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Foreword

Advancing hazard-resistant design demands an understanding of what happens
when a disaster occurs. Documenting and sharing the key lessons learned from
extreme events around the world contribute significantly to advancing research and
practice in hazards engineering. Sustainable development of different scale
administrative-territorial units (ATU) requires an adequate comprehensive risk
assessment due to relevant natural hazards, considering the links between the risk
sources and elements. Therefore, risk assessments, analysis, and forecasts for the
overall impact in the realization of a national threat as natural hazards with certain
characteristics on given territory have become a very actual scientific problem with
the related practical, social, and economic aspects. The materials in this book
concern the mathematical physics background tools for modeling and analysis of
catastrophic events and natural hazards; available information sources—national
and international specialized databases (data acquiring and data processing);
engineering use of these data.

This book reflects our recent regional collaboration with leading European
experts in: (i) better understanding and modeling the nonlinear natural hazard
phenomena that might cause ecological and socioeconomical disasters and (ii)
mitigating the negative risk consequences associated with the earthquake disasters.

The book is addressed to physicists, geophysicists, earthquake engineers, as well
as to every other young and senior researcher interested in the problems of non-
linear mathematical physics and natural disasters and relevant multi- and interdis-
ciplinary collaborations.

Sofia Boyka Aneva
Bulgaria Mihaela Kouteva-Guentcheva
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Preface

This book is a collection of selected papers from the International School and
Workshop on Nonlinear Mathematical Physics and Natural Hazards which was
held in Sofia, in the period November 28–December 02, 2013. The scientific forum
was organized with the UNESCO financial support as an activity within the
Southeast European Network for Mathematical and Theoretical Physics, SEENET
MTP, thus extending fundamental research to applied science. It was devoted to
current advanced achievements in the field of nonlinear mathematical physics and
modeling of critical phenomena that could cause catastrophic events to occur. This
multidisciplinary meeting brought together scientists developing mathematical and
computational methods for the study and analysis of nonlinear phenomena and
working actively to apply these tools and create conditions to mitigate and reduce
the negative consequence of natural and socioeconomic disaster risk. Ten plenary
talks and ten shorter session talks focused on different theoretical and applied
aspects of the natural hazards were given. All the sessions were followed by
interesting fruitful multidisciplinary discussions. The young researchers presented
high-quality research results in ten posters at the special poster session, organized
for the participating young scientists and students.

An important part of the meeting was the open discussion at the Round Table
Discussion on Perspectives of Collaboration on Disaster Risk Assessment and
Management in Southeast Europe and Joint EU Projects moderated by the
representative of the UNESCO Regional Bureau for Science and Culture in Europe,
Venice—Mr. M. Scalet. This special session was focused on the UNESCO con-
tribution to current and future multidisciplinary collaboration and promotion of
proposals for international research and applied science projects.

The International School and Workshop on Nonlinear Mathematical Physics
and Natural Hazards has achieved the twofold objective aimed by the organization
of this scientific meeting:
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(a) Presentation of current advanced research achievements on modeling and
analysis of critical natural phenomena and their applications for reducing the
natural hazards risk, for mitigation of the negative consequences of natural and
socioeconomic disasters for the individuals and the society as a whole.

(b) Extending and strengthening the inter- and multidisciplinary collaboration at
regional, the Balkans, and European level to contribute to our joint efforts on
mitigation of the negative consequence of natural disasters.

An immediate step to further extending the communications and collaboration
between the scientists in the Balkan region was the mobility program realized in the
form of four scientific visits in the region (at: the University of Nis, IZIIS, Skopje
and the Seismological Observatory, Skopje, Technical University of Istanbul and
the Bogazici University, Istanbul) that came out as a follow-up activity of this
meeting.

The International School and Workshop on Nonlinear Mathematical Physics
and Natural Hazards combined the traditional school type lectures with shorter
talks given by advanced researchers and informal discussions at the end of each
session and of every working day. The presented latest developments on specialized
topics and state-of-the-art reviews on the research in the fields of nonlinear math-
ematical physics in relation to natural hazards and risk mitigation met the active
interest of the young auditorium. Both the high scientific and methodological
quality lectures and the friendly meeting atmosphere were highly appreciated by all
the participants and the sincere will and hope for future meetings and mobility of
young people in the region were declared. The meeting had successful impact on
the motivation of young people who decided to choose the mathematical and
physical sciences application to natural hazards as their professional field.

The major topics covered by the meeting were:

– Self-organizing Systems;
– Markov Processes and Stochastic Dynamics; Chaotic Dynamics;
– Exactly Solvable and Integrable Systems;
– Soliton Physics;
– Seismic Hazard and Seismic Risk;
– Seismic Monitoring and Networking; Earthquake Engineering Monitoring;
– Early Warning Systems.

Modern quantum field theory and statistical mechanics distinguish between two
types of systems: Type I is massive and its behavior follows the exponential law
and Type II is critical or massless and its behavior is subject to power law. Many
systems in nature and society have dynamics, whose behavior exhibits power law,
such as earthquakes, snow avalanches, landslides, superconducting vortices, forest
fires, rainfall, stock market indices, the extinction of species in biology, etc. These
events appear in quite diverse areas from atomic to social scale. A power law
probability distribution does not decay as a Poisson one and there is a finite chance
for a big catastrophic event to occur.
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Advanced hazard-resistant sustainable development demands an understanding
of what happens when a disaster occurs. Documenting and sharing the key lessons
learned from extreme events around the world contribute significantly to advancing
research and practice in hazards engineering. Adequate comprehensive risk
assessment, analysis, and forecasts relevant to different scale territories exposed to
various natural hazards have become a very actual complex scientific problem with
the explicit practical, social, and economic aspects. For this reason, the materials in
this book concern the mathematical physics background tools for modeling and
analysis of catastrophic events and natural hazards; available information sources—
national and international specialized databases (data acquiring and data process-
ing); engineering use of these data. Disaster Risk Mitigation concerns initiatives
and measures, which might enable a society to cope with risks and hazards, min-
imizing potential for loss of lives and properties as a result of different hazards.
Introducing education and the culture of prevention at all levels is a must, called by
the occurrence of major disasters, continuously caused by different hazards. The
book is a step forward to capacity building in Southeast Europe through devel-
opment of skills, exchange of knowledge and training on mathematical methods for
modeling nonlinear phenomena, disaster risk preparedness, and natural hazards
mitigation.

The materials in this book are divided into two major parts following the sci-
entific program of the meeting:

Part I—Nonlinear Mathematical Physics Towards Critical Phenomena;
Part II—Seismic Hazard and Risk.

Among the topics covered in the first part are predictions and correlations in self-
organized criticality, space-time structure of extreme current and activity events in
exclusion processes, quantum spin chains and integrability of many-body systems,
applications of discriminantly separable polynomials, MKdV-type of equations,
and chaotic behavior in Yang–Mills theories. The second part is devoted to prob-
abilistic seismic hazard assessment, seismic risk mapping, seismic monitoring,
networking and data processing in Europe, mainly in Southeast Europe.

This volume is addressed to physicists, geophysicists, earthquake engineers, and
to every other young and senior researcher interested in the problems of nonlinear
mathematical physics and natural disasters and relevant multi- and interdisciplinary
collaborations.

The editors express their sincere gratitude to all the authors of this volume for
their contributions. The precious UNESCO Regional Bureau for Science and
Culture in Europe, Venice, support and sponsorship are highly appreciated by all
the participants in this initiative. The support of the local organizations and
authorities (Institute for Nuclear Research and Nuclear Energy and Bulgarian
Academy of Sciences) is kindly acknowledged.
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Sofia Boyka Aneva
Bulgaria Mihaela Kouteva-Guentcheva
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Chapter 1
Predictions and Correlations in
Self-Organised Criticality

Gunnar Pruessner

Abstract Whether Self-Organised Criticality (SOC) can be used as a tool for
prediction of events and event sizes has been subject to quite some debate in the
past. While conflicting opinions about predictability have been put forward, there
has always been widespread agreement that strong correlations exist in SOC. The
following brief review summarises some insights from the study of correlations in
SOC models.

1.1 Introduction

Self-Organised Criticality (SOC) was introduced by Bak et al. [1] as an explanation
for the frequent occurrence of long time correlations in nature, which were argued to
go hand in hand with long ranged spatial correlations. These power law correlations
cannot be neglected by “compartmentalising” a system, as each small section is
correlated to and thus interacts with every other small section. As the resulting
spatio-temporal structures are fractal, Bak, Tang and Wiesenfeld also provided an
explanation for the frequent occurrence of fractals in nature and thus gave the research
into spatio-temporal fractals in nature a purpose [2].

Although SOC started its life at the interface between condensed matter physics
and dynamical systems, itwasmuchmore readily embraced by the statisticalmechan-
ics community. This is illustrated in the early overview article by Bak and Chen [3].
Although SOC has gone through many revisions, the key concept remains intact:
Self-Organised Criticality (supposedly) takes place whenever a spatially extended,
non-linearly interacting, slowly driven, intermittent system evolves spontaneously
towards the critical point of a continuous phase transition, which is characterised by
non-trivial scaling and spatio-temporal power-law correlations.

Unfortunately, over the years SOC became less sharply defined, to the extent that
it became unclear whether it describes a phenomenon or provides an explanation
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for it. Some of it is owed to a broadening of the scope of some of its proponents,
as testified by Bak and Paczuski’s [4] review that relates contingency in nature to
SOC. There can be no doubt that SOC was conceived in very general terms and
applied early on to a whole range of important questions and research fields, such as
1/ f noise [1, 5], evolution [6, 7], turbulence [8], and earthquakes [9, 10].

In the following, I will try to leave all controversy behind and focus on the question
of predictability in SOC. This section will be finished by a brief definition of some
of the key models in SOC. I will then review some of the literature on SOC and
predictability, in particular in the context of earthquakes. This will be followed by
some analytical considerations and by a numerical study presented in Sect. 1.2.1.

1.1.1 The Bak-Tang-Wiesenfeld Model

The Bak-Tang-Wiesenfeld (BTW) Model is the model that started SOC as a field.
Its original definition was published in [1], but underwent a small revision shortly
afterwards [11]. In that latter form, it is known as the Abelian sandpile model. On
a d-dimensional lattices sites n carry zn(i) ≥ 0 particles. To drive the sandpile, a
site n is chosen at random (and uniformly) and zn(i + 1) = zn(i) + 1 is increased
by one. The time i here refers to the macroscopic time scale, which is discrete and
essentially counts the number of driving steps taken. If a site n exceeds a certain,
globally fixed threshold, zn(i) > zc = q − 1, it “topples”, whereby each of its q
nearest neighbours n′ receives one particle, zn′(i) → zn′(i) + 1 while its height is
reduced by q, zn(i) → zn(i) − q. A toppling may give rise to a nearest neighbour
exceeding the threshold in turn, which may result in further topplings.

The topplings take place on the microscopic time scale, which is here not stated
explicitly as opposed to the macroscopic one, i , which remains unchanged during
an avalanche, which is the totality of all topplings following a particle addition by
the external drive. As is common among all SOC Models, driving takes place only
after an avalanche has finished, i.e. relaxation is very fast compared to the driving,
known as a separation of time scale. Because this dynamics preserves the number
of particles in the system, a dissipation mechanism must balance the influx by the
external driving. Such dissipation is implemented by open boundaries: If a site along
on open boundary topples, some of the particles are lost to the missing nearest
neighbours.

The fingerprint of criticality is the presence of long ranged spatio-temporal cor-
relations, i.e. correlations that are power law functions in time and space. Because
correlation functions are difficult to capture and analyse, derived observables are
normally used, in particular the spatio-temporal properties of the avalanches, such
as their size si (total number of topplings), their area (number of distinct sites top-
pling) and their duration Ti (number of microscopic time steps, assuming that sites
exceeding the threshold are updated simultaneously).

Although theBTWModel is the paradigmaticmodel of SOC, to this day it remains
unclear whether it displays non-trivial scaling [12–14]. On the other hand, the BTW
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model is one of the few models in SOC that have been investigated analytically
with great success [15–19], even when these studies did not address the question of
scaling of entire avalanches directly. The so-called wave-decomposition [20, 21] led
to certain conjectures about the governing exponents, but those rely on the assumption
of scaling, which is ultimately not supported by numerics.

In the following section I will briefly review two more models before analysing
results for the Manna Model with respect to predictability in some detail.

1.1.2 The Olami-Feder-Christensen and the Manna Models

The SOC model best known for its seismological applications is the Olami-
Feder-Christensen (OFC) Model [10]. Derived from the Burridge-Knopoff Model
[22], it has a continuous local state variable and allows for a degree of dissipation as
expected for the relaxation mechanism governing the earth crust. More specifically,
on a d-dimensional1 (hypercubic) lattice each site n is subject to a certain force zn,
which is uniformly ramped up across the system. Once the force at a site reaches
the threshold, zn(i) = zc = 1, the driving stops and a fraction αq ≤ 1 of the force
is re-distributed evenly among its q nearest neighbours, which may in turn exceed
the threshold, thereby giving rise to an avalanche. Sites along the boundaries may
transfer force across the system’s boundary, where it is dissipated. The driving is
restored until the force somewhere reaches the threshold. By the model’s definition,
this is the largest force left after the latest avalanche has ceased.

The OFC model has been extensively studied numerically e.g. [26–31], in par-
ticular in two dimensions, but also beyond. Similar to the BTW model, a somewhat
mixed picture emerges: In the conservative limit α = 1/q, scaling behaviour is
widely accepted [26, 31–33], but in the presence of bulk dissipation, α < 1/q, the
situation is much less clear e.g. [27, 34–38]. Due to its deterministic nature, the OFC
Model is prone to periodic behaviour, exploring only a very small fraction of phase
space, even when the continuous state variable allows in principle for very rich, even
chaotic behaviour. Middleton and Tang [39] pointed at the importance of boundaries
in particular for small α, which allows the periodic behaviour to be broken.

The crucial differences between the OFC Model and the BTW Model are
continuous state variable, in-built bulk dissipation and the lack of Abelianess2 in
the former. Both, the BTW and the OFC Model, have a deterministic bulk dynam-
ics; if the BTW is driven deterministically, say at the same site, periodic patterns
emerge also [40–42]. However, because of the continuous state variable zn the OFC
Model may escape periodicity. One may wonder whether both models nevertheless
are trapped in some small phase space volume and are thus unable to fully develop
scaling [39, 43, 44].

1 In one dimension, the OFC Model may not display (non-trivial) scaling at all [23, 24], although
the closely related Train Model [25] seems to.
2 Technically, this is a somewhat complicated feature, but in principle Abelianess means that the
order of updates of sites about to topple is irrelevant.
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There are, in fact, very few SOC models which display all features expected
fromSOC:Non-trivial spatio-temporal scaling (in particular in correlation functions)
without the need to tune an apparent control-parameter to the critical value. One such
key model is the Manna Model [45], more specifically, its Abelian variant which is
due to Dhar [46]. This is the model used in Sect. 1.2.1 to discuss and illustrate
correlations in SOC.

In the Abelian Manna Model, sites n again carry an non-negative, integer number
of particles zn ∈ N, but when they exceed the threshold of zc = 1, they re-distribute
two of the particles among randomly and uniformly chosen nearest neighbours.
Again, particles may be lost when sites along the open boundaries topple. Similar
to the BTW Model, driving takes place by incrementing the number of particles
at a randomly chosen site and ceases while an avalanche is running. However, the
randomness in the bulk dynamics allows for a deterministic driving on the same site,
resulting in scaling identical to that found in the Oslo Model [47, 48]. The Manna
Model displays clear, robust scaling behaviour even in one dimension [45, 48–58].

An intricate link exists between the scaling of the Manna Model, the Oslo Model
and the quenched Edwards-Wilkinson equation [48, 59, 60]. As a result, correlations
on the macroscopic time scale are very well understood in the Manna Model [61].
This will be further discussed in Sect. 1.2.1.

In the following, I will not discuss the thorny issue as to whether or not SOC
applies to seismic events, but rather focus on the implications, i.e. if SOC applies,
what does that mean for predictability?

1.2 Predictability in SOC

Historically, SOC was put forward by its proponents as a challenge to predictability
[62], because activity in SOC systems lacks regularity and it may appear as if it can
strike anywhere in the system at any point. While it is clear that SOC systems do
not display a periodic onset of activity, it is also clear that correlations exist. In fact,
correlations in SOC are algebraic and should therefore provide a very good basis
for predictions [63]. In fact, correlations can be used for predictions in the OFC
Model [64].

In an email contribution to a discussion on predictability of seismic events, Bak
[65] qualified his standpoint further:

[…] earthquakes in SOC models are clustered in time and space […]

We can ‘predict’ that it is relatively safe to stay in a region with little recent historical
activity, as everyone knows. There is no characteristic timescale where the probability starts
increasing, as would be the case if we were dealing with a periodic phenomenon. The
phenomenon is fractal in space and time, ranging from minutes and hours to millions of
years in time, and from meters to thousands of kilometers in space. This behaviour could
hardly be more different from Christopher Scholz’s description that “SOC refers to a global
state…containing many earthquake generating faults with uncorrelated states” and that in
the SOC state “earthquakes of any size can occur randomly anywhere at any time”.
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Before addressing the question whether predictions can be made in SOC systems,
one should carefully define what “prediction” refers to. A Poisson process, where
each time interval has the same probability to be struck by an event may be seen as
the least predictable system. However, if the rate of the events are themselves random
variables, then estimating these rates provides a certain level of predictability: It is
one thing to say “an event can strike with the same probability at any time” (which
says nothing about probabilities) and another to say “on average n events occur over
a time interval t” (which is a clear probabilistic statement). Both can derived without
the notion of correlations beyond the estimation of a rate in the latter.

In SOC, however, subsequent avalanche sizes are generally correlated. As dis-
cussed in detail in [66, Sect. 8.5.4.1], some models can be mapped to a description
of their dynamics in the language of interfaces. Avalanche sizes si and s j , with
indices i, j ∈ N indicating the macroscopic time, i.e. the sequential numbering of
events triggered by (roughly) equal initial driving steps, become uncorrelated over
a macroscopic time proportional to the fluctuations of the interface. These fluctua-
tions (sometimes referred to as the “wandering” of the interface) scale like Lχ with
the linear extension L of the system, where χ is the roughness exponent. The ratio
|i − j |/Lχ therefore provides a measure for the strength of correlations.

The roughness is known to be related to the (fractal) avalanche dimension D via
D = χ + d [59, 60], which characterises the avalanche frequencies

P(s; L) = s−τG (s/L D), (1.1)

i.e. the probability density function of obtaining an avalanche of size s in a system
with linear extension L . To ease notation, metric factors [66] have been omitted here
and in the following. The exponent τ is the avalanche size exponent, which is often
related to the avalanche dimension via the average avalanche size, which scales like
L D(2−τ).

The interface description strictly applies only for boundary-drive. In principle, a
second, microscopic time scale Lz is set by the dynamical exponent z for a system
with linear extension L . If the average microscopic time for an avalanche is 〈T 〉 ∝
Lz(2−α) = L D(1−τ)+z , then correlations on this relaxational time scale decay like
|i − j | 〈T 〉 /Lz ∝ |i − j |/L D(τ−1), since D(1 − τ) = z(1 − α) [66]. Here, α is
known as the avalanche duration exponent.

In general, onemay expect avalanche sizes to be anti-correlated:A large avalanche
is rarely followed by another large avalanche. In fact, theremay be very little “energy”
left in the system after a system-wide avalanche. In some systems, anti-correlations
can be derived analytically [67]. A small avalanche, however, does not pose a con-
straint. The relation between large and small avalanches are therefore asymmetric:
Large ones prevent large ones, but small ones have little or no effect on subsequent
avalanches.

The two point correlation function of avalanches sizes si , s j is therefore expected
to follow [66, Sect. 8.5.4.1],
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C(i − j) = 〈
si s j

〉 − 〈
si

〉 〈
s j

〉 = L2D(2−τ)C

( |i − j |
L D(τ−1)

,
|i − j |

Lχ

)
, (1.2)

and negative for i − j 
= 0. The finite size scaling exponent 2D(2−τ) in the equation
above is chosen to accommodate

〈
si s j

〉− 〈
si

〉 〈
s j

〉
being amultiple of 〈s〉2 ∝ L2D(2−τ)

rather than
〈
s2

〉 ∝ L D(3−τ), as it is reasonable to assume that
〈
si s j

〉
converges

smoothly to
〈
si

〉 〈
s j

〉
, whereas

〈
si s j

〉
is expected to be singular at i = j , if one assumes

anti-correlations. In other words, one may anticipate that C(0) ∝ L D(3−τ) > 0 and
C(i − j) ∝ L2D(2−τ) < 0 for i 
= j , discontinuously in some suitable limit.

1.2.1 Correlations in the Manna Model

It is relatively straight-forward to measure the correlation function C(i − j) of (1.2).
As suggested above, the focus is on i − j 
= 0. The following measurements have
been taken for the Manna Model in one dimension. Each system was equilibrated
for at least 250,000 avalanches (using relatively small system sizes from L = 64 to
L = 256) and statistics was taken from about 4 × 106 measurement. The Mersenne
Twister [68] was used as the random number generator throughout.

In theMannaModel D = 2.253(14), D(2−τ) = 2, z = 1.445(10) and z(1−α) =
D(1−τ) [57], so that D(τ−1) = D−2 = 0.253(14) andχ = D−1 = 1.253 in (1.2)
are clearly different. Figure 1.1 shows a collapse of C(i − j) for i − j > 0 according
to (1.2), but ignoring the dependence on |i − j |/Lχ , i.e. C(i − j)/L2D(2−τ) ∝
C̃ (|i − j |/L D(τ−1)). IfC(i − j)/L2D(2−τ) was plotted against |i − j |/Lχ no collapse
would occur. On the other hand, the shorter time scale L D(τ−1) dominates, which
may be related to the fact that the interface picture may not apply for the Manna
Model which is driven (at randomly chosen sites) in the bulk.

To test this hypothesis, Fig. 1.2 shows a collapse of C(i − j) for the one-
dimensional, boundary-driven Manna Model. Due to the driving at the boundary,

Fig. 1.1 Data collapse of the
avalanche size
autocorrelation function in
the one-dimensional,
bulk-driven Manna Model, to
confirm (1.2). The collapse
could be improved further
either by mild adjustments of
the exponents or by
increasing system size (and
possibly also statistics). For
technical details see text

1 2 3 4 5 6

|i-j|/L
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Fig. 1.2 Data collapse of the
avalanche size
autocorrelation function in
the one-dimensional,
boundary-driven Manna
Model, to confirm (1.2). The
collapse could be improved
further either by mild
adjustments of the exponents
or by increasing the system
size (and possibly also
statistics). For technical
details see text

2 . 01 . 0

|i-j|/L
1.253

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

C
(i
-j
)/
L
2

L=64
L=128
L=256

many avalanches terminate early so that a very much increased statistics is required
in order to reduce statistical noise to reasonable levels (4× 106 avalanches for equi-
libration and about 109 avalanches for statistics). This time, the collapse is based on
the time scale Lχ , but because D(2 − τ) = 1 for boundary driving, χ = D − d
coincides with D(τ − 1) = D − 1 as d = 1.

1.3 Conclusion

Having confirmed (1.2) in the Manna Model, it is worthwhile speculating about the
scaling form of the joint probability function P(si , s j ; |i − j |) for the avalanche
sizes si and s j obtained |i − j | driving steps apart. For very large |i − j | the joint
probability factorises

lim|i− j |→∞ P(si , s j ; L , |i − j |) = P(si , L)P(s j , L) = (si s j )
−τG (si/L D)G (s j/L D)

(1.3)
with avalanche exponent τ , scaling function G (x) and avalanche dimension D, (1.1).
What is the effect of moderate |i − j |? Firstly, the time scale to compare to may
be either Lχ = L D−d (as is the case in the boundary-driven Manna Model) or
Lz/Lz(2−α) (as is the case in the bulk-driven Manna Model).

Regardless of the time scale, correlations in SOC models generally produce anti-
correlations, whereby large avalanches are likely to be suppressed in the immediate
aftermath of large ones. In SOC, the situation is much more fortunate than in real
seismic event, as the system can be globally surveyed in SOC, so that it is always
known whether a (large) avalanche has terminated or not—the avalanche is finished
when everything than can topple has toppled. Whatever has been dislodged during
an SOC avalanche is likely to contribute to that very same avalanche. What appears
to be two consecutive big events in “real” seismology, may be one big event in a
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corresponding SOC Model, which feeds into the ongoing debate about fore- and
aftershocks [10, 69–74].

Accepting, however, that large avalanches prevent consecutive (or, in fact, preced-
ing) large avalanches, i.e. that large avalanches repel each other, on a (macroscopic)
time scale below, say L D−1, the upper cutoff for consecutive avalanches may be
modified to

P(si , s j ; L , |i − j |) = P(si , L)P(s j , L) = (si s j )
−τG (si /sc(s j , L; i − j))G (s j /sc(si , L; i − j))

(1.4)
with an si -dependent cutoff for s j , such as

sc(si , L; i − j) = min(L D, αsi |i − j |/L D−1) (1.5)

with some suitable pre-factorα. It isworth noting that (1.4) does not factorise, because
sc depends on si or s j . However, this remains speculation and requires considerable
numerical effort to be tested. It illustrates, however, that there is some, limited pre-
dictive power in SOC: Given correlations, only certain joint probability function are
possible. Their characteristic time scale determines essentially the (approximately
Poissonian) rate with which large avalanches occur. Big systems have a lower rate
of their biggest events.

An interesting lesson can be learnt for the interface picture: Numerics suggest
that the time scale set by the roughness of the interface applies only for boundary-
drive, which is when the interface mapping strictly applies. For bulk-drive, surely
the situation is different. However, for boundary-drive in one dimension, there is no
difference between the scaling of the roughness Lχ = L D−1 and the time scale set
by Lz/ 〈T 〉 = L D(τ−1) = L D−1 = Lχ . One may therefore wonder, whether there
is only one time scale throughout, namely Lz/ 〈T 〉, which is equal to Lχ whenever
the interface mapping applies. One may be tempted to test this hypothesis in d > 1,
where χ = D − d is no longer identical to D − 1, but one may wonder how well the
interface picture works in d > 1 at all. Because measuring correlations C(i − j) in
dimensions greater than unity is computationally very expensive, this is left to future
investigations.
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Chapter 2
The Space-Time Structure of Extreme
Current and Activity Events in the ASEP

Gunter M. Schütz

Abstract A fundamental question in the study of extreme events is whether during a
rare and strong fluctuation a system exhibits phenomena that are qualitatively differ-
ent from its typical behaviour. We answer this question quantitatively for the asym-
metric simple exclusion processes (ASEP) on a ring, conditioned to an atypically
large particle current or an atypical large hopping activity.We show that this classical
problem is related to the integrable quantum Heisenberg ferromagnet. For strongly
atypical fluctuations we show that the equal-time density correlations decay alge-
braically, as opposed to the typical stationary correlationswhich are short-ranged.We
compute the exact dynamical structure factor which shows that that the dynamical
exponent in the extreme regime is z = 1 rather than the KPZ exponent z = 3/2 for
typical behaviour. An open problem is the transition point from typical to extreme.

2.1 Introduction

In a many-body system with noisy dynamics intrinsic fluctuations may occur that
drive characteristic properties of the system far away from their typical values. An
example of this problem, that has attracted great attention in the last decade, are
fluctuations of the entropy production and related thermodynamic quantities such
as heat and work [1, 2]. Of interest in this context are not only the tails of the
probability distribution or the the statistics of extreme events, but particularly the
space-time structure of the system undergoing such a rare and intrinsic fluctuation.

Generally, in equilibrium systems, time-reversal symmetry implies that the fluc-
tuation out of an extreme event is the mirror image of the fluctuation that led into
it. Unfortunately, little more can be said generally. In systems that are driven per-
manently out of equilibrium, even less is known. The distribution of the entropy
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production satisfies the Gallavotti-Cohen symmetry (or similar relations [1, 2]).
However, the absence of time-reversal symmetry does not allow for generally valid
predictions of temporal behaviour.

A notable exception from this unfortunate state of affairs are driven diffusive
systems, i.e., lattice gas models for stochastic interacting particle systems [5–8].
For example, it could be demonstrated for a specific lattice gas model, the zero-
range process with open boundary conditions [9, 10], that a failure of the celebrated
Gallavotti-Cohen symmetry [3, 4] of the distribution function for entropy production
can arise from a real-space condensation phenomenon [11, 12]. A macroscopic fluc-
tuation theory, based on the seminal papers [13, 14] allows for the computation of
macroscopic density profiles during a long event of strongly atypical particle current
or hopping activity. Interestingly, for a particular model system, the asymmetric sim-
ple exclusion process (ASEP, see below) a dynamical phase transition occurs from a
macroscopically flat density profile to a travelling shock/antishock wave (atypically
low current in the driven case [15]) or a phase separation arises (low activity in the
undriven system [16]). Microscopic information about atypically low currents has
recently been obtained for the ASEP [17, 18] by making use of the mapping of the
generator of the ASEP to the Heisenberg quantum ferromagnet.

Following [19, 20] we use this approach to consider here the microscopic space-
time structure of the ASEP for large atypical current, and, going beyond our earlier
work, also for atypical activity. We derive detailed information about equal-time
correlations, relaxation times and the dynamical structure function, which indicate
a qualitative change of the typical dynamics in the universality class of the Kardar-
Parisi-Zhang equation with dynamical exponent z = 3/2 [21] to a ballistic univer-
sality class with z = 1 [22] during extreme events of strong current or activity.

2.2 Grandcanonical Conditioning for the ASEP

We proceed to define the model and to exhibit its relationship to the ferromagnetic
Heisenberg quantum spin chain. Then we define the conditioned dynamics and illus-
trate the setting for independent particles.

2.2.1 The Asymmetric Simple Exclusion Process

The asymmetric simple exclusion process (ASEP) [6–8] with periodic boundary
conditions is a lattice gas model for a driven diffusive system where each site k on
a ring of L sites can be occupied by at most one particle. Particles hop randomly to
empty nearest neighbour sites after an exponentially distributed random time with
mean 1/(p + q). A jump to the right (in clockwise direction) is attempted with
probability p/(p + q) and to the left (anticlockwise) with probability q/(p + q).
If the target site is already occupied, the jump attempt is rejected. Physically, this
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models an on-site excluded-volume interaction.We shall set p = weφ andq = we−φ .
Here w plays the role of an attempt frequency of jumps and φ is proportional to a
driving force that acts on the particles. Without loss of generality we shall assume
φ > 0 throughout this article. We denote a microscopic configuration of the ASEP η

and the local occupation number by η(k) ∈ {0, 1}. The total number of particles N =∑
k η(k) is conserved. Originally the model was introduced in a biophysics context

to describe the kinetics of biopolymerization on RNA [23, 24] and independently
in the probabilistic literature to study the emergence of large scale hydrodynamic
behaviour [25].

2.2.1.1 Master Equation

This Markovian jump dynamics can be described in terms of a master equation for
the time evolution for the probability P(η, t) to find the configuration η at time t ≥ 0.
It is convenient to introduce a column vector |P(t)〉 which has these 2L probabilities
as components. To this end we assign to a configuration η a canonical basis vector
|η〉 = |η(1))⊗|η(1))⊗· · ·⊗|η(L)) ∈ (C2)⊗L where |0) = (1, 0)T and |1) = (0, 1)T

are the canonical basis vectors ofC2 and the superscript T denotes transposition [7].
By introducing also a dual basis of row vectors 〈η| and inner product 〈η|η′〉 = δη,η′
we canwrite P(η, t) = 〈η|P(t)〉with |P(t)〉 := ∑

η P(η, t)|η〉. Themaster equation
then takes the form

d

dt
|P(t)〉 = −H |P(t)〉 (2.1)

where the off-diagonal matrix elements Hη′,η of the generator H are the negative
transition rates for transitions from η to η′ and the diagonal elements are the inverse
sojourn times of a configuration η, i.e., Hη,η = ∑′

η Hη′,η. Notice that this con-
struction implies that the summation vector 〈s| := ∑

η 〈η| is a left eigenvec-
tor of H with eigenvalue 0. This property expresses conservation of probability
d/dt

∑
η P(η, t) = d/dt〈s|P(t)〉 = −〈s|H |P(t)〉 = 0.

The corresponding right eigenvector with eigenvalue 0 is a stationary distribution
|P∗〉of the process. For periodic boundary conditions andfixed number of particles N
this is the uniform distribution that gives equal probability to all microscopic config-
urations with N particles, independently of the driving force φ which is a direct con-
sequence of pairwise balance [26]. From these uniform canonical distributions one
can construct also a grand canonical distribution which is uncorrelated, i.e., on each
lattice on finds a particle with probability ρ, independent of the occupation of other
sites. In the thermodynamic limit these two stationary distributions become equiva-
lent for ρ = N/L . The stationary current takes the form j∗ = 2w sinh (φ)ρ(1− ρ).
The apparent (and unphysical) divergence of the current with the driving force stems
from the fact that for convenience we have chosen the time scale of the process to
be given by p and q. As will be seen below a physically more natural choice is a
normalization by the inverse mean time p + q = 2w cosh (φ) of jump attempts of
a single particle.
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The time-dependent solutionof (2.1) has the simple form |P(t)〉 = exp (−Ht)|P0〉
for an initial distribution |P0〉 := |P(0)〉. In particular, we have for the transition
probability P(η2, t |η1, 0) into a configuration η2, starting from η1,

P(η2, t |η1, 0) = 〈η2|e−Ht |η1〉. (2.2)

For the expectation of a function f (η) we obtain

〈 f (t)〉 :=
∑

η

F(η)P(η, t) = 〈η| f̂ e−Ht |P0〉 (2.3)

where f̂ = ∑
η f (η)|η〉〈η| is a diagonal matrix with the values f (η) on its diagonal.

The real part of eigenvalues of the generator are the inverse relaxation times of the
system.

2.2.1.2 Link to Quantum Systems

The point behind choosing the tensor basis is the fact that the generator H of the
ASEP takes the form

H = −w
L∑

k=1

[
eφ(σ+

k σ−
k+1 − n̂k(1 − n̂k+1)) + e−φ(σ−

k σ+
k+1 − (1 − n̂k)n̂k+1)

]

(2.4)
with the matrices

σ+ =
(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, n̂ =

(
0 0
0 1

)
, (2.5)

the two-dimensional unitmatrix1 and the notation x̂k := 1⊗· · ·⊗x̂⊗. . .1 indicating
that the two-dimensional matrix x̂ acts non-trivially on the factor k in tensor space,
corresponding to site k in the ring. One recognizes in (2.4) the quantum Hamiltonian
of the spin-1/2 Heisenberg ferromagnet with an imaginary Dzyaloshinsky-Moriya
interaction term [27, 28]. This is an integrable model that can be solved with the
Bethe ansatz. The form of the master equation (2.1) and of the generator (2.4) has
given this tensor basis approach the name quantumHamiltonian formalism. It allows
the application of mathematical techniques borrowed from quantum mechanics to
treat this problem of classical stochastic dynamics.

For future purposes we split H into three parts

H = H+ + H− + H0 (2.6)
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where H+ = −weφ
∑

k σ+
k σ−

k+1 generates jumps to the right, H− = −we−φ
∑

k σ−
k

σ+
k+1 generates jumps to the left and H0 is the diagonal part for the conservation of

probability.

2.2.1.3 Non-interacting Particles

For reference purposes we also consider non-interacting particles. In this case each
lattice site can be occupied by an arbitrary integer number η(k) ∈ N of particles.
The generator H takes form [29, 30]

H = −w
L∑

k=1

[
eφ(â−

k â+
k+1 − n̂k) + e−φ(â+

k â−
k+1 − n̂k+1)

]
(2.7)

where the infinite-dimensional local hoppingmatrices havematrix elements (â+)i j =
δi, j+1, (â−)i j = iδi+1, j (with i, j ∈ N) and with the diagonal number operator
(n̂)i j = iδi, j . Notice that here a+ (a−) creates (annihilates) a particle. In the single-
site basis one has â+|k) = |k + 1) ∀k ∈ N and â−|0) = 0, â−|k) = k|k − 1)
∀k ≥ 1. The number operator is given by n̂ = â+â−. These operators commute at
different sites and satisfy the harmonic oscillator algebra [â−

k , â−
l ] = [â+

k , â+
l ] = 0,

[â−
k , â+

l ] = δk,l for the same site. In quantum language (2.7) is the Hamiltonian for
non-interacting bosons hopping on a lattice under the influence of an driving field
with imaginary amplitude, analogous to the Dzyaloshinsky-Moriya interaction. Also
the generator (2.7) can be split naturally into three parts analogous to (2.6).

The ground state with eigenvalue 0, corresponding to the stationary distribution
of the system, is the projection on N particles of the grand canonical factorized dis-
tribution where on each lattice site the number of particles is Poisson distributed with
parameter ρ. Here ρ is the average particle density. The factorization property of the
grand canonical distribution implies the absence of density correlations between dif-
ferent sites. The dynamics of fluctuations can be studied by considering the dynamical
structure function S(r, t) = 〈η(k + r, t)η(k, 0)〉−ρ2 where the expectation is taken
in the stationary distribution. Since the particles are non-interacting, the dynamical
structure function satisfies a lattice diffusion equation with a constant drift term.
On large space and time scales its solution is the Gaussian which is invariant under
dynamical scaling r → ar , t → azt where z = 2 is the dynamical exponent of the
diffusive universality class.

2.2.2 Grandcanonically Conditioned Dynamics

The master equation describes the evolution of the probability distribution of the
configurations η, but does not provide any information about the number of jumps
that have occurred to reach a given final configuration at some time T . To describe
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also these properties of the process we introduce J±(T ) as the number of jumps to
the right (left) up to time T and also the integrated current J (T ) := J+(T )− J−(T )

and the integrated activity A(T ) := J+(T ) + J−(T ). These are random numbers
with initial value 0 at time 0 that depend on the particular realization of the stochastic
dynamics.

2.2.2.1 Joint Generating Function

Following [1, 31] the joint generating function Y (λ, μ, T ) = 〈exp (λJ (T ) + μA(T ))〉
for the distribution of A and J is given by

Y (λ, μ, T ) = 〈s|e−H̃(λ,μ)T |P0〉. (2.8)

Here
H̃(λ, μ) = eλ+μ H+ + e−λ+μ H− + H0 (2.9)

which in the case of the ASEP is also an integrable quantumHeisenberg ferromagnet
with imaginary Dzyaloshinsky-Moriya interaction. For non-interacting particles one
has a similar expression with the generator (2.7).

Notice that the generating function is by definition the average over all final
microscopic configurations η and all realizations of the process with final values
J (T ) = J and A(T ) = A. This generating function is formally analogous to a
grandcanonical partition functionwhere the intensive variables λ andμ are conjugate
to the extensive variables J and A (proportional to time T and length L).

Analogously we can study grandcanonically conditioned expectations of func-
tions f (η) of a configuration η. These are the quantities

〈 f (T )〉λ,μ
P0

:= 〈s| f̂ e−H̃(λ,μ)T |P0〉/Y (λ, μ, T ) (2.10)

In particular, for f (η) = 1η which is represented by the projector f̂ = |η〉〈η| we
find for the grand-canonically conditioned probability distribution Pλ,μ(η, T ) :=
〈η|e−H̃(λ,μ)T |P0〉/Y (λ, μ, T ). Therefore the fundamental quantity of interest is the
weighted probability distribution

|Pλ,μ(T )〉 := e−H̃(λ,μ)T |P0〉. (2.11)

In the limit T → ∞ we have asymptotically

e−H̃(λ,μ)T ∼ |g〉〈g|
〈g|g〉 e

−g(λ,μ)T (2.12)
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where g(λ, μ) is the lowest eigenvalue of H̃(λ, μ) and |g〉 (〈g|) is the corresponding
right (left) eigenvector whose components we denote by gR

λ,μ(η) (gL
λ,μ(η)). Since

H̃(λ, μ) is in general not symmetric the notion of the lowest eigenvalue refers to the
lowest real part.

2.2.2.2 Optimal Paths

With this approach one can study also how the particle configuration behaves at
intermediate times t within the conditioning time interval [0, T ]. This yields the
answer to the question how the typical time evolution of an untypical fluctuation is
realized, or, in other words, what is the optimal path that a random variable takes
under conditioned dynamics. The conditional expectation of a one-time observables
f (η) at time t is given by

〈 f (t)〉λ,μ,T
P0

:= 〈s|e−H̃(λ,μ)(T −t) f̂ e−H̃(λ,μ)t |P0〉/Y (λ, μ, T ) (2.13)

For long conditioning period T → ∞ we define edge intervals [0, u] and [T − v, T ]
and consider t ∈ [u, T − v]. In the limit u, v → ∞ we use (2.12) to find that
〈 f (t)〉λ,μ,T

P0
→ 〈g| f̂ |g〉/〈g|g〉 =: ∑

η f (η)P∗
λ,μ(η) is independent of t inside the

observation window and also independent of the initial distribution. The interpreta-
tion is that between an initial transient period and a final transient period the condi-
tioned system is in a stationary state with stationary conditional distribution

P∗
λ,μ(η) = gR

λ,μ(η)gL
λ,μ(η)/Z(λ, μ). (2.14)

Here Z(λ, μ) = 〈g|g〉 = ∑
η gR

λ,μ(η)gL
λ,μ(η) is the normalization factor.

For two observables fa(η), fb(η) at different times t1, t2 ∈ [u, T −v]with t1 ≤ t2
one finds in the limit u, v → ∞

〈 fb(t2) fa(t1)〉λ,μ,T
P0

→ 〈g| f̂be
−[H̃(λ,μ)−g(λ,μ)]τ f̂a |g〉/Z(λ, μ) (2.15)

with τ = t2 − t1. As expected from a stationary process, the two-time correlation
function depends only on the time difference τ .

2.2.2.3 Effective Dynamics

Defining the diagonal matrixΔ(λ,μ)with the components gL
λ,μ(η) of the left eigen-

vector on the diagonal and defining the transformed Hamiltonian

G = ΔH̃Δ−1 − g (2.16)
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we can rewrite (2.15) as

〈 fb(t2) fa(t1)〉λ,μ,T
P0

→ 〈s| f̂be
−G(λ,μ)τ f̂a |P∗

λ,μ〉. (2.17)

In otherwords, the conditioned two-time correlation function turns into the stationary
correlation function of an effective process given by G. This effective process is a
dynamics under which the atypical, conditioned dynamics of the original process
become unconditioned, typical dynamics [32]. It realizes an optimal path (in the
sense described above) as typical path. The stationary distribution of this effective
process is given by (2.14).

2.2.3 Conditioned Dynamics in the Noninteracting Case

It is instructive to apply the grandcanonical conditioning to the case of non-interacting
particles. Since in this case H+, H− and H0, defined in (2.7) through (2.9), all
mutually commute, all eigenvectors are independent of μ and λ. Because of the
harmonic oscillator algebra all terms can be diagonalized simultaneously by Fourier
transformation (see e.g. [7] for details). In terms of the Fourier modes p one obtains
H̃ = ∑

p ε(p)b̂+
p b̂−

p where the momenta p are of the form p = 2πm/L with
m ∈ {0, 1, 2, . . . , L −1} and the summation over all p amounts to a summation over
all m. For the single-particle energy one has

ε(p) = w
[
2 cosh φ − eμ(eλ+φei p + e−λ−φe−i p)

]
(2.18)

The N -particle eigenstates are of the form b̂+
p1 . . . b̂+

pN
|0〉 where |0〉 is the vacuum

state with no particles. The corresponding eigenvalues are the sum of the single
particle energies with momenta pi . Hence the lowest eigenvalue in the N -particle
sector is obtained for choosing all momenta to be 0 which yields

g(λ, μ) = Nw
[
2 cosh φ − eμ+λ+φ − eμ−λ−φ

]
. (2.19)

This result allows us to describe the effective conditioned dynamics. Since the
ground state does not depend on μ and λ we have that the transformation matrix Δ

is the unit operator. Hence

G = H̃ − g = −weμ
L∑

k=1

[
eλ+φ(â−

k â+
k+1 − n̂k) + e−λ−φ(â+

k â−
k+1 − n̂k+1)

]
(2.20)

which is similar to the original process (2.7), but with renormalized hopping rates

p̃ = eλ+μ p, q̃ = e−λ+μq. (2.21)
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Therefore conditioning on higher than typical activity (μ > 0) corresponds to a
higher frequency w̃ = weμ for jumps. Conditioning on higher than typical current
(λ > 0) corresponds to a stronger driving force φ̃ = φ + λ. All other fluctuations in
the dynamics remain unchanged. Therefore, non-interacting particles conditioned on
high activity and/or current behave essentially like under typical conditions, except
that jumps occur with higher frequency and the hopping bias is stronger. Phrased
differently, one can generate the effective dynamics, where the untypical extreme
behaviour of the original dynamics becomes typical, just by changing the jump
frequency and the driving field. Conditioning on extreme behaviour does not lead to
any change in universal properties of the dynamics. Long-range correlations in the
stationary distribution remain absent and one has diffusive relaxation with dynamical
exponent z = 2.

It is natural to define the intrinsic time scale of the process by normalizing by
the inverse sum of the hopping rates, i.e., the mean sojourn time of a particle. Then
the normalized effective dynamics becomes independent of μ, i.e., conditioning on
untypical activity does not change the normalized dynamics. In the limit of high
current (λ → ∞) the hopping becomes totally asymmetric.

2.3 Results for the ASEP

Even though the Hamiltonian (2.6) is exactly solvable via Bethe ansatz it is very
hard to extract for general λ and μ explicit results for the weighted distribution
(2.11) for finite time T or the stationary correlations (2.17) in the infinite-time limit.
Nevertheless, some special cases can be studied in some detail.

2.3.1 Bethe Ansatz Equations

In order to obtain the Bethe ansatz equations for the spectrum of H̃ we introduce
new notation. Instead of labelling basis vectors by occupation number we choose the
particle positions which we shall denote by ki mod L for the i th particle and by k =
{k1, . . . , kN } the ordered set of all coordinates. The particle label i ∈ {1, 2, . . . , N }
is associated with the particles whose order remains preserved in the time evolution.
We also introduce z = {z1, . . . , zN } where the zi can be thought of as exponentials
of (possibly complex) pseudomomenta and the quantities

ai j = p̃ + q̃zi z j − (p + q)zi . (2.22)

Notice the appearance of the modified rates (2.21) in this definition.
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The Bethe ansatz for the right eigenvectors |z〉 (see e.g. [19, 28, 31] for the present
context) is given by

|z〉 =
∑

1≤k1<k2<k3≤L

∑

σ∈SN

Aσ zk1
σ(1)z

k2
σ(2)...z

kN
σ(N )|k〉 =

∑

1≤k1<k2<k3≤L

Y (k)|k〉
(2.23)

where the second sum is over all permutations σ of the N particle labels and the
coefficients Aσ are given by

A...σ (i j)...

A...i j....
= −a ji

ai j
= − peλ+μ + qe−λ+μzi z j − (p + q)z j

peλ+μ + qe−λ+μzi z j − (p + q)zi
. (2.24)

Periodic boundary conditions leads to a quantization condition: The Bethe roots z j

satisfy the Bethe ansatz equations

zL
k = (−1)N−1

N∏

i=1

peλ+μ + qe−λ+μzi zk − (p + q)zk

peλ+μ + qe−λ+μzi zk − (p + q)zi
(2.25)

for arbitrary N . The eigenvalue ε(z) of a Bethe eigenvector is a sum of single-particle
excitation energies

ε(z) =
N∑

i=1

ε(zi ) (2.26)

where ε(zi ) = −zi aii (z−1) (cf. (2.18) with the identification z = ei p). The rescaled
single-particle energies read

ε̃(z) = 2e−μ cosh (φ) − eφ+λz − e−φ−λz−1

eφ+λ + e−φ−λ
. (2.27)

For typical behaviour λ = μ = 0 the Bethe ansatz equations (2.25) have been
analyzed in [27, 28]. It turns out that the real part of the energy gap, which yields
the inverse of the longest relaxation time, scales with system size as L−z with the
dynamical exponent z = 3/2 of the Kardar-Parisi-Zhang (KPZ) universality class
[21]. Therefore the exclusion interaction changes the dynamical universality class
from diffusive (in the non-interacting case) to KPZ. The stationary distribution,
however, is uncorrelated, as is the case for non-interacting particles.

2.3.2 Stationary State for High Activity or High Current

In the limit of high activity μ → ∞ or high current |λ| → ∞ the Bethe equations
(2.25) simplify considerably. The right hand side reduces to the factor (−1)N−1 which
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means that the Bethe roots are of the form zk = e2π imk/L where mk is either integer
(N odd) or half integer (N even). As pointed out in [19] the model becomes a free
fermion system. The N -particle wave function Y (k) becomes a Slater determinant

Y (k) = det

∣∣∣∣∣∣∣∣∣∣∣

zk1
1 zk2

1 ... zkN
1

zk1
2 zk2

2 ... zkN
2

... ... ... ...

zk1
N zk2

N ... zkN
N

∣∣∣∣∣∣∣∣∣∣∣

. (2.28)

Following [19] the ground state corresponds to the choice of Bethe roots mk =
k − (N − 1)/2 with k = 0, 1, 2, . . . , N − 1. The stationary distribution can then be
expressed in the form of a double product

PL(k) = 2N (N−1)

L N

∏

1≤i< j≤N

sin2
(

π
ki − k j

L

)
(2.29)

From this one obtains the well-known expression [33] for the static two-point density
correlation for the particle occupation numbers

S(r) := 〈η(k)η(k + r)〉 − ρ2 = − sin2 rπρ

r2π2 . (2.30)

Remarkably, the correlations decay algebraically, unlike for typical dynamics where
the stationary distribution is uncorrelated, or in the non-interacting case where also
the conditioned stationary distribution is uncorrelated.

For the stationary current per site we find after rescaling of the time scale

j∗ = tanh(φ̃) sin (πρ)

L sin (π/L)
(2.31)

with φ̃ = φ + λ. In this quantity another interesting feature appears: The finite-
size corrections are of order 1/L2 rather than of order 1/L which is expected from
typical behaviour in systems with short-range interactions. In the thermodynamic
limit L → ∞ we get

j∗ = 1

π
tanh(φ̃) sin (πρ) (2.32)

2.3.3 Dynamical Properties

The relaxational behaviour is encoded in the spectrum of H̃ , which can be computed
using the free fermion structure of the process conditioned on large activityμ → ∞.
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In order to do so we rescale time by the effective single-particle sojourn time and
adapt the approach of [19] to the present case where

H̃ = − 1

2 cosh φ̃

L∑

k=1

[
eφ̃σ+

k σ−
k+1 + e−φ̃σ−

k σ+
k+1

]
(2.33)

In the limit λ → ∞ we recover the case of large current studied in [19, 20].

2.3.3.1 Longest Relaxation Time

From the ground state choice of the Bethe roots one obtains the lowest excited state
by exchanging the root with m = 0 with m = −1. The real part of the spectral
gap, i.e., the inverse of the longest relaxation time τL in a finite system of size L is
independent of φ̃ and given by

1/τL = 2 sin (πρ) sin
(π

L

)
∝ 1/L (2.34)

where ρ = N/L is the particle density.
For large L the gap is inversely proportional to the system size, unlike in the

unconstrained ASEP where the real part of the spectrum gap scales as O(1/L3/2)

[27, 28] with the dynamical exponent z = 3/2 of the KPZ universality class. We
conclude that the conditioned dynamics is in a different dynamical universality class,
characterized by a dynamical exponent z = 1 and first studied by Spohn [22] in
the context of the relatedmodelwith long-range interactions. Indeed, generalizing the
work of [19] it is readily seen that the generator G of the effective process in the
symmetric case φ̃ = 0 is identical with the quantum Hamiltonian of Spohn. As
pointed out in that work this symmetric case can be interpreted classically as a
system of non-intersecting randomwalks or quantummechanically as a latticemodel
of Dyson’s Brownian motion of the eigenvalues of a random matrix [34]. Non-
intersecting random walks appear also in the study of diffusive pair annihilation
processes and many different techniques (see e.g. [35–38] and references therein)
allow for a detailed analysis of this problem.

2.3.3.2 Dynamical Structure Function

This ballistic universality class can be studied in terms of the dynamic structure
factor which is defined as the Fourier transform of the time-dependent stationary
correlation function SL ,N (r, t) = 〈η(k + r, t)η(k, 0)〉 − ρ2. In order to compute this
quantity we follow the approach of [20]. We introduce the Fourier transform
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ŜL ,N (p, t) =
L−1∑

r=0

e−2π i pn/L SL(r, t) (2.35)

which has the particle-hole symmetry, i.e., ŜL ,L−N (p, t) = ŜL ,N (−p, t). Therefore
we can restrict the computation to the case 0 ≤ ρ ≤ 1/2. After some computation
one finds from the free-fermion property

ŜL ,N (p, t) = 1

L

N−1∑

k=0

[
e(εk−εk+p)t − e−(εk−εk−p)t

]

+ 1

L

N−1∑

k=0

L−1∑

l=N

e−(εk−εl )tδp,k−l (2.36)

where in contrast to [20]

εk = − 1

2 cosh φ̃

(
eφ̃e−iαk + e−φ̃eiαk

)
(2.37)

with

αk = 2π

L

(
k − N − 1

2

)
. (2.38)

This yields

εk − εk−p = −
eφ̃

(
1 − e

2π i p
L

)
e−iαk + e−φ̃

(
1 − e

−2π i p
L

)
eiαk

cosh φ̃

=
(
1 − cos

(
2πp

L

))
cosαk + sin

(
2πp

L

)
sin αk

+ i tanh φ̃

[
sin

(
2πp

L

)
cosαk −

(
1 − cos

(
2πp

L

))
sin αk

]
(2.39)

Taking the thermodynamic limit L → ∞ with density ρ = N/L fixed turns
the sums into integrals as in [20] and thus yields an exact expression valid for all
p ∈ [−π, π ] and t ≥ 0. In order to explore the large-scale behaviour of the dynamic
structure factor we study the behaviour for small momentum p and large times t .
To this end we define the scaling variable u = pzt and the limit t → ∞ with u
fixed. Inspection of (2.39) shows that non-trivial scaling behaviour is obtained for
z = 1, as expected from the scaling of the energy gap (2.34). In this scaling we have
t (1 − ei p) = −iut and therefore

Ŝ(u) = |u|
2π t

e−iu tanh φ̃ cos ρπ−|u| sin ρπ (2.40)
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which is valid for all ρ ∈ [0, 1]. We read off the collective velocity

vc = tanh φ̃ cos ρπ (2.41)

of the lattice gas. Hence for conditioning on high activity we recover the univer-
sal scaling function of the ASEP conditioned on high current even for finite current.
Conditioned on an atypical current amounts only to a shift in the driving field φ → φ̃.
By comparing with (2.32) one sees that one has vc = ∂ j∗/∂ρ as in lattice gases with
static short-range correlations. To our knowledge this is the first verification of this
relation for a lattice gas with long-range correlations. The validity is in agreement
with the notion [39] that this relation should remain generally valid for static corre-
lations that decay faster than 1/r .

2.4 Conclusions and Open Questions

The perhaps most significant results of our studies are the emergence of long-range
stationary correlations and the change of the dynamical universality class from KPZ
to ballistic as one goes from typical to high activity or current. Hence, in a state
of extremely high current or activity the ASEP does not behave essentially like
“normal”, with just upscaled parameter values as is the case for non-interacting
particles. It is important to understand whether this is specific for the ASEP (where
it can be traced to the underlying non-intersecting random walks) or whether this is
a generic phenomenon for driven diffusive systems.

A more specific open problem concerns the location of the phase transition
point. Does the ballistic universality class arise for any finite deviation from the
typical activity or current, or is some threshold required? This question can be
addressed by a careful analysis of the Bethe ansatz equations (2.25) along the lines of
[27, 28], since the finite-size scaling of the spectral gap of the generator will reveal
the dynamical exponent. Also the answer to this question could be of interest beyond
the ASEP.
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Chapter 3
Quantum Spin Chains and Integrable
Many-Body Systems of Classical Mechanics

A. Zabrodin

Abstract This note is a review of the recently revealed intriguing connection
between integrable quantum spin chains and integrable many-body systems of clas-
sical mechanics. The essence of this connection lies in the fact that the spectral prob-
lem for quantum Hamiltonians of the former models is closely related to a sort of
inverse spectral problem for Lax matrices of the latter ones. For simplicity, we focus
on the most transparent and familiar case of spin chains on N sites constructed by
means of the GL(2)-invariant R-matrix. They are related to the classical Ruijsenaars-
Schneider system of N particles, which is known to be an integrable deformation of
the Calogero-Moser system. As an explicit example the case N = 2 is considered in
detail.

3.1 Introduction

In this paper we present some results of [1–4] in a short compressed form and in the
simplest possible setting. First of all let us explain what we mean by “quantum spin
chains” and “integrable many-body systems of classical mechanics”.

The best known example of integrable quantum spin chain is the isotropic (XXX)
homogeneous Heisenberg model with spin 1

2 on an 1D lattice with coupling between
nearest neighbours. Throughout the paper, we use thewords “spin chain” in a broader
sense, not implying existence of any local Hamiltonian of theHeisenberg type. In fact
integrable local Hamiltonians in general do not exist for inhomogeneous spin chains
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which are closely involved in our story. However, such models still make sense as
generalized spin chains with long-range interaction and a family of commuting (non-
local) Hamiltonians. We call them inhomogeneous XXX spin chains. Alternatively,
onemay prefer to keep inmind inhomogeneous integrable latticemodels of statistical
mechanics rather than spin chains as such. In either case, the final goal of the theory
is diagonalization of transfer matrices which are generating functions of commuting
conserved quantities. This is usually achieved by one or another version of the Bethe
ansatz method.

The integrable model of classical mechanics we are mainly interested in is the
N -body system of particles on the line called the Ruijsenaars-Schneider (RS) model
[5, 6]. It is often referred to as an integrable relativistic deformation of the famous
Calogero-Moser (CM) model with inversely quadratic pair potential [7–9].

As is common for integrable models, the classical dynamics can be represented
in the Lax form, i.e., as an isospectral deformation of a N × N matrix called the
Lax matrix. Matrix elements of this matrix are simple functions of coordinates and
momenta of the particles while the eigenvalues are integrals of motion. In a nutshell,
the essence of the quantum-classical (QC) duality

Quantum integrable models ←→ Classical many-body systems . (3.1)

lies in the fact that spectra of quantum Hamiltonians of a model from the left hand
side appear to be encoded in the algebraic properties of the Lax matrix for a classical
system from the right hand side.

In the case of the inhomogeneous XXX spin chain, a refined version of (3.1) is

Quantum XXX spin-
1

2
chain on N sites ←→ Classical N -body RS model .

(3.2)

More precisely, the spectral problem for the quantumHamiltonians of the inhomoge-
neous XXX spin chain on N sites is reduced to a sort of an inverse spectral problem
for the N × N Lax matrix for the classical RS system. Given its spectrum and the
coordinates of the particles, the problem is to find possible values of their momenta
compatible with these data. In general this problem has many solutions which just
yield different eigenvalues of the quantum Hamiltonians. In a special scaling limit,
the XXX spin chain turns into the Gaudin spin model [10]. On the right hand side of
(3.2), this corresponds to the non-relativistic limit of the RS system:

Quantum Gaudin model ←→ Classical CM model . (3.3)

The QC duality is traced back to [11], where joint spectra of some finite-
dimensional operators were linked to the classical Toda chain. The existence of an
unexpected link between the quantum Gaudin and the classical CMmodels was first
pointed out in [12, 13], see also [14–16]. In amore general set-up, the correspondence
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between quantum and classical integrable systems was independently derived [1, 3,
17, 18] as a corollary of an embedding of the commutative algebra of spin chain
Hamiltonians into an infinite integrable hierarchy of soliton equations known as
the modified Kadomtsev-Petviashvili (mKP) hierarchy. Namely, the most general
generating function of commuting integrals of motion of the spin chain (the “mas-
ter T -operator”) was shown to satisfy the bilinear identity and the Hirota bilinear
equations for the tau-function of the mKP hierarchy [19, 20].

Although only a limited number of examples are available at the moment, the very
phenomenon of the existence of hidden non-standard connections between quantum
and classical integrable systems seems to be rather general. Presumably, it can be
thought of as a new kind of a correspondence (or duality) principle in the realm of
integrable systems. In [4], the QC duality (3.2), (3.3) was checked directly using the
Bethe ansatz solution of integrable spin chains. The role of this duality in the context
of supersymmetric gauge theories and branes was discussed in [4, 21, 22].

It is worthwhile to stress that the both sides of the correspondence, i.e. quantum
and classical integrable systems, participate in the game as two faces of one entity on
an equal-rights basis. In the theory of quantum models, there are some fundamental
relations, exact for any� �= 0,which assume the formof classical equations ofmotion
for some other system. (One of such examples is the classical integrable dynamics
naturally realized in the space of conserved quantities of quantum integrable models,
see [1] and earlier works [23–27].) At the same time, given a many-body problem
of classical mechanics, one may extract from it, by addressing some non-traditional
questions about the system, the spectral properties of a quantum model. This picture
becomes valid and meaningful if the systems from both sides are integrable. It might
be interesting to combine the hypothetical “correspondence principle” based on the
QC duality with the standard correspondence principle of quantum mechanics.

Let us outline the contents of the paper.
In Sect. 3.2, we start with the most familiar example of integrable spin chain: the

Heisenberg model with spin 1
2 and periodic boundary conditions (the XXX magnet)

solved by H. Bethe in 1931 [28]. The “spin variables” are vectors from the spaces
C
2 at each site. However, this model itself is too degenerate to be directly linked to

a classical many-body system. To this end, we need an inhomogeneous version of
the model with twisted boundary conditions. Such a generalized XXX model has
N + 2 free parameters which are N “inhomogeneity parameters” on each site and
2 eigenvalues of the twist matrix which is assumed to be diagonal. The generalized
XXX model can be naturally constructed in the framework of the Quantum Inverse
ScatteringMethod (QISM) developed by the former Leningrad school [29–31]. In the
inhomogeneous model, the locality of spin interactions does not take place. Instead,
there are N non-local commuting Hamiltonians (which are cousins of the Gaudin
ones). They can be simultaneously diagonalized using the algebraic Bethe ansatz.

In Sect. 3.3, the necessary formulae related to the classicalRSmodel are presented,
including theLaxmatrix. The rules of the quantum-classical correspondence between
the integrable models are explained in Sect. 3.4. As an example we consider the case
N = 2, where all calculations can be done directly by hands (Sect. 3.5). Finally,
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in Sect. 3.6 we give some remarks on the scaling limit to the Gaudin model which
corresponds, on the classical side, to the non-relativistic limit of the RS system. Some
generalizations and perspectives are briefly discussed in the concluding Sect. 3.7.

3.2 The Heisenberg Spin Chain and Its Generalizations

The Hamiltonian of the isotropic Heisenberg spin chain (also called the XXX-
magnet) with periodic boundary condition is

Hxxx = 2
N∑

j=1

(
s( j)

x s( j+1)
x + s( j)

y s( j+1)
y + s( j)

z s( j+1)
z − I

)
, N + 1 ≡ 1,

where the spin operators (sx , sy, sz) = �s are expressed through the Pauli matrices as

sx = 1

2

(
0 1
1 0

)
, sy = 1

2

(
0 −i
i 0

)
sz = 1

2

(
1 0
0 −1

)

and I = 1⊗N is the identity operator (Hereafter 1 stands for the identitymatrix inC
2).

We will also use s+ = sx + isy =
(
0 1
0 0

)
, s− = sx − isy =

(
0 0
1 0

)
, s1 = 1

21+ sz =
(
1 0
0 0

)
and s2 = 1

21 − sz =
(
0 0
0 1

)
. The operator �s( j) = 1⊗( j−1) ⊗ �s ⊗ 1⊗(N− j)

acts non-trivially at the j th site of the chain. Clearly, they commute for any j ′ �= j .
The Hamiltonian acts in the 2N -dimensional linear space V = ⊗N

j=1Vj , Vj ∼= C
2.

Basis vectors in this space can be constructed as tensor products of local vectors with
definite z-projection of spin, i.e., eigenvectors of sz .

Note that Pi j = 1
2

(
I + 4�s(i)�s( j)

)
is the permutation operator of the i th and j th

spaces, and so the Heisenberg Hamiltonian can be written in the form Hxxx =∑
j P j j+1 − NI.
The Hamiltonian commutes with the operator

M = 1

2

N∑

j=1

(I − 2s( j)
z ) =

N∑

j=1

s( j)
2 (3.4)

which counts the total number of spins in the chain with negative z-projection.
Namely, the states in which M spins look down (and so the rest N − M spins look
up) are eigenstates for the operator M with the eigenvalue M . The space of states V

is decomposed in the direct sum of eigenspaces for the operator M: V =
N⊕

M=0

V(M),

MV(M) = MV(M). It is clear that
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dimV(M) =
(

N
M

)
= N !

M !(N − M)! .

In particular, V(0) and V(N ) are one-dimensional spaces generated by the states in
which all spins look up or down respectively.

The common spectral problem for the operators Hxxx and M, Hxxx� = E�,
M� = M�, has the famous Bethe ansatz solution [28]. The eigenvalues E for
0 ≤ M ≤ [N/2] are given by the formula

E =
M∑

α=1

ε(vα), ε(v) = − 4

1 + 4v2
, (3.5)

where the auxiliary quantities vα (the Bethe roots) are to be found from the system
of algebraic equations

(
vα + i

2

vα − i
2

)N

=
M∏

β=1,β �=α

vα − vβ + i

vα − vβ − i
(3.6)

(the Bethe equations). Different solutions to this system give energies of different
eigenstates.

The exact solution of the Heisenberg spin chain is possible due to the fact that the
model is integrable. This means that there is a sufficiently large family of indepen-
dent commuting operators, one of which is the Heisenberg Hamiltonian. The other
operators of this family are higher integrals of motion. A general prescription how to
construct models possessing higher integrals of motion is provided by the Quantum
Inverse Scattering Method (QISM) [29, 30].

We start by reformulating the XXX spin chain in the framework of the QISM,
following [31]. Such a reformulation makes integrability of the model explicit and,
what is even more important, it suggests natural integrable generalizations of the
XXX chain.

Let V0 ∼= C
2 be another copy of the complex linear spaceC

2 (the auxiliary space).
The quantum Lax operator at the j th site acts non-trivially in V0 ⊗ Vj . It is

L j (x) = x1 ⊗ I + ηP0 j =
(

x + η

2

)
1 ⊗ I + 2η �s ⊗ �s , (3.7)

or, in the block-matrix form,

L j (x) =
⎛

⎜
⎝

xI + ηs( j)
1 η s( j)

−

η s( j)
+ xI + ηs( j)

2

⎞

⎟
⎠ . (3.8)
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The variable x ∈ C is called the (quantum) spectral parameter. The extra parameter
η introduced here for the reason clarified below is not actually essential because it
can be eliminated by a rescaling of the spectral parameter (unless one tends it to 0 as
in the limit to the Gaudin model [10]). The Heisenberg Hamiltonian does not depend
on η which is usually put equal to i = √−1 in this context. The L-operator satisfies
the “RL L = L L R” intertwining relation

R(x − x ′) L j (x) ⊗ L j (x ′) = L j (x ′) ⊗ L j (x) R(x − x ′),

where the quantum R-matrix R(x) acts in the tensor product of two auxiliary spaces
V0 ∼= V0′ ∼= C

2. In the natural basis in C
2 ⊗ C

2 it is

R(x) =

⎛

⎜⎜
⎝

x + η 0 0 0
0 η x 0
0 x η 0
0 0 0 x + η

⎞

⎟⎟
⎠ = η 1 ⊗ 1 + xP00′ . (3.9)

Note that in this particular case the R-matrix is almost the same object as the quantum
L-operator: they differ only by a permutation operator of the two spaces, so that the
intertwining relation is equivalent to the Yang-Baxter equation for the R-matrix. The
quantum transfer matrix is defined as

T(x) = tr0
[
L1(x)L2(x) . . . LN (x)

]
= 2I x N + JN−1x N−1 + · · · + J1x + J0 .

(3.10)

The intertwining relation implies that the transfer matrices with different spectral
parameters (and the same η) commute: [T(x), T(x ′)] = 0 for any x, x ′. In its turn,
this implies that the operators Jk in (3.10) all commute with each other. At the same
time, the operator J0 is proportional to the cyclic permutation of the chain:

J0 = T(0) = ηN P12P23P34 . . . PN−1 N PN1

while the Hamiltonian of the spin chain is given by

Hxxx = η
d

dx
logT(x)

∣∣∣
x=0

− NI = ηJ−1
0 J1 − NI.

The operators J−1
0 Jk are then the higher integrals of motion. The operator J−1

0 J1 is
local due to the special property of the quantum Lax operator L j (0) = ηP0 j and the
homogeneity of the chain. The operator M (see (3.4)) commutes not only with Hxxx

but with the whole one-parametric family T(x), and the Bethe states are common
eigenstates for the T(x) and M: T(x)� = T (x)�, M� = M�.

The transfer matrix T(x) can be diagonalized by means of the algebraic Bethe
ansatz method. The eigenvalues T (x) are given by the formula
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T (x) = (x + η)N
M∏

α=1

x − uα − η

x − uα
+ x N

M∏

α=1

x − uα + η

x − uα
. (3.11)

The Bethe roots uα are to be found from the system of Bethe equations

(
uα + η

uα

)N

=
M∏

β=1,β �=α

uα − uβ + η

uα − uβ − η
, (3.12)

where is implied that 0 ≤ M ≤ [N/2]. The eigenvalues of the Heisenberg Hamil-
tonian, in terms of the Bethe roots, are given by the formula

E =
M∑

α=1

η2

uα(uα + η)

which is equivalent to (3.5) under the substitution vα = iuα

η
+ i

2
.

The XXX model can be generalized, preserving integrability, in two ways: (a)
by making it inhomogeneous and (b) by imposing twisted boundary conditions. The
former is based on the possibility to introduce an inhomogeneity parameter at each
site which does not spoil the intertwining relation:

R(x − x ′) L j (x − x j ) ⊗ L j (x ′ − x j ) = L j (x ′ − x j ) ⊗ L j (x − x j ) R(x − x ′).

The latter is due to the GL(2)-invariance of the R-matrix (3.9): g ⊗ g R(x) =
R(x) g ⊗ g for any g ∈ GL(2). This property implies that commutativity of the
transfer matrices still holds if one inserts a matrix g ∈ GL(2) in the auxiliary space
before taking trace. For simplicity, we assume that g is diagonal:

g =
(

w1 0
0 w2

)
. (3.13)

The generalizations (a) and (b) can be applied simultaneously, which leads to the
most general one-parametric family of commuting operator-valued polynomials in x :

T(x) = T(x; g, η, {x j }) = tr0
[
g L1(x − x1)L2(x − x2) . . . LN (x − xN )

]
. (3.14)

These operators commute for different x’s and the same η, g and x j :

[T(x; g, η, {x j }), T(x ′; g, η, {x j })] = 0.

Similarly to (3.10), one can expand
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T(x) = I tr g x N + JN−1x N−1 + · · · + J1x + J0, (3.15)

the Jk’s being commuting integrals of motion. Note, in particular, that JN−1 =
η
∑

i g(i), where g(i) is the operator acting as the matrix g at the i th site: g(i) :=
1⊗(i−1) ⊗ g ⊗ 1⊗(N−i). In general there is no way to construct local Hamiltonians
from the Jk’s. Instead, assuming that all the x j ’s are distinct and in general position
(meaning that xi − x j �= ±η for all i, j), one can define non-local Hamiltonians as
residues of T(x)/

∏
j (x − x j ) (cf. [32]):

T(x)
∏N

j=1(x − x j )
= tr g · I +

N∑

j=1

η H j

x − x j
.

In general, the Hamiltonians H j = H j (η, g, {xi }) imply a long-range interaction
involving all spins in the chain. Their explicit form is

Hi =
−−−→

N∏

j=i+1

(
I + η Pi j

xi − x j

)
g(i)

−−→
i−1∏

j=1

(
I + η Pi j

xi − x j

)
, (3.16)

where we use the notation
∏−→m

j=1
A j = A1A2 . . . Am for the ordered product. It

follows from the definition that
∑N

j=1
H j =

∑N

j=1
g( j).

The operator M (3.4) still commutes with T(x) and all the H j ’s, so, again, all
these operators are diagonalized simultaneously: T(x)� = T (x)�, H j� = Hj�,
M� = M�. The algebraic Bethe ansatz gives the following result. The eigenvalues
T (x) and Hj are given by the formulae

T (x) = w1

N∏

k=1

(x − xk + η)

M∏

α=1

x − uα − η

x − uα
+ w2

N∏

k=1

(x − xk)

M∏

α=1

x − uα + η

x − uα
,

(3.17)

Hj = w1

N∏

k=1,�= j

x j − xk + η

x j − xk

M∏

α=1

x j − uα − η

x j − uα
. (3.18)

The Bethe roots uα are to be found from the system of Bethe equations

w1

w2

N∏

k=1

uα − xk + η

uα − xk
=

M∏

β=1,β �=α

uα − uβ + η

uα − uβ − η
, (3.19)

where it is implied that 0 ≤ M ≤ [N/2].
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3.3 The Ruijsenaars-Schneider Model

The RS model [5, 6] is an integrable model of classical mechanics. It is an N -body
system of interacting particles on the line with the Hamiltonian

HRS
1 = η−1

N∑

i=1

e−η pi

N∏

k=1,�=i

xi − xk + η

xi − xk
. (3.20)

For some reason it is often called the relativistic deformation of the Calogero-Moser
model, the parameter η being the inverse “velocity of light”. The Hamiltonian equa-

tions ofmotion

(
ẋi

ṗi

)
=
(

∂piHRS
1−∂xiHRS
1

)
give the following connectionbetweenveloc-

ity and momentum

ẋi = −e−η pi

N∏

k=1,�=i

xi − xk + η

xi − xk
(3.21)

and the equations of motion

ẍi = −
∑

k �=i

2 η2 ẋi ẋk

(xi − xk)((xi − xk)2 − η2)
, i = 1, . . . , N . (3.22)

The RS model is known to be integrable, with the higher integrals of motion in
involution being given byHRS

k = η−1tr (YRS)k , where YRS = YRS({xi }; {ẋi }) is the
Lax matrix of the model. Its matrix elements are YRS

i j = ηẋi

xi − x j − η
, i.e.,

YRS({xi }; {ẋi }) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−ẋ1
ηẋ1

x1 − x2 − η

ηẋ1
x1 − x3 − η

. . .
ηẋ1

x1 − xN − η

ηẋ2
x2 − x1 − η

−ẋ2
ηẋ2

x2 − x3 − η
. . .

ηẋ2
x2 − xN − η

...
...

...
. . .

...

ηẋN

xN − x1 − η

ηẋN

xN − x2 − η

ηẋN

xN − x3 − η
. . . −ẋN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.23)

Equations of motion (3.22) are equivalent to the Lax equation ẎRS = [B, YRS],
where

Bi j =
⎛

⎝
∑

k �=i

ẋk

xi − xk
−
∑

k

ẋk

xi − xk + η

⎞

⎠ δi j + ẋi

xi − x j
(1 − δi j ).
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The Lax equation implies that all eigenvalues of the Lax matrix are integrals of
motion.

Let X = diag(x1, x2, . . . , xN ) be the diagonal matrix with the diagonal entries
being coordinates of the particles. It is easy to check that the matrices X, YRS satisfy
the commutation relation

[X, YRS] = ηYRS + ηẊE, (3.24)

where E is the N × N matrix of rank 1 with all entries equal to 1. Note also that the
Lax matrix YRS can be represented in the form

YRS = Ẋ C, (3.25)

where C is the Cauchy matrix Ci j = η

xi − x j − η
.

3.4 The Quantum-Classical Duality

Consider the Lax matrix (3.23) of the N -particle RS model, where the xi ’s are
identified with the inhomogeneity parameters xi at the sites of the spin chain and
the inverse “velocity of light”, η, is identified with the parameter η introduced in the
quantum L-operator (3.8). Let us also substitute ẋi = −Hi :

YRS({xi }; {−Hi }) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

H1
ηH1

x2 − x1 + η

ηH1

x3 − x1 + η
. . .

ηH1

xN − x1 + η

ηH2

x1 − x2 + η
H2

ηH2

x3 − x2 + η
. . .

ηH2

xN − x2 + η

...
...

...
. . .

...

ηHN

x1 − xN + η

ηHN

x2 − xN + η

ηHN

x3 − xN + η
. . . HN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.26)

The decomposition (3.25) for the matrix (3.26) acquires the form

YRS({xi }; {−Hi }) = −HC, (3.27)

where H = diag(H1, H2, . . . , HN ).
The claim is that if the Hi ’s are eigenvalues of theHamiltonians of the spin chain in

the invariant subspaceV(M), then the first N −M eigenvalues of this matrix coincide
with eigenvalues of the twist matrix w1 while the rest M eigenvalues coincide with
w2:
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Spec (YRS) =
(
w1, . . . , w1︸ ︷︷ ︸

N−M

, w2, . . . , w2︸ ︷︷ ︸
M

)
. (3.28)

This means that the values of the higher RS Hamiltonians are

ηHRS
k = (N − M)wk

1 + Mwk
2. (3.29)

In general, the matrix YRS with multiple eigenvalues is not diagonalizable and con-
tains Jordan cells.

To put it somewhat differently, one can say that the eigenstates of the quantum
spin chain Hamiltonians correspond to the intersection points of two Lagrangian
submanifolds in the phase space of the RS model. One of them is the hyperplane
defined by fixing all the coordinates xi while the other one is the Lagrangian sub-
manifold obtained by fixing values (3.29) of the N integrals of motion in involution
HRS

k . In general, there are many such intersection points numbered by a finite set I ,

with coordinates, say (x1, . . . , xN , p(α)
1 , . . . , p(α)

N ), α ∈ I . The values of p(α)
j give,

through (3.21), the spectrum of H j :

H (α)
j = e−η p(α)

j
∏

k=1,�= j

x j − xk + η

x j − xk
.

However, we can not claim that all the intersection points correspond to the energy
levels of the spin chain Hamiltonians. The example of N = 2 considered below in
detail suggests that some intersection points do not correspond to the energy levels
of a given spin chain. Their meaning is to be clarified.

Anyway, the spectral problem for the non-local inhomogeneous spin chainHamil-
toniansH j in the subspaceV(M) appears to be closely linked to the following inverse
spectral problem for the RS Lax matrix YRS of the form (3.26). Let us fix the spec-
trum of the matrix YRS to be (3.28), where w1, w2 are eigenvalues of the (diagonal)
twist matrix g. Then we ask what is the set of possible values of the Hj ’s allowed by
these constraints. The eigenvalues Hj of the quantum Hamiltonians are contained in
this set.

A similar correspondence between quantum and classical integrable systems was
suggested in [12, 13], see also [14–16]. In a more general set-up, this assertion was
derived [1, 3, 17, 18] as a corollary of the embedding of the spin chain into an infinite
integrable hierarchy of non-linear PDE’s. In [4], it was checked directly using the
Bethe ansatz solution.

In order to find the characteristic polynomial of the matrix (3.26) explicitly, we
use the well known fact that the coefficient in front of λN−k in the polynomial
detN×N (λI + A) equals the sum of all diagonal k × k minors of the matrix A. All
such minors can be found using decomposition (3.27) and the explicit expression for
the determinant of the Cauchy matrix:
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det
1≤i, j≤n

η

xi − x j − η
= (−1)n

∏

1≤i< j≤n

(
1 − η2

(xi − x j )2

)−1

.

The result is:

det
N×N

(λI − YRS) = det
N×N

(λI + HC) =
N∑

n=0

JnλN−n, (3.30)

where

Jn = (−1)n
∑

1≤i1<···<in≤N

Hi1 . . . Hin

∏

1≤α<β≤n

(

1 − η2

(xiα − xiβ )2

)−1

. (3.31)

In particular, the highest coefficient is given by the following simple formula:

JN = (−1)N H1H2 . . . HN

∏

i< j

(
1 − η2

(xi − x j )2

)−1

.

For completeness, we point out that the integrals Hk introduced in the previ-
ous section are connected with the integrals Jk by the Newton’s formula [33]
∑N

k=0
JN−kHk = 0 (we have set H0 = η−1tr(YRS)0 = N/η).

Another way to write expressions (3.30), (3.31) is through a sum over ε1, . . . , εN ,
with εi ∈ {0, 1}:

det
N×N

(λI − YRS) = λN
∑

{ε1,...,εN }∈ZN
2

N∏

i=1

(
−Hi /λ

)εi ∏

1≤ j<k≤N

(

1 − η2

(x j − xk)2

)−ε j εk

.

(3.32)

The similarity of these expressions with tau-functions for N -soliton solutions to the
KP hierarchy is not accidental. This point will be discussed elsewhere.

We conclude this section by writing down the system of algebraic equations for
spectra of the operators Hi . Combining (3.28) and (3.31), we obtain N polynomial
equations for N unknown quantities H1, . . . , HN :

∑

1≤i1<···<in≤N

Hi1 . . . Hin

∏

1≤α<β≤n

(

1 − η2

(xiα − xiβ )2

)−1

= Cn(N , M), (3.33)

where Cn(N , M) = 1
2πi

∮
|z|=1(1+ zw1)

N−M (1+ zw2)
M z−n−1dz, n = 1, 2, . . . , N .

Let us emphasize that in contrast to the Bethe ansatz solution, the algebraic equations
arewritten here not for some auxiliary quantities like Bethe roots but for the spectrum
itself.
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The state where all spins look up (M = 0) is an obvious eigenvector of the
operators Hi with the eigenvalues

Hi = w1

N∏

j=1,�=i

(
1 + η

xi − x j

)
. (3.34)

One can check that these Hi ’s indeed solve the system (3.33) with Cn(N , 0) =
N !wn

1
n!(N−n)! .

3.5 Examples: N = 1 and N = 2

The case N = 1 is trivial. The only quantum Hamiltonian H1 is diagonal in the
standard basis ofC

2 and coincides with the twist matrix, so we have two eigenvalues:
H1 = w1 or H1 = w2. The one-particle RS model is the model of a free particle
on the line, the Lax “matrix” is just the number −ẋ1. Fixing it to be w1 or w2, as
required by the QC duality, we obtain the two eigenvalues of H1 by the identification
Hi = −ẋi , see (3.26).

The case N = 2 is meaningful and instructive. First, let us find the spectrum of
the quantum Hamiltonians directly. The transfer matrix is:

T(x) = tr

[(
w1 0
0 w2

)(
(x − x1)I + ηs(1)

1 η s(1)
−

η s(1)
+ (x − x1)I + ηs(1)

2

)

×
(

(x − x2)I + ηs(2)
1 η s(2)

−
η s(2)

+ (x − x2)I + ηs(2)
2

)]

A simple calculation gives the following explicit form of the Hamiltonians:

H1 = w1s(1)
1 + w2s(1)

2 + ηw1

x1 − x2
(s(1)

1 s(2)
1 + s(1)

− s(2)
+ ) + ηw2

x1 − x2
(s(1)

2 s(2)
2 + s(1)

+ s(2)
− ),

H2 = w1s(2)
1 + w2s(2)

2 + ηw1

x2 − x1
(s(1)

1 s(2)
1 + s(1)

− s(2)
+ ) + ηw2

x2 − x1
(s(1)

2 s(2)
2 + s(1)

+ s(2)
− ).

Wesee thatH1+H2 = g(1) + g(2), as it should be. The spaceC
2 ⊗ C

2 is decomposed
into the direct sum of the one-dimensional space V(0) generated by the vector |++〉
(M = 0), two-dimensional spaceV(1) generated by the vectors |+−〉, |−+〉 (M = 1)
and one-dimensional space V(2) generated by the vector |−−〉 (M = 2). We have:

H1 |++〉 = w1

(
1 + η

x1 − x2

)
|++〉 , H1 |−−〉 = w2

(
1 + η

x2 − x1

)
|−−〉 ,
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H1 |+−〉 = w1 |+−〉 + ηw1

x1 − x2
|−+〉 ,

H1 |−+〉 = w2 |−+〉 + ηw2

x1 − x2
|+−〉 .

Here we use the usual notation for the basis vectors in C
2 ⊗ C

2:

|++〉 =
(
1
0

)
⊗
(
1
0

)
, |+−〉 =

(
1
0

)
⊗
(
0
1

)
, and so on.

The vectors |++〉 and |−−〉 are eigenvectors of H1. The rest part of the spectrum is

found by diagonalizing the 2 × 2 matrix

(
w1

ηw1
x1−x2ηw2

x1−x2
w2

)
. The two eigenvalues are

1
2

(
w1 + w2 ± √

R
)
, where

R = (w1 − w2)
2 + 4η2w1w2

(x1 − x2)2
.

The final result for the joint spectrum of the operators Hi is as follows:

(H1, H2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
w1 + ηw1

x1 − x2
, w1 − ηw1

x1 − x2

)
, M = 0,

(
w1 + w2 + √

R

2
,

w1 + w2 − √
R

2

)

, M = 1,

(
w1 + w2 − √

R

2
,

w1 + w2 + √
R

2

)

, M = 1,

(
w2 + ηw2

x1 − x2
, w2 − ηw2

x1 − x2

)
, M = 2.

(3.35)

Note that in the case of the periodic boundary conditionw1 = w2 = 1 the eigenvalue
H1 = 1 + η

x1−x2
becomes 3-fold degenerate as it should be due to the GL(2)-

invariance of the R-matrix.
Now consider the Lax matrix of the 2-particle RS model, where we substitute

ẋi = −Hi :

Y =

⎛

⎜⎜⎜
⎝

H1
ηH1

x2 − x1 + η

ηH2

x1 − x2 + η
H2

⎞

⎟⎟⎟
⎠
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The characteristic equation det(Y−λI) = 0 readsλ2 − (H1 + H2)λ + x212H1H2

x212−η2
= 0,

where x12 ≡ x1 − x2 and the two eigenvalues are

1

2

(

H1 + H2 ±
√

(H1 + H2)2 − 4x212 H1H2

x212 − η2

)

.

In the subspace with M = 0 the eigenvalue of H1 + H2 is 2w1 and the Lax matrix
has the double eigenvalue w1. This implies that the expression under the square root
vanishes, i.e., we arrive at the system

⎧
⎨

⎩

H1 + H2 = 2w1

H1H2 = w2
1

(
1 − η2

x212

)

which is a particular case N = 2 of the general system (3.33). There are two solutions:

(H1, H2) =
(

w1 ± ηw1

x1 − x2
, w1 ∓ ηw1

x1 − x2

)
, M = 0.

The choice of the upper sign corresponds to the first line in (3.35). The meaning
of the other solution is to be clarified. In a similar way, for M = 2 we obtain two
solutions

(H1, H2) =
(

w2 ± ηw2

x1 − x2
, w2 ∓ ηw2

x1 − x2

)
, M = 2,

of which the one with the upper sign corresponds to the last line in (3.35). Finally,
at M = 1 we have the system

⎧
⎨

⎩

H1 + H2 = w1 + w2

H1H2 = w1w2

(
1 − η2

x212

)
.

There are two solutions which coincide with the second and the third lines in (3.35).

3.6 The Limit to the Quantum Gaudin Model
and the Classical Calogero-Moser System

In the limit η → 0 the QC duality discussed above becomes a correspondence (3.3)
between the quantum Gaudin model and the classical Calogero-Moser system with
inversely quadratic pair potential. Some details are given below.
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The rational GL(2) Gaudin model [10] is the η → 0 limit of the inhomogeneous
spin chainwith the transfermatrixT(x; eηh, η, {x j }). The expansion as η → 0 gives:

T(x; eηh , η, {x j }) = 2I+η

⎛

⎝tr h +
N∑

i=1

1

x − xi

⎞

⎠ I+η2

⎛

⎝1

2
tr h2 I +

N∑

i=1

HG
i

x − xi

⎞

⎠+O(η3),

where h =
(

ω1 0
0 ω2

)
is the Gaudin analogue of the twist matrix, and

HG
i = lim

η→0

Hi (η, eηh, {x j }) − I
η

= h(i) +
∑

j �=i

Pi j

xi − x j

=
∑

j �=i

I
xi − x j

+ h(i) + 2
∑

j �=i

�s(i)�s( j)

xi − x j
(3.36)

are the Hamiltonians of the GL(2)-invariant Gaudin model. Here h(i) = ω1+ω2
2 I +

(ω1 − ω2)s
(i)
z is the twist matrix acting in the space Vi ∼= C

2 at the i th site. In
the context of the Gaudin model, the parameters xi (in general, complex numbers)
are often called marked points of the Riemann sphere. Since the first two terms
in the η → 0 expansion of the T(x; eηh, η, {x j }) are proportional to the identity
operator and thus commute with everything, commutativity of the transfer matrices
implies commutativity of the Gaudin Hamiltonians: [HG

i , HG
j ] = 0. The Gaudin

spectral problem consists in the simultaneous diagonalization of these operators and
the operator M which has the same form as above: HG

i � = H G
i �, M� = M�.

The Bethe ansatz solution is the η → 0 limit of (3.18), (3.19):

H G
j = ω1 +

∑

k �= j

1

x j − xk
+

M∑

α=1

1

uα − x j
, (3.37)

where the Bethe roots uα satisfy the system of equations

ω1 − ω2 +
N∑

k=1

1

uα − xk
= 2

M∑

β=1,�=α

1

uα − uβ
. (3.38)

An alternative solution is achieved via theQC duality with the classical CMmodel

with the Hamiltonian HCM = 1

2

∑N

i=1
p2i −

∑

i< j

1

(xi − x j )2
. The equations of

motion are

ẍi = −
∑

k �=i

2

(xi − xk)3
, i = 1, . . . , N . (3.39)
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The CM model is known to be integrable, with the higher integrals of motion in
involution being given by HCM

k = 1
k tr (Y

CM)k (HCM
1 being the total momentum

PCM =∑ j p j and HCM
2 = HCM), where

YCM({xi }; {ẋi }) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−ẋ1
1

x2 − x1

1

x3 − x1
. . .

1

xN − x1

1

x1 − x2
−ẋ2

1

x3 − x2
. . .

1

xN − x2

...
...

...
. . .

...

1

x1 − xN

1

x2 − xN

1

x3 − xN
. . . −ẋN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.40)

is the Lax matrix of the model. Its matrix elements are YCM
i j = −ẋiδi j − 1 − δi j

xi − x j
.

Note that the CMmodel can be treated as a η → 0 limit of the RS model meaning
that

YRS = I + ηYCM + O(η2) , HRS
1 = N

η
+ PCM + ηH̃CM + O(η2),

where H̃CM = 1

2

∑

i

(
pi +

∑

k �=i

1

xi − xk

)2 −
∑N

i< j

1

(xi − x j )2
differs from the

HCM by a simple canonical transformation and leads to the same equations ofmotion.
The rules of the QC duality in this case are as follows [2, 4]. Consider the Lax

matrix (3.40) of the N -particle CM model, where the xi ’s are identified with the N
marked points of the Gaudin model. Let us also substitute ẋi = −H G

i :

YCM({xi }; {−Hi }) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

H G
1

1

x2 − x1

1

x3 − x1
. . .

1

xN − x1

1

x1 − x2
H G
2

1

x3 − x2
. . .

1

xN − x2

...
...

...
. . .

...

1

x1 − xN

1

x2 − xN

1

x3 − xN
. . . H G

N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.41)

The claim is that if the H G
i ’s are eigenvalues of the Gaudin Hamiltonians in the

invariant subspace V(M), then the first N − M eigenvalues of this matrix coincide
with eigenvalues of the twistmatrixω1 while the rest M eigenvalues coincidewithω2:
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Spec (YCM) =
(
ω1, . . . ,ω1︸ ︷︷ ︸

N−M

, ω2, . . . ,ω2︸ ︷︷ ︸
M

)
. (3.42)

As it follows from the results of [34, 35], the characteristic polynomial of the
matrix YCM can be represented in the form

det
N×N

(
λI − YCM

)
= exp

( N∑

i< j

∂yi ∂y j

(xi − x j )2

) N∏

k=1

(λ − yk)

∣∣∣∣∣∣
yi =H G

i

. (3.43)

Therefore, the spectrum consists of the values (H1, H2, . . . , HN ) such that the equal-
ity

exp
( N∑

i< j

∂yi ∂y j

(xi − x j )2

) N∏

k=1

(λ − yk)

∣∣∣∣∣∣
yi =H G

i

= (λ − w1)
N−M (λ − w2)

M (3.44)

is satisfied identically in λ. As in the case of the XXX model, this is equivalent to N
algebraic equations for N quantities H G

i .

3.7 Concluding Remarks

The QC duality can be more or less straightforwardly extended to quantum inho-
mogeneous spin chains associated with GL(n)-invariant R-matrices. These models
are solved by the nested Bethe ansatz (see [36]). On the classical side, the corre-
spondence is with the same rational RS model, with eigenvalues of the Lax matrix
being chosen (with somemultiplicities) from the elements of the n×n diagonal twist
matrix. The corresponding results can be found in [1, 3, 4]. In the present paper, we
have restricted ourselves by the GL(2) case only because of the notational simplicity.

An interesting possible generalization is the q-deformation of the QC duality
which implies the anisotropic spin chains with trigonometric R-matrices (associ-
ated with Uq(gln)) on the quantum side. As is shown in [17], the classical side in
this case is represented by the trigonometric RS model. However, some interesting
details, including an accurate limit to the trigonometric Gaudin model, are still to be
elaborated.

Among future perspectives we mention an extension to the supersymmetric
GL(n|m)-invariant spin chains and to the spin chains with elliptic R-matrices. The
latter case seems to be especially non-trivial because integrable magnets constructed
with the help of elliptic R-matrices do not allow twisted boundary conditions with
continuous parameters. That is why it is not clear how to fix values of the classical
integrals of motion in the elliptic RS model which would be the most natural candi-
date for the classical part of the QC duality. Another difficulty is that the Lax matrix
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for the elliptic RS model contains a spectral parameter. The role of this parameter in
the context of the quantum-classical correspondence is not clear at the moment.
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Chapter 4
Discriminantly Separable Polynomials
and Their Applications

Vladimir Dragović and Katarina Kukić

Abstract Discriminantly separable polynomials by definition are polynomials
which discriminants are factorized as the products of the polynomials in one vari-
able. Motivating example for introducing such polynomials is Kowalevski top, one
of the most celebrated integrable system, where the so called Kowalevski’s funda-
mental equation appears to be such a polynomial. We introduced a whole class of
systems which are based on discriminantly separable polynomials and on which the
integration of the Kowalevski top may be generalized. We present also the role of
the discriminantly separable polynomils in two well-known examples: the case of
Kirchhoff elasticae and the Sokolov’s case of a rigid body in an ideal fluid. Also we
present the classification of the discriminantly separable polynomials of degree two
in each of three variable and relate this classification to the classification of pencils of
conics. Another application of discriminantly separable polynomials is in integrable
quad-equations introduced by Adler, Bobenko and Suris. This paper presents a short
review of our results concerning these polynomials.

4.1 Discriminantly Separable Polynomials—An Overview

The notion of the discriminantly separable polynomials has been introduced in
[3], where one can see more about their properties. Here we briefly give outline
of those notions.
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Suppose that two conicsC1 andC2 in general position are given by their tangential
equations

C1 : a0w2
1 + a2w2

2 + a4w2
3 + 2a3w2w3 + 2a5w1w3 + 2a1w1w2 = 0; (4.1)

C2 : w2
2 − 4w1w3 = 0. (4.2)

We observe the pencil of conics C(s) := C1 + sC2 in which conics share four
common tangents. Then the coordinate equation of the conics of the pencil is:

F(s, z1, z2, z3) := det M(s, z1, z2, z3) = 0,

with the matrix M given in the next form:

M(s, z1, z2, z3) =

⎡

⎢⎢
⎣

0 z1 z2 z3
z1 a0 a1 a5 − 2s
z2 a1 a2 + s a3
z3 a5 − 2s a3 a4

⎤

⎥⎥
⎦ . (4.3)

The point equation of the pencil C(s) is in the form of the quadratic polynomial in s

F := H + K s + Ls2 = 0

where H, K , and L are quadratic expressions in (z1, z2, z3). After introducing a new
system of coordinates in the plane, the Darboux coordinates (x1, x2) (see [1]), we
rewrite its equation F in the form

F(s, x1, x2) = L(x1, x2)s
2 + K (x1, x2)s + H(x1, x2). (4.4)

In the last formula L , K , and H are biquadratic polynomials of x1, x2 and the explicit
formulae in terms of the coefficients of the conic C1 may be seen in [3], and also
detailed procedure of introducing the Darboux coordinates in the plane.

Here we emphasize one exceptional property that relates the equation of pencil
of conics and the discriminants of the polynomial F .

The key algebraic property of the pencil equation written in the form (4.4) as a
quadratic equation in each of three variables s, x1, x2 is: all three of its discriminants
are expressed as products of two polynomials in one variable each:

Ds(F)(x1, x2) = P(x1)P(x2), Dxi (F)(s, x j ) = J (s)P(x j ), i, j = c.p.1, 2,

where J and P are polynomials of degree 3 and 4 respectively. The explicit formulae
for the polynomials P and J are
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P(x) = a4x4 − 4a3x3 + (4a2 + 2a5)x2 − 4a1x + a0

J (s) = 4s3 + 4(a2 − a5) + (a2
5 − a0a4 + 4(a1a3 − a2a5))s

+ a0a2
3 + a2a2

5 + a4a2
1 − a0a2a4 − 2a1a3a5.

The elliptic curves
Γ1 : y2 = P(x), Γ2 : y2 = J (s)

are isomorphic.
For better understanding of the correlation between pencils of conics and the

discriminantly separable polynomials one can see [2, 3, 6, 8, 9].
The family of discriminantly separable polynomials in three variables of degree

two in each of them, constructed from pencils of conics served as a motivation to
introduce more general classes of discriminantly separable polynomials. Let us
recall here the definitions from [3]: a polynomial F(x1, . . . , xn) is discriminantly
separable if there exist polynomials fi (xi ) such that for every i = 1, . . . , n

Dxi F(x1, . . . , x̂i , . . . , xn) =
∏

j �=i

f j (x j ).

It is symmetrically discriminantly separable if f2 = f3 = · · · = fn, while it is
strongly discriminantly separable if f1 = f2 = f3 = · · · = fn . It is weakly
discriminantly separable if there exist polynomials f j

i (xi ) such that for every i =
1, . . . , n: Dxi F(x1, . . . , x̂i , . . . , xn) = ∏

j �=i f i
j (x j ).

The so-called fundamental Kowalevski equation (4.5) (see [10, 15]) appeared to
be an example of a member of the family, as it has been observed in [3]:

Q(s, x1, x2) := (x1− x2)
2(s − l1

2
)2− R(x1, x2)(s − l1

2
)− 1

4
R1(x1, x2) = 0, (4.5)

where R(x1, x2) and R1(x1, x2) are biquadratic polynomials in x1 and x2 given by

R(x1, x2) = − x21 x22 + 6l1x1x2 + 2lc(x1 + x2) + c2 − k2

R1(x1, x2) = − 6l1x21 x22 − (c2 − k2)(x1 + x2)
2 − 4lcx1x2(x1 + x2)

+ 6l1(c
2 − k2) − 4c2l2.

The discriminant separability condition

Ds(Q)(x1, x2) = P(x1)P(x2), Dxi (Q)(s, x2) = J (s)P(x j )
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is satisfied with polynomials

J (s) = 4s3 + (c2 − k2 − 3l21)s − l2c2 + l31 − l1k2 + l1c2

P(xi ) = − x4i + 6l1x2i + 4lcxi + c2 − k2, i = 1, 2.

Moreover, as it has been explained in [3], all the main steps of the Kowalevski
integration procedure from [15] (see also [10]) now follow as easy and transparent
logical consequences of the theory of discriminantly separable polynomials.

After we noticed these interesting properties of discriminantly separable polyno-
mials, two natural questions appeared: the question of classification of such poly-
nomials and the question of existence other integrable dynamical systems related to
discriminantly separable polynomials. We answered on both questions in our papers:
in [4] we presented new examples of dynamical systems obtained by replacing the
Kowalevski fundamental equation by some other discriminantly separable polyno-
mail in three variables degree two in each of them andwe called such systems systems
of Kowalevski type. In [5] we further developed theory of such systems, we obtained
procedure for their explicit integration in theta functions of genus two by generaliz-
ing integration of Kowalevski top and we also found few examples of well known
systems from theory of integrable dynamical systems that could be explicitly inte-
grated by suggested procedure. In [6] we presented classification of discriminantly
separable polynomials of three variables degree two in each of them modulo the
group of Möbius transformations, as introduced in Corollary 3 of [3]:

x1 �→ a1x1 + b1
c1x1 + d1

, x2 �→ a2x2 + b2
c2x2 + d2

, w �→ a3w + b3
c3w + d3

. (4.6)

In [6] we also related discriminantly separable polynomials with quad-equations. In
this review paper we give a brief overview of these results.

4.2 Classification of Strongly Discriminantly Separable
Polynomials of Degree Two in Three Variables

In this section we present classification of strongly discriminantly separable poly-
nomials F (x1, x2, x3) ∈ C[x1, x2, x3] which are of degree two in each variable,
modulo a group of the Möbius transformations

x1 �→ ax1 + b

cx1 + d
, x2 �→ ax2 + b

cx2 + d
, x3 �→ ax3 + b

cx3 + d
. (4.7)

Let

F (x1, x2, x3) =
2∑

i, j,k=0

ai jk xi
1x j

2 xk
3 (4.8)
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be a strongly discriminantly separable polynomial with

DxiF (x j , xk) = P(x j )P(xk), (i, j, k) = c.p.(1, 2, 3). (4.9)

Here, by DxiF (x j , xk) we denote the discriminant of F considered as a quadratic
polynomial in xi .

Theorem 4.1 The strongly discriminantly separable polynomialsF (x1, x2, x3) sat-
isfying (4.9)modulo fractional linear transformations are exhausted by the following
list depending on the structure of the roots of a non-zero polynomial P(x):

(A) P has four simple zeros, with the canonical form PA(x) = (k2x2−1)(x2−1),
the correspoding strongly discriminantly separable polynomial is

FA =1

2
(−k2x21 − k2x22 + 1 + k2x21 x22 )x23 + (1 − k2)x1x2x3

+ 1

2
(x21 + x22 − k2x21 x22 − 1),

(B) P has two simple zeros and one double zero, with the canonical form PB(x) =
x2 − e2, e �= 0,

FB = x1x2x3 + e

2
(x21 + x22 + x23 − e2)

(C) P has two double zeros, with the canonical form PC (x) = x2,

FC1 = λx21 x22 + μx1x2x3 + νx23 , μ2 − 4λν = 1,

FC2 = λx21 x23 + μx1x2x3 + νx22 , μ2 − 4λν = 1,

FC3 = λx22 x23 + μx1x2x3 + νx21 , μ2 − 4λν = 1,

FC4 = λx21 x22 x23 + μx1x2x3 + ν, μ2 − 4λν = 1,

(D) P has one simple and one triple zero,with the canonical form PD(x) = x,

FD = −1

2
(x1x2 + x2x3 + x1x3) + 1

4
(x21 + x22 + x23 ),

(E) P has one quadruple zero, with the canonical form PE (x) = 1,

FE1 = λ(x1 + x2 + x3)
2 + μ(x1 + x2 + x3) + ν, μ2 − 4λν = 1,

FE2 = λ(x2 + x3 − x1)
2 + μ(x2 + x3 − x1) + ν, μ2 − 4λν = 1,

FE3 = λ(x1 + x3 − x2)
2 + μ(x1 + x3 − x2) + ν, μ2 − 4λν = 1,

FE4 = λ(x1 + x2 − x3)
2 + μ(x1 + x2 − x3) + ν, μ2 − 4λν = 1.
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The proof of the theorem is computational and may be seen in [6]. There is a remark-
able correspondence between this classification and the classification of pencils of
conics. In the case of general position, the conics of a pencil intersect in four distinct
points, and it corresponds to the case where the polynomial P has four simple zeros.
In this case, the family of strongly discriminantly separable polynomials coincides
with the family constructed above from a general pencil of conics. However, in the
degenerate cases the above mentioned correspondence between the discriminantly
separable polynomials and pencils of conics is much more delicate. It remains valid
in all cases where the polynomial J has at least one simple zero (cases (B) and (D)).
But this correspondence is broken in the other two cases, which are characterized by
the fact that the polynomial J has multiple zeros only, cases (C) and (E). The more
detailed this correspondence is explained in [6]. In the same paper we established
correlation between discriminantly separable polynomials and quad-equations, but
here we do not get into details of that correlation.

4.3 The Role of Discriminantly Separable Polynomials
in Systems of Kowalevski Type

Motivated by the system of equation to which the Kowalevski top reduces and by
discriminant separability of the Kowalevski fundamental (4.5), we introduced a new
class of integrable systems andnamed themsystemsofKowalevski type.Basicallywe
replace the Kowalevski fundamental (4.5) by a discriminantly separable polynomial
of the second degree in each of three variables

F (x1, x2, s) := A(x1, x2)s
2 + 2B(x1, x2)s + C(x1, x2), (4.10)

such that
Ds(F )(x1, x2) = 4(B2 − AC) = 4P(x1)P(x2),

and

Dx1(F )(s, x2) = P(x2)J (s)

Dx2(F )(s, x1) = P(x1)J (s).

Suppose, that a given system in variables x1, x2, e1, e2, r, γ3, after some transfor-
mations reduces to

ẋ1 = −i f1, ė1 = −me1, (4.11)

ẋ2 = i f2, ė2 = me2,

where
f 21 = P(x1) + e1A(x1, x2), f 22 = P(x2) + e2A(x1, x2). (4.12)
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Suppose additionally, that the first integrals and invariant relations of the initial
system reduce to a relation

P(x2)e1 + P(x1)e2 = C(x1, x2) − e1e2A(x1, x2). (4.13)

Instead of (4.13) we can assume that

ẋ1 ẋ2 = −B(x1, x2) (4.14)

where B(x1, x2) is coefficient of polynomial (4.10). The equivalence of (4.13) and
(4.14) under assumptions (4.11), (4.12) and (4.10) is shown in [5]. The equations for
ṙ and γ̇3 are not specified for the moment and m is a function of system’s variables.
If a system satisfies the above assumptions we will call it a system of the Kowalevski
type. The Kowalevski top is an example of such systems. The following theorem is
quite general, and gives the integration procedure for the whole new class of systems.

Theorem 4.2 Given a system which reduces to (4.11, 4.12, 4.13). Then the system
is linearized on the Jacobian of the curve

y2 = J (z)(z − k)(z + k),

where J is a polynomial factor of the discriminant of F as a polynomial in x1 and
k is a constant such that

e1e2 = k2.

In the continuation of the paper we briefly present one already known system in
the new light, as a system of Kowalevski type. It is about the system introduced by
Sokolov in [14, 16, 17] given by the Hamiltonian

Ĥ = M2
1 + M2

2 + 2M2
3 + 2c1γ1 + 2c2(γ2M3 − γ3M2) (4.15)

on e(3) with the Lie-Poisson brackets

{Mi , M j } = εi jk Mk, {Mi , γ j } = εi jkγk, {γi , γ j } = 0 (4.16)

where εi jk is the totally skew-symmetric tensor. In [14] a set of the separation vari-
ables for this case was given. We proved that this system belongs to the class of
systems of the Kowalevski type by introducing slightly modified separation vari-
ables which further, as in Theorem 4.2, gave us possibility to explicitly integrate this
system of equation. The Lie-Poisson bracket (4.16) has two well-known Casimir
functions γ 2

1 + γ 2
2 + γ 2

3 = a and γ1M1 + γ2M2 + γ3M3 = b. Following [14, 15]
we introduce the new variables z1 = M1 + i M2 and z2 = M1 − i M2 and
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e1 = z21 − 2c1(γ1 + iγ2) − c22a − c2(2γ2M3 − 2γ3M2 + 2i(γ3M1 − γ1M3)),

e2 = z22 − 2c1(γ1 − iγ2) − c22a − c2(2γ2M3 − 2γ3M2 + 2i(γ1M3 − γ3M1)).

The second integral of motion for the system (4.15) may be rewritten as e1e2 = k2.
The equations ofmotion in the newvariables zi , ei can bewritten in the formof (4.11)
and (4.12), and this corresponds to the definition of the systems of the Kowalevski
type. One can easily check that:

ė1 = −4i M3e1, ė2 = 4i M3e2

and

− ż1
2 = P(z1) + e1(z1 − z2)

2, −ż2
2 = P(z2) + e2(z1 − z2)

2 (4.17)

where P is a polynomial of fourth degree given by

P(z) = −z4 + 2H z2 − 8c1bz − k2 + 4ac21 − 2c22(2b2 − Ha) + c42a. (4.18)

In order to prove that the Sokolov system belongs to the class of the systems of
the Kowalevski type, we still need to show that a relation of the form (4.13) or
equivalent (4.14) is satisfied and we have to relate it with certain discriminantly
separable polynomial of the form of (4.10). After some calculations we obtained

Lemma 4.1 The variables z1, z2, e1, e2 of the Sokolov system satisfy the following
identity:

(z1 − z2)
2[2F(z1, z2)(H + c22a) + (z1 − z2)

2(H + c22a)2 − P(z1)e2 − P(z2)e1

− e1e2(z1 − z2)
2] + F2(z1, z2) − P(z1)P(z2) = 0.

where F(z1, z2) = − 1
2

(
P(z1) + P(z2) + (z21 − z22)

2
)
.

So we conclude that the Sokolov system is a system of the Kowalevski type. It can
be explicitly integrated in the theta-functions of genus 2, as we did in [7].

Another already known system that can be integrated with the help of the prop-
erties of the discriminantly separable polynomials as stated in Theorem 4.2 is the
classicalKirchhoff problemof elasticae. In [11], Jurdjevic connected deformations of
the Kowalevski top introduced by Komarov in [12, 13], with the classical Kirchhoff
problem of elasticae. In [5] we derived the explicit solutions in genus two theta-
functions of these systems and also presented one more way to get those systems.
We showed that discriminantly separable polynomials induced by these systems and
the Kowalevski fundamental equation are equivalent by using simple linear transfor-
mation.
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4.4 Conclusion

Discriminantly separable polynomials clearly have a significant role in a certain type
of integrable systems. Their role is visible also in the class of discrete integrable sys-
tems in the case of quad-equation. Their geometric background gives us a possibility
to relate these integrable systems with pencils of conics in certain sence. The list of
the integrable systems in which one can find a discriminantly separable polynomials
in some varibles is still supplementing and that is our current assignment.
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7. V. Dragović, K. Kukić, The Sokolov case, integrable Kirchhoff elasticae, and genus 2 theta-

functions via discriminantly separable polynomials. Proc. Steklov Inst. Math. 286(1), 224–239
(2014)
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Chapter 5
MKdV-Type of Equations Related
to B(1)

2 and A(2)
4

V.S. Gerdjikov, D.M. Mladenov, A.A. Stefanov and S.K. Varbev

Abstract We have derived two systems of mKdV-type equations which can be
related to the affine Lie algebras B(1)

2 and A(2)
4 respectively. They are integrable

via the inverse scattering method and possess soliton solutions and a hierarchy of
Hamiltonian structures.

5.1 Introduction

This work can be considered as an extension of our recent publications [12, 13]
and the classical paper by Drinfeld and Sokolov [4]. Many of the important ideas
in the field of completely integrable infinite dimensional systems were introduced
there. These include: (i) the importance of the graded algebras for deriving their Lax
representation; (ii) the importance of the automorphisms of Coxeter type to con-
struct the Kac-Moody algebras; (iii) the recursion operators and the bi-Hamiltonian
formulation of the integrable systems.

Each of those ideas deserve separate and detailed exposition which often varies
due to the system considered. These ideas can naturally be combined with a deeper
study of the spectral properties of the relevant Lax operators, which most often
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leads to the interpretation of the inverse scattering method (ISM) [2, 5, 11, 21] as a
generalized Fourier transform [1, 6, 7]. The completion of all these tasks is a still a
challenge which, we believe, must be met.

The present paper is an attempt to provide a detailed explanation of how some of
the simplest mKdV-type equations related to the Lie algebra so(5) � B(1)

2 and to the

twisted affine Kac-Moody algebra A(2)
4 can be derived. Both systems involve two

functions of two variables. Although they look similar they are inequivalent because
they correspond to inequivalent Kac-Moody algebras.

In Sect. 5.2 we have given some basic preliminaries, including the grading intro-
duced by the Coxeter automorphism. Section5.3 is devoted to the recursion relations
and the recursion operators [6, 10, 11, 18] that we will use to derive the correspond-
ing systems of equations. The considerations here demonstrate that the recursion
operators [1, 11, 18, 19], known to generate the NLEE and their Hamiltonian hier-
archies, factorize. Sections5.4 and5.5 contain the derivation of the equations for
the B(1)

2 and A(2)
4 algebras respectively. We also find the Hamiltonians of the two

equations which are equivalent to the ones in [4]. We end the paper in Sect. 5.6 with
some concluding remarks.

5.2 Preliminaries

We assume that the reader is familiar with the theory of the simple Lie algebras
[14] and of the Kac-Moody algebras [3, 15]. The mKdV equations admit a Lax
representation [L , M] = 0 and can be written as the commutativity condition of
two ordinary differential operators of the type

Lψ ≡ i
∂ψ

∂x
+ U (x, t, λ)ψ = 0,

Mψ ≡ i
∂ψ

∂t
+ V (x, t, λ)ψ = ψΓ (λ). (5.1)

In our case U (x, t, λ), V (x, t, λ) are polynomials of the spectral parameter λ taking
values in the simple Lie algebra g and Γ (λ) is a matrix independent of x and t. We
request also that the Lax pair (5.1) possesses appropriate reduction group [16], for
example if the reduction group is Zh then the reduction condition is

C
(
U (x, t, λ)

) = U (x, t, ωλ), C
(
V (x, t, λ)

) = V (x, t, ωλ). (5.2)

Since the potentials are polynomial in λ, this implies that its coefficients must take
values in a graded Lie algebra, where the grading is introduced by the automorphism
C of order h

Ch(X) = X, X ∈ g . (5.3)
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Obviously C introduces a grading in g by

g = h⊕
k=0

g(k), C(X (k)) = ωk X (k), X (k) ∈ g(k), (5.4)

where ωh = 1 and ωk are the eigenvalues of C. The grading condition also holds

[
g(k), g(l)] ⊂ g(k+l), (5.5)

where k + l is taken modulo h.
In our case the automorphism is a Coxeter automorphism, i.e. an automorphism

of order h, where h is called the Coxeter number. We would like to note, that if the
underlying algebra is not D(1)

2r and the grading is done using a Coxeter automorphism
then for each eigenspace we have

dim(g(k)) =
{

r if k is not an exponent,

r + 1 if k is an exponent,
(5.6)

where r is the rank of g.
We start with a Lax pair that is polynomial in λ

L = i∂x + Q(x, t) − λJ,

M = i∂t +
n−1∑

k=0

λk V (k)(x, t) − λn K ,
(5.7)

where
Q(x, t) ∈ g(0), V (k)(x, t) ∈ g(k), K ∈ g(n), J ∈ g(1). (5.8)

Here J and K are some properly chosen constant matrices. In order to get a set
of MKdV equations, we have chosen V (x, t, λ) to be cubic polynomial of λ. For
technical reasons the Lax pair (5.7) is slightly different from the one used in [4].

The Lax pair must commute, i.e.

[
L , M

] = 0 (5.9)

for every λ, which will lead to a set of recursion relations. Solving them we will
get explicit expressions for V (k)(x, t) in terms of Q(x, t) and finally will obtain the
equations as constraints for the potential Q(x, t).

Below we denote the Killing-Cartan form on g by
〈
,

〉
. By adJ below we mean

the linear operator defined by

adJ (X) = [
J, X

]
. (5.10)
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This operator has a kernel and can only be inverted on its image. We denote that
inverse by ad−1

J . From its spectral properties it follows that ad−1
J can be expressed

as a polynomial of adJ. By ei j we denote a matrix with one at the i-th row and j-th
column and zeros everywhere else, i.e. (ei j )mn = δimδ jn.

5.3 Recursion Relations and Recursion Operators

Here we adapt the theory of the recursion operators [6, 10, 11, 18] to the special
choices of the Lax operator (5.7). For simplicity we assume that n in (5.7) is n ≤ h
and n is an exponent of g. The commutativity condition (5.9) implies the following
recursion relations

λn+1 : [
J, K

] = 0,

λn : [
J, V (n)(x, t)

] + [
Q(x, t), K

] = 0,

λs : i
∂V (s)

∂x
+ [

Q(x, t), V (s)(x, t)
] − [

J, V (s−1)(x, t)
] = 0, (5.11)

λ0 : −i
∂ Q

∂x
+ i

∂V (0)

∂x
+ [

Q(x, t), V (0)(x, t)
] = 0.

Each element splits into “orthogonal” and “parallel” parts

V (s)(x, t) = V (s)
⊥ (x, t) + V (s)

‖ (x, t), adJ

(
V (s)

‖ (x, t)
)

= 0,

V (s)
‖ (x, t) =

{
0 if s is not an exponent,

c−1
s J s

〈
Vs, J h−s

〉
if s is an exponent,

(5.12)

where cs = 〈J n−s, J h−n+s〉.
From (5.11) we can see that

V (s−1)
⊥ (x, t) = ad−1

J

(

i
∂V (s)

∂x
+ [

Q(x, t), V (s)
⊥ (x, t)

] + [
Q(x, t), V (s)

‖ (x, t)
]
)

,

i
∂V (s)

‖
∂x

= [
Q(x, t), V (s)

⊥ (x, t)
]
‖.

(5.13)

Integrating the second equation we see that

V (s)
‖ (x, t) = −i(∂x )

−1±
([

Q(x, t), V s⊥(x, t)
]
‖
)

= −c−1
s J si(∂x )

−1
〈 [

Q(x, t), V s⊥(x, t)
]
, J h−s

〉
, (5.14)
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where (∂x )
−1± = ∫ x

±∞ dy and we have set any constants of integration to be equal to
zero. Thus the formal solution of the recurrent relations takes the form

V (s)
⊥ (x, t) = Λs V (s+1)

⊥ (x, t). (5.15)

If s is not an exponent, then

Λs X = ad−1
J

(
i
∂ X

∂x
+ [

Q(x, t), X
])

, (5.16)

otherwise

Λs X = ad−1
J

(
i
∂ X

∂x
+ [

Q(x, t), X
] − ic−1

s
[
Q(x, t), J s](∂x )−1±

〈
[Q(x, t), X ] , J h−s

〉)
.

(5.17)
The corresponding NLEE can be written as

i ad−1
J

∂ Q

∂t
− aΛ0V (0) = 0 (5.18)

and Λ0 is given by (5.16).

5.4 Equations Related to B(1)
2

The underlying Kac-Moody algebra is B(1)
2 , its rank is 2, the Coxeter number is 4

and the exponents are 1 and 3. The Coxeter automorphism is given by

C4(X) = c4Xc−1
4 , (5.19)

where

c4 =

⎛

⎜⎜⎜⎜
⎝

ω2 0 0 0 0
0 ω1 0 0 0
0 0 1 0 0
0 0 0 ω−1 0
0 0 0 0 ω−2

⎞

⎟⎟⎟⎟
⎠

(5.20)

and ω = exp(2π i/4). The inverse of adJ is

ad−1
J = 1

16
(6 ad3J + ad7J ). (5.21)
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A basis compatible with the grading of B(1)
2 is given by

g(0) : E (0)
1 = e11 − e55, E (0)

2 = e22 − e44,

g(1) : E (1)
1 = e12 + e45, E (1)

2 = e23 + e34, E (1)
3 = e41 + e52,

g(2) : E (2)
1 = e13 − e35, E (2)

2 = e31 − e53,

g(3) : E (3)
1 = e21 + e54, E (3)

2 = e32 + e43, E (3)
3 = e14 + e25.

(5.22)

The coefficients of the potentials in the Lax pair are parameterized by

Q(x, t) = 1

2

(
q1(x, t)E (0)

1 + q2(x, t)E (0)
2

)
,

V (2)(x, t) = ν
(2)
1 (x, t)E (2)

1 + ν
(2)
2 (x, t)E (2)

2 ,

V (1)(x, t) = ν
(1)
1 (x, t)E (1)

1 + ν
(1)
2 (x, t)E (1)

2 + ν
(1)
3 (x, t)E (1)

3 ,

V (0)(x, t) = ν
(0)
1 (x, t)E (0)

1 + ν
(0)
2 (x, t)E (0)

2 ,

K = aE (3)
1 + 2aE (3)

2 + aE (3)
3 ,

J = E (1)
1 + E (1)

2 + E (1)
3 .

(5.23)

To simplify the notation we will omit writing the dependence on x and t. Using the
recursion operators (5.15), we get for the coefficients of the potentials

ν
(2)
1 = a

2
(q1 + q2), v(2)

2 = a

2
(q1 − q2), (5.24)

ν
(1)
1 = −a

4

(
1

4
q2
1 + q1q2 + 2i

∂q1
∂x

+ i
∂q2
∂x

+ 1

4
q2
2

)
,

ν
(1)
2 = a

4

(
3

4
q2
1 + i

∂q2
∂x

− 1

4
q2
2

)
,

ν
(1)
3 = −a

4

(
1

4
q2
1 − q1q2 − 2i

∂q1
∂x

+ i
∂q2
∂x

+ 1

4
q2
2

)
,

(5.25)

ν
(0)
1 = a

32

(
q3
1 − 3q2

2q1 − 16
∂2q1
∂x2

+ 12iq1
∂q2
∂x

)
,

ν
(0)
2 = a

32

(
q3
2 − 3q2

1q2 + 8
∂2q2
∂x2

− 12iq1
∂q1
∂x

)
.

(5.26)
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Finally, the λ-independent terms in the Lax representation provide the equations

α
∂q1
∂t

= − ∂3q1
∂x3

+ i
3

4

[(
∂q1
∂x

) (
∂q2
∂x

)
+ q1

(
∂2q2
∂x2

)]

+ 3

16

(
q2
1 − q2

2

) (
∂q1
∂x

)
− 3

8
q1q2

(
∂q2
∂x

)
, (5.27)

α
∂q2
∂t

= 1

2

∂3q2
∂x3

− i
3

4

[(
∂q1
∂x

)2

+ q1

(
∂2q1
∂x2

)]

+ 3

16

(
q2
2 − q2

1

) (
∂q2
∂x

)
− 3

8
q1q2

(
∂q1
∂x

)
,

where α = 1/a. The (5.27) allow a Hamiltonian formulation

∂qi

∂t
= ∂

∂x

δH

δqi
, (5.28)

where

H = 1

64α

(

q4
1 + q4

2 − 6q2
1q2

2 + 32

(
∂q1
∂x

)2

− 16

(
∂q2
∂x

)2

+ i24q2
1

(
∂q2
∂x

))

.

(5.29)
After the following transformation

q1 → iu1 , q2 → −iu2 , x → 2x , t → t

64α
(5.30)

the Hamiltonian (5.29) coincides with the one in Table 5 in [4].

5.5 Equations Related to A(2)
4

The underlying algebra is A(2)
4 which is one of the twisted Kac-Moody algebras. Its

rank is 2, the Coxeter number is 10 and the exponents are 1, 3, 7, 9. The Coxeter
automorphism is given by

C5(X) = −c5SX T Sc−1
5 , (5.31)

where

c5 =

⎛

⎜⎜⎜⎜
⎝

ω4 0 0 0 0
0 ω2 0 0 0
0 0 1 0 0
0 0 0 ω−2 0
0 0 0 0 ω−4

⎞

⎟⎟⎟⎟
⎠

, S =

⎛

⎜⎜⎜⎜
⎝

0 0 0 0 1
0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0

⎞

⎟⎟⎟⎟
⎠

(5.32)
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and ω = exp(2π i/10). The inverse of adJ is

ad−1
J = 28

55
(54 ad9J + 28 ad19J ). (5.33)

A basis compatible with the grading of the twisted Kac-Moody algebra A(2)
4 is

given by

g(0) : E (0)
1 = 1

2
(h1 + h4), E (0)

2 = 1

2
(h2 + h3),

g(1) : E (1)
1 = 1

2
(e14 − e25), E (1)

2 = 1

2
(e31 + e53), E (1)

3 = e42,

g(2) : E (2)
1 = 1

2
(e12 + e45), E (2)

2 = 1

2
(e23 + e34),

g(3) : E (3)
1 = 1

2
(e21 − e54), E (3)

2 = 1

2
(e32 − e43), E (3)

3 = e15,

g(4) : E (4)
1 = 1

2
(e13 − e35), E (4)

2 = 1

2
(e41 + e52),

g(5) : E (5)
1 = 1

2
(h1 − h4), E (5)

2 = 1

2
(h2 − h3),

g(6) : E (6)
1 = 1

2
(e14 + e25), E (6)

2 = 1

2
(e31 − e53),

g(7) : E (7)
1 = 1

2
(e12 − e45), E (7)

2 = 1

2
(e23 − e34), E (7)

3 = e51,

g(8) : E (8)
1 = 1

2
(e21 + e54), E (8)

2 = 1

2
(e32 + e43),

g(9) : E (9)
1 = 1

2
(e13 + e35), E (9)

2 = 1

2
(e41 − e52), E (9)

3 = e24,

(5.34)

where hi = eii − ei+1,i+1. The potential is parameterized by

Q(x, t) = q1(x, t)E (0)
1 + (q2(x, t) + q1(x, t))E (0)

2 ,

V (2)(x, t) = ν
(2)
1 (x, t)E (2)

1 + v(2)
2 (x, t)E (2)

2 ,

V (1)(x, t) = ν
(1)
1 (x, t)E (1)

1 + v(1)
2 (x, t)E (1)

2 + ν
(1)
3 (x, t)E (1)

3 ,

V (0)(x, t) = ν
(0)
1 (x, t)E (0)

1 + v(0)
2 (x, t)E (0)

2 ,

K = −aE (3)
1 + 2aE (3)

2 − aE (3)
3 ,

J = E (1)
1 + E (1)

2 + E (1)
3 .

(5.35)

Again we will omit writing the dependence on x and t. Using the recursion operators
(5.15), we get for the coefficients of the potentials
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ν
(2)
1 = 2aq1, v(2)

2 = a(q1 − q2), (5.36)

ν
(1)
1 = a

(
2i

∂q1
∂x

− 4i
∂q2
∂x

− 2q2
2 − 2q2

1 + 5q2q1

)
,

ν
(1)
2 = a

(
3q2

2 − 8i
∂q1
∂x

+ 6i
∂q2
∂x

− 2q2
1

)
,

ν
(1)
3 = a

(
12i

∂q1
∂x

− 4i
∂q2
∂x

− 2q2
2 + 3q2

1

)
.

(5.37)

ν
(0)
1 = a

5

(
16

∂2q1
∂x2

− 12
∂2q2
∂x2

+ i (12q2 − 6q1)
∂q2
∂x

− 3q2
2q1 + 2q3

1

)
,

ν
(0)
2 = a

5

(
4
∂2q1
∂x2

− 8
∂2q2
∂x2

+ i (6q1 − 12q2)
∂q1
∂x

+ i (12q2 − 6q1)
∂q2
∂x

− 3q2
1q2 − 3q2

2q1 + 2q3
1 + 2q3

2

)
.

(5.38)

From the λ-independent terms in the Lax representation we get the equations

α
∂q1
∂t

= 16
∂3q1
∂x3

− 12
∂3q2
∂x3

+ i

[
−6

(
∂q1
∂x

)(
∂q2
∂x

)
+ 12

(
∂q2
∂x

)2

− 6 (q1 − 2q2)

(
∂2q2
∂x2

)]
+

(
6q2

1 − 3q2
2

) (
∂q1
∂x

)
− 6q1q2

(
∂q2
∂x

)
,

(5.39)

α
∂q2
∂t

= − 12
∂3q1
∂x3

+ 4
∂3q2
∂x3

+ i

[
−12

(
∂q1
∂x

) (
∂q2
∂x

)
+ 6

(
∂q1
∂x

)2

+ 6 (q1 − 2q2)

(
∂2q1
∂x2

)]
+

(
6q2

2 − 3q2
1

) (
∂q2
∂x

)
− 6q1q2

(
∂q1
∂x

)
,

where α = 5/a.
The corresponding Hamiltonian is

H = 1

2α

[
q4
1 + q4

2 − 3q2
1q2

2 − 16

(
∂q1
∂x

)2

− 4

(
∂q2
∂x

)2

− i6q2
1

(
∂q2
∂x

)
− i12q2

2

(
∂q1
∂x

)
+ 24

(
∂q1
∂x

) (
∂q2
∂x

)]
. (5.40)

After the following transformation

q1 → iu2, q2 → −iu1, x → 2x, t → t

2α
(5.41)

the Hamiltonian (5.40) coincides with the one in Table 5 in [4].
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5.6 Discussion and Conclusions

We have repeated the work done in [4]. Having derived the equations we are in a
position to analyze the effect of the “twisting”.

The fundamental difference is hidden in the gradings of the two algebras. In the
first case we introduce a grading in so(5) using the Coxeter automorphism c4 (5.20)
which is of order 4. Therefore each of the subspaces g(k) is spanned by the root
vectors Eα corresponding to the roots of height k mod(4). Along with g(0) � h we
have split so(5) into 5 linear subspaces.

In the second casewe introduce a grading in sl(5) using theCoxeter automorphism
c5 (5.32) composed with the external automorphism of sl(5). But now the Coxeter
automorphism is of order 5. Note that the external automorphism of sl(5) has as a
subalgebra so(5). Using the grading introduced by c5 we split so(5) into 5 linear
subspaces: g(0) isomorphic to the Cartan subalgebra of so(5) and g(k) spanned by
the root vectors Eα of so(5) corresponding to the roots of height k mod(5). The rest
of the algebra sl(5)\so(5) is also splited by c5 into 5 linear subspaces. Thus our
grading now contains 10 linear subspaces.

This accounts for the inequivalence not only of the gradings but also of the result-
ing mKdV equations.

Further steps in analyzing these equations will be:

• to find their soliton solutions. It is most natural to use the dressing method discov-
ered and developed by Zakharov, Shabat and Mikhailov [16, 17, 20, 21].

• to analyze the spectral properties of the corresponding Lax operators, see [8–10,
16]. They are determined by the eigenvalues of the corresponding matrices J . In
the case of so(5) the eigenvalues are exp(2πki/4), k = 0, . . . , 3, so the continuous
spectrum of L fills up 4 straight lines passing through the origin enclosing equal
angles π/4. For the second case the eigenvalues of J are exp(2πki/10), k =
0, . . . , 9 so the continuous spectrum of L fills up 10 straight lines passing through
the origin and closing equal angles π/10.

• to use the recursion operators [1, 8, 11, 18] for constructing the hierarchy of
Hamiltonian structures.

These results will be published elsewhere.

Acknowledgments The work is supported in part by the ICTP—SEENET-MTP project PRJ-09.
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Chapter 6
Chaotic Versus Regular Behavior
in Yang-Mills Theories

A. Nicolaidis

Abstract We consider spatially uniform SU (2) color fields. At the classical level
the system exhibits almost exclusively chaotic behavior. To include quantum effects,
we introduce a renormalization-group improved effective action, where the fixed
coupling constant g is replaced by a running coupling constant g, depending upon
the color magnetic field. The effective Lagrangian gives rise to invariant tori which
occupy a significant portion of the phase space and sustain ordered behavior. For
some energy values, stable periodic orbits exist, with the corresponding gluon field
being color neutral.

6.1 Introduction

Quantum chromodynamics (QCD) has proved to be a very efficient tool for analyzing
and understanding hadronic phenomena. The smallness of the coupling constant at
largemomentum transfer (short distances)makes it possible to study “hardprocesses”
using familiar perturbative techniques. However, the most important aspects of
hadronic physics (color confinement, chiral symmetry, hadronic spectroscopy) are
determined by the low energy (long distances) regime of QCD, where the coupling
constant is large and nonlinearities manifest. A meaningful approximation consists
in adopting some assumptions, which, while simplifying the calculations, retain the
qualitative features expected of the full theory. An important step along these lines
has been initiated in [1–3], where classical Yang-Mills fields, homogeneous in space,
were investigated. Fields, depending solely on time, originate in the long wavelength
limit of the theory and they are important in the description of the ground state of
QCD. In this paper we examine how the quantum corrections modify the classical
picture. We find out that these corrections introduce novel features, bearing upon
color confinement.
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Let us summarize the findings of [1–3]. Consider an SU (2) pure Yang-Mills
system described by the Lagrangian

L = − 1

4g2
Fα

μν Fα
μν (6.1)

where
Fα

μν = ∂μ Aα
ν − ∂ν Aα

μ + εαbc Ab
μ Ac

ν . (6.2)

Assuming that the non-Abelian fields depend only on time, i.e., Aα
i = Aα

i (t), and
selecting the gauge Aα

0 = 0 we obtain the classical equations of motion [1–3]

Äα
i +

(
Aα

i Ab
j − Aα

j Ab
i

)
Ab

j = 0 (6.3)

supplemented by a constraint (Gauss law). With the ansatz

Aα
i = Oα

i f α (t) (a not summed) (6.4)

where Oα
i , are constant orthogonal matrices obeying

Oα
i Ob

i = δαb, (6.5)

the Gauss law is automatically satisfied and the equations of motion are reproduced
from the Hamiltonian

(
f 1 = x, f 2 = y, f 3 = z

)

H = 1

2

(
ẋ2 + ẏ2 + ż2

)
+ 1

2

[
x2y2 + z2x2 + y2z2

]
. (6.6)

Extensive studies [2–5] have been presented for the simplified casewith z = 0, which
may be viewed as the motion of a “particle” under the influence of the potential
V (x, y) = 1

2 x2y2. The motion is bounded by the hyperbola xy = ± (2E)1/2 (E is
the energy of the particle). Escape solutions to infinity exist only along the axes x = 0
and y = 0 (Abelian solutions, ẍ = 0 and ẋ �= 0 or ÿ = 0 and ẏ �= 0). In general a
particle moving in one of the four “channels” surrounding the coordinate axes and
limited by the hyperbolas will return after a finite time to the central region x � y.
There, after a complicated motion, the particle enters another channel. We observe
that a large color amplitude gradually decreases and it is replaced by a large amplitude
in another color direction. These color flips take place in a random fashion [2, 5]. Of
special interest is the symmetric solution x = y = J , where J is an analytic function
(Jacobi elliptic cosine) [1]. However the solution is unstable. The overall dynamical
features of the potential V = 1

2 x2y2 have been studied also in [6]. There it was
conjectured that the system is completely chaotic. Small islands of regular motion
around a stable periodic orbit of period 11 have been located, however, in [7].
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6.2 Quantum Corrections

It is highly interesting to explore how the above picture changes when quantum
corrections are included. Infrared instabilities of the Yang-Mills system are expected
to generate a quantum ground state which may have little to do with the minima
of the classical action. Phenomena such as color confinement, gluon condensation,
and chiral symmetry breaking are viewed as dynamical manifestations of the full
quantum theory. General renormalization group arguments suggest that an effective
Lagrangian Lef f incorporating quantum corrections can be defined by replacing the
fixed coupling g by a running coupling ḡ, which runs with the color fields [8–11].
The evolution of ḡ is controlled by the β function

μ
d ḡ

dμ
= β (ḡ) (6.7)

where the scale μ, depends upon the Yang-Mills fields (to be determined later).

The usual perturbative one-loop result for the β function, β = −bḡ3
(

b = 11
24π2

)
,

provides

ḡ2 (μ) = 1

b ln
(

μ2

	2

) . (6.8)

The above expression gives rise to uncontrolled growth for ḡ (μ) as μ approaches 	

(Landau pole). It is believed that ḡ (μ) will saturate at small μ and calculations in a
nonperturbative background [12] indicate such a behavior. In [12] an expression for
ḡ (μ), positive for all values of μ, is suggested:

ḡ2 (μ) = 1

b ln
(

μ2+σ 2

	2

) . (6.9)

The parameter σ (σ > 	) is related to the QCD string tension. On the other hand,
calculations of the effective action in the presence of a constant chromomagnetic
field [8, 10] generate logarithms of the chromomagnetic field which can be absorbed
in a renormalized coupling constant. We infer that the scale μ, can be identified with
the chromomagnetic field and under assumptions similar to the outlined classical
case we are led to [13]

ḡ2 (μ) = 1

b ln
(

x2y2+σ 2

	2

) . (6.10)

The effective Lagrangian looks like

Lef f = b

2
ln

(
x2y2 + σ 2

	2

) [
ẋ2 + ẏ2 − x2y2

]
. (6.11)
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We consider the above Lagrangian as a classical model that incorporates features
of the full quantum problem. The Lagrangian (6.11) transforms to the Hamiltonian

Hef f =
(

p2x + p2y
)

/ (2b ln u) + b

2
x2y2 ln u, (6.12)

where

u = σ 2 + x2y2

	2 (6.13)

and
px = bẋ ln u, py = bẏ ln u. (6.14)

Since H is an integral of motion, for every constant value H = E the zero-velocity
curves which bound the motion in the xy-configuration space are the hyperbolas

xy = c (E) , (6.15)

where c is defined by the equation

c2 ln

(
σ 2 + c2

	2

)
= 2

E

b
. (6.16)

We define the Poincare section in the usual manner (e.g., [14], p. 17), i.e.,

H = E = const, y = 0, py > 0.

In the corresponding Poincare map p2x is bounded by the relation

p2x < 2Eb ln

(
σ 2

	2

)
. (6.17)

Since b
2 in (6.11) is a mere multiplicative constant, its numerical value does not affect

the qualitative features of the system. In the following we fix b = 1
4 by a suitable

choice of the unit of energy.
The Hamiltonian (6.12) possesses also the symmetric periodic solution x = y.

This solution in the classical case is always unstable and supports in its vicinity
chaotic orbits, which eject through the channels along the two axes, in the fashion
described above. Numerical results show that this solution for the new Hamiltonian
(6.12) is stable for values of σ , 	 and in E in suitable open domains.

In Fig. 6.1, the surface of section for 	 = 1 and E = 15 is shown, for different
values of σ . The horizontal x axis runs from −1 to 1 while px runs from 0 to
1.5. In all cases, a horizontal line represents the boundary (6.17). Because of the
symmetry of Hamiltonian (6.12), all figures are symmetric both with respect to the
x and px axes. Figure6.1a corresponds to σ = 1.09. The symmetric solution x = y
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Fig. 6.1 The Poincare sections for 	 = 1, E = 15 for varying σ
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Fig. 6.2 Bounded motion in the vicinity of x = y for σ = 1.10

Fig. 6.3 A chaotic motion for σ = 1.12
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Fig. 6.4 The Poincare sections for 	 = 1, σ = 2 for varying E
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is stable and its corresponding point P on the section is surrounded by invariant
circles which support quasiperiodic motions, while two island chains around two
periodic orbits in 1/4 resonance may be seen. In Fig. 6.1b, σ = 1.10 and the periodic
solution x = y has become unstable by undergoing a pitchfork bifurcation. Two
stable periodic orbits, centered at the two islands on the px axis, have appeared. The
motion in the vicinity of the symmetric solution is weakly chaotic, but is bounded
by invariant circles which restrict it in the central area x � y, as may be seen in
Fig. 6.2. For σ = 1.11, the chaotic character of the motion near x = y is apparent
(Fig. 6.1c). No invariant circle bounding this chaotic orbit has been found, so the
motion may eventually diffuse slowly to the channels. In Fig. 6.1d (σ = 1.12), the
chaotic motion around x = y is unbounded, but the two stable periodic motions
on the px axis persist. The orbits in the vicinity of x = y show a strong sensitivity
on the initial conditions. For very slight differences in the selected initial point, the
corresponding orbits evolve in a very different manner. Such a chaotic orbit is shown
in Fig. 6.3. This motion resembles the previously described classical case. Figure6.4
corresponds to 	 = 1, σ = 2, while the energy varies. The px axis runs in this
case from 0 to 10. We start with E = 35 in Fig. 6.4a and the straight-line solution
x = y is stable. The relative area, however, filled in with ordered motions is very
small in comparison to the previous case (see Fig. 6.1a). In Fig. 6.4b, for E = 60,
two additional stable orbits have appeared, which become unstable for E = 80 as is
shown in Fig. 6.4c, but the symmetric orbit remains stable up to E = 210 (Fig. 6.4d)
and then becomes unstable, again by a pitchfork bifurcation.

6.3 Conclusions

We studied spatially uniform SU (2) color fields, using a phenomenological effective
Lagrangianwhich includes quantum corrections [13].While our ansatz is not unique,
we believe that our approach is justified. Similar techniques have been largely applied
to the opposite case: time-independent color fields (see [11] and references therein).
Comparing the classical andquantumdescriptionwediscover similarities anddistinct
differences. The classical Hamiltonian is scale invariant and for all nonzero energies
displays the same chaotic behavior. On the other hand, the quantum corrections
introduce new scales, scale invariance is lost and for different values of the energy
the effective quantum Hamiltonian gives different qualitative behaviors. For small
energies such that xy ≤ c < σ , the logarithm in (6.12) varies little, the quantum
Hamiltonian resembles the classical one, and we encounter chaos. However, for
larger values of the energy, ordered behavior appears. What is most interesting is
that the symmetric solution x = y, which is unstable at the classical level, becomes
stabilized at the quantum level. Preliminary numerical calculations show that a stable
symmetric solution x = y = z exists in the full three-dimensional problem. The
solution x = y = z represents a color neutral gluonic field. We feel that our findings
bear on confinement. Vacuum polarization, responsible for the running coupling
constant, creates color charges which induce screening, thus stabilizing the color
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neutral solution. Related results, albeit in different context, have been obtained in
[15]. There a classical strong color charge leads to instabilities and color screening.
Following our analysis we are led to the conclusion that for appropriate energies, a
nonperturbative color neutral gluonic field arises. Such a dynamical object might be
important in hadronic phenomenology.

Acknowledgments I would like to thank Prof. Boyka Aneva for a warm hospitality and perfect
organization.
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Chapter 7
A New Probabilistic Shift Away from Seismic
Hazard Reality in Italy?

A. Nekrasova, A. Peresan, V.G. Kossobokov and G.F. Panza

Abstract Objective testing is a key issue in the process of revision and improvement
of seismic hazard assessments. Therefore we continue the rigorous comparative
analysis of past and newly available hazard maps for the territory of Italy against the
seismic activity observed in reality. The final Global Seismic Hazard Assessment
Program (GSHAP) results and the most recent version of Seismic Hazard Harmo-
nization in Europe (SHARE) project maps, along with the reference hazard maps
for the Italian seismic code, all obtained by probabilistic seismic hazard assessment
(PSHA), are cross-compared to the three ground shaking maps based on the duly
physically and mathematically rooted neo-deterministic approach (NDSHA). These
eight hazard maps for Italy are tested against the available data on ground shaking.
The results of comparison between predicted macroseismic intensities and those
reported for past earthquakes (in the time interval 1000–2014) show that models
provide rather conservative estimates, which tend to over-estimate seismic hazard
at the ground shaking levels below the MCS intensity IX. Only exception is repre-
sented by the neo-deterministic maps associated with a fixed return period of 475 or
2475years, which provide a better fit to observations, at the cost of model consistent
10% or 2% cases of exceedance respectively. In terms of the Kolmogorov-Smirnov
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goodness of fit criterion, although all of the eight hazard maps differ significantly
from the distribution of the observed ground shaking reported in the available Italian
databases, the NDSHA approach appears to outscore significantly the PSHA one.

7.1 Introduction

A reliable and comprehensive characterization of expected seismic ground shaking,
in a anticipatory perspective, is essential in order to develop effective risk mitiga-
tion strategies, including the adequate engineering design of earthquake-resistant
structures.

A common belief is that a probabilistic assessment of the seismic hazard (PSHA),
accounting for the probability of occurrence of a given ground shaking within a
specified time interval, is needed for any rational decision making and for optimal
allocation of resources [11]. However, since data are often insufficient to constrain
the probability models and to test them, ground shaking probabilities turn out highly
uncertain and unreliable, particularly for the large, sporadic and most destructive
earthquakes. Comparison of observed numbers of fatalities with those calculated
based on expected ground shaking from GSHAP maps [9, 23], show that seismic
hazard maps based on the standard probabilistic method do not allow to reliably
estimate the risk to which the population is exposed due to large earthquakes in
many regions worldwide.

Although testing should be a necessary step in any scientific process of seismic
hazard assessment, it is not a standard practice and there is not yet a commonly
agreed procedure for models evaluation and comparison. Mak et al. [10] pointed
out that, depending on the limited time span of available observations (compared
with the selected return period of PSHA map), the probability of failing to reject an
inadequatemodel can be high. Even if formal testing does not guarantee the adequacy
of a model, a quantitative analysis of performances may allow comparing different
models and spotting out possible problems. Objective testing, in fact, may have
different purposes, ranging from purely scientific verification of model distributions
and parameters to the assessment of maps predictive capability for moderate to
extreme shaking, which may require specific metrics and tests.

In spite of the evidenced shortcomings and of its poor performances (see [17] for
an in depth discussion), PSHA is still widely applied in the framework of several
large scale projects at regional and global scale (e.g. Global Earthquake Model).
Most of such attempts in improving seismic hazard maps, however, basically rely
on the collection and revision of the input data and, so far, did not include a formal
procedure to assess the improved capability of the revised maps in describing ground
shaking.By analogywithmedicine testing, in fact, the adequacyof the proposedmaps
should be established before their publication and control should be performed by
the proponents as a primary test of reliability of the new results.
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A possible alternative to the conventional PSHA approach is provided by the
Neo-Deterministic Seismic Hazard Assessment, NDSHA [14–16], a methodology
that allows for the consideration of a wide range of possible seismic sources as the
starting point for deriving scenarios via full waveforms modeling. Besides the stan-
dard NDSHA maps, which provide reliable estimates of maximum seismic ground
motion from a wide set of possible scenario earthquakes, the flexibility of NDSHA
allows to account for earthquake recurrence and it permits to compute ground shak-
ing maps at specified return periods [18]. A systematic comparative analysis was
carried out for the territory of Italy between the NDSHA and PSHA maps (the last
is at the base of current seismic regulation), investigating their performances with
respect to past earthquakes, so as to better understand the performances and possible
limits of the two different approaches to seismic hazard assessment [13].

In this study the comparative analysis is extended to additional hazard maps
for the Italian territory, which are available from large scale projects (i.e. GSHAP),
including themost recent probabilisticmap,which has been compiled for the territory
of Europe in the framework of Seismic Hazard Harmonization in Europe (SHARE)
project [5]. The new European Seismic Hazard Map (ESHM13), in fact, has been
released recently by [6] with the following declared intent:

SHARE’smainobjective is to provide a community-based seismic hazardmodel for theEuro-
Mediterranean region with update mechanisms. The project aims to establish new standards
in Probabilistic Seismic Hazard Assessment (PSHA) practice by a close cooperation of
leading European geologists, seismologists and engineers.

Regretfully, the new SHARE map does not seem to address most of the limits of
the PSHA approach (e.g. [17, 22]) and repeats the errors of its predecessors, possibly
(mis)leading to unexpected economic and human life losses from future earthquakes.

7.2 Data

In this study we consider ground shaking estimates for the territory of Italy within
the boundaries from 36◦N to 48◦N and from 6◦E to 20◦E provided by the following
eight seismic hazard assessment maps.

(a) The final Global Seismic Hazard Assessment Program (GSHAP) map that
depicts peak ground acceleration (PGA)valueswith a 10%chance of exceedance
of in 50years (GSHAP10%) corresponding to a return period of 475years.

The GSHAP PGA values obtained by the probabilistic seismic hazard analysis
(PSHA) methodology and presented as the final Global Seismic Hazard Map [4, 19]
andTable (GSHPUB.dat, http://www.seismo2009.ethz.ch/GSHAP/) are provided on
a 0.1◦ ×0.1◦ regular grid for seismically active regions of the Globe, including the
territory of Italy.

http://www.seismo2009.ethz.ch/GSHAP/
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(b) The SHARE PGA values as defined by a 10% chance of exceedance in 50years
(SHARE10%) corresponding to a return period of 475years.

(c) The SHARE PGA values for a probability of exceedance of 2% in 50years
(SHARE2%) associated with a 2475-year return period.

The SHARE PGA values, obtained by the, claimed, improved PSHA methodology,
are given at the grid points of a regular 0.1◦ ×0.1◦ mesh, which data can be down-
loaded from http://www.efehr.org:8080/jetspeed/portal/hazard.psml.

(d) The current Italian official seismic hazard map PGA values as defined by a 10%
chance of exceedance of in 50years (PGA10%) corresponding to a return period
of 475years

(e) The Italian official seismic hazard map PGA values for a 2% probability of
exceedance in 50years (PGA2%) associated with a return period of 2475years.

Both the official seismic hazard maps for Italy are based on PSHA ([12] the data file
http://esse1.mi.ingv.it/d2.html) at the grid points of a regular 0.2◦ ×0.2◦ mesh.

(f) The maximum design ground acceleration (DGA) map for Italy, estimated by
the standard NDSHA approach.

(g) TheNDSHADGAvalues estimated for a return period of 475years, correspond-
ing to a 10% chance of exceedance of in 50years (DGA10%).

(h) The NDSHA DGA values estimated for a return period of 2475years, corre-
sponding to a 2% chance of exceedance of in 50years (DGA2%).

The three design ground acceleration (DGA)maps are based on the neo-deterministic
seismic hazard assessment, NDSHA ([15] and references therein), which provides
ground shaking estimates at the grid points of a regular 0.2◦ ×0.2◦ mesh. From the
complete synthetic seismograms associated to each grid point, the DGA estimates
are extracted, which can be compared to PGA [24]. The DGA map defined by the
standard NDSHA method does not depend on temporal properties of earthquakes
occurrence, whereas the DGA10% and DGA2%maps are obtained by incorporating
earthquake recurrence information into NDSHA [2, 18], and correspond to return
periods of 475 and 2475years, respectively (i.e. same as considered in compilation of
the PSHA maps). The application of NDSHA variant that computes ground shaking
at a fixed return period implies additional requirements to the input data, which are
not fulfilled in the parts of the Italian territory delineated as blank areas in Fig. 7.1g,
h. In turn, the limits of available data in adequately constraining ground shaking
recurrence, as evidenced by NDSHA analysis [18], cast doubts on the meaning and
validity of PSHA values given for these blank areas, if based on the same data.

For the purpose of comparison between different grids we enhance the regular
0.2◦ ×0.2◦ mesh into a 0.1◦ ×0.1◦ one, so that each PGA value from the original
grid point is attributed to four points on the fine grid (i.e. the original point, plus its
three nearest neighbors to the east, south, and south-east).

The observed seismic activity data are taken from the SHARE European
Earthquake Catalogue (SHEEC), as reported by Stucchi et al. [21] for historical
events in 1000–1899 and by Grünthal et al. [7] for earthquakes in 1900–2006.

http://www.efehr.org:8080/jetspeed/portal/hazard.psml
http://esse1.mi.ingv.it/d2.html
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Fig. 7.1 Comparison of model ground acceleration maps: a GSHAP corresponding to a return
period of 475years; b SHARE10% corresponding to a return period of 475years; c SHARE2%
corresponding to a return period of 2475years; d PGA10% corresponding to a return period of
475years; e PGA2% corresponding to a return period of 2475years; f DGA not depending on time;
g DGA10% corresponding to a return period of 475years; h DGA2% corresponding to a return
period of 2475 years
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The data set covering more than a millennium (a time interval about ten times longer
than that available in most of the regions worldwide), with a completeness level
satisfactory for this kind of analysis, is quite a unique property of the territory of
Italy and fully warrants the following analysis. The SHEEC data provides records on
macroseismic intensity at epicenter, I0. In our analysis we have used integer values
of I0, attributing the upper limit when in SHEEC the reported I0 is a range. This is a
conservative natural choice of seismic hazard estimate, adequate to analysis aimed
at the largest possible ground shaking. The observed intensity map, Iobs , is compiled
by attributing to a grid point of a regular 0.1◦ ×0.1◦ mesh the maximum of I0 for
earthquakes from SHEEC within the 0.25◦-side square centered at this grid point.
This resulting map of the observed ground shaking intensity gives us an opportunity
for a quantitative comparison of the eight seismic hazard maps of the Italian territory
with the seismic reality.

7.3 Cross-Comparison of the PGA Maps for Italy

We repeat the analysis reported in [13], expanding the comparison to the probabilistic
seismic hazard maps for the Italian territory obtained in the framework of large
scale projects: the Global Seismic Hazard Assessment Programme (GSHAP) map
published 15years ago [3], and its newoffspring for Europe (SHARE),which became
available recently [5, 6].

Table7.1 gives an overall summary on the PGA values for each of the eight SHA
maps (Fig. 7.1). Evidently, the SHAREmaps increase dramatically both the lower and
the upper limits of the expected seismic hazard in Italy. In particular, the minimum
of the SHARE PGA is about 2 and 4 times larger than the corresponding estimates
of the earlier probabilistic SHA. In comparison to the NDSHA maps the minimum
values of ground shaking by the SHARE maps are about 5 and 10 times larger. The
increase of the maximum PGA on the SHARE maps accounts to about 10–50% of
the corresponding previously suggested values.

Table7.2 provides a more refined comparison, based upon the percentage of PGA
values ratio at a grid point (mGA1/mGA2), for a number of pairs of model maps
mGA1 and mGA2. SHARE map values at a grid point exceed those of the previous
maps by a factor of 2 or more in 4% of cases, for the GSHAP map, in 17 and 40%
of cases, for the corresponding national PSHA maps, and to up to more than 75%
of cases, for the NDSHA estimates. The SHARE estimate is less than any previous
hazard estimates in 2–3% of grid points. Specifically, as can be concluded from the
maps of the ratio of the PGA values for different pairs of models, a selection being
provided in Fig. 7.2, just about 2% of the grid points of the Italian official SHAmaps
have higher PGA values than that of SHARE; these are all located in the Friuli-
Venezia-Giulia region (Fig. 7.2c, d). In comparison to the previous hazard maps, the
SHARE PGA values corresponding to a return period of 475 years increase by a
factor of 2 or more in the regions of Trentino, Lombardia, Eastern Sicily, and Puglia;
for Liguria PGA increases more than 4 times. The misfit of the SHARE maps with
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Fig. 7.2 Selected maps of the ratio between PGA values from different pairs of SHA maps:
a GSHAP divided by PGA10%; b SHARE10% divided by GSHAP; c SHARE10% divided by
PGA10%; d SHARE2% divided by PGA2%; e SHARE10% divided by DGA; f SHARE10%
divided by DGA10%; g SHARE2% divided by DGA2%

respect to the NDSHA ones is even more dramatic (Fig. 7.2e–g): e.g. the SHARE2%
values are larger than the DGA2% by a factor of 4 or more in about 40% of the
Italian territory.



92 A. Nekrasova et al.

Fig. 7.3 Correlation diagrams of the PGA values (in m/s2) on the four hazard maps of Italy corre-
sponding to a return period of 475 years: a GSHAP (ordinate) versus SHARE10% (abscissa);
b GSHAP versus PGA10%; c GSHAP versus DGA10%; d SHARE10% versus PGA10%;
e SHARE10%versus DGA10%; f PGA10%versus DGA10%. These are all possible pairs of maps
corresponding to a return period of 475 years (i.e. probabilistic GSHAP, SHARE10%, PGA10%,
and adjusted neo-deterministic DGA10%)



7 A New Probabilistic Shift Away from Seismic … 93

Each of the six graphs in Fig. 7.3 shows the correlation diagram between a pair
of seismic hazard maps of Italy, displaying the PGA values on a grid point of one
map versus the PGA values on the same grid point of another map. These are all
possible pairs ofmaps corresponding to a return period of 475 years (i.e. probabilistic
GSHAP, SHARE10%, PGA10%, and neo-deterministic DGA10%). It is evident
that the most recent map reviewed by the probabilistic approach to seismic hazard
assessment (SHARE10%) evidently provides a gross overestimation of PGA values,
compared to all of the other maps. The neo-deterministic map (DGA10%) is themost
optimistic in providing low PGA values, under 1 m/s2, but conservative in expecting
high accelerations, above 2 m/s2.

Of course, any cross-comparison of the maps obtained by different models and/or
series of correlation diagrams does not answer to the key question of a model ade-
quacy to reality. In the next section we address this pivotal question in hazard assess-
ment by comparisons of the model maps with the available observations.

7.4 Comparison of the Hazard Maps for Italy Against
Registered Ground Shaking

The two currently official seismic hazard maps for Italy PGA10% and PGA2%
and the three neo-deterministic maps DGA, DGA10% and DGA2% were already
subject of comparison in [13]. Here we update and expand the comparison with the
observed ground shaking to theEuropean SeismicHazardMaps 2013—SHARE10%
and SHARE2%, issued recently [6], along with their predecessor, GSHAP map [3].
Table7.3 lists the conversion rules between PGA and MCS for the territory of Italy
after Indirli et al. [8]. These rules are used to convert the estimated ground shaking
from SHARE10%, SHARE2%, PGA10%, PGA2%, DGA, DGA10%, DGA2%
into the corresponding macroseismic intensity MCS values. Figure7.4 shows the
eight model intensity maps subject to comparison along with the map Iobs compiled
from the SHEEC reported data. All the nine intensity maps refer to the same regular
0.1◦ ×0.1◦ mesh within the borders of Italy. For the purposes of comparison the
recurrence adjusted DGA10% and DGA2% neo-deterministic maps were expanded
to the grid points of no recurrence determination, following the empirical linear
regression equation that links the DGA map values and the existing estimates on the
DGA2% and DGA10% maps. The resulting model intensity maps are DGA2%*
and DGA10%*, respectively.

Table 7.3 Relation between IMCS and model ground motion, mGA, after Indirli et al. [8]

IMCS VI VII VIII IX X XI

mGA (g) 0.01–0.02 0.02–0.04 0.04–0.08 0.08–0.15 0.15–0.3 0.3–0.6
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Fig. 7.4 The intensity maps under comparison: a Iobs map obtained from the reported seismicity
data in 1000–2006; model intensity corresponding to PGA maps—b GSHAP, c SHARE10%,
d SHARE2%, e PGA10%, f PGA2%, g DGA, h DGA10%*, and i DGA2%*

Figure7.4 presents the eight intensity maps obtained (i) from the real seismicity
Iobs (Fig. 7.4a) aswell as (ii) from thegroundmotion estimates ISHARE10%, ISHARE2%,

IPGA10%, IPGA2%, IDGA, IDGA10%∗, IDGA2%∗ (Fig. 7.4b–h, respectively).
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The percentage of the points with intensity VI or more for each of these maps
is summarized in Table7.3. Remarkably, the SHARE2% assigns all the territory to
“extreme” ground shaking of intensity X or larger, while the Iobs map of macroseis-
mic intensities reports such intensity, in about 2000years of observations, for less
than 12% of the territory. At this “extreme” level of ground shaking the DGA10%*
with its 8% appear to be the nearest to Iobs , and, in general, the neo-deterministic
maps are closer to reality than all the probabilistic ones but PGA10%, which predicts
(about 45% of intensity X) for a return period of 475 years similar values to those
of the time unlimited DGA. Similar situation exists at the “severe”, intensity VIII
level of ground shaking: it is attributed to 100% of the Italian territory by all the
probabilistic maps except PGA10%, which attributes it to 98% of the territory, still
too large in comparison to 42% of Iobs . Once again the DGA10%* with its 61.42%
is the closest to Iobs .

More rigid comparison with respect to the Iobs map can be performed by applying
the Kolmogorov-Smirnov test that quantifies the distance between the empirical
distribution functions. The maximum absolute difference between the empirical dis-
tributions is commonly used in the Kolmogorov-Smirnov two-sample criterion to
distinguish whether or not the values from the two samples are drawn from the
same statistical distribution of independent variables. We apply the two sample
Kolmogorov-Smirnov statistic λK−S to the empirical distribution functions of MCS
values on a model map and the observed SHEEC reported data map:

λK−S(D, n, m) = [nm/(n + m)]1/2D,

where D = max|Fi (I ) – F0(I )| is the maximum of the absolute difference between
the empirical distributions of the i th model map Fi (I ) and the Iobs map F0(I ),
whose sample sizes are n and m, respectively; I = VI, VII, VIII, IX, X, XI, XII.
Figure7.5a shows the empirical distribution functions used in the comparison. For the
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Fig. 7.5 The empirical probability functions of macroseismic intensity (a) and the difference
between a model and the real intensities Fi (I ) – F0(I ) (b)
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purposes of additional testing and qualitative uncertainty estimation, the empirical
distribution function of the MCS values from the publicly available database of
direct macroseismic observations DBMI04 [20] is also object of comparison with
the Iobs map. Figure7.5b shows the nine differences Fi (I ) – F0(I ) and it illustrates
the departure of a model from the zero-line of reality; the departure of direct MCS
observations from DBMI04 characterizes the realistic dispersion of the real data.
Table7.4 summarizes the results of the comparison in terms of computed D and
λK−S.

The K-S test results confirm quantitatively the conclusions that could have been
already reached from Table7.3: the values of seismic intensity assigned by any of the
models considered and reported in SHEEC do not come from the same distribution.
The λK−S for the two representatives of the observed ground shaking, i.e. at epicen-
ter (the Iobs map) and at site of direct observation (the DBMI04 data), provides an
empirical estimate of admissible departure of real intensity distributions as a refer-
ence for claiming consistency of a model. Nekrasova et al. [13] have shown that the
DGA10% map appears to be “the best fit” among the five model intensity maps for
Italy (i.e., the two official and the three neo-deterministic maps). The investigation
expanded to the eight model maps confirms this conclusion. Moreover, it becomes
evident that the GSHAP and most recent SHARE maps for Italy are hardly con-
sistent with observations and overestimate dramatically the seismic hazard in the
region. Apparently the SHARE maps keep moving away from reality, even more
than GSHAP.

Tables7.5 and 7.6 disclose the quality of a model map in predicting the maximum
of the macroseismic intensity, in particular, the expectation of “a 10 or 2% chance
of exceedance in 50 years”. Table7.5 indicates clearly that for SHARE maps the
number of exceedances, by a unit of MCS intensity or larger, is by far smaller than
one should expect from the number of trials represented by the intensity VIII or larger
records in DBMI04. Once again the fit of the adjusted neo-deterministic DGA10%*
and DGA2%* (11.6 and 1.9% exceedances, correspondingly) is more consistent
with expectations than that of the probabilistic maps, both for a return period of 475
years (GSHAP is exceeded in 4.4%, SHARE10% in 0.1% and PGA10% in 4.5% of
cases, respectively) and for a return period of 2475 years (SHARE2% and PGA2%
are never exceeded, thus it is 0.0%). The small sample of I0 ≥VIII earthquakes from
SHEEC (Table7.6) does not permit, although does not contradict, the conclusion on
a model map consistency, as clear as with the macroseismic records from DBMI04
(Table7.7).



7 A New Probabilistic Shift Away from Seismic … 97

Ta
bl

e
7.

4
T
he

pe
rc
en
ta
ge

of
I M

C
S
fr
om

di
ff
er
en
tr
an
ge
s
in

re
al
ob
se
rv
at
io
n
m
ap

(I
ob

s)
an
d
in

th
e
m
od
el
in
te
ns
ity

m
ap
s
co
rr
es
po
nd
in
g
to

th
e
ei
gh
th

az
ar
d
m
ap
s

co
ns
id
er
ed

I M
C
S
ra
ng
e

I o
bs

G
SH

A
P

SH
A
R
E
10

%
SH

A
R
E
2
%

PG
A
10

%
PG

A
2
%

D
G
A

D
G
A
10

%
*

D
G
A
2
%
*

≥X
I

2.
76

0.
03

14
.5
8

75
.2
8

–
33
.8
4

19
.2
8

0.
39

10
.2
1

≥X
11
.6
3

56
.2
0

72
.7
0

10
0

44
.4
8

74
.1
5

45
.6
6

8.
06

34
.9
3

≥I
X

21
.4
0

94
.9
8

98
.5
6

10
0

76
.7
4

90
.5
7

78
.9
0

31
.1
2

59
.5
2

≥V
II
I

41
.6
9

10
0

10
0

10
0

97
.7
7

10
0

97
.2
3

61
.4
2

86
.8
2

≥V
II

74
.2
7

10
0

10
0

10
0

10
0

10
0

10
0

86
.4
3

98
.4
7

≥V
I

10
0



98 A. Nekrasova et al.

Ta
bl

e
7.

5
T
he

K
ol
m
og

or
ov
-S
m
ir
no
v
tw
o-
sa
m
pl
e
st
at
is
tic

λ
K

−S
ap
pl
ie
d
to

a
m
od

el
m
ap

an
d
th
e
re
al
se
is
m
ic
in
te
ns
ity

m
ap

(I
ob

s,
sa
m
pl
e
si
ze

1,
34
1)

St
at
is
tic

M
od

el
se
is
m
ic
in
te
ns
ity

m
ap

G
SH

A
P

SH
A
R
E
10

%
SH

A
E
2
%

PG
A
10

%
PG

A
2
%

D
G
A

D
G
A
10

%
*

D
G
A
2
%
*

D
B
M
I0
4

Sa
m
pl
e
si
ze

3,
06
6

3,
06
6

3,
06
6

3,
04
4

3,
04
4

3,
06
6

3,
06
6

3,
06
6

19
,7
13

D
0.
74

0.
77

0.
88

0.
56

0.
69

0.
57

0.
20

0.
45

0.
09

λ
K

−S
22
.4
7

23
.5
7

26
.9
9

17
.1
1

21
.1
0

17
.5
6

6.
03

13
.7
9

1.
82

Sa
m
pl
e
si
ze

in
di
ca
te
s
th
e
nu

m
be
r
of

gr
id

po
in
ts
an
al
ys
ed



7 A New Probabilistic Shift Away from Seismic … 99

Ta
bl

e
7.

6
N
um

be
r
of

ea
rt
hq
ua
ke
s
w
ith

I 0
≥V

II
I
fr
om

SH
E
E
C
fo
r
w
hi
ch

th
e
di
ff
er
en
ce

�
,
be
tw

ee
n
I 0

an
d
th
e
m
ax
im

um
of

th
e
m
od
el

m
ap

va
lu
es

at
th
e

di
st
an
ce

of
1/
8◦

or
le
ss
,h
as

be
en

co
m
pu

te
d

M
od
el

G
SH

A
P

SH
A
R
E
10

%
SH

A
R
E
2
%

PG
A
10

%
PG

A
2
%

D
G
A

D
G
A
10

%
*

D
G
A
2
%
*

To
ta
l

42
42

42
42

42
42

42
42

�
=

2
0

0
0

0
0

0
3

1

�
=

1
2

0
0

1
0

1
5

1

�
=

0
8

2
0

9
1

5
8

5

�
=

−1
12

10
4

13
9

9
19

12

�
=

−2
20

16
9

19
16

13
6

14

�
=

−3
0

14
18

0
16

14
1

9

�
=

−4
0

0
11

0
0

0
0

0



100 A. Nekrasova et al.

Ta
bl

e
7.

7
N
um

be
r
of

gr
id

po
in
ts
w
he
re

th
e
di
ff
er
en
ce

�
,b
et
w
ee
n
th
e
in
te
ns
ity

I
≥V

II
I
re
co
rd
s
in

D
B
M
I0
4
an
d
th
e
m
ax
im

um
of

th
e
m
od
el
m
ap

va
lu
es

at
th
e

di
st
an
ce

of
1/
8◦

or
le
ss
,h
as

be
en

co
m
pu

te
d

M
od
el

G
SH

A
P

SH
A
R
E
10
%

SH
A
R
E
2%

PG
A
10
%

PG
A
2%

D
G
A

D
G
A
10
%
*

D
G
A
2%

*

To
ta
l

4,
42
1

4,
42
1

4,
42
1

4,
42
1

4,
42
1

4,
42
1

4,
42
1

4,
42
1

�
=

2
1

0
0

0
0

0
81

6

�
=

1
19
3

3
0

20
0

0
9

43
4

76

�
=

0
58
9

23
6

0
62
0

18
9

27
6

1,
19
4

43
0

�
=

−1
1,
56
2

70
6

25
7

1,
61
1

63
3

96
3

1,
44
4

1,
12
5

�
=

−2
2,
00
9

1,
79
0

91
4

1,
99
0

1,
67
0

1,
61
6

1,
04
9

1,
55
7

�
=

−3
67

1,
68
6

1,
71
1

0
1,
92
4

1,
55
7

21
3

1,
22
7

�
=

−4
0

0
1,
53
9

0
5

0
0

0



7 A New Probabilistic Shift Away from Seismic … 101

7.5 Conclusions

The comparison of the model intensity maps against the real seismic activity in Italy,
made over a time interval of more than a millennium, reveals many discrepancies in
several aspects of the models seismic ground shaking distribution in space and size.

We did repeat the analysis reported in [13] and expanded it to the Global Seismic
Hazard Assessment Programme (GSHAP) map and its new offspring for Europe
(SHARE), which became available recently [6]. The results of the analysis described
in this paper confirm the following conclusions:

• the estimates of seismic intensity attributed by any of the eight models considered,
including the official and most recent SHARE seismic hazard maps, and those
reported in the Italian databases of empirical observations could hardly arise from
the same distribution;

• models (except for the recurrence adjusted neo-deterministic DGA10% and
DGA2%, at the cost of model consistent 10% or 2% cases of exceedance) gen-
erally provide rather conservative estimates with respect to reality. They tend to
over-estimate seismic hazard particularly at the levels below violent (MCS inten-
sity IX) ground shaking events and yet most of them do not guarantee avoiding
underestimations for the largest earthquakes;

• probabilistic maps have a higher tendency to overestimate the hazard, with respect
to the corresponding deterministic maps and reality; in particular, the newly pub-
lished SHARE maps assign all the territory of Italy to extreme ground shaking of
intensity I ≥ IX;

• in terms of the goodness of fit measured by the Kolmogorov-Smirnov two-sample
statistic, the NDSHA models appear to outscore the probabilistic ones and might
be a better representation of the real seismicity. In particular, theminimum value of
λK−S obtained for DGA10%* is 3–4 times smaller than for any of the probabilistic
models,while it is 3 times larger than for the referencemisfit of the observedground
shaking at epicenters and at sites of direct observations.

The study of the statistical significance of the detected inconsistencies between
model and observed intensities and their interpretation should be addressed in further
investigation of earthquake phenomenon, in particular for the predictability of the
maximum ground shaking.

What is often the problem with probabilistic approaches is that probability is
a purely mathematical concept and, by the law of large numbers, the frequency
approaches the probability only in an infinite collection of independent identically
distributed random occurrences. It is clear, therefore, that all methods that mix these
two terms (frequency and probability) without computing the deviations with suffi-
cient number ofmoments are bound to fail sooner or later.As expected, an oversimpli-
fiedmodel computation of theminimum time interval required for reliable occurrence
rate estimates with reasonable uncertainty for a return period of 475 years [1, 10]
suggests the geological time span of 12,000 years. In the case of Italy, on account
of the millennial earthquake catalogue available, a reliable and physically sound



102 A. Nekrasova et al.

alternative is represented by NDSHA hazard estimations, which in their standard
definition do not depend on the probability of earthquake occurrence, but can be
adjusted by recurrence if the data allow.

The obtained results might be indicative of a fundamental misfit of the generally
accepted uniform rules of homogeneous smoothing applied to observations on top the
naturally fractal system of blocks-and-faults with evidently heterogeneous structure
and rheology.Anymodel for SHAaimed, presumably, at predicting disastrous ground
shaking thatwould actually occurmust pass series of rigid testing against the available
real seismic activity data before being suggested as a practical seismic hazard and
risk estimation. Otherwise, similar to medical malpractice, although at much higher
level of simultaneous losses [23], the use of untested seismic hazard maps would
eventually mislead to crime of negligence.

Acknowledgments This paper was completed during the visit of A.K. Nekrasova at the Structure
and Nonlinear Dynamics of the Earth (SAND) Group of the Abdus Salam International Centre for
Theoretical Physics, Miramare—Trieste, Italy. AKN and VGK acknowledge the support from the
Russian Foundation for Basic Research (RFBR grants No 13-05-91167 and No 14-05-92691).

References

1. C. Beauval, P.-Y. Bard P-Y, S. Hainzl, P. Guguen, Can strong motion observations be used
to constrain probabilistic seismic hazard estimates? Bull. Seismol. Soc. Am. 98(2), 509–520
(2008)

2. G. Folladore, Neo-deterministic seismic hazard assessment and earthquake recurrence, Master
Thesis, Università degli studi di Trieste, Facoltà di Scienze Matematiche, Fisiche e Naturali
(2010)

3. D. Giardini, G. Grünthal, K.M. Shedlock, P. Zhang, The GSHAP global seismic hazard map.
Ann. Geofis. 42(6), 1225–1228 (1999)

4. D. Giardini, G. Grünthal, K.M. Shedlock, P. Zhang, The GSHAP Global Seismic Hazard
Map, in International Handbook of Earthquake and Engineering Seismology, International
Geophysics Series 81 B, ed. by W. Lee, H. Kanamori, P. Jennings, C. Kisslinger (Academic
Press, Amsterdam, 2003), pp. 1233–1239

5. D. Giardini, J. Woessner, L. Danciu, F. Cotton, H. Crowley, G. Grünthal, R. Pinho,
G. Valensise, S. Akkar, R. Arvidsson, R. Basili, T. Cameelbeck, A. Campos-Costa, J. Douglas,
M.B. Demircioglu, M. Erdik, J. Fonseca, B. Glavatovic, C. Lindholm, K. Makropoulos, C.
Meletti, R. Musson, K. Pitilakis, A. Rovida, K. Sesetyan, D. Stromeyer, M. Stucchi, Seismic
hazard harmonization in Europe (SHARE) (2013). doi:10.12686/SED-00000001-SHARE

6. D. Giardini, J. Woessner, L. Danciu, Mapping Europe’s seismic hazard. Eos Trans. AGU, Eos
95(29) (2014)

7. G. Grünthal, R. Wahlström, D. Stromeyer, The SHARE European earthquake catalogue
(SHEEC) for the time period 1900–2006 and its comparison to the European mediterranean
earthquake catalogue (EMEC). J. Seismolog. 17(4), 1339–1344. (2013) doi:10.1007/s10950-
013-9379-y

8. M. Indirli, H. Razafindrakoto, F. Romanelli, C. Puglisi, L. Lanzoni, E. Milani, M. Munari, S.
Apablaza, Hazard evaluation in Valparaiso: the MAR VASTO Project. Pure Appl. Geophys.
168(3–4), 543–582 (2011)

9. V.G. Kossobokov, A.K. Nekrasova, Global seismic hazard assessment program maps are
erroneous. Seismic Instrum. 48(2) (2012), http://dx.doi.org/10.3103/S0747923912020065.
(Allerton Press Inc, pp. 2012162–2012170)

http://dx.doi.org/10.12686/SED-00000001-SHARE
http://dx.doi.org/10.1007/s10950-013-9379-y
http://dx.doi.org/10.1007/s10950-013-9379-y
http://dx.doi.org/10.3103/S0747923912020065.


7 A New Probabilistic Shift Away from Seismic … 103

10. S. Mak, R.A. Clements, D. Schorlemmer, The statistical power of testing probabilistic seismic-
hazard assessments. Seismol. Res. Lett. 85(4), 781–783 (2014)

11. W. Marzocchi, Seismic hazard and public safety. Eos 94(27), 240–241 (2013)
12. C. Meletti, V. Montaldo, Stime di pericolosità sismica per diverse probabilità di superamento

in 50 anni: valori di ag. http://esse1.mi.ingv.it/d2.html, Deliverable D2 (2007)
13. A. Nekrasova, V. Kossobokov, A. Peresan, A. Magrin, The comparison of the NDSHA. PSHA

seismic hazard maps and real seismicity for the Italian territory. Nat. Hazards 70(1), 629–641
(2014). doi:10.1007/s11069-013-0832

14. G.F. Panza, F. Romanelli, F. Vaccari, Seismic wave propagation in laterally heterogeneous
anelastic media: theory and applications to seismic zonation. Adv. Geophys. 43, 1–95 (2001)

15. G.F. Panza, C. La Mura, A. Peresan, F. Romanelli, F. Vaccari, Seismic Hazard Scenarios
as Preventive Tools for a Disaster Resilient Society, in Advances in Geophysics, ed. by R.
Dmowska (Elsevier, London, 2012), pp. 93–165

16. G.F. Panza, A. Peresan, C. La Mura, Seismic Hazard and Strong Ground Motion: An Oper-
ational Neo-deterministic Approach from National to Local Scale, in Encyclopedia of Life
Support Systems (EOLSS), Geophysics and Geochemistry, Developed under the Auspices of
the UNESCO, ed. by UNESCO-EOLSS Joint Commitee (Eolss Publishers, Oxford, 2013),
pp. 1–49

17. G.F. Panza, V. Kossobokov, A. Peresan, A. Nekrasova, Why are the standard probabilistic
methods of estimating seismic hazard and risks too often wrong? in Earthquake Hazard, Risk,
and Disasters (Chapter 12), ed. by M. Wyss (2014), pp. 309–357, http://dx.doi.org/10.1016/
B978-0-12-394848-9.00012-2

18. A. Peresan, A. Magrin, A. Nekrasova, V.G. Kossobokov, G.F. Panza, Earthquake Recurrence
and Seismic Hazard Assessment: A Comparative Analysis Over the Italian Territory, in Pro-
ceedings of the ERES 2013 Conference. WIT Transactions on The Built Environment, vol. 132
(2013), pp. 23–34. doi:10.2495/ERES130031, ISSN 1743-3509 (on-line)

19. K.M. Shedlock, D. Giardini., G. Grünthal, P. Zhang, The GSHAP global deismic hazard Map.
Seismol. Res. Lett. 71(6), 679–686 (2000)

20. M. Stucchi, R. Camassi, A. Rovida, M. Locati, E. Ercolani, C. Meletti, P. Migliavacca,
F. Bernardini, R. Azzaro, DBMI04, il database delle osservazioni macrosismiche dei terre-
moti italiani utilizzate per la compilazione del catalogo parametrico CPTI04. Quad. Geof. 49,
38 (2007), http://emidius.mi.ingv.it/DBMI04/

21. Stucchi et al., The SHAREEuropean earthquake catalogue (SHEEC) 1000–1899. J. Seismolog.
(2012). doi:10.1007/s10950-012-9335-2

22. S. Stein, R. Geller, M. Liu, Why earthquake hazard maps often fail and what to do about it.
Tectonophysics 562–563, 1–25 (2012)

23. M. Wyss, A. Nekrasova, V. Kossobokov, Errors in expected human losses due to incorrect
seismic hazard estimates. Nat. Hazards 62, 927–935 (2012)

24. E. Zuccolo, F. Vaccari, A. Peresan, G.F. Panza, Neo-deterministic and probabilistic seismic
hazard assessments: a comparison over the Italian territory. Pure Appl. Geophys. 168, 69–83
(2011)

http://esse1.mi.ingv.it/d2.html,
http://dx.doi.org/10.1007/s11069-013-0832
http://dx.doi.org/10.1016/B978-0-12-394848-9.00012-2
http://dx.doi.org/10.1016/B978-0-12-394848-9.00012-2
http://dx.doi.org/10.2495/ERES130031
http://emidius.mi.ingv.it/DBMI04/
http://dx.doi.org/10.1007/s10950-012-9335-2


Chapter 8
Steps in Seismic Risk Mapping for Romania
Capital City

E.F. Manea, D. Toma-Danila, C.O. Cioflan and Gh. Marmureanu

Abstract Bucharest, capital of Romania, is one of the most seismically vulnerable
cities in Europe. The earthquakes affecting the city have their origin in the Vrancea
intermediate-depth source. In the last century, major earthquakes (November 10,
1940, Mw = 7.7; March 4, 1977, Mw = 7.4; August 30, 1986, Mw = 7.1; May 30,
1990, Mw = 6.9) produced significant effects for this area. This study’s objective is to
highlight the seismic risk of Bucharest nowadays by estimating the possible building
and human losses, for relevant scenarios—based on real data and neodeterministic
approach. The building loss estimates were obtained through the Improved Displace-
ment Coefficient Analytical Method. In order to provide a balanced input that can
also reflect different damage states in the risk analysis, for the hazard data we used
real data from seismic stations for August 30, 1986 and May 30, 1990 earthquakes
and microzonation map for the maximum possible earthquake that can be produced
in Vrancea intermediate-depth source (Mw = 7.8 and depth 150km). The spectral
content was used for peak ground acceleration (PGA) and spectral acceleration at
0.3 and 1 seconds. For the vulnerability assessment, data obtained from the “Danube
Cross-Border system for Earthquakes Alert” (DACEA) Project and a database with
classification of the buildings in 1999 were used. The analysis is performed at sec-
tor level (6 in total). We computed the probability of damage for the buildings and
human casualties in terms of different injury types with SELENA Software.
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8.1 Introduction

The city of Bucharest, capital of Romania, is an extremely vulnerable capital in
Europe. Bucharest comprises around 2million inhabitants and a considerable number
of buildings expected to collapse during a future major earthquake (373 out of 2,563
were classified in the seismic risk class 1 after individual expert evaluation; but the
building stock consists of more than 1,13,900 buildings).

The major earthquakes affecting the city have their origin in the Vrancea region
located at the curvature of the Carpathian Mountains, where the East European Plate
and the Intra-Alpine and Moesic Subplates are in contact (continental collision).
Vrancea seismic source presents a high concentration of events in a well-defined
volume located at intermediate depth (60 < h < 200 km), where 2–3 events with
Mw > 7.0 are generated each century [1]. Although situated at more than 170Km
away from the focal intermediate-depth source in Vrancea, Bucharest experienced
significant damage to past earthquakes with magnitude Mw over 7.0 [2].

The last major earthquakes (November 10, 1940, Mw = 7.7; March 4, 1977, Mw
= 7.4; August 30, 1986, Mw = 7.1; May 30, 1990, Mw = 6.9, May 31, 1990, Mw =
6.4, October 27, 2004, Mw = 6) (see their locations in Fig. 8.1) claimed in total more
than 1,700 lives. The earthquake on March 4, 1977 (Mw = 7.4) especially was the
most damaging seismic shock in recent history.

In Romania, a high number of human casualties were recorded: 1,570 deaths
and over 11,300 injured, and most of them: 1,424 deaths and around 7,598 injured
people were in Bucharest. The total number of the buildings that were destroyed and
seriously damage was 33,000 and 1,82,000 with lesser damage. The total cost of
damage was over 2 billion US dollars [3].

8.2 Methods

For the buildings and population damage assessment, we used SELENA Software
(SEimic Loss EstimatioN using a logic tree Approach, ©NORSAR). SELENA is a
tool based on the methodology of HAZUS (©FEMA) [4], that adapted it to the
European conditions (new GMPE’s), added new analytical methods (MADRS,
I-DCM) [5] and replaced the ArcGis dependencies with open-source processing
environments or Matlab.

SELENA computes the probability of damage in each one of the four damage
states (slight, moderate, extensive and complete) for the given building types. This
probability is subsequently used with the inventory data to express the results in
terms of damaged area or number of damaged buildings [5].

The methodology used in this study relies on the Improved Displacement
Coefficient analytical Method (I-DCM), which is also currently used within the Near
Real-Time System for Estimating the Seismic Damage of Romania [6].
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Fig. 8.1 Map showing the
epicenters of recent major
earthquakes in the Vrancea
area and location of
Bucharest

I-DCM is based on the idea that any building (defined as a single degree of freedom
system—SDOF) is structurally damaged by the spectral displacement (and not by
the spectral acceleration itself).

For each building, the inter-story drift is a function of the applied lateral force
that can be analytically determined and transformed into building capacity curves,
based on yield or ultimate points [7].

Differently from other capacity-spectrum methods (like CSM or MADRS),
I-DCM modifies the displacement demand of the equivalent SDOF by multiply-
ing it by a series of coefficients in order to generate an estimate of the maximum
displacement demand of the nonlinear oscillator, as shown in Fig. 8.2 [5].

In order to express the probability distributions of the damage, fragility functions
(curves) are used. Usually, the damage is characterized by specific damage states,
like none, slight, moderate, extensive and complete (as in FEMA [4]). For each build-
ing typology, a specific damage probability is obtained by plotting on the fragility
functions the spectral displacement coordinates of the target displacement point (δt).
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Fig. 8.2 Schematic
illustration of I-DCM
process which is used to
compute the target
displacement demand of a
nonlinear oscillator for a
given capacity curve and
response spectrum (from
Molina et al. [5])

The social losses are computed afterwards, using an empirical formula (8.1) based
on the number of buildings in different damage states and the casualty rates for each
building type and damage level (formula 2). This casualty rates are generally derived
from past events.

Kij = Population per building * Number of damaged buildings in damage state j

* Casualty Rate for severity level i and damage state j. (8.1)

8.3 Input Data

For the estimation of loss, two categories of input data are necessary: hazard data
and building vulnerability data.

For defining a proper input for the risk analysis we used real data fromAugust 30,
1986, Mw = 7.1 and May 30, 1990(1), Mw = 6.9 earthquakes (see Fig. 8.3). The
values recorded at the seismic stations inside and near Bucharest were interpolated
using the Inverse Interpolation Method, and a mean for each sector was calculated.
The resulted values were used in the analysis. For the microzonation map there was
no need for interpolation.

In order to include in the risk analysis a simulationwith detailed hazard parameters
calculated for Bucharest, we use a recent microzonation map of Marmureanu et al.
[8], for the maximum predicted Vrancea earthquake (Mw7.8). This map (showed
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Fig. 8.3 Interpolation map used by SELENA in the calculation for geounit values, based on real
recordings from the 1986 (left) and 1990(1) earthquakes (right)

Fig. 8.4 Microzonation map of Bucharest for the maximum possible earthquake produced in
Vrancea zone (Mw7.8) [8]

in Fig. 8.4) provides PGA values calculated at different boreholes, based on non-
linear seismic response evaluation to a synthetic signal from a point source with a
mechanism similar to the one of the 1940 earthquake. For this earthquake, we used
the Eurocode8—type 2 design spectrum method to calculate the spectral response
acceleration of this earthquake.

The characteristics of the building database compiled in the DACEA Project
(“Danube Cross-Border system for Earthquakes Alert”) [9] were used, such as
capacity and fragility curves for 48 main building typologies in Romania (see
Table8.1). The building and population database for Bucharest was at the level of



110 E.F. Manea et al.

Ta
bl

e
8.

1
St
ru
ct
ur
e
of

th
e
bu
ild

in
gs

da
ta
ba
se

an
d
as
so
ci
at
ed

vu
ln
er
ab
ili
ty

cu
rv
es

(4
8
in

to
ta
l)

C
on

st
ru
ct
io
n
m
at
ar
ia
l

M
at
er
ia
lc
od

e
H
ei
gh

tc
la
ss

C
on
st
ru
ct
io
n

co
de

V
ul
ne
ra
bi
lit
y

cu
rv
es

M
A
W

A
do
be

M
2

L
PC

,L
C
,

M
C
,H

C
U
R
M
-L
-P
C
a

U
nr
ei
nf
or
ce
d
m
as
on
ry

be
ar
in
g
w
al
ls
w
ith

fle
xi
bl
e

flo
or
s

M
3_
l

L
PC

,L
C
,

M
C

U
R
M
-L
-P
C
a

U
nr
ei
nf
or
ce
d
m
as
on
ry

be
ar
in
g
w
al
ls
w
ith

fle
xi
bl
e

flo
or
s

M
3_
l

M
,H

PC
,L

C
,

M
C

U
R
M
-M

-P
C
a

U
nr
ei
nf
or
ce
d
m
as
on
ry

be
ar
in
g
w
al
ls
w
ith

ri
gi
d

flo
or
s

M
3_
2

L
PC

,L
C
,

M
C

U
R
M
-L
-L
C
a

U
nr
ei
nf
or
ce
d
m
as
on
ry

be
ar
in
g
w
al
ls
w
ith

ri
gi
d

flo
or
s

M
3_
2

M
,H

PC
,L

C
,

M
C

U
R
M
-M

-L
C
a

R
ei
nf
or
ce
d
or

co
nfi

ne
d

m
as
on

ry
be
ar
in
g
w
al
ls
or

re
tr
ofi

tte
d
(o
ve
ra
ll

st
re
ng
th
en
ed
)
m
as
on
ry

bu
ild

in
gs

M
4

L
,M

,H
H
C

M
7-
2,

M
7-
4,

M
7-
6b

W
oo
d
st
ru
ct
ur
es

W
L

PC
,L

C
,

M
C
,H

C
W
1-
PC

(L
C
,M

C
,

H
C
)a

(c
on
tin

ue
d)



8 Steps in Seismic Risk Mapping for Romania Capital City 111

Ta
bl

e
8.

1
(c
on
tin

ue
d)

C
on

st
ru
ct
io
n
m
at
ar
ia
l

M
at
er
ia
lc
od

e
H
ei
gh

tc
la
ss

C
on

st
ru
ct
io
n

co
de

V
ul
ne
ra
bi
lit
y

cu
rv
es

R
C

C
on

cr
et
e
sh
ea
r
w
al
ls

R
C
2

L
,M

,H
PC

,L
C
,

M
C
,H

C
C
2-
L
(M

,H
)-

PC
(L
C
,M

C
,H
C
)

fr
ag
ili
ty

cu
rv
ea

+
m
od
ifi
ed

ca
pa
ci
ty

cu
rv
e

(b
y
U
T
C
B
)

C
on

cr
et
e
fr
am

e
w
ith

un
re
in
fo
rc
ed

m
as
on
ry

in
fil
l

w
al
ls

R
C
3

L
,M

,H
PC

,L
C
,

M
C
,H

C
C
3-
L
(M

,H
)-

PC
(L
C
,M

C
,H
C
)

fr
ag
ili
ty

cu
rv
ea

+
m
od
ifi
ed

ca
pa
ci
ty

cu
rv
e

(b
y
U
T
C
B
)

Pr
ec
as
tc
on

cr
et
e
w
al
ls

R
C
5

L
,M

,H
PC

,L
C
,

M
C
,H

C
PC

2-
L
(M

,H
)-

PC
(L
C
,M

C
,H
C
)a

H
ei
gh
tc
la
ss

ab
br
ev
ia
tio

ns
L
=
L
ow

—
1–
2
st
or
ie
s

M
=
M
ed
iu
m
—
3–
5

st
or
ie
s

H
=
H
ig
h—

6+
st
or
ie
s

co
de

ab
br
ev
ia
tio

ns
PC

=
Pr
eC

od
e—

ol
de
r
th
an

19
63

L
C
=
L
ow

C
od

e—
19
63
–1
97
7

M
C
=
M
od
er
at
e

C
od
e—

19
78
–1
99
1

H
C
=
H
ig
h

C
od
e—

19
91
–1
99
9

a
H
A
Z
U
S-
M
H
FE

M
A
(2
00
3)

[4
]

b
C
at
ta
ri
et
al
.(
20

04
)
[1
0]



112 E.F. Manea et al.

Fig. 8.5 The percentage of buildings and residents as a function of the building material typologies

Fig. 8.6 Number of buildings for each sector, depending on major material type and age (seismic
code)

1999, however newer buildings are not expected to be significantly damaged and not
many old buildings were rehabilitated or demolished, so the database is relevant. The
resolution of the available data was the sector level (6 in total).

In Figs. 8.5 and 8.6 are represented the characteristics of the database used in this
study, according to the classification in Table8.1. It can be seen thatmore than 50%of
the building stock is represented by masonry buildings and a high number of people
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live in flats made from reinforced concrete. Also, a large amount of building (mostly
from masonry) are older than 1963 and considered before seismic code regulation,
therefore the main risk is expected to come from these buildings.

8.4 Results

The results obtained after the analysis are presented using two indicators:

• estimated number of buildings with complete damage, expressed as percentage
from the total number of buildings (Fig. 8.7)

• estimated number of severe injuries, which represent a sum of severity grades
3—severe injuries and 4—deaths (Fig. 8.8).

The error bars show the 16 and 84% percentiles.
As expected, there is a major difference between the simulations with real data

and the simulation of the maximum possible. The 1986 and 1990(1) earthquakes did
not produce in reality major damage; the last one producing 2 deaths in Bucharest
in Colentina area (sector 2) [11]. The estimates for the maximum possible scenario
show important damage not to be desired in reality, but considering however the
focal distance to Vrancea Area and other situations worldwide (a good comparison
is with the Mexico City earthquake [12]), the range seems to be credible.

Fig. 8.7 Probability of completely damaged buildings for all 6 Bucharest sectors, for 1986 and
1990(1) and maximum possible earthquakes
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Fig. 8.8 Estimated number of cumulated human casualties and severe injuries

8.5 Conclusions

In this study the objective was to make an improvement in the estimation of loss
scenarios and seismic risk computations using different scenarios based on real data
and microzonation map for the city of Bucharest, capital of Romania. As a basis
for these computations we used the available information on seismic hazard and
vulnerability assessment of buildings for the city of Bucharest.

The loss estimates are greater than reality but still they are not very far considering
the nature of the seismic risk. A very influent factor is the vulnerability function of
the masonry buildings. There is a normal correlation between sectors with most
damaged buildings and number of severe injuries—with sectors 2 and 5 being the
most risky.

The impact comes mostly from the vulnerability of the building stock, rather than
the site effects, in the analysis. Further investigations are needed to be considered,
also taking into account the hysteresis aspects of the buildings.
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3. S. Balan et al., Cutremurul de Pamant din Romania de la 4 Martie, 1977. Ed. Academiei,
Bucharest, Romania (1982)

4. Federal Emergency Management Agency (FEMA), HAZUS-MH - Multi-hazard Loss Esti-
mation Methodology, Earthquake Model (Advanced Engineering Building Module, FEMA,
Washington DC, 2004)

5. S. Molina, D.H. Lang, C.D. Lindholm, F. Lingvall, User Manual for the Earthquake Loss
Estimation Tool: SELENA (2010)

6. D. Toma-Danila, C.O. Cioflan, S.F. Balan, E.F. Manea Characteristics and results of the
near real-time system for estimating the seismic damage of Romania. Proceedings of the 5th
national conference of earthquake engineering and the 1st national conference on earthquake
engineering and seismology, Bucharest, Romania, 19–20 June 2014, pp 411–418

7. E. Erduran, D. Toma-Danila, A. Aldea et al., in Real Time Earthquake Damage Assessment
in Romanian-Bulgarian Border, 15 World Conference on Earthquake Engineering, Lisbon,
Portugal

8. G.Marmureanu, C.O. Cioflan, A.Marmureanu, Researches on Local Seismic Hazard (Micro-
zonation) for Metropolitan Bucharest Area. (Tehnopress, Iasi, 2010) Accredited by ANCS,
Code 89, ISBN: 978-973-702-809-9, p. 470

9. DACEA project (Danube Cross-border System for Earthquake Alert): http://quakeinfo.eu/en/
10. S. Cattari, E. Curti, S. Giovinazzi, S. Lagomarsino, S. Parodi, A. Penna, Un modello mec-

canico per l’analisi di vulnerabilita del costruitoin muratura a scala urbana, 11thConference
“L’ingegneria Sismica in Italia”. Genoa, Italy (2004)

11. GEM consequence database: http://gemecd.org/event/171
12. http://seismo.berkeley.edu/blog/seismoblog.php/2008/09/19/title

http://quakeinfo.eu/en/
http://gemecd.org/event/171
http://seismo.berkeley.edu/blog/seismoblog.php/2008/09/19/title


Chapter 9
Romanian Seismic Network Since 1980
to the Present

Mihaela Popa, Mircea Radulian, Daniela Ghica, Cristian Neagoe
and Eduard Nastase

Abstract National Institute for Earth Physics is responsible for seismic monitoring
of Romania. For this purpose, a dense seismic network is now operating covering
almost the entire surface of the country. At present, the Real Time Seismic Net-
work consists of 96 sites with seismic digital equipment, of which 3 in Republic
of Moldova, and two seismic arrays: Bucovina (BURAR) and Plostina (PLOR).
BURAR array is a high performance seismic monitoring system consisting of 3
broad-band and 9 short period stations distributed over a 5km2 area. Plostina seismo-
acoustic array has been recently deployed in the Vrancea epicentral area for monitor-
ing local microseismic activity and infrasound sources. All the stations are sending
data in real time to the National Data Center (NDC) in Magurele. A strong motion
network of 120 stations, equipped with accelerometer (EpiSensor—2g full scale)
sensors was installed to record strong ground motion. 101 stations are sending data
in real-time and 19 are offline stations. Most of the accelerometers are co-located
with the seismic sensors. 23 of the accelerometers are operating in Bucharest city.
Recently, 32 seismic stations were installed along the Danube River in the frame-
work of the DACEA cross-border project. The goal of this network is to set an
Early Warning System for the earthquakes in Romania and Bulgaria which affect
the targeted area. To measure the ground motion deformation, a GPS network was
developed mainly in the last years. NDC is exchanging data with other national and
international seismological centers.
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9.1 Introduction

The National Institute for Earth Physics (NIEP) operates a real-time seismic network
designated to monitor seismic activity occurred across Romania’s territory. The
seismicity in Romania is dominated by the intermediate-depth earthquakes of the
Vrancea region, with hypocentral depths between 50 and 200km (Fig. 9.1). The
crustal earthquakes occur more scattered and infrequent, but clustered activities can
be defined in several epicentral areas such as: Vrancea, Fagaras-Campulung, Sinaia,
Oltenia, Crisana and Maramures, Banat, Moldova, South and North Dobrogea [5].

The first network installed between 1980 and 1982, after the major earthquake of
March 4, 1977 (Mw 7.4), was primarily designated to survey the Vrancea seismic
region, located at the Carpathian arc bend. Despite the concentration of the focal
volume, the rate of destroying events is high (3–4 events per century), affecting
large areas in Europe. The initial network consisted of 18 short-period stations (S13
seismometers, one second natural period), 14 of them located in the outer part of
Carpathians and 4 in the inner part of the Carpathians. Data were telemetered to
NIEP, in Magurele.

In parallel with the telemetered network, NIEP operated, at that time, a free-
field strong motion network consisting of 21 SMA-1 accelerometers designed to
record strong and moderate Vrancea earthquakes. An important step forward was
the development in 1995–1997 of the strong ground motion network by installing

Fig. 9.1 Geographical distribution of the seismogenic zones (polygons) and Romania’s seismicity.
VRVrancea,EV East Vrancea,BDBarlad Depression,PD Predobrogean Depression, IM Intramoe-
sian Fault, SH Shabla, FC Fagaras-Campulung, DA Danubian Zone, BA Banat, CM Crisana-
Maramures, TD Transylvanian Depression
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36 K2 seismic stations, in cooperation with the University of Karlsruhe, Germany,
in the framework of the Project “Strong Earthquakes: A Challenge for Geosciences
and Civil Engineering” [1]. The new digital network was centered on the Vrancea
seismic zone, covering an area with a diameter of up to 500 km.

9.2 Overview of the Present Status of the Romania’s
Seismic Network

The Romania’s Seismic Network (RSN) consists of stand-alone stations and 8 obser-
vatories distributed all over the country (Fig. 9.2). At the beginning, the observatory
had seismic equipment with analog, mechanical and photo recorders. Starting with
2002, the seismic network modernization was based on the installation of new and
advanced equipment like acceleration (EpiSensor) and velocity sensors (broad-band:
CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T, STS2 and short-period
instruments: SH-1, S13, Mark l4c, Ranger, GS21, L22_vel).

Since 1994, a high performance seismic system (Quanterra data logger, GPS
timing broadband velocity sensors, three components andmore than 7 days buffer for
the data storage) has been installed at theMunteleRosu (MLR) observatory (Fig. 9.3),
in the framework of the cooperation with the GEOFON Network (Germany). MLR
station was included in the auxiliary seismic network of the International Monitoring
System (IMS) coordinated by CTBTO (Comprehensive Nuclear-Test-Ban Treaty

Fig. 9.2 Seismological observatories in Romania
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Fig. 9.3 Muntele Rosu (MLR) observatory

Organization). In order to ensure Romania’s technical participation to the CTBTO
activities and to maintain the station at the operational standards required by the
Treaty, since 1999, an important upgrade has been carried out both at the seismic
station MLR and at the NDC, involving technical cooperation with the Government
of Japan and technical assistance from the CTBT Organization [3]. The data were
continuously recorded and transmitted in real-time to the NDC inMagurele and IDC
in Vienna.

Vrincioaia Observatory (Fig. 9.4), located in the North-Eastern part of Vrancea
epicentral area, was built in 1956 for seismic monitoring and for measuring various
precursor factors in correlation with the seismic activity. The personal from the
Observatory has also in charge the maintenance of 10 seismic stations from the
North-Eastern part of the country. Data from all this stations are transmitted in real-
time to the NDC in Magurele.

Plostina seismo-acoustic array is located inVrancea region, close to theVrincioaia
Observatory (Fig. 9.5). The array deployment started in 2007, when four seismic
elements (PLOR1, PLOR2, PLOR3 and PLOR4) were installed. In 2009, two more
seismic sites (PLOR5 and PLOR6) were added, and the infrasound array deployment
was initiated, by placing of three infrasonic instruments (IPH4, IPH5 and IPH6), col-
located with the corresponding seismic locations. In 2010, another seismo-acoustic
element (PLOR7 and IPH7)was added and during 2012, sites 2 and 3where equipped
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Fig. 9.4 Vrincioaia (VRI) observatory and the nearby stations under administration

with infrasound sensors. Plostina seismo-acoustic array is currently distributed over
an area of 3.5 km2, inter-element distance varies between 450 and 2,450m.

Presently, at Plostina, NIEP operates an integrated system (Fig. 9.5) which
includes advanced technologies such as: seismic and infrasound arrays, strongmotion
sensors, magnetic field and electric fieldmonitoring, soil temperaturemeasuring, and
a weather station. The main applications of this system are: monitoring of the local
microseismic activity, acoustic measurement (infrasound monitoring of explosions,
mine and quarry blasts, volcanic eruptions, earthquakes, aircraft etc.), observation
of the magnetic field variation in correlation with solar activity, observation of the
variation of telluric currents.

Since July, 2002, a new seismic monitoring system, Bucovina Seismic Array
(BURAR), has been established in the Northern part of the country (Fig. 9.6), in
a joint effort of the Air Force Technical Applications Center (AFTAC), USA and
NIEP. Data recorded by BURAR array are continuously transmitted in real time to
the National Data Center of USA in Florida and to NDC, in Magurele. BURAR
seismic array consists of 10 seismic stations located in boreholes and distributed
over an area of 5 km2. Nine stations are equipped with short-period vertical sensors
(GS-21) and one station is equipped with broad-band three-component sensor (KS
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Fig. 9.5 Plostina observatory and elements of integrated system operating in the area (PLOR*—
seismic array, IPH*—infrasonic array)

Fig. 9.6 Bucovina observatory (BURAR) and array elements distribution
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54000) [2]. In 2007 two new elements equipped with 3-C broad-band sensors were
installed aiming to obtain the most convenient array combination of 3-C elements
for the recording and identification of the secondary seismic phases, to optimize the
array response, achieving a superior sensitivity and resolution of BURAR in S-type
seismic signals identification.

In 2008 a new modern Seismological Observatory EFOR was inaugurated at
Eforie, in the Southern part of Dobrogea as back-up for the data acquisition and
processing in Magurele and as monitoring center for Black Sea tsunamis. The obser-
vatory employers assure also the maintenance of other 10 seismic stations installed
in the region. These stations are equipped with seismometers and accelerometers
and the recorded data are transmitted in real time to NDC. Equipment to measure
electromagnetic field and UV radiation is operating as well (Fig. 9.7).

Amajor strategic objective of NIEP is the integration and homogenization of seis-
mic monitoring at the cross-border areas. To this aim, the cooperation with neighbor-
ing countries has been continuously renewed. Thus, in cooperation with the Institute
of Geophysics and Seismology of Kishinev (Republic of Moldova), five seismic
stations 9.8 have been installed at Leova (LEOM), Giurgiulesti (GIUM), Milestii
Mici (MILM), Kisinev (KIS) and Soroca (SORM) between 2007 and 2010. Data
recorded by these stations are currently received in real time at NIEP data Center

Fig. 9.7 Dobrogea (EFOR) observatory and the nearby stations under administration
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Fig. 9.8 National seismic network configuration (including stations installed in Republic of
Moldova); (triangles short-period stations; stars broad-band stations)

using seedlink connections. In the framework of an ample cross-border project with
Bulgaria (DACEA project, quakeinfo.eu) 32 new seismic stations were installed in
the Danube area. 8 seismic stations on Romania territory and 8 in Bulgaria, equipped
with Basalt digitizer, accelerometer EpiSensor and BB seismometer KS2000, were
installed along the Danube River. Also, 7 accelerometers (EpiSensor) and warning
and visual monitoring equipment were installed at the Emergency Situations Inspec-
torates in Romania and 9 in Bulgaria (Fig. 9.9). The general objective of Danube
Cross-border system for Earthquakes Alert (DACEA) Project was to develop an
Early Warning System in order to prevent the natural disasters caused by earth-
quakes in the cross-border area (Romania—Vrancea and Bulgaria—Shabla, Dulovo
and Gorna Orjahovitza), taking into account the nuclear power plants (Kozloduy,
Cernavoda) and the chemical plants located along the Danube.

TheNIEP strongmotion network (Fig. 9.10) consists of 120 strongmotion stations
using accelerometers (EpiSensor) with different digitizers (Q330, Q4120, K2 and
DM24). Most of the accelerometers are co-located with the seismic sensors.

NIEP is operating also a GPS network (Fig. 9.11) for monitoring of crustal move-
ments in Romania in correlation with tectonic processes in South-East Europe
(Africa-Europe plate interaction), observation of surface-to-depth relationship in
order to model the process of earthquake generation in the mantle in the area of the
Eastern Carpathians bend zone (Vrancea region) and improving the accuracy of the
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Fig. 9.9 DACEA project area (marked with yellow) and seismic station network (blue points)

Fig. 9.10 Strong motion network in 2013



126 M. Popa et al.

Fig. 9.11 GPS permanent network

coordinates of the national seismic network stations. The first station was installed
in 2001 and now the network consists of 20 stations. The network was installed in
cooperation with the Faculty of Geology and Geophysics—University of Bucharest
(FGG), Delft University of Technology, the University of Utrecht and the Nether-
lands Research Center for Integrated Solid Earth Sciences (ISES). Data acquisition
is made in real time, in RAWandRINEXDATA format using the Leica GNSS Spider
and Septentrio Rx Software. All of the data recorded are transmitted in real time to
the NIEP for automatic data processing, analysis and dissemination.

9.3 Data Management and Products

For the management of the real-time data, the Antelope data acquisition and process-
ing software is used and adjusted to handle the increasing amount of recorded seis-
mic data. Seedlink and Antelope program packages are used for the real-time data
acquisition, accurate computation of the locations and magnitudes for local, regional
and teleseismic events and data exchange. Preliminary and revised determinations
of hypocenters are reported in automatic and reviewed seismological bulletins. For
local events with magnitude greater than 3.5, moment tensor inversion is produced
as well. The NIEP earthquake catalogue (ROMPLUS [4]) is monthly updated based
on revised bulletins.
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The Antelope data acquisition and processing software is running on two
workstations for automatic, real-timeprocessing andpost processing. In case of earth-
quakes with magnitude greater than 3.0 occurred on Romania territory, a Shakemap
is produced automatically by Antelope. For local events with magnitude greater than
4.0 the alerting system is sending e-mail and SMS messages to dedicated recipients.
All the information produced by Antelope (near real-time earthquake information,
Shakemaps, epicenter position, seismicity map in case of local event) is available
on the NIEP website (www.infp.ro). Also, in case of felt earthquake people can fill
out the “Did you feel it?” form from the website. The collected information is sent
to the local authorities and used for intensity map (Fig. 9.12).

In parallel, SeisComP3 [6, 7] software is running for data acquisition, data quality
control, real-time data exchange and processing, event alerts, waveform archiving,
automatic data detection and location and network status monitoring.

The RSN ensures the global exchange of data and information with international
seismological organizations and national data centers: ORFEUS, IRIS, National
Earthquake Information Center, USA, European Mediterranean Seismological Cen-
tre, International Data Center of CTBTO, International Seismological Centre, UK;
NDCs from: Hungary, Serbia, Bulgaria, Republic of Moldova, Ukraine, Poland
(Fig. 9.13).

Fig. 9.12 Real-time data analysis and the products

www.infp.ro
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Fig. 9.13 Real-time data and products exchange

9.4 Statistics Regarding the Network Development
and Increasing of Detection Capacity

Naturally, we expect an increase of the network capacity to detect and locate events
in Romania as a consequence of the rather continuous improvement of the network
on many aspects (number and quality of stations, operation system and coverage).
The evolution of the earthquakes rate located yearly in Romania (Fig. 9.14) shows a
significant increase starting with 2005. The main factor responsible for this variation
was not this time related to an increase in station number and quality, but to the
implementation of the Antelope system. On the contrary, the tendency of increasing
rate after 2005 is explained essentially by the increase of the number of stations. The
final jump of events number in 2013 is due to amassive earthquake swarmoccurred in
2013 in the eastern part of the country (Galati region). The most spectacular increase
rate is observed for smaller events and for shallow events (including quarry blasts)
(Figs. 9.15 and 9.16). For the Vrancea deep events, the increase rate is significantly
lower (roughly by a factor of 2 after 2005 versus before 2005) and is explainedmainly
by adopting Antelope data acquisition and processing software, which is presently
used for the Romanian Seismic Network operated by NIEP. By using Antelope sys-
tem, signals visualization, routine data analysis (bandpassfiltering, phase association,
location processing), or comparative inspection of the waveforms were significantly
enhanced.
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Fig. 9.14 Yearly number of events located by NIEP (up-dated Romplus catalogue). Insertion from
left-up represent the number of real-time stations for each year

Fig. 9.15 Number of events versus depth intervals for each year between 2000 and 2013

The yearly distribution of the crustal and sub-crustal events is given in Fig. 9.15.
Since for the most of the earthquakes located in the 2000–2013 time interval, the
computedmagnitude ranges between 2.1 and 2.5, we detailed in Fig. 9.16 the increase
of events number in time.
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Fig. 9.16 Number of events with Mw magnitude between 2.1 and 2.5 for 2000–2013 time period

9.5 Conclusions

We present the significant development of Romanian Seismic Network during the
last three decades and its impact on seismic monitoring of national territory and
adjacent areas. Almost 100 seismic sites are presently in operation, contributing
with real time data to fulfillment of NIEPmission: research tasks, earthquake survey,
management of advanced seismic data collection, and Romania’s participation in
support of CTBT.

8 observatories, 88 stand-alone seismic sensors (short-period and broad-band) and
120 accelerometers, distributed all over the country, are components of theRomania’s
Seismic Network. In addition, three stations were installed in Republic of Moldova.
Recently, a new Early Warning System for Danube cross-border region, consisting
of 32 sites, was set-up in order to mitigate the destructive effects of large earthquakes
occurred in Romania and Bulgaria.

Moreover,NIEPoperates amodern integrated systemdeployed at Plostina, includ-
ing advanced technologies such as: seismic and infrasound arrays, strong motion
sensors, magnetic field and electric field monitoring, soil temperature measuring,
and a weather station. As well, a GPS network consisting of 20 stations is in opera-
tion, mostly for monitoring of crustal movements in Romania and for modeling the
process of earthquake generation in Vrancea region.

For data acquisition and exchange, signal processing and analysis, two program
packages (Seedlink and Antelope) are used at NIEP to produce automatic and
reviewed seismological bulletins, instrumental intensity maps (Shakemaps), rapid
alerts, seismicity maps, email notifications. Supplementary products like updated
earthquake catalogue, moment tensor inversion results, website information, and
community internet intensity maps are generated as well.
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During last decade, a significant enhancement could be observed in earthquake
monitoring statistics. This is a consequence of the continuous improvement of the
Romanian Seismic Network in terms of: number and quality of stations, better ter-
ritory coverage, implementation of a new data acquisition and processing software.
The number of detected and located events greatly increased, mainly after 2005,
while magnitude threshold of detection decreased. The most remarkable increase
rate is observed for smaller events (magnitude between 2.1 and 2.5) and for shallow
events (including quarry blasts).

The continuous process of Romanian Seismic Network development represents a
great opportunity for establishing of national and international cooperation in seis-
mology and seismic engineering fields: seismic source and seismotectonics, site
effects and microzonation, crustal structure and dynamics, assessment and mitiga-
tion of seismic risk.
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Chapter 10
Seismic Monitoring and Data Processing
in Seismological Observatory
in Skopje—Republic of Macedonia—Basis
for a Complex Geophysical Monitoring

D. Černih and V. Čejkovska

Abstract Seismological Observatory in Skopje with telemetric network of digital
seismological stations systematically monitors the seismic activity in the territory
of Republic of Macedonia and the bordering areas and also records the regional
and teleseismic earthquakes The seismicity in Republic of Macedonia is studied
on the base of instrumental seismological and macroseismic data available at the
Seismological Observatory of the Faculty of Natural Sciences and Mathematics in
Skopje. The data cover a period of about 1500years. The earthquakes occurred before
1957, which is the year of foundation of the observatory, are included with locations
obtained mainly from the maps of isoseismals, while the earthquakes occurred after
1957 are included with instrumental locations. Independent tectonic data are also
used in the analysis. Seismic activity in the territory of the Republic of Macedonia is
due to the permanent different intensities of movements of the higher order tectonic
units within the seismic zones. It is concluded that the weak earthquakes are very
frequent, that the light to moderate earthquakes are relatively rare, while the strong
earthquakes are rare. The predominant hypocentral depth is within the Earth crust.

10.1 Introduction

The Seismological Observatory at the Faculty of Natural Sciences and Mathematics
in Skopje is authorized and obliged to perform the Seismological service in Repub-
lic of Macedonia. The first independent seismological monitoring in Republic of
Macedonia started on 1 July 1957, with foundation of the Seismological Station of
the University in Skopje (SKO). This is the only institution in Republic of Macedo-
nia authorized and obliged to perform seismological service. The Law for Participa-
tion of the Republic of Macedonia in Financing of Seismological and Engineering-
Seismological Activities regulates the service.
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Ss. Cyril and Methodius University, Skopje, Macedonia
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It is organized into five sections: microseismics, macroseismics, seismological
instrumentation and computer science laboratory. By using the network of analog
and digital seismological stations, thisObservatory performs permanent instrumental
and macroseismic observations of the seismic activity in the territory of Republic of
Macedonia and the bordering areas (40.7–42.4 N, 20.3–23.2 E) and also records the
regional and teleseismic earthquakes.

The real-time data transmission from the field stations to the Observatory is
accomplished via internet and real-time acquisition and data processing are per-
formed.

The instrumental and macroseismic data are compiled, stored, analyzed and pub-
lished in seismological bulletins and catalogues for international exchange of seis-
mological data and for scientific, teaching and civil engineering purposes. In cases of
earthquakes felt in the territory of Republic of Macedonia, the Observatory compiles
and processes the data on the macroseismic effect of earthquakes.

The Observatory also performs scientific research, education and applications in
the field of seismology and geophysics.

10.1.1 Stations and Equipment

Twomechanical seismographsMAINKA (EW and NS components, pendulummass
of 450kg) (Fig. 10.2) and a contact timing device WIECHERT presented the first
equipment. In February 1963, the mechanical seismograph CONRADwas mounted.
After the devastating Skopje earthquake of 26 July 1963, electromagnetic seismome-
ters VEGIK (short-period) and SKD (middle-period), with galvanometric registra-
tion, were installed.

Electromagnetic seismometers LEHNER-GRIFFITH, WILLMORE (short-
period), PRESS-EWING (long-period) and STRONG-MOTION RECORDER
AR-240, with galvanometric registration, were put into operation in March 1966
(Fig. 10.2).

In the 1960-ties, the Seismological Station in Skopje founded two new seismolog-
ical stations, in Valandovo (VAY, 1966) and Ohrid (OHR, 1967). These stations were
equipped with short-period electromagnetic seismometers LEHNER-GRIFFITH,
with galvanometric registration. In 1966, Seismological Station in Skopje became
Seismological Observatory within the University “Ss. Cyril and Methodius” in
Skopje. In 1976, the Seismological Observatory in Skopje became Section of the
Faculty of Physics in Skopje of the same university, while in 1984 it became
Institute within the Faculty of Natural Sciences and Mathematics of the same uni-
versity (Figs. 10.1 and 10.2). Following the new worldwide trends of development of
instrumental seismology, the observatory started in 1990 to build a telemetric network
of seismological stations with SS-1 (short-period) and WR-1 (wide-range period)
seismometers (Kinemetrics, Inc.) with digital recorders SSR1, Wave 24 and Quan-
tera Q330 (Fig. 10.3). The present telemetric seismological network maintained by
the observatory is consisted of six permanent stations (Skopje/SKO,Valandovo/VAY,
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Fig. 10.1 The present building of the seismological observatory in Skopje

Fig. 10.2 The seismological observatory in Skopje: (left) the NS component of the mechanical
seismograph MAINKA; (right) the electromagnetic seismometers LEHNER-GRIFFITH, PRESS-
EWING and SKD (up), which use galvanometric registration (down)

Ohrid/OHR, Bitola/BIA, Kruševo/KRUS and Štip/STIP) and five temporary stations
that monitor the induced seismicity by the water accumulations at dams of new-build
power stations. Nowadays, the observatory is the only institution that is authorized
and obliged to perform the seismological service in the Republic of Macedonia.
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Fig. 10.3 Modern equipment in the seismological observatory in Skopje. (Up and left) electro-
magnetic seismometers SS-1 (short-period) and WR-1 (wide-range period); (up and right) digital
recorder SSR-1; (down and left) digital recorder Quantera–Q330HRS; (down and right) digital
recorder Wave-24

The observatory systematically instrumentally monitors the seismic activity in the
territory of Republic of Macedonia and the bordering areas, and also records the
regional and teleseismic earthquakes. In cases of felt earthquakes in the territory
of Republic of Macedonia, the observatory compiles and processes the data on the
macroseismic effect of earthquakes. The instrumental and macroseismic data are
compiled, stored, analyzed and published in seismological bulletins and catalogues
for scientific, teaching and civil engineering purposes. The exchange of the data
with regional and international seismological institutions via Internet is regularly
performed. The observatory is also engaged with scientific research, education and
applications in the field of seismology and geophysics.

Present, seismic network is consisted of 11 stations (6 permanent seismic stations
and five located at dams). Permanent stations are connected to the Observatory in
Skopje and data are transferred to the observatory in real-time (Table10.1, Fig. 10.4).

The instrumental seismological data at the Seismological Observatory in Skopje
and at stations of its network have been always obtained by instrumentation which
had followed the world trends. Actual scientific methods and, lately, the most
sophisticated computer softwares have been used in analyses. With the latest



10 Seismic Monitoring and Data Processing in Seismological Observatory … 137

Ta
bl

e
10

.1
SO

R
M

(S
ei
sm

ol
og

ic
al
O
bs
er
va
to
ry

R
ep
ub

lic
of

M
ac
ed
on

ia
)
se
is
m
ic
st
at
io
ns

an
d
in
st
ru
m
en
ta
tio

n

C
od
e

L
at
itu

de
(o
N
)

L
on
gi
tu
de

(o
E
)

E
le
v.
(m

)
St
at
io
n
ty
pe

(1
)

Se
ns
or

ty
pe

(2
)

R
ec
.e
qu
ip
m
en
t(
3)

D
at
a
tr
an
sf
er

(4
)

SK
O

41
.9
72
1

21
.4
39
6

34
6

3C
W
B

W
R
-1

SS
R
-1

O
n
si
te

1C
SP

SS
-1

V
R
-1

pe
n
r

O
n
si
te

3C
SP

L
eg
hn
.-
G
ri
f.

D
ru
m

re
co
rd
er

O
n
si
te

3C
SP

V
E
G
IK

D
ru
m

re
co
rd
er

O
n
si
te

2C
M
P

M
A
IN

K
A

SM
re
co
rd
er

O
n
si
te

3C
SP

SK
D

D
ru
m

re
co
rd
er

O
n
si
te

3C
L
P

Pr
es
sE
w
in
g

D
ru
m

re
co
rd
er

O
n
si
te

1C
SP

C
on
ra
d

SM
re
co
rd
er

O
n
si
te

3C
W
B

W
R
-1

Q
33
0

Te
le
m
et
ri
c

O
H
R

41
.1
11
4

20
.5
98
9

73
9

3C
W
B

W
R
-1

W
A
V
E
-2
4

Te
le
m
et
ri
c

V
A
Y

41
.3
21
1

22
.5
70
1

16
8

3C
W
B

W
R
-1

W
A
V
E
-2
4

Te
le
m
et
ri
c

B
IA

41
.0
19
4

21
.3
23
9

72
0

3C
SP

SS
-1

W
A
V
E
-2
4

Te
le
m
et
ri
c

ST
IP

41
.7
75
4

22
.4
38
2

1,
32
0

3C
SP

SS
-1

W
A
V
E
-2
4

Te
le
m
et
ri
c

K
R
U
S

41
.3
68
9

21
.2
48
9

1,
01
5

3C
SP

SS
-1

W
A
V
E
-2
4

Te
le
m
et
ri
c

K
PJ

42
.2
09
2

22
.3
61
7

70
0

3C
SP

SS
-1

SS
R
-1

D
ia
lu

p

K
O
Z
J

41
.8
77
9

21
.1
95
1

53
3

3C
SP

C
M
G
-4
0T

-1
ID

S-
24

D
ia
lu

p

B
E
L
I

41
.6
82
7

21
.2
74
3

52
3

3C
SP

C
M
G
-4
0T

-1
ID

S-
24

D
ia
lu

p

SA
M
O

41
.6
92
8

21
.1
39
2

52
3

3C
SP

C
M
G
-4
0T

-1
ID

S-
24

D
ia
lu

p

(c
on
tin

ue
d)
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Fig. 10.4 Seismological stations on the territory of the Republic of Macedonia

Fig. 10.5 Real-time data exchange (left) and earthquake analysis by the software Seismic Handler
(right)

instrumentation, realtime telemetric network data exchange and used softwares,
earthquakes with local magnitudes down to zero can be recorded and analyzed
(Fig. 10.5). In the Catalogue files, all earthquakes are relocated and elaborated. The
earthquake focal parameters and magnitude estimations, as well as the observational
data are included into a disc storage system.

There are macroseismic data for all felt events collected in seismological
catalogue.The epicentral intensity (I0) is printed for the events forwhichmapsof isos-
esmals are compiled. Intensity I0 is expressed in degrees of European-macroseismic
scale.
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10.2 Seismicity in the Period 1901–2012

Distribution of epicentrers of the earthquakes in the territory of the Republic of
Macedonia and neighboring regions for the period 1901–2012 is presented in
Fig. 10.6, together with the neotectonic faults, the borders of the epicentral areas
and the stations of the present seismological telemetric network [1–5].

Nearly all the parts of the territory of the Republic ofMacedonia were seismically
active in the period 1901–2012 (17,005 located earthquakes), as it can be seen from
Fig. 10.6. Weak seismic activity was present in the Zletovo epicentral area (a part
of the East Macedonia seismic zone), in the Kumanovo epicentral area (a part f the
Vardar seismic zone), as well as in the area of the Pelagonia Anticlinorium (which
is a part of the West Macedonia seismic zone) [6, 7]. As known [8], the reason for
weak seismic activity of this anticlinorium is that it has been being a consolidated
block with only oscillatory movement since the Precambrian times (starting 800 to
1,000 millions years ago), and still keeps the structure consisted of relicts of the
Earth’s Precambrian crust. This structure differs very much in comparison with the
neighboring areas.

Fig. 10.6 Epicentral map of the earthquakes in te territory of the Republic of Macedonia and
neighbouring regions for the period 1901–2012. Beside the neotectonic faults and the borders of
the epicentral areas, the stations of the present seismological telemetric network are shown too, by
triangles
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From the bilateral cooperation between Seismological Observatory, Faculty of
Natural Sciences and Mathematics, Sts. Cyril and Methodius University, Skopje,
Macedonia and INRNE, Bulgarian Academy of Sciences and by EU FP7 IRSES
the BlackSeaHazNet Project (Balkan, Black Sea, Caucasus, Caspian NETWORK
for Complex Research of Earthquake’s Forecasting Possibilities, Seismicity and
Climate Change Correlationsis). The characteristics of the regional geomagnetic
field were monitored. It was multilateral cooperation with 9 countries. More geo-
magnetic observatories like SKO, PAG, GCK, SUR, LVV, KIV, DSH are included
in this monitoring.
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