element’s accessibility settings, including what
VoiceOver will say.

The conditions are:

• A preview of the view appears in the canvas.

• The canvas is in Selectable mode.

• The element is a standard SwiftUI view.

• You’re holding your breath and have crossed all your fingers and toes ;].
Sometimes, it helps to click another inspector then re-select the Accessibility
inspector.

SwiftUI by Tutorials Chapter 12: Accessibility

 381

To try this out in RegisterView, refresh the preview and switch to Selectable mode.
Select the toggle (not just its label) in the preview or click Toggle in the code editor,
then show the Accessibility inspector:

Toggle: Accessibility inspector

• Label defaults to the element’s label Remember me.

• Value defaults to match the element’s value: 0, because the initial value of
Remember me is false.

• Traits default to .isButton because this element is a Toggle.

• Actions default to activate — again, because this is a Toggle.

So VoiceOver reads out the label, the trait (with more detail than “button”), the value
and activation instructions. You’ll soon see how this information changes instantly
when you make changes to the element.

You can close Kuchi for now. You’ll be working with RGBullsEye for a while.

SwiftUI by Tutorials Chapter 12: Accessibility

 382

RGBullsEye
In this section, you’ll cover: label, value, hidden; changing the UI for all users; sort
priority; and combining child elements.

Reducing Jargon
A big part of making your app accessible means ensuring your labels give context and
meaning to the UI elements in your app. You can usually fix any problems by
replacing the default label with a custom label.

Open your RGBullsEye project or open the project in the starter folder. If necessary,
customize it to run on your device: In the project window, select the iOS target.
Then, in the Signing & Capabilities tab, select a team and customize the bundle ID.
If necessary, adjust the project’s iOS Deployment Target and the target’s Minimum
Deployment.

Note: If you want to continue using your own RGBullsEye, copy these files
from the starter project: SuccessView.swift, ColorExtension.swift (replace
the one in your project), and grayText.colorset and wand.imageset from
Assets.xcassets.

Now, connect your iOS device to your Mac, select it as the run destination, then build
and run.

Start VoiceOver, then swipe up with two fingers to hear something like this:

R 3 question marks G 3 question marks B 3 question marks

R 127 grams 127 B 127 …

And quite a lot more that sounds pretty meaningless. Your first task is obvious.

The color value Text views need accessibility labels.

In ContentView, add a meaningful accessibility label to the target Text view:

// BevelText(text: "R ??? G ??? B ???", ...)
.accessibilityLabel("Target red, green, blue, values you must
guess")

SwiftUI by Tutorials Chapter 12: Accessibility

 383

Note: I’ve included commented-out lines in code blocks to show you exactly
where you need to add code. You can copy and paste the whole code block into
your code without breaking anything. Don’t comment out the corresponding
lines in your project.

You translate “???” to something that makes sense. The comma after “blue” isn’t
grammatically correct, but it makes VoiceOver pause before saying “values”.

In the Accessibility inspector, your change appears immediately:

Target label changes immediately.

SwiftUI by Tutorials Chapter 12: Accessibility

 384

Note: Xcode might have difficulty showing your phone in preview — switch
your run destination back to what you had before.

For the guess color, you’ll need a few computed variables to enable VoiceOver to say
“Red”, “Green” and “Blue” instead of “R”, “G” (or “grams”) and “B”.

Now, in Model/RGB, replace intString() with the following code:

var rInt: Int {
 Int(red * 255.0)
}
var gInt: Int {
 Int(green * 255.0)
}
var bInt: Int {
 Int(blue * 255.0)
}

/// A String representing the integer values of an RGB instance.
func intString() -> String {
 "R \(rInt) G \(gInt) B \(bInt)"
}

func accString() -> String {
 "Red \(rInt), Green \(gInt), Blue \(bInt)."
}

You create computed variables for the red, green and blue integer values, then use
these in the strings you display on screen (intString()) and read out in the
accessibility label (accString()).

Now go back to ContentView and add this label to the guess Text view:

//BevelText(text: guess.intString(), ...)
.accessibilityLabel("Your guess: " + guess.accString())

SwiftUI by Tutorials Chapter 12: Accessibility

 385

Again, the Accessibility inspector shows your new label immediately:

Guess label changes immediately.

Build and run on your device to hear VoiceOver say exactly what you told it to say.

Next, listen to VoiceOver read out a slider. You must swipe right twice to hear all
three components:

0. 50 per cent, adjustable, swipe up or down with one finger to adjust the value. 255

SwiftUI by Tutorials Chapter 12: Accessibility

 386

Note: The swipe up/down slider increments are too large to get a high score.
To control the slider more accurately, tap a slider to select it, then double-tap
and hold the slider thumb until you hear three rising tones. Now you can drag
the slider in the usual way.

The issues here are:

1. Users don’t need to hear “0” and “255”.

2. The slider value is between 0 and 1, but the interface displays values between 0
and 255.

To solve these issues:

1. Don’t read out “0” and “255”.

2. Translate the slider value into an integer.

In ContentView, scroll down to struct ColorSlider and replace the contents of
the HStack with the following code:

Text("0")
 .accessibilityHidden(true)
Slider(value: $value)
 .accentColor(trackColor)
 .accessibilityValue(
 String(describing: trackColor) + " " +
 String(Int(value * 255)))
Text("255")
 .accessibilityHidden(true)

You hide the “0” and “255” Text views from VoiceOver and tell VoiceOver to read the
slider color and integer slider value.

Note: Color conforms to the CustomStringConvertible protocol, so
String(describing: trackColor) is “red”, “green” or “blue”.

SwiftUI by Tutorials Chapter 12: Accessibility

 387

In ContentView, select the red slider to see “0” and “255” are hidden, and the slider’s
value is “red 127”:

Improved Slider description

Build and run to hear your improved Slider descriptions.

Now that each element makes more sense, you’ll organize them so VoiceOver reads
out the more useful ones first.

SwiftUI by Tutorials Chapter 12: Accessibility

 388

Reordering Navigation
When the app launches, VoiceOver starts reading from the top of the screen. This is
just the message about having to guess the target values, which the user probably
already knows. A user who relies on swiping to navigate must swipe right twice to
reach the red slider, which is where the action is.

For someone playing this game, a more useful navigation order is to start with the
sliders, then move to the guess string, and then to the button.

Here’s how you do this. In ContentView, replace the guess BevelText, sliders and
button with the following:

BevelText(
 text: guess.intString(),
 width: proxy.size.width * labelWidth,
 height: proxy.size.height * labelHeight)
 .accessibilityLabel("Your guess: " + guess.accString())
 .accessibilitySortPriority(2) // add this line
 ColorSlider(value: $guess.red, trackColor: .red)
 .accessibilitySortPriority(5) // add this line
 ColorSlider(value: $guess.green, trackColor: .green)
 .accessibilitySortPriority(4) // add this line
 ColorSlider(value: $guess.blue, trackColor: .blue)
 .accessibilitySortPriority(3) // add this line
Button("Hit Me!") {
 self.showScore = true
 self.game.check(guess: guess)
}
.accessibilitySortPriority(1) // add this line

You change the sort priority of these five elements. VoiceOver starts reading from
the element with the highest sort value (5). The color Text views have the default
sort priority 0.

This sort order lets the user immediately start moving the sliders. Then they listen to
the full RGB values of their guess. And then they activate Hit Me!.

Build and run on your device. VoiceOver reads “Red 127”. Swiping right moves to
“Green 127” then “Blue 127” then “Your guess: …” then “Hit me, button”.

Now, what happens after the user activates Hit me?

SwiftUI by Tutorials Chapter 12: Accessibility

 389

Organizing Information
Activate the Hit Me! button to show the alert. Swipe right twice to hear all three
parts:

Alert, Your Score. 92. OK, Button.

There are two problems:

1. You must swipe right to hear your score, which is the most important
information, then again to select the OK button.

2. The target Text view now shows the target’s color values, but there’s no way to
get VoiceOver to read them.

It would be nice if you could combine the three parts of the alert into a single
accessibility label, then add the target color values as an accessibility value or hint.
Unfortunately, you can’t use accessibility modifiers with the SwiftUI Alert view.

Note: UIAlertController can set its view.accessibilityLabel and
view.accessibilityValue, so one solution would be to use this instead of
Alert. You’ll learn about integrating UIKit in “Complex Interfaces”.

Here’s a situation where you can change the UI to benefit all your users.

Modify the Alert for All Users

In ContentView, in the body of ContentView, replace the first two arguments of
Alert with these:

title: Text("You scored \(game.scoreRound)"),
message: Text("Target values: " + game.target.accString()),

You include the score in title and present the target color values in message. You
must use the accessible string so VoiceOver can read “Red”, “Green” and “Blue”
instead of “R”, “G” and “B”.

OK, here’s a confession: The Figma design for RGBullsEye actually has a full-screen
SuccessView modal sheet instead of the Alert. I didn’t implement it, back in
“Diving Deeper into SwiftUI”, because it would have covered the guess and target
color values, and the design didn’t include this information in the modal. But now
that you’re including the target color values in the alert, you might as well do the
same in SuccessView. And you can also show the user’s guess color values.

SwiftUI by Tutorials Chapter 12: Accessibility

 390

SuccessView is already in the starter project. It displays the target and guess color
values on the backgrounds of those colors.

Note: Thanks to the nifty computed variable accessibleFontColor from an
older version of Apple’s Scrumdinger app (https://apple.co/3mXdqeL), the text
colors are black or white, depending on the background colors. You’ll find this
code in Model/ColorExtension.

Success view modal sheet

So your next task is to replace the alert with SuccessView.

SwiftUI by Tutorials Chapter 12: Accessibility

 391

Refactor to Use SuccessView Modal Sheet

In ContentView, replace .alert(...) { ... } with the following:

.sheet(isPresented: $showScore) {
 SuccessView(
 game: $game,
 score: game.scoreRound,
 target: game.target,
 guess: $guess)
}

Build and run on your device, then activate the Hit Me! button. Swipe right enough
times to hear VoiceOver read something like this:

wand, Image. Congratulations! You scored 77 points on this color. Target: R 157 G 219 B
163. Guess: R 127 G127 B127. Try another one, Button.

The advantage of using a modal sheet instead of an Alert is you can now combine
the Text views into a single readout. You can also attach accessibility modifiers to
each component.

To make VoiceOver read the text elements as a single unit, the easiest solution is to
combine them into a single accessibility element.

SwiftUI by Tutorials Chapter 12: Accessibility

 392

In SuccessView, refresh the preview, switch to Selectable mode, show the
Accessibility inspector, then select the first VStack:

SuccessView elements

Now, add this modifier to the first VStack in SuccessView:

.accessibilityElement(children: .combine)

All of the text elements are useful, so you just combine them to make VoiceOver read
them without stopping after each one.

SwiftUI by Tutorials Chapter 12: Accessibility

 393

See what’s happened in the Accessibility inspector:

Improved SuccessView description

Magical!

Exercise: In SuccessView, fix the remaining accessibility issues.

First, hide the “wand” image from VoiceOver. Do this after the resizable()
modifier because resizable() is an Image modifier and
accessibilityHidden(_:) doesn’t return an Image.

Next, tell VoiceOver to read out the accessible strings for the target and guess
colors.

The solution is in the challenge folder.

Note: Using Xcode 14, combining the VStack elements already omits the
Image from VoiceOver. This might be a bug, so it’s safer to explicitly hide any
elements you don’t want VoiceOver to read out.

Keep RGBullsEye open in Xcode. There are still a couple of things for you to see.

SwiftUI by Tutorials Chapter 12: Accessibility

 394

Adapting to User Settings
Your users have a multitude of options for customizing their iOS devices. Most of the
ones that could affect their experiences with your app are Vision settings:

Vision accessibility settings

For some of these options, your app can check if it’s enabled, then adapt itself. But
for some options, there isn’t (yet?) an @Environment or UIAccessibility variable,
so you might have to tweak your design to work for all your users.

Trying Out Device Settings in Xcode
To see how these accessibility settings affect your app, you could turn them on or off,
in different combinations, directly in your device’s Settings. Oh, joy. Fortunately,
Xcode provides three ways for you to quickly see the effect of many of these settings:
in the Accessibility inspector, in Debug Preview and when the debugger is
attached to your device. It’s much quicker and easier than going through the
Settings app on your device, so you’re more likely to check, and therefore more
likely to fix any problems sooner.

SwiftUI by Tutorials Chapter 12: Accessibility

 395

Build and run on your device. When it’s running, open Environment Overrides in
the debug toolbar:

Debug toolbar: Environment Overrides

You can use this tool to check Dark/Light Appearance, Dynamic Type text size,
Increase Contrast, Bold Text, On/Off Labels and Button Shapes. You must change the
actual settings on your device to check Reduce Motion and Grayscale. The Smart
Invert environment override inverts most colors, but it’s safer to use the actual
setting on your device, just to be sure.

Dark screens are really popular and play an important role in eye health as well as
with accessibility, so you definitely must ensure your apps look good in Dark
Appearance. You’ve already seen in “Diving Deeper Into SwiftUI” how to
automatically adapt to dark appearance by setting a Dark Appearance for your
custom colors. You can also set light appearance and high-contrast versions.
UIColor has system colors like systemBlue, but also semantic colors like label,
systemFill, systemBackground and placeholderText that automatically adapt to
Dark Appearance.

SwiftUI by Tutorials Chapter 12: Accessibility

 396

You can also check Dark/Light Appearance and Dynamic Type text size with the
preview canvas Device Settings or Variants.

In “Intro to Controls: Text & Image”, you switched from using a specific font size like
font(.system(size: 30)) to using standard text styles like font(.headline) and
font(.largeTitle). These respond to a user’s accessibility setting for Display &
Text Size ▸ Larger Text, so your app automatically supports Dynamic Type.

Apple’s Typography documentation (https://apple.co/37SCpvt) shows size and
weight for standard text styles at different Dynamic Type sizes, and the preview
Variants option makes it easy to check:

Use preview Variants mode to check your app supports dynamic type.

SwiftUI by Tutorials Chapter 12: Accessibility

 397

The largest two sizes need some tweaking.

Now close RGBullsEye.

Checking Environment Variables
What can you do in your app to adapt to larger text sizes? New in iOS 16 is
AnyLayout, which makes it easy to switch between layout containers — from HStack
to VStack — depending on the Dynamic Type setting:

struct ContentView: View {
 @Environment(\.dynamicTypeSize) var dynamicTypeSize

 var body: some View {
 let layout = dynamicTypeSize <= .medium ?
 AnyLayout(HStackLayout()) : AnyLayout(VStackLayout())

 layout {
 Text("First label")
 Text("Second label")
 }
 }
}

The environment value dynamicTypeSize is the font size users can set in their
device’s Settings ▸ Accessibility ▸ Display & Text Size ▸ Larger Text. Some other
environment values are:

• Invert colors accessibilityInvertColors: The Smart Invert accessibility
option reverses colors of the display and shouldn’t invert colors of images, media
and some apps that use dark color styles. But it’s currently behaving more like
Classic Invert, which reverses all colors. For elements you don’t want inverted,
use accessibilityIgnoresInvertColors(true).

SwiftUI by Tutorials Chapter 12: Accessibility

 398

• Increase contrast colorSchemeContrast: This accessibility option alters color
and text styling, and adjusts dynamic type to the user’s preferred text size. In
RGBullsEye, it darkens the slider track colors. If your app detects this option is
enabled, it should ensure color contrast ratios are 7:1 or higher. Or consider
designing your UI so color contrast ratios are 7:1 or higher for all users. You can
check the contrast ratio of specific foreground and background colors at
contrastchecker.com.

• Reduce transparency accessibilityReduceTransparency: This accessibility
option reduces the transparency and blurs on some backgrounds. If your app
detects this option is enabled, it should ensure all alpha values are set to 1.0.

• Reduce motion accessibilityReduceMotion: This accessibility option slows
down, reduces or removes some animations, like the spinning Activity app awards.
Check it on your device with Settings ▸ Accessibility ▸ Motion. Your app should
run animations only if this option isn’t enabled:

@Environment(\.accessibilityReduceMotion) var reduceMotion
...
 if animated && !reduceMotion { /* animate at will! */ }

You’ll get to use this soon!

• Bold Text legibilityWeight: This accessibility option displays all text in
boldface characters, so large font text uses even more space.

• On/Off Labels UIAccessibility.isOnOffSwitchLabelsEnabled: This
accessibility option shows 1 or 0 in a toggle that is on or off. If this messes up
your custom toggle, consider redesigning it. Or replace it with a standard toggle if
this option is enabled.

• Button Shapes UIAccessibility.buttonShapesEnabled: This accessibility
option re-creates the outline around tappable elements from earlier iOS versions,
before label-only buttons became the default. If this messes up your custom
button, consider redesigning it for all users.

SwiftUI by Tutorials Chapter 12: Accessibility

 399

• Grayscale UIAccessibility.isGrayscaleEnabled: This accessibility option
turns on a color filter that shows only the relative luminance of colors. Check it on
your device with Settings ▸ Accessibility ▸ Display & Text Size ▸ Color Filters ▸
Grayscale. Consider using higher contrast colors for elements so they’re still
distinct in grayscale. You can check how specific foreground and background
colors look in grayscale at contrastchecker.com.

Display & Text Size▸Color Filters▸Grayscale

Note: Color filters don’t show up in screenshots. I had to use another phone’s
camera to take this photo of my phone.

SwiftUI by Tutorials Chapter 12: Accessibility

 400

• Differentiate Without Color accessibilityDifferentiateWithoutColor: This
accessibility option replaces UI items that rely on color to convey information with
alternatives. You should always try to use shapes or additional text in addition to
color.

There is also accessibilityEnabled: This is true if VoiceOver, Voice Control or
Switch Control is enabled. Check UIAccessibility.isVoiceOverRunning or
UIAccessibility.isSwitchControlRunning. There’s no way to check for Voice
Control, unless the user has not enabled VoiceOver or Switch Control:

accessibilityEnabled == true
 && !UIAccessibility.isVoiceOverRunning
 && !UIAccessibility.isSwitchControlRunning

Note: This seems to be a reasonable test for VoiceControl, as VoiceOver and
VoiceControl don’t work well together, and Switch Control users like Ian
Mackay in this Tecla article (https://bit.ly/3mcc42s) might prefer to use Voice
Control in quiet environments.

There are many other UIAccessibility properties in Apple’s documentation
(https://apple.co/3Kok5fB), listed under Capabilities. Check these values whenever
you need them, to ensure you’re getting their current status.

You’ll see a few of these in action in the next two apps.

Kuchi
In this section, you’ll cover keyboard input and fixing dark appearance.

Open the starter Kuchi project and customize the bundle ID and team. Then connect
your iOS device to your Mac and select the Kuchi (iOS) run target and your device. If
necessary, adjust the iOS Deployment target in the target window, then build and
run.

SwiftUI by Tutorials Chapter 12: Accessibility

 401

RegisterView
The first time Kuchi launches, it displays RegisterView.

Register view

Start VoiceOver, then swipe up with two fingers to hear something like this:

Welcome to, Kuchi. Type your name, ellipsis, Text field. 0. Remember me, Switch button,
off. Selected, OK, dimmed; Button. welcome-background, Logo Other, Outdoor (or Night
Sky), Screenshot, Tachometer.

Hiding Unnecessary Elements

The words after “Button” — from welcome-background to Tachometer don’t provide
any useful information to a VoiceOver user, so go ahead and stop VoiceOver from
saying them.

SwiftUI by Tutorials Chapter 12: Accessibility

 402

In Shared/Welcome/Components/WelcomeBackgroundImage, hide the Image
from VoiceOver:

//Image("welcome-background")
// .resizable()
 .accessibilityHidden(true)

Reminder: I include commented-out lines in code blocks to show you exactly
where you need to add code. You can copy and paste the whole code block into
your code without breaking anything. Don’t comment out the corresponding
lines in your project.

You add accessibilityHidden(_:) after resizable() because resizable() is an
Image modifier, and accessibilityHidden(_:) doesn’t return an Image.

Another unnecessary element is in the Welcome to Kuchi label: Sometimes
VoiceOver reads the icon as “Logo other”.

Welcome to Kuchi label

So go to LogoImage to hide this image:

//Image(systemName: "table")
// .resizable()
 .accessibilityHidden(true)

What’s next? In Shared/Welcome/RegisterView, in the text field’s placeholder text,
VoiceOver reads “…” as “ellipsis”.

Text field and character counter

This provides no useful information to anyone, so just delete it for all users.

TextField("Type your name", text: $userManager.profile.name)

SwiftUI by Tutorials Chapter 12: Accessibility

 403

Adding Descriptions

Next, you’ll add some descriptions.

VoiceOver reads out the number “0”, with no context. This Text view keeps count of
the number of characters the user types in the TextField. The OK button is disabled
while this number is less than 3. This isn’t obvious to non-VoiceOver users, but they
can see, while they’re typing, when the OK button becomes enabled.

If a VoiceOver user can’t get past your registration page, you’ve lost a user! Help
them out…

In the first HStack, add these accessibility modifiers to the Text view:

//Text("\(userManager.profile.name.count)")
 .accessibilityLabel("name has \
(userManager.profile.name.count) letters")
 .accessibilityHint("name needs 3 or more letters to enable OK
button")

You provide a more descriptive label for VoiceOver to read. If the user doesn’t
immediately move on to another interface element, VoiceOver reads the hint.

The accessibility of the Remember me toggle is fine.

Remember-me toggle and OK button

By default, VoiceOver reads its on/off state and tells the user what to do with it. Its
label is a standard login option, so doesn’t need more explanation.

But the OK button needs work. VoiceOver should tell users what happens when they
tap it. Tapping a button is a command for the app to act, and its accessibility label
should tell the user what this command is. In this case, tapping OK “registers user”.
So add an accessibility label to the OK Button:

//Button(action: registerUser) {
//...
//}
.accessibilityLabel("OK registers user")
//.bordered()

SwiftUI by Tutorials Chapter 12: Accessibility

 404

Adding an accessibility label means VoiceOver won’t read the Text string, so you
include “OK” in the accessibility label.

Just in case the user skipped listening to the character counter hint, also add it to the
OK Button:

.accessibilityHint("name needs 3 or more letters to enable this
button")

Finally, VoiceOver says the OK button is “dimmed”, but “disabled” would be more
informative.

➤ Add an accessibility value to the OK Button:

.accessibilityValue(
 userManager.isUserNameValid() ? "enabled" : "disabled")

You’ve added a total of three accessibility modifiers to the OK Button.

Build and run the app on your device, then swipe up with two fingers to listen to
VoiceOver read something like this:

Welcome to Kuchi. Type your name, Text field. Name has 0 letters. Remember me, Switch
button, off. Selected. OK registers user, disabled, dimmed; Button. Name needs 3 or more
letters to enable OK button.

That’s better, although VoiceOver might not read the hint unless you do nothing for
quite a while. What’s next?

Tap the text field. VoiceOver says something like this:

Type your name, Text field. Double-tap to edit

That’s clear enough. Go ahead and double-tap, to hear this:

Text field, is editing. Type your name, Character mode, insertion point at start. Use the
rotor to access misspelled words

SwiftUI by Tutorials Chapter 12: Accessibility

 405

The keyboard appears:

Keyboard for text field input

To type your name, activate each key to enter it in the text field.

SwiftUI by Tutorials Chapter 12: Accessibility

 406

When you tap a key, VoiceOver reads it and, if you pause, uses the NATO phonetic
alphabet (Alpha, Bravo, Charlie, Delta, Echo, etc.) to made sure you know which
letter you tapped. When you activate a key, VoiceOver repeats it.

Note: Blind users would use Braille Screen Input.

Braille Screen Input

Activate the keyboard’s done key to dismiss it, then tap OK to hear VoiceOver say:

OK registers user, enabled, Button, name needs 3 or more letters to enable this button.

Fixing Dark Appearance

If your phone is set to dark appearance, you’ve noticed a big problem: The name field
is white, and you can’t see what you’re typing. There’s actually an easy fix.

TextField has a modifier .bordered(). Jump to its definition in
BorderedViewModifier. BorderedViewModifier specifies the background color:

.background(Color.white)

Change this to the semantic color .background:

.background(.background)

SwiftUI by Tutorials Chapter 12: Accessibility

 407

Go back to RegisterView and use the canvas Device Settings to see how it now
looks in Dark Appearance:

Dark appearance fixed

Note: Sometimes, you have to run the app in a simulator or on your device,
then use Environment Overrides to see the real dark appearance.

Fun Fact

If you continue on to the Japanese phrases, you’ll get a delightful surprise: The
Settings/Accessibility/VoiceOver/Speech/Detect Languages option means
VoiceOver reads out the text in Japanese. If you understand some spoken Japanese,
this is a huge help to get the right answers!

Close Kuchi.

SwiftUI by Tutorials Chapter 12: Accessibility

 408

MountainAirport
In this section, you’ll cover: Motion, cross-fade; hidden; and increase button’s
tappable area and visibility.

The third starter project is a peek into the future. MountainAirport is the sample app
for the next two sections of this book, where you’ll learn to draw and animate
custom graphics in SwiftUI.

Open, build and run MountainAirport on your device with VoiceOver on. Swipe up
with two fingers to hear:

Mountain Airport, Heading. Aeroplane Mode, Image. Flight Status. Departure and arrival
information, link-pattern, image. Aeroplane, Gift Card, Logo Other. Search, Image.
Search. Search Flights. Search Upcoming Flights, link-pattern, image. Logo Other,
Underwater. Your Awards, Favorite, Image, Star. Earn rewards for your airport
interactions, link-pattern, image. Logo Other, Sign.

Not Animating
Meanwhile, there’s an airplane moving across the screen, on a loop, just below the
header. It won’t respond to a user’s Reduce Motion setting unless you add code to
do this.

In WelcomeView, add this environment variable to WelcomeView:

@Environment(\.accessibilityReduceMotion) var reduceMotion

Now, scroll down to body and replace WelcomeAnimation() and its modifiers with
this conditional:

if !reduceMotion {
 WelcomeAnimation()
 .frame(height: 40)
 .padding()
} else {
 Image(systemName: "airplane")
 .resizable()
 .accessibilityHidden(true)
 .aspectRatio(1.0, contentMode: .fit)
 .frame(height: 40)
 .padding()
}

SwiftUI by Tutorials Chapter 12: Accessibility

 409

If the user’s device has Reduce Motion turned on, you show a still image of the
airplane symbol — using the same modifiers as in WelcomeAnimation — but hide its
label from VoiceOver.

On your device, go to Settings ▸ Accessibility ▸ Motion and turn on Reduce
Motion:

Reduce Motion options

SwiftUI by Tutorials Chapter 12: Accessibility

 410

Now, build and run on your device to see an unanimated airplane:

Unanimated airplane

That was easy! Now to streamline what VoiceOver says…

SwiftUI by Tutorials Chapter 12: Accessibility

 411

Hiding & Combining Labels
By now, you know you should hide the background image — “link-pattern, image” —
from VoiceOver.

In WelcomeButtonView, add this accessibility modifier to the Image:

// .background(
 // Image("link-pattern")
 // .resizable()
 .accessibilityHidden(true)

Remember to put it after resizable().

Also hide the label images by adding the same accessibility modifier to the first item
in the HStack:

// Image(systemName: imageName)
 // .resizable()
 .accessibilityHidden(true)

Further improve your VoiceOver experience by adding these modifiers to the title
and subTitle stack:

// VStack(alignment: .leading) {
 // Text(title)
 // .font(.title2)
 // Text(subTitle)
 // .font(.subheadline)
// }
.accessibilityElement(children: .combine)
.accessibilityAddTraits(.isButton)

You combine the title and subTitle texts into a single label and ensure the user
knows this is a button.

Build and run on your device again. You can navigate the three buttons much faster
now, and it’s crystal clear that they’re buttons.

Next, activate Flight Status.

Flight Status: A Tweak for All Users
This view has a list of arrivals and departures, and a tiny bit of strangeness, not really
jargon.

To start, tap a flight to listen to VoiceOver.

SwiftUI by Tutorials Chapter 12: Accessibility

 412

VoiceOver reads out all three lines at once, and it doesn’t read out the icons. Great!
Just two small issues: It reads out the relative time interval as something like “open
bracket, 3 hours ago, right paren”, and also reads out the “middle dot” punctuation
between the airport and the gate number.

Fix both issues in FlightStatusBoard/FlightRow

In the VStack, change the first HStack to remove the parentheses:

HStack {
 Text(flight.flightStatus)
 Text(flight.localTime, formatter: timeFormatter)
 // Text("(") +
 Text(flight.localTime, formatter: relativeTimeFormatter)
 //+ Text(")")
}.foregroundColor(flight.statusColor)

Note: I moved the + after relativeTimeFormatter) to the next line.

Fix the second issue in the last HStack: Replace the middle dot with a hyphen:

Text("-")

A hyphen is more commonly used than middle-dot, so VoiceOver doesn’t read it out.
It just treats it like a comma.

One more issue: There’s a tab bar at the bottom. If you didn’t know about it and just
kept swiping right, VoiceOver wouldn’t read it until you’d gone through every item in
the list!

You might think sort priority will help you here, but there’s nowhere to attach it.

About all you can do is provide a hint on the Hide Past Toggle in
FlightStatusBoard, in navigationBarItems, down at the bottom of body:

//Toggle(...)
.accessibilityHint("Use the tab bar to list only arrivals or
departures.")

Build and run again and check how this sounds now. Much cleaner!

SwiftUI by Tutorials Chapter 12: Accessibility

 413

FlightDetails: Animations
MountainAirport is the sample app for the drawing and animation chapters so, of
course, it has more animations than the airplane moving across the welcome view.
Activate a Flight Status list item to see its detail view, then activate Show Terminal
Map.

Terminal map animation

When you create this animation in “Animations”, consider checking the environment
value accessibilityReduceMotion. If the user’s device has this setting, your app
should replace the map animation with a drawing and stop the airplane icons from
swinging around.

Now, return to the welcome view: Activate the Back button or do a Z gesture with
two fingers.

SwiftUI by Tutorials Chapter 12: Accessibility

 414

FlightSearch: View Transitions
There’s no accessibility setting to stop an app’s animations, but users can control
view transitions.

To see the view transitions in MountainAirport, go to Settings ▸ Accessibility ▸
Motion on your device and check that Prefer Cross-Fade Transitions is off.

Prefer cross-fade transitions is off.

SwiftUI by Tutorials Chapter 12: Accessibility

 415

Build and run on your device, then activate the Search Flights button. Select the
Departures filter, then navigate down the list to a canceled flight and activate it.

Flight Details of canceled flight

This view has several view transitions, starting with the detail view itself, which is a
modal view.

Activate each button to see its transition:

• Rebook Flight displays an alert.

• Check In for Flight displays a small action sheet.

• On-Time History displays a popover.

Close the On-Time History popover with a two-finger Z gesture, then Close the
detail view.

SwiftUI by Tutorials Chapter 12: Accessibility

 416

Now, open Settings ▸ Accessibility ▸ Motion and turn on Reduce Motion and
Prefer Cross-Fade Transitions:

Prefer cross-fade transitions is on.

Return to MountainAirport. Select the canceled flight again and activate each
button in turn.

The FlightSearchDetails modal sheet and On-Time History popover now cross-
fade instead of sliding up. So you don’t have to do anything special to your app, as
long as you use standard SwiftUI elements.

The Rebook Flight alert and Check in for Flight action sheet transitions don’t
change, but hopefully don’t disturb much, as they’re much smaller views.

SwiftUI by Tutorials Chapter 12: Accessibility

 417

Making Buttons Larger
There’s one last issue with this view: The buttons are too small.

Here are two options:

• Increase each button’s frame height: In SearchFlights/FlightSearchDetails,
modify each button with .frame(height: 44.0).

• Rewrite each button so its label is a trailing closure, then add padding to the Text
view.

Also, it’s not obvious they’re buttons, but that’s an easy one. Just open Settings ▸
Accessibility ▸ Display & Text Size and turn on Button Shapes. Then return to
MountainAirport and reopen the flight details view.

Button Shapes in action

SwiftUI by Tutorials Chapter 12: Accessibility

 418

This setting re-creates the outline around tappable elements from earlier iOS
versions, before label-only buttons became the default. Although against this
background, the outline is barely visible, at least the outlines push the buttons
further apart.

That’s enough fixing. Now for the final test.

Truly Testing Your App’s Accessibility
Once again, return to the welcome view of MountainAirport.

To truly test whether a VoiceOver user can use your app, turn on the screen curtain:
Triple-tap with three fingers.

Note: If you have the zoom accessibility feature enabled, you’ll need to
quadruple-tap with three fingers.

This turns off the display while keeping the screen contents active. VoiceOver users
can use this for privacy.

Now, navigate to the Flight Status list, turn on Hide Past, list only departures, then
find the next (not canceled) departure that’s more than one hour away.

Note: Sometimes swipe-right/left doesn’t work. Swipe up with two fingers to
get VoiceOver to read continuously from the top.

Did you succeed? Good for you!

Lastly, Triple-tap with three fingers to show the display, then triple-click the side
button to turn off VoiceOver.

Congratulations, you’re well on your way to becoming an accessibility ninja!

SwiftUI by Tutorials Chapter 12: Accessibility

 419

Key Points
• Use VoiceOver on a device to hear how your app really sounds.

• Accessibility is built into SwiftUI. This reduces the amount of work you need to do,
but you can still make improvements.

• Use semantic font sizes to support Dynamic Type. Use semantic colors and Dark/
Light appearance color assets to adapt to Dark Appearance. Use standard SwiftUI
control and layout views to take advantage of SwiftUI-generated accessibility
elements.

• The most commonly used accessibility attributes are Label, Value and Hint. Use
Hidden to hide UI elements from VoiceOver. Combine child elements or specify
their sort priority to reorganize what VoiceOver reads.

• Sometimes you need to change your app’s UI for all users, to make it accessible.

• Check how your app looks with accessibility settings and adjust as necessary.

• Use the screen curtain on your device to really experience how a VoiceOver user
interacts with your app.

Where to Go From Here?
There are lots of resources to help you make your apps accessible. Here are just a
few:

• Apple HIG for accessibility (https://apple.co/34ZS76a)

• WWDC 2022 Accessibility sessions (https://apple.co/3AHdRDd)

• WWDC 2021 Accessibility sessions (https://apple.co/3kK6zY6)

• WWDC 2020 Accessibility sessions (https://apple.co/3rQNQMa)

• WWDC 2019 Accessibility sessions (https://apple.co/2KFu5Xe)

• iOS Accessibility in SwiftUI Tutorials: This three-part tutorial includes
accessibility inspector, color contrast ratio, headings for faster navigation and
AVSpeechSynthesizer. Part 1 (https://bit.ly/418z3xH). [This is the Kodeco link.]

SwiftUI by Tutorials Chapter 12: Accessibility

 420

Section IV: Navigation & Data
Display

Move through your app screens with SwiftUI and discover how to display data in
them.

 421

13Chapter 13: Navigation

By Bill Morefield

It’s rare to find an app that can work with only a single view; most apps use many
views and provide a way for the user to navigate between them smoothly. The
navigation you design has to balance many needs:

• You need to display data logically to the user.

• You need to provide a consistent way to move between views.

• You need to make it easy for the user to figure out how to perform a particular
task.

SwiftUI provides a unified interface to manage navigation while also displaying data.
SwiftUI 4.0 introduced significant changes to navigation for SwiftUI apps. In this
chapter, you’ll explore building a navigation structure for an app using these new
views.

 422

Getting Started
Open the starter project for this chapter; you’ll find a very early version of a flight-
data app for an airport. You’ll build out the navigation for this app. You would likely
get the flight information from an external API in a real-world app. For this app,
you’ll be using mock data.

To start, expand the Models folder in the app. Open FlightData.swift, and you’ll
find the implementation of the mock data for this app. The FlightData class
generates a schedule for fifteen days of flights with thirty flights per day starting
with today’s date using the generateSchedule() method. The class uses a seeded
random number generator to produce consistent flight data every time, with only the
start date changing.

Now, open and examine FlightInformation.swift, which encapsulates information
about flights. You’ll use this mock data throughout the following chapters.

Open WelcomeView.swift. The view includes a @StateObject named flightInfo
that holds this mock data for the app.

SwiftUI by Tutorials Chapter 13: Navigation

 423

Creating Navigation Views
Build and run the starter app. There’s a bare-bones implementation with a graphic
and a single option to view the day’s flight status board.

Initial app

SwiftUI by Tutorials Chapter 13: Navigation

 424

Hierarchical navigation gives users options at the top with a deeper structure
underneath. Before SwiftUI 4.0, you would use a NavigationView to build
hierarchical navigation. The new types use a NavigationStack to produce single-
column navigation and NavigationSplitView to produce multiple-column
navigation. In this chapter, you’ll create this view to use hierarchical navigation
compatible with multiple platforms.

The NavigationSplitView supports a split-view interface on larger devices,
separating the app’s views into separate panes. One view generally remains static,
while the second changes as the user navigates through the view stack. On smaller
screens, like the iPhone, it falls back and works in a single column as a
NavigationStack. Using a NavigationSplitView in a cross-platform app will make
it easier for you to adapt to both small and large screens.

Open WelcomeView.swift and replace the view body with the following:

NavigationSplitView {
 Text("Sidebar")
} detail: {
 Text("Detail")
}

SwiftUI by Tutorials Chapter 13: Navigation

 425

You use the init(sidebar:detail:) initializer of NavigationSplitView to create
a view with two columns. You could create a third column using the
init(sidebar:content:detail:) initializer, but two columns work better for this
app. The view inside the view closure fills the entire screen for an iPhone.

Split Navigation on an iPhone

SwiftUI by Tutorials Chapter 13: Navigation

 426

You’ll see both columns on a larger device like an iPad. The sidebar will be initially
hidden and can be shown by tapping the Show Sidebar button or making a sliding
gesture from the left side of the screen.

Split Navigation on an iPad

With this structure in place, you can fill in the two columns. First, create the sidebar
view to drive the navigation. Above the WelcomeView implementation, add the
following code:

enum FlightViewId: CaseIterable {
 case showFlightStatus
}

struct ViewButton: Identifiable {
 var id: FlightViewId
 var title: String
 var subtitle: String
}

This code defines a new FlightViewId enumerable, which implements the
CaseIterable protocol. Initially, it will have only a single case, showFlightStatus.
You then define the ViewButton struct. This struct contains three properties: an id,
title and subtitle. You’ll use these properties to define the buttons in the sidebar.
The struct also implements the Identifiable protocol, which you learn more about
in Chapter 14: “Lists”. For now, know that the id property fulfills the protocol.

Now, add the following code before the body of the view:

var sidebarButtons: [ViewButton] {

SwiftUI by Tutorials Chapter 13: Navigation

 427

 var buttons: [ViewButton] = []

 buttons.append(
 ViewButton(
 id: .showFlightStatus,
 title: "Flight Status",
 subtitle: "Departure and arrival information"
)
)

 return buttons
}

This computed property will provide an array of ViewButton structs that define the
options for the sidebar. You’ll add more buttons in this and the following chapters as
you expand the Mountain Airport app.

There’s one more step before you build the sidebar. Add the following property after
flightInfo:

@State private var selectedView: FlightViewId?

This property will store the FlightViewId when the user taps an item in the List.
You use a nullable type to handle the case before the user taps a button.

Now you can create the list for the sidebar. Replace the Text("Sidebar") view with:

// 1
List(sidebarButtons, selection: $selectedView) { button in
 // 2
 VStack {
 Text(button.title)
 Text(button.subtitle)
 }
}
// 3
.listStyle(.plain)
.navigationTitle("Mountain Airport")

Here’s how this sets up the sidebar:

1. You’ll find SwiftUI expects the sidebar to provide a list. You use the selection
parameter to pass in the selectedView property. When the user taps a button
from the list, SwiftUI will store the id property of the current ViewButton objects
into the selectedView property. SwiftUI knows a change to the property passed
to the selection parameter should cause state changes. If you change the
property elsewhere, it’ll still trigger navigation.

SwiftUI by Tutorials Chapter 13: Navigation

 428

2. You display the button’s title and subtitle in a VStack.

3. First, you specify the plain list style since you’ll add some polish to it in a
moment. You then use the navigationTitle(_:) modifier to provide a title for
the NavigationSplitView. It might seem odd to call navigationTitle(_:) on
the List and not the NavigationSplitView. But remember, you’re defining a
hierarchy of views. A view’s title typically changes when migrating through the
view stack. The navigationTitle(_:) modifier locates the navigation view for
the attached control and adjusts the title accordingly.

Build and run the app. On a small screen, the title appears above the list, while the
list shows your single navigation item.

Sidebar with First Navigation Link

On a larger screen, you’ll see that the sidebar matches the small screen display while
the details show the static Text view. In the next section, you’ll apply some styling
to the list.

SwiftUI by Tutorials Chapter 13: Navigation

 429

Polishing the Links
Before moving to the details view, you’ll improve the button’s appearance from the
current plain text. Create a new SwiftUI View named WelcomeButtonView.swift.
Replace the default view with the following:

struct WelcomeButtonView: View {
 var title: String
 var subTitle: String

 var body: some View {
 VStack(alignment: .leading) {
 Text(title)
 .font(.title)
 .foregroundColor(.white)
 Text(subTitle)
 .font(.subheadline)
 .foregroundColor(.white)
 }.padding()
 // 1
 .frame(maxWidth: .infinity, alignment: .leading)
 // 2
 .background(
 Image("link-pattern")
 .resizable()
 .clipped()
)
 }
}

Here are a couple of things to note:

1. Using maxWidth: .infinity sets the view to fill the available horizontal space.

2. You also use the background(_:) modifier to provide an image background.
You’ll learn more about this in Chapter 18: “Drawing & Custom Graphics”.

This change provides a more visually appealing view to replace the simple text link.
It also provides a short description to accompany each menu option.

Change the contents of the preview to provide default data:

WelcomeButtonView(
 title: "Flight Status",
 subTitle: "Departure and Arrival Information"
)

SwiftUI by Tutorials Chapter 13: Navigation

 430

Go back to WelcomeView.swift. Replace the current VStack view under // 2 with:

WelcomeButtonView(
 title: button.title,
 subTitle: button.subtitle
)

Run the app to see your new sidebar link.

Styled Sidebar Links

Having improved the look of your sidebar, you’ll now put this list to work and
implement the child view.

SwiftUI by Tutorials Chapter 13: Navigation

 431

Building the Details View
Your details view will show the user a list of today’s flights. Open
FlightStatusBoard.swift. At the top of the FlightStatusBoard struct, add a
variable that you’ll use to pass in the list of flights for the day:

var flights: [FlightInformation]

Change the view body to:

List(flights, id: \.id) { flight in
 Text(flight.statusBoardName)
}
.navigationTitle("Today's Flight Status")

This code will loop through the array of flights showing a row for each. You’ve also
set the title for the navigation view to reflect the view’s purpose.

You’ll learn more about lists in Chapter 14: “Lists”.

You also need to provide sample data for the preview. The mock data class provides a
method .generateTestFlights(_) for this purpose. Change the preview to provide
this sample data:

FlightStatusBoard(
 flights: FlightData.generateTestFlights(date: Date())
)

Now you’ll implement the details view for your NavigationSplitView. Go to
WelcomeView.swift and replace the Text("Details") in the details closure with:

// 1
if let view = selectedView {
 // 2
 switch view {
 case .showFlightStatus:
 // 3
 FlightStatusBoard(flights:
flightInfo.getDaysFlights(Date()))
 }
} else {
 // 4
 Text("Select an option in the sidebar.")
}

SwiftUI by Tutorials Chapter 13: Navigation

 432

Here’s how this handles the implementation view:

1. You attempt to unwrap selectedView into view. Once the user chooses an item
from the List, view now contains the id for the selected item. Until then, the
unwrap fails, and you’ll show the view under comment four.

2. As view contains the FlightViewId for the selected item in the sidebar, you
create a switch statement to handle this and future options.

3. For the showFlightStatus case, you display the FlightStatusBoard view and
pass in the flights for today.

4. If the unwrap attempt in step one failed, you display a Text view asking the user
to select an option.

Run the app. On the Welcome view, tap the Flight Status button. You’ll see your new
view listing the day’s flights:

Flight list

SwiftUI by Tutorials Chapter 13: Navigation

 433

Next, you’ll extend the FlightStatusBoard view to support its own navigation
structure.

Building a NavigationStack
With the two-column navigation you’ve created, you can implement the details
views separately from the initial view. Your Flight Status option displays a list of
today’s flights. Next, you’ll show information on a flight when the user taps it on the
list. To do so, you’ll wrap this list inside a new NavigationStack implemented
inside the overall NavigationSplitView details view.

The project already includes a file in the FlightDetails group named
FlightDetails.swift that will show the details for a flight. To allow the user to see
this view when tapping on a flight on the status board, go to
FlightStatusBoard.swift and change the view to the following:

// 1
NavigationStack {
 List(flights, id: \.id) { flight in
 // 2
 NavigationLink(flight.statusBoardName, value: flight)
 }
 // 3
 .navigationDestination(
 // 4
 for: FlightInformation.self,
 // 5
 destination: { flight in
 FlightDetails(flight: flight)
 }
)
 .navigationTitle("Today's Flight Status")
}

SwiftUI by Tutorials Chapter 13: Navigation

 434

There’s a lot here, and if you’re familiar with the earlier navigation types in SwiftUI,
it’ll look odd. Here’s how this implements the navigation to the flight details.

1. First, you create a new NavigationStack. This shows a root view and presents
subsequent views over the current view.

2. Before SwiftUI 4.0, the NavigationLink expected a view to display to the user
and a destination to present when the user tapped the displayed view. Now,
instead of a view to show, you provide a value to the NavigationLink view. This
line passes the FlightInformation object for this row of the List. You use a
convenience initializer that takes a string and produces a Text view showing that
string.

3. You still need to let SwiftUI know to display a view. You use the
navigationDestination(for:destination:) modifier to tell SwiftUI how to
handle a value of a given type. Notice that you apply it to the List inside the
NavigationStack. You should also not place it inside a looping container such as
List, ScrollView, etc.

4. The for parameter specifies the type of value this modifier will handle. In step
two, you pass an instance of FlightInformation as the value property. Passing
FlightInformation.self to for tells SwiftUI to use this method for values of
the FlightInformation type.

5. The destination parameter tells SwiftUI what to do when it’s passed the
matching type. The closure receives a FlightInformation instance called
flight, which is then used to initialize FlightDetails.

SwiftUI by Tutorials Chapter 13: Navigation

 435

The preview will show you the new list. On iOS, you’ll get the small right-pointing
disclosure arrow at the end of each row. This visual indicator shows the user that
tapping the row will lead to more information and comes automatically when
combining a List and NavigationStack:

Flight list with arrow

SwiftUI by Tutorials Chapter 13: Navigation

 436

Run the app and tap on Flight Status. Now tap on any flight, and you’ll see the
details for that flight.

Flight details view

Now that you’ve implemented a stacked hierarchy, you’ll see how to customize the
navigation bar in the next section.

SwiftUI by Tutorials Chapter 13: Navigation

 437

Adding Items to the Navigation Bar
Creating a navigation view stack adds a navigation bar to each view. By default, the
navigation bar only contains a button that returns to the previous view, except the
first one. Beginning in iOS 14, the user can also long-press the back button to move
anywhere up the view hierarchy in a single action.

Navigation Stack

Note: If you do not provide the title for a view, it’ll show as blank in the
displayed list.

SwiftUI by Tutorials Chapter 13: Navigation

 438

You can add additional items to the navigation bar, but you want to avoid
overcrowding it with too many controls. Now, you’ll add a toggle to this app to hide
flights that have landed or departed.

Still in FlightStatusBoard.swift, add the following code after the declaration of
flights:

@State private var hidePast = false

You’ll set this state variable to hide past flights. Now, add a computed property after
the new state variable to filter flights based on this variable:

var shownFlights: [FlightInformation] {
 hidePast ?
 flights.filter { $0.localTime >= Date() } :
 flights
}

Change the variable passed to List to use the computed property instead of
flights:

List(shownFlights, id: \.id) { flight in

With those changes, you can filter the list of flights by changing the hidePast state
variable using a toggle on the navigation bar. Add the following code after the
navigationTitle(_:) modifier to add such a toggle:

.navigationBarItems(
 trailing: Toggle("Hide Past", isOn: $hidePast)
)

The navigationBarItems(trailing:) modifier adds views to the trailing edge of
the navigation bar. You’ll find a corresponding modifier,
navigationBarItems(leading:), to add views to the leading edge, should you ever
need that.

You provide the views inside the closure. Here you add a toggle that’ll change the
hidePast property. As hidePast is a state variable, SwiftUI will refresh and update
the list when the value changes. Also, you use the Button style toggle to conserve
space.

SwiftUI by Tutorials Chapter 13: Navigation

 439

Looking at the live preview will not show the new toggle because the preview has no
idea the view will be inside a NavigationStack derived from another view. To see
the live preview as it should appear, change the body of the preview to:

NavigationStack {
 FlightStatusBoard(
 flights: FlightData.generateTestFlights(date: Date())
)
}

Since you wrapped the preview inside a NavigationStack, you’ll see the toggle
appear in the preview. Run the app, navigate to one of the flight boards, and try the
toggle to see it in action.

Toggle

Great job!

SwiftUI by Tutorials Chapter 13: Navigation

 440

Navigating With Code
As you saw earlier, passing data down the navigation stack is simple. You can send
the data as a read-only variable or pass a binding to allow the child view to make
changes that are reflected in the parent view. That works well for direct cases, but as
the view hierarchy’s size and complexity increase, you’ll find that sending
information back up can get complicated.

The navigation hierarchy also supports multiple paths to the same view. In these
cases, you could end up having to pass parameters solely to pass data between other
views:

Navigation diagram

Fortunately, there’s a better way. A SwiftUI view automatically shares its
environment with any view below it in the view hierarchy. This feature allows you to
put anything into the environment, then view or modify it within any other view in
the hierarchy. You’ll now update the app to use this ability to save the most recent
flight a user viewed and show that in place of the first flight from the previous
section.

First, you’ll create a class to add to the environment. Under the Models group, create
a new file named FlightNavigationInfo.swift. Change the file to read:

import SwiftUI

class FlightNavigationInfo: ObservableObject {
 @Published var lastFlightId: Int?
}

SwiftUI by Tutorials Chapter 13: Navigation

 441

The single property will store the id of the last flight the user views. Now, you’ll add
this to the parent navigation view. Open WelcomeView.swift and, at the end of the
variables at the top of the struct, add the following code:

@StateObject var lastFlightInfo = FlightNavigationInfo()

This line creates a StateObject you can now attach to the environment for the
NavigationView. At the closing brace of the details closure, add the following code:

.environmentObject(lastFlightInfo)

This modifier adds the FlightNavigationInfo object to the environment for your
navigation. You must add it to the NavigationSplitView and not to a view within it
for the environment to flow through your view hierarchy.

Next, add a new case for the FlightViewId enum by adding the following to the end
of it:

case showLastFlight

Now, add the following code to the sidebarButtons computed property just before
the return statement:

if
 let flightId = lastFlightInfo.lastFlightId,
 let flight = flightInfo.getFlightById(flightId) {
 buttons.append(
 ViewButton(
 id: .showLastFlight,
 title: "\(flight.flightName)",
 subtitle: "The Last Flight You Viewed"
)
)
}

This code attempts to unwrap lastFlightInfo.lastFlightId. If successful, it then
uses the getFlightById(_:) method to get the flight for the flight id and attempts
to unwrap that. If both succeed, you have the last flight the user viewed in the
flight variable. You then add a button to the sidebar navigation using the new
showLastFlight type and with the name of the flight as the title.

You now need to implement the details for this new navigation option. Inside the
details closure, find the switch view statement and add the following as the last
case:

case .showLastFlight:

SwiftUI by Tutorials Chapter 13: Navigation

 442

 if
 let flightId = lastFlightInfo.lastFlightId,
 let flight = flightInfo.getFlightById(flightId) {
 FlightDetails(flight: flight)
 }

Much as you did inside the sidebarButtons computed property, you attempt to
unwrap the lastFlightInfo.lastFlightId property and use it to get the last flight
corresponding to that id. If those succeed, you show the FlightDetails view
showing that flight.

The last step is to set the value through the environment when the user views a
flight’s details. Open FlightDetails.swift and add a reference to the environment
object to the view after the flight property:

@EnvironmentObject var lastFlightInfo: FlightNavigationInfo

With this reference to the view’s environment, add the following code after the
closing brace for the ZStack:

.onAppear {
 lastFlightInfo.lastFlightId = flight.id
}

Any code in the onAppear(_) closure runs when the view appears. In this case, when
SwiftUI renders the ZStack, it’ll execute the code and store the id for this flight in
the environment. When the user returns to the root welcome view, that view will
read the value and show the button.

This also causes the live view to crash because it doesn’t know about the new
environment object. To fix this, you must provide an environment object for the
preview. Adding the following modifier after preview’s NavigationStack:

.environmentObject(FlightNavigationInfo())

You also need to make the same change to FlightStatusBoard. Open
FlightStatusBoard.swift and add the following modifier to the preview’s
FlightStatusBoard:

.environmentObject(FlightNavigationInfo())

SwiftUI by Tutorials Chapter 13: Navigation

 443

Run the app. The second button does not show since the identifier is initially nil.
Tap Flight Status and then tap any flight. Return to the Welcome view, where the
new button appears and shows the flight you selected. Tapping it takes you to the
flight’s details.

Selected flight in Welcome view

In the next section, you’ll learn about programmatic navigation and the
NavigationPath.

SwiftUI by Tutorials Chapter 13: Navigation

 444

Navigating Using Code
The last flight option you added to the sidebar in the previous section brings up the
details for the flight. While it works, it’s a good idea to let the user go back from
these details to the same list of flights like when they select the Flight Status
option. Until now, your navigation changes have come from user interaction. You’ll
find times like this when you want to trigger navigation through your code. In this
section, you’ll see how to interact with the navigation stack through code and use
this to make this change.

First, you’ll need a way to provide a flight to the FlightStatusBoard view. Open
FlightStatusBoard.swift and add the following property after flights.

var flightToShow: FlightInformation?

This code creates an optional property. You’ll change this view so if set; it will
automatically navigate to the detail for that flight. If nil, then the view acts as it
currently does.

Next, add the following state property after hidePast:

@State private var path: [FlightInformation] = []

This property contains an array of FlightInformation objects that you initialize to
an empty array. Now update the declaration of the NavigationStack to:

NavigationStack(path: $path) {

By default, a NavigationStack manages the state of the navigation stack itself. You
can pass an object through the path parameter to NavigationStack, and SwiftUI
will share control of the stack through this object. In this case, you know all the
values will be FlightInformation objects, so use an array of that type for the
navigation path. Initializing it to an empty array starts as a stack with no views. In
more complex cases where you can have multiple object types, you use a
NavigationPath to store any value conforming to the Hashable protocol.

SwiftUI by Tutorials Chapter 13: Navigation

 445

You can use the path property to modify the navigation stack programmatically. Add
the following code after the closing brace of the NavigationStack:

.onAppear {
 if let flight = flightToShow {
 path.append(flight)
 }
}

The onAppear(perform:) modifier executes its closure before the attached view
appears. In this case, the code block will run before the NavigationStack appears to
the user. If you successfully unwrap the flightToShow property, you append the
unwrapped object to the path property. Doing so has the same result as if the user
tapped an item in the list for the flight and navigates to the details for this flight.

This action also shows the power of the new separation between navigation actions
(through NavigationLink) and results (through
navigationDestination(for:destination:)). You don’t need to add code telling
SwiftUI how to handle appending a FlightInformation object since it already
knows how to do so through your navigationDestination(for:destination:) for
FlightInformation.self.

To finish the change, open WelcomeView.swift and find the code for
the .showLastFlight: case of the switch statement. Replace the call to
FlightDetails(flight: flight) with:

FlightStatusBoard(
 flights: flightInfo.getDaysFlights(Date()),
 flightToShow: flight
)

You now show the FlightStatusBoard and pass the flight in through the
flightToShow parameter instead of showing the flight details directly.

SwiftUI by Tutorials Chapter 13: Navigation

 446

Run the app. Tap Flight Status and then tap a flight. Return to the Welcome view,
where the new button appears and shows the flight you selected. Tapping it
navigates to the status board. After a brief pause, you’ll see the details for the flight
appear. Tap and hold the Back button to confirm that the status board appears in the
navigation.

Flight Details Showing Program Controlled Navigation

Now that you’ve explored the navigation view, you’ll explore tabbed navigation and
see how to integrate the two within the same app.

SwiftUI by Tutorials Chapter 13: Navigation

 447

Using Tabbed Navigation
You’ve been using and building a hierarchical view stack with NavigationView up to
this point in the app. Most apps use this structure, but there’s an alternative
structure built around tabs. Tabs work well for content where the user wants to flip
between options. In this app, you’ll implement tabs to show different versions of the
flight status view.

Open FlightStatusBoard.swift. First, you’ll extract the portion of the view that
creates the list into a separate view. This change will make it easier to use across the
tabs. Add the following new view above the FlightStatusBoard struct:

struct FlightList: View {
 var flights: [FlightInformation]
 var flightToShow: FlightInformation?
 @State private var path: [FlightInformation] = []

 var body: some View {
 NavigationStack(path: $path) {
 List(flights, id: \.id) { flight in
 NavigationLink(flight.statusBoardName, value: flight)
 }
 .navigationDestination(
 for: FlightInformation.self,
 destination: { flight in
 FlightDetails(flight: flight)
 }
)
 }
 .onAppear {
 if let flight = flightToShow {
 path.append(flight)
 }
 }
 }
}

Next, delete the path property from the FlightStatusBoard view since you’ve
moved the NavigationStack to the extracted view. Change the body of
FlightStatusBoard to:

// 1
TabView {
 // 2
 FlightList(
 flights: shownFlights.filter { $0.direction == .arrival }
)
 // 3

SwiftUI by Tutorials Chapter 13: Navigation

 448

 .tabItem {
 // 4
 Image("descending-airplane")
 .resizable()
 Text("Arrivals")
 }
 // 5
 FlightList(
 flights: shownFlights,
 flightToShow: flightToShow
)
 .tabItem {
 Image(systemName: "airplane")
 .resizable()
 Text("All")
 }
 FlightList(
 flights: shownFlights.filter { $0.direction == .departure }
)
 .tabItem {
 Image("ascending-airplane")
 Text("Departures")
 }
}
.navigationTitle("Today's Flight Status")
.navigationBarItems(
 trailing: Toggle("Hide Past", isOn: $hidePast)
)

Here’s how the tab view code works:

1. You declare that you’re creating a tab view with the TabView control. The first tab
will show arriving flights, the second all flights and the third departing flights.

2. You provide a view for each tab to the enclosure of TabView showing the
extracted FlightList view. Note that you do not pass the flightToShow to the
view since the flight may not appear in the departure or arriving lists.

3. You apply the tabItem(_:) modifier to the tab to set an image, text, or
combination of the two.

4. Each tab displays an image and a text label. You can only use Text, Image, or an
Image followed by Text as the tab label. If you use anything else, the tab will
appear visible but empty. You don’t need to create a VStack even when using
multiple items.

5. You pass the flightToShow property only to the complete list of flights since
there’s no guarantee it will appear in the other tabs. You’ll ensure this tab shows
when the view needs to navigate to the chosen flight in a moment.

SwiftUI by Tutorials Chapter 13: Navigation

 449

Note: You may wonder why the view uses a custom image for the descending
and ascending aircraft instead of modifying the SF Symbol font used for the
central tab. Most modifiers to Image within the tab toolbar won’t process,
including a rotation.

Run the app. Tap on the Flight Status option, and you’ll see that your view now has
three tabs allowing you to view all flights or only flights departing or arriving at the
airport. Note that the toggle in the navigation still works. Also, the two navigation
structures don’t conflict. You can select any flight as before and see more details
about it.

Flight status with tabs

SwiftUI by Tutorials Chapter 13: Navigation

 450

Setting Tabs
Remembering the last tab selected when the user returns to the view would be a nice
addition. To do that, in FlightStatusBoard.swift, below the hidePast state variable,
add the following line:

@AppStorage("FlightStatusCurrentTab") var selectedTab = 1

You use the new @AppStorage feature to persist an integer to UserDefaults. You also
specify a default to use the first time the view displays on a device. You now need to
add a unique identifier to each tab. First, change the definition of the TabView to:

TabView(selection: $selectedTab) {

You now pass a binding to the selectedTab to the selection parameter of TabView.
Using AppStorage persists the value to UserDefaults so that the app will remember
the change for future access. You now need to attach an identifier to each tab. After
the tabItem closure for the Arrivals tab, add the following modifier:

.tag(0)

You use the tag(_:) modifier to give each tab a unique identifier, in this case, an
integer. You often use an enumerable here, but that complicates storing the value in
this example. For the tab showing all flights, add the following code after the
tabItem closure:

.tag(1)

Finally, after the tabItem closure for the Departures tab, add the following code:

.tag(2)

Both of these add identifiers to the remaining tabs; the binding works both ways. If
you set selectedTab to a value, SwiftUI will activate the tab with the corresponding
identifier. If the user changes the active tab, then selectedTab will receive the
identifier of the chosen tab.

To ensure when you pass a value in the flightToShow property, the user sees the tab
with all flights, add the following modifier at the end of the TabView closure before
the navigationTitle(_:) modifier:

.onAppear {
 if flightToShow != nil {

SwiftUI by Tutorials Chapter 13: Navigation

 451

 selectedTab = 1
 }
}

This code sets the selectedTab to one when you pass a value through the
flightToShow property to ensure that the complete list of flights shows in the view
since hidePast defaults to false. This way, the user will always see the flight in the
list when they return from the details page.

Run the app. and then tap Flight Status. You’ll see the view defaults to the All tab
since the tag for it matches the default value you provided of 1. Select another tab
and then tap the Back button to return to the Welcome View. Now tap Flight Status
again, and confirm that that view starts with the tab you selected in the previous
step.

Note: If your app design works better with pages, you can change the tabs into
pages with the tabViewStyle(_:) modifier on the TabView.

Setting Tab Badges
SwiftUI 3.0 introduced controls that let you set a badge for each tab. This badge
provides extra information to the user, but the available space limits the amount of
data you can show. You’ll add a badge item to indicate the number of incoming and
outgoing flights to the Flight Status and a short text badge showing the date.

First, open FlightStatusBoard.swift and add the following code to the first tabItem
just before the .tag(0) line:

.badge(shownFlights.filter { $0.direction == .arrival }.count)

The simplest badge displays a number on the tab icon. Here, you use the same filter
to limit the FlightList view and the count property to get the number of flights.
Add a similar line to the last tabItem before the .tag(2) line:

.badge(shownFlights.filter { $0.direction == .departure }.count)

Again, you use the same filter and get a count with the count property of the
collection. In most cases, you’ll add a number indicator to a tab, but you can also add
a short text filter.

SwiftUI by Tutorials Chapter 13: Navigation

 452

Add the following code to the top of the body after the shownFlights property:

var shortDateString: String {
 let dateF = DateFormatter()
 dateF.timeStyle = .none
 dateF.dateFormat = "MMM d"
 return dateF.string(from: Date())
}

This property returns a string with the month and date. You can then use this
property as a badge. Add the following line after the second tabItem before
the .tag(1) modifier:

.badge(shortDateString)

Now run the app, and tap on the Flight Status option. You’ll see the new badges on
each tab at the bottom of the view:

Badges

Well done! You’ve now built a navigation structure for the app. In the next chapter,
you’ll learn more about showing data in a view, including the List you used in this
chapter.

SwiftUI by Tutorials Chapter 13: Navigation

 453

Key Points
• Starting in SwiftUI 4.0, navigation splits the declaration of a navigation action

from the action to perform.

• Split navigation can create a navigation structure with two or three columns. The
framework will collapse the columns on small screen devices to appear identical to
stack navigation.

• Navigation stack creates a hierarchy of views. The user can move further into the
stack and can back up from within the stack.

• A NavigationLink shows a view that provides a value associated with the view.
The navigationDestination modifier informs SwiftUI how to act when provided
a value of a given type.

• You apply changes to navigation views to controls in the stack and not to the
navigation type itself.

• You can access the view stack in your code by passing a binding to a mutable
collection through the path parameter. In simple cases, this can be a collection of
the type being used for navigation. If you need multiple types, you can use a
NavigationPath.

• Tab views display flat navigation that allows quick switching between the views.

SwiftUI by Tutorials Chapter 13: Navigation

 454

Where to Go From Here?
To learn about migrating the older navigation types to the new ones introduced with
SwiftUI 4.0, see Migrating to new navigation types at https://
developer.apple.com/documentation/swiftui/migrating-to-new-navigation-types.

The first stop when looking for information on user interfaces on Apple platforms
should be the Human Interface Guidelines on Navigation for iOS, watchOS and tvOS:

• iOS: https://developer.apple.com/design/human-interface-guidelines/ios/app-
architecture/navigation/

• watchOS: https://developer.apple.com/design/human-interface-guidelines/
watchos/app-architecture/navigation/

• tvOS: https://developer.apple.com/design/human-interface-guidelines/tvos/app-
architecture/navigation/

Navigation in macOS provides more options and creates a more complex topic.
SwiftUI imposes some limitations that make it more like iOS development, and the
above link provides a good starting point.

SwiftUI by Tutorials Chapter 13: Navigation

 455

14Chapter 14: Lists

By Bill Morefield

Most apps focus on displaying some type of data to the user. Whether upcoming
appointments, past orders or new products, you must clearly show the user the
information they come to your app for.

In the previous chapter, you saw a preview of iterating through data when displaying
the flights for a day and allowing the user to interact with this data. In this chapter,
you’ll dive deeper into the ways SwiftUI provides you to show a list of items to the
user of your app.

 456

Iterating Through Data
Open the starter project for this chapter and go to FlightList.swift in the
FlightStatusBoard group. You’ll see a slightly different view than the one you
created in the previous chapter. In place of List, which you’ll work with later in this
chapter, you’ll start by examining ForEach.

SwiftUI uses ForEach as a fundamental element to loop over data. When you pass it
a collection of data, it then creates multiple sub-views using a provided closure, one
for each data item. ForEach works with any type of collected data. You can think of
ForEach as the SwiftUI version of the for-in loop in traditional Swift code.

Run the app, tap Flight Status — and you’ll notice a mess.

Bad schedule

SwiftUI by Tutorials Chapter 14: Lists

 457

Remember that ForEach operates as an iterator. It doesn’t provide any structure. As
a result, you’ve created many views but not provided a layout for them. They’re all at
the top level, not contained in anything else. SwiftUI tries to fit everything together,
but the result is a mess. To fix both issues, add some structure around the loop:

ScrollView {
 VStack {
 ForEach(flights, id: \.id) { flight in
 NavigationLink(value: flight) {
 FlightRow(flight: flight)
 }
 }
 .navigationDestination(
 for: FlightInformation.self,
 destination: { flight in
 FlightDetails(flight: flight)
 }
)
 }
}

SwiftUI by Tutorials Chapter 14: Lists

 458

You wrapped the ForEach loop inside a VStack — giving you a vertical stack of rows
— and a ScrollView — that allows scrolling the rows since there’s more content
than will fit onto the view. SwiftUI picks up that you’ve wrapped a VStack and
applies vertical scrolling to match. If a line of text within the view became longer
than the view’s width, SwiftUI wouldn’t automatically add horizontal scrolling.

Scrolled list

You can override this default scrolling direction by passing in the desired scroll axes
to ScrollView. To scroll the view in both directions, you would change the call to:

ScrollView([.horizontal, .vertical]) {

ScrollView provides a useful, general way to let a user browse through data that
won’t fit onto a single screen.

SwiftUI by Tutorials Chapter 14: Lists

 459

Also note the id: parameter is passed a keypath to a property of the type in the
array. This parameter hints that SwiftUI has expectations for the data sent to an
iteration. In the next section, you’ll explore these expectations and make your data
work more smoothly with SwiftUI.

Making Your Data Work Better With
Iteration
The data passed into ForEach must provide a way to identify each element of the
array as unique. In this loop, you use the id: parameter to tell SwiftUI to use the
\.id property of FlightInformation as the unique identifier for each element in the
array.

The only requirement for the unique identifier, other than being unique, is
implementing the Hashable protocol. The native Swift String and Int types do. You
can also use the Foundation UUID and URL types if that better fits your data. Since
the .id property of FlightInformation object is an Int, it works perfectly as the
unique identifier.

If your data object implements Hashable, you can also tell SwiftUI to use the entire
object as the unique identifier. To do so, you would pass \.self to the id:
parameter. Use this technique to iterate over a set of integers or other native objects
that implement the Hashable protocol.

You can also remove the need to specify the unique identifier altogether by making
your type conform to the Identifiable protocol. This protocol, new in Swift 5.1,
provides a defined mechanism telling SwiftUI the unique identifier for a piece of
data. This protocol’s only requirement is to have an id property that conforms to the
Hashable protocol. Since FlightInformation already has such a property, you
simply have to let SwiftUI know this.

Open FlightInformation.swift in the Models group. At the end of the file, add the
following code:

extension FlightInformation: Identifiable {
}

The extension tells SwiftUI that FlightInformation implements Identifiable.
Since FlightInformation already meets the protocol requirements with an id
parameter, you don’t need to make any other changes to it.

SwiftUI by Tutorials Chapter 14: Lists

 460

Since you no longer need to specify the identifier to SwiftUI, open FlightList.swift
and change the ForEach declaration for the FlightList view to:

ForEach(flights) { flight in

Run the app, tap Flight Status and you’ll see the list works as before:

List Functions as Before with Identifiable

SwiftUI by Tutorials Chapter 14: Lists

 461

Improving Performance
When a VStack or HStack renders, SwiftUI creates all the cells at once. For a view
such as this with only thirty rows, that probably doesn’t matter. For rows with
hundreds of potential rows, that’s a waste of resources since most are not visible to
the user. Using the Lazy versions of these stacks introduced in SwiftUI 2.0 (iOS 14,
macOS 11, etc.) provides a quick performance improvement when iterating over
large data sets.

You will see moving to the Lazy stack can introduce side-effects you should know. In
the previous loop, change the VStack inside the ScrollView to LazyVStack. Run the
app and go to the Flight Status view again.

Even with this small amount of data, you might notice an improvement in the initial
rendering speed and performance when scrolling the view. Now each row renders
only when it first appears on the screen. This change mainly saves resources when
you have a lot of data, most of which the user will never see. Those unwanted flights
will never be rendered or take up resources on the device. Once created, the view
remains and SwiftUI will not remove it when it scrolls out of sight.

You will also see the view subtly changed. A VStack fills only the space needed for
the contents. A LazyVStack uses a flexible width that will take up all available space.
This change means the row in the LazyVStack will expand to take up the view’s
entire width.

SwiftUI by Tutorials Chapter 14: Lists

 462

You can see this comparing the two views before and after the change. As a VStack
the scrolling list only occupies the middle of the view, and you must be within that
area to scroll. In the LazyVStack, the row takes up the entire space of the view, and
you can scroll anywhere in it. Also, notice the different positions of the scroll bars
between the views.

Lazy vs not

Setting the Scroll Position in Code
A major weakness of the first version of SwiftUI was the lack of a way to set the
scrolling position programmatically. SwiftUI 2.0, introduced with iOS 14 and macOS
Big Sur, added ScrollViewReader that allows setting the current position from code.
You’ll use it to scroll the flight status list to the next flight automatically. Replace
the current ScrollView with the following code:

SwiftUI by Tutorials Chapter 14: Lists

 463

ScrollViewReader { scrollProxy in
 ScrollView {
 LazyVStack {
 ForEach(flights) { flight in
 NavigationLink(value: flight) {
 FlightRow(flight: flight)
 }
 }
 .navigationDestination(
 for: FlightInformation.self,
 destination: { flight in
 FlightDetails(flight: flight)
 }
)
 }
 }
 // onAppear()
}

You’ve wrapped the ScrollView inside a ScrollViewReader. You’ll use the
ScrollViewProxy passed to the closure as scrollProxy to set the position. Since
you’ve made your data conform to Identifiable, each row already has a unique
identifier you can use to identify it later. You could also use the id(_:) modifier on
NavigationLink to tag each row in the list with a unique identifier.

Now, add a property to get the id for the next flight that occurs. Add the following
code after the path state property:

var nextFlightId: Int {
 guard let flight = flights.first(
 where: {
 $0.localTime >= Date()
 }
) else {
 return flights.last?.id ?? 0
 }
 return flight.id
}

This property looks for the first flight whose local time is at or after the current time.
If one doesn’t exist, it returns the id property of the day’s last flight. If there is a
later flight, the method returns its id property.

SwiftUI by Tutorials Chapter 14: Lists

 464

Now, you can move the scroll position to the row with this id when the view appears.
You must do this inside the ScrollViewReader structure to have access to the proxy.
The ScrollView is the perfect place for this. Replace the // onAppear() comment
with the following code:

.onAppear {
 scrollProxy.scrollTo(nextFlightId)
}

The onAppear(perform:) modifier executes before the ScrollView appears. You
call scrollTo(_:) on ScrollViewProxy to scroll to the next flight’s id.

Run the app. You’ll see the view moves so the next flight shows at the bottom of the
view.

Positioning List to the Next Flight

SwiftUI by Tutorials Chapter 14: Lists

 465

You can specify the anchor parameter to change this location. In this case, it makes
sense to place the flight in the middle of the view so change the
scrollTo(_:anchor:) call to:

scrollProxy.scrollTo(nextFlightId, anchor: .center)

In cases in which there is not enough data to place the requested row at the
requested position, the view will scroll to either the first or last element as close to
the desired position as it can. Note that the scrolling works even combined with a
LazyVStack, meaning you can scroll to a view that SwiftUI hasn’t rendered yet.

Late view

ForEach provides a flexible way to iterate through data. Since iterating through data
and displaying it to the user is such a common task, all platforms have a built-in
control to accomplish it. SwiftUI allows you to use this platform-specific control
using a List.

SwiftUI by Tutorials Chapter 14: Lists

 466

Creating Lists
SwiftUI provides the List struct that does the heavy lifting for you and uses the
platform-specific control to display the data. A List is a container much like a
VStack or HStack that you can populate with static views, dynamic data or other
iterative views.

A List provides some of the features you did manually when using ForEach. Go to
FlightList.swift in the FlightStatusBoard group and remove the ScrollView and
LazyVStack. Replace the ForEach with a List. Your view should now look like:

ScrollViewReader { scrollProxy in
 List(flights) { flight in
 NavigationLink(value: flight) {
 FlightRow(flight: flight)
 }
 }
 .navigationDestination(
 for: FlightInformation.self,
 destination: { flight in
 FlightDetails(flight: flight)
 }
)
 .onAppear {
 scrollProxy.scrollTo(nextFlightId, anchor: .center)
 }
}

List iterates over the passed data as ForEach did, calling the closure for each
element and passing the current element to that closure. Inside the closure, you
define the view that will display for each row in the list.

SwiftUI by Tutorials Chapter 14: Lists

 467

In this view, you show a NavigationLink showing information about the flight,
which links to more details.

Flight list

Notice the similarity in the code with ForEach. ForEach allows you to iterate over
almost any collection of data and create a view for each element. List acts much as a
more specific case of ForEach to display rows of one-column data. Almost every
framework and platform provides a version of this control, as it’s a pretty standard
user interface element.

SwiftUI by Tutorials Chapter 14: Lists

 468

A List automatically provides a vertical stack of the rows and handles scrolling. The
ScrollViewReader works as before. On iOS related platforms, you also get the small
right-pointing disclosure arrow automatically when a row of the list contains a
NavigationLink. The row for the closure also takes up the entire width of the view.

Now that you’ve explored List and ForEach, you’ll work with them to build an
interface allowing the user to search flights.

Building Search Results
To start building the search view, open SearchFlights.swift under the
SearchFlights group. You’ll see view to allow the user to search for flights. However,
the search functionality isn’t in place yet. In this section, you’re going to fix that.

Prior to SwiftUI 3.0 you needed to manually handle search functionality. Now
SwiftUI provides a framework to help you with this common task. For now, you’ll
keep things simple and explore search in more depth in Chapter 15: Advanced
Lists. First, at the top of the body add a new @State property after the existing ones:

@State private var city = ""

This property will hold the current search term. Next go the end of the VStack and
add the following code before the .navigationTitle(_:) modifier:

.searchable(text: $city)

SwiftUI by Tutorials Chapter 14: Lists

 469

That’s it. Even though this is a simple case, that’s all you need for SwiftUI to set up a
search box. Run the app, tap Search Flights and you’ll see a new text box for search.

New Search Field

SwiftUI by Tutorials Chapter 14: Lists

 470

Now you have a place for the user to search, but nothing happens when you enter
part of a city name in the field. To add filtering to the app, you’ll need to update the
matchingFlights parameter to take into account the city property. Inside
matchingFlights add the following code just before the return statement:

if !city.isEmpty {
 matchingFlights = matchingFlights.filter {
 $0.otherAirport.lowercased().contains(city.lowercased())
 }
}

This code will check if city is anything other than an empty string. If so, then it
filters to only the flights where the name of the other airport contains the text in the
city property. You convert both to lowercase text before the comparison to match
regardless of the case of the fields. This lets phoenix match Phoenix. You use
contains so that you can match using only part of the name of the city. This lets
pho match Phoenix as the letters are contained within the city name.

Look for the // Insert Results comment and replace it with the following:

List(matchingFlights) { flight in
 SearchResultRow(flight: flight)
}

That’s all you need to display the search results. You pass the matchingFlights
parameter that filters for only the passed flights that match the search parameters.
Since you already made FlightInformation implement the Identifiable protocol,
List knows how to manage it. As for performance, SwiftUI always renders a List
lazily, requiring no special effort on your part.

SwiftUI by Tutorials Chapter 14: Lists

 471

Run the app and try a few search parameters such as part of a city name. You’ll see
the search quickly update to match your query.

Searching flights

Building a Hierarchical List
SwiftUI added support for displaying hierarchical data in version 2.0. Much as the
NavigationLink gives you a structure to organize views from general to more
specific, a hierarchical list gives you an excellent way to display data that moves
from general to more specific. In this section, you will update the search results into
a hierarchical list that displays dates and then displays the flights for that date under
it.

SwiftUI by Tutorials Chapter 14: Lists

 472

The data for a hierarchical list requires a specific format in addition to the standard
requirements. For each element in the list, you need to create an optional property
that contains a list of children in the hierarchy for the current row. Those children
must be of the same type as the current element.

Hierarchical list

First you’ll create this data structure. Open SearchFlights.swift and add the
following code to the view after the matchingFlights property:

struct HierarchicalFlightRow: Identifiable {
 var label: String
 var flight: FlightInformation?
 var children: [HierarchicalFlightRow]?

 var id = UUID()
}

This struct contains a string for a label for the top-level rows showing the date. It
also stores two optional properties: information about a flight and a list of child
rows for this row. You will set the flight at the bottom node and the children for
other rows.

SwiftUI by Tutorials Chapter 14: Lists

 473

The struct also provides the id property needed to fulfill the Identifiable
protocol’s requirements by giving each record a new UUID when created. A UUID, by
definition, will be a unique value. For this more complex structure, it’s a quick way to
avoid duplicate values that could cause rows not to appear. Now add the following
code below the new struct:

func hierarchicalFlightRowFromFlight(_ flight:
FlightInformation)
 -> HierarchicalFlightRow {
 return HierarchicalFlightRow(
 label: longDateFormatter.string(from: flight.localTime),
 flight: flight,
 children: nil
)
}

This method creates a HierarchicalFlightRow object from an existing
FlightInformation object. You’ll use this to generate the leaf nodes of the
hierarchy structure with flight information.

Another element that you’ll need is a list of dates that contain a flight. Add the
following code after the hierarchicalFlightRowFromFlight(_:) method:

var flightDates: [Date] {
 let allDates = matchingFlights.map { $0.localTime.dateOnly }
 let uniqueDates = Array(Set(allDates))
 return uniqueDates.sorted()
}

This computed property builds an array with the dates from all flights matching the
current search parameters using a map. It gets only the date component of the time
using the dateOnly extension defined in DateExtensions.swift. You convert the
array to a set and back to remove duplicate values from the array. You return the
sorted results.

You’ll also need to filter for flights that take place on a specified day. Add the
following code after the flightDates property:

func flightsForDay(date: Date) -> [FlightInformation] {
 matchingFlights.filter {
 Calendar.current.isDate($0.localTime, inSameDayAs: date)
 }
}

SwiftUI by Tutorials Chapter 14: Lists

 474

This function uses Calendar.isDate(_:inSameDayAs:) method to choose only
flights matching the search parameters that occur on the passed date. You’re
combining multiple filtering operations, the first filtering on the search parameters
to get matchingFlights and then using it as a source to get the matching flights for
the selected day. You could do these in either order, but since the search criteria will
typically remove more elements, doing it first improves performance.

With those properties and methods created, you can build the hierarchical data
structure you need to display a hierarchical list. Add the following property to the
view.

var hierarchicalFlights: [HierarchicalFlightRow] {
 // 1
 var rows: [HierarchicalFlightRow] = []

 // 2
 for date in flightDates {
 // 3
 let newRow = HierarchicalFlightRow(
 label: longDateFormatter.string(from: date),
 // 4
 children: flightsForDay(date: date).map {
 hierarchicalFlightRowFromFlight($0)
 }
)
 rows.append(newRow)
 }
 return rows
}

Here’s how this builds the hierarchical data structure.

1. You create an empty array that will be at the top level of the hierarchy.

2. You next loop through each of the dates found in the flightDates property.

SwiftUI by Tutorials Chapter 14: Lists

 475

3. Next, create a new HierarchicalFlightRow object for the date. The label for the
row will be the long name for the date. You can find the date formatter in
DateFormatters.swift.

4. The children property takes a bit more work. First, you use
flightsForDay(date:) to get the flights that match the search parameters for
this date. You then map each flight into a HierarchicalFlightRow containing
information on the flight using the previously defined method.

With the hierarchy of data set up, you can now set the list to use it. Change the list in
the view to:

// 1
List(hierarchicalFlights, children: \.children) { row in
 // 2
 if let flight = row.flight {
 SearchResultRow(flight: flight)
 } else {
 Text(row.label)
 }
}

While that was a lot of setup work, the result makes the hierarchical list easy to
implement:

1. The list uses the hierarchicalFlights computed property to get the
hierarchical structure. You use the children parameter on the List to pass a
keypath to the property of the HierarchicalFlightRow object that contains the
child elements.

2. You use an if-let to check if the row contains a flight. If the flight property is
not null, you display the row for that flight. Otherwise, you show the label text
as the row’s contents.

SwiftUI by Tutorials Chapter 14: Lists

 476

Run the app to see your results. Note that to expand a date, you must tap the
disclose arrow at the right of each row.

Hierarchical flight list

Note that this structure means it would be easy to add more layers to the hierarchy.
For instance, adding the city under the date layer with the flights matching both the
city and date as children.

While hierarchical data works well for some types, there’s another way to organize
data in a list. In the next section, you’ll break the list into sections by date.

SwiftUI by Tutorials Chapter 14: Lists

 477

Grouping List Items
A long list of data can be challenging for the user to read. Fortunately, the List view
supports breaking a list into sections. Combining dynamic data and sections moves
into some more complex aspects of displaying data in SwiftUI. In this section, you’ll
separate flights into sections by date and add a header and footer to each section.

The good news is that you’ve done most of the needed work in the previous section.
Open SearchFlights.swift and delete the HierarchicalFlightRow struct, along
with hierarchicalFlightRowFromFlight(_:) and hierarchicalFlights.

Now change the List to the following:

// 1
List {
 // 2
 ForEach(flightDates, id: \.hashValue) { date in
 // 3
 Section(
 // 4
 header: Text(longDateFormatter.string(from: date)),
 // 5
 footer:
 Text(
 "Matching flights " + "\(flightsForDay(date:
date).count)"
)
 .frame(maxWidth: .infinity, alignment: .trailing)
) {
 // 6
 ForEach(flightsForDay(date: date)) { flight in
 SearchResultRow(flight: flight)
 }
 }
 }
}
// 7
.listStyle(InsetGroupedListStyle())

SwiftUI by Tutorials Chapter 14: Lists

 478

This view is more complicated than the layouts you’ve used to this point. Here’s
what the code does:

1. You’re declaring a list, but not passing data in for it to iterate. For a more
complex and dynamic layout such as this, you’ll often combine multiple List and
ForEach elements.

2. You first will display sections for each date that has flights. You pass the list of
unique dates using flightDates that you created in the previous section. Since
Date doesn’t implement the Identifiable protocol, you must also inform
SwiftUI to use the hashValue property of the date as the unique identifier.

3. For each date, you start with a Section. This struct tells SwiftUI how to organize
the data. It can contain optional headers and footer views for each section.

4. The header will display text showing the date for flights in this section. You can
find the date formatter in DateFormatters.swift.

5. The footer displays the number of matching flights in the section. You apply the
frame(minWidth:idealWidth:maxWidth:minHeight:idealHeight:maxHeight
:alignment:) modifier to have the text fill the footer and align to the trailing
side.

6. Inside each section, you use another ForEach and the flightsForDay(date:)
method to loop through only the flights on this section’s date.

7. You apply a style to the list that fits the grouped data you’re displaying.

SwiftUI by Tutorials Chapter 14: Lists

 479

Run the app, and you’ll see the flights now cleanly grouped by date. Type in part of a
city name, and you’ll see the view update to reflect the change while still grouping
the flights.

Grouped

SwiftUI by Tutorials Chapter 14: Lists

 480

Key Points
• A ScrollView wraps a view within a scrollable region that doesn’t affect the rest

of the view.

• The ScrollViewProxy lets you change the current position of a list from code.

• SwiftUI provides two ways to iterate over data. The ForEach option loops through
the data allowing you to render a view for each element.

• A List uses the platform’s list control to display the elements in the data.

• Data used with ForEach and List must provide a way to identify each element
uniquely. You can do this by specifying an attribute that implements the Hashable
protocol, have the object implement Hasbable and pass it to the id parameter or
have your data implement the Identifiable protocol.

• Building a hierarchical view requires a hierarchical data structure to describe how
the view should appear.

• You can split a List in Sections to organize the data and help the user
understand what they see.

• You can combine ForEach and List to create more complex data layouts. This
method works well when you want to group data into sections.

Where to Go From Here?
For more on integrating navigation and views, look at SwiftUI Tutorial: Navigation
at https://www.kodeco.com/5824937-swiftui-tutorial-navigation.

The WWDC 2019 SwiftUI Essentials video provides an overview of Apple’s
guidelines on how views, navigation and lists fit together:

• https://apple.co/3LhAEvf

To learn more about the changes in the second version, such as hierarchical lists,
watch SwiftUI view Stacks, Grids, and Outlines in SwiftUI from WWDC 2020:

• https://apple.co/3LhAFPP

SwiftUI by Tutorials Chapter 14: Lists

 481

15Chapter 15: Advanced
Lists
By Bill Morefield

The previous chapter introduced the common task of iterating over a set of data and
displaying it to the user using the ForEach and List views. This chapter will build on
that chapter and give you more ways to work with lists and improve the user’s
experience working with lists in your apps.

 482

Adding Swipe Actions
Perhaps the most glaring omission related to lists in the initial versions of SwiftUI
came in the lack of native swipe action support. A swipe action provides the user
quick access to a few commonly used tasks. SwiftUI 3.0 addresses this omission with
new modifiers that simplify adding swipe actions to your lists. In this section, you’ll
add a swipe action to the Flight Status Board that will let the user highlight a flight,
making it stand out on the long list. You’ll use two types of actions, one that
produces a small menu of options and a second that can perform a single action on
the swipe.

Open the starter project for this chapter. You’ll see it continues the app from the end
of Chapter 14: "Lists". You should be familiar with lists and the content introduced
in the previous chapter before continuing this chapter. Open
FlightStatusBoard.swift and add the following code after the selectedTab
property.

@State var highlightedIds: [Int] = []

This property will store an array with the id of each flight the user highlights. You
place the property in this view to reference it on the tabs the view contains. You will
pass a binding to this array into the FlightList view on each tab. Find the three
calls to FlightList in the view. Add a comma after the existing flightToShow
parameter. On the following line, add a new second parameter to the calls to
FlightList:

highlightedIds: $highlightedIds

For example, the first call will now look like this:

FlightList(
 flights: shownFlights.filter { $0.direction == .arrival },
 highlightedIds: $highlightedIds
)

Note you do not need to add the flightToShow parameter since it will remain nil
for the first and last tabs. Once you’ve updated all three views, open FlightList.swift
and add the following property after the flightId property:

@Binding var highlightedIds: [Int]

SwiftUI by Tutorials Chapter 15: Advanced Lists

 483

You use a binding to modify the contents of the array from within the FlightList
view. Adding the property also means you need to update the preview to contain this
new property. Update the FlightList view in the preview to:

FlightList(
 flights: FlightData.generateTestFlights(date: Date()),
 highlightedIds: .constant([15])
)

Now add the following method to the view, just before the body declaration:

func rowHighlighted(_ flightId: Int) -> Bool {
 return highlightedIds.contains { $0 == flightId }
}

This new method searches the array for the passed integer and returns true if the
array contains it. You will use this new modifier to determine which list rows to
highlight. Add the following code after the closing brace of the NavigationLink that
forms the body of the list:

.listRowBackground(
 rowHighlighted(flight.id) ? Color.yellow.opacity(0.6) :
Color.clear
)

Here, you use the listRowBackground(_:) modifier to set a background color for
each row in the list. If the user chose to highlight the row, you set the background
color to yellow with reduced opacity so the highlight doesn’t overwhelm the row’s
content. Otherwise, you leave the background clear, leaving no visual effect.

With the code to manage and highlight rows in place, you can implement the swipe
action that lets the user toggle highlighting for each row. To make the view
management easier, you’ll create a new view that encapsulates the view and actions
contained in the swipe action. Create a new SwiftUI view in the FlightStatusBoard
group named HighlightActionView. At the top of the HighlightActionView struct,
add the following two properties:

var flightId: Int
@Binding var highlightedIds: [Int]

These properties hold the flight id for the current row along with a binding to the
array. Replace the contents of the preview to provide values for these properties:

HighlightActionView(
 flightId: 1,

SwiftUI by Tutorials Chapter 15: Advanced Lists

 484

 highlightedIds: .constant([1])
)

Next, add the following method after the properties for the view:

func toggleHighlight() {
 // 1
 let flightIdx = highlightedIds.firstIndex { $0 == flightId
 }
 // 2
 if let index = flightIdx {
 // 3
 highlightedIds.remove(at: index)
 } else {
 // 4
 highlightedIds.append(flightId)
 }
}

This method will toggle the current highlight state for the row by adding or
removing the flight identifier to or from the highlightedIds array. Here’s how it
works:

1. This code gets the index in the array to the first element that matches the
flightId passed into the view. If the array contains the flight id, then
flightIdx will now have the index of that element. If the array does not include
the id, then it will be nil.

2. You attempt to unwrap flightIdx.

3. If that succeeds, then index contains the index in the array of the id. You then
remove that element of the array and therefore remove the flight id from the
array.

4. If the unwrapping of flightIdx failed, you add the flightId to the array.

SwiftUI by Tutorials Chapter 15: Advanced Lists

 485

Now change the body of the view to:

Button {
 toggleHighlight()
} label: {
 Image(systemName: "highlighter")
}
.tint(Color.yellow)

You create a button showing the highlighter symbol. The button’s action calls the
toggleHighlight method to add or remove the flight id from the array as
appropriate. You apply the tint(_:) modifier to change the button away from the
default swipe action gray color.

With the new view complete, return to FlightList.swift. Add the following code after
the listRowBackground(_:) modifier on the List.

// 1
.swipeActions(edge: .leading) {
 // 2
 HighlightActionView(flightId: flight.id, highlightedIds:
$highlightedIds)
}

The .swipeActions(edge:allowsFullSwipe:content:) modifier tells SwiftUI to
attach a swipe action to the row.

1. The edge parameter tells SwiftUI where to place the swipe actions. You can
specify separate additional actions for the other edge by adding multiple
modifiers or multiple views within one modifier limited only by the available
space in the row. Here you attach to the leading edge.

2. The closure provides the view to display when the user performs the swipe
action. You use the new view you created earlier in this section.

SwiftUI by Tutorials Chapter 15: Advanced Lists

 486

Run the app and navigate to the Flight Status view. Now drag your finger across a
row, starting at the leading edge and continuing across the row. You’ll see the action
triggers. This action occurs because the allowsFullSwipe property we didn’t specify
defaults to true. When true, this property states the first action will be triggered
when the user does a full swipe. The user can also swipe to reveal the actions and
then tap it. Also, note the swipe action does not interfere with the navigation link if
you tap on the row.

Showing swipe action on a list row

SwiftUI by Tutorials Chapter 15: Advanced Lists

 487

Swipe actions provide a way to give the user faster access to a few common or
essential actions related to items in the list. Next, you’ll let the user request a
manual refresh of the items in the list.

Pull to Refresh
You’ve probably noticed the static nature of this app. When the user displays a view,
the contents never change. Some of that comes from using static test data in the app
instead of a web service that would provide updates and changes as flight conditions
change. Even when updates are automatic, it’s common to provide a way for the user
to request a data refresh in an app. The most common of these methods comes to
SwiftUI 3.0 with the refreshable(action:) view modifier. In this section, you’ll
add refresh support to the app.

Open FlightStatusBoard.swift. First, you’ll add an indicator to let the user know
when SwiftUI last updated the list. Add the following code before the body of the
view:

func lastUpdateString(_ date: Date) -> String {
 let dateF = DateFormatter()
 dateF.timeStyle = .short
 dateF.dateFormat = .none
 return "Last updated: \(dateF.string(from: Date()))"
}

This method formats a string with a short description of the time from the passed
date. Now you’ll use it to show the user the last update time for the list. Embed the
current TabView inside a new VStack. Now add the following code to the top of the
VStack:

Text(lastUpdateString(Date()))
 .font(.footnote)

SwiftUI by Tutorials Chapter 15: Advanced Lists

 488

This new Text view shows the date of the last update of the view above the tabs. Now
run the app and go to the Flight Status view. You’ll see the new last updated time
above the lists.

Adding last update time to Flight Status

To reinforce the new update more clearly, you’ll also update each flight shown with
the difference between the current time and when the flight lands or departs. Open
FlightRow.swift and add a new property after the existing timeFormatter property:

var relativeTimeFormatter: RelativeDateTimeFormatter {
 let rdf = RelativeDateTimeFormatter()
 rdf.unitsStyle = .abbreviated
 return rdf
}

SwiftUI by Tutorials Chapter 15: Advanced Lists

 489

Now change the first HStack that shows the flight status and time to read:

Text(flight.flightStatus)
Text(flight.localTime, formatter: timeFormatter)
Text("(") +
Text(flight.localTime, formatter: relativeTimeFormatter) +
Text(")")

You added three new lines of code to show the relative time inside parenthesis.

Run the app. Each row shows the relative time between now and the landing or
departure of the flight. It automatically uses the correct language for future and past
events.

Relative time

SwiftUI by Tutorials Chapter 15: Advanced Lists

 490

Go back to FlightStatusBoard.swift and add the @State modifier to the flights
property so it reads:

@State var flights: [FlightInformation]

This change tells SwiftUI the flights property within the view can change so that
SwiftUI knows to update the view when it changes. Now you can use the
refreshable(action:) to do that. Before the navigationTitle(_:) modifier, add
the following code:

// 1
.refreshable {
 // 2
 await flights = FlightData.refreshFlights()
}

That’s all that you need to do. Here’s what each line does in more detail:

1. Adding the refreshable(action:) modifier to a view marks it as refreshable for
SwiftUI. The modified control will provide the UI for a user-requested refresh. In
this case, you’ve added the standard pull-down action for lists, and the list will
display a progress indicator during the refresh. When the user requests a refresh,
SwiftUI executes the action provided in the closure.

2. Note the await keyword. FlightData.refreshFlights() simulates an API call that
takes time (in this case, three seconds) to complete. Using the new async/await
support in Swift 5.5 lets this take place without freezing your app. SwiftUI shows
the progress indicator during the duration of the awaited action. In this case, the
information about the flights will not change since it’s still test data, but it will
refresh the views you changed flights to a @State property.

SwiftUI by Tutorials Chapter 15: Advanced Lists

 491

Run the app and navigate to the Flight Status view. Note the current time and wait
until the time changes to a minute. Go to the top of the list and then pull down and
release. You’ll see the progress indicator appear for three seconds, and then the view
updates to reflect the new time you requested a refresh.

Refreshing a view

While manually updating views is helpful, there are times you want to refresh a view
automatically. Previously SwiftUI provided updates based on data changes, but
there’s a new view that lets you update a view on a time-based schedule. You’ll
explore it in the next section.

SwiftUI by Tutorials Chapter 15: Advanced Lists

 492

Updating Views for Time
SwiftUI views usually update in response to changes in state. That state change can
be driven by user action, such as tapping a button, or through external changes
powered buy notifications, Combine or async events. In most cases, you don’t need
to change a view unless the underlying data changes. Sometimes you’ll want to
update a view due to the passage of time to provide a better user experience.

In the last section, you added a relative time to each flight. As the clock moves
forward, these times should change, but right now, that does not happen unless the
user requests a refresh. It would be better to have a way to tell a SwiftUI view to
update on a regular schedule. SwiftUI 3.0 added the new TimelineView that will
update according to a schedule that you provide. In this section, you’ll use the
TimelineView to ensure you always show up-to-date information.

To begin, wrap the VStack inside a new TimelineView. Use the following definition
for the view:

TimelineView(.periodic(from: .now, by: 60.0)) { context in

You’ve now wrapped the existing VStack inside a TimelineView.

You provide a type that implements the TimelineSchedule protocol to the
TimelineView to tell SwiftUI when to update the view. This one uses the
periodic(from:by:) static type that begins at a specified time and repeats after a
given number of seconds. Here, you start now and repeat every sixty seconds. SwiftUI
passes a TimelineView.Context property to the closure that contains a date
property with the date from the schedule that triggered the update. It also contains a
cadence property that provides guidelines on how often the view updates occur.

Update the text showing the last update to:

Text(lastUpdateString(context.date))

SwiftUI by Tutorials Chapter 15: Advanced Lists

 493

The app now shows the date property of the context as the last update. In this case,
that’s the same as the current date when the view updates, meaning you would still
get the correct results without this change. Run the app and navigate to the Flight
Status view. Wait one minute, and you’ll see the times update automatically when
the minute changes.

Updating view with TimelineView

SwiftUI by Tutorials Chapter 15: Advanced Lists

 494

Notice that if you run the app just before the minute changes, it will be inaccurate
until that sixty seconds pass. You could adjust your start time to the zero-second
point of the next minute, but since the need to change at the start of each minute is
so common, SwiftUI provides another static type just for it. Change the
TimelineView to:

TimelineView(.everyMinute) { context in

Run the app, and you’ll see the view updates as soon as the minute changes instead
of waiting for sixty seconds to pass. The app will continue to update at the start of
each minute.

There’s also an explicit(_:) type to specify exact times to update the view. In this
app, you could pass a list of the times for each flight if you did not want to show the
relative time for each arrival and departure to update after a flight arrives or departs.
You can use .animation to update the view at a specified frequency. As the name
implies, this type will be helpful for animations. It also allows easy pause of updates.
For more complex scenarios, you can implement a custom type that implements the
TimelineSchedule protocol.

A TimelineView adds the ability to update a view based on the current state. If the
state changes, then the view will still update to reflect the change.

Now that you’ve looked at time-based updates, you’ll examine what you may find
the most helpful new feature of lists in SwiftUI 3.0 — better search support.

Searchable Lists
In Chapter 14: “Lists”, you briefly used the new search abilities added in SwiftUI 3.0
to add a search field when creating the Search Flights view. In this section, you’ll
explore the search abilities in greater depth.

In the previous section, you saw that adding search uses a new
searchable(text:placement:prompt:) modifier. Open SearchFlights.swift, and
you’ll see the line of code .searchable(text: $city) near the end of the view.
This code binds the city property of the view to the search text box SwiftUI shows at
the top. The matchingFlights computed property used for the list contents filters
the list of cities whenever the city property is not empty.

SwiftUI by Tutorials Chapter 15: Advanced Lists

 495

Currently, you need to know the cities that are options and spell out the city when
searching. Using the more advanced SwiftUI search features, you can provide
suggestions for search terms. You’ll use the citiesContaining(_:) static method
on the FlightData class that provides an alphabetized list of all the cities. If you
pass an empty string to the method, you will get a list of all cities. If you provide text,
the list will only show cities that include the passed text in the city name. Replace
the current searchable(text:placement:prompt:) modifier with the following:

// 1
.searchable(text: $city) {
 // 2
 ForEach(FlightData.citiesContaining(city), id: \.self) { city
in
 // 3
 Text(city).searchCompletion(city)
 }
}

You provide search suggestions in the closure to the
searchable(text:placement:prompt:) modifier. Defining the search suggestions
requires two steps.

1. You use the citiesContaining(_:) method on FlightData to get an array of
cities that contain the current text of the city property. You iterate through the
results using a ForEach loop.

2. The contents of the closure of the ForEach loop provide two things. First, you
state the text to show the user. In this case, you show only the city name, but you
could provide more text to help the user better understand the suggestion. You
add the searchCompletion(_:) modifier to the Text to indicate the search text
when the user chooses this suggestion.

SwiftUI by Tutorials Chapter 15: Advanced Lists

 496

Run the app. As soon as you tap in the search field, you’ll see an alphabetical list of
all cities appear. If you tap one, then it will immediately fill the search field with that
city. If you type a few letters, then the list of suggestions reduces to only the cities
containing the text. Again tapping a suggestion fills the search field with the
complete text.

Added search suggestions

Search suggestions mainly help the user when there are many options, such as in a
real airport app with hundreds of possible destinations. It can also reduce frustration
due to misspellings or not knowing the complete name for search terms. Suggestions
can also help the situations where your search relies on an external API or data
source. In the next section, you will look at more ways to deal with searches outside
the phone.

SwiftUI by Tutorials Chapter 15: Advanced Lists

 497

Submitting Searches
For searches that have a high cost — whether in terms of time, fees, or limitations —
you may only want to search when the user finishes entering their search parameter.
SwiftUI supports this process using the onSubmit(of:_:) method. You’ll make
changes to the search view that better works with an API call. First, change the
definition of the flightData property in the view to:

@State var flightData: [FlightInformation]

Adding the @State property wrapper makes this value changeable within the view.
You still can pass in an initial value, but now can change the property when
simulating API calls. Now change the matchingFlights computed property to:

var matchingFlights: [FlightInformation] {
 var matchingFlights = flightData

 if directionFilter != .none {
 matchingFlights = matchingFlights.filter {
 $0.direction == directionFilter
 }
 }
 return matchingFlights
}

This change removes the search filter this view previously provided. You’ll replace
this by calling a simulated API call when the user submits the search. Add the
following code after the searchable(text:placement:prompt:) method:

// 1
.onSubmit(of: .search) {
 // 2
 Task {
 // 3
 await flightData = FlightData.searchFlightsForCity(city)
 }
}

Here’s how this code implements submission for the search field:

1. The onSubmit(of:_:) modifier tells SwiftUI you want to do something after the
user submits a view inside the view it modifies. Passing the .search identifier to
the of parameter tells SwiftUI to respond only when the user submits a search
field.

SwiftUI by Tutorials Chapter 15: Advanced Lists

 498

2. The closure for the onSubmit(of:_:) modifier is not asynchronous. In most
cases, you’ll use an async call for search when going to an external source since
you will wait for a reply and have no control over how long the response may
take. To use an async method from a synchronous method, you wrap the async
inside a Task structure.

3. The searchFlightsForCity(_:) method simulates calling an external API and
will take three seconds to complete.

Run the app. You’ll see the suggestions still appear, but the search doesn’t execute
until you tap a search suggestion or tap enter on the keyboard.

Asynchronous search

SwiftUI by Tutorials Chapter 15: Advanced Lists

 499

You’ll notice there’s no indication that the search takes place. You’ll add an indicator
that shows while the search runs to let the user know something is going on.

Add a new boolean property at the end of the existing properties:

@State private var runningSearch = false

Now update the onSubmit(of:_:) method to:

.onSubmit(of: .search) {
 Task {
 runningSearch = true
 await flightData = FlightData.searchFlightsForCity(city)
 runningSearch = false
 }
}

You’ve added code to set the runningSearch property to true before starting the
search and then to false when the search completes. Now you’ll add a progress
indicator when runningSearch is true. Add the following code to the end of the list
(before the listStyle(_:) modifier):

.overlay(
 Group {
 if runningSearch {
 VStack {
 Text("Searching...")
 ProgressView()
 .progressViewStyle(CircularProgressViewStyle())
 .tint(.black)
 }
 .frame(maxWidth: .infinity, maxHeight: .infinity)
 .background(.gray)
 .opacity(0.8)
 }
 }
)

SwiftUI by Tutorials Chapter 15: Advanced Lists

 500

Rerun the app, and you’ll now see the overlay shows during the search, letting the
user know the app is working.

Search in progress overlay

Adding Final Search Touches
You’ve probably noticed when you dismiss the search that the results still reflect the
last completed search. There’s no current method you can use to know when the
search cancels, but you can get the same effect by monitoring the city property that
holds the search text. Add the following code after the onSubmit(of:_:) modifier:

.onChange(of: city) { newText in
 if newText.isEmpty {
 Task {
 runningSearch = true
 await flightData = FlightData.searchFlightsForCity(city)
 runningSearch = false

SwiftUI by Tutorials Chapter 15: Advanced Lists

 501

 }
 }
}

This code tells SwiftUI you want to execute a code block when the city property
changes. The new value of city will be passed into the block. You check this value,
and if empty, you execute the search passing the empty string, which returns all
flights from the API.

You’ve also been using the generic prompt that just reads Search. You can provide
an optional prompt that tells the user more about the search. Change the
searchable(text:placement:prompt:suggestions:) modifier to:

.searchable(text: $city, prompt: "City Name") {

Run the app, and you’ll now see the new prompt text.

New search prompt

SwiftUI by Tutorials Chapter 15: Advanced Lists

 502

Key Points
• Swipe actions allow the user quick access to a few common or important actions

on items in a list. You can place them at either the leading or trailing edge or both.

• The refreshable(action:) modifier provides a way to support user initialed data
refreshes. It uses the Swift 5.5 async/await framework.

• A TimelineView provides a way to update a few on a defined schedule.

• The searchable(text:placement:prompt:) modifier provides a framework to
support search.

• You can provide suggestions for search terms in the closure of the
searchable(text:placement:prompt:).

• You can either update search results immediately or update them when submitted
using the onSubmit(of:_:) modifier.

• The onChange(of:) modifier lets you act when the value of a property changes.
Here you used it to refresh the list to the full results when the search term cleared.

Where to Go From Here?
• For an introduction to lists and the ForEach, and List views, see **Chapter 14:

“Lists”.

• For more about async/await, see the WWDC 2021 video Meet async/await in Swift
(https://developer.apple.com/videos/play/wwdc2021/10132/) and async/await in
SwiftUI (https://www.kodeco.com/25013447-async-await-in-swiftui).

• For more about allowing the user to modify and change lists and implementing
drag and drop, see Drag and Drop Editable Lists: Tutorial for SwiftUI (https://
www.kodeco.com/22408716-drag-and-drop-editable-lists-tutorial-for-swiftui).

• To learn more about the new SwiftUI 3.0 features, view the WWDC 2021 video
What’s new in SwiftUI (https://developer.apple.com/videos/play/
wwdc2021/10018/).

SwiftUI by Tutorials Chapter 15: Advanced Lists

 503

16Chapter 16: Grids

By Bill Morefield

Stacks and lists provide a one-dimensional arrangement of views. Many data types
better fit a two-dimensional grid. A significant weakness of the initial release of
SwiftUI was the lack of a native collection view. This view is so helpful that the first
two editions of this book included a chapter that walked through creating a reusable
grid view. SwiftUI 2.0 added a native grid view. In this chapter, you’ll examine and
work with grid layouts in SwiftUI.

 504

Building Grids the Original Way
The containers in the original SwiftUI version that let you organize other views
shared one thing in common; they work in one dimension. Stacks create horizontal
or vertical layouts. Lists create vertical layouts.

You can think of a grid as a set of stacks in one direction wrapped within a stack of
the other direction. Because of this, you can create more complex layouts, even with
these limitations. You just had to do the work yourself.

Open the starter project and run the app. Earlier editions of this book changed the
buttons on the welcome screen to a grid, but that no longer fits the new split
navigation design (see Chapter 13: Navigation). Instead, you’ll explore grids using
the new awards view added to the starter project. Tap the Your Awards button to
look at the initial view.

Initial Awards View

SwiftUI by Tutorials Chapter 16: Grids

 505

This view displays the user’s current awards and those the user hasn’t received yet.
Currently, the list shows as a vertical stack using a LazyVStack. Open
AwardsView.swift under the AwardsView group and change the closure of the
ScrollView to:

// 1
VStack {
 // 2
 HStack {
 NavigationLink(value: awardArray[0]) {
 AwardCardView(award: awardArray[0])
 .foregroundColor(.black)
 .frame(width: 150, height: 220)
 }
 Spacer()
 NavigationLink(value: awardArray[1]) {
 AwardCardView(award: awardArray[1])
 .foregroundColor(.black)
 .frame(width: 150, height: 220)
 }
 }
 // 3
 HStack {
 AwardCardView(award: awardArray[2])
 .foregroundColor(.black)
 .frame(width: 150, height: 220)
 Spacer()
 AwardCardView(award: awardArray[3])
 .foregroundColor(.black)
 .frame(width: 150, height: 220)
 }
 Spacer()
}
.font(.title)
.foregroundColor(.white)
.padding()

That’s a lot of code but focus on the layout views. You’ll see that you’re building a
grid by nesting two HStacks inside a VStack to show the first four awards.

1. Using an initial VStack creates the overall vertical layout of the grid.

2. This HStack builds the first row of the grid. It contains two of the button views
separated by a Spacer. Note that you manually reference the elements of the
awardArray array.

3. This HStack makes the second row of the grid.

SwiftUI by Tutorials Chapter 16: Grids

 506

Run the app, and you’ll see the grid.

Manual Grid

Before the Grid view, this technique was the only way to build a grid. You can see
how complex it becomes as you add more items to the grid. This book’s first edition
included a chapter on creating a generic reusable grid that you can consult if you
want to see more of this technique. With the second release of SwiftUI, there’s now a
native and more flexible way to build a grid. You’ll change the app to use that in the
next section.

SwiftUI by Tutorials Chapter 16: Grids

 507

Creating a Fixed Column Grid
The native SwiftUI grid view builds on the existing LazyHStack and LazyVStack
views. As with stacks, there are two grids, one that grows horizontally and one that
grows vertically. Change the contents of the ScrollView in AwardsView.swift to:

// 1
LazyVGrid(
 // 2
 columns:
 [
 // 3
 GridItem(.fixed(160)),
 GridItem(.fixed(160))
],
 // 4
 spacing: 15
) {
 // 5
 ForEach(awardArray) { award in
 // 6
 NavigationLink(value: award) {
 AwardCardView(award: award)
 .foregroundColor(.black)
 // 7
 .frame(width: 150, height: 220)
 }
 }
}
.navigationDestination(for: AwardInformation.self) { award in
 AwardDetails(award: award)
}
.font(.title)
.foregroundColor(.white)
.padding()

SwiftUI by Tutorials Chapter 16: Grids

 508

Notice this doesn’t look that different from the initial LazyVStack. That’s the beauty
of SwiftUI’s approach to a grid building off these one-dimensional views. To change
the stack to a grid:

1. The LazyVGrid builds a set of rows that extend vertically. The corresponding
LazyHGrid creates a list of rows that extends horizontally.

2. The new parameter for a vertical grid is columns. You pass it an array of
GridItem elements that describes the columns.

3. The array consists of a set of GridItems to describe the grid. Here you use the
simplest type of GridItem, a fixed column you set 160 points wide.

4. You also pass the optional spacing parameter. This parameter sets the space
between the rows of the grid. It does not affect the distance between the columns
of the grid.

5. Thanks to the grid, you can use ForEach to iterate over the awardArray array as
it separates the elements of the grid in the closure to the LazyVGrid from the
layout defined using the columns parameter to the LazyVGrid.

6. Each item in the grid will be a NavigationLink, which sets the value to the
award passed to the closure. It displays the AwardCardView for the award as the
view.

7. You set the width of the award car to 150 points wide. This width leaves a ten-
point margin compared to the 160 points column width you set in step two.

You’ll see no need to manually layout each row as you did when building a grid with
nested view stacks. You also no longer need to worry about keeping the grid lined up.
SwiftUI takes care of those concerns for you.

Note: The code for this chapter uses a vertical grid where you define columns.
Everything you’ll do also works in a horizontal grid, except you would pass
rows and pass in descriptions of the grid’s rows. The GridItem works for both.

SwiftUI by Tutorials Chapter 16: Grids

 509

Run the app, tap **. You’ll see the grid looks similar to that from the last section, but
with smaller columns since you set them to 160 points.

Awards Shown in a Grid

Now that’s you’ve seen the basics of grids, you’ll look at more flexible layouts in the
next section.

SwiftUI by Tutorials Chapter 16: Grids

 510

Building Flexible Grids
You often want more flexibility when creating columns (or rows) in your grid. A
flexible element in a grid lets you specify a range of sizes to constrain a grid while
setting the number of rows or columns in the grid. Placing the column information
inside the view clutters its view, especially when your grid becomes more
complicated. Instead, you will specify the column structure using a property. Add the
following code after the awardArray property:

var awardColumns: [GridItem] {
 [
 GridItem(.flexible(minimum: 150)),
 GridItem(.flexible(minimum: 150))
]
}

This property returns an array of two GridItem elements. Since the array contains
two elements, SwiftUI will create a grid of two columns.

A flexible grid item lets you specify the minimum or maximum width for each
column or both. Here you only define the minimum at 150 points. Since you don’t
specify a maximum width, the column can grow as large as needed to handle the
content.

Now change the LazyVGrid to:

LazyVGrid(columns: awardColumns, spacing: 15) {
 ForEach(awardArray) { award in
 NavigationLink(value: award) {
 AwardCardView(award: award)
 .foregroundColor(.black)
 .frame(width: 150, height: 220)
 }
 }
}

SwiftUI by Tutorials Chapter 16: Grids

 511

Make sure not to lose any of the modifiers attached to the LazyVGrid. You replaced
the inline columns with the awardColumns property you previously added to define
the grid columns. Run the app and tap Your Awards. The awards still show in a two-
column grid but are no longer bound to a fixed size.

Flexible grid screen

In the next section, you’ll learn how this more flexible layout works with different
sized views.

SwiftUI by Tutorials Chapter 16: Grids

 512

Interacting Between Views and Columns
It’s worth exploring how the container view’s size interacts with the settings for
columns in the grid. Change the frame for the award card to:

.frame(width: 190, height: 220)

What effect do you think this will have on the grid? When you have an answer, run
the app and go to the awards grid to see if you’re correct:

Flexible grid with larger cards

Since you specified a flexible column with only a minimum size constraint, the
column expands to accommodate the larger card width. On many phones, such as
the one in the screenshot, this larger size will not accommodate the full width of two
cards. The cards will overlap as SwiftUI tries to fit the views.

What happens if you specify a maximum column width that’s smaller than this new
card width?

SwiftUI by Tutorials Chapter 16: Grids

 513

Change the awardColumns property to:

var awardColumns: [GridItem] {
 [
 GridItem(.flexible(minimum: 100, maximum: 150)),
 GridItem(.flexible(minimum: 100, maximum: 150))
]
}

Change the frame for the award card to:

.frame(width: 160, height: 240)

Note: The preview canvas will not always notice when you change a property.
If you see no change, then hide and restore the canvas to force it to refresh.

You specified a maximum width of the column of 150 points and changed the card to
a width of 160 points. Run the app and view the awards to see the effect.

Award grid still clipped

SwiftUI by Tutorials Chapter 16: Grids

 514

As you might expect, your grid remains a bit cramped. The key to notice is that
column does not clip or constrain its containing view to the column. Here, both
columns take the full 160 points width despite the column having a maximum width
of 150 points.

How do you size views to a grid without running into these concerns? Since you’re
specifying a size for the grid columns, you might ask whether you need to specify a
frame for the card at all. The answer is no, and not doing so lets SwiftUI adjust the
size to fit the containing view better.

Removing the subview’s frame modifier creates a side effect that you no longer
control the dimensions. You can use a different modifier to keep the shape of the
view. Change the awardColumns property to:

var awardColumns: [GridItem] {
 [
 GridItem(.flexible(minimum: 100, maximum: 160)),
 GridItem(.flexible(minimum: 100, maximum: 160))
]
}

Now change the award card view to:

AwardCardView(award: award)
 .foregroundColor(.black)
 .aspectRatio(0.67, contentMode: .fit)

SwiftUI by Tutorials Chapter 16: Grids

 515

You now have a much more flexible view that can adjust to different widths while
maintaining its overall shape. You use aspectRatio(_:contentMode:) to set the
desired ratio of the view’s width to its height — in this case, a view three points tall
for every 2 points wide — and tell SwiftUI to fit the view to this aspect ratio.

Award grid screen with size by aspect ratio

SwiftUI by Tutorials Chapter 16: Grids

 516

A limitation on a flexible grid item can be a boon or a problem depending on your
app. Run the app and go to the award view. Now rotate the device or simulator, and
you’ll see that the grid still only shows two columns with lots of space on both sides.
You would see the same result when viewing the grid on a larger device such as an
iPad.

Award grid in horizontal mode with 2 columns

Specifying the number of columns for a grid means you’re stuck with that number of
columns, even when you have space for more. You could increase the number of
columns, which would crowd the views on a smaller display or require you to create
different arrays for different devices.

To fill this need, SwiftUI provides a third type of GridItem, the adaptive column.

Building Adaptive Grids
The adaptive grid provides you the most flexible option. Using one tells SwiftUI to
fill the space with as many columns or rows as fit in the grid. Change the
awardColumns property to:

var awardColumns: [GridItem] {
 [GridItem(.adaptive(minimum: 150, maximum: 170))]
}

SwiftUI by Tutorials Chapter 16: Grids

 517

Run the app, and you’ll see the view looks much the same as your flexible grid. Even
though you specified only a single column, the adaptive grid elements fill the phone
width with two columns.

Adaptive award grid in vertical

SwiftUI by Tutorials Chapter 16: Grids

 518

The new behavior becomes more noticeable when you rotate the phone device.
Rotate the device or simulator, and you’ll see the columns fill the display’s width
instead of limiting it to two columns. SwiftUI chooses a size that allows equal-width
columns to maximize the number of columns for the enclosing view. For most
current iPhones, that’s four columns.

Adaptive award grid in horizontal

Change your device to the 11 inch iPad simulator. Run the app, and you’ll see the
grid again adapts to use the extra space and shows four columns for the grid.

Award grid iPad

SwiftUI by Tutorials Chapter 16: Grids

 519

The three types of columns each meet a different use case. The fixed and flexible
types allow you to specify a column you want to appear, either limited to a specific
size or range of sizes. The adaptive column fills the available space with as many
items as will fit in the view. When you need more flexibility, you can mix and
combine the different column types in any way necessary for your app.

You’ll need to choose the layout depending the data you’re showing. For this app,
you want to show all the awards in a compact space and will use the adaptive type.

In Chapter 14: Lists, you saw that you group data into sections to help users
understand what they’re viewing. Grids offer this same ability and you’ll add that in
the next section.

Using Sections in Grids
To help the user understand what award they have yet to receive, you’ll divide the
awarded and not-awarded items into separate sections. Add two new computed
properties below the awardArray property:

var activeAwards: [AwardInformation] {
 awardArray.filter { $0.awarded }
}

var inactiveAwards: [AwardInformation] {
 awardArray.filter { !$0.awarded }
}

These filter the array of all awards to awarded awards and not awarded awards,
respectively. Since each section will display the same information, you’ll extract the
grid into a separate view. At the top of the file after import SwiftUI, add the
following code:

struct AwardGrid: View {
 // 1
 var title: String
 var awards: [AwardInformation]

 var body: some View {
 // 2
 Section(
 // 3
 header: Text(title)
 .frame(maxWidth: .infinity)
 .font(.title)
 .foregroundColor(.white)

SwiftUI by Tutorials Chapter 16: Grids

 520

 .background(
 .ultraThinMaterial,
 in: RoundedRectangle(cornerRadius: 10)
)
) {
 // 4
 ForEach(awards) { award in
 NavigationLink(value: award) {
 AwardCardView(award: award)
 .foregroundColor(.black)
 .aspectRatio(0.67, contentMode: .fit)
 }
 }
 }
 }
}

You’ve extracted the view from the grid. Here are the changes you’ve made:

1. These properties contain the section’s title and an array of awards to show in this
grid.

2. The Section view creates a group within the grid whose contents will be the
closure of the view.

3. You pass a view as the header property. SwiftUI displays this view at the top of
the grid. You could also specify a footer view in the same way. In this case, you
show the title passed to the view.

4. The closure consists of the loop to show the passed awards you’ve used
throughout this chapter. This closure is the same as the view you had at the end
of the previous section.

Now you can use the extracted view in the grid. Change the LazyVGrid to:

LazyVGrid(columns: awardColumns) {
 AwardGrid(
 title: "Awarded",
 awards: activeAwards
)
 AwardGrid(
 title: "Not Awarded",
 awards: inactiveAwards
)
}

SwiftUI by Tutorials Chapter 16: Grids

 521

You’ll see you now have two sections, the first showing awards the user has received
and the second those the user has not yet received.

Award grid with sections

SwiftUI by Tutorials Chapter 16: Grids

 522

Key Points
• SwiftUI provides two types of lazy loaded grids: LazyVGrid, which grows vertically

and LazyHGrid, which grows horizontally.

• You define columns for a LazyVGrid and rows for a LazyHGrid. A GridItem
describes the layout for both types of grids.

• A fixed grid item lets you specify an exact size for a column or row.

• A flexible grid item lets you specify a range of sizes while still defining the
number of columns.

• An adaptive grid item can adapt to fill the available space in a view using
provided size limits.

• You can mix different types of grid items in the same row or column.

Where to Go From Here?
To see more about what creating grids required in the initial release of SwiftUI, see
Chapter 20: Complex Interfaces in the second edition of this book.

These Apple’s 2020 WWDC videos offer Apple’s introduction to grids in SwiftUI:

• Stacks, Grids, and Outlines in SwiftUI, https://apple.co/3LgFNE9

• What’s new in SwiftUI, https://apple.co/3mQ6VQI

To look beyond linear displays, check out:

• Creating a Mind-Map UI in SwiftUI tutorial, https://www.kodeco.com/7705231-
creating-a-mind-map-ui-in-swiftui.

SwiftUI by Tutorials Chapter 16: Grids

 523

17Chapter 17: Sheets & Alert
Views
By Bill Morefield

In a previous chapter, you learned how to use standard navigation to switch between
views in your app. However, sometimes you need to display a view to the user only
under certain conditions. You’ll often use these views when showing important
messages that interrupt the user’s current context and need direct feedback or
response before continuing.

Presenting a view outside the navigation stack lets the user’s focus remain on the
task they initiated. It also provides a way for your app to provide critical information
or request essential feedback.

Starting in SwiftUI 3.0, Apple appears to be shifting the approach to these views. The
initial versions of SwiftUI focused on the type of view to display. The changes to APIs
and new modifiers in SwiftUI 3.0 indicate a shift to the view’s purpose instead of the
kind of view. In this chapter, you’ll expand the app to use different conditional views
in SwiftUI. Along the way, you’ll explore the new SwiftUI 3.0 APIs to prepare your
app for the future.

 524

Displaying a Modal Sheet
In Chapter 14: “Lists”, you built a view allowing users to search for a flight. One
element deferred then was the ability to view details or interact with those results.
You’re going to add that ability in this chapter. Modal sheets help focus the user’s
attention on the current view without building through the overall navigation
hierarchy. The modal sheet slides a new view over the current view.

SwiftUI provides two ways to display a modal, both based on a @State variable in the
view. The first method uses a Bool variable that you set to true when the sheet
should display. The second uses an optional state variable that shows the modal
when the variable becomes non-nil. You’ll use the Bool method for this modal.

All modals provide these two options; you’ll see an example using an optional
variable later in this chapter.

Open the starter project for this chapter; you’ll find the project from the end of the
last chapter. Go to SearchResultRow.swift. Notice the view for each row now
resides in a separate view. That will make the code changes for this chapter a little
cleaner. Add the following new variable after flight:

@State private var isPresented = false

This line defines a @State variable that indicates when to show the modal sheet.
Change the view to:

// 1
Button(
 action: {
 isPresented.toggle()
 }, label: {
 FlightSearchSummary(flight: flight)
})
// 2
.sheet(
 // 3
 isPresented: $isPresented,
 // 4
 onDismiss: {
 print("Modal dismissed. State now: \(isPresented)")
 },
 // 5
 content: {
 FlightSearchDetails(flight: flight)
 }
)

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 525

Here’s what the elements of the modal sheet do:

1. You wrap the row inside a button. The action of the button toggles the state
variable.

2. To tell SwiftUI you want to display a modal, you call
sheet(isPresented:onDismiss:content:). This call must attach to an
element of the view.

3. Here, you pass the isPresented state variable you added earlier, which tells
SwiftUI to show the modal when the variable becomes true. When the user
dismisses the modal, SwiftUI sets the state back to false.

4. The optional onDismiss: is a closure you can use to execute code after the user
dismisses the modal. In an app, this would be the place to react to user actions in
the modal. You print a message to the console and show that the state variable’s
value is now false.

5. You provide the view to show on the modal sheet as the closure for
sheet(isPresented:onDismiss:content:). For the moment, you’ll use the
existing FlightSearchDetails(flight:) view.

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 526

Build and run, navigate to Search Flights and tap any row to see the modal appear.
Swipe down on the modal to dismiss it. In the debug console, you’ll see the state
variable become false after you dismiss the modal:

Initial Modal view

Programmatically Dismissing a Modal
You probably noticed that the navigation view disappears in the modal sheet. That’s
because a modal sheet takes over the whole screen and no longer wraps the view in
any existing navigation view. You can even create a new navigation stack on the
modal.

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 527

You should also add a button to dismiss the modal, primarily since some platforms,
such as Catalyst apps, don’t support the swipe gesture.

Open FlightSearchDetails.swift. First, you’ll need a variable to store a @Binding to
the passed display flag from FlightRow. So add the following code after flight:

@Binding var showModal: Bool

You’ll add the button next to the header at the top of the modal. Replace
FlightDetailHeader with this:

HStack {
 FlightDetailHeader(flight: flight)
 Spacer()
 Button("Close") {
 showModal = false
 }
}

You are adding a Button with an action to set the binding to false. Assigning false
to the Binding programmatically from the button tells SwiftUI to close the modal.

Since the view now expects the caller to pass in the state, you need to update the
preview to do so. Change the preview to read:

FlightSearchDetails(
 flight: FlightData.generateTestFlight(date: Date()),
 showModal: .constant(true)
)
.environmentObject(AppEnvironment())

Using .constant(true) provides a pseudo-state that lets the preview behave
correctly.

Now, go back to SearchResultRow.swift and change the call to
FlightSearchDetails in the closure to
sheet(isPresented:onDismiss:content:) to pass in the state:

FlightSearchDetails(
 flight: flight,
 showModal: $isPresented
)

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 528

Run the app and tapping on a row to bring up the modal with a Close button in the
navigation bar. Tapping the button dismisses the modal, just as swiping down does.

Modal done

SwiftUI allows you to prevent the swipe action from dismissing a view. Go back to
FlightSearchDetails.swift. Add the following code to the end of the ZStack view
(after the onAppear(perform:) modifier):

.interactiveDismissDisabled()

Note that you’re applying this to the view being shown in the sheet and not to the
sheet modifier in SearchResultRow.swift. Run the app, and you’ll see swiping down
no longer dismisses the view. The view does dip, but it returns to the displayed state
when you stop your gesture. You now have to use the Close button to dismiss the
modal.

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 529

A modal is an excellent choice when your view needs the user’s full attention. Used
correctly, they help your user focus on relevant information and improve the app
experience. However, modal views interrupt the app experience, so you should use
them sparingly. SwiftUI provides three more specialized modal views to help you
capture the user’s attention: alerts, action sheets and popovers. You’ll learn how to
use each of those now.

Showing Partial Sheets
The sheets that you’ve created all take up the entire view. Starting with SwiftUI 4.0,
you can create sheets occupying only part of the view. Open FlightDetails.swift and
add the following state variable after flight:

@State private var showTerminalInfo = false

As in the previous sections, you’ll use this state variable to show a sheet when the
user taps the view. Add the following code to the end of the ZStack before the
onAppear(perform:) modifier:

.onTapGesture {
 showTerminalInfo.toggle()
}

This code toggles the showTerminalInfo when the user taps the ZStack. Now add
the following modifier after the onTapGesture(count:perform:) you just added:

.sheet(isPresented: $showTerminalInfo) {
 Group {
 if flight.gate.hasPrefix("A") {
 TerminalAView()
 } else {
 TerminalBView()
 }
 }
 .presentationDetents([.medium, .large])
}

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 530

The presentationDetents(_:) modifier allows you to provide a set of sizes you
want to support for the sheet. Run the app, tap on Flight Status and select any
flight. Now tap on the terminal map, and the new sheet appears, but it only covers
half of the view.

Medium sized sheet covering half of the view with grab bar circled

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 531

Notice the grab bar circled in the screenshot. You can drag this to change between
the sizes or tap it to cycle through the possible sizes. SwiftUI will always start with
the smallest provided option and cycle through them in increasing amounts of the
screen covered. The large option allows the sheet to fill the entire view. Besides
swiping the view to dismiss it, you can tap anywhere outside a view smaller than
large. You can also specify values as a fraction of the view size using
the .fraction(_:) modifier. You can use the height(_:) modifier to specify a
sheet height in points.

Large sheet covers the full view

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 532

Change the orientation to landscape. Now the sheet fills the entire view and will be
challenging to swipe away. In some situations, a smaller sheet can still fill the whole
view, such as an iPhone in landscape orientation. You should ensure the user can
dismiss the view even if swiping down and tapping outside the sheet aren’t options.

Medium sheet in landscape view

Open TerminalAView.swift and add the following presentation property above the
body of the view:

@Environment(\.dismiss) var dismiss

The @Environment(\.dismiss) value provides access to the DismissAction for the
current view. Calling this method will pop the current view from a NavigationStack
or programmatically dismiss a modal view like a sheet.

Add the following method to the end of the ZStack:

.onTapGesture {
 dismiss()
}

When the user taps the view, you call the dismiss() instance to dismiss the sheet.
Note that you do this in the view you want to dismiss, in this case the
TerminalAView view shown in the sheet. Make the same modification to
TerminalBView.swift.

Run the app, tap on Flight Status and select any flight. Now tap on the terminal
map, and the sheet appears. Change the orientation to landscape. Tap on the sheet
itself, and the dismiss() method clears it.

Sometimes you have information you need the user to pay close attention to. In the
next section, you’ll see how to create views for that purpose.

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 533

Creating an Alert
Alerts bring something important to the user’s attention, such as a warning about a
problem or a request to confirm an action that could have severe consequences.

You’re going to add a button to help the user rebook a canceled flight. It won’t do
anything yet — you’re waiting on the back-end team to finish that API. Instead,
you’ll display an alert telling the user to contact the airline much as you would in the
event of an error.

Open FlightSearchDetails.swift. You can set alerts, like modals, to display based on
a state variable. Add the following state after the showModal Binding:

@State private var rebookAlert = false

Add the following after the FlightDetailHeader HStack and before
FlightInfoPanel:

// 1
if flight.status == .canceled {
 // 2
 Button("Rebook Flight") {
 rebookAlert = true
 }
 // 3
 .alert(isPresented: $rebookAlert) {
 // 4
 Alert(
 title: Text("Contact Your Airline"),
 message:
 Text("We cannot rebook this flight. Please contact") +
 Text(" the airline to reschedule this flight.")
)
)
 }
}

Here’s what you’re doing with this code:

1. The view only displays when the flight status is .canceled.

2. The button sets rebookAlert to true when tapped.

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 534

3. You call alert(isPresented:content:) on the Button to create the alert. You
also pass in the state variable telling SwiftUI to show the alert when
rebookAlert becomes true.

4. In the closure, Alert defines the alert message to show the user. You don’t
provide any additional buttons, so the user’s only option is to tap the OK button
to dismiss the alert.

Build and run. Tap Search Flights, then tap any Canceled flight (look for Pacific 228
From Dallas/Ft. Worth). Tap on the Rebook Flight button, and the alert appears.

Alert Dialog

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 535

Starting with SwiftUI 4.0, you can add TextField and SecureText views in addition
to Buttons. In the case of re-booking a flight, you might want to allow the user to
enter a contact phone number. Add two new state properties after rebookFlight:

// 1
.alert("Contact Your Airline", isPresented: $rebookAlert) {
 // 2
 Button("OK", role: .cancel) {
 }
 // 3
} message: {
 Text("We cannot rebook this flight. Please contact") +
 Text(" the airline to reschedule this flight.")
}

This code should all look familiar since you’re doing the same task with different
formatting.

1. The alert now includes the title inside the
alert(_:isPresented:actions:message:) modifier. You still use the same
rebookAlert boolean to trigger the alert when it becomes true.

2. Instead of an Alert struct, you provide a button for the options you want to show
in the alert. Note the use of the .cancel role on the button. You tell SwiftUI this
button cancels the alert, and therefore SwiftUI will automatically set
rebookAlert to false. If you do not include a cancel button, then SwiftUI will
add one for you.

3. You now pass the message for the alert as an additional parameter of the
alert(_:isPresented:actions:message:) modifier.

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 536

Run the app, and you’ll see this works as the previous version did. Unless you need
backward compatibility, you should use this new format for alerts.

Alert Dialog

Notice in this new API, you add a Button to the view. Starting with SwiftUI 4.0, you
can also add TextField and SecureText views. In the case of re-booking a flight you
might want to allow the user to enter a contact phone number. Add two new state
properties after rebookFlight:

@State private var phone = ""
@State private var password = ""

Now replace the current .alert modifier with:

.alert("Contact Your Airline", isPresented: $rebookAlert) {
 TextField("Phone", text: $phone)
 SecureField("Password", text: $password)

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 537

 Button("Call Me") {
 }
 Button("Cancel", role: .cancel) {
 }
} message: {
 Text("We cannot rebook this flight.") +
 Text("Please enter your phone number and confirm your
password.")
}

You add the TextField and SecureField to allow users to enter values into the
state variables you added. The SecureField view doesn’t show the user’s text and is
useful when the user needs to enter sensitive information. Notice you also have two
buttons, one to confirm and one to cancel the action. The closure of both remains
empty but could contain any code and use the values from the TextField and
SecureField.

Alert with TextField and SecureField

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 538

You can also trigger the alert with a modal sheet by binding it to an optional
variable. In the next section, you’ll use this method and implement an action sheet.

Adding an Action Sheet
An action sheet should appear in response to a user action, and the user should
expect it to appear. For example, you might want to use an action sheet to confirm
an action or let the user select between multiple options.

In this section, you’ll add a button to let the user check in for a flight and display an
action sheet to confirm the request.

Instead of the Bool state variable you used for the modal sheet and alert, you’ll use
an optional variable. You can use either of these methods with any of the modal
views in this chapter.

There are a couple of reasons you would use this method over the Bool variable.
First, none of the views discussed in this chapter can be used more than once for a
view. If you try to attach two alert views, for example, only the last one will work.
You can attach an alert, modal, or action sheet to sibling views in a view hierarchy,
but you can’t attach more than one to the same view (or to a child and parent). Using
an optional enum, you can use just one, but specify which content you need to
display based on the enum.

The second reason to use the optional variable over the Bool is to access the
variable’s data inside the closure. The variable must implement the Identifiable
protocol discussed in the previous chapter.

You’ll create a simple struct that implements Identifiable for this action sheet for
your next step. Create a new Swift file named CheckInInfo.swift under the Models
group. Change the contents of the file to read:

import SwiftUI

struct CheckInInfo: Identifiable {
 let id = UUID()
 let airline: String
 let flight: String
}

Here, you define a new CheckInInfo struct that implements Identifiable. To meet
the protocol requirements, you include an id member of type UUID.

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 539

By definition, a UUID provides a unique value and implements the Hashable
protocol, making it a perfect unique identifier when you don’t care about anything
other than it is unique. You then add airline and flight strings, which you’ll
provide when creating the message.

Now, inside FlightSearchDetails, add the following state variable to hold
CheckInInfo after the password property:

@State private var checkInFlight: CheckInInfo?

Next, add the following code after the if flight.status == .canceled
{ condition that wraps the alert you added in the last section and before the
FlightInfoPanel view:

// 1
if flight.isCheckInAvailable {
 Button("Check In for Flight") {
 // 2
 checkInFlight =
 CheckInInfo(
 airline: flight.airline,
 flight: flight.number
)
 }
 // 3
 .actionSheet(item: $checkInFlight) { checkIn in
 // 4
 ActionSheet(
 title: Text("Check In"),
 message: Text("Check in for \(checkIn.airline)" +
 "Flight \(checkIn.flight)"),
 // 5
 buttons: [
 // 6
 .cancel(Text("Not Now")),
 // 7
 .destructive(Text("Reschedule")) {
 print("Reschedule flight.")
 },
 // 8
 .default(Text("Check In")) {
 print(
 "Check-in for \(checkIn.airline) \(checkIn.flight)."
)
 }
]
)
 }
}

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 540

This code looks similar to the code you used to create the modal sheet and the alert,
except that the action sheet uses the optional variable in place of a Bool. It also
needs information about the buttons to display.

Here’s how the new elements in this code work:

1. You only show this button for a flight that has check-in available

2. The button’s action sets checkInFlight to a new instance of CheckInInfo that
stores the airline and number of the flight.

3. As you did with the alert, you add the action sheet to the button. Here, you use
actionSheet(item:content:) and not actionSheet(isPresented:content:).
You pass the optional variable as the item: parameter. When the variable
becomes non-nil, as it will when the button’s action executes, SwiftUI displays
the action sheet. When checkInFlight becomes non-nil, it triggers the same
way the alert’s Boolean binding told SwiftUI to display the alert. You also provide
a parameter inside the closure. When SwiftUI shows the sheet, this parameter
contains the contents of the bindable value that triggered it.

4. You create an action sheet using the passed-in variable’s contents to display the
name of the flight to the user on the action sheet.

5. An alert provides a limited ability to gather feedback. You have many more
options with an action sheet, though all must be buttons. Here, you pass an array
of ActionSheet.Button items to the buttons: parameter for those you wish to
use in this action sheet.

6. The first defined button is the Cancel button. Providing a cancel button gives the
user a clear back-out option. When the user selects this option, you do nothing,
so you don’t need any parameter other than text for this button.

7. You use the .destructive type method for actions that have destructive or
dangerous results. SwiftUI displays the text in red to highlight this action’s
seriousness. action: provides code that SwiftUI executes when the user selects
this option. Here, you display a message to the debug console.

8. The default button for the action sheet uses action: to display a message to the
debug console.

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 541

Build and run. Select Search Flights and then tap any outgoing flight that’s not yet
departed. Next, tap the Check In for Flight button, and the action sheet will appear.

Action Sheet

If you tap the Not Now button, nothing happens since you provided no action
parameter. Tap either the Check In or Reschedule button, and the appropriate
message appears in the console window in the debug area of Xcode.

Action sheet console

In the next section, you’ll explore how the new SwiftUI 3.0 alert can work in place on
an action sheet.

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 542

Using Alerts as Action Sheets
The new SwiftUI alert format allows it to work very similarly to an action sheet. In
this section, you’ll implement the action sheet from the last section using the new
alert.

Add the following state to the top of the view after checkInFlight:

@State private var showCheckIn = false

The new alert API doesn’t work with an optional parameter. Instead, you must use a
boolean to indicate when SwiftUI should show the alert. Replace the current button
labeled Check In for Flight with:

Button("Check In for Flight") {
 checkInFlight =
 CheckInInfo(
 airline: flight.airline,
 flight: flight.number
)
 showCheckIn = true
}

The only change is that you set the showCheckIn true and set the checkInFlight
property with information on the flight. Last, replace the current .actionSheet
modifier (starting at comment three in the earlier code) with:

// 1
.alert(
 "Check In",
 isPresented: $showCheckIn,
 presenting: checkInFlight
) { checkIn in
 // 2
 Button("Check In") {
 print(
 "Check-in for \(checkIn.airline) \(checkIn.flight)."
)
 }
 // 3
 Button("Reschedule", role: .destructive) {
 print("Reschedule flight.")
 }
 // 4
 Button("Not Now", role: .cancel) { }
 // 5
} message: { checkIn in
 Text("Check in for \(checkIn.airline)" +

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 543

 "Flight \(checkIn.flight)")
}

You’re replacing the action sheet with the impressive length
alert(_:isPresented:presenting:actions:message:) modifier. As when you
changed the alert to this new API earlier, you’ll see a lot of the same code. Here’s
what’s changed:

1. The title moves to a parameter to the
alert(_:isPresented:presenting:actions:message:) modifier. You pass the
new boolean to the isPresented parameter to indicate when SwiftUI should
show the view. The new presenting parameter provides the function that
binding to a nullable object previously did. You pass in the checkInFlight
property here to make it available inside the alert as flight.

2. You provide each option for the alert as a standard SwiftUI button view. You can
use flight to access the object passed in through the presenting parameter.

3. You mark this button as destructive, letting SwiftUI format it appropriately.

4. As earlier, if you do not provide a button with the cancel role, SwiftUI will add
one for you. Notice that you do not need to set showCheckIn to false as the
framework assumes this from the button role.

5. The message for the action sheet before now becomes another parameter. The
object passed to the presenting parameter is available inside the closure as with
the alert.

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 544

Run the app, and you’ll see the new alert doing the same role as the action sheet,
though with a different user interface. Which to use will likely depend on the
purpose of the view in your app. Notice that adding a third button causes this new
button layout. You can combine TextField and SecureField views with multiple
buttons.

Action Sheet using Alert

As of SwiftUI 3.0, SwiftUI has not deprecated the actionSheet modifier as with the
older Alert struct, but as you can see, the new alert API can handle both roles. In
keeping with the new focus on purpose, SwiftUI 3.0 also added another new modifier
named confirmationDialog. It works almost exactly like the alert dialog you just
implemented. You can replace alert with confirmationDialog in the code you did
in this section, and it will work with no other changes.

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 545

Replace the alert modifier with confirmationDialog and run the app.

Confirmation Dialog

You’ll notice the result looks much like the original action sheet. The
confirmationDialog displays as an action sheet on smaller devices and a popover
on larger devices. You can also specify a popover directly in SwiftUI. In the next
section, you’ll add a popover to the app.

Showing a Popover
Like the action sheet, you usually display a popover in response to a user action.
Popovers work best on larger-screen devices, such as iPads and Macs. On devices
with smaller screens, a full-screen view, such as a modal sheet, better serves your
needs. If the screen is too tiny, SwiftUI renders the popover as a modal sheet instead.

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 546

Your popover should save state changes immediately when it displays because the
user can dismiss it at any time.

Creating and using a popover works much like an alert and action sheet. You can use
a Boolean or optional type as with the other modal views. You’ll use a Bool state
variable for this example, as you did with the alert.

You’ll add a button that shows a popover with a new FlightTimeHistory view that
shows the flight’s recent history in a list.

Start by opening FlightSearchDetails.swift and adding the code for a new state
variable after the existing ones:

@State private var showFlightHistory = false

Now, add the following code after the conditional wrapping the alert you added in
the last section and before the FlightInfoPanel view:

Button("On-Time History") {
 showFlightHistory.toggle()
}
.popover(
 isPresented: $showFlightHistory,
 arrowEdge: .top) {
 FlightTimeHistory(flight: flight)
}

Again the code resembles that used to add an alert to the view earlier. Alerts, action
sheets and popovers all perform the same task — providing a temporary view to
inform the user and, optionally, gather a response. As a result, they operate in similar
ways. popover(isPresented:attachmentAnchor:arrowEdge:content:) watches
the showFlightHistory state variable to see if it should show the pop-up.

Popovers traditionally show an arrow pointing back to the control that initiated the
popover. arrowEdge defines the arrow’s direction. Here, .top instructs the popover
sheet to display an arrow at its top, pointing to the control. That means the popover
shows below the control.

Otherwise, this code should look familiar. The button toggles showFlightHistory to
true, causing the popover to appear.

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 547

If you’re using an iPhone device or simulator, you’ll see that the popover renders as a
modal due to the screen size. Also, note how the new modal nicely stacks on top of
your existing modal. You can dismiss it by swiping down, as you would with a modal
view.

Popover phone

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 548

Now, build and run with an iPad target and follow the same steps to display the on-
time history. You’ll now see the view render as a pop-up that includes a small arrow
back to the button you tapped to display the view. You can dismiss it by tapping
anywhere outside the view. Note that it also is stacked nicely on top of the existing
modal view.

Popover display

Note: The beta for iOS 16.4 introduced a
new .presentationCompactAdaptation(_:) modifier which tells SwiftUI to
show a popover on iPhone as well. As with most SwiftUI model views, you
apply it to the view being shown.

As you can see, Apple provides you with different options to grab the users’
attention. Try using the best choice for each situation and scenario.

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 549

Key Points
• Modal sheets display on top of the view. You can use either a Bool state variable or

an optional state variable that implements the Identifiable protocol to tell
SwiftUI to display them.

• The alert, action sheet and popover views provide a standard way to display
information to the user and collect feedback.

• Alerts generally display information about unexpected situations or confirm
actions that have severe consequences.

• Action sheets and popovers display in response to a user action. You use action
sheets for smaller screen devices and popovers on larger screens.

• SwiftUI 3.0 introduced a new API for alerts that provides more flexibility and an
easier to understand implementation.

• SwiftUI 4.0 introduced the ability to set and constrain the size of sheets other than
full screen.

• SwiftUI 4.0 allows you to prompt the user for text input when showing an alert.

Where to Go From Here?
As mentioned in a previous chapter, the first stop for information on user interfaces
on Apple platforms should be the Human Interface Guidelines on Modality for the
appropriate SwiftUI operating systems:

• iOS: https://developer.apple.com/design/human-interface-guidelines/ios/app-
architecture/modality/

• macOS: https://developer.apple.com/design/human-interface-guidelines/macos/
app-architecture/modality/

• watchOS: https://developer.apple.com/design/human-interface-guidelines/
watchos/app-architecture/modal-sheets/

The WWDC 2019 SwiftUI Essentials video also provides an overview of Apple’s
guidelines on how views, navigation and lists fit together:

• https://developer.apple.com/videos/play/wwdc2019/216/

SwiftUI by Tutorials Chapter 17: Sheets & Alert Views

 550

Section V: UI Extensions

Push forward your SwiftUI knowledge with complex interfaces implementing
animations and custom graphics.

 551

18Chapter 18: Drawing &
Custom Graphics
By Bill Morefield

As you develop more complex apps, you’ll need more flexibility or flash than the
built-in controls SwiftUI offers. Fortunately, SwiftUI provides a rich library to assist
in creating graphics within your app.

Graphics convey information to the user efficiently and understandably; for
instance, you can augment text that takes time to read and understand with graphics
that summarize the same information.

In this chapter, you’ll add graphics to a view and create a chart to display the history
of how well a flight has been on time in the past. In doing this, you’ll explore the
graphics SwiftUI has to offer.

 552

Using Shapes
To start, open the starter project for this chapter. Run the project, and you’ll see the
in-progress app for a small airport continued from Chapter 17: Sheets & Alert
Views.

Starter project

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 553

Tap Flight Status, then tap the name of any flight. You’ll see information on the
flight, including a map of the terminal where the flight arrives or departs. In the
previous chapter, you added information about the restaurants in each terminal that
appears when you tap the terminal map. In this section, you’ll explore shapes in
SwiftUI by adding Shape views to represent restaurants and shops in each terminal.

Sheet showing restaurants

Open TerminalMapView.swift under the FlightDetails group. The view contains a
conditional statement to show the correct terminal map. You wrap the conditional
inside a Group to apply modifiers to the result of the conditional statement.

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 554

Add the following code after the Group:

.overlay {
 Rectangle()
}

The views inside the closure to an overlay(alignment:content:) modifier will
appear on top of the modified view. In this case, the Rectangle view is a Shape that
shows a rectangle that SwiftUI will overlay on top of the image. Using an overlay
aligns the view’s axes. A ZStack also does this, but the overlay matches the size of
the overlaid view to the original view.

Run the app, tap Flight Status and then any flight. Now, you’ll see the terminal map
covered in black.

The terminal map now covered in black

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 555

A Shape is a type of view, but it’s still a view and shares many defaults of other views.
It will fill the available space, hence why the Rectangle fills the entire view and
covers the terminal map. Change the Rectangle to:

Rectangle()
 .frame(width: 100, height: 100)
 .foregroundColor(.red)

Since the shape is a view, you can apply the same modifiers you would to any other
view to change and adapt the shape to your needs. The
frame(width:height:alignment:) sets the width and height for the Rectangle.
You then set the foregroundColor(_:) to red.

Run the app, tap Flight Status and then any flight. You’ll now see a red rectangle in
the middle of the terminal.

A red rectangle in the middle of the terminal map

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 556

SwiftUI provides several of the most common Shapes. The other SwiftUI shapes are:

• Capsule: A capsule shape is a rounded rectangle with a corner radius half the
length of the rectangle’s smallest edge.

• Circle: The circle’s radius will be half the length of the framing rectangle’s
smallest edge.

• Ellipse: The ellipse will align inside the frame of the view containing it.

• Rounded Rectangle: A rectangle with rounded corners instead of sharp corners.
It renders so the shape appears within the containing frame.

Ensure you’re viewing the next section on an iPhone 14 Pro simulator or device, or
you may see slightly different results.

The app includes a list of stores in each terminal in the TerminalStore struct. Each
store contains information about the store and an indication of how busy it currently
is. You’ll use this information to show the stores for each terminal.

Add the following new view above the current TerminalMapView struct:

struct TerminalStoresView: View {
 var flight: FlightInformation

 var body: some View {
 Text("Hello World")
 }
}

You’ll create your shapes in this new view to reduce clutter in your code. Now, add a
new computed property to the TerminalStoresView view:

var stores: [TerminalStore] {
 if flight.terminal == "A" {
 return TerminalStore.terminalStoresA
 } else {
 return TerminalStore.terminalStoresB
 }
}

This property will return a list of stores using the static terminalStoresA or
terminalStoresB properties of the TerminalStore struct based on the flight
passed into the view. Now, change the body of the view to the following:

// 1
let firstStoreOffset = flight.terminal == "A" ? 140.0 : -140
let direction = flight.terminal == "A" ? -1.0 : 1.0

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 557

// 2
ForEach(stores.indices, id: \.self) { index in
 // 3
 let store = stores[index]
 // 4
 let xOffset = Double(index) * 85.0 * direction +
firstStoreOffset
 // 5
 RoundedRectangle(cornerRadius: 5.0)
 // 6
 .foregroundColor(
 Color(
 hue: 0.3333,
 saturation: 1.0 - store.howBusy,
 brightness: 1.0 - store.howBusy
)
)
 // 7
 .overlay(
 Text(store.shortName)
 .font(.footnote)
 .foregroundColor(.white)
 .shadow(radius: 5)
)
 // 8
 .frame(width: 70, height: 40)
 .offset(x: xOffset, y: -30)
}

Coordinates within a view originate at the view’s center. Points then run negatively
toward the top and left of the view and positively downward and to the right. To
draw shapes for the stores in a terminal:

1. First, you compute a few values to display the stores in the correct place on both
terminal maps. In both cases, you want the stores to display starting at the edge
of the terminal nearest gate one. Stores in Terminal A will then flow toward the
left, and those in Terminal B will flow to the right. You set firstStoreOffset to
140.0 for the right side of the image and -140 for the left side of the image. You
also set direction to negative one for Terminal A and one for Terminal B. You’ll
see how you use this in step four.

2. You loop through the indices of the stores computed property. You use the
indices instead of accessing the objects directly because you’ll use the index
later.

3. You get the store object at position index. Note that if you didn’t need the index,
you could iterate over stores and pass store as the parameter to the closure.

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 558

4. You specify the location of shapes relative to the top-leading corner. To calculate
each store’s horizontal position, convert the index to a double and multiply it by
the direction above. When direction is one (Terminal B,) this calculation will
give you a sequence of 0, 1, 2, etc. as the index increases, and 0, -1, -2, etc. when
direction is negative one (Terminal A). You multiply this by 85.0 to offset each
successive store an additional 85 points in steadily decreasing (Terminal A) or
increasing (Terminal B) values. You then add firstStoreOffset to place the
first store in the desired location.

5. The RoundedRectangle shape produces a rectangle with rounded corners. Here
you provide a cornerRadius parameter to tell SwiftUI the radius of the curve in
each corner.

6. The howBusy property of the store object contains a value between zero and
one, representing how busy the store is relative to the busiest it usually gets. You
create a shade of green using the Color initializer that takes a hue, saturation,
and brightness instead of the more common red, blue, and green components. A
hue value of 120 represents green. You then set the saturation and brightness
to one minus the howBusy property to produce a lower value as the store
becomes busy. Using it for both elements makes a darker shade of green as the
store gets busier.

7. You use an overlay(_:alignment:) modifier to add a view on top of the
RoundedRectangle. Here, you add a Text view showing the shortName of the
store in white in the footnote font. The shadow(color:radius:x:y:) modifier
adds dark color around the text to help it stand out against lighter backgrounds.

8. To set the shape and location for the view, you use the
frame(width:height:alignment:) modifier to apply the width and height of
the rounded rectangle, and you use the offset(x:y:) modifier to place the
rounded rectangle in the desired position of the view.

Replace your current Rectangle shape and its modifiers inside the overlay with:

TerminalStoresView(flight: flight)

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 559

This change uses your new view as the overlay for the terminal map. If you look at
the preview for either terminal, the stores appear from the side of the first gate and
move toward higher gate numbers.

Stores for terminal A in preview

The magic numbers in step six should cause concern. This looks perfect on a view
that takes up the full-screen iPhone 14 Pro but will break in most other cases.

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 560

Run the app, tap Flight Status, then tap any flight in terminal A. The results don’t
quite look right:

Same view in the app with stores misaligned

Using specified numbers with Shape views sometimes works, but when mixing with
other views, you make implicit assumptions about the view’s size. When those
assumptions are wrong, the layout falls apart. When you tap a row on the Flight
Status page, the FlightDetails view shows the terminal map as part of a larger
view, and the TerminalMapView no longer fills the full view. Even when it does, the
same issue occurs when viewed on smaller or larger devices.

So, how do you fix the problem? Well, you need to know the actual size when the
view renders on the device. SwiftUI provides a way to access this information, and
you’ll learn how to do that in the next section.

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 561

Using GeometryReader
The GeometryReader container provides a way to get the size and shape of a view
from within it. This information lets you create drawing code that adapts to the
view’s size. It also allows you to match your graphics to the available space.

First, wrap the entire body of the TerminalStoresView with:

GeometryReader { proxy in
 // Current body of the view
}

This code places the entire body of the view in a GeometryReader. Wrapping a view
within a GeometryReader causes two immediately noticeable effects. The view now
takes up the entire available space within the container view and shifts the origin
from the center to the top-leading point of the view. This shift of the origin changes
the locations of the shapes, as you can see in the preview.

Adding a GeometryReader changes the layout of the view

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 562

The parameter to the closure of the GeometryReader named proxy is of type
GeometryProxy and provides access to the view’s size. The proxy gives you access to
the view size, and you can use it to adapt your shapes to the view size. Add the
following after comment one and before the existing two variables:

let width = proxy.size.width
let height = proxy.size.height
let storeWidth = width / 6
let storeHeight = storeWidth / 1.75
let storeSpacing = width / 5

This code stores the width and height of the view from the size property of the
GeometryProxy. You use these values to calculate storeWidth, a width for each
store that’s one-sixth the width of the view. You determine a storeHeight to match
the previous 70/40 width-to-height ratio. Finally, you calculate a storeSpacing at
one-fifth of the view width to represent the separation between adjacent stores.

Now update firstStoreOffset to:

let firstStoreOffset = flight.terminal == "A" ?
width - storeSpacing :
storeSpacing - storeWidth

To calculate firstStoreOffset, you have separate cases for each terminal. For
Terminal A, you want the store to appear at the left of the image, so you set it to the
full width of the view and subtract storeSpacing so it will appear on the view’s right
side. For Terminal B, you want to offset the view by the difference between
storeWidth and storeSpacing between stores.

Notice that you made no change to the direction variable because it’s not reliant
on the view’s size. Next, change the xOffset under comment four to:

let xOffset = Double(index) * storeSpacing * direction +
firstStoreOffset

This change replaces the 85.0 with storeSpacing calculated above. Now replace the
modifiers under comment eight to:

.frame(width: storeWidth, height: storeHeight)

.offset(x: xOffset, y: height * 0.4)

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 563

These values now adapt the size and location of each shape to fit the view. Run the
app, Tap Slight Status, and tap any flight in Terminal A. The results now look
appropriate here as they did in the preview because your code adjusts for the view
size.

Shapes adjusting to size of the view in Terminal A

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 564

Run the app on an iPad, and the shapes adjust to match the larger view.

Stores adjusting for an iPad

In this section, you learned to adapt your shapes to work on any view using a
GeometryReader. While shapes work well, sometimes you need more flexibility than
shapes can provide. For those drawings, you can use Paths. In the next section,
you’ll look at implementing a pie chart using Paths.

Using Paths
Sometimes you want to define your shape, not use the built-in ones. You use Paths
for this, which allows you to create shapes by combining individual segments. These
segments make up the outline of a two-dimensional shape.

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 565

Earlier editions of this book demonstrated drawing by building charts. Along with
SwiftUI 4.0, Apple introduced a Swift Charts API that handles many of these cases,
and you’ll use it in Chapter 20: View Transitions & Charts to implement most of
the same charts. However, it does not include support for pie charts, and in this
section, you’ll use Paths to add a pie chart that shows the breakdown of flight delays
into broad categories. The categories you’ll use are:

• On-time: Flights that are on time or early.

• Short delay: A delay of 15 minutes or less.

• Significant delay: A delay of 15 minutes or more.

• Canceled: Canceled flights.

Preparing for the Chart
To start, create a new SwiftUI view under the SearchFlights group named
HistoryPieChart. Add the following to the top of the view:

var flightHistory: [FlightHistory]

Also, update the preview to provide sample data:

HistoryPieChart(
 flightHistory: FlightData.generateTestFlightHistory(
 date: Date()
).history
)

First, you need a struct to define the information for each pie chart segment. Above
the definition for the HistoryPieChart struct, add the following code:

struct PieSegment: Identifiable {
 var id = UUID()
 var fraction: Double
 var name: String
 var color: Color
}

This struct stores information about each pie segment. You’ve implemented
Identifiable and set the id property to a unique identifier using a new UUID for
each element to allow you to iterate over PieSegments.

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 566

Now, add the following computed properties after the flightHistory property:

var onTimeCount: Int {
 flightHistory.filter { $0.timeDifference <= 0 }.count
}

var shortDelayCount: Int {
 flightHistory.filter {
 $0.timeDifference > 0 && $0.timeDifference <= 15
 }.count
}

var longDelayCount: Int {
 flightHistory.filter {
 $0.timeDifference > 15 && $0.actualTime != nil
 }.count
}

var canceledCount: Int {
 flightHistory.filter { $0.status == .canceled }.count
}

These four properties filter the array to return the appropriate number of flights. The
categories for each match those used to define the delayColor property in
FlightHistory.swift.

With these counts, you can now determine the size of the pie segments you’ll
display. Add the following computed property after canceledCount:

var pieElements: [PieSegment] {
 // 1
 let historyCount = Double(flightHistory.count)
 // 2
 let onTimeFrac = Double(onTimeCount) / historyCount
 let shortFrac = Double(shortDelayCount) / historyCount
 let longFrac = Double(longDelayCount) / historyCount
 let cancelFrac = Double(canceledCount) / historyCount

 // 3
 let darkRed = Color(red: 0.5, green: 0, blue: 0)
 let segments = [
 PieSegment(fraction: onTimeFrac, name: "On-Time", color:
Color.green),
 PieSegment(fraction: shortFrac, name: "Short Delay", color:
Color.yellow),
 PieSegment(fraction: longFrac, name: "Long Delay", color:
Color.red),
 PieSegment(fraction: cancelFrac, name: "Canceled", color:
darkRed)
]

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 567

 // 4
 return segments.filter { $0.fraction > 0 }
}

Here’s what this code is doing to define the segments:

1. You start by getting the number of FlightHistory elements in the array.

2. You use the previously created methods to count the flights matching each
category. You divide that number by the array’s total number of elements to get a
fraction of the flights that meet the criteria.

3. You create an array where each element represents the indicated portion of
flights matching the criteria.

4. You return the array after filtering out any segments with no matching values.

Building the Pie Chart
With all that preparation done, creating the pie chart takes less code. Change the
view body to:

GeometryReader { proxy in
 // 1
 let radius = min(proxy.size.width, proxy.size.height) / 2.0
 // 2
 let center = CGPoint(x: proxy.size.width / 2.0, y:
proxy.size.height / 2.0)
 // 3
 var startAngle = 360.0
 // 4
 ForEach(pieElements) { segment in
 // 5
 let endAngle = startAngle - segment.fraction * 360.0
 // 6
 Path { pieChart in
 // 7
 pieChart.move(to: center)
 // 8
 pieChart.addArc(
 center: center,
 radius: radius,
 startAngle: .degrees(startAngle),
 endAngle: .degrees(endAngle),
 clockwise: true
)
 // 9

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 568

 pieChart.closeSubpath()
 // 10
 startAngle = endAngle
 }
 // 11
 .foregroundColor(segment.color)
 }
}

There’s a lot here. This view loops through the segments of the pie and draws each.
You draw each segment after the previous segment ends. A complication arises in
that, angles inside a path used with an arc increase counterclockwise. You want to
draw segments in a clockwise direction. To do so, you can take advantage of the fact
that angles wrap around. An angle of 360 degrees will correspond to the same
direction at zero degrees. You start at 360 degrees, then subtract angles to move
clockwise around the circle of the pie.

Here’s how the individual lines work:

1. You need to determine the size of the pie chart using the GeometryProxy. You
start by finding the smaller measurement of the height and width of the view.
You divide that value by two to calculate the radius of a circle. This radius will
produce a pie that fills the smaller dimension of the view.

2. You divide the width and height of the view by two to determine the center point
for each dimension and then create a point indicating this location.

3. You can define variables inside a GeometryReader. Here, you create a
startAngle variable that will remain in scope for the rest of the view. The
default angle of zero is along the direction the x value increases in the view. As
mentioned above, you start at 360, so you can subtract angles, making the
segments flow clockwise.

4. You loop through the segments taking advantage of PieSegment implementing
the Identifiable protocol.

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 569

5. An arc needs starting and ending angles. You already have the starting angle of
the arc in startAngle. Now you’ll calculate the angle of the endpoint. You
multiply 360 degrees by the fraction of the full circle this arc will take to get the
arc’s size in degrees. You subtract this size from the arc’s starting point to get the
arc’s ending position angle, so the segments sweep counterclockwise.

6. The drawing begins. Declaring Path creates an enclosure you use to build the
path.

7. The move(to:) method on the path sets the starting location for the path, which,
here, is the center of the view; a move(to:) call moves the current position but
doesn’t add anything to the path.

8. You add the arc to the path. An arc takes the center and radius that defines the
circle. Then you specify both the starting and ending angles for the arc. The
clockwise parameter tells SwiftUI the arc begins at the startAngle and moves
clockwise to the endAngle. Note that you can use degrees or radians by using the
corresponding initializer.

9. You close the path, which adds a line from the current back to the path’s starting
position.

10. Inside the path, you can update and set variables. The following pie segment
should appear at the end of this one, so you update the startAngle variable to
match this segment’s ending angle.

11. Lastly, you close the path and then use the fill() method to fill the path with
the segment’s color.

Now you have a pie chart, but you need to add it to the history view. Open
FlightTimeHistory.swift and add the following code to the end of the VStack after
the ScrollView:

HistoryPieChart(flightHistory: flight.history)
 .frame(width: 250, height: 250)
 .padding(5)

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 570

Run the app and view the on-time history for a flight. You’ll see the pie chart at the
bottom of the history chart:

Pie chart

You have a clear pie chart, but it’s unclear at a glance what the color of the segments
represents. In the next section, you’ll add a legend to the chart.

Adding a Legend
You have one more touch to add. The chart looks good, but it needs some indication
of each color’s meaning. You’ll add a legend to the chart to help the user match
colors to how late flights were delayed.

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 571

Open HistoryPieChart.swift. Wrap the GeometryReader that makes up the view
inside an HStack. Now, add the following code at the end of the HStack:

VStack(alignment: .leading) {
 ForEach(pieElements) { segment in
 HStack {
 Rectangle()
 .frame(width: 20, height: 20)
 .foregroundColor(segment.color)
 Text(segment.name)
 }
 }
}

You loop through the segments. For each, you show a small square using the
Rectangle shape you worked with earlier in this chapter, coloring the square the
color of the associated segment. You then show the name for that segment using the
footnote font.

Run the app, and you’ll see the legend makes it clear what each color represents:

Pie chart with legend

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 572

The default font is a bit large, so you’ll change that. Go back to
FlightTimeHistory.swift and add the following modifier after the call to
HistoryPieChart() and before the frame(width:height:alignment:) modifier:

.font(.footnote)

Run the app and view the on-time history for a flight. You’ll now see a clear legend
next to the pie chart:

Resized pie chart legend

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 573

Your pie chart looks clear now, but it would look a bit more traditional if the chart
started with the first segment vertically. You could change the angles of the arc, but a
more straightforward way is to rotate the finished path. Add the following modifier
after the .foregroundColor(segment.color) call after comment 11:

.rotationEffect(.degrees(-90))

Run the app, and you’ll see the chart rotated one-quarter rotation counterclockwise.
Yes, the direction of the angle when rotating in the view is the opposite of those used
when drawing arcs.

Rotated pie chart

Having created a pair of complex views using shapes and paths to create graphics,
you’ll now look at performance when drawing in SwiftUI.

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 574

Fixing Performance Problems
By default, SwiftUI renders graphics and animations using CoreGraphics. SwiftUI
draws each view individually on the screen when needed. Modern Apple device
processors and graphics hardware are powerful and can handle many views without
seeing a slowdown. However, you can overload the system and see performance drop
off to the point a user notices, and your app will seem sluggish.

If this occurs, you can use the drawingGroup() modifier on your view. This modifier
tells SwiftUI to combine the view’s contents into an offscreen image before the final
display.

This offscreen composition uses Metal, Apple’s high-performance graphics
framework, resulting in an impressive speedup in rendering complex views. Note
that offscreen composition adds overheard, resulting in slower performance for
simple graphics. Using many gradients, shadows, and other effects will most likely
result in performance problems.

Wait until you have a performance problem before turning to drawingGroup().
Remember that the drawingGroup() modifier only works for graphics — shapes,
images, text, etc.

Drawing High-Performance Graphics
SwiftUI 3.0 added a new Canvas view meant to provide high-performance graphics in
SwiftUI. The other graphics views you’ve seen in this chapter work within the
SwiftUI view builder. A Canvas view provides immediate mode drawing operations
that resemble the traditional Core Graphics-based drawing system. The Canvas
includes a withCGContext(content:) method whose closure provides access to a
Core Graphics context compatible with existing Core Graphics code.

You draw using the GraphicsContext passed into the closure. The closure to the
view also receives a CGSize parameter describing the dimensions of the Canvas.

While view builder based views aren’t directly supported, SwiftUI provides a
mechanism to reference and use SwiftUI views within a Canvas. In this section, you’ll
build a simple Canvas view on the Awards page that uses a passed in SwiftUI view.

Create a new SwiftUI view named AwardStars.swift inside the AwardsView group.
The view will have one property for the number of stars to display.

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 575

Add the following property to the top of the view:

var stars: Int = 3

This parameter will provide the number of stars to draw. Now change the view body
to:

// 1
Canvas { gContext, size in
 // 2
} symbols: {
 // 3
 Image(systemName: "star.fill")
 .resizable()
 .frame(width: 15, height: 15)
 // 4
 .tag(0)
}

You define a Canvas view that uses the symbols parameter of the initializer to pass a
SwiftUI view into the Canvas:

1. The closure receives a GraphicsContext you use to draw along with a CGSize
parameter with the dimensions of the Canvas.

2. The closure of the Canvas isn’t a view builder, but the closure to the symbols
parameter is. You pass SwiftUI views into the closure to reference them from
inside the Canvas drawing commands.

3. You define a SwiftUI Image of the star.fill symbol resized to 15 points square.

4. To access a SwiftUI view from within the Canvas closure, you must use the
tag(_:) modifier to assign each view a unique identifier.

Now you can begin to fill in the closure of the Canvas. Replace comment two with
the following code:

guard let starSymbol = gContext.resolveSymbol(id: 0) else {
 return
}

You use the resolveSymbol(id:) method on the GraphicsContext to look for a
symbol with the 0 tag. The guard means the method returns if no matching symbol
exists. You can just return because the inside of the Canvas closure executes in
immediate mode instead of creating a view builder, meaning all parts of the Swift
language are available.

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 576

Next, add the following code to the Canvas closure:

// 1
let centerOffset = (size.width - (20 * Double(stars))) / 2.0
// 2
gContext.translateBy(x: centerOffset, y: size.height / 2.0)

These adjust the canvas to center the stars that you’ll draw.

1. The width property on the size parameter contains the width of the canvas. You
subtract from the width the number of stars multiplied by 20 as each star will
take 20 points of space, including padding. The result will give you the remaining
space left in the view outside the stars. Dividing this by two splits the space in
half, giving you the position to place the first star to center them horizontally.

2. The translateBy(x:y:) shifts the origin of the canvas by the provides points in
each direction. The default origin lies in the top right of the Canvas. You move
the horizontal position by the number of points calculated in step one
horizontally and half the height of the canvas vertically.

With the drawing position shifted you can now loop and draw the stars. Add the
following code to the end of closure:

// 1
for star in 0..<stars {
 // 2
 let starXPosition = Double(star) * 20.0
 // 3
 let point = CGPoint(x: starXPosition + 8, y: 0)
 // 4
 gContext.draw(starSymbol, at: point, anchor: .leading)
}

Here are the steps to draw the stars:

1. Since you’re not in a view builder, you use a standard for-in Swift loop instead
of a ForEach view.

2. You’ll offset each view by 20 points. Remember you sized the symbol to 15
points, so this gives five points of space between stars.

3. In a Canvas, you’ll use Core Graphics drawing data types and structures. You
create a CGPoint with the x position from step two and zero for the y position.
With the translated offset from earlier, these values are relative to the new
origin.

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 577

4. The draw(_:at:anchor:) method takes the resolved symbol to draw, the point
you want to draw the symbol and how that point relates to the symbol’s origin.
Using leading means the point you pass acts as the leading point of the drawn
symbol or at the vertical center of the leading edge. By default, SwiftUI would
draw the symbol with the point as the center.

With the view completed, you can now add it to the Awards. Open
AwardCardView.swift. Before the final spacer, add the following view:

AwardStars(stars: award.stars)
 .foregroundColor(.yellow)
 .shadow(color: .black, radius: 5)
 .offset(x: -5.0)

You’ll set all awards to three stars. You set the foreground color of the view to yellow
and add a small black shadow under the view to help the stars stand out. You apply a
horizontal offset to account for the padding used on the view. Now run the app and
navigate to the Your Awards page to view the results:

Awards showing stars

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 578

Key Points
• Shapes provide a quick way to draw simple controls. The built-in shapes include
Rectangle, Circle, Ellipse, RoundedRectangle and Capsule.

• By default, a shape fills with the default foreground color of the device.

• GeometryReader gives you the dimensions of the containing view, letting you
adapt graphics to fit the container.

• Paths gives you the tools to produce more complex drawings than basic shapes
adding curves and arcs.

• You can modify the appearance of paths in the same manner as shapes.

• Using drawingGroup() can improve the performance of graphics-heavy views, but
should only be added when performance problems appear as it can slow the
rendering of simple graphics.

• A Canvas view provides a view focused on high-performance graphics. You can
pass SwiftUI views to use in a Canvas, but it does not use the view builder
approach used in most of SwiftUI.

Where to Go From Here?
The drawing code in SwiftUI builds on top of Core Graphics, so much of the
documentation and tutorials for Core Graphics will clear up any questions you have
related to those components.

The SwiftUI Drawing and Animation documentation at https://developer.apple.com/
documentation/swiftui/drawing_and_animation documents changes in SwiftUI
compared to Apple’s graphics libraries.

The WWDC 2019 session Building Custom Views with SwiftUI at https://
developer.apple.com/videos/play/wwdc2019/237/ provides more examples of layout
and graphics. It also shows an example of using the drawingGroup() modifier.

You can find more examples of drawing charts in SwiftUI in the SwiftUI Tutorial for
iOS: Creating Charts at https://www.kodeco.com/6398124-swiftui-tutorial-for-ios-
creating-charts.

SwiftUI by Tutorials Chapter 18: Drawing & Custom Graphics

 579

19Chapter 19: Animations

By Bill Morefield

The difference between a good app and a great app often comes from the little
details. Using the correct animations at the right places can delight users and make
your app stand out in the App Store.

Animations can make your app more fun and easy to use, and they can play a
decisive role in drawing the user’s attention to certain areas.

Animation in SwiftUI is much simpler than animation in AppKit or UIKit. SwiftUI
animations are higher-level abstractions that handle all the tedious work for you. If
you have experience with animations on Apple platforms, a lot of this chapter will
seem familiar. You’ll find it a lot less effort to produce animations in your app. You
can combine or overlap animations and interrupt them without care. Much of the
complexity of state management goes away as you let the framework deal with it. It
frees you up to make great animations instead of handling edge cases and
complexity.

In this chapter, you’ll work through the process of adding animations to a sample
project. Time to get the screen moving!

 580

Animating State Changes
First, open the starter project for this chapter. Build and run the project for this
chapter. You’ll see an app that shows flight information for an airport. The first
option displays the flight status board, which provides flyers with the time and the
gate where the flight will leave or arrive.

Flight board

SwiftUI by Tutorials Chapter 19: Animations

 581

Note: Unfortunately, showing animations with static images in a book is
challenging. Sometimes, you will see pictures with arrows reflecting the
expected motion. You will need to work through this chapter using the
preview, the simulator or a device for the best idea of how the animations
work. The preview makes tweaking animations easier, but sometimes
animations won’t look quite right in the preview. Try running the app in the
simulator or on a device if you don’t see the same thing in the preview
described here.

Adding Animation
To start, open FlightInfoPanel.swift in the FlightDetails group and look for the
following code:

if showTerminal {
 FlightTerminalMap(flight: flight)
}

This code toggles showing the terminal map based on a state variable,
showTerminal. The following code just before the conditional creates a button
toggling the variable:

Button {
 showTerminal.toggle()
} label: {
 HStack {
 Text(showTerminal ? "Hide Terminal Map" : "Show Terminal
Map")
 Image(systemName: "airplane.circle")
 .imageScale(.large)
 .padding(10)
 .rotationEffect(.degrees(showTerminal ? 90 : -90))
 }
}

This section of code also uses the state change to define the look of the button. The
text changes to reflect the action the next tap will cause. You also change the
rotationEffect angle between two values based on the state of the showTerminal
variable.

SwiftUI by Tutorials Chapter 19: Animations

 582

Run the app, and you’ll see the rotation flips between the two states.

The two states of the terminal map

Note: If you have trouble seeing animations or the differences between
animation, you can turn on Debug ▸ Slow Animations to reduce the
animation speed significantly. Be sure to turn it off when you have finished.

You’ll first add an animation to this rotation. In SwiftUI, you simply provide the type
of animation and let SwiftUI handle the interpolation for you. After
the .rotationEffect(_:anchor:) modifier add the following code:

.animation(.linear(duration: 1.0), value: showTerminal)

SwiftUI by Tutorials Chapter 19: Animations

 583

In addition to the type of animation, you specify the value whose change triggers the
animation. In earlier versions of SwiftUI, you didn’t need to provide this parameter
as SwiftUI would determine it. That made it very easy to apply animation effects
accidentally. The previous call still works but became deprecated in SwiftUI 3.0,
meaning support will go away in a future release. New code should provide this
value, and you should update any older code to include it. Be sure to test your app
afterward, as you may have relied on the previous behavior.

Run the app, tap the Flight Status button, and tap any flight on the list. You’ll see
the terminal map hidden by default. Tap on the text or airplane icon to show the
map. You will see the icon slowly rotates between the up and down positions as you
toggle the view instead of the nearly instant change from before.

Animation on the image rotation

SwiftUI by Tutorials Chapter 19: Animations

 584

The rotation from -90 to 90 degrees acts as a state change, and you’ve told SwiftUI to
animate this state change by adding the .animation(_:value:) modifier. The
animation only applies to the Image element’s rotation and no other views on the
page and only activates when showTerminal changes.

Because SwiftUI iterates between the values when animating, the angles matter
when you create an animation. You could specify the second angle as 270 degrees
since both provide a half rotation from 90 degrees. Change the second angle of the
rotation from -90 to 270. Now preview and tap the button.

You will see chevron rotates in the opposite direction from before. Positive angle
changes rotate clockwise around the origin, while negative changes rotate
counterclockwise. Earlier, the chevron turned clockwise when moving from upward to
pointing downward. Now it rotates counterclockwise from 270 to 90 degrees.

You’re not limited to the angle of rotations of the 0 - 360 degrees range of a single
rotation. Change the 270 to 630 (270 plus a 360 full rotation). Try the app now, and
you’ll see that it rotates a full time and half before stopping. Notice that the rotation
lasts for the same amount of time and speeds up to compensate.

Exercise: Try other angles for both the starting and ending angle to observe
how different angles affect the animation and positions.

Before continuing, change the rotation to:

.rotationEffect(.degrees(showTerminal ? 90 : 270))

SwiftUI by Tutorials Chapter 19: Animations

 585

Animation Types
So far, you’ve worked with a single type of animation: the linear animation. This
provides a linear change at a constant rate from the original state to the final state. If
you graphed the change vertically against time horizontally, the transition would
look like this:

Linear animation

SwiftUI provides several more animation types. The differences can be subtle and
hard to see, which is why you stretched the animation out to a second. Not all
animation types accept a parameter for the length directly, but you’ll learn other
ways to adjust it.

You’ll add some code to help you see the differences in animations. Between the
start of the HStack and the Text view inside the button, add the following code:

Image(systemName: "airplane.circle")
 .imageScale(.large)
 .padding(10)
 .rotationEffect(.degrees(showTerminal ? 90 : 270))
 .animation(.linear(duration: 1.0), value: showTerminal)
Spacer()

SwiftUI by Tutorials Chapter 19: Animations

 586

This change adds a second icon with the text centered between them. This addition,
taking half the previous animation time, will help you compare animations in the
rest of this section.

New icons added

For the second icon, change the animation modifier to:

.animation(.default.speed(0.33), value: showTerminal)

You’ll notice the addition of the speed(_:) method. This method is one of several
that you can apply to any animation. It adjusts the animation’s speed, in this case
slowing it down since the value is less than one. If you use a value greater than one,
the animation speed will increase.

SwiftUI by Tutorials Chapter 19: Animations

 587

Run the app and go to the details for a flight. While not identical, you’ll see the
animations run at similar speeds. Without changing the speed, the rotation on the
right plane would complete three times as quickly.

The default animation is a type of eased animation referred to as easeInOut. This
animation looks good in almost all cases, so it’s a good choice if you have no other
strong preference. You’ll examine the different eased animations in the next section.

Eased Animations
Eased animations might be the most common in apps. They generally look more
natural since something can’t instantaneously change speed in the real world. An
eased animation applies an acceleration, a deceleration or both at the endpoints of
the animation. The animation reflects the acceleration or deceleration of real-world
movement.

The default animation you just used is the equivalent of the easeInOut type. This
animation applies acceleration at the beginning and deceleration at the end of the
animation.

If you graphed the movement in this animation against time, this animation looks
like this:

Ease in out

SwiftUI by Tutorials Chapter 19: Animations

 588

You can get more control using it directly. Change the animation on the second icon
to:

.animation(.easeInOut(duration: 1.0), value: showTerminal)

Eased animations have a short default time of 0.35 seconds. You can specify a
different length with the duration: parameter. You’ve used that to set the duration
the same as the linear animation of the other icon.

Run the app, and you’ll see the two buttons take the same time to animate. The non-
linear movement of the second should also be noticeable.

Now change the animation for the second icon to:

.animation(.easeOut(duration: 1.0), value: showTerminal)

Run the app and toggle the terminal map. You’ll see the rotation starts quickly and
slows down shortly before coming to a stop.

Graphing the movement in this animation against time would look like this:

Ease out

SwiftUI by Tutorials Chapter 19: Animations

 589

In addition to easeOut, you can also specify easeIn, which starts slowly at the start
of the animation then accelerates.

Ease in

If you need fine control over the animation curve’s shape, you can use the
timingCurve(_:_:_:_) method. SwiftUI uses a bézier curve for easing animations.
This method will let you define the control points for that curve in a range of 0…1.
The shape of the curve will reflect the specified control points.

timingCurve

SwiftUI by Tutorials Chapter 19: Animations

 590

Exercise: Try the various eased animations and observe the results. In
particular, see what different control points do in the timingCurve(_:_:_:_)
animation type.

Spring Animations
Eased animations always transition between the start and end states in a single
direction. They also never pass either end state. The other SwiftUI animations
category lets you add a bit of bounce at the end of the state change. The physical
model for this type of animation gives it the name: a spring.

Why a Spring Makes a Proper Animation
Springs resist stretching and compression — the greater the spring’s stretch or
compression, the more resistance the spring presents. Imagine a weight attached at
one end of a spring. Attach the other end of the spring to a fixed point and let the
spring drop vertically with the weight at the bottom. It will bounce several times
before coming to a stop.

In the real world, friction and other outside forces ensure that the system loses
energy each time through the cycle. This reduction makes the system damped.
These accumulated losses add up, and eventually, the weight will stop motionless at
the equilibrium point.

The graph of this movement looks more like this:

Dampened simple harmonic motion

SwiftUI by Tutorials Chapter 19: Animations

 591

Creating Spring Animations
Change the animation for the second icon to:

.animation(
 .interpolatingSpring(
 mass: 1,
 stiffness: 100,
 damping: 10,
 initialVelocity: 0
),
 value: showTerminal
)

Run the app, and you’ll see the icon now bounces a bit at the end, going past the end
and back a few times before stopping at the final position. You’ll see the icon
continues a bit past the destination, slides back and then bounces around the final
position a bit before stopping.

The parameters you pass are the same mentioned above:

• mass: Controls how long the system “bounces”.

• stiffness: Controls the speed of the initial movement.

• damping: Controls how fast the system slows down and stops.

• initialVelocity: Gives an extra initial motion.

Exercise: Before continuing, see if you can determine how changes to the
parameters affect the animation.

Hint: Experiment with one element at a time. First, double a value and then halve
it from the original value. Use the first icon to compare two animations with a
single changed parameter.

Increasing the mass causes the animation to last longer and bounce further on each
side of the endpoint. A smaller mass stops faster and moves less past the endpoints
on each bounce. Increasing the stiffness causes each bounce to move further past
the endpoints, but less affects the animation’s length. Increasing the damping
smoothes and ends it faster. Increasing the initialVelocity causes the animation
to bounce further. A negative initialVelocity can move the animation in the
opposite direction until it overcomes the initial velocity.

SwiftUI by Tutorials Chapter 19: Animations

 592

Unless you’re a physicist, the animation’s physical model doesn’t intuitively map to
the results. SwiftUI introduces a more intuitive way to define a spring animation.
The underlying model doesn’t change, but you can specify parameters to the model
better related to how you want the animation to appear in your app. Change your
animation to:

.animation(
 .spring(
 response: 0.55,
 dampingFraction: 0.45,
 blendDuration: 0
),
 value: showTerminal
)

The dampingFraction controls how fast the “springiness” stops. A value of zero will
never stop (try it and see). A value of one or greater will cause the system to stop
without oscillation. This overdamped state will look similar to the eased animations
of the previous section.

You usually use a value between zero and one, which will result in some oscillation
before the animation ends. Greater values slow down faster.

The response parameter defines the system’s time to complete a single oscillation
with the dampingFraction set to zero. It allows you to tune the length of time of the
animation.

The blendDuration parameter provides a control for blending the length of the
transition among different animations. It only comes into use if you change the
parameters during animation or combine multiple spring animations. A zero value
turns off blending.

Again, try varying these parameters and compare the animations produced.

Removing and Combining Animations
A common problem in the initial release of SwiftUI arose in that animations could
sometimes occur where you didn’t want them. Adding the value parameter to the
animation(_:value:) addresses much of this problem. There still may be times
that you may want to apply no animation. You do this by passing a nil animation
type to the animation(_:value:) method.

SwiftUI by Tutorials Chapter 19: Animations

 593

Still in FlightInfoPanel.swift add the following extra modifier after
the .rotationEffect modifier:

.scaleEffect(showTerminal ? 1.5 : 1.0)

This change adds a scaling of 1.5 times the icon’s original size when showing the
terminal map. If you view the animation, you will see that the button grows in sync
with the rotation. An animation affects all state changes that occur on the element
where you apply the animation.

Image scaling and rotating

Next, add the following code between the rotationEffect() and scaleEffect()
methods:

.animation(nil, value: showTerminal)

SwiftUI by Tutorials Chapter 19: Animations

 594

Trigger the animation again. You should again see the almost instant fade-out/fade-
in effect on the rotation on the icon, but the size change still shows a spring
animation. You should think of an animation affecting all state changes attached to
it.

Animation on only one state change

You can combine different animations by using .animation(_:value:) multiple
times. Change the animation on the rotationEffect() from nil to:

.animation(.linear(duration: 1), value: showTerminal)

SwiftUI by Tutorials Chapter 19: Animations

 595

Run the app, and you’ll see the two animations take place simultaneously, but each
affects a different state change. The linear animation affects the rotation, while the
spring affects the scaling of the icon. Also, note that SwiftUI handles the animations’
different lengths cleanly.

Simultaneously animations

SwiftUI by Tutorials Chapter 19: Animations

 596

Animating From State Changes
To this point in the chapter, you’ve applied animations at the view element that
changed. You can also apply the animation where the state change occurs. When
doing so, the animation applies to all changes that occur because of the state
change.

Remove all .animation(_:value:) modifiers from the two images. Change the
action of the button that toggles showing the terminal map to:

withAnimation(
 .spring(
 response: 0.55,
 dampingFraction: 0.45,
 blendDuration: 0
)
) {
 showTerminal.toggle()
}

You wrap the state change to showTerminal inside a withAnimation(_:_:) method.
This call uses a spring animation, but you could pass any animation to this function.
Run the app, and you’ll see the two images run the same animation in sync.

Using withAnimation(_:_:) applies the animation to every visual change that
results from the state change in the closure. This method simplifies the code when
you wish to use a single animation to multiple changes resulting from a state
change. Be careful as SwiftUI applied the animation for all state changes, including
implicit ones caused by the change. In this example, if another property relied on
showTerminal value, the animation would also apply to that property.

Now that you understand the basics of animation in SwiftUI, you’ll apply animation
to other parts of the app.

SwiftUI by Tutorials Chapter 19: Animations

 597

Animating Shapes
Open TerminalStoresView.swift in the FlightDetails group. This view displays the
stores in a terminal that you created in Chapter 18: “Drawing & Custom
Graphics”. In this section, you’ll add some animation to these shapes when they
appear. First, add a state variable to the struct below the flight property.

@State private var showStores = 0.0

Now find the declaration of xOffset inside the ForEach loop and change it to:

let xOffset =
 Double(index) * storeSpacing * direction * showStores +
firstStoreOffset

You added a multiplication by the showStores state property. Recall from the
previous chapter that the rest of this calculation determines the horizontal position
of the store. By setting showStores to zero, the stores will all appear at the
firstStoreOffset. By setting showStores to one, you get the previous location.
Changing the value of a variable like this creates a state change you can animate.

Now add the following code after the offset(x:y:) modifier within the ForEach
loop:

.animation(.easeOut, value: showStores)

You apply a default ease-out animation when showStores changes. You need to
trigger the state change to start the animation. Here you’ll activate it when the view
appears. At the end of the GeometryReader add the following code:

.onAppear {
 showStores = 1.0
}

Code inside onAppear(perform:) executes when the attached view appears on the
device. Here you change the value of showStores to 1.0, which will change the
offset.

SwiftUI by Tutorials Chapter 19: Animations

 598

Run the app, tap Search Flights and choose any flight and tap Show Terminal Map.
You’ll see the map appear and the store shapes slide into place.

The stores sliding into place

If you hide and show the terminal map several times, you’ll notice the animation
does not repeat. That’s because it takes a short period before SwiftUI destroys a
removed view. If you show the view before SwiftUI destroys it, SwiftUI will reuse the
existing view and not call onAppear(perform:) again.

In the next section, you’ll look at you’ll explore the delay() method in animations.

SwiftUI by Tutorials Chapter 19: Animations

 599

Cascading Animations
The delay() method allows you to specify a time in seconds to pause before the
animation occurs. You can also use it to allow animations to chain together and
provide a sense of progress or motion.

Open TerminalStoresView.swift and change showStores to:

@State private var showStores = false

You change showBars to a boolean. Change the definition of xOffset inside the
ForEach loop back to:

let xOffset = Double(index) * storeSpacing * direction +
firstStoreOffset

This code removes the state change from the calculation. Instead, you’ll change the
state directly within the offset(x:y:) modifier. Change the offset(x:y:) modifier
to:

Now change the RoundedRectangle offset to:

.offset(
 x: showStores ?
 xOffset :
 firstStoreOffset - direction * width,
 y: height * 0.4
)

You also need to change the code inside onAppear(perform:) so it reads:

.onAppear {
 showStores = true
}

Now you can add the delay to the animation. Change the animation after the offset
on the Rectangle to:

.animation(.easeOut.delay(Double(index) * 0.3), value:
showStores)

You apply a different animation to each iteration through the ForEach loop. This
code now uses the same index property used to set the position of the store. For
each greater index, you delay the animation by 0.3 seconds.

SwiftUI by Tutorials Chapter 19: Animations

 600

Now run the app. You’ll see the result of the delayed animations as the stores snap
into place one at a time.

Animation causing stores to appear one at a time

Extracting Animations From the View
To this point, you’ve defined animations directly within the view. For exploring and
learning, that works well. Maintaining code in real apps is easier when you keep
different sections of your code separate. In TerminalStoresView.swift, add the
following code above the body structure:

func storeAnimation(_ storeNumber: Int) -> Animation {
 return .easeInOut.delay(Double(storeNumber) * 0.3)
}

SwiftUI by Tutorials Chapter 19: Animations

 601

You define a custom animation method to return an Animation structure. This one
contains the same animation as before. Now replace the animation(_:value:) in
the view with:

.animation(storeAnimation(index), value: showStores)

Run the app and confirm the animation did not change. You could reuse this
animation elsewhere in the view and only change it in one place. For more complex
animations, extracting the animation also improves the readability of your code.

Next, you’ll implement a more complex animation adding a visual indicator to the
terminal map.

Animating Paths
Open GatePathView.swift in the FlightDetails group, and you’ll see a view that
draws a line determined using a set of fixed points scaled to the view’s size. The code
below draws the path:

Path { path in
 // 1
 let walkingPath = gatePath(proxy)
 // 2
 guard walkingPath.count > 1 else { return }
 // 3
 path.addLines(walkingPath)
}
.stroke(lineWidth: 3.0)

If you need a review of Path and GeometryReader, see Chapter 18: “Drawing &
Custom Graphics”. Here’s what this code does:

1. The gatePath(_:) method returns an array of CGPoints scaled to the current
view using the GeometryProxy.

2. This check ensures there are at least two points in the array — the minimum for a
line — and if not, it returns an empty path.

3. The addLines(_:) method expects an array of points. It moves the path to the
first point in the array and then adds lines connecting the remaining points.

SwiftUI by Tutorials Chapter 19: Animations

 602

This view will provide a line to the gate when drawn on top of the terminal map. Go
to TerminalMapView.swift and add the following code after TerminalStoresView:

GatePathView(flight: flight)
 .foregroundColor(.white)

Run the app, tap Flight Status and then tap any flight to see the new path to the
gate drawn in white over the map.

The gate path drawn over the terminal map

In the next section, you’ll animate this path.

SwiftUI by Tutorials Chapter 19: Animations

 603

Making a Path State Change
To animate this path, you need a state change on a property SwiftUI knows how to
animate. A SwiftUI Shape has a method trim(from:to:) that trims a shape to a
fractional portion based on its representation as a path. For a shape implemented as
a path, the method provides a quick way to draw only a portion of the path.

First, go to GatePathView.swift and add the following code after the current
GatePathView struct:

struct WalkPath: Shape {
 var points: [CGPoint]

 func path(in rect: CGRect) -> Path {
 return Path { path in
 guard points.count > 1 else { return }
 path.addLines(points)
 }
 }
}

This struct implements a custom Shape view that implements the same code as the
view. You pass in the array of points and create the path as before. Now add a new
state variable after the flight parameter at the top of the struct:

@State private var showPath = false

Then add a new animation property after the showPath property:

var walkingAnimation: Animation {
 .linear(duration: 3.0)
 .repeatForever(autoreverses: false)
}

This code creates a linear animation three seconds long. The
repeatForever(autoreverses:) method sets the animation to repeat when it
finishes. Setting autoreverses to false, means the animation restarts each time
instead of rewinding backward before restarting.

Change the closure for the GeometryReader to use the new shape instead of drawing
the path directly:

WalkPath(points: gatePath(proxy))
 .trim(to: showPath ? 1.0 : 0.0)
 .stroke(lineWidth: 3.0)
 .animation(walkingAnimation, value: showPath)

SwiftUI by Tutorials Chapter 19: Animations

 604

The added trim(from:to:) method contains the state change. You also attach the
animation to the view telling SwiftUI to animate the state change.

Finally, add the following code at the end of the view after the GeometryReader:

.onAppear {
 showPath = true
}

As earlier, you use the onAppear(perform:) modifier to start the animation when
the view appears.

Run the app, and show any terminal map. You’ll see the line trace out the path to the
gate and repeat every three seconds.

Animated path to terminal

SwiftUI by Tutorials Chapter 19: Animations

 605

Making Canvas Animations
In Chapter 18: “Drawing & Custom Graphics”, you learned about the Canvas view
meant to provide better performance for a complex drawing, mainly when it uses
dynamic data. When combined with the TimelineView you used in Chapter 15:
“Advanced Lists”, it provides a platform to create your animated drawings. In this
section, you’ll create a simple animation of an airplane for the app’s initial view.

Create a new SwiftUI view named WelcomeAnimation. At the top of the new view,
add the following two properties:

private var startTime = Date()
private let animationLength = 5.0

The startTime property will hold the time the view appears and will be used to
determine how long the animation runs. The animationLength property will
determine how long it takes for the animation to complete.

Next, replace the current body of the view with a TimelineView:

TimelineView(.animation) { timelineContext in
}

You specify the .animation schedule asking SwiftUI to update as fast as possible.
Inside the TimelineView closure, add the following code:

Canvas { graphicContext, size in
 // 1
 let timePosition =
(timelineContext.date.timeIntervalSince(startTime))
 .truncatingRemainder(dividingBy: animationLength)
 // 2
 let xPosition = timePosition / animationLength * size.width
 // 3
 graphicContext.draw(
 Text("*"),
 at: .init(x: xPosition, y: size.height / 2.0)
)
} // Extension Point

SwiftUI by Tutorials Chapter 19: Animations

 606

The Canvas view expands to fill its parent view. You use the graphicContext for
drawing, and the size parameter gives you the dimensions of the drawing space.
Then you’ll do some calculations to perform the animation.

1. You first get the difference in seconds between the date from the
timelineContext parameter to the closure and the time when the view loaded in
the startTime property. You use the truncatingRemainder(dividingBy:)
method on the resulting Double to constrain this value of the range from zero to
the animationLength property for the view. When the value reaches
animationLength, it will wrap around to zero.

2. You divide the value from step one by the animationLength property to get the
fraction of the entire animation length the time represents. You multiply this
fraction by the width of the canvas giving the horizontal position for this
animation frame.

3. For now, you’ll just write an asterisk at the horizontal position from step two and
the vertical position centered in the canvas.

To see what you’ve done to this point, go back to WelcomeView.swift. Add the
following code inside the NavigationSplitView before the start of the List:

WelcomeAnimation()
 .frame(height: 40)
 .padding()

Run the app, and you’ll see your animation works as a small asterisk that slides
across the view above the navigation buttons.

The animation looks nice, but now we need to add the airplane. It seems a waste to
create an airplane when SF Symbols provides a perfectly usable airplane image.
Fortunately, SwiftUI allows you to bring external SwiftUI views into a canvas for use.

SwiftUI by Tutorials Chapter 19: Animations

 607

Go back to WelcomeAnimation.swift. Extend the current Canvas view with the
following additional closure in place of the // Extension Point comment so the
symbols label appears on the same line.

symbols: {
 Image(systemName: "airplane")
 .resizable()
 .aspectRatio(1.0, contentMode: .fit)
 .frame(height: 40)
 .tag(0)
}

Make sure to begin the new code immediately after the closing brace of the closure,
so the symbols parameter appears on the same line. The symbols parameter for the
Canvas creates a ViewBuilder to supply SwiftUI views to the canvas. Here you
provide an image view with modifiers to produce a 40 point square image. You must
give each view inside the symbols closure a unique value using the tag(_:)
modifier.

You can now use this passed SwiftUI view inside the Canvas. At the top of the Canvas
closure, add the following line:

guard let planeSymbol = graphicContext.resolveSymbol(id: 0) else
{
 return
}

You use the resolveSymbol(id:) on the graphics context to access the SwiftUI
views. The id here should match the id provided in the view’s tag(_:) modifier. If
the symbol doesn’t exist, you return since there’s nothing to draw, resulting in an
empty canvas. Now change the existing GraphicsContext.draw(_:at:anchor:)
method (after comment three) to:

graphicContext.draw(
 planeSymbol,
 at: .init(x: xPosition, y: size.height / 2.0)
)

SwiftUI by Tutorials Chapter 19: Animations

 608

Instead of text, you now draw the SwiftUI view using the same draw(_:at:anchor:)
method passing in the planeSymbol you obtained using resolveSymbol(id:). Run
the app to see the finished animation.

Animated airplane canvas

SwiftUI by Tutorials Chapter 19: Animations

 609

Key Points
• Don’t use animations only for the sake of doing so. Have a purpose for each

animation.

• Keep animations between 0.25 and 1.0 seconds in length. Shorter animations are
often not noticeable. Longer animations risk annoying your user wanting to get
something done.

• Keep animations consistent within an app and with platform usage.

• Animations should be optional. Respect accessibility settings to reduce or
eliminate application animations.

• Make sure animations are smooth and flow from one state to another.

• Animations can make a huge difference in an app if used wisely.

• You can create high-performance animations by combining TimelineView and
Canvas.

Where to Go From Here?
If you want to dive deep into creating and using animation in SwiftUI, the book
SwiftUI Animations by Tutorials at https://www.kodeco.com/books/swiftui-
animations-by-tutorials is dedicated to the topic.

This chapter focused on creating animations and transitions, but not why and when
to use them. A good starting point for UI-related questions on Apple platforms is the
Human Interface Guidelines, here: https://developer.apple.com/design/human-
interface-guidelines/.

The WWDC 2018 session, Designing Fluid Interfaces, also details gestures and
motion in apps. You can view it at https://developer.apple.com/videos/play/
wwdc2018/803.

SwiftUI by Tutorials Chapter 19: Animations

 610

20Chapter 20: View
Transitions & Charts
By Bill Morefield

In Chapter 19: “Animations”, you explored adding animation to your app. You
probably noticed one distinct element you did not animate — views. Open this
chapter’s starter project, tap Flight Status, and then tap any flight. When you tap
the Show Terminal Map button, the view appears, and the animations of the
airplane shapes occur.

The display of the view doesn’t show any animation. In SwiftUI, views use a subset of
animation called view transitions. This chapter teaches you to apply animations to
your app views.

 611

Animating View Transitions

Note: Transitions sometimes render incorrectly in the preview. If you don’t
see what you expect, try running the app in the simulator or a device.

The first thing you should understand is the difference between a state change and a
view transition. A state change occurs when an element on a view changes. A
transition involves changing the visibility or presence of a view.

In the starter project for this chapter, open FlightInfoPanel.swift and look for the
Text view between the icons in the button that shows the terminal map.

Right now, it looks like this:

Text(showTerminal ? "Hide Terminal Map" : "Show Terminal Map")

This code shows a state change. While the text displayed by the view can change, it
remains in the same view. Change the code to the following:

if showTerminal {
 Text("Hide Terminal Map")
} else {
 Text("Show Terminal Map")
}

Now you have a view transition. One view is replaced by a different one when the
showTerminal state variable changes.

Transitions are specific animations that occur when showing and hiding views. You
can confirm this by running the app, tapping Flight Status, then tapping any flight.
Tap the button to show and hide the terminal map a few times, and notice how the
view disappears and reappears. By default, views transition on and off the screen by
fading in and out.

Much of what you’ve already learned about animations work with transitions. As
with animation, the default transition is only a single possible animation.

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 612

Change the code that shows the button text to:

Group {
 if showTerminal {
 Text("Hide Terminal Map")
 } else {
 Text("Show Terminal Map")
 }
}
.transition(.slide)

You use the Group View to wrap the view change. You then apply the transition to
the group. Run the app, go back to the page, and you’ll see … something odd. The old
view slides away but doesn’t disappear for a few seconds. Since transitions are a type
of animation, you must use the withAnimation(_:value:) function around the
state change, or SwiftUI won’t show the specified transition. You already did this
back in Chapter 19: “Animations” as the action for the button is:

Button {
 withAnimation(
 .spring(
 response: 0.55,
 dampingFraction: 0.45,
 blendDuration: 0
)
) {
 showTerminal.toggle()
 }
} label: {

As a result, SwiftUI applies both animation and transition. You’ll often run into this
type of issue when working with animations and transitions, which makes keeping
animations with the UI element to change more manageable. For now, change the
button to use the withAnimation method without an animation type.

Button {
 withAnimation {
 showTerminal.toggle()
 }
} label: {

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 613

There’s no animation specified in the withAnimation(_:value:) call. It’s not
needed since you set it at the individual elements in the view. To keep the
animations on the plane icons, add the following code after each Image view:

.animation(
 .spring(
 response: 0.55,
 dampingFraction: 0.45,
 blendDuration: 0
),
 value: showTerminal
)

Run the app, and bring up the details for a flight. Now tap to show the terminal map,
and you’ll see that the view now slides in from the leading edge. When you tap the
button again, you’ll see the view slide off the trailing edge. These transitions handle
cases where the text direction reads right-to-left for you.

The animation occurs when SwiftUI adds the view. The framework creates the view
and slides it in from the leading edge. It also animates the view off the trailing edge
and removes it to no longer take up resources.

You could create a similar result with animations, but you need to handle these extra
steps yourself. The built-in transitions make it much easier to deal with view
animations.

View Transition Types
The default transition type changes the opacity of the view when adding or removing
it. The view goes from transparent to opaque on insertion and from opaque to
transparent on removal. You can create a more customized version using
the .opacity transition.

You also used a slide transition that inserts a view from the leading edge and
removes it off the trailing edge. When added or removed, the .move(edge:)
transition moves the view from or to a specified edge. To see the view move to and
from the bottom, change the transition to:

.transition(.move(edge: .bottom))

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 614

Run the app and tap Flight Status. Now tap any flight and then tap Show Terminal
Map. You’ll see the new view slide in from the bottom and the vanishing view slide
off toward the bottom.

A move transition to the bottom

The other edges are .top, .leading and .trailing.

Beyond moving, transitions can also animate views to appear on the screen.
A .scale() transition causes the view to expand when inserted from a single point
or to collapse when removed to a single point at the center. You can optionally
specify a scale factor parameter for the transition. The scale factor defines the ratio
of the size of the initial view. A scale of zero provides the default transition to a
single point. A value less than one causes the view to expand from that scaled size
when inserted or collapse to it when removed. Values greater than one work the
same. However, the view at the end of the transition is larger than the final view.

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 615

You can also specify an anchor parameter for the point on the view where the
transition centers. An enumeration provides constants for the view’s corners, sides
and center. You can also provide a custom offset.

The final transition type allows you to specify an offset either as a CGSize or a pair
of Length values. The view moves from that offset when inserted and toward it when
removed.

Exercise: As with animations, the best way to see how transitions work is to
try them. Take each transition and use it in place of .slide transition in the
FlightTerminalMap. Toggle the view on and off to see how the animation
works as the view appears and leaves.

Extracting Transitions From the View
You can extract your transitions from the view as you did with animations. You don’t
add it at the struct level as with an animation but at the file scope. At the top of
FlightInfoPanel.swift add the following:

extension AnyTransition {
 static var buttonNameTransition: AnyTransition {
 .slide
 }
}

This extension declares your transition as a static property of AnyTransition. Now
use it on the TerminalMapView. Change the conditional showing TerminalMapView
to:

if showTerminal {
 TerminalMapView(flight: flight)
 .transition(.buttonNameTransition)
}

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 616

Run the app and tap Flight Status. Now tap any flight and then tap Show Terminal
Map. You’ll see it works as the first transition example did, except it moves in from
the leading edge and out to the trailing edge.

Horizontal slide transition

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 617

Async Transitions
SwiftUI lets you specify different transitions when adding and removing a view.
Change the static property to:

extension AnyTransition {
 static var buttonNameTransition: AnyTransition {
 let insertion = AnyTransition.move(edge: .trailing)
 .combined(with: .opacity)
 let removal = AnyTransition.scale(scale: 0.0)
 .combined(with: .opacity)
 return .asymmetric(insertion: insertion, removal: removal)
 }
}

You combine the two transitions with the combined(with:) modifier. Preview this
new transition.You’ll see the view moves in from the trailing edge as it fades in.
When SwiftUI removes the view, it will shrink to a point while fading out.

An asymmetric transition

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 618

Now that you’ve learned about animation and transitions, you’ll see how to link
transitions into more complex animations.

Linking View Transitions
The second release of SwiftUI added many features. You’ll use the
matchedGeometryEffect method in this section. It allows you to synchronize the
animations of multiple views. Think of it as a way to tell SwiftUI to connect the
animations between two objects.

Open AwardsView.swift under the AwardsView group. This view displays awards
using the grid you developed in Chapter 16: “Grids”. When you tap on an award, it
transitions to a new view displaying its details. You’ll change it to pop-up the award
details over the grid.

Add the following code to the top of the view after the flightNavigation
EnvironmentObject:

@State var selectedAward: AwardInformation?

When the user taps an award, you’ll store it in this optional state variable.
Otherwise, the property will be nil. Since that tap action takes place in a subview,
you’ll need to pass this into that subview.

Open AwardGrid.swift. Add the following binding after the awards property:

@Binding var selected: AwardInformation?

Using this binding, you’ll pass the state from the AwardsView to the AwardGrid.
Change the contents of the ForEach loop to:

AwardCardView(award: award)
 .foregroundColor(.black)
 .aspectRatio(0.67, contentMode: .fit)
 .onTapGesture {
 selected = award
 }

You’ve removed the navigation link and instead added an
onTapGesture(count:perform:) modifier to set the binding to the tapped award.

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 619

You also need to update the preview to add the new binding parameter. Change it to:

AwardGrid(
 title: "Test",
 awards: AppEnvironment().awardList,
 selected: .constant(nil)
)

Now, go back to AwardsView.swift and change the view to:

ZStack {
 // 1
 if let award = selectedAward {
 // 2
 AwardDetails(award: award)
 .background(Color.white)
 .shadow(radius: 5.0)
 .clipShape(RoundedRectangle(cornerRadius: 20.0))
 // 3
 .onTapGesture {
 selectedAward = nil
 }
 // 4
 .navigationTitle(award.title)
 } else {
 ScrollView {
 LazyVGrid(columns: awardColumns) {
 AwardGrid(
 title: "Awarded",
 awards: activeAwards,
 selected: $selectedAward
)
 AwardGrid(
 title: "Not Awarded",
 awards: inactiveAwards,
 selected: $selectedAward
)
 }
 }
 .navigationTitle("Your Awards")
 }
}
.background(
 Image("background-view")
 .resizable()
 .frame(maxWidth: .infinity, maxHeight: .infinity)
)

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 620

You now have a ZStack that shows one of two views depending on the if statement
results. The code inside the else condition didn’t change other than passing the
binding to the selectedAward state variable. There are some changes worth noting:

1. The first change is that you attempt to unwrap the state selectedAward state
variable. If that fails, you show the grid as before in the else part of the
statement.

2. If the unwrapping succeeded, you display the AwardDetails view that was
previously the NavigationLink target.

3. When the user taps the view, you set the selectedAward state variable back to
nil. This change removes the AwardDetails view and displays the grid.

4. You set the title to the name of the current award.

Run the app. Tap Your Awards and then tap any award in the grid. You’ll see the
view flips to the large details display for the award. Tap AwardDetails view, and the
grid appears again.

The transition is abrupt. You know you can fix that by adding a view transition. Find
the onTapGesture modifier in AwardsView, under comment three, and change it to:

.onTapGesture {
 withAnimation {
 selectedAward = nil
 }
}

Hopefully, you remember from earlier in this chapter this tells SwiftUI to animate
events caused by the state change in the closure. For the other end of the transition
in AwardGrid.swift, find the onTapGesture modifier in AwardGrid and change it to:

.onTapGesture {
 withAnimation {
 selected = award
 }
}

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 621

Run the app, and you’ll find the change works better. Now you have a nice fade-out/
fade-in effect that smooths the previously harsh transitions between the views.
There’s still no sense connecting the changes. The two views that you’re
transitioning between are separate with no connection. That’s where
matchedGeometryEffect(id:in:properties:anchor:isSource:) comes in. It lets
you connect the two view transitions.

You must specify the first two parameters. The id works much like other ids you’ve
encountered in SwiftUI. It uniquely identifies a connection, so giving two items the
same id links their animations. You pass a Namespace to the in property. The
namespace groups related items and the two together define unique links between
views.

Creating a namespace is simple. At the top of AwardsView, add the following code
after the selectedAward state variable.

@Namespace var cardNamespace

Now you have a unique namespace for the method.

After the onTapGesture modifier is attached to AwardDetails, add the following:

.matchedGeometryEffect(
 id: award.hashValue,
 in: cardNamespace,
 anchor: .topLeading
)

You use the existing hashValue property as the identifier along with your created
namespace. You can use any identifier as long as it’s unique within the namespace
and consistent. You also specify the anchor parameter to specify a location in the
view used to produce the shared values. It’s not always needed, but in this case, it
improves the animation.

Now you have one side set up but need to link the state change in the subview. To do
so, you need to pass the namespace into that view. Change the AwardGrids inside
the LazyVGrid to add it as a parameter:

AwardGrid(
 title: "Awarded",
 awards: activeAwards,
 selected: $selectedAward,
 namespace: cardNamespace
)
AwardGrid(
 title: "Not Awarded",

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 622

 awards: inactiveAwards,
 selected: $selectedAward,
 namespace: cardNamespace
)

Now open AwardGrid. First, you need to add a property to capture the passed
namespace. After the selected binding, add the following code:

var namespace: Namespace.ID

When you pass a namespace into a view, it comes in as a Namespace.ID type.

You also need to update to preview to pass this new parameter. Add the following to
the top of AwardGrid_Previews struct:

@Namespace static var namespace

Update the preview body to:

AwardGrid(
 title: "Test",
 awards: AppEnvironment().awardList,
 selected: .constant(nil),
 namespace: namespace
)

Now, add the following code after the onTapGesture(count:perform:) call:

.matchedGeometryEffect(
 id: award.hashValue,
 in: namespace,
 anchor: .topLeading
)

Notice this uses the namespace you passed in and therefore is the same namespace
as the parent view. Again, you also use the hashValue property on the award, the
same as used in the parent view. With the two parameters matching, SwiftUI knows
to link the transitions.

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 623

Run the app now. When you tap an award in the small grid, it shifts and expands
while changing to the AwardDetails view. Similarly, when you tap AwardDetails
view, it appears to shrink and move back to the smaller view inside the grid.

In motion matched geometry effect

Adding matchedGeometryEffect() only arranges for the geometry of the views to
be linked. The usual transition mechanisms applied to the views still take place
during the transition.

Displaying Charts
In Chapter 18: “Drawing & Custom Graphics”, you created a pie chart using
SwiftUI path components. Earlier editions of this book also walked through creating
charts using shapes and paths. SwiftUI provides an easier way to visualize data for
your uses — Swift Charts.

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 624

Swift Charts allows you to use the declarative syntax of SwiftUI to create charts. Like
most SwiftUI components, it supports dynamic font sizes, various screen sizes and
accessibility.

Run the app and tap Search Flights, then tap the name of any flight. From the flight
summary, tap On-Time History. You’ll see a list showing the recent history of how
punctual the flight has been for the last ten days.

Note: The first flight, US 810 to Denver, will provide a suitable range of delays
for this section.

Flight delay history

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 625

Looking at a few data points can be enlightening, but staring at a long list of
numbers isn’t the best way to gain insight. A list of numbers isn’t the easiest way to
display how warm a particular month was or to determine the driest months.

Most people have an easier time grasping information presented graphically. A chart
can provide a graphic representation of data designed to inform the viewer. In this
section, you’ll display this information in a bar chart using Swift Charts.

Creating a Bar Chart
A bar chart provides a bar for each data point. Each bar’s length represents the
numerical value and can run horizontally or vertically to suit your needs.

Create a new SwiftUI view named HistoryChartView.swift under the SearchFlights
group. First, add a second import to the top of the file:

import Charts

You must import the Swift Charts module in addition to SwiftUI. Now add a new
property to the view:

var flightHistory: [FlightHistory]

This property will store an array with the flight history you display the chart for.
Update the body of the preview to:

HistoryChartView(
 flightHistory: FlightData.generateTestFlight(date:
Date()).history
)

This code provides sample history data for the preview.

SwiftUI creates charts out of SwiftUI views. As you might expect, you begin with a
Chart view.

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 626

Change the body of the view to:

// 1
Chart {
 // 2
 ForEach(flightHistory, id: \.self) { history in
 // 3
 BarMark(
 // 4
 x: .value("Days Ago", history.day),
 y: .value("Minutes", history.timeDifference)
)
 }
}

Since this is your first chart, here’s what these parts do:

1. The Chart view defines the chart. You’ll provide details on the chart within the
view’s closure.

2. You have a data set to chart in the flightHistory array and use a ForEach loop
to go through it.

3. The BarkMark represents data you want to display in a bar chart.

4. You provide the x and y components of the chart. Here, the x parameter indicates
how many days ago the current history displays. The y parameter shows the
delay, which can be a negative number. The x component displays horizontally
across the chart, while the y component displays vertically.

Now go to FlightTimeHistory.swift and replace the ScrollView and its closure
with:

HistoryChartView(flightHistory: flight.history)
 .foregroundColor(.black)
 .background {
 Color.white
 }

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 627

You use the new view you created, passing in the history of the current flight. You
apply a black foreground and white background because the default colors don’t
work well with a darker background like this view has. Don’t worry; you’ll come back
to that late in the chapter.

Run the app, tap Search Flights and then tap a flight. You’ll see the new bar chart.

Your first bar chart

You can see the days increasing to the right across the chart with longer delays
creating long vertical bars.

Traditional bar charts plot horizontally like this with vertical bars.Because mobile
devices limit horizontal space, shifting to a vertical bar chart with the bars drawn
horizontally often better uses the available space.

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 628

You may think that you can do this by simply swapping the parameters. Try it,
change the parameters of BarkMark to:

x: .value("Minutes", history.timeDifference),
y: .value("Days Ago", history.day)

Now run the app and view the history chart for a flight. You’ll see … something
different from what you expected.

Incorrect vertical bar chart

There are three types of data supported by Swift Charts: quantitative, categorical,
and temporal. Doubles and Ints both fall into the first quantitative category. To get
the desired effect, the y parameter must be a categorical value such as a String.
Change the y property above to:

y: .value("Days Ago", "\(history.day) day(s) ago")

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 629

Note: Temporal values relate to time, but you won’t use those in this chapter.

The change produces a String that describes the day instead of the Int. Run the
app, and you’ll see what you probably expected earlier.

Vertical bar chart

Now that you have a bar chart, you can customize it to provide additional
information to the user.

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 630

Bar Chart Colors and Annotations
Swift charts will automatically provide colors for the chart unless you specify one.
You set the bars to black by applying the .foregroundColor(.black) modifier onto
the HistoryChartView view in FlightTimeHistory.swift. Adding color to the bars
provides an excellent way to convey additional information. In this section, you’ll
adjust the bars so the color reflects the length of the delay.

In HistoryChartView.swift, add the following modifier to the BarMark view:

.foregroundStyle(history.delayColor)

You set the bar’s color to the delayColor property from the history. Run the app and
view a flight history.

Bar chart with color reflecting the length of the delay

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 631

The bars now transition from green, yellow, orange and red as the delays get longer.
A solid color fill works well for many cases, but you can apply any SwiftUI style to the
bar.

Since the colors have a defined transition, making it a good place to use a gradient.
Add the following method after the flightHistory property:

func barGradientColors(_ history: FlightHistory) -> Gradient {
 if history.status == .canceled {
 return Gradient(
 colors: [
 Color.green,
 Color.yellow,
 Color.red,
 Color(red: 0.5, green: 0, blue: 0)
])
 }
 if history.timeDifference <= 0 {
 return Gradient(colors: [Color.green])
 }
 if history.timeDifference <= 15 {
 return Gradient(colors: [Color.green, Color.yellow])
 }
 return Gradient(
 colors: [Color.green, Color.yellow, Color.red]
)
}

This method returns a gradient consisting of colors from green through the other
colors to the color matching the length of the delay. Now you can use the gradient by
updating the foregroundStyle(_:) modifier on the BarMark to:

.foregroundStyle(
 // 1
 LinearGradient(
 gradient: barGradientColors(history),
 // 2
 startPoint: .leading,
 endPoint: .trailing
)
)

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 632

You use the barGradientColors(_:) method to get the colors for the gradient and
the following:

1. A linear gradient provides a smooth transition between colors along a straight
line through an object, in this case, the rectangle. SwiftUI provides other
gradients that change from a central point or sweep around a central point.

2. The values for startPoint and endPoint use a UnitPoint struct. This struct scales a
range of values into a zero to one range, making it easier to define a range
without worrying about the exact values. UnitPoints origin coordinate is at (0, 0)
in the top-left corner of the shape and increases to the right and downward to
(1.0, 1.0). The .leading and .trailing static types correspond to points at (0, 0.5)
and (1.0, 0.5).

Run the app, and your bars now transition from green to the appropriate color to
match the delay. The information is the same, but the gradient makes it feel more
dynamic and better conveys the progression of longer delays.

Each bar now has a gradient

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 633

With the colors matching the delay length, you’ll now add an annotation to each bar
of the chart displaying the length of the delay. After the closing parenthesis of the
foregroundStyle(_:) modifier.

.annotation(position: .overlay) {
 Text(history.flightDelayDescription)
 .font(.caption)
}

The annotation(position:alignment:spacing:content:) modifier allows you to
add an annotation to each bar. Here you specify the overlay position, showing the
annotation on top of the bar. You define the annotation inside the closure. Here that
displays the flightDelayDescription property for the current bar in the caption
font.

Run the app, and your new annotations will appear with each bar.

Text annotations added to each bar in the chart

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 634

Defining Chart Axes
Swift Charts usually provides a good scale for your chart. In this case, there’s a lot of
wasted space, especially for negative minute lengths that will never happen. Add the
following code after the Chart closure to fix this.

// 1
.chartXAxis {
 // 2
 AxisMarks(values: [-10, 0, 10, 20, 30, 40, 50, 60]) { value in
 // 3
 AxisGridLine(
 centered: true,
 stroke: StrokeStyle(lineWidth: 1.0, dash: [5.0, 5.0])
)
 }
}

Here’s how this code defines the axis:

1. You use the chartXAxis(content:) to customize the x-axis of a chart. SwiftUI
will no longer provide any default axis, so you must specify all elements for the
axis.

2. This AxisMarks view tells SwiftUI to draw axis marks. You use the values
parameter to pass an array of the values where you want to draw a grid line. The
closure will be called for each value to show a grid line, in this case, for each
value in the values array. The value parameter will be passed to the closure
containing the current axis mark. You’ll see how to use this later.

3. The AxisGridLine lets you define the characteristics of the grid line. Setting
centered to true centers the grid line between the two axis values. You specify
the attributes for the line drawn to the stroke parameter. Here, you draw a one-
point wide dashed line alternating between five points long painted and
unpainted segments.

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 635

Run the app, and you’ll see the changes to the chart.

The chart after specifying a custom axis

The chart now tightens on the data with less empty space to help slight differences
stand out. Showing more marks helps identify values from the bars without crowding
the chart.

Now that you’re looking at customization, this makes a good point to address that
many default colors don’t work well on a dark background. Add the following
modifier to AxisGridLine:

.foregroundStyle(.white.opacity(0.8))

This modifier will change the text to white. The opacity(_:) modifier mutes the
color and helps differentiate between the chart data and the grid line.

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 636

Now go to FlightTimeHistory.swift and remove the
background(alignment:content:) and foregroundColor(_:) modifiers on
HistoryChartView. Change the view to:

HistoryChartView(flightHistory: flight.history)
 .frame(height: 600)

This change sets a fixed height on the chart to space it out. Now wrap the
HistoryChartView and HistoryPieChart inside a ScrollView to keep the bar and
pie charts visible on smaller devices.

Run the app, and you’ll see the new layout. Notice how adding the
foregroundStyle(_:) modifier lets it appear against the dark background, unlike
the defaults.

Start of adjust chart to light background

In the next section, you’ll finish customizing the chart to show up on this dark
background.

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 637

Customizing the Chart Colors
You changed the color of the grid lines but not the labels on those grid lines. Add the
following code after the foregroundStyle(_:) modifier to AxisGridLine inside the
closure for AxisMarks:

AxisValueLabel() {
 // 1
 if let value = value.as(Int.self) {
 // 2
 Text(value, format: .number)
 .foregroundColor(Color.white.opacity(0.8))
 }
}

This AxisValueLabel tells SwiftUI you want to customize the label drawn for the
value. Here’s how you do that:

1. You attempt to unwrap the current value as an Int.

2. If step one succeeds, you create a Text view to show the value, and it displays in
the same slightly transparent white that you did to the axis line.

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 638

Run the app to see the grid labels now appear.

Chart with grid labels

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 639

Now, you’ll make the changes to the Y axis. Add the following code after the
chartXAxis view:

.chartYAxis {
 // 1
 AxisMarks(values: .automatic) { value in
 AxisGridLine(centered: false, stroke: StrokeStyle(lineWidth:
1.0))
 .foregroundStyle(Color.white.opacity(0.8))
 AxisValueLabel() {
 // 2
 if let value = value.as(String.self) {
 Text(value)
 .font(.footnote)
 .foregroundColor(Color.white.opacity(0.8))
 }
 }
 }
}

The code is almost identical to what you’ve already seen. But there are two
differences to note:

1. You pass .automatic to values to let SwiftUI automatically provide axis values,
which is the default behavior.

2. You unwrap the value as a String and use the footnote font.

Next, you’ll add a label for the Y axis. Add the following code after chartYAxis:

.chartYAxisLabel {
 Text("Delay in Minutes")
 .foregroundColor(.white)
 .font(.callout)
}

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 640

Using the’ callout’ font, you create a white label for the Y axis. Run the app to see
that the chart shows clearly against the dark background.

The chart customized to work on a dark background

The chart looks good, but because the axis lines you specified are near the minimum
and maximum values, the bars bump right against the chart’s edges. To give them
some space, add the following code after chartYAxisLabel:

.chartXScale(domain: -18...63)

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 641

The chartXScale(domain:type:) modifier specifies a scale for the X axis. You set a
range from three below the minimum and maximum values expected for the chart. If
you have data points beyond this range, Swift Charts will cut them off the chart.

Note: As of Xcode 14.2, a bug causes this modifier to break the preview for
HistoryChartView. It’ll show correctly on the FlightTimeHistory preview,
the simulator, or a device.

Adding a margin to the sides of the chart using the range

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 642

Key Points
• Transitions are a subset of animations applied when SwiftUI shows or hides a view.

• Using matchedGeometryEffect lets you link view transitions into a single
animation.

• You create charts using the Swift Charts module and the Chart view.

• You can customize the axis for a chart using the chartXAxis and chartYAxis
views.

• Within these axis methods, you can use AxisMarks to define the grid line values,
use AxisGridLine to set the properties of the line and use AxisValueLabel to
control the axis label’s appearance.

• You can use chartXScale and chartYScale to define the range shown on the
chart.

Where to Go From Here?
Most references in Chapter 19: “Animations” also apply to view transitions.

Chapter 3: “Transitions” of SwiftUI Animations by Tutorials (https://
www.kodeco.com/books/swiftui-animations-by-tutorials/) discussed transitions in
more detail.

Swift Charts Tutorial: Getting Started (https://www.kodeco.com/36025169-swift-
charts-tutorial-getting-started) covers vertical bar charts and line charts.

For examples of drawing charts without Swift Charts, you can view Chapter 18 in
earlier editions of this book or SwiftUI Tutorial for the tutorial iOS: Creating Charts
(https://www.kodeco.com/6398124-swiftui-tutorial-for-ios-creating-charts).

SwiftUI by Tutorials Chapter 20: View Transitions & Charts

 643

21Chapter 21: Complex
Interfaces
By Bill Morefield

SwiftUI represents an exciting new paradigm for UI design. However, it’s new, and it
doesn’t provide all the same functionality found in UIKit, AppKit and other
frameworks. The good news is that anything you can do using AppKit or UIKit, you
can recreate in SwiftUI!

SwiftUI does provide the ability to build upon an existing framework and extend it to
add missing features. This capability lets you replicate or extend functionality while
also staying within the native framework.

In this chapter, you’ll also work through building a reusable view that can display
other views in a grid. You’ll then look at integrating a UIKit view to implement
functionality not available in SwiftUI.

 644

Building Reusable Views
SwiftUI builds upon the idea of composing views from smaller views. Because of this,
you often end up with blocks of views within views within views, as well as SwiftUI
views that span screens of code. Splitting components into separate views makes
your code cleaner. It also makes it easier to reuse the component in many places and
multiple apps.

Open the starter project for this chapter. Build and run the app. Tap on the Flight
Timeline button to bring up the empty timeline view. Right now, it shows a
scrollable list of the flights. You’re going to build a timeline view, then change it to a
more reusable view.

Simple flight list

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 645

It’s useful to keep a new solution simple in development instead of trying to do
everything at once. You will initially build the timeline specific to your view. First,
you’ll work on the cards.

Open FlightCardView.swift inside the Timeline folder and add the following view
above FlightCardView:

struct DepartureTimeView: View {
 var flight: FlightInformation

 var body: some View {
 VStack {
 if flight.direction == .arrival {
 Text(flight.otherAirport)
 }
 Text(
 shortTimeFormatter.string(
 from: flight.departureTime)
)
 }
 }
}

This view displays the departure and arrival times for the flight with the airport’s
name above the other end’s time.

Add the following code after the just added view:

struct ArrivalTimeView: View {
 var flight: FlightInformation

 var body: some View {
 VStack {
 if flight.direction == .departure {
 Text(flight.otherAirport)
 }
 Text(
 shortTimeFormatter.string(
 from: flight.arrivalTime
)
)
 }
 }
}

Now to use those new views. Inside FlightCardView, add the following code at the
end of the VStack:

HStack(alignment: .bottom) {

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 646

 DepartureTimeView(flight: flight)
 Spacer()
 ArrivalTimeView(flight: flight)
}

Run the app, view the Flight Timeline and you’ll see your changes.

Simple flight cards

Showing Flight Progress
Next, you’ll add an indicator of the progress of a flight to the card. The status of a
flight will usually be either before departure or after landing. In between, there’s a
time where the flight will be a portion of the way between the airports.

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 647

Add the following code to the FlightCardView view after the flight parameter:

func minutesBetween(_ start: Date, and end: Date) -> Int {
 // 1
 let diff = Calendar.current.dateComponents(
 [.minute], from: start, to: end
)
 // 2
 guard let minute = diff.minute else {
 return 0
 }
 // 3
 return abs(minute)
}

This method takes two Date objects and returns the number of minutes between
them.

1. The dateComponents(_:from:to:) method returns the differences between two
dates in the requested units, in this case, minutes.

2. If something went wrong and the minute property doesn’t exist, then return zero
minutes.

3. Return the absolute value of the number of minutes. The absolute value returns
only the magnitude ignoring the sign, always resulting in a positive value.

Now you case use this method to get the progress of the flight as floating point
value. Add the following code after the minutesBetween(_:and:) method:

func flightTimeFraction(flight: FlightInformation) -> CGFloat {
 // 1
 let now = Date()
 // 2
 if flight.direction == .departure {
 // 3
 if flight.localTime > now {
 return 0.0
 // 4
 } else if flight.otherEndTime < now {
 return 1.0
 } else {
 // 5
 let timeInFlight = minutesBetween(
 flight.localTime, and: now
)
 // 6
 let fraction =
 Double(timeInFlight) / Double(flight.flightTime)
 // 7

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 648

 return CGFloat(fraction)
 }
 } else {
 if flight.otherEndTime > now {
 return 0.0
 } else if flight.localTime < now {
 return 1.0
 } else {
 let timeInFlight = minutesBetween(
 flight.otherEndTime, and: now
)
 let fraction =
 Double(timeInFlight) / Double(flight.flightTime)
 return CGFloat(fraction)
 }
 }
}

There’s a lot here, and it’s somewhat repetitive:

1. You put the current Date into a variable as you’ll refer to it often in this method.

2. The first case covers departing flights. The case for arriving flights works the
same, but with the local and other times swapped.

3. If the localTime for the departing flight is after now, then it’s not departed yet,
meaning the fraction is zero.

4. If the otherEndTime parameter for the departing flight is before now, then the
flight arrived, meaning the fraction is one.

5. If neither is true, then the flight is somewhere in the air. This code uses the
minutesBetween(_:and:) method to get the minutes between now and the
flight’s departure time in minutes.

6. The flightTime parameter gives the total length of the flight. You calculate the
fraction as the value calculated in the last step, divided by the flight’s length.

7. You return the value as a CGFloat to make it easier to work with drawings. For
more on this, look in Chapter 18: "Drawing & Custom Graphics".

The case for arriving flights works much the same as described except the roles of
the local and remote times swapped.

With a method to calculate the flight location, you’ll now add a graphical
representation in the next section.

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 649

Adding Inline Drawings
In this section you’ll add a view to show the flight progress. Add the following view
after the ArrivalTimeView view struct:

struct FlightProgressView: View {
 var flight: FlightInformation
 var progress: CGFloat

 var body: some View {
 // 1
 GeometryReader { proxy in
 Image(systemName: "airplane")
 .resizable()
 // 2
 .offset(x: proxy.size.width * progress)
 .frame(width: 25, height: 25)
 .foregroundColor(flight.statusColor)
 // 3
 }.padding([.trailing], 20)
 }
}

If you need a refresher on drawing, see Chapter 18: Drawing & Custom Graphics.
The specifics for this view:

1. The GeometryReader causes the view to fill the space. It also provides a
GeometryProxy you will use to get the width of the view.

2. You get the view’s width using the size property on the GeometryProxy.
Multiplying this value by the fraction of the flight gives an offset to reflect the
flight’s progress.

3. The offset in step two ignores that the offset controls the left side of the image.
Setting the offset to the far edge pushes the image outside the view. You add a 20
point padding to the view’s trailing edge, providing a space for the image.

Now use the new view. In the HStack within FlightCardView replace the Spacer
between DepartureTimeView and FlightProgressView with a call to the function:

FlightProgressView(
 flight: flight,
 progress: flightTimeFraction(
 flight: flight
)
)

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 650

Build and run the app, and you’ll see the progress indicator added to each flight.

Showing flight progress

Now that you have the underlying grid in place, you’ll let the caller specify the view
inside the grid.

Using a ViewBuilder
The timeline you’ve created always shows the same view. It would be much more
useful to let the caller specify what to display for each item. That’s where the SwiftUI
ViewBuilder comes in.

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 651

Recall the initial code for this list below:

ForEach(flights) { flight in
 FlightCardView(flight: flight)
}

You passed FlightCardView to the closure of the ForEach loop. ForEach uses a
ViewBuilder to create a parameter for the view-producing closure. You’ll now move
the timeline to a separate view and update it to take a passed view through the
closure instead of hard—coding it.

Create a new SwiftUI view named GenericTimeline in the Timeline group. First,
update the struct definition to the following:

struct GenericTimeline<Content>: View where Content: View {

This change allows GenericTimeline to accept View values as dependencies. With
that, update the contents of GenericTimeline to the following:

// 1
let flights: [FlightInformation]
let content: (FlightInformation) -> Content

// 2
init(
 flights: [FlightInformation],
 @ViewBuilder content: @escaping (FlightInformation) -> Content
) {
 self.flights = flights
 self.content = content
}

// 3
var body: some View {
 ScrollView {
 VStack {
 ForEach(flights) { flight in
 // 4
 content(flight)
 }
 }
 }
}

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 652

Here’s what you’ve added:

1. This new GenericTimeline view will take a list of FlightInformation values
and a closure that instructs how this view should use FlightInformation to
display a view.

2. In order to make use of content, you need to use the @ViewBuilder function
builder. You’ll create a custom initializer that applies the function builder. The
initializer sets the internal properties to the values passed into the initializer.

3. Your new body property displays a list of generic views that are constructed using
the content view builder.

4. The view passed in to the ViewBuilder will appear where you use the content
method.

Next, update the preview to include the new changes you’ve made:

GenericTimeline(
 flights: FlightData.generateTestFlights(
 date: Date()
)
) { flight in
 FlightCardView(flight: flight)
}

Now that GenericTimeline is set up, navigate to FlightTimelineView.swift. Find
the following block of code that creates the list of views:

ScrollView {
 VStack {
 ForEach(flights) { flight in
 FlightCardView(flight: flight)
 }
 }
}

Replace the above code with the following:

GenericTimeline(flights: flights) { flight in
 FlightCardView(flight: flight)
}

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 653

Take a moment to appreciate what you’ve created here. Instead of hard coding the
list-view behavior in FlightTimelineView, you’re now using a generic view that
does this for you.

Run the app and verify the timeline looks as before. While there’s no change in
appearance, you’ve gained a more flexible way to choose the view to show for each
flight.

Timeline with enclosed view

While this change makes it easier to specify different views, it still relies on the
FlightInformation structure preventing reuse in other projects. In the next
section, you’ll address that limitation.

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 654

Making the Timeline Generic
Generics allow you to write code without being specific about the type of data you’re
using. You can write a function once and use it on any data type.

First, change the declaration of the view to:

struct GenericTimeline<Content, T>: View where Content: View {

You’re saying here that you want to use a generic type in the struct. Instead of
specifying Int, FlightInformation or another type, you can now specify T. You can
now change the other references to FlightInformation into the generic type T
instead. Change the declaration of the flights property to:

var events: [T]

You’re also changing the name to reflect this value no longer ties only to flights but
also works with any event. You also need to change the type for the parameter
passed into the closure. Change the definition of the Content property to:

let content: (T) -> Content

You’ll also need to change the custom initializer to use T instead of the
FlightInformation type. You also need to change the flights property to events.
Change the init() method to:

init(
 events: [T],
 @ViewBuilder content: @escaping (T) -> Content
) {
 self.events = events
 self.content = content
}

Now you need to change references in the view to flights to events. First change
the preview to use the new parameter name:

GenericTimeline(
 events: FlightData.generateTestFlights(
 date: Date()
)
) { flight in
 FlightCardView(flight: flight)
}

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 655

There’s a hidden problem lurking in the view that results from using a generic.
Change the view to:

ScrollView {
 VStack {
 ForEach(events) { flight in
 content(flight)
 }
 }
}

You’ll see an error:Referencing initializer ‘init(_:content:)’ on ‘ForEach’ requires
that ‘T’ conform to ‘Identifiable’.Generics add flexibility, but this is the cost of
that flexibility. There’s no way for SwiftUI to know that the type you later specify will
implement the Identifiable protocol required by ForEach. To work around this,
change the code to:

ScrollView {
 VStack {
 ForEach(events.indices, id: \.self) { index in
 content(events[index])
 }
 }
}

Instead of iterating over the collection items, you iterate over the collection’s
indices, which ForEach happily accepts. You reference the individual elements of the
collection using the index.

Now back in FlightTimelineView.swift change the parameter on GenericTimeline
from flights to events:

GenericTimeline(events: flights) { flight in

You’re done. Generics let you pivot from a specific reference to the generic
represented by T in this case. Swift handles the rest.

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 656

Run the app to see that your timeline still works.

Generic timeline

Right now, your timeline isn’t that much of a timeline. Let’s change that. You’ll also
learn about another feature of Swift used in SwiftUI — KeyPaths.

Using Keypaths
A KeyPath lets you refer to a property on an object. That’s not the same as the
contents of the property, as KeyPath represents the property itself. You use them
quite often in SwiftUI. In fact, you’re already using them. In the last section you used
a KeyPath in the following code:

ForEach(events.indices, id: \.self) { index in

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 657

When using ForEach with a collection of objects that don’t implement
Identifiable, you pass in a KeyPath to the id parameter. The KeyPath provides
SwiftUI with a property that identifies each element uniquely. Here \.self is a
KeyPath telling SwiftUI that the object uniquely identifies itself.

Since your timeline takes a generic type, meaning you could pass in any object, you
need a way to let the view know the property on the object that contains the time
information. That’s the perfect use for a KeyPath.

First in GenericTimeline.swift add the following property after content:

let timeProperty: KeyPath<T, Date>

Declaring a KeyPath takes two parameters. The first is the type of object for it. In this
case, you use the same T generic type you added in the previous section. The second
parameter tells Swift that the parameter the KeyPath points to will be of type Date.

You also need to update the init method to add the new property:

init(
 events: [T],
 timeProperty: KeyPath<T, Date>,
 @ViewBuilder content: @escaping (T) -> Content
) {
 self.events = events
 self.content = content
 self.timeProperty = timeProperty
}

Next, update the preview to pass in the new parameter:

GenericTimeline(
 events: FlightData.generateTestFlights(
 date: Date()
),
 timeProperty: \.localTime
) { flight in
 FlightCardView(flight: flight)
}

This KeyPath tells SwiftUI to use the localTime property of the FlightInformation
objects to determine each object’s time. Now that you can specify a KeyPath, you can
use it.

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 658

Now that you can indicate the time property, you can change the view to look bit
more like a timeline. Add the following code after the init method:

var earliestHour: Int {
 let flightsAscending = events.sorted {
 // 1
 $0[keyPath: timeProperty] < $1[keyPath: timeProperty]
 }

 // 2
 guard let firstFlight = flightsAscending.first else {
 return 0
 }
 // 3
 let hour = Calendar.current.component(
 .hour,
 from: firstFlight[keyPath: timeProperty]
)
 return hour
}

This method takes the events and sorts them in ascending by the property specified
using the KeyPath:

1. The method first sorts the objects using the KeyPath. The $0 syntax within the
sorted method’s closure indicates one of the objects under evaluation. To access
a property of it defined using a KeyPath, you use the [keyPath: timeProperty]
syntax.

2. The first element should be the earliest. If there is no first element — the array is
empty — then return the earliest possible hour.

3. You then get the hour component of the first element and returns it. You use a
similar syntax as in step one to get the time property using
firstFlight[keyPath: timeProperty].

Now add a similar method after this one to get the latest hour in the events:

var latestHour: Int {
 let flightsAscending = events.sorted {
 $0[keyPath: timeProperty] > $1[keyPath: timeProperty]
 }

 guard let firstFlight = flightsAscending.first else {
 return 24
 }
 let hour = Calendar.current.component(
 .hour,
 from: firstFlight[keyPath: timeProperty]

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 659

)
 return hour + 1
}

This method does the same thing, except it sorts from latest to earliest, so the first
element will be the hour of the latest event. You add an hour since you will use an
open range in the loop. For no events, it returns the latest possible hour.

Next add a method to get the events within a specified hour:

func eventsInHour(_ hour: Int) -> [T] {
 return events
 .filter {
 let flightHour =
 Calendar.current.component(
 .hour,
 from: $0[keyPath: timeProperty]
)
 return flightHour == hour
 }
}

Like the other two methods, this one uses the KeyPath to filter only flights where the
hour component of the time matches that passed into the method.

Add one more method:

func hourString(_ hour: Int) -> String {
 let tcmp = DateComponents(hour: hour)
 if let time = Calendar.current.date(from: tcmp) {
 return shortTimeFormatter.string(from: time)
 }
 return "Unknown"
}

This one takes a passed hour and creates a string displaying the time at that hour.

Now you’ll update the view using these new methods. Change the body for the
GenericTimeline to:

ScrollView {
 VStack(alignment: .leading) {
 // 1
 ForEach(earliestHour..<latestHour, id: \.self) { hour in
 // 2
 let hourFlights = eventsInHour(hour)
 // 3
 Text(hourString(hour))
 .font(.title2)

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 660

 // 4
 ForEach(hourFlights.indices, id: \.self) { index in
 content(hourFlights[index])
 }
 }
 }
}

You’ve added a few more features to the timeline. Here are the new items:

1. You now loop through the hours of events using the earliestHour and
earliestHour properties.

2. For each hour, you use the eventsInHour(_:) method to get only the events
taking place in that hour.

3. Each hour shows a header with the time using the hourString method.

4. You now only loop through the hourFlights indices since you’re splitting the
overall events into hours.

With a generic timeline done, you can now use it in your view.

Using the Timeline
First let’s give a nicer appearance to the cards. Open FlightCardView.swift and add
the following at the end of the VStack:

.padding()

.background(
 Color.gray.opacity(0.3)
)
.clipShape(
 RoundedRectangle(cornerRadius: 20)
)
.overlay(
 RoundedRectangle(cornerRadius: 20)
 .stroke()
)

Back in FlightTimelineView.swift, update the GenericTimeline to:

GenericTimeline(
 events: flights,
 timeProperty: \.localTime) { flight in
 FlightCardView(flight: flight)
}

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 661

Run the app to see your improved timeline.

Completed timeline

That’s the power of SwiftUI, Swift, KeyPaths and generics. In this section, you’ve
built a timeline and encapsulated it so you can pass any object and display the
results. Great work!

Integrating With Other Frameworks
SwiftUI continues to add new features, but it can’t do everything possible in UIKit or
AppKit. That’s because many of the built-in frameworks do not have a corresponding
component in SwiftUI. Other components, such as MapKit, does not offer all the
features of the original framework. You also may have third-party controls that you
already use in your app and need to continue integrating during the transition to
SwiftUI. In this section, you’ll look at using your generic timeline with MapKit.

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 662

To work with UIViews and UIViewControllers in SwiftUI, you must create types
that conform to the UIViewRepresentable and UIViewControllerRepresentable
protocols. SwiftUI will manage these views’ life cycle, so you only need to create and
configure the views. The underlying frameworks will take care of the rest.

Create a new Swift file — not SwiftUI view — named FlightMapView.swift in the
Timeline group.

Replace the contents of FlightMapView.swift with:

import SwiftUI
import MapKit

struct FlightMapView: UIViewRepresentable {
 var startCoordinate: CLLocationCoordinate2D
 var endCoordinate: CLLocationCoordinate2D
 var progress: CGFloat
}

This code imports the MapKit UIKit for this file. You next create the type that will
wrap the MKMapView. SwiftUI includes several protocols that allow integration to
views, view controllers and other app framework components. You pass in a starting
coordinate and ending coordinate to display on the map along with a progress
fraction. This fraction indicates how much of the path to draw.

There are two methods in the UIViewControllerRepresentable protocol you will
need to implement: makeUIViewController(context:), and
updateUIViewController(_:context:). You’ll create those now.

Add the following code to the struct below the progress parameter:

func makeUIView(context: Context) -> MKMapView {
 MKMapView(frame: .zero)
}

SwiftUI will call makeUIViewController(context:) once when it is ready to display
the view. Here, you create a MKMapView programmatically and return it using the
Swift feature that treats a single-line method as an implicit return. Any UIKit
ViewController would work here; there are similar protocols for AppKit, WatchKit
and other views and view controllers on the appropriate platform.

Now add this code to the end of the struct to implement the second method:

func updateUIView(_ view: MKMapView, context: Context) {
 // 1
 let startPoint = MKMapPoint(startCoordinate)

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 663

 let endPoint = MKMapPoint(endCoordinate)

 // 2
 let minXPoint = min(startPoint.x, endPoint.x)
 let minYPoint = min(startPoint.y, endPoint.y)
 let maxXPoint = max(startPoint.x, endPoint.x)
 let maxYPoint = max(startPoint.y, endPoint.y)

 // 3
 let mapRect = MKMapRect(
 x: minXPoint,
 y: minYPoint,
 width: maxXPoint - minXPoint,
 height: maxYPoint - minYPoint
)
 // 4
 let padding = UIEdgeInsets(
 top: 10.0,
 left: 10.0,
 bottom: 10.0,
 right: 10.0
)
 // 5
 view.setVisibleMapRect(
 mapRect,
 edgePadding: padding,
 animated: true
)
 // 6
 view.mapType = .mutedStandard
 view.isScrollEnabled = false
}

SwiftUI calls updateUIViewController(_:context:) when it wants you to update
the presented view controller’s configuration. Much of the setup you would typically
do in viewDidLoad() in a UIKit view will go into this method. For the moment, you
define the map to show.

1. When you project the curved surface of the Earth onto a flat surface, such as a
device screen, some distortion occurs. You convert the start and end coordinates
on the globe to MKMapPoint values in the flattened map. Using MKMapPoints
dramatically simplifies the calculations to follow.

2. Next, you determine the minimum and maximum x and y values among these
points.

3. You create a MKMapRect from those minimum and maximum values. The
resulting rectangle covers the space between the two points along the rectangle’s
edge.

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 664

4. Next, you create a UIEdgeInsets struct with all sides set to an inset of ten
points.

5. You use the setVisibleMapRect(_:edgePadding:animated:) method to set
the map’s viewable area. This method uses the rectangle calculated in step three
as the area to show. The edgePadding adds the padding that you set up in step
four, so the airports’ locations are not directly at the edge of the view and,
therefore, easier to see.

6. You set the type of map and do not allow the user to scroll the map.

Since you created a Swift file and not a SwiftUI view, you didn’t get a preview by
default. To fix that, at the bottom of the file after the FlightMapView struct, add the
following code:

struct MapView_Previews: PreviewProvider {
 static var previews: some View {
 FlightMapView(
 startCoordinate: CLLocationCoordinate2D(
 latitude: 35.655, longitude: -83.4411
),
 endCoordinate: CLLocationCoordinate2D(
 latitude: 36.0840, longitude: -115.1537
),
 progress: 0.67
)
 .frame(width: 300, height: 300)
 }
}

Wrapped mapview

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 665

Now that you have a map, you’ll add an overlay to it to show each airport along with
the progress for active flights. In the next section, you’ll learn how to handle
delegates when wrapping non-SwiftUI components.

Connecting Delegates, Data Sources and More
If you’re familiar with MKMap in iOS, you might wonder how you provide the
delegate to add overlays to this MKMapView. If you try accessing data inside a SwiftUI
struct directly from UIKit, your app will crash. Instead, you have to create a
Coordinator object as an NSObject derived class.

This class acts as a transition or bridge between the data inside SwiftUI and the
external framework. You can see context passed in as the second parameter in the
updateUIViewController(_:context:) method. Add the following code for the
new class at the top of FlightMapView.swift, before the FlightMapView struct:

class MapCoordinator: NSObject {
 var mapView: FlightMapView
 var fraction: CGFloat

 init(
 _ mapView: FlightMapView,
 progress: CGFloat = 0.0
) {
 self.mapView = mapView
 self.fraction = progress
 }
}

You’re creating the class and a custom initializer to pass in the flight information to
the class. This Coordinator will allow you to connect the delegate. It’s also where
you could connect a data source for something like a UITableView along with a place
to deal with user events.

You need to tell SwiftUI about the Coordinator class. Add the following code to the
FlightMapView struct after makeUIView(context:):

func makeCoordinator() -> MapCoordinator {
 MapCoordinator(self, progress: progress)
}

This method creates the coordinator and returns it to the SwiftUI framework to pass
in where necessary. SwiftUI will call makeCoordinator() before
makeUIViewController(context:) so it’s available during the creation and
configuration of your non-SwiftUI components.

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 666

You can now implement the overlays that need a delegate. In
updateUIView(_:context:) add the following code to the top of the method:

let startOverlay = MKCircle(
 center: startCoordinate,
 radius: 10000.0
)
let endOverlay = MKCircle(
 center: endCoordinate,
 radius: 10000.0
)
let flightPath = MKGeodesicPolyline(
 coordinates: [startCoordinate, endCoordinate],
 count: 2
)
view.addOverlays([startOverlay, endOverlay, flightPath])

You create three overlays. The first and second are circles located at the start and
end coordinates. You next create a MKGeodesicPolyline connecting the start and
end coordinates. An MKGeodesicPolyline creates a shape that follows the contours
of the Earth along the shortest path between points. As mentioned earlier, the
movement from the Earth’s curved surface to the flat map distorts shapes. An
MKGeodesicPolyline reflects the shortest path over the Earth. It often appears
curved when shown on a flat map. It also provides a good representation of the route
a plane would take flying between two points.

If you’re familiar with MKMapView, then you know you need implement the delegate
for the overlays to show. Add the following class extension after the current
MapCoordinator class definition:

extension MapCoordinator: MKMapViewDelegate {
 func mapView(
 _ mapView: MKMapView,
 rendererFor overlay: MKOverlay
) -> MKOverlayRenderer {
 if overlay is MKCircle {
 let renderer = MKCircleRenderer(overlay: overlay)
 renderer.fillColor = UIColor.black
 renderer.strokeColor = UIColor.black
 return renderer
 }

 if overlay is MKGeodesicPolyline {
 let renderer = MKPolylineRenderer(overlay: overlay)
 renderer.strokeColor = UIColor(
 red: 0.0,
 green: 0.0,
 blue: 1.0,
 alpha: 0.3

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 667

)
 renderer.lineWidth = 3.0
 renderer.strokeStart = 0.0
 renderer.strokeEnd = fraction
 return renderer
 }

 return MKOverlayRenderer()
 }
}

This extension handles the overlays. For the MKCircle, it merely colors the circles
black. For the MKGeodesicPolyline, it strokes the line with a mostly transparent
blue color. It sets the strokeEnd property on the renderer using the fraction
property passed into the MapCoordinator class. This ending location lets it reflect
the partial distance of flights that are in progress. Note that this class and control
know nothing about SwiftUI. The code you’ve used here works as it does in UIKit.

Now that you’ve implemented a MKMapViewDelegate, you can set it for the
MKMapView. Update makeUIView(context:) to:

func makeUIView(context: Context) -> MKMapView {
 let view = MKMapView(frame: .zero)
 view.delegate = context.coordinator
 return view
}

Now you can add the new view to the app. Open FlightCardView.swift and add the
following code at the end of the VStack:

FlightMapView(
 startCoordinate: flight.startingAirportLocation,
 endCoordinate: flight.endingAirportLocation,
 progress: flightTimeFraction(
 flight: flight
)
)
.frame(width: 300, height: 300)

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 668

Build and run the app. Tap on the Flight Timeline button, and you’ll see the new
timeline in action:

Timeline with map

It doesn’t take a lot of work to integrate pre-existing Apple frameworks into your
SwiftUI app. Over time, you’ll likely move more of your app’s functionality to SwiftUI
when possible. The ability to integrate SwiftUI in your legacy apps gives you a neat
way to begin using SwiftUI, without having to start from scratch.

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 669

Key Points
• You build views using Representable — derived protocols to integrate SwiftUI

with other Apple frameworks.

• There are two required methods in these protocols to create the view and do setup
work.

• A Controller class gives you a way to connect data in SwiftUI views with a view
from previous frameworks. You can use this to manage delegates and related
patterns.

• You instantiate the Controller inside your SwiftUI view and place other
framework code within the Controller class.

• You can use a ViewBuilder to pass views into another view when doing iterations.

• Generics let your views work without hard-coding specific types.

• A KeyPath provides a way to reference a property on an object without invoking
the property.

Where to Go From Here?
• For more on using UIKit within SwiftUI see Interfacing with UIKit (https://

developer.apple.com/tutorials/swiftui/interfacing-with-uikit).

• For more on KeyPaths, see the Key-Path Expression section of the Expressions
(https://docs.swift.org/swift-book/ReferenceManual/Expressions.html) chapter of
the Swift Programming Language Manual.

• For more about generics in Swift see Swift Generics Tutorial: Getting Started
(https://www.kodeco.com/3535703-swift-generics-tutorial-getting-started).

SwiftUI by Tutorials Chapter 21: Complex Interfaces

 670

Section VI: SwiftUI for macOS

Learn how to implement all you know of SwiftUI in macOS desktop applications.

 671

22Chapter 22: Building a Mac
App
By Sarah Reichelt

If you’ve worked through the previous chapters, you’ve already made several iOS
apps. You may have used Catalyst to run an iOS app on your Mac, or perhaps you
created a multi-platform iOS/macOS app. But in this chapter, you’ll write a purely
Mac app. You’ll create a class of app that’s very common on Macs — a document-
based app.

Many Mac apps are document-based. Think of apps like TextEdit, Pages, Numbers or
Photoshop. Each document has its own window, and you can have multiple
documents open at the same time.

In this chapter, you’ll build a Markdown editor. Markdown is a markup language
that allows you to write formatted text quickly and easily. It can be converted into
HTML for display but it’s much more convenient to write, read and edit.

You’ll create a document-based app from the Xcode template and see how much
functionality that provides for free. Then you’ll go on to customize the file type for
saving and opening as well as adding HTML preview, menus and a toolbar.

 672

The Default Document App
Open Xcode and create a new project. Select macOS and choose Document App.
Make sure the interface is SwiftUI and the language is Swift. Call the app
MacMarkDown.

Once you’ve saved the project, build and run the app. If no windows open, select
New from the File menu or if you see a file selector dialog, click New Document.
You’ll see a single window showing some default text. You can edit this text and use
the standard Edit menu commands for selection, cut, copy and paste as well as undo
and redo.

Select Save from the File menu:

Saving the default document

Note: If you don’t see the file extension in the save dialog, go to Finder ▸
Settings ▸ Advanced and turn on Show all filename extensions. This’ll
make it easier to follow the next part of this chapter.

The default app uses a file extension of .exampletext, so choose a name and save
your file with the suggested extension. Close the window and create a new window
using Command-N. Now try opening your saved document by choosing Open…
from the File menu.

And all this is without writing a single line of code!

SwiftUI by Tutorials Chapter 22: Building a Mac App

 673

Close the app, go back to Xcode and look at MacMarkDownApp.swift. Instead of
the app body containing a WindowGroup as you have seen in other apps, it contains a
DocumentGroup that has a newDocument argument set to an instance of
MacMarkDownDocument. The ContentView gets a reference to this document.

Looking in ContentView.swift, you’ll see the only view inside the body is a
TextEditor. This view allows editing long chunks of text. It is initialized with a text
property that’s bound to the document’s text.

Open MacMarkDownDocument.swift to see where the file saving and opening
happens. The first thing to note is the UTType extension. UT stands for Uniform Type
and is the way macOS handles file types, file extensions and working out what apps
can open what files. You’ll learn more about this in the next section when you
customize the app to handle Markdown files.

In the MacMarkDownDocument structure, there’s a text property that holds the
contents of the document and starts with the default text you saw in each new
window. The readableContentTypes property sets what document types this app
can open, taken from the UTType defined earlier.

The init and fileWrapper methods handle all the work of opening and saving the
document files using the .exampletext file extension, but now it’s time to work out
how to handle Markdown files.

Configuring for Markdown
When you double-click a document file on your Mac, Finder opens it with the default
application: TextEdit for .txt files, Preview for .png files and so on. Right-click any
document file and look at the Open With menu — you’ll see a list of the applications
on your Mac that can open that type of file. Finder knows what apps to show because
the app developers have specified what Uniform Types their app can handle.

To set up a document-based app to open a particular file type, you’ll need three
pieces of data:

• The Uniform Type Identifier or UTI.

• What standard file type this conforms to.

• The file extension or extensions.

SwiftUI by Tutorials Chapter 22: Building a Mac App

 674

Apple provides a list of system-declared uniform type identifiers (https://apple.co/
3iSjUwz), which can often be useful when working out file types for an app, but in
this case it doesn’t help as Markdown isn’t on the list.

However searching for “markdown uniform type identifier” gets you to Daring
Fireball (https://bit.ly/3vob8vK), where John Gruber, the inventor of Markdown, says
that the Uniform Type Identifier is “net.daringfireball.markdown” and that this
conforms to “public.plain-text”.

Search for “markdown” at FileInfo.com, and you’ll see that the most popular file
extensions for Markdown are “.md” and “.markdown”.

Armed with this information, you’re ready to switch your app from working with
plain text with the extension .exampletext, to working with Markdown text with the
extensions of .md or .markdown.

Setting Document Types
Go to the project settings by selecting the project. That’s the item with the blue icon
at the top of the Project navigator. Select the MacMarkDown target and choose the
Info tab from the selection across the top.

Expand the Document Types section and change the Identifier to
“net.daringfireball.markdown”:

Document type

SwiftUI by Tutorials Chapter 22: Building a Mac App

 675

Next, expand the Imported Type Identifiers section and make the following
changes:

Description: Markdown Text

Extensions: md, markdown

Identifier: net.daringfireball.markdown

All the other settings can stay the same as the Conforms To field already contains
“public.plain-text”.

Imported type

There’s only one more place to make changes before your app can save and open
Markdown files. Go back to MacMarkDownDocument.swift and replace the UTType
extension with this:

extension UTType {
 static var markdownText: UTType {
 UTType(importedAs: "net.daringfireball.markdown")
 }
}

This creates a new UTType called markdownText that uses the Uniform Type
Identifier you just entered.

Inside the struct, change readableContentTypes to use this new type:

static var readableContentTypes: [UTType] { [.markdownText] }

And just for fun, change the default text in init to “# Hello, MacMarkDown!”, which
is the Markdown format for a level 1 header.

SwiftUI by Tutorials Chapter 22: Building a Mac App

 676

Testing the New Settings
Build and run the app. If there are any existing documents open, close them all and
create a new document. Check that the default text is “# Hello MacMarkDown!”.
Now, save the document and confirm that the suggested file name uses the .md file
extension:

Saving with the Markdown extension

Save and close the document window, and then find the file in Finder and right-click
it to show its Open With menu. You’ll see MacMarkDown listed there because your
settings told Finder that your app could open Markdown files. If you have any
Markdown files created by another app, you’ll be able to open them in
MacMarkDown too.

Phew! That was a dense section with a lot of detail, but now you have a document-
based app that saves and opens Markdown files. In the next sections, you’ll learn
more about Markdown and add a preview ability to your app.

SwiftUI by Tutorials Chapter 22: Building a Mac App

 677

Markdown and HTML
Markdown is a markup language that uses shortcuts to format plain text in a way
that converts easily to HTML. As an example, look at the following HTML:

<h1>Important Header</h1>
<h2>Less Important Header</h2>

Kodeco

 List Item 1
 List Item 2
 List Item 3

To write the same in Markdown, you can use:

Important Header
Less Important Header

[Kodeco](https://www.kodeco.com)

- List Item 1
- List Item 2
- List Item 3

I think you’ll agree that the Markdown version is easier to write and more likely to be
accurate.

You can find out more about Markdown from this helpful cheatsheet (https://bit.ly/
3FWagmM).

In MacMarkDown, you write text using Markdown. The app will convert it to HTML
and display that in a web view.

Swift doesn’t have a built-in Markdown converter, so the first thing is to import a
Swift Package to do this. The one you’ll use is Swift MarkdownKit (https://bit.ly/
3Cbowao).

SwiftUI by Tutorials Chapter 22: Building a Mac App

 678

Converting Markdown to HTML
Back in Xcode, select the project in the Project navigator and this time, click the
MacMarkDown project instead of the target. Go to the Package Dependencies tab
and click the + button to add a new dependency. Enter this URL into the search field
at the top right:

https://github.com/objecthub/swift-markdownkit

When Xcode has found the package, make sure it’s selected and click Add Package.
Xcode starts downloading it for you:

Find the package

SwiftUI by Tutorials Chapter 22: Building a Mac App

 679

Once the download is complete, you’ll see a new dialog asking you what parts of the
package you want to use. Check the MarkdownKit Library and click Add Package to
insert it into your project:

Import the package

The next step is to edit MacMarkDownDocument.swift so it can create an HTML
version of the document. To use the new package, add import MarkdownKit at the
top of the file:

import MarkdownKit

Under the text property, define an html property:

var html: String {
 let markdown = MarkdownParser.standard.parse(text)
 return HtmlGenerator.standard.generate(doc: markdown)
}

This code creates a computed property using MarkdownKit’s MarkdownParser to
parse the text and its HtmlGenerator to convert it to HTML.

Your document now has two properties. One is the text that’s saved in each
document file. The other is the HTML version of that text that MarkdownKit creates.

Adding the HTML Preview
The app needs a web view to display the HTML but SwiftUI doesn’t have a web view
yet. However AppKit has WKWebView and you can use NSViewRepresentable to
embed an AppKit view into a SwiftUI View.

SwiftUI by Tutorials Chapter 22: Building a Mac App

 680

Create a new Swift file called WebView.swift and replace its contents with this code:

// 1
import SwiftUI
import WebKit

// 2
struct WebView: NSViewRepresentable {
 // 3
 var html: String

 // 4
 func makeNSView(context: Context) -> WKWebView {
 WKWebView()
 }

 // 5
 func updateNSView(_ nsView: WKWebView, context: Context) {
 nsView.loadHTMLString(
 html,
 baseURL: Bundle.main.resourceURL)
 }
}

Stepping through this:

1. NSViewRepresentable is part of the SwiftUI library, and WKWebView is in the
WebKit library.

2. WebView is the name of your custom SwiftUI view that this structure defines. It
conforms to the NSViewRepresentable protocol, which provides a bridge
between AppKit’s views and SwiftUI.

3. This struct only needs one property: a String to store the HTML text.

4. NSViewRepresentable has two required methods: makeNSView creates and
returns the NSView, in this case a WKWebView.

5. The second required method is updateNSView. SwiftUI calls this whenever
there’s a change to the properties that requires a view update. In this case, every
time html changes, the web view reloads the HTML text.

Now it’s time to display this web view, so head over to ContentView.swift, which
must be feeling rather abandoned. Usually it gets a lot more attention in a SwiftUI
app!

SwiftUI by Tutorials Chapter 22: Building a Mac App

 681

Displaying the HTML
To display the two views side-by-side in resizable panes, you’re going to embed the
TextEditor and a WebView in an HSplitView. This is a macOS-specific SwiftUI view
for exactly this purpose.

Replace the contents of body with this:

HSplitView {
 TextEditor(text: $document.text)
 WebView(html: document.html)
}

TextEditor has a binding to document.text as indicated by the $. This means that
it can make changes to document.text that flow back to the document. WebView
doesn’t makes changes, it only displays, so it doesn’t need a binding.

Don’t run yet, there’s one more setting you need to change. Mac apps run in a
sandbox by default. You can turn this off, but if you plan to put your app on the Mac
App Store, sandboxing is essential, and it’s generally a good idea as a protection for
your app and your Mac. But the standard settings block web views from loading
anything, even local data.

Go to the project settings and select the MacMarkDown target. Click the Signing &
Capabilities tab.

Now you can check Outgoing Connections (Client), which allows your WebView to
load content:

Sandbox setting

SwiftUI by Tutorials Chapter 22: Building a Mac App

 682

Build and run the app:

Web preview

Type in some Markdown and see the HTML appear in the side panel. Try dragging
the divider bar left or right and test resizing the window. It looks like some size
restrictions would be a good idea.

Framing the Window
When an app runs on an iPhone, it works out the available screen size and expands
to fill it. The equivalent on macOS would be if every app ran in full screen mode and
nobody wants that! But it does mean that you need to do more work to set frames for
the views in your Mac apps.

In this case, you want the TextEditor filling the left side of the window and the
WebView filling the right side. They should both resize as the user resizes the window
and as the user drags the divider between them. But the divider should never allow
either view to disappear and the window should have a minimum size.

Back in ContentView.swift, add this frame modifier to both the TextEditor and the
WebView, which makes sure they can never get narrower than 200:

.frame(minWidth: 200)

And add this frame modifier to the HSplitView:

.frame(minWidth: 400, minHeight: 300)

This sets the minimum size for the window but allows users to expand it as much as
they want. The minimum width is big enough for both panes at their minimum
widths.

SwiftUI by Tutorials Chapter 22: Building a Mac App

 683

Build and run again and try resizing each pane and the window. That’s better. :]

Resizing the window

Adding a Settings Window
Nearly all Mac apps have a Settings window (previously called Preferences), so now
you’ll add one to this app. Make a new SwiftUI View file and call it
SettingsView.swift. Update body to look like this:

var body: some View {
 Text("Settings")
 .padding()
}

This changes the default “Hello, world” text to say “Settings” and adds a padding()
modifier, so when you run the app, you can confirm that the correct view appears.

Now it’s time to configure the app to show this view as the Settings window.

Open MacMarkDownApp.swift. Inside the body after DocumentGroup add these
lines:

Settings {
 SettingsView()
}

It’s always important to explain complex chunks of code, so here’s what this does:

• Create a Settings… menu item in the app’s File menu.

• Add the standard keyboard shortcut: Command-,.

SwiftUI by Tutorials Chapter 22: Building a Mac App

 684

• Set up a settings window titled “MacMarkDown Settings”.

• Configure the settings window to display SettingsView.

• Establish window controls so only one copy of this window is ever created. Trying
to open Settings again if the window is already open just brings it to the front.

Not bad for what could be a single line of code. :]

Build and run the app, then select Settings… from the File menu or type
Command-, and your Settings view appears. It’s tiny — only large enough to hold
the text “Settings” — but it’s there, and now you can modify it:

Settings

Using AppStorage
SwiftUI uses property wrappers extensively to let us assign extra functionality to our
properties, structures and classes. One of these property wrappers is for saving
settings. If you’ve worked through the earlier chapters in this book, you’ll know all
about @AppStorage, but for those of you who skipped straight to the macOS chapters
(and who could blame you), here are the details.

SwiftUI by Tutorials Chapter 22: Building a Mac App

 685

Previously, you may have used UserDefaults, which works well for storing small
chunks of user data, but you have to keep them in sync manually. If a UI element
changes a setting, you have to write to UserDefaults. If you’re displaying the UI,
maybe you need to read from UserDefaults to set the state of a checkbox or to
implement the choices made. And what if a setting changes after the app has drawn
the display?

The@AppStorage property wrapper makes all this so much easier. Under the hood,
it’s still using UserDefaults but it handles all these details.

Choosing a Font Size
You’ll add the ability to change the editor font size. In SettingsView.swift insert the
following code inside the SettingsView structure but before body:

@AppStorage("editorFontSize") var editorFontSize: Int = 14

This is only one line, but it packs in a lot of functionality:

• @AppStorage sets up this property to use the AppStorage property wrapper.

• The text in brackets assigns the name of the UserDefaults setting.

• Then define the property as usual, with a type and a default value. It’s neater if you
use the same name for the UserDefaults name and the property name, but this
isn’t strictly necessary.

Now for some UI to change this setting. Replace the default body contents with:

Stepper(value: $editorFontSize, in: 10 ... 30) {
 Text("Font size: \(editorFontSize)")
}
.frame(width: 260, height: 80)

To apply this setting, go back to ContentView.swift and add the same @AppStorage
line to the top of the struct. This allows ContentView to access this setting even if
the user has never opened the Settings window.

Add a font modifier to the TextEditor:

.font(.system(size: CGFloat(editorFontSize)))

SwiftUI by Tutorials Chapter 22: Building a Mac App

 686

Now build and run the app again. Make sure there’s some text in the editor, so you
can see it change. Open the Settings window and use the arrows to change the font
size. The editor font size automatically changes as you change the setting:

Font size

Make a new window, so you have more than one open at the same time. Confirm the
font changes size in both windows. And if you quit and restart the app, your new font
size setting is still there.

Changing and Creating Menus
All Mac apps have a menu bar. Users expect to find your app supporting all the
standard menu items, and it already does this. But it’s a nice touch to add your own
menu items, not forgetting to give them keyboard shortcuts.

SwiftUI provides two ways to add new menu items. You can use a CommandMenu to
insert a completely new menu. Or you can use a CommandGroup to add menu items to
an existing menu. You apply both of these by adding a commands modifier to the
DocumentGroup.

You can include the contents of the commands modifier directly in
MacMarkDownApp.swift but since menu definitions can get quite extensive, it
makes your project easier to read if you separate them into their own file. Create a
new Swift file called MenuCommands.swift and replace the contents with this:

import SwiftUI

SwiftUI by Tutorials Chapter 22: Building a Mac App

 687

// 1
struct MenuCommands: Commands {
 var body: some Commands {
 // 2
 CommandGroup(before: .help) {
 // 3
 Button("Markdown Cheatsheet") {
 showCheatSheet()
 }
 // 4
 .keyboardShortcut("/", modifiers: .command)

 Divider()
 }

 // more menu items go here
 }

 // 5
 func showCheatSheet() {
 let cheatSheetAddress =
 "https://github.com/adam-p/markdown-here/wiki/Markdown-
Cheatsheet"
 guard let url = URL(string: cheatSheetAddress) else {
 // 6
 fatalError("Invalid cheatsheet URL")
 }
 NSWorkspace.shared.open(url)
 }
}

So what’s happening here?

1. Menu content and its body must conform to the Commands protocol so you can
use this structure to set up menus for your app.

2. You position a CommandGroup either before, after or in place of existing menu
items. Delete help and press Escape to see the autocomplete menu of items you
can use. Reset to help when you’ve finished looking.

3. Here you’re adding a Button as a menu item with a Divider below it to make the
menu look better.

4. The button has a keyboard shortcut of Command-/.

5. The menu item button calls a method to open a URL in the default browser.

6. If you typed a web address incorrectly, it’s better to catch it in development with
a fatal error instead of hiding the mistake in a guard statement.

SwiftUI by Tutorials Chapter 22: Building a Mac App

 688

To make this new menu item appear, go to MacMarkDownApp.swift and add this
modifier to DocumentGroup:

.commands {
 MenuCommands()
}

Build and run the app, then look at the Help menu. Select the new menu item or type
Command-/ to open the cheatsheet in your browser:

Help menu

Adding a New Menu
Now it’s time to create your own menu. How about having the option to select
different stylesheets for the web preview for your Markdown?

Open the assets folder in the downloads for this chapter and find the StyleSheets
folder. Drag this folder into your Project navigator, checking Copy items if needed,
selecting Create groups and confirming that the folder will be added to the target.
This folder contains a small collection of CSS files plus a Swift file containing an
enum listing these styles.

To display these in a menu, go back to MenuCommands.swift and add this
property:

@AppStorage("styleSheet") var styleSheet: StyleSheet = .github

This creates a new @AppStorage property for a StyleSheet and sets it to use the
GitHub style as the default.

SwiftUI by Tutorials Chapter 22: Building a Mac App

 689

Replace the // more menu items go here comment with:

// 1
CommandMenu("Stylesheet") {
 // 2
 ForEach(StyleSheet.allCases, id: \.self) { style in
 // 3
 Button(style.rawValue) {
 styleSheet = style
 }
 // 4
 .keyboardShortcut(style.shortcutKey, modifiers: .command)
 }
}

Here’s what this code does:

1. To create an entirely new menu, use CommandMenu giving it the title of the new
menu.

2. Loop through all the cases in the StyleSheet enum.

3. Each style has a menu item button with the title set to the rawValue string for
the case. These buttons change the styleSheet property.

4. Set a keyboard shortcut for each one using a key equivalent set up in the enum.

Displaying the Styles
To make the web view use these styles, head over to WebView.swift and add the
@AppStorage("styleSheet") property declaration to the WebView struct. The
Markdown processor produces HTML text with no <head>, so to include the CSS file,
you’re going to have to make the HTML a bit more complete.

Add this computed property to WebView:

var formattedHtml: String {
 return """
 <html>
 <head>
 <link href="\(styleSheet).css" rel="stylesheet">
 </head>
 <body>
 \(html)
 </body>
 </html>
 """
}

SwiftUI by Tutorials Chapter 22: Building a Mac App

 690

This uses multi-line string syntax to wrap the html and styleSheet properties into
an HTML document. Because you set the app’s Bundle.main.resourceURL as the
web view’s baseURL, you can use a direct link to the CSS files inside the app.

Replace updateNSView(_:context) with.

func updateNSView(_ nsView: WKWebView, context: Context) {
 nsView.loadHTMLString(
 formattedHtml, // Changed line
 baseURL: Bundle.main.resourceURL)
}

Build and run the app. Use your new menu to change to a different stylesheet:

Stylesheet

Creating a Toolbar
Right now, the app allows you to edit Markdown text and render the equivalent
HTML in a web view. But it would be useful sometimes to see the actual HTML code.
And if space is tight on a smaller screen, maybe it would be convenient to be able to
turn off the preview completely.

So now you’re going to add another UI element that’s very common in Mac apps —
the toolbar. In the toolbar, you’ll add controls to switch between three preview
modes: web, HTML and off.

SwiftUI by Tutorials Chapter 22: Building a Mac App

 691

You add a toolbar as a modifier to a view, in this case ContentView. It can be in the
same file, but as you did with the menu contents, you’re going to put this in its own
file. Create a new Swift file and name it ToolbarCommands.swift. Open the new file
and change the import line to import SwiftUI.

You’re adding the ability to switch between three states, so this seems like a good
use case for an enum. In ToolbarCommands.swift insert this:

enum PreviewState {
 case hidden
 case html
 case web
}

Next, add this structure:

// 1
struct PreviewToolBarItem: ToolbarContent {
 // 2
 @Binding var previewState: PreviewState

 // 3
 var body: some ToolbarContent {
 // 4
 ToolbarItem {
 // 5
 Picker("", selection: $previewState) {
 // 6
 Image(systemName: "eye.slash")
 .tag(PreviewState.hidden)
 Image(systemName: "doc.plaintext")
 .tag(PreviewState.html)
 Image(systemName: "doc.richtext")
 .tag(PreviewState.web)
 }
 .pickerStyle(.segmented)
 // 7
 .help("Hide preview, show HTML or web view")
 }
 }
}

SwiftUI by Tutorials Chapter 22: Building a Mac App

 692

This looks like a lot, but take it one step at a time.

1. So that you can set this structure as the content of a Toolbar, mark it as
conforming to the ToolbarContent protocol.

2. A binding variable receives the selected preview state from the parent view and
passes any changes back to it.

3. The body also needs to conform to the ToolbarContent protocol.

4. ToolbarContent views are either ToolbarItem or ToolbarItemGroup. As this
only shows a single view, a ToolbarItem is the right one to use.

5. Since this switches between three possibilities, a segmented picker is a good UI
choice.

6. Each segment displays an SF Symbol image and has a tag set to the
corresponding PreviewState case. Apple’s SF Symbols app or Xcode’s Library
shows all these icons, so you can search for appropriate ones.

7. The help modifier provides a tooltip and accessibility text.

Using the Toolbar
Now to attach the toolbar to ContentView. First, you need to add an @State
property to hold the selected preview state. This is set to web by default:

@State private var previewState = PreviewState.web

Next, add a toolbar modifier to the HSplitView after the frame modifier:

.toolbar {
 PreviewToolBarItem(previewState: $previewState)
}

This creates a toolbar and sets its content to the PreviewToolbarItem you just
created, passing in a binding to the previewState property, so that changes flow
back.

SwiftUI by Tutorials Chapter 22: Building a Mac App

 693

Build and run the app to see a toolbar with these three options at the far right. You
can click each one and see the visual differences that indicate the currently selected
option. Notice how this changes the look of the document’s title:

Toolbar

But so far, this does nothing to change the display, so head back to
ContentView.swift.

In the HSplitView you have the TextEditor and the WebView. Now there are three
possible combinations:

• TextEditor alone.

• TextEditor plus WebView.

• TextEditor plus something else to display the raw HTML.

To handle the first two options, wrap the WebView in an if like this:

if previewState == .web {
 WebView(html: document.html)
 .frame(minWidth: 200)
}

The body ends up looking like this:

var body: some View {
 HSplitView {
 TextEditor(text: $document.text)
 .frame(minWidth: 200)
 .font(.system(size: CGFloat(editorFontSize)))

 if previewState == .web {

SwiftUI by Tutorials Chapter 22: Building a Mac App

 694

 WebView(html: document.html)
 .frame(minWidth: 200)
 }
 }
 .frame(minWidth: 400, minHeight: 300)
 .toolbar {
 PreviewToolBarItem(previewState: $previewState)
 }
}

Build and run the app again. The web version of the Markdown text disappears when
you select either of the first two buttons and appears again when you select the third
button:

No preview

Adding the HTML Text Preview
For the raw HTML display, add this after the previous if block:

else if previewState == .html {
 // 1
 ScrollView {
 // 2
 Text(document.html)
 .frame(minWidth: 200)
 .frame(
 maxWidth: .infinity,
 maxHeight: .infinity,
 alignment: .topLeading)
 .padding()
 // 3

SwiftUI by Tutorials Chapter 22: Building a Mac App

 695

 .font(.system(size: CGFloat(editorFontSize)))
 // 4
 .textSelection(.enabled)
 }
}

Here’s what’s going on:

1. After checking to see if this view should be visible, the new view starts with a
ScrollView, so that the text can scroll if it’s longer than the height of the
window.

2. Use a Text view to show the HTML text. Set the view to fill all the available space
with some padding around the edges and with the same minimum width as the
web view.

3. It seems appropriate to use the selected editor font size for this display too.

4. Make the text inside Text views selectable, so users can copy it.

Build and run the app now and you’ll be able to toggle between the three preview
states. Use the Settings window to change the font size and confirm that the HTML
view font size changes too:

HTML preview

SwiftUI by Tutorials Chapter 22: Building a Mac App

 696

Markdown in AttributedStrings
SwiftUI has an AttributedString that can format Markdown. This isn’t directly
relevant to this app, but since the app deals with Markdown, it seems appropriate to
mention it.

Convert the raw HTML preview to use an AttributedString temporarily by adding
this computed property to ContentView.

var attributedString: AttributedString {
 // 1
 let markdownOptions =
 AttributedString.MarkdownParsingOptions(
 interpretedSyntax: .inlineOnly)
 // 2
 let attribString = try? AttributedString(
 markdown: document.text,
 options: markdownOptions)
 // 3
 return attribString ??
 AttributedString("There was an error parsing the Markdown.")
}

What’s happening here?

1. Set up the parsing options. These are optional but the defaults don’t preserve
linefeeds or tabs.

2. Try to parse the document’s Markdown text using these options.

3. Return the parsed AttributedString or an error message.

To display this, change the Text inside the ScrollView to:

Text(attributedString)

SwiftUI by Tutorials Chapter 22: Building a Mac App

 697

Build and run the app, switch to the raw HTML preview mode and you’ll see
something like this. Notice how the font modifier is still applied, but not all the
Markdown tags are supported.

AttributedString from Markdown

This technique could be useful for formatting display text in SwiftUI apps, but for
this app, switch the Text back to Text(document.html) and delete the computed
property.

Installing the App
With an iOS App, when you build and run an app on your device, Xcode installs it on
your iPhone or iPad and you can use it there, even after closing Xcode. For a Mac
app, this isn’t quite as simple. Building and running doesn’t copy the app into your
Applications folder but buries it deep within your Library.

To install your app so you can use it easily, make sure the app is running. Right-click
the app icon in the Dock and select Options ▸ Show in Finder. Now you can drag
MacMarkDown.app into your Applications folder.

SwiftUI by Tutorials Chapter 22: Building a Mac App

 698

Challenge: Add Another File Extension
When you set up the file types, you allowed the app to use either “.md” or
“.markdown” for the file extensions. But some people use “.mdown” for Markdown
files. Edit the project so that “.mdown” is a valid extension. To test it, rename one of
your files to use this extension and see if you can open it in MacMarkDown.

Have a go at implementing this yourself, but check out the challenge folder if you
need some help.

Key Points
• Apple provides a starting template for document-based Mac apps that can get you

going quickly, but now you know how to customize this template to suit your own
file types.

• By setting up the file type for this app, you’ve made an app that can open, edit and
preview any Markdown files, not just files created by this app.

• Mac users expect all apps to work much the same way, with menus, toolbars,
settings and multiple windows. Now you have the tools to make an app that does
all these things.

• And you have a Markdown editor you can use! The completed project is in the
final folder for this chapter.

Where to Go From Here?
Well done! You made it through this chapter. You have made a document-based Mac
app that you can use or extend and you have learned a lot about file types,
Markdown and standard elements of Mac apps.

SwiftUI by Tutorials Chapter 22: Building a Mac App

 699

23Chapter 23: Converting an
iOS App to macOS
By Sarah Reichelt

If you’ve worked through the early chapters of this book, you’ve built several iOS
apps. In the previous chapter, you’ve also made a document-based Mac app. But in
this chapter, you’ll make a macOS app from an iOS app. You’ll use the code, views
and assets from an iOS project to make it.

Most Swift and SwiftUI tutorials, and examples on the internet, are for iOS, primarily
specifically for iPhones. So knowing how to re-use the code in an iOS project to
create a real Mac app is a valuable skill.

 700

Getting Started
Open the starter project from the downloaded materials for this chapter, which is
the iOS app you’ll convert. You may have already built this app in earlier chapters,
but please use this starter project even if you have.

Build and run the app in an iPhone simulator and click through all the options to see
how it works.

iOS app screens

The iOS version uses a common navigational pattern where the initial screen offers a
selection of choices. A NavigationSplitView shows the options, displaying other
views. These secondary views sometimes have even more options, including full
views, sheets or dialogs.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 701

For the Mac version, where you can assume much wider screens, you’ll have the
navigation in a sidebar on the left. The main portion of the window on the right will
display different views depending on the navigation selections.

As you work through this chapter, there’ll be a lot of editing, which can be difficult to
explain and follow, but if you get lost, open the final project and check out the code
there.

Setting Up the Mac App
In Xcode, create a new project using the macOS App template and by selecting
SwiftUI for the Interface and Swift for the Language. Call the app
MountainAirportMac and save it.

Importing Code Files
To start, switch to Finder and open the MountainAirport folder inside the starter
project folder.

Then select the following folders and files, and drag them into the Project navigator
for your new Mac project.

Be sure to select Copy items if needed and Create groups for each one. Confirm
that the MountainAirportMac target is checked.

1. All the .swift files in the MountainAirport folder.

2. AwardsView folder.

3. FlightDetails folder.

4. FlightStatusBoard folder.

5. Misc folder.

6. Models folder.

7. SearchFlights folder.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 702

After you move the files, delete MountainAirport.swift from your project. This is an
iOS-specific file that you don’t need for your new Mac app.

By the end of that process, your Project navigator should look like this:

Project navigator after imports

You’ve now got a lot of code from the iOS app in your macOS app. You can assume
that the model classes and structures mostly work as expected and don’t need you to
change anything. Your main task is to change the SwiftUI code to make the user
interface work on a Mac. But you’ve already saved yourself a lot of time and trouble
by importing all this code. Next, you’ll import assets.

Importing Assets
As well as the .swift files, you can import the assets the iOS app uses, primarily the
app icon and any images used in the app’s UI.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 703

First, go to Assets.xcassets in your Xcode Project navigator and then open the
Assets.xcassets folder in the iOS project’s Finder window. If you’re not showing file
extensions, these may appear as Assets without the .xcassets extension. Now, drag
every folder inside this folder into your list of assets.

Imported assets

This adds all the assets, but an iOS project configures its assets differently from a
macOS project, so now you’ve got some housekeeping to do, starting with the app
icon.

In the assets list, there’s AppIcon, part of the app template, and AppIcon 1, which
you imported. Unfortunately, iOS and macOS have different image size requirements
for their app icons. The best solution is to take the largest of the images from
AppIcon 1 and use an icon creator utility to make all the correct image sizes, but for
now, you’ll need to cheat and take the easy way out.

• In AppIcon 1, select the icon at the bottom: App Store iOS 1024pt and press
Command-C to copy it.

• Go to AppIcon, select App Store - 2x and press Command-V to paste in the
copied image.

• Now you can delete AppIcon 1, and your Mac app will use the imported icon.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 704

Note: For an iOS app, you supply square icons, and iOS rounds the corners for
you. Mac app icons have rounded corners with transparent padding, which you
have to apply. If you’re releasing a Mac version of an iOS app, you’d need to
re-design the icon, but the square icon will do for now.

Select the ascending-airplane asset, click on the image, and ensure you can see the
Attributes inspector on the right.

In the Devices section, Universal is checked, meaning this image works on any
Apple device. But the image is in the 3x box for the high-resolution iPhones and
iPads, and 3x images don’t work in a Mac app. Drag the image from the 3x box to the
2x box to make it Mac-compatible.

Repeat this process for all the 3x images, not forgetting the ones in the award-
images folder.

Image assets

Now it’s time to build!

Fixing the Build Errors
You’ve imported all the code files, imported the assets, set up your app’s icon and
configured the other images for the Mac. The big task now is to get the app to build.

Press Command-B to build the app, but don’t panic when it doesn’t work. You have
to expect this when you import code that was written for a different platform.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 705

Open the Issue navigator to see the first set of problems. There’s a report of an
invalid redeclaration of ContentView_Previews. The iOS app uses WelcomeView as
the initial view, but the preview provider in WelcomeView.swift is still called
ContentView_Previews.

To set the Mac app to open with WelcomeView, open
MountainAirportMacApp.swift and replace ContentView() with WelcomeView().
Now you can delete ContentView.swift and try again. Press Shift-Command-K to
clean the build folder and then Command-B to build. Doing a clean build after fixing
errors is always a good idea, especially if you deleted any files.

The next error is “Cannot find type UIColor in scope” which is in
FlightInformation.swift. Click the error in the Issue navigator to jump to the file
and the location of the error.

UIColor is a UIKit color object. The equivalent in AppKit is NSColor, but the Mac
version doesn’t use this property, so delete the timelineColor computed property
to eliminate the error.

Subsequent builds give these errors in either order:

• InsetGroupedListStyle is unavailable in macOS — SearchFlights.swift:

Search the Developer Documentation for the ListStyle protocol and check the
available list styles. You can click through each and check the availability for macOS.
Once you’ve looked at the options, replace the error line with:

.listStyle(.inset(alternatesRowBackgrounds: true))

This styles the list and makes the rows easy to distinguish.

• navigationBarItems(trailing:) is unavailable in macOS —
FlightStatusBoard.swift:

Instead of a navigation bar item for this Toggle, you’ll use the Mac toolbar. Replace
the navigationBarItems modifier and its contents with this:

.toolbar {
 Toggle("Hide Past", isOn: $hidePast)
}

This uses the same Toggle control but wrapped in a toolbar instead of in
navigationBar.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 706

Press Command-B again, and the app builds with no errors this time.

Well done! You now have a Mac app project populated with a lot of code and assets
from an iOS app and with no build issues!

Now, press Command-R to run the Mac app.

Expand the window and the sidebar to see the three navigation buttons and the
animated plane. Click Your Awards to see the awards display. It isn’t pretty, but it
works! Search Flights is similar — it works, but the display is messy. In the next
sections, you’ll make it look much better.

First run

Now click Flight Status. Not so good. This is a crasher. It needs fixing before
anything else.

Diagnosing the Crash
Don’t worry — this sort of thing happens, and learning how to track down crashes is
a useful skill, especially as Xcode isn’t always very helpful. In this case, the crash
report points to @main in MountainAirportMacApp.swift, which tells you nothing
useful. Time for some detective work.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 707

Open WelcomeView.swift and check out what happens when you click Flight
Status. The ViewButton has an id of FlightViewId.showFlightStatus, and
clicking the button sets selectedView to this. The NavigationSplitView then
shows FlightStatusBoard in its detail.

Following the clues, open FlightStatusBoard ▸ FlightStatusBoard.swift. The main
view here is a TabView with three tabs. Each tab shows a FlightList with a different
set of flights. A good way to track down display bugs is to replace suspicious views
with placeholder Text views. If the Text view works, you’ve found the culprit.

In FlightStatusBoard.swift, you’ll replace each use of FlightList with Text and
see what happens. Double-click the opening parenthesis after the first FlightList
to select the view and its parameters. Press Command-/ to comment it out, and on
the line above, insert Text("Arrivals List"). Place the cursor before .tabItem on
the last commented line and press Return to re-enable that modifier.

Repeat this with the other two FlightLists, inserting Text("Complete List") and
Text("Departures List") and re-enabling the tabItem for each.

Build and run the app again. This time clicking Flight Status works, and the three
tabs show their Text views:

Using Text placeholders

Now you know the problem is in FlightList. Good detecting, Sherlock!

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 708

Note: You may see more errors appearing in the Issues navigator now, but you
can ignore them. They don’t stop the app from running, and they’ll disappear
as you work through the rest of this chapter.

Open FlightStatusBoard ▸ FlightList.swift and look at body. It uses a
NavigationStack to display a ScrollViewReader and then a List — maybe this is a
problem on macOS.

To test this out, comment out the NavigationStack line. Then comment out its
closing brace on the line above onAppear.

Back in FlightStatusBoard.swift, press Command-Z repeatedly until you’ve re-
enabled the three FlightList views.

Build and run to see what happens:

Without the NavigationStack.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 709

The list appears, the tabs show the correct data and the Hide Past toggle does what it
should. Great work! You’ve found the exact cause of the crash, and now you can fix
it.

Navigation in macOS
A NavigationLink inside a NavigationStack slides the current view out and a new
one in, while providing a way to go back. This works great in an iPhone app, but this
isn’t always the best way in a macOS app with more available space.

Here, it would be better to divide the display, showing the list of flights on the left
and the selected flight on the right. The crash is due to a bug in SwiftUI for Mac, but
avoiding it gives a better result for a Mac app.

To make this happen, open WelcomeView.swift. This uses FlightStatusBoard in
two places, once for the flight status and again for the last viewed flight, if there is
one.

But before you change this, you need to add properties to store the selected flight
and the last viewed flight.

Inside WelcomeView, before body, insert this:

// 1
@SceneStorage("selectedFlightID") var selectedFlightID: Int?
@SceneStorage("lastViewedFlightID") var lastViewedFlightID: Int?

// 2
var lastViewedFlight: FlightInformation? {
 if let id = lastViewedFlightID {
 return flightInfo.getFlightById(id)
 }
 return nil
}

var selectedFlight: FlightInformation? {
 if let id = selectedFlightID {
 return flightInfo.getFlightById(id)
 }
 return nil
}

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 710

What’s happening here?

1. In earlier chapters, you read about @AppStorage that provides a property
wrapper for UserDefaults. @SceneStorage is similar to @AppStorage but stores
settings for each window and not for the entire app. Since users may want
multiple windows open showing different flights, it makes sense to use
@SceneStorage here. selectedFlightID stores the id of the flight selected in
FlightStatusBoard. lastViewedFlightID stores the id of the flight that you
looked at last. Both are optional Ints.

2. @SceneStorage and @AppStorage can only contain primitive types like String,
Int, Double, Bool, or enums that conform to these types. So you’re using these
computed properties to get optional FlightInformation objects from the ids.

When FlightList used a NavigationStack, it was able to show the selected flight
using a NavigationLink. Without that, you need to record the selected flight and
display it manually if it exists.

Modifying the Flight List
Next, open FlightList.swift and replace body with:

// 1
@SceneStorage("selectedFlightID") var selectedFlightID: Int?

var body: some View {
 ScrollViewReader { scrollProxy in
 // 2
 List(flights, selection: $selectedFlightID) { flight in
 FlightRow(flight: flight)
 // 3
 .tag(flight.id)
 }
 .onAppear {
 // 4
 scrollProxy.scrollTo(nextFlightId, anchor: .top)
 }
 }
}

This adds some code and removes some:

1. Give FlightList access to the @SceneStorage property that holds the id of the
selected flight.

2. Bind this as the selection parameter for the list.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 711

3. Assign a tag to each line on the list. When the user clicks a list item, you use this
to set selectedFlightID.

4. This scrollTo was there before, but a top anchor works better on macOS.

So now, FlightList can set selectedFlightID and WelcomeView can detect this.
The next step is to display the selected flight.

Showing the Selected Flight
Open FlightDetails ▸ FlightDetails.swift. This is the view that displays the details
of a flight, either directly from the flight list or as the last viewed flight. Right now, it
always expects a valid FlightInformation object, but this may be nil in the new
arrangement.

Start at the top of FlightDetails and add a question mark to make flight an
optional:

var flight: FlightInformation?

This causes errors down below. Command-click on VStack and select Make
Conditional from the popup menu:

Make Conditional

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 712

Replace the true placeholder with let flight.

In the else block, replace EmptyView() with:

Text("Select a flight…")
 .foregroundColor(.white)

To solve the next error, replace the line with:

if flight?.terminal == "A" {

This uses optional chaining to check the value of terminal only when there’s a valid
flight.

The final error requires two steps. First, add this property declaration to
FlightDetails:

@SceneStorage("lastViewedFlightID") var lastViewedFlightID: Int?

This gives it access to the @SceneStorage property that records the last viewed
flight in this window.

Then replace the onAppear block with:

.onChange(of: flight) { _ in
 lastViewedFlightID = flight?.id
}

Whenever you view a new flight in FlightDetails, this detects it and sets
lastViewedFlightID to match.

This has been a lot of work, but you’re nearly there. The data is in place, and
FlightList and FlightDetails are ready. Now back to WelcomeView.swift to use
them.

Replace the showFlightStatus case in the NavigationSplitViews detail with:

case .showFlightStatus:
 // 1
 HSplitView {
 // 2
 FlightStatusBoard(flights:
flightInfo.getDaysFlights(Date()))
 // 3
 FlightDetails(flight: selectedFlight)
 }

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 713

This is what’s changed.

1. The displayed view is now an HSplitView, which divides the view into two parts
arranged side-by-side.

2. The first part is the same as before.

3. The second half shows FlightDetails, connected to the selectedFlight
computed property. When the user clicks a flight in FlightList, the list
selection changes selectedFlightID. This updates selectedFlight and
SwiftUI displays the new data inside FlightDetails.

Build and run the app now. Click Flight Status in the sidebar and then select
different flights:

Selected flight

Hooray! No crash and you can see flight details. But there are some things to fix in
the details display.

Styling the Flight Details
You’ll first notice the Show Terminal Map button. It shows the map and all the
animations work perfectly, but the button looks wrong. A macOS button is styled
differently from an iOS button by default, but you can fix this.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 714

Open FlightDetails ▸ FlightInfoPanel.swift and look for Button. After the label,
on the line before if showTerminal {, add this line:

.buttonStyle(.plain)

That makes the button look better.

But there’s another problem.

Setting Frames
With iOS apps, the available space is pre-defined. An iPhone app fills the entire
screen, and most iPad apps do the same. With Mac apps, a screen can be huge, so as
an app developer, it’s your responsibility to set sizes for components in your app.

Run the app again, select a flight and click anywhere in the flight details display
outside the button:

Terminal details

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 715

A sheet with information about the terminal pops up, but it’s much too tall. Click
anywhere in the sheet to dismiss it. These sheets are in FlightStatusBoard ▸
TerminalAView.swift and FlightStatusBoard ▸ TerminalBView.swift. The height
is set by the background image, which is sized to fill a tall iPhone screen.

The Image in each of these files has a frame modifier. Replace this in both files with
the following:

.frame(height: 300)

This fixes the height to a setting tall enough to show all the information without
wasting space.

You need to set limits for the main window as well. Try moving the various parts
around. Shrink and expand the window, resize the sidebar and adjust the slider in the
middle of the HSplitView. Each of those parts needs a frame modifier.

Start in FlightDetails ▸ FlightDetails.swift. Find
the .contentShape(Rectangle()) line and insert this before it:

.frame(minWidth: 400, minHeight: 400)

That makes sure the details can never get too small in either dimension.

Next, open FlightStatusBoard ▸ FlightStatusBoard.swift. Double-click the curly
brace on the TimelineView line to select the entire block and locate the closing
curly brace. After the closing brace, add this:

.frame(minWidth: 300, minHeight: 400)

Finally, the sidebar. Open WelcomeView.swift and insert this line
after .listStyle(.plain):

.frame(minWidth: 250, minHeight: 400)

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 716

Run the app again, select a flight and re-arrange the components. Then try shrinking
the entire window. Despite setting minimum limits for each component, the overall
width can still need to be bigger. The height is good, but not the width:

Narrow window

The final step is to open MountainAirportMacApp.swift and add this modifier to
WelcomeView():

.frame(minWidth: 700)

This is small enough to let the sidebar collapse but keeps the HSplitView intact.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 717

Searching for Flights
The app’s first section is complete, so click the Search Flights button in the sidebar
to look at the next section.

Search

The data is all there, the segmented picker at the top works, and the search field in
the toolbar allows you to select from a list of cities. But the display needs work, and
clicking on a flight shows another tall sheet.

Fixing the display is the first step. Expand the SearchFlights group, and open
SearchResultRow.swift. This uses a Button to contain the data view, and as before,
you need to set the style of this button.

Underneath the Button and before the .sheet line, add this modifier:

.buttonStyle(.plain)

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 718

Build and run the app again to see an immediate improvement. However, you have to
click some text or the icon to show the flight information. It would be good to be
able to click anywhere in the row.

Open SearchFlights ▸ FlightSearchSummary.swift. Find the closing brace at the
end of the HStack block. On the line before this, insert:

Spacer()

And on the line after the brace, add:

.contentShape(Rectangle())

The Spacer makes the HStack fill the row, and setting the contentShape makes the
entire rectangle clickable.

Build and run the app again, search the flights and click any row:

Search result

Like before, the background image makes the sheet too long.

Open SearchFlights ▸ FlightSearchDetails.swift and scroll down to near the end.
Before .interactiveDismissDisabled(), add this line:

.frame(width: 400, height: 600)

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 719

This locks the size of this popup sheet, which is often a good thing to do in a Mac
app. It stops people from resizing an element that doesn’t need resizing.

Build and run the app and click Search Flights. Select a flight and click On-Time
History:

Search details

This view uses some custom drawing code to make a pie chart, and it all just works,
even though that’s iOS code!

Showing the Flight History
But now that FlightTimeHistory shows the on-time history, you’ve got a problem.
How do you get rid of it? On iOS, you’d swipe down, but that doesn’t work on macOS,
so you need to find another solution. For starters, return to Xcode and click the Stop
button to quit the app.

In FlightSearchDetails.swift, find the On-Time History button. This button
toggles a Boolean called showFlightHistory and that property controls the display
of FlightTimeHistory in a sheet.

Change this Button to show a popover like this:

Button("On-Time History") {
 showFlightHistory.toggle()
}
.popover(isPresented: $showFlightHistory) {
 FlightTimeHistory(flight: flight)
}

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 720

Now try again, and you’ll be able to click anywhere outside the view to dismiss it:

On-time popover

But the display isn’t right. You can’t see the beginning of each line of text. Again, the
culprit is the background image.

Open SearchFlights ▸ FlightTimeHistory.swift and find the Image containing
background-view. This has an aspectRatio modifier that expands the image past
the popover’s edges. This means that the start of the text is outside the view, where
you can’t see it.

Delete the .aspectRatio(contentMode: .fill) line to solve this one.

Display Dialog Boxes
View a canceled flight and click Rebook Flight. This shows an alert with two entry
fields — one of them a secure field for passwords. There are two problems here. Try
typing something in the fields. They use white text, which is almost invisible. This is
because the parent view has set the .foregroundColor to white.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 721

In SearchFlights ▸ FlightSearchDetails.swift, look for the Rebook Flight button.
It has its contents and its message. After message, insert this line:

.foregroundColor(.primary)

This sets the foregroundColor for the alert to the system’s primary color: black for
light mode and white for dark mode. The rest of the view still has the required white
foreground color.

Run the app again, search for a canceled flight and try entering some information.
And now you can see the second problem:

Password entry

My super secret password isn’t as secret as I’d hoped!

This is another macOS bug. The workaround is to use a sheet here instead of an
alert, but I’ll leave that as a challenge for you.

Search for a departing flight that hasn’t left yet. This shows a Check In for Flight
button that uses a confirmationDialog. This works without any modifications, and
now this view is totally functional.

On to the next…

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 722

Awards View
When you click Your Awards, you see a mess:

Awards in a mess

Open AwardsView ▸ AwardsView.swift to see the AwardGrid struct, which lays out
each section of the view. Each AwardCardView is inside a NavigationLink. The
thing is that a NavigationLink is basically a button, and these links use the
standard macOS button appearance.

Find the closing brace at the end of the NavigationLink and after that, insert:

.buttonStyle(.plain)

Build and run now, and it looks a lot better:

Awards

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 723

Click any award card to show the award in a new view with a back button in the
toolbar.

Note: If you don’t see all the images, drag them all from the 3x box to the 2x
box in Assets ▸ award-images.

Another problem is that the section headers use white text on a grey background.
Delete the .background modifier from the Section header. The white text shows up
nicely on the background image.

The scroll bar is rather ugly and set in from the edge of the window, which looks
strange. One solution is to hide it.

Find ScrollView in AwardsView ▸ bodyand replace that line with:

ScrollView(showsIndicators: false) {

Run the app again to check out the improved look:

Awards

You’ve completed another part of the app!

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 724

The Last Viewed Flight
The Last Viewed Flight button appears in the sidebar after you select a flight in the
Search Flights section. Clicking it shows the list of flights but no details about the
flight.

Open SearchFlights ▸ FlightSearchDetails.swift and scroll down to the onAppear
modifier. This sets a published property in an @EnvironmentObject. For the Mac
app, where the user can have multiple windows open, you want to use the
@SceneStorage property you set up earlier.

Back up at the top of FlightSearchDetails, add the property:

@SceneStorage("lastViewedFlightID") var lastViewedFlightID: Int?

Scroll down to onAppear again, and replace the contents with:

lastViewedFlightID = flight.id

So now, whenever the user shows the details for a searched flight, this property is set
to the id of that flight.

Next, open WelcomeView.swift. The first step is to display the button if there’s a
last-viewed flight. At the top of WelcomeView, there’s a computed property called
sidebarButtons that supplies an array of buttons to display. The last entry checks
for a last-viewed flight.

Replace the last button entry with:

// 1
if let flight = lastViewedFlight {
 // 2
 buttons.append(
 ViewButton(
 id: .showLastFlight,
 title: "\(flight.flightName)",
 subtitle: "The Last Flight You Viewed",
 imageName: "suit.heart.fill"
)
)
}

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 725

In this code, you:

1. Use the lastViewedFlight computed property to check if there’s a value in
lastViewedFlightID that points to a flight.

2. If there is, construct the ViewButton as before.

To handle what happens when you click this button, scroll down to the switch that
controls the detail part of the NavigationSplitView.

Replace the showLastFlight case with:

case .showLastFlight:
 // 1
 if let lastFlight = lastViewedFlight {
 // 2
 HSplitView {
 // 3
 FlightStatusBoard(flights:
flightInfo.getDaysFlights(Date()))
 // 4
 FlightDetails(flight: lastFlight)
 }
 }

How does this show the flight?

1. As with the button, check that there’s a flight to show.

2. Display an HSplitView, like for the flight status display.

3. Show the FlightStatusBoard listing all of today’s flights.

4. Add a FlightDetails view, passing in the last viewed flight.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 726

Build and run the app. Search for a flight and view its details to see it appear in the
sidebar. Then close the details display, and click the last button in the sidebar to
jump to the flight list and details:

Last viewed flight

Open a second window from the File menu. It lets you select different flights in the
flight status board and have a different last viewed flight. Because you used
@SceneStorage, the app remembers your last viewed flight when you quit and
restart.

There’s one oddity remaining. With two windows open, display Flight Status in both.
Now change the tab, switching between Arrivals, All and Departures. Both windows
change to show the same tab.

Open FlightStatusBoard ▸ FlightStatusBoard.swift and check the properties at the
top. The selectedTab property is marked with the @AppStorage wrapper. Change
this to @SceneStorage to make the windows independent.

And that’s it! You’ve done it. The app now has nearly all the features of its iOS
counterpart.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 727

Challenge
In SearchFlights ▸ FlightSearchDetails.swift, swap the alert that displays the
password for a sheet that hides it correctly.

Hint: Create a new view for the sheet’s contents and display it instead of the alert
when rebookAlert is true.

Try this yourself, but check out the project in the challenge folder if you get stuck.
All the changes are in FlightSearchDetails.swift.

Key Points
• There’s a lot of iOS code around, and you can use a great deal of it in your macOS

apps with little or no changes.

• macOS apps can have multiple windows open at once, so you need to make sure
that your settings apply correctly. Do they need to be app-wide or per window?

• iOS apps have fixed-sized views, but on the Mac, you must be aware of different
possible window sizes.

• When faced with a conversion task, take it bit by bit. Get the app building without
error first, even if this means commenting out some functionality. Then go
through the interface one section at a time to see what works and what you have
to change.

• You imported 37 Swift files into your app. 23 of them required no editing, and
only 3 of the 14 changed files had significant numbers of changes! That has saved
an enormous amount of time and effort, but you still ended up with a native Mac
app.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 728

Where to Go From Here?
Congratulations! You made it. You started with an iOS app, and you re-used code and
assets to make a Mac app. You’ve learned how to fix the bugs caused by importing
iOS code and how to adjust the user interface to suit a Mac.

There are lots of ways you can make the app more Mac-like:

• Add menus and menu items to perform some of the commands.

• Style elements to suit the Mac better — don’t forget to test in dark and light
modes.

• Apply more frames to make the windows behave more consistently.

Then, select another interesting iOS project, maybe one of your own, one of the
other Kodeco apps or perhaps something open-source. See if you can use these
techniques to convert it to a Mac app.

SwiftUI by Tutorials Chapter 23: Converting an iOS App to macOS

 729

24Conclusion

We hope you’re as excited about SwiftUI as we are! This new approach to building
user interfaces might seem a bit strange at the start. But we’re sure that if you’ve
worked through the chapters in this book, you now have a much better
understanding of declarative programming and the infinite possibilities of SwiftUI.
Remember, SwiftUI is a new, modern approach, so it keeps improving; it still has a lot
to learn and a lot of growing ahead. And you’ve also just made your own first steps in
working with this wonderful new framework.

The possibility of using SwiftUI for all Apple devices opens up the playing field for a
greater number of developers on all Apple platforms, which will hopefully turn into
many more amazing apps adapted for the iPhone, Mac, iPad, Apple Watch, Apple
TV… and even new devices to come!

We encourage you to try to put the book concepts in practice. Combine SwiftUI with
UIKit & AppKit and see how well they get along together. Try Stacks, navigation,
testing, and all the cool concepts explained throughout the book. Keep learning, and
share your projects with us!

If you have any questions or comments as you work through this book, please stop by
our forums at https://forums.kodeco.com and look for the particular forum category
for this book.

Thank you again for purchasing this book. Your continued support is what makes the
books, tutorials, videos and other things we do at Kodeco possible. We truly
appreciate it!

– The SwiftUI by Tutorials team

 730

struct ThankYouView: View {
 var body: some View {
 Text("Thank you very much")
 }
}

SwiftUI by Tutorials Conclusion

 731

	Book License
	What You Need
	Book Source Code & Forums
	About the Authors
	About the Editors

	Chapter 1: Introduction
	Book Structure
	About This Book

	Chapter 2: Getting Started
	Getting Started
	Creating Your UI
	Updating the UI
	Making Reusable Views
	Presenting an Alert
	Displaying the Target Values
	Making it Prettier
	Challenge
	Key Points

	Chapter 3: Diving Deeper Into SwiftUI
	Neumorphism
	Views and Modifiers
	Implementing Neumorphism
	Creating a Neumorphic Button
	Creating a Beveled Edge
	“Debugging” Dark Mode
	Modifying Font
	Adapting to the Device Screen Size
	Key Points

	Chapter 4: Testing & Debugging
	Different Types of Tests
	Debugging SwiftUI Apps
	Adding UI Tests
	Creating a UI Test
	Accessing UI Elements
	Reading the User Interface
	Fixing the Bug
	Adding More Complex Tests
	Simulating User Interaction
	Testing Multiple Platforms
	Debugging Views and State Changes
	Challenge
	Key Points
	Where to Go From Here?

	Chapter 5: Intro to Controls: Text & Image
	Getting Started
	Text
	Image
	Brief Overview of Stack Views
	More on Image
	Splitting Text
	Label: Combining Image and Text
	Key Points
	Where to Go From Here?

	Chapter 6: Controls & User Input
	A Simple Registration Form
	Creating the Registration View
	Power to the User: The TextField
	Taps and Buttons
	Toggle Control
	Handling the Focus and the Keyboard
	Other Controls
	Key Points
	Where to Go From Here?

	Chapter 7: Introducing Stacks & Containers
	Layout and Priorities
	Stack Views
	Back to Kuchi
	The Lazy Stacks
	Key Points
	Where to Go From Here?

	Chapter 8: State & Data Flow — Part I
	MVC: The Mammoth View Controller
	A Functional User Interface
	State
	Using Binding for Two-Way Reactions
	Key Points
	Where to Go From Here?

	Chapter 9: State & Data Flow – Part II
	The Art of Observation
	Sharing in the Environment
	Object Ownership
	Understanding Environment Properties
	Key Points
	Where to Go From Here?

	Chapter 10: More User Input & App Storage
	Creating the Settings View
	The Stepper Component
	The Toggle Component
	The Date Picker Component
	The Color Picker Component
	The Picker Component
	The Tab Bar
	App Storage
	SceneStorage
	Key Points
	Where to Go From Here?

	Chapter 11: Gestures
	Adding the Learn Feature
	Your First Gesture
	Custom Gestures
	Combining Gestures for More Complex Interactions
	Key Points
	Where to Go From Here?

	Chapter 12: Accessibility
	Using VoiceOver on a Device
	Accessibility in SwiftUI
	Accessibility API
	RGBullsEye
	Adapting to User Settings
	Kuchi
	MountainAirport
	Truly Testing Your App’s Accessibility
	Key Points
	Where to Go From Here?

	Chapter 13: Navigation
	Getting Started
	Creating Navigation Views
	Polishing the Links
	Building the Details View
	Building a NavigationStack
	Adding Items to the Navigation Bar
	Navigating With Code
	Navigating Using Code
	Using Tabbed Navigation
	Setting Tabs
	Setting Tab Badges
	Key Points
	Where to Go From Here?

	Chapter 14: Lists
	Iterating Through Data
	Making Your Data Work Better With Iteration
	Improving Performance
	Setting the Scroll Position in Code
	Creating Lists
	Building Search Results
	Building a Hierarchical List
	Grouping List Items
	Key Points
	Where to Go From Here?

	Chapter 15: Advanced Lists
	Adding Swipe Actions
	Pull to Refresh
	Updating Views for Time
	Searchable Lists
	Key Points
	Where to Go From Here?

	Chapter 16: Grids
	Building Grids the Original Way
	Creating a Fixed Column Grid
	Building Flexible Grids
	Interacting Between Views and Columns
	Building Adaptive Grids
	Using Sections in Grids
	Key Points
	Where to Go From Here?

	Chapter 17: Sheets & Alert Views
	Displaying a Modal Sheet
	Programmatically Dismissing a Modal
	Showing Partial Sheets
	Creating an Alert
	Adding an Action Sheet
	Using Alerts as Action Sheets
	Showing a Popover
	Key Points
	Where to Go From Here?

	Chapter 18: Drawing & Custom Graphics
	Using Shapes
	Using GeometryReader
	Using Paths
	Building the Pie Chart
	Adding a Legend
	Fixing Performance Problems
	Drawing High-Performance Graphics
	Key Points
	Where to Go From Here?

	Chapter 19: Animations
	Animating State Changes
	Adding Animation
	Animation Types
	Eased Animations
	Spring Animations
	Removing and Combining Animations
	Animating From State Changes
	Animating Shapes
	Cascading Animations
	Extracting Animations From the View
	Animating Paths
	Making Canvas Animations
	Key Points
	Where to Go From Here?

	Chapter 20: View Transitions & Charts
	Animating View Transitions
	Linking View Transitions
	Displaying Charts
	Creating a Bar Chart
	Bar Chart Colors and Annotations
	Defining Chart Axes
	Customizing the Chart Colors
	Key Points
	Where to Go From Here?

	Chapter 21: Complex Interfaces
	Building Reusable Views
	Showing Flight Progress
	Adding Inline Drawings
	Using a ViewBuilder
	Making the Timeline Generic
	Using Keypaths
	Using the Timeline
	Integrating With Other Frameworks
	Key Points
	Where to Go From Here?

	Chapter 22: Building a Mac App
	The Default Document App
	Configuring for Markdown
	Markdown and HTML
	Adding the HTML Preview
	Adding a Settings Window
	Changing and Creating Menus
	Creating a Toolbar
	Markdown in AttributedStrings
	Installing the App
	Challenge: Add Another File Extension
	Key Points
	Where to Go From Here?

	Chapter 23: Converting an iOS App to macOS
	Getting Started
	Setting Up the Mac App
	Fixing the Build Errors
	Diagnosing the Crash
	Navigation in macOS
	Setting Frames
	Searching for Flights
	Awards View
	The Last Viewed Flight
	Challenge
	Key Points
	Where to Go From Here?

	Conclusion

