
SYSTEM ADMINISTR ATION

Salt Essentials

ISBN: 978-1-491-90063-5

US $39.99 CAN $45.99

“	Salt Essentials	is	an	
excellent	introduction	
to	Salt	for	beginners	
and	it	is	filled	with	tips	
and	understanding	that	
intermediate	Salt	users	
may	be	surprised	by	and	
will	benefit	from.”

—Seth House
(whiteinge), core Salt engineer

Twitter: @oreillymedia
facebook.com/oreilly

Get a complete introduction to Salt, the widely used Python-based
configuration management and remote execution tool. This practical
guide not only shows system administrators how to manage complex
infrastructures with Salt, but also teaches developers how to use Salt to
deploy and manage their applications.

Written by two Salt experts, this book provides the information you need
to deploy Salt in a production infrastructure right away. You’ll also learn
how to customize Salt and use salt-cloud to manage your virtualization. If
you have experience with Linux and data formats such as JSON or XML,
you’re ready to get started.

 ■ Understand what Salt can do, and get a high-level overview of
basic commands

 ■ Learn how execution modules let you interact with many
systems at once

 ■ Use states to define how you want a host or a set of hosts to
look

 ■ Dive into grains and pillars, Salt’s basic data elements

 ■ Control your infrastructure programmatically by extending the
Salt master’s functionality

 ■ Extend Salt with custom modules, the Jinja templating
language, and Python scripts

Craig Sebenik was the lead engineer for Salt while he was at LinkedIn. LinkedIn
was an early adopter of Salt and continues to be one of the largest Salt deploy-
ments in the world. He is currently at a startup called Matterport, which provides
3D for the real world.

Thomas Hatch is the creator of Salt and CTO of SaltStack, one of the world’s
most widely used configuration management and automation platforms. He
remains the largest contributor to the Salt project.

Salt E
ssentials

Sebenik &
 H

atch

Craig Sebenik & Thomas Hatch

Salt
Essentials
GETTING STARTED WITH AUTOMATION AT SCALE

SYSTEM ADMINISTR ATION

Salt Essentials

ISBN: 978-1-491-90063-5

US $39.99 CAN $45.99

“	Salt Essentials	is	an	
excellent	introduction	
to	Salt	for	beginners	
and	it	is	filled	with	tips	
and	understanding	that	
intermediate	Salt	users	
may	be	surprised	by	and	
will	benefit	from.”

—Seth House
(whiteinge), core Salt engineer

Twitter: @oreillymedia
facebook.com/oreilly

Get a complete introduction to Salt, the widely used Python-based
configuration management and remote execution tool. This practical
guide not only shows system administrators how to manage complex
infrastructures with Salt, but also teaches developers how to use Salt to
deploy and manage their applications.

Written by two Salt experts, this book provides the information you need
to deploy Salt in a production infrastructure right away. You’ll also learn
how to customize Salt and use salt-cloud to manage your virtualization. If
you have experience with Linux and data formats such as JSON or XML,
you’re ready to get started.

 ■ Understand what Salt can do, and get a high-level overview of
basic commands

 ■ Learn how execution modules let you interact with many
systems at once

 ■ Use states to define how you want a host or a set of hosts to
look

 ■ Dive into grains and pillars, Salt’s basic data elements

 ■ Control your infrastructure programmatically by extending the
Salt master’s functionality

 ■ Extend Salt with custom modules, the Jinja templating
language, and Python scripts

Craig Sebenik was the lead engineer for Salt while he was at LinkedIn. LinkedIn
was an early adopter of Salt and continues to be one of the largest Salt deploy-
ments in the world. He is currently at a startup called Matterport, which provides
3D for the real world.

Thomas Hatch is the creator of Salt and CTO of SaltStack, one of the world’s
most widely used configuration management and automation platforms. He
remains the largest contributor to the Salt project.

Salt E
ssentials

Sebenik &
 H

atch

Craig Sebenik & Thomas Hatch

Salt
Essentials
GETTING STARTED WITH AUTOMATION AT SCALE

Craig Sebenik and Thomas Hatch

Boston

Salt Essentials

978-1-491-90063-5

[LSI]

Salt Essentials
by Craig Sebenik and Thomas Hatch

Copyright © 2015 Craig Sebenik and Thomas Hatch. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Courtney Nash and Brian Anderson
Production Editor: Matthew Hacker
Copyeditor: Rachel Monaghan
Proofreader: Sonia Saruba

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

June 2015: First Edition

Revision History for the First Edition
2015-06-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491900635 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Salt Essentials, the cover image of a
conger eel, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491900635

Table of Contents

Preface. vii

1. Introduction. 1
What Is Salt? 1
High-Level Architecture 2
Some Quick Examples 5

System Management 5
Configuration Management 5

A Brief History 6
Topology Options 7
Extending Salt 7

2. Quick Start: First Taste of Salt. 9
Single-Master Setup 9

From Packages 10
Bootstrap Script 10

Starting Up 11
Basic Commands 13

salt: The Main Workhorse 13
salt-key: Key Management 14
salt-call: Execution on the Minion 16
salt-run: Coordination of Jobs on the Master 17
Summary of Commands 18

Key Management 19
Viewing Keys 19
Accepting Keys 20
Rejecting Keys 21
Key Files 23

iii

Minion Targeting 24
Minion ID 24
List (-L) 25
Glob 25
Regular Expression (-E) 26
Grains (-G) 26
Compound (-C) 27
Targeting Summary 27

Additional Remote Execution Details 28
Conclusion 28

3. Execution Modules: The Functional Foundation. 29
sys: Information and Documentation About Modules 29

sys.doc Basic Documentation 30
sys.list_modules, sys.list_functions: Simple Listings 31

cmd: Execute Via a Shell 31
cmd.run: Run Any Command 32

pkg: Manage Packages 33
Virtual Modules 34
pkg.list_pkgs: List All Installed Packages 35
pkg.available_version: See What Version Will Be Installed 35
pkg.install: Install Packages 36

user: Manage Users 36
user.add: Add Users 37
user.list_users, user.info: Get User Info 37

saltutil: Access Various Salt Utilities 38
Summary 41

4. Configuration Management: Salt States. 43
State File Overview 43

SLS Example: Adding a User 44
Working with the Multilayered State System 49

Highstate and the Top File 51
The Top File 51

State Ordering 58
require: Depend on Another State 59
watch: Run Based on Other Changes 61
Odds and Ends 66

Summary 68

5. Minion Data/Master Data. 69
Grains Are Minion Data 69

iv | Table of Contents

Performing Basic Grain Operations 69
Setting Grains 71
Targeting with Grains in the Top File 73

Pillars Are Data from the Master 75
Querying Pillar Data 75
Querying Other Sources with External Pillars 78

Renderers Give Data Options 79

6. Extending Salt: Part I. 83
Introduction to Jinja 83

Jinja Basics 83
Templating with Jinja 89

Filtering by Grains 90
Custom Execution Module 91
Custom State Modules 95
Custom Grains 98
External Pillars 102
Summary 105

7. More on the Master. 107
Runners 108

Manage Minions 109
Manage Jobs 110

The orchestrate Runner 112
The Event System 114
The Reactor System 116
Summary 117

8. Extending Salt: Part II. 119
Python Client API 119

Reading Configuration Data on a Master and Minion 119
Using the Master Client (LocalClient) API 121
Using the Caller Client API 123

Custom Runners 125
Writing a Custom Runner 125
Using the RunnerClient API 128

Summary 128

9. Topology and Configuration Options. 129
Master Configuration 129

Directories and Files 129
Logging 130

Table of Contents | v

Access Control 131
File Server Options 133

Topology Variations 135
Masterless Minions 135
Peer System 138
Syndication Masters 139
Multiple Masters 140

10. Brief Introduction to salt-cloud. 143
Overview 143
Setup: AWS and salt-cloud 143

Installing salt-cloud 144
Cloud Providers 145
Cloud Profiles 146
Cloud Maps 146

Introspection via salt-cloud 147
Creating an Infrastructure 149
More Information 150

A. Using Vagrant to Run Salt Examples. 151

B. YAML. 153

Index. 157

vi | Table of Contents

Preface

Who Should Read This Book
Do you want to automate your infrastructure? What about managing your configura‐
tion files? Do you use Python? Salt provides a system to manage simple and complex
infrastructures. This book will give you an introduction if you have never used Salt,
touching on the major pieces and giving you enough information to feel comfortable
in deploying Salt in a major production infrastructure.

Whether you are a sysadmin responsible for the installation and maintenance of the
operating system or you are a devops engineer at a startup responsible for getting
your code to hundred of systems, Salt is a tool to make your job easier. Salt is used by
small and large companies to manage tasks ranging from maintaining the basic oper‐
ating system parameters and configuration all the way to deploying and configuring
custom applications.

Many of the examples in this book assume that you have some basic familiarity with
Python and YAML. But knowledge of these technologies is not an absolute require‐
ment. If you have some programming experience and some experience with basic
data formats (e.g., JSON or XML), then you should be able to follow along without
much trouble. At an even more basic level, you should have some working knowledge
of Linux and a basic filesystem layout.

Salt can help you solve a wide variety of problems. One of its best features is that, as
with Python, much of Salt’s internals are exposed to you. This book only gives a
glimpse into the possibilities of working with Salt, but it will provide you with a basic
understanding from which you can dive into more of the details independently.

Why We Wrote This Book
When I (Craig) first started learning Salt, I was overwhelmed by its features, terms,
and even some of the concepts. The more I worked with it and the more I learned,

vii

the more I wanted to use Salt to solve even more problems. As Salt spread in my
company, I saw my coworkers struggle the same way I did. The documentation on the
SaltStack website is great, but it wasn’t sufficient. I wrote this book because I wanted
others to be able to jump right in with a solid understanding of the basics.

What This Book Is Not
Salt is a great tool for solving a large and various set of problems. Salt grows more
and more every day. Mew features are added, existing features are improved, and
unnecessary or outdated code is removed. I wanted to give a firm base from which
you could learn more and more about Salt. But, covering everything Salt can do is
well beyond the scope of a single book. Our goal is to cover the basics, the essentials
of Salt. This book will give you a solid platform to build upon. The topics in this book
are generally considered to be the most heavily used features of Salt. But the coverage
is far from complete. This is a great place to start, but not the only place to learn
about Salt.

Once you have the basics down, the documentation on the SaltStack website is a great
place to learn more, including details on plenty of advanced features that are,
unfortunately, beyond the scope of this book.

A Word on Salt Today
Salt has a very large and heavily engaged user base. It is one of the most contributed
projects on GitHub. SaltStack is the company behind Salt. It offers services and train‐
ing for Salt itself, and is fully committed to Salt being open core. There is an active
mailing list, a very chatty IRC channel, and plenty of discussions and pull requests on
GitHub. As of this writing, version 2015.2.0 (codenamed Lithium) was released.

Navigating This Book
This book is organized roughly as follows:

• Chapter 1 introduces the basic organization of Salt.
• Chapter 2 gives a quick summary of the basic command-line utilities.
• Chapters 3 and 4 introduce you to two of the fundamental pieces of Salt: the

remote execution engine and the state system.
• Chapter 5 guides you through the basic data elements at the core of Salt.
• Chapters 6 and 8 describe how you can extend and customize Salt.
• Chapters 7 and 9 give more information on the main control point (the Salt mas‐

ter) and some various ways you can structure Salt.

viii | Preface

http://docs.saltstack.com/en/latest/

• The final chapter, Chapter 10, gives a very simple introduction to using Salt in a
cloud infrastructure.

If you have used Salt even a little, you can likely skip Chapters 1 through 3 and give 4
a quick skim. If you are only interested in customizing the core of Salt, then Chapters
6 and 8 would be of the most interest. However, it is important to note that the exam‐
ples do build on one another. So, using the examples in, say, Chapter 4, does depend
on you having gone through the examples in Chapters 2 and 3. The companion code
should be able to fill in the gaps.

Online Resources
The Salt documentation is very thorough and a fantastic reference. The documenta‐
tion pages will link to all of the resources you need to learn even more about Salt and
the various technologies used.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip or suggestion.

This element signifies a general note.

Preface | ix

https://github.com/craig5/salt-essentials-utils
http://docs.saltstack.com/en/latest/

This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/craig5/salt-essentials-utils.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Salt Essentials by Craig Sebenik and
Thomas Hatch (O’Reilly). Copyright 2015 Craig Sebenik and Thomas Hatch,
978-1-491-90063-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,

x | Preface

https://github.com/craig5/salt-essentials-utils
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/salt_essentials.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book would not have been possible without the support and encouragement of
our friends and family. There are plenty of people who gave small hints and sugges‐
tions, but the book would not have been what it is without the help of David Boucha
and Seth House from SaltStack. A big thank you goes to Ryan Lane and Seth House
(again) for their review of the book; they found a number of pretty ugly mistakes.
They also gave plenty of fantastic tips and some great advice on how many parts
could be improved. We are indebted to them for their help.

Preface | xi

https://www.safaribooksonline.com/our-library/
http://bit.ly/salt_essentials
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction

What Is Salt?
Salt is a remote execution framework and configuration management system. It is
similar to Chef, Puppet, Ansible, and cfengine. These systems are all written to solve
the same basic problem: how do you maintain consistency across many machines,
whether it is 2 machines or 20,000? What makes Salt different is that it accomplishes
this high-level goal via a very fast and secure communication system. Its high-speed
data bus allows Salt to manage just a few hosts or even a very large environment con‐
taining thousands of hosts. This is the very backbone of Salt. Once this encrypted
communication channel is established, many more options open up. On top of this
authenticated event bus is the remote execution engine. Then, continuing to build on
existing layers, comes the state system. The state system uses the remote execution
system, which, in turn, is layered on top of the secure event bus. This layering of
functionality is what makes Salt so powerful.

But this is just the core of what Salt provides. Salt is written in Python, and its execu‐
tion framework is just more Python. The default configuration uses a standard data
format, YAML. Salt comes with a couple of other options if you don’t want to use
YAML. The power of Salt is in its extensibility. Most of Salt can easily be
customized—everything from the format of the data files to the code that runs on
each host to how data is exchanged. Salt provides powerful application programming
interfaces (APIs) and easy ways to layer new code on top of existing modules. This
code can either be run on the centralized coordination host (aka the master) or on the
clients themselves (aka the minions). Salt will do the “heavy lifting” of determining
which host should run which code based on a number of different targeting options.

1

1 This handshake between the minions and the master is the same as the handshake used by SSH. But the
handshake for Salt is simply implemented on top of ZeroMQ.

2 ZeroMQ is an open source, asynchronous messaging library aimed at large, distributed systems.

High-Level Architecture
There are a few key terms that you need to understand before moving on. First, all of
your hosts are called minions. Actions performed on them are usually coordinated
via a centralized machine called the master. As a host, the master is also a minion to
itself. In most cases, you will initiate commands on the master giving a target, the
command to run, and any arguments. Salt will expand the target into a list of min‐
ions. In the simplest case, the target can be a single minion specified by its minion ID.
You can also list several minion IDs, or use globs to provide some pattern to match
against. (For example, a simple * will match all minions.) You can even reach further
into the minion’s data and target based on the operating system, or the number of
CPUs, or any custom metadata you set.

The basic design is a very simple client/server model. Salt runs as a daemon, or back‐
ground, process. This is true for both the master and the minion. When the master
process comes up, it provides a location (socket) where minions can “bind” and
watch for commands. The minion is configured with the location—that is, the
domain name system (DNS) or IP address—of the master. When the minion daemon
starts, it connects to that master socket and listens for events. As previously men‐
tioned, each minion has an ID. This ID must be unique so that the master can
exchange data with only that minion, if desired. This ID is usually the hostname, but
can be configured as something else. Once the minion connects to the master, there is
an initial “handshake” process where the master needs to confirm that the minion
matches the ID it is advertising.1

In the default case, this means you will need to manually confirm the minion. Once
the minion ID is established, the master and minion can communicate along a Zer‐
oMQ2 data bus. When the master sends out a command to ZeroMQ, it is said to
“publish” events, and when the minions are listening to the data bus, they are said to
“subscribe” to, or listen for, those events—hence the descriptor pub-sub.

When the master publishes a command, it simply puts it on the ZeroMQ bus for all
of the minions to see. Each minion will then look at the command and the target (and
the target type) to determine if it should run that command. If the minion determines
that it does not match the combination of target and target type, then it will simply
ignore that command. When the master sends a command out to the minions, it
relies on the minions being able to identify the command via the target.

2 | Chapter 1: Introduction

http://bit.ly/glob_programming
http://www.zeromq.org/
http://www.zeromq.org/

3 Grains are data about the minions, stored on the minions. They are discussed at length in Chapter 5.
4 Pillar is data about the minion stored on the master. This is also discussed at length in Chapter 5.

We have glossed over some details here. While the minions do lis‐
ten on the data bus to match their ID and associated data (e.g.,
grains3) to the target (using the target type to determine which set
of data to use), the master will verify that the target given does or
does not match any minions. In the case of a match against the
name (e.g., glob, regex, or simple list), the master will match the
target with a list of IDs it has (via salt-key). But, for grain match‐
ing, the master will look at a local cache of the grains to determine
if any minions match. This is similar for pillar4 matching and for
matching by IP address. All of that logic allows the master to build
a list of minions that should respond to a given command. The
master can then compare that list against the list of minions that
return data and thus identify which minions did not respond in
time. Also, the master can determine that no minions match the
criteria given (target combined with target type) and thus not send
any command.

This is only half of the communication. Once a minion has decided to execute the
given command, it will return data to the master (see Figure 1-1). The first part of the
communication, where the minions are listening for commands, is called publish and
subscribe, or pub-sub. The minions all connect to a single port on the master to listen
for these commands. But there is a second port on the master that all minions send
back any data. This includes whether the command succeeded or not, and a variety of
other data.

Figure 1-1. Communication between master and minions

This remote execution framework provides the basic toolset upon which other func‐
tionality is built. The most notable example is salt states. States are a way to manage
configurations across all of your minions. A salt state defines how you want a given
host to be configured. For example, you might want a list of packages installed on a

High-Level Architecture | 3

specific type of machine—for example, all web servers. Or maybe you want to have a
number of users added on a shared development server. The state has those require‐
ments enumerated, normally using YAML. Once you have the configuration defined,
you give the state system the minions for which you want that particular configura‐
tion applied. The minions are defined through the same flexible targeting system
mentioned earlier. A salt state gives you a very flexible way to define a “template” for
setting up a given host.

Declarative Versus Imperative Configuration Management
There are two basic schools of thought on configuration management. In imperative
management, you explicitly give Salt an ordered list of actions to perform. In declara‐
tive management, on the other hand, you merely give the desired end state and allow
the system to figure out how best to enforce it.

The proponents of the declarative model argue that it simplifies the configuration and
thus makes it easier to understand. Obviously, you will need to trust that the system is
handling edge cases in the manner you expect. Also, if there are problems, you need
to rely on the system to provide you with sufficient information to diagnose the root
cause.

However, the imperative model is more natural to a programmer accustomed to pro‐
viding a list of commands. The downside of it is that you must list all of the corner
cases and how you want them handled.

A detailed discussion on this topic is beyond the scope of this book. However, Salt
does provide the option to use either model. As you will see when we discuss how to
extend Salt in Chapter 6, you can run commands explicitly using the remote execu‐
tion environment (imperative) or you can specify your desired end state using the
state system (declarative).

The last important architectural cornerstone of Salt is that all of the communication
is done via a secure, encrypted channel. Earlier, we briefly mentioned that when a
minion first connects to the master, there is a process whereby the minion is valida‐
ted. The default process is that you must view the list and manually accept the known
minions. Once the minion is validated, the minion and master exchange encryption
keys. The encryption uses the industry-standard AES specification. The master will
store the public key of every minion. It is therefore critical that you maintain tight
security control on your master. Once the trust relationship is established, any com‐
munication between the master and all minions is secure. However, this security is
dependent on that initial setup of trust and on the sustained security of the master.
The minions, on the other hand, do not have any global secrets. If a minion is com‐
promised, it will be able to watch the ZeroMQ data bus and see commands sent out
to the minions. But that is all it will be able to do. The net result is that all data sent

4 | Chapter 1: Introduction

between the master and its minions remains secure. But while the communication
channel is kept secure, you still need to maintain a tight security profile on your
master.

Some Quick Examples
Let’s run through a couple of quick examples so you can see what Salt can do.

System Management
A common use case for a remote execution framework is to install packages. With
Salt, a single command can be used to install (or upgrade) packages across your entire
infrastructure. With its powerful targeting syntax, you can install a package on all
hosts, or only on CentOS 5.2 hosts, or maybe only on hosts with 24 CPUs.

Here is a simple example:

salt '*' pkg.install apache

This installs the Apache package on every host (*). If you want to target a list of min‐
ions based on information about the host (e.g., the operating system or some hard‐
ware attribute), you do so by using some data that the master keeps about each
minion. This data coming from the minion (e.g., operating system) is called grains.
But there is another type of data: pillar data. While grains are advertised by the min‐
ion back to the master, pillar data is stored on the master and is made available to
each minion individually; that is, a minion cannot see any pillar data but its own. It is
common for people new to Salt to ask about grains versus pillar data, so we will dis‐
cuss them further in Chapter 5. For the moment, you can think of grains as metadata
about the host (e.g., number of CPUs), while pillar is data the host needs (e.g., a data‐
base password). In other words, a minion tells the master what its grains are, while
the minion asks the master for its pillar data. For now, just know that you can use
either to define the target for a command.

Configuration Management
The central master can distribute files that describe how a system should be config‐
ured. As we’ve discussed, these descriptions are called states, and they are stored in
simple YAML files called SLS (salt states). A state to manage the main index file for
Apache might look like the following:

webserver_main_index_file:
 file.managed:
 - name: /var/www/index.html
 - source: salt://webserver/main.html

The first line is simply a unique identifier. Next comes the command to enforce. The
description (i.e., state) says that a file is managed by Salt. The source of the file is on

Some Quick Examples | 5

the Salt master in the location given. (Salt comes with a very lightweight file server
that can manage files it needs—for example, configuration files, Java WAR files, or
Windows installers.) The next two lines describe where the file should end up on the
minion (/var/www/index.html), and where on the master to find the file (…/
webserver/main.html). (The path for the source of the file is relative to the file root for
the master. That will be explained later, but just know that the source is not an abso‐
lute file path, while the destination is an absolute path.)

The file server is a mechanism for Salt to send files out to the min‐
ions. Larger files will be broken up into chunks to be more easily
sent over the encrypted communication channel. This makes the
file server very handy. But keep in mind that Salt’s file server is not
meant to be a generic file server like NFS or CIFS.

Salt comes with a number of built-in state modules to help create the descriptions that
define how an entire host should be configured. The file state module is just a sim‐
ple introduction. You can also define the users that should be present, the services
(applications) that should be running, and which packages should be installed. Not
only is there a wealth of state modules built in to Salt, but you can also write your
own, which we’ll cover in Chapter 6.

You may have noticed that when we installed the package using the execution module
directly, we gave a target host: every host (*). But when we showed the state, there was
no target minion given. In the state system, there is high-level abstraction that speci‐
fies which host should have which states. This is called the top file. While the states
give a recipe for how a host should look, the top file says which hosts should have
which recipes. We will discuss this in much more detail in Chapter 4.

A Brief History
Like many projects and ideas, Salt was born out of necessity. I (Tom) had created a
couple of in-house remote execution incarnations over the years. But I found that
these and the other open sourced options didn’t quite have the power I was looking
for. I then decided to base a new system on the fast ZeroMQ messaging layer. As I
began adding more and more functionality, the state system just naturally appeared.
Then, as the community grew, more and more functionality was added. But the core
remote execution framework remained extensible.

6 | Chapter 1: Introduction

Why the Name “Salt”?
There is a lot of speculation over why we chose the name Salt. SaltStack is based out
of Salt Lake City, so that is a popular theory. But the name of the framework is not
related to the city of its birth. When looking for a name for the project, I was watch‐
ing the Lord of the Rings and the topic of “salted pork” came up. Then it hit me: salt
makes everything better. Thus the name Salt—because it makes system management
better.

Topology Options
Thus far, we have discussed Salt only as a single master with a number of connected
minions. However, this is not the only option. You can divide up your minions and
have them talk to an intermediate host called a syndication master. An example use
case is when you have clusters of hosts that are geographically dispersed. You may
have high-latency links between the clusters, but each cluster has a fast network
locally. For example, you have a bunch of hosts in New York, another large cluster in
Sydney, maybe another grouping in London, and, finally, all of your development in
San Francisco. A syndication master will act as a proxy for the master.

You may even decide that you only want to use Salt’s execution modules and states
without any master at all. A masterless minion setup is briefly discussed in “Masterless
Minions” on page 135.

Lastly, you may want to allow some users to harness the power Salt provides without
giving them access directly to the main master. The peer publisher system allows you
to give special access to some minions. This could allow you to let developers run
deployment commands without giving them access to the entire set of tools that Salt
provides.

The various topologies mentioned here are not necessarily mutu‐
ally exclusive. You can use them individually, or even mix and
match them. For example, you could have the majority of your
infrastructure managed using the standard master–minion topol‐
ogy, but then have your more security-sensitive host managed via a
masterless setup. Salt’s basic usage and core functionality remain
the same; only the implementation details differ.

Extending Salt
Out of the box, Salt is extremely powerful and comes with a number of modules to
help you administer a variety of operating systems. However, no matter how powerful

Topology Options | 7

the system is or how complete it attempts to be, it cannot be all things to all people.
As a result, Salt’s extensibility underpins the entire system. You can dynamically gen‐
erate the data in the configuration files using a templating engine (e.g., Jinja or
Mako), a DSL, or just straight code. Or you can write your own custom execution
modules using Python. Salt provides a number of libraries and data structures, which
allow custom modules to peer into the core of the Salt system to extract data or even
run other modules. Once you have the concept of extending using modules, you can
then write your own states to enforce whatever logic you see fit.

As powerful as custom modules or custom states may be, they are only the beginning
of what you can change. As previously mentioned, the format of the state files is
YAML. But you can add your own renderer to convert any data file into a data struc‐
ture that Salt can handle. Even the data about a host (i.e., grains and pillar) can be
altered and customized.

All of these customizations do not live in their own sandbox. They are available to the
rest of Salt, and the rest of Salt is available to them. Thus, you can write your own
custom execution module and call it using the state system. Or you can write your
own state that uses only the modules that ship with Salt.

All of this makes Salt very powerful and a bit overwhelming. This book is here to
guide you through the basics and give some very simple examples of what Salt can do.
Just to sweeten the pot, Salt has a very active community that is here to help you
when you run into obstacles.

Are you ready to get salted?

8 | Chapter 1: Introduction

CHAPTER 2

Quick Start: First Taste of Salt

There are a lot of terms and commands that are specific to Salt. Rather than discuss
them at an abstract level, let’s dive right in and run some very simple commands. In
order to proceed, you will need several minions set up and configured to communi‐
cate with your Salt master. In this book’s companion code, there is a Vagrant file you
can use to quickly set up five hosts: a single master and four minions. Most details are
given in Appendix A. If you already have your hosts set up and Salt installed, you can
skip ahead to “Starting Up” on page 11.

If you used the companion code’s Vagrant configuration, the Salt
daemons are already started. However, you should still read “Start‐
ing Up” on page 11 to become familiar with the process.

Single-Master Setup
The most straightforward and common use of Salt is to have a few minions attached
to a single master. We will set up a single master and then configure a couple of min‐
ions to talk to that master.

But first we need to figure out how to install Salt. Both minion and master share a
great deal of code. We will install all of the core libraries on all hosts: minions and our
single master. There are some command-line utilities that make sense only to run on
the master (e.g., salt-run and salt). If they are installed on a host without the cor‐
rect master configuration, they will report an error and do nothing. It is not harmful
to have the master-specific utilities installed on the minions, but it can lead to confu‐
sion. Thus, we will have slightly different installs for the master and the minions to
help prevent any confusion. But all hosts will have the core libraries installed. Then

9

the master will have some additional code (mostly the command-line interface, or
CLIs) installed.

The examples in this book use both Ubuntu and CentOS minions. As a result, we are
concerned only with the RPM and apt packages. However, Salt supports a wide vari‐
ety of platforms, and this list is ever-changing. Therefore, we recommend that you
check the Salt documentation for how to install on your specific platform.

Again, Appendix A has some instructions for how to start up a master and four addi‐
tional minions using Vagrant. These instructions use the book’s utilities located on
GitHub.

From Packages
It is assumed that you have some basic familiarity with the package system on your
particular operating system. But, to just give you a quick flavor of what is involved,
here are the basic instructions for installing using yum (and RPM).

First, you need to verify that the packages are available via the repositories you have
configured:

[vagrant@master ~]$ sudo yum list salt salt-master salt-minion
Available Packages
salt.noarch 2014.7.0-3.el6 epel
salt-master.noarch 2014.7.0-3.el6 epel
salt-minion.noarch 2014.7.0-3.el6 epel

You need to install the base Salt package and the minion on every host:

yum install -y salt salt-minion

Also, on the host you designate as the master, you will need the salt-master package as
well:

yum install -y salt-master

Note that the packages are not in the main CentOS repositories. But they are available
via EPEL (Extra Packages for Enterprise Linux). You can install the EPEL repositories
very easily with:

sudo rpm -Uvh \
 http://download.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm

Again, this is merely a quick example of how to install on an RPM-based operating
system. The installation instructions on Salt’s documentation pages will provide
details for other supported operating systems.

Bootstrap Script
Since the installation is so varied across so many different platforms, a simplified
installation script was created. It lives at a simple URL: http://bootstrap.saltstack.com.

10 | Chapter 2: Quick Start: First Taste of Salt

http://bit.ly/salt_install
https://github.com/craig5/salt-essentials-utils
http://bootstrap.saltstack.com

This URL will provide a bash script that supports the installation of Salt on a couple
of dozen different UNIX-like variants. You can find the current list of supported
operating systems on the Salt bootstrap page.

This bootstrap script is meant to make it easy to install Salt, but it is not the most
secure method for installation. Therefore, it is not recommended for production
environments. It is simply an easy way for you to get Salt installed so you can start
learning. Once you are familiar with Salt, you should be able to install it using the
package manager of your choosing or even directly from the source on GitHub if you
desire.

Starting Up
There are two main daemons:

• /usr/bin/salt-minion
• /usr/bin/salt-master

Before we start up the minions, we need to make sure they can communicate with the
master. The default setting is to use a host named simply salt. The basic minion con‐
figuration is located in /etc/salt/minion. Like so much of Salt, it is a YAML-formatted
file. You need to configure each minion with the DNS name or IP address of your Salt
master:

[vagrant@master ~]$ sudo grep '#master:' /etc/salt/minion
#master: salt

You will find that most of the defaults in both the minion and master configuration
files are included as comments.

If you have the flexibility to change your DNS to use a master named salt, then you
can leave the configuration as is. Otherwise, you will need to uncomment that line
and replace the value with either the DNS name or IP address of your Salt master.

Next we need to start the salt-master daemon process on the master host:

[vagrant@master ~]$ sudo service salt-master start
Starting salt-master daemon: [OK]

Then we need to start up the salt-minion daemon process on all hosts (including the
master):

[vagrant@master ~]$ sudo service salt-minion start
Starting salt-minion daemon: [OK]

Starting Up | 11

http://bit.ly/salt_bootstrap

How the minion ID is computed

The Salt minions will create their own ID based on their hostname.
However, hostname doesn’t always mean the same thing to every‐
one. For example, is it the fully qualified domain name (FQDN) or
not?
When the minion starts up, if the ID has not already been set, the
minion will try to set it to a value that is not localhost using the fol‐
lowing order:

1. The Python function socket.getfqdn().
2. Check /etc/hostname.
3. Check /etc/hosts.

If none of those yields a name that is not localhost, then Salt will
inspect the IP addresses configured on the host. It will take the first
publicly routable address. It is critical that every minion has a
unique ID. Also, the minion will cache that ID in /etc/salt/
minion_id. If you change the hostname, be aware that the cache file
will not automatically update. If you change the hostname, stop the
salt-minion daemon, delete that file, and then restart the salt-
minion process. That should regenerate the cache file using the new
hostname.

Be careful about firewalls. The minions need to talk to the master
on ports 4505 and 4506. In the previous chapter, we talked
about pub-sub and the return data. Those two ports are the
communication channels Salt uses. The first is called the publish
port (publish_port), and the second is called the return port
(ret_port).

If everything is working properly, you should see a message like the following in the
minion’s logs:

[vagrant@master ~]$ sudo tail -1 /var/log/salt/minion
2015-01-20 00:08:15,750 [salt.crypt][ERROR] The Salt Master has
cached the public key for this node, this Salt minion will wait for
10 seconds before attempting to re-authenticate

The minion actually runs the commands on each host. The master
helps coordinate which hosts run which commands and then deals
with the returned data. As a result, the master does have a minion
process running on it. Since the majority of the work we are going
to do will be done on the master, we will also use the master host to
show some properties about minions.

12 | Chapter 2: Quick Start: First Taste of Salt

At this point, the minions are just waiting for the master to confirm that they are
authorized. Next we will introduce the basic Salt command-line utilities.

Basic Commands
Interacting with Salt means using one of the command-line tools. There are several
commands, but for the moment we care only about the following four:

• /usr/bin/salt
• /usr/bin/salt-key
• /usr/bin/salt-run
• /usr/bin/salt-call

The one you will care the most about is the basic salt command.

salt: The Main Workhorse
A simple yet powerful way to automate is to run a single command on many hosts.
This is exactly where the salt command comes in. The salt command runs on the
master and takes as arguments the minions you want to affect—that is, the target and
whatever command you want to run on those minions.

There are many ways to tell the Salt system which minions you want to affect, ranging
from a simple list of minion IDs to using data from the minions, aka grains. For
example, you can target all hosts running RHEL 6.4. For now, we are going to run our
commands on all minions. For this we just need a simple glob: *. We’ll discuss the
different options for selecting minions later in “Minion Targeting” on page 24.

The format of the Salt command is salt target command. For example:

[vagrant@master ~]$ sudo salt minion1.example test.ping

This simple example says to run test.ping on the minion named minion1.example.
The argument test.ping is an execution module. This is one of the basic elements of
Salt: remote execution. (Execution modules are explained in more detail in the next
chapter.) In this specific case, all test.ping does is execute the simplest of com‐
mands: return True. If the minion is functioning normally, that code will execute on
the minion(s), and the return value, True, will be received by the master. This is nor‐
mally the easiest way (and the one with the least overhead) to verify that a given set of
minions is working.

The core Salt code comes with a wealth of execution modules, including ones for
package management, crontab modification, iptable editing, and user management.
This is only a small sample of the commands available in the core package. You can
find the complete list of modules on the Salt web page.

Basic Commands | 13

http://bit.ly/salt_modules

Even more power comes from writing your own execution modules. They are just
Python code, but they also have access to some Salt-specific data structures, which
makes the combination extremely powerful. In Chapter 6 we discuss how to write
your own custom modules.

salt-key: Key Management
We have been discussing the encrypted channel over which the master and minions
communicate. We have also mentioned that there needs to be an initial trust relation‐
ship established. The master keeps a record of all minions and the state of that trust.
Each minion will be in one of three states: accepted, unaccepted, or rejected. When a
minion first connects, it is put into the unaccepted state. At that point the key can
either be accepted or rejected. We can manage the various states using the salt-key
command. Let’s take a look at how our example minions look after the salt-minion
process has started:

[vagrant@master ~]$ sudo salt-key
Accepted Keys:
Unaccepted Keys:
master.example
minion1.example
minion2.example
minion3.example
minion4.example
Rejected Keys:

As you can see, all of the minions are sitting in the unaccepted state. Without any
arguments, salt-key will simply list all of the states and then each minion in each of
those states. You can view just the keys in the unaccepted state using the --list
argument:

[vagrant@master ~]$ sudo salt-key --list=unaccepted
Unaccepted Keys:
master.example
minion1.example
minion2.example
minion3.example
minion4.example

You can accept a key by simply adding the --accept flag with the ID of the minion
you want to accept:

[vagrant@master ~]$ sudo salt-key --accept=master.example --yes
The following keys are going to be accepted:
Unaccepted Keys:
master.example
Key for minion master.example accepted.

14 | Chapter 2: Quick Start: First Taste of Salt

In this case, we are simply going to accept all of the keys. Rather than accepting each
minion individually, we can accept all of the minions in the unaccepted state using
the --accept-all argument:

[vagrant@master ~]$ sudo salt-key --accept-all
The following keys are going to be accepted:
Unaccepted Keys:
minion1.example
minion2.example
minion3.example
minion4.example
Proceed? [n/Y] y
Key for minion minion1.example accepted.
Key for minion minion2.example accepted.
Key for minion minion3.example accepted.
Key for minion minion4.example accepted.

Now, if you run salt-key again, you will see all of the keys have moved into the
accepted state:

[vagrant@master ~]$ sudo salt-key
Accepted Keys:
master.example
minion1.example
minion2.example
minion3.example
minion4.example
Unaccepted Keys:
Rejected Keys:

There are options to remove keys, generate fingerprints, and more. (A fingerprint is a
standard method in public-key cryptography to give an ID to a public key. This fin‐
gerprint is usually a simple hash of the public key and makes referencing the key eas‐
ier simply because of the shorter string.) There is even an option to pre-generate a
key pair based on a minion ID. This would be very handy if you know you are about
to add several minions and want to prepare ahead of time. However, if you pre-
generate the minion’s key pair, you will still need to have that key pair installed on the
minion. There are a number of strategies for managing a large number of minions,
but they are beyond the scope of this book. Here we will just use the manual process
of managing minion keys.

Basic Commands | 15

If you want to add another layer of security, you can add the
master_finger option to your minion’s configuration. This allows
you to set the fingerprint of the master’s encryption key in the min‐
ion. You can find the fingerprint of the master’s key by running the
following command on the Salt master:

salt-key -f master.pub

Refer to the example minion configuration file that comes with Salt
for more information.

salt-call: Execution on the Minion
In our discussion so far, we have talked about centralized management. But remem‐
ber that the main purpose of the master is the centralized management and control of
the minions. The remote execution modules actually run on the minions themselves.
You can take advantage of this and run commands directly using the salt-call com‐
mand. salt-call will run an execution module or enforce a state, but only on local‐
host. All of Salt’s code is available along with the custom data via grains and pillar.
Let’s look at a simple example:

[vagrant@minion1 ~]$ sudo salt-call test.ping
local:
 True

One of the first things you’ll notice is that, unlike with the salt command, there is no
set of minions supplied with salt-call. That is because salt-call will only work on
localhost, so a target has no meaning when you use salt-call.

Since we also have a minion running on the Salt master, you can definitely run salt-
call on the master, but it affects only that master system itself; nothing changes on
any other minions.

One of the big advantages of using salt-call is that your commands are isolated to
just a single host. This really helps with debugging. You can pass the --log-level flag
and set it to debug to get more information about what is happening:

[vagrant@minion1 ~]$ sudo salt-call --log-level=debug disk.percent /
[DEBUG] Reading configuration from /etc/salt/minion
<snip>
[INFO] Executing command 'df -P' in directory '/root'
[DEBUG] output: Filesystem 1024-blocks Used Available Capacity Mounted on
/dev/mapper/VolGroup-lv_root 39710104 875364 36810908 3% /
tmpfs 251080 0 251080 0% /dev/shm
/dev/sda1 487652 25039 437013 6% /boot
<snip>
local:
 3%

16 | Chapter 2: Quick Start: First Taste of Salt

http://bit.ly/minion_config

1 Runners are discussed in detail in Chapter 7.

When we introduced the topic of pub-sub, we mentioned that it was only half of the
communication—namely, it was how a command got to the minions. There is also a
channel used for sending data back to the master. There are two different sockets on
the master, on two different ports (specifically, 4505 for the publish port and 4506 for
the return port). While the salt-call command runs locally, it will still attempt to
return data to the master via the return port. If you truly want to only run locally, you
just have to add the --local flag. This will ignore returning data to the master:

[vagrant@minion1 ~]$ sudo salt-call --local test.ping
local:
 True

Not only does salt-call come in handy for debugging, but there is also a standard
layout where only salt-call is used. This is called masterless minions and is dis‐
cussed in Chapter 9.

salt-run: Coordination of Jobs on the Master
What happens if you need to coordinate a number of tasks across many minions? For
example, say you want to deploy a new application to 10 hosts, but you only want to
take one down at a time. When you use the salt command with a target set of min‐
ions, the command is sent asynchronously to every minion. But if you want to run a
command sequentially across many minions, a runner can help.1 The salt-run com‐
mand is a master-only command. It does not take a target set of minions. It is used for
coordinating commands across a predetermined set of hosts or to access data that is
available only on the master itself. An example is the manage runner:

[vagrant@master ~]$ sudo salt-run manage.up
master.example
minion1.example
minion2.example
minion3.example
minion4.example

Again, no minions are specified on the command line. This particular module,
manage.up, uses the test.ping execution module, which we have already seen, to
determine whether a minion is healthy. Internally, it executes something similar to
salt * test.ping. It then reports all of the minions that return True.

Basic Commands | 17

2 Even though the salt command does not itself process the return data, it does wait for the data to be returned
to the salt-master daemon. This is a small, but important, distinction.

3 In the case of runner modules, since the code is executed on the master, any dependent libraries must be
installed there.

Terminology: Modules and Functions
Up until now, we have been a little loose with some of our terms—notably, execution
modules. An execution module is actually a collection of execution functions. You run
specific execution functions on a minion. For example, the test execution module
has a function called ping. So, you run the test.ping execution function on a min‐
ion. Specifically, an execution module is a Python file. Each public method defined in
that Python file is exposed as an execution function. Again, in our example, when you
call test.ping, Salt looks for a file called test.py and then for a public function called
ping inside that file. These terms are not hard and fast; there is some fudging. You
may see references to “running the foo.bar module.” While that’s not as specific as
saying, “running the bar execution function from the foo execution module,” hope‐
fully you can see how that shorthand can be easier, albeit more ambiguous.

Summary of Commands
To recap, there are four basic commands:

• salt

• salt-key

• salt-run

• salt-call

The first three are all directly executed on the master. Then, salt-call is run on the
minion itself. (Remember, the master is also a minion.)

The first, salt, is the command you will use most of the time. It will take a minion
target, the execution function you want to call, and then any optional arguments for
that particular function. One important note: when you run commands using salt, it
merely coordinates the sending of the job to each minion. The salt-master daemon
will then collect any data returned from the minions.2

The execution module runs on the minion itself, not on the master. This is important
if you need additional third-party libraries installed or there are additional require‐
ments (e.g., certain users are present).3 The next command, salt-key, handles the

18 | Chapter 2: Quick Start: First Taste of Salt

management of the minion keys on the master. We will discuss key management in a
little more depth in the following section.

If you need to coordinate among many minions, or you need the code to run on the
master, you can use the salt-run command. It calls a class of modules called runners.
The key difference is that it runs only on the master, while the salt command sends
code to execute on each minion.

Lastly, there is an option to run a module directly on a specific minion. For this, you
would use the salt-call CLI tool. While it will return data to the master by default,
you can also run it in local-only mode. It really helps when you are debugging prob‐
lems; you can focus on one minion at a time when trying to narrow down the root
cause of a failure.

Key Management
All communication between the minions and the master is encrypted via AES
encryption. The first step in establishing the encrypted channel is to exchange keys.
When a minion first comes online and connects to the master, the minion will receive
the master’s public key and then send its public key to the master. This entire process
is internal to the Salt master and Salt minions, and you only have to worry about
which keys to accept and/or reject. It is important to understand the basics of this
communication because it is essential to how Salt works.

These keys are the minion IDs. These IDs must be unique. In order
to avoid any conflicts, it is usually considered best practice to use
the FQDN as the minion ID. However, this can be a little tedious if
you have a very long domain name. In the end, Salt only cares that
each minion ID is unique.

Viewing Keys
We briefly showed how to list all keys earlier. This is the default behavior of salt-key.
So, barring any arguments, it will just list all the status of all keys and each minion in
each state.

When looking for only keys in a specific category, you can provide an argument to
the --list flag. For example, setting that flag to acc (accepted) will show only the
accepted keys:

[vagrant@master ~]$ sudo salt-key --list=acc
Accepted Keys:
master.example
minion1.example
minion2.example

Key Management | 19

minion3.example
minion4.example

In addition to showing you the keys by name, the salt-key command can provide
the fingerprints of each key file:

[vagrant@master ~]$ sudo salt-key --finger master.example
Accepted Keys:
master.example: ae:45:a3:00:81:b2:46:bd:a6:32:29:87:ac:a9:3b:86

There is also a --finger-all argument available, which will list the fingerprint of all
keys in all states. This includes the master’s public and private keys.

When there are issues with the key exchange, the fingerprints help to identify which
minion key is which. (For example, say you happen to rename a hostname, but do not
remove the cached ID on the minion and restart the salt-minion daemon. In this
case, you can get both fingerprints: the one stored on the master and the one used by
the minion itself. Those two fingerprints should match.) To view the fingerprint of
the key on the minion itself, you can turn to salt-call and the key.finger module:

[vagrant@master ~]$ sudo salt-call --local key.finger
local:
 ae:45:a3:00:81:b2:46:bd:a6:32:29:87:ac:a9:3b:86

You can also verify the fingerprint of the master on any problem minions:

[vagrant@master ~]$ sudo salt-call --local key.finger_master
local:
 d3:60:cc:56:12:c2:90:a1:ee:a0:ae:a9:cb:9d:3d:ea

Once you have the fingerprints for the keys on each minion (using salt-call) and
the fingerprints stored on the master (using salt-key --finger-all), you can com‐
pare them to make sure everything is in agreement.

Accepting Keys
Before the key exchange takes place, the minion keys (on the master) are put into an
unaccepted state. You learned about this in the earlier discussion of the salt-key
command. We can go back to this state by simply deleting all of the keys:

[vagrant@master ~]$ sudo salt-key --delete-all
The following keys are going to be deleted:
Accepted Keys:
master.example
minion1.example
minion2.example
minion3.example
minion4.example
Proceed? [N/y] y
Key for minion master.example deleted.
Key for minion minion1.example deleted.

20 | Chapter 2: Quick Start: First Taste of Salt

Key for minion minion2.example deleted.
Key for minion minion3.example deleted.
Key for minion minion4.example deleted.

At this point, all of the minion keys have been deleted and the minions need to be
restarted on each host, so they must authenticate again with the master:

[vagrant@master ~]$ sudo service salt-minion restart
Stopping salt-minion daemon: [OK]
Starting salt-minion daemon: [OK]

(You’ll need to restart the salt-minion daemon on each host.)

[vagrant@master ~]$ sudo salt-key
Accepted Keys:
Unaccepted Keys:
master.example
minion1.example
minion2.example
minion3.example
minion4.example
Rejected Keys:

As you can see, all minions are back in the unaccepted state. Earlier, we showed an
example of accepting only the master key and then all unaccepted minions. The --
accept flag also accepts globbing if you want to match a group of minions all at once:

[vagrant@master ~]$ sudo salt-key --accept=master*
The following keys are going to be accepted:
Unaccepted Keys:
master.example
Proceed? [n/Y] y
Key for minion master.example accepted.

Rejecting Keys
You can also reject keys for minions:

[vagrant@master ~]$ sudo salt-key --reject='minion1*'
The following keys are going to be rejected:
Unaccepted Keys:
minion1.example
Proceed? [n/Y] y
Key for minion minion1.example rejected.

Now, listing all of the keys is a little more interesting:

[vagrant@master ~]$ sudo salt-key
Accepted Keys:
master.example
Unaccepted Keys:
minion2.example
minion3.example
minion4.example

Key Management | 21

Rejected Keys:
minion1.example

Notice we used a slightly different syntax when using the wildcard
pattern in the previous examples. This is specific to the shell and is
not a product of Salt itself. In order to pass the asterisk (*) into Salt,
you need to escape it from the shell. Either surrounding it with sin‐
gle quotes or preceding it with a backslash (\) will work. We use
both throughout the book. You can use whichever is most comfort‐
able to you.

By default, salt-key acts only on keys that are in the unaccepted state. Let’s first try
to accept all of the keys and see what happens:

[vagrant@master ~]$ sudo salt-key --accept-all
The following keys are going to be accepted:
Unaccepted Keys:
minion2.example
minion3.example
minion4.example
Proceed? [n/Y] y
Key for minion minion2.example accepted.
Key for minion minion3.example accepted.
Key for minion minion4.example accepted.

[vagrant@master ~]$ sudo salt-key
Accepted Keys:
master.example
minion2.example
minion3.example
minion4.example
Unaccepted Keys:
Rejected Keys:
minion1.example

Notice that even though you added the --accept-all flag, salt-key accepted only
the keys that were in the unaccepted state. If you really want to accept all keys, not
just those keys waiting for a decision (i.e., those in the unaccepted state), you need to
add the --include-all flag:

[vagrant@master ~]$ sudo salt-key --include-all --accept-all
The following keys are going to be accepted:
Rejected Keys:
minion1.example
Proceed? [n/Y] y
Key for minion minion1.example accepted.

That same logic holds for rejecting keys. When you accept or reject keys, it is assumed
that you are trying to decide what to do about keys that are pending a decision (aka
unaccepted), not keys that have already been accepted or rejected.

22 | Chapter 2: Quick Start: First Taste of Salt

Now we have gotten our minions back into the accepted state, so we can discuss some
additional details about the keys themselves.

Key Files
The keys are stored in a pki directory. The default locations are /etc/salt/pki/master
and /etc/salt/pki/minion.

PKI stands for public key infrastructure. It is a very common term
in the industry, and you will see it used in many contexts other
than Salt.

The minion stores its public and private keys as well as the public key of the master.
Likewise, the master stores its public and private keys as well as the public key of
every minion. To be clear, the minion and master keys are different. So, in the case of
the master, we are talking about four total keys: the master’s public and private keys,
and the public and private keys for the minion running on the master itself.

On the minion, the layout is pretty straightforward, as shown in Table 2-1.

Table 2-1. Minion files and descriptions

Minion files Summary

/etc/salt/pki/minion/minion.{pub,pem} Minion’s public and private keys

/etc/salt/pki/minion/minion_master.pub The public key of the master stored on the minion

However, the master needs to categorize the minion keys based on whether they have
been accepted or not. The filepaths give away their use, as you can see in Table 2-2.

Table 2-2. Master files and descriptions

Master files Summary

/etc/salt/pki/master/master.{pub,pem} Master’s public and private keys

/etc/salt/pki/master/minions Public keys of every accepted minion

/etc/salt/pki/master/minions_pre Public keys of every unaccepted minion

/etc/salt/pki/master/minions_rejected Public keys of every rejected minion

Key Management | 23

4 These files can be managed directly without the use of salt-key. They are just files in the locations men‐
tioned here, but the details are beyond the scope of this book.

The minion public keys that the master records are stored in files by their minion ID.
As the state is manipulated via salt-key (e.g., new keys are accepted), these files are
then moved from one directory to another.4 While it is handy to know some of those
details, in practice, it is rare that you will ever have to touch these files directly.

Minion Targeting
We have referred to the targeting of minions multiple times. The target is used in the
main salt command as the first argument. (We briefly mentioned that targeting is
also used in states. We will discuss states in detail in Chapter 4. Just be aware that tar‐
geting is used for more than just the salt command.) Now, we will look at the
options for how you can target using different attributes.

In our testing setup, we have a master and four additional minions. The following
examples assume the setup shown in Table 2-3.

Table 2-3. Testing setup for minion targeting

ID Master? Operating system

master.example Yes CentOS 6.6

minion1.example No CentOS 6.6

minion2.example No CentOS 6.6

minion3.example No Ubuntu 14.04

minion4.example No Ubuntu 14.04

You can use any mix of minions that you need. You will just need to adjust the out‐
puts of the examples accordingly. Also, we will be using the test.ping module heav‐
ily; this is a simple execution module that we have already introduced. There are
multiple ways of targeting your minions. We are going to discuss the most common.
This is not an exhaustive list, but rather merely some examples to get you familiar
with how you can target commands to different collections of minions.

Minion ID
The simplest way to target is to specify minions based on ID:

24 | Chapter 2: Quick Start: First Taste of Salt

[vagrant@master ~]$ sudo salt minion1.example test.ping
minion1.example:
 True

List (-L)
Next, you can provide a comma-separated list of minion IDs:

[vagrant@master ~]$ sudo salt -L master.example,minion1.example test.ping
master.example:
 True
minion1.example:
 True

Glob
Simple, shell-style globs can be expanded to a list of minions. As we discussed earlier,
an asterisk will expand to every known minion:

[vagrant@master ~]$ sudo salt '*' test.ping
minion1.example:
 True
minion3.example:
 True
minion4.example:
 True
minion2.example:
 True
master.example:
 True

As you can clearly see in this example, the minions are not
expected to return in any given order. The order is simply the first
minion to send data back on the return socket.

You can also combine a glob with the minion ID:

[vagrant@master ~]$ sudo salt 'min*' test.ping
minion4.example:
 True
minion1.example:
 True
minion2.example:
 True
minion3.example:
 True

Minion Targeting | 25

Regular Expression (-E)
Regular expressions allow for more complex patterns:

[vagrant@master ~]$ sudo salt -E 'minion(1|2)\.example' test.ping
minion1.example:
 True
minion2.example:
 True

This is a pretty simple regular expression. It just says:

1. Match anything starting with minion,
2. Then match either a 1 or a 2,
3. And then match anything ending with .example.

If you have a strong naming scheme, you can do powerful matching using regular
expressions.

Grains (-G)
The minions will gather information about the operating system (and the environ‐
ment in general) and present it to the user as grains. Grains are a simple data struc‐
ture that allows you to target based on some underlying aspect of the systems you are
running. (Grains will be discussed in detail in Chapter 5.) For example, grains pro‐
vide the operating system name (e.g., CentOS) and the version (e.g., 6.6). This allows
you to send a command to, say, upgrade the Apache package only on CentOS 6.6
hosts.

It is important to note that the grains are loaded when the Salt min‐
ion starts. Grains are meant for static data. There are ways to load
grains more dynamically, discussed in Chapter 5.

Let’s see a quick example using the operating system name. We can ping only the
CentOS hosts:

[vagrant@master ~]$ sudo salt -G 'os:CentOS' test.ping
master.example:
 True
minion2.example:
 True
minion1.example:
 True

And then likewise with the Ubuntu minions:

26 | Chapter 2: Quick Start: First Taste of Salt

5 The complete list of single-letter IDs used in compound matchers can be found at http://bit.ly/
compound_matchers.

[vagrant@master ~]$ sudo salt -G 'os:Ubuntu' test.ping
minion4.example:
 True
minion3.example:
 True

Compound (-C)
The preceding methods of targeting minions are very powerful. But what if you want
to combine several types in one command? That is where the compound matcher
comes in. You can combine any of the other matchers in one command. The com‐
pound matcher works using simple prefixes for each type. Let’s look at a simple exam‐
ple:

[vagrant@master ~]$ sudo salt -C 'master* or G@os:Ubuntu' test.ping
minion4.example:
 True
minion3.example:
 True
master.example:
 True

The different types of matchers are identified with a single capital letter followed by
the at sign (@). In our example we used a grains matcher, G@, followed by the name
and value of the grain, os:Ubuntu, just as in the grains example in the previous sec‐
tion.5 We also used a standard globbing type: master*. Notice there was no single let‐
ter prefix, however. Just as with the salt command, a minion ID and/or a glob is the
default matcher if nothing else is specified. Lastly, we need to combine the two types
of matches using the or operator. (You can use the standard Boolean operators: and,
or, and not.) Combining the other matchers is extremely powerful, and we have only
scratched the surface of what is available.

Targeting Summary
We have shown some of the major ways you can target your minions. However, there
are a few others. For example, you can target by IP address or via node groups. Node
groups are an arbitrary list of minions defined in the master’s configuration file. The
previous examples will take you far. But be aware that there are other options for tar‐
geting your minions, and this is a list that can grow over time.

Minion Targeting | 27

http://bit.ly/compound_matchers
http://bit.ly/compound_matchers

Additional Remote Execution Details
We have discussed pub-sub a few times. But, as it is so critical to how Salt works, let’s
give a quick review. The master will publish events onto a messaging bus and the min‐
ions are subscribed, listening for those events. The minion will then look at the target
of the event to decide if it needs to do anything else. At the core of Salt is the messag‐
ing bus, ZeroMQ. The master sets up two sockets. The first is called the
publish_port (default value: 4505). This is where the master publishes commands.
The minions subscribe to that port, looking for commands to execute. It’s important
to note that once the command is sent to the minions, there is no further communi‐
cation on that channel; that is, the communication channel is totally asynchronous.
These command packets are kept very small to minimize the amount of network
overhead.

These packets are serialized through msgpack, a very small and efficient binary serial‐
ization format. It is similar to JSON in the element types it supports. However, it will
compress the data structure into the smallest packet possible. As a result, it will
impose some restrictions on the sizes of some of its types. You don’t really need to
know much more than the fact that it exists. Every packet sent to and from the master
and the minions will be encoded into the msgpack format.

For more information, you can reference the msgpack website.

The minions will inspect the packets and determine whether a packet is destined for
them. The minions are “smart” in that they decide which packets to act on, not the
master. Once the minions have analyzed the packet and performed any actions, they
will need to report any results back to the master. The minion will return data to the
master on a different socket called the ret_port (default value: 4506). How this data
is processed by the master is controlled via a returner. We will briefly discuss how this
can be changed, but there are some pros and cons to changing the returner. (A thor‐
ough discussion is beyond the scope of this book.)

Conclusion
We have given a high-level overview of what Salt can do and its basic commands.
Now, we need to expand on these fundamental concepts to show how you can lever‐
age Salt in your infrastructure. The core functionality that ships with Salt is very pow‐
erful. But the real power comes into play when you start customizing Salt.

28 | Chapter 2: Quick Start: First Taste of Salt

http://msgpack.org/

1 At the top of the web page, you should see a link for “all Salt modules.” That will take you to the complete list
of execution modules available for the current version of Salt.

CHAPTER 3

Execution Modules: The Functional
Foundation

Salt comes with a rich set of execution modules and execution functions that allow
you to administer many common tasks on your systems. All of these routines are
simply Python. There isn’t any custom language; it’s just Python. The Salt libraries are
exposed to these modules and functions, giving them access to the innards of the Salt
system. Alongside the standard, built-in modules is the ability to add functionality
with your own code.

The list of modules built in to Salt is extensive. The best place to look is on the main
documentation site.1 We have already been using the test.ping module pretty heav‐
ily in our examples up until now. It would take an entire book to describe all of the
modules in detail, so we are going to cherry-pick a few of the most heavily used ones
to give you a taste of what is available. But we sincerely encourage you to examine the
list on the Salt web pages. The list grows almost every day, with both new modules
and new functionality added to existing modules.

sys: Information and Documentation About Modules
Whether you are an experienced user or brand new to Salt, you are eventually going
to need to see some documentation. The sys module offers a lot of insight into the
modules and functions loaded. We have mentioned several times already that the
modules are actually executed on the minions themselves. The minions may be in
different states. They may have different dependent libraries loaded or a different

29

http://docs.saltstack.com/

configuration. Also, the Salt modules loaded may simply be out of date. (Later in this
chapter we will introduce the saltutil module, which contains functions for making
sure your minions are up to date.) The sys modules will give you additional insight
into the modules and functions on a given minion.

sys.doc Basic Documentation
It is considered a best practice to document all the publicly visible functions within a
module. The sys.doc function will expose the docstrings in each function. As with all
functions, we can use either the salt CLI on the master (with a list of minions) or the
salt-call CLI directly on each minion itself.

Python’s docstrings are very similar in concept to Javadoc. Essen‐
tially, the documentation is embedded in the source code. For more
information, refer to PEP-257.

[vagrant@master ~]$ sudo salt master.example sys.doc test.ping
test.ping:
 Used to make sure the minion is up and responding. Not an ICMP ping.
 Returns ``True``.
 CLI Example:
 salt '*' test.ping

As with many examples, the preceding code is slightly edited to
remove extra whitespace and blank lines. While you may see some
minor formatting differences, the code snippets given should
reflect the essence of what you see when you run the commands
yourself. When a command runs very long and some content
needs to be removed for brevity, a <snip> comment will be added.

The sys.doc function takes as its argument the name of a specific function or of an
entire module. If you want to see all of the functions within the test module, then
you can just give sys.doc an argument of test:

[vagrant@master ~]$ sudo salt-call sys.doc test
local:

 test.arg:
 Print out the data passed into the function ``*args`` ...
<snip>

Lastly, if you want to see the documentation for all of the modules on the system, you
can run sys.doc with no arguments at all. We should emphasize that the documenta‐
tion comes from the Python code itself, not from some other set of files.

30 | Chapter 3: Execution Modules: The Functional Foundation

http://bit.ly/pep-257

sys.list_modules, sys.list_functions: Simple Listings
The sys.doc function gives a lot of information—sometimes too much information.
There are several functions aimed at giving you a higher-level view of the modules
and functions available. We’ll discuss two of them here. Their names should make
their intended use pretty obvious:

• sys.list_modules

• sys.list_functions

As with sys.doc, both sys.list_modules and sys.list_functions take an optional
argument of a module name. With no argument, all of the modules (or functions) on
the minion are listed:

[vagrant@master ~]$ sudo salt-call sys.list_modules
local:
 - acl
 - aliases
 <snip>

[vagrant@master ~]$ sudo salt-call sys.list_functions sys
local:
 - sys.argspec
 - sys.doc
 - sys.list_functions
 - sys.list_modules

As with most of the modules discussed in this chapter, we have only scratched the
surface of the various functions present within the sys module. In Chapter 1, we
mentioned states and runners, and even quickly mentioned returners. There are sepa‐
rate functions to expose the documentation for each one of those pieces of Salt. There
is even a function, sys.argspec, that will show you the various arguments and
default values for each function. Learning where you can retrieve documentation will
serve you well as you learn more about Salt.

cmd: Execute Via a Shell
One of the simplest and most powerful modules is cmd. While modules normally con‐
tain code that hides the exact commands run, the functions within the cmd module
will shell out on the minion and run an arbitrary command.

While the cmd module is very powerful, it is also very insecure. The
functions within the module will run any command as root on
every single minion. As a result, some places will tightly control the
use of some cmd functions.

cmd: Execute Via a Shell | 31

cmd.run: Run Any Command
There are several functions in the cmd module, but cmd.run is perhaps the most
straightforward. It will run a command on every minion just as if you were typing it
in a normal shell.

For example:

[vagrant@master ~]$ sudo salt * cmd.run 'grep root /etc/passwd'
minion3.example:
 root:x:0:0:root:/root:/bin/bash
minion2.example:
 root:x:0:0:root:/root:/bin/bash
 operator:x:11:0:operator:/root:/sbin/nologin
<snip>

In this case, you can see the differences between a CentOS host (minion2) and an
Ubuntu host (minion3).

Up until now, we have talked only about basic arguments to functions But cmd.run
has a few keyword arguments that are worth mentioning. Adding keyword arguments
to a function call is very similar to specifying keyword arguments in Python methods
calls; they are just arguments where keyword=argument. For example, cmd.run allows
you to change the current working directory using the cwd keyword argument. Let’s
look at the same command with and without the keyword arg:

[vagrant@master ~]$ sudo salt-call cmd.run 'pwd'
local:
 /root
[vagrant@master ~]$ sudo salt-call cmd.run cwd=/usr 'pwd'
local:
 /usr

The Salt daemons are normally run as the root user. If you need to execute a com‐
mand as another user, you can use the runas argument:

[vagrant@master ~]$ sudo salt master* cmd.run whoami runas=vagrant
master.example:
 vagrant

Another powerful keyword argument is env, which allows you to set an environment
variable. The big difference with env is that it also needs to set a key equal to a value.
So you need to set env=key=value. Obviously, that format would be very difficult to
parse. In this case, you format the name and values of the environment variables as
YAML and then pass that as the value to the env keyword argument:

[vagrant@master ~]$ sudo salt-call cmd.run env='{foo: bar}' 'echo $foo'
[INFO] Executing command 'echo $foo' in directory '/root'
local:
 bar

32 | Chapter 3: Execution Modules: The Functional Foundation

2 Use an online YAML checker to validate your syntax. You can find a good one here: http://yaml-online-
parser.appspot.com/.

You will see this pattern in other functions. Just remember that Salt uses YAML at its
core. When in doubt, try formatting your arguments as YAML.2

There is a lot more power offered by the cmd module. You should start using the vari‐
ous sys functions to explore all of the options available with cmd.

pkg: Manage Packages
Now that you have a solid understanding of the basic capabilities of execution mod‐
ules, let’s start doing some real work with our systems. One of the first things you will
want to do with a system is add some packages. We have four minions, but we have
not discussed how we are going to use them. As shown in Table 3-1, we are going to
use minion1 and minion2 (both CentOS) as production servers, while we’ll use
minion3 and minion4 for staging and development, respectively.

Table 3-1. Minion IDs, types, and roles

Minion ID Type Role

minion1.example Production (prod) Web server

Application server

minion2.example Production (prod) Database server

minion3.example Staging (stage) Web server

Application server

Database server

minion4.example Development (dev) Web server

Application server

Database server

On our web and app servers we will want to install Nginx, and on our database server
we will use MySQL. As you can see in Table 3-1, in production we will want to have
some separation in what our servers do. But for staging and development we want to
minimize resources, so we just put everything on a single box.

pkg: Manage Packages | 33

http://yaml-online-parser.appspot.com/
http://yaml-online-parser.appspot.com/

Virtual Modules
Before we actually install Nginx on minion1, let’s talk a little more about the pkg mod‐
ule and its functions. In our five minions (remember that the master is also a min‐
ion), we have two different operating systems, CentOS and Ubuntu, and they use
different package managers. CentOS is a RedHat variant and therefore uses yum (and
thus RPM), while Ubuntu uses the apt system. Both systems have their strengths and
weaknesses. More importantly, to get the same information from both you need to
use very different commands. But Salt keeps this all hidden from us.

Abstracting out the differences between yum and apt is what makes the pkg module
so interesting. It abstracts a few different package managers into a single module,
which Salt calls a virutal module. A virtual module is a module in name only, how‐
ever; all of the code actually lives in other modules. When we discussed the sys mod‐
ule, we mentioned a specific function called sys.list_functions. Let’s run that on a
CentOS and an Ubuntu host:

[vagrant@master ~]$ sudo salt -L master.example,minion4.example \
 sys.list_functions pkg
master.example:
 - pkg.available_version
 - pkg.check_db
 - pkg.clean_metadata
 - pkg.del_repo
<snip>
 - pkg.upgrade_available
 - pkg.verify
 - pkg.version
minion4.example:
 - pkg.available_version
 - pkg.del_repo
<snip>
 - pkg.upgrade_available
 - pkg.version
 - pkg.version_cmp

Fortunately, we don’t have to look at the entire list to see some differences. For the
CentOS host (master), there is an additional function called pkg.check_db at the top.
And the Ubuntu host (minion4) has an additional function toward the bottom named
pkg.version_cmp. These differences are a result of the underlying package managers
on the two different operating systems and the specific Salt modules that wrap the
functionality present in each package manager.

One way of handling the differences in yum versus apt would be to hide any differ‐
ence calls within the Python code itself. That is not what Salt does, however. Instead,
Salt actually has two different Python modules: yumpkg.py and aptpkg.py. If you
were to list all of the modules available on every host, you would not see either of
these. That’s because both modules expose their name as simply pkg. So Salt will load

34 | Chapter 3: Execution Modules: The Functional Foundation

different Python files on each system; yumpkg.py is loaded on CentOS and aptpkg.py
is loaded on Ubuntu. But, since both Python files will expose their name as pkg, other
Salt utilities, like sys.doc, will know only about pkg, not yumpkg nor aptpkg. If you
need to look up the specifics of the modules, either in the code or on the Web, you
will need to know the full Python module name.

pkg.list_pkgs: List All Installed Packages
Let’s get a list of installed packages on our systems using pkg.list_pkgs:

[vagrant@master ~]$ sudo salt * pkg.list_pkgs
minion2.example:

 MAKEDEV:
 3.24-6.el6
<snip>
minion4.example:

 accountsservice:
 0.6.35-0ubuntu7.1
<snip>

These are pretty vanilla versions of each operating system. So you would expect some
similarities, but a great number of differences. The preceding output is a simple list of
names, each followed on the next line with the version. Again, the important thing to
recognize is that while the underlying code is totally different for the two operating
systems, the command you need to type is the same, and the results returned are in
the same format. This abstraction is going to save us a lot of effort when we support
multiple operating systems.

pkg.available_version: See What Version Will Be Installed
Now, let’s use that abstraction to see what version would be installed in each host:

[vagrant@master ~]$ sudo salt * pkg.available_version nginx
minion2.example:
 1.0.15-11.el6
minion1.example:
 1.0.15-11.el6
master.example:
 1.0.15-11.el6
minion3.example:
 1.4.6-1ubuntu3.1
minion4.example:
 1.4.6-1ubuntu3.1

The preceding output should not come as a surprise. The different package systems
have different nuances when it comes to releases. So it is not uncommon to see

pkg: Manage Packages | 35

different versions of the same software on the different operating systems. Now that
we have seen which version will be installed, let’s install Nginx on one of our hosts.

pkg.install: Install Packages
Let’s install Nginx on a single host: minion1. This is the first of several hosts we will
configure over the course of the book:

[vagrant@master ~]$ sudo salt minion1.example pkg.install nginx
minion1.example:

 GeoIP:

 new:
 1.5.1-5.el6
 old:
<snip>
 nginx:

 new:
 1.0.15-11.el6
 old:
<snip>

One of the first things you’ll notice is that there is a lot of output. When the Nginx
package was installed, the package manager (in this case, yum) also installed all of the
dependencies. Also, both the old and new versions are shown to indicate to the user
the current state as well as the previous one. (When pkg.install installs a brand new
package and there is no old version, then the old version is simply reported as the
empty string.)

Now, that the Nginx package is installed, we can use the version function to validate:

[vagrant@master ~]$ sudo salt minion1.example pkg.version nginx
minion1.example:
 1.0.15-11.el6

The pkg module will allow you to manage your packages in a consistent manner
across all of your hosts, regardless of the underlying operating system. It uses the
power of a virtual module to appear under the same name for many different sys‐
tems. But the exact functionality is different for different types of systems.

user: Manage Users
The next step of our system configuration is adding a couple of users. Earlier we
mentioned our systems and what roles they will play in the final architecture. Let’s
look at our users in Table 3-2.

36 | Chapter 3: Execution Modules: The Functional Foundation

Table 3-2. User logins, names, and roles

Login Name Role

wilma Wilma Flintstone DBA

fred Fred Flintstone Developer

barney Barney Rubble Developer and QA

betty Betty Rubble Developer and QA

All of the developers will need access to the dev hosts, the QA engineers will need
access to the qa host, and the DBA (database administration) needs access to all hosts
within a database.

user.add: Add Users
As before, we will just add a single user to show how you can use the execution mod‐
ules to manually configure your systems. The other users will be saved for the follow‐
ing chapter when we introduce a higher-level abstraction, namely states.

The user module has several very straightforward functions for managing users. Let’s
add a single user using user.add. We will focus on the prod hosts first:

[vagrant@master ~]$ sudo salt minion2.example user.add wilma
minion2.example:
 True

Let’s verify using the cmd.run example from earlier:

[vagrant@master ~]$ sudo salt minion2.example cmd.run 'grep wilma /etc/passwd'
minion2.example:
 wilma:x:501:501::/home/wilma:/bin/bash

Next, we will use another user function to verify without using cmd.run.

user.list_users, user.info: Get User Info
Rather than using cmd.run, which can cause problems if you happen to make an
unfortunate typo with the command, we can verify using users.list_users:

[vagrant@master ~]$ sudo salt minion2.example user.list_users
minion2.example:
 - adm
<snip>
 - wilma

user: Manage Users | 37

This list is great, but it doesn’t provide as much information as earlier when we
parsed the password file. We can use user.info to get additional information about a
user:

[vagrant@master ~]$ sudo salt minion2.example user.info wilma
minion2.example:

 fullname:

 gid:
 501
 groups:
 - wilma
 home:
 /home/wilma
 homephone:

 name:
 wilma
 passwd:
 x
 roomnumber:

 shell:
 /bin/bash
 uid:
 501
 workphone:

It should be noted that under the hood, Salt uses the basic system utilities. In the case
with user.add, it uses the useradd command-line application available on both Cen‐
tOS and Ubuntu. When we added our user earlier, we specified only the login, wilma.
The rest of the defaults came from the useradd utility, not the Salt module. You will
see this frequently with Salt: it uses various system utilities wrapped inside Salt code.
These utilities have their own defaults, which affects Salt as well.

There are a number of additional features in the user module. Please explore and
play with the different options. We will come back to user management in Chapters 4
and 5.

saltutil: Access Various Salt Utilities
We could spend the entire book discussing the various execution modules and what
they do. The previous coverage should be a good example of what Salt can do. There
are many modules and functions that will ease some common tasks. But what about
Salt itself? There is a module that contains several important utilities specific to Salt.
Unsurprisingly, it’s named saltutil.

38 | Chapter 3: Execution Modules: The Functional Foundation

With most modules, it’s best to have a high-level understanding of what they do and
then learn more about them when you run across a specific need. The saltutil func‐
tions are a little different because they help you manage Salt itself, rather than manag‐
ing your systems. saltutil contains functions to help manage jobs, manage keys,
and update various parts of the system. Unfortunately, we cannot cover all of the
functions in the saltutil module since that would require concepts we haven’t dis‐
cussed yet. But, along with the sys module, saltutil has a number of functions that
will prove very handy.

Salt does its best to update any pieces that you need. But there are times when you
can’t wait for Salt or you need something specific updated. There are several func‐
tions that can help:

[vagrant@master ~]$ sudo salt-call sys.list_functions saltutil | grep sync
 - saltutil.sync_all
 - saltutil.sync_grains
 - saltutil.sync_modules
 - saltutil.sync_outputters
 - saltutil.sync_renderers
 - saltutil.sync_returners
 - saltutil.sync_states
 - saltutil.sync_utils

Many of those names should look familiar (e.g., grains and returners), but we have
discussed them only briefly. The saltutil.sync_modules pertains directly to this
chapter. We don’t have anything to update right now, but let’s run it to see what it
outputs:

[vagrant@master ~]$ sudo salt master.example saltutil.sync_modules
master.example:

Not every exciting. But if we look at saltutil.sync_all, we can get a better view of
what is happening:

[vagrant@master ~]$ sudo salt master.example saltutil.sync_all
master.example:

 grains:
 modules:
 outputters:
 renderers:
 returners:
 states:
 utils:

This simply calls all of the other sync functions. If something had changed, you
would have seen some specifics in each section. For example, if we had updated a
module, then right below modules: there would be a list of the specific modules that
were updated on that minion.

saltutil: Access Various Salt Utilities | 39

The job management routines will require a little more work to play with. Open a
second window on the master and execute a long-running command:

[vagrant@master ~]$ sudo salt master.example cmd.run 'sleep 100'

In the other window, we can look for the preceding job using the saltutil.running
function:

[vagrant@master ~]$ sudo salt master.example saltutil.running
master.example:
 |_

 arg:
 - sleep 100
 fun:
 cmd.run
 jid:
 20150127040117547273
 sudo_vagrant
<snip>

We have cut out some of the details, but the parts most relevant to Salt are shown.
This function allows you to get a little more information about what is running on a
minion. If the preceding job kept running, we could use the saltutil.kill_job
function. Let’s start a new job, find the job ID, and then kill that job:

[vagrant@master ~]$ sudo salt master.example cmd.run 'sleep 100'

[vagrant@master ~]$ sudo salt master.example saltutil.running
master.example:
 |_

 arg:
 - sleep 100
 fun:
 cmd.run
 jid:
 20150127040542908007
 pid:
 1006
 ret:

 tgt:
 master.example
 tgt_type:
 glob
 user:
 sudo_vagrant

[vagrant@master ~]$ sudo salt master.example saltutil.kill_job 20150127040542908007
master.example:
 Signal 9 sent to job 20150127040542908007 at pid 1006

40 | Chapter 3: Execution Modules: The Functional Foundation

Again, we encourage you to view the documentation online to keep up with changes
with all of the execution modules. But it will serve you well to become very familiar
with all of the functions within saltutil. Many more of the functions will make
sense after you’ve finished reading the entire book. We need to introduce more of
Salt’s basic functionality before explaining some of those functions.

Summary
Execution modules are great and allow you to interact with many systems at once.
They also abstract out many of the differences in your systems, like how the pkg
module will interact with both CentOS’s yum package manager and Ubuntu’s apt. But
they still require you to explicitly enter all of the commands every time you want to
run them. Next we will introduce the state system. It will give you the power to specify
a recipe, or state, for a set of systems and then just apply that given recipe to perform
the desired action.

Summary | 41

CHAPTER 4

Configuration Management: Salt States

The remote execution framework provides the basis for a number of higher-level
abstractions. Running remote commands on a number of minions is great. But when
you add another web server or another database server, hopefully that new server will
have something in common with other servers. Reusing components helps maintain
a base level of consistency in your environment. Salt provides a simple but powerful
file format that allows you to specify a desired recipe, or state, describing how you
want a host to look, and then you simply apply that state. The states can be combined
so you can build on simple pieces to make more complicated states.

You can find the complete list of state modules on the SaltStack
website.

State File Overview
You describe a state via Salt state (SLS) files. As with most of Salt’s core, the most
basic format is YAML. One of the big advantages of YAML is that it is language-
agnostic; it is just a data format. The format of the states uses standard data structure
constructs:

• Strings
• Numbers
• Arrays (lists)
• Hashes (dictionaries)

43

http://bit.ly/builtin_state_mods
http://bit.ly/builtin_state_mods

It is important to remember that YAML is just a simple representa‐
tion of the data structure. You can alter the underlying file format if
you use a different renderer.

SLS Example: Adding a User
In the previous chapter, we added a single user on a host. But we want this user, and
the rest of the users, to be added automatically every time we add another machine.
Let’s handle just the wilma user for the moment. Here’s a very simple SLS file to add
the wilma user:

user_wilma:
 user.present:
 - name: wilma
 - fullname: Wilma Flintstone
 - uid: 2001
 - home: /home/wilma

We are using the same basic information as before, and we have added a little more.
We are using the state module called user and the function present. In the previous
chapter, we discussed execution modules. Now, we are instead using state modules.
They often look very similar and sometimes have the same arguments, but they are
different. When we added a user, we used the user.add execution function. Now, we
want to make sure the user exists using the user.present state function. At their
core, state modules rely on execution modules to actually make the changes needed,
but state modules will add further functionality on top of that. In the case of
user.present, we only want to call the execution function user.add if we really need
to add that user. If the user already exists, then we can skip it. Since there is a logical
difference between running an add user command versus running an add user com‐
mand if the user is missing, the function names may be different. The user state mod‐
ule, like other state modules, will make a change only if it detects there is a delta
between the real state and the desired state. The side effect is that you can run a state
over and over again, and as long as there is no delta, nothing will change. In other
words, state calls are idempotent.

SLS format and state documentation
Let’s explore the format of the SLS file for a moment. As we said, it is a standard
YAML-formatted file. The first line is an ID that can be referenced in other state files
or later in the file. We will use the state IDs heavily when we order states in “State
Ordering” on page 58.

Next is the command or state declaration. In the previous chapter, we talked about
using sys.doc to look at the documentation for a given module. But execution func‐

44 | Chapter 4: Configuration Management: Salt States

tions and state functions are not the same. Fortunately, there is another sys function
that can help us out: sys.state_doc:

[vagrant@master ~]$ sudo salt-call sys.state_doc user.present
local:

 user:
 Management of user accounts
 ===========================
 The user module is used to create and manage user settings, users can be
 set as either absent or present
<snip>

If you run the preceding command, you will see the rest of the options. Those options
are what appear next in the state file. In our specific case, this includes options for the
full name, the user ID (uid), and the home directory.

One last thing we should mention: the first argument, name, can be used as the ID of
the state itself. So we can rewrite the preceding state as the following:

wilma:
 user.present:
 - fullname: Wilma Flintstone
 - uid: 2001
 - home: /home/wilma

In this case, it is implied that the name (aka login) of the user is the same as the ID of
the state itself. This can be very handy and can simplify your states a little. However,
these state names can be referenced elsewhere and may cause more confusion than it’s
worth. With usernames, it isn’t quite as obvious as with, say, names of packages. So be
aware of this shortcut, but use it with caution.

When we introduced sys.doc, we also mentioned sys.list_modules and
sys.list_functions. There are corresponding calls for state modules and functions:
sys.list_state_modules and sys.list_state_functions:

[vagrant@master ~]$ sudo salt-call sys.list_state_modules
local:
 - alias
<snip>
 - user
<snip>

[vagrant@master ~]$ sudo salt-call sys.list_state_functions user
local:
 - user.absent
 - user.present

Explore the various state functions within the sys module to become more familiar
with the large list of state modules available within Salt.

State File Overview | 45

Setting the file roots
The state file is great, but what do we do with it? The first thing we need to do is tell
the Salt master where to find the files. In Salt’s terms, we need to set up the file server.
We have mentioned the master configuration file: /etc/salt/master. We could easily
edit that file, but we could also create some smaller files in a directory: /etc/salt/
master.d. The main configuration file is a bit large and unwieldy, but the default con‐
figuration has an include statement that will grab all of the files matching /etc/salt/
master.d/*.conf:

[vagrant@master ~]$ sudo grep default_include /etc/salt/master
#default_include: master.d/*.conf

(The master config file has many of the defaults listed, but they’ve been commented
out just to highlight what the default settings are.)

[vagrant@master ~]$ sudo cat /etc/salt/master.d/file-roots.conf
file_roots:
 base:
 - /srv/salt/file/base

Add that file and then restart the Salt master:

[vagrant@master ~]$ sudo service salt-master restart
Stopping salt-master daemon: [OK]
Starting salt-master daemon: [OK]

When we introduced the saltutil execution module, we demonstrated syncing from
the master to a minion. For many of the files synced, the file_roots configuration
option specifies the directory where you can find them. Salt has a small built-in file
server that copies any necessary files between hosts. This file server communicates
over the standard ZeroMQ channels that the rest of Salt uses, so the files are transfer‐
red securely and without any additional configuration.

Salt can partition minions into overlapping groups called environments. Right now,
we are concerned only with the base environment, indicated by the base keyword.

Executing a state file
We have set up our Salt master with our file_roots directory, which is necessary for
using states. We will add the preceding example state definition to a file inside
file_roots:

[vagrant@master ~]$ cat /srv/salt/file/base/user-wilma.sls
user_wilma:
 user.present:
 - name: wilma
 - fullname: Wilma Flintstone
 - uid: 2001
 - home: /home/wilma

46 | Chapter 4: Configuration Management: Salt States

Now we will introduce the state execution module.

These terms may be getting a little confusing. There are many state modules, such as
pkg and user. There are also many execution modules, such as cmd and sys. But, in
order to execute states, you need to run something (i.e., an execution module). As a
result, there is an execution module called state. This is how you run state modules,
but state itself is not a state module. If this doesn’t make sense, hopefully it will after
you use Salt for a while.

As with all Salt commands, we can use sys.doc to get an idea of state’s capabilities.
The first function we will introduce is state.show_sls:

[vagrant@master ~]$ sudo salt master.example state.show_sls user-wilma
master.example:

 user_wilma:

 __env__:
 base
 __sls__:
 user-wilma
 user:
 |_

 name:
 wilma
 |_

 fullname:
 Wilma Flintstone
 |_

 uid:
 2001
 |_

 home:
 /home/wilma
 - present
 |_

 order:
 10000

This shows the basic data structure Salt uses after reading the file. Most of it should
look pretty familiar. You can see all of the various arguments to user.present, as well
as the declaration of the state function itself, albeit broken into a couple of different
lines. There is the reference to the user state module toward the top. But the specific
function, present, is given at the bottom. What is important to recognize is that the
module (user), and the specific function (present), are joined in the original state

State File Overview | 47

file, but Salt pulls them apart when parsing the file. We won’t be using that fact in this
book, but it’s worth noting.

I (Craig) use state.show_sls almost every day. I use it to verify
and debug almost every state (SLS file) I write. It is extremely
handy to see how Salt parses the SLS file and if it matches every‐
thing I expect. Many simple syntax errors, including common
YAML errors, will be caught by state.show_sls, without affecting
any minions. So it is a very handy tool that you should learn.

We can run this state against minion2 and we should see very little change since we
already added that user. To execute the state, we simply call state.sls:

[vagrant@master ~]$ sudo salt minion2.example state.sls user-wilma
minion2.example:

 ID: user_wilma
 Function: user.present
 Name: wilma
 Result: True
 Comment: Updated user wilma
 Started: 06:16:52.541678
 Duration: 193.926 ms
 Changes:

 fullname:
 Wilma Flintstone
 uid:
 2001

Summary

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1

The important thing to notice is that after the state is applied, Salt will show you what
changed. In this example, some of the user data already existed. But the fullname and
the uid did change and Salt reported those details. If we run this once again, we
should see no change this time:

[vagrant@master ~]$ sudo salt minion2.example state.sls user-wilma
minion2.example:

 ID: user_wilma
 Function: user.present
 Name: wilma
 Result: True
 Comment: User wilma is present and up to date

48 | Chapter 4: Configuration Management: Salt States

 Started: 06:19:32.235330
 Duration: 1.599 ms
 Changes:

Summary

Succeeded: 1
Failed: 0

Total states run: 1

This time the Changes: section is empty, indicating that nothing changed. This is
very handy; we should be able to run this state many times without any undesirable
changes. We will take advantage of this fact later using something called a highstate,
which is a collection of states that, all together, form our complete definition of a
host.

Working with the Multilayered State System
We have discussed repeatedly how the different pieces of Salt build on top of each
other to present a great deal of functionality to the user. Even within each piece there
can be multiple layers that allow the advanced user a great deal of flexibility and
power, and also provide a newcomer sufficient power to get complex tasks done
easily.

The state system is no exception.

state.single: Calling a state using data on the command line
At the very bottommost layer are the function calls themselves. They are similar to
the execution modules, but they are distinct.

We can call the state functions directly by using the state.single execution module:

[vagrant@master ~]$ sudo salt minion2.example state.single user.present \
name=wilma fullname='Wilma Flintstone' uid=2001 home=/home/wilma
minion2.example:

 ID: wilma
 Function: user.present
 Result: True
 Comment: User wilma is present and up to date
 Started: 06:25:18.704908
 Duration: 1.646 ms
 Changes:

Summary

Succeeded: 1
Failed: 0

State File Overview | 49

Total states run: 1

This call to state.single says to execute the user.present state function in the
same way that we specified the state in the state file, /srv/salt/file/base/user-wilma.sls.
The arguments are the same between the two. This can come in handy when, say,
you’re testing state functions.

Notice how the ID is missing from the state.single call. Since
this is a one-time call and only one state module is used, there is no
reason to give it a unique ID.

The returned data is exactly the same as what we saw earlier when we used the
SLS file:

sudo salt minion2.example state.sls user-wilma

Namely, the user is already present, so no action was taken.

state.low: States with raw data
As we progress up (or down, if you prefer) the state layers, we get further away from
the familiar data format we saw in the SLS file. The next layer is called the low chunk.
At this layer, the state is completely abstracted out as data. We mentioned that the
state function we called, user.present, is actually a combination of two pieces that
are just conveniently joined. When we call the low chunk, we see how that is repre‐
sented by different parts of the data structure:

[vagrant@master ~]$ sudo salt minion2.example state.low \
 '{state: user, fun: present, name: wilma}'
minion2.example:

 __run_num__:
 0
 changes:

 comment:
 User wilma is present and up to date
 duration:
 1.785
 name:
 wilma
 result:
 True
 start_time:
 06:34:50.250740

50 | Chapter 4: Configuration Management: Salt States

In this call, we specify the state (user) and the function (present) as two different
parts of the data structure. You can view this data for an existing SLS file by using
state.show_low_sls.

A few arguments were simply left off for brevity. You can specify all
of the same arguments using state.low.

Hopefully, you won’t need to dig this deep into states when building your own sys‐
tems. But this functional foundation may prove useful when you get stuck and cannot
figure out what is happening with your states; you can start peering down into the
rabbit hole. Next, we will go in the opposite direction and talk about higher-level
abstractions that allow us to build a complete host recipe.

Highstate and the Top File
Now that we’ve gone into the low levels of the state system, we want to look at the real
power that lies with combining states. The example we have used until now has just
been one file, and we have called it directly using state.sls. But this is not the power
we are referring to. We want to be able to add a new host, annotate it (as, say, a web
server), and then just have all of the right packages installed, users set up, and so on.
Essentially, we want the correct recipe applied to the given host. This means not only
combining many states together, but also knowing which combination to run on
which machine. The highstate layer is used to combine various states together. We
will discuss that next when we introduce the top file.

The Top File
We want to combine states into more complex highstates. The file that defines this
state is called the top file and it normally named top.sls. It appears in the file_roots
directory. When we set up file_roots, we mentioned the base environment. The top
file goes into this environment. We start with a very simple top file that executes our
state to add the wilma user:

[vagrant@master ~]$ cat /srv/salt/file/base/top.sls
base:
 'minion2.example':
 - user-wilma

At the highest level in the top file is the environment. So far, we have dealt only with a
single environment: base. In order to keep things simple, we will continue to use only
base for a while.

Highstate and the Top File | 51

Next, you have the targeted minion. In this case, we want only the state, user-wilma,
added to a single minion. But, in the general case, in each environment you give a list
of targets. This targeting is exactly the same as what we saw in Chapter 2. But, just as
with the single environment, let’s keep it simple for now and focus only on minion
IDs.

We can view the effective top file for any minion using the state.show_top
command:

[vagrant@master ~]$ sudo salt minion2.example state.show_top
minion2.example:

 base:
 - user-wilma

The output shows how the top file would be generated for that specific minion,
minion2. For another example, let’s try running against another minion:

[vagrant@master ~]$ sudo salt master.example state.show_top
master.example:

In this case, the top file is shown as empty because there is only a single target and it
doesn’t apply to master.example.

Before adding the rest of the users, let’s suppose we want to add the vim package on
every host. We will use the pkg.installed state function, but this time we will put
the file into a subdirectory to give us a little more structure in our file layout. Since we
are going to install the package on every host, we will simply call the directory default
and the file packages.sls:

[vagrant@master ~]$ cat /srv/salt/file/base/default/packages.sls
packages_vim:
 pkg.installed:
 - name: vim

Then let’s add it for every host (*) in our modified top file:

[vagrant@master ~]$ cat /srv/salt/file/base/top.sls
base:
 '*':
 - default.packages

 'minion2.example':
 - user-wilma

Directories are not denoted with slashes, but with dots. So, a state directory of a/b/c/d
would be given as a.b.c.d in the top_file.

52 | Chapter 4: Configuration Management: Salt States

Since we have a more interesting top file, we can start to discuss executing a highstate.
Since a highstate execution references the top file, there is no need to specify any
arguments. The target given in the top file will create a unique run on every minion.

If we run it, we see a problem:

[vagrant@master ~]$ sudo salt * state.highstate
minion2.example:

 ID: packages_vim
 Function: pkg.installed
 Name: vim
 Result: False
 Comment: Package 'vim' not found (possible matches: vim-enhanced)
 Started: 08:05:40.253299
 Duration: 22321.085 ms
 Changes:

 ID: user_wilma
 Function: user.present
 Name: wilma
 Result: True
 Comment: User wilma is present and up to date
 Started: 08:06:02.574640
 Duration: 5.033 ms
 Changes:

Summary

Succeeded: 1
Failed: 1

Total states run: 2
minion3.example:

 ID: packages_vim
 Function: pkg.installed
 Name: vim
 Result: True
 Comment: Package vim is already installed.
 Started: 08:05:57.273826
 Duration: 10550.292 ms
 Changes:

Summary

Succeeded: 1
Failed: 0

Total states run: 1

Highstate and the Top File | 53

1 As of Salt 2014.7, the compound matcher is the default in the top file. The example shown is still accurate, but
we can make it simpler by using a target of G@os:CentOS and then removing the match line.

We have two different operating systems that call the vim package different things. It
installed fine on the Ubuntu hosts, but CentOS needs us to install the vim-enhanced
package. We can adjust things slightly to handle this for now, which means breaking
up the all hosts (*) target. We mentioned the concept of grains back in Chapter 2, and
we briefly explored target using grains. We can definitely use this concept within the
top file:1

[vagrant@master ~]$ cat /srv/salt/file/base/top.sls
base:
 'os:CentOS':
 - match: grain
 - default.vim-enhanced

 'os:Ubuntu':
 - match: grain
 - default.vim

 'minion2.example':
 - user-wilma

Next we create two new files: vim.sls and vim-enhanced.sls. (You may as well delete
the old packages.sls; we won’t reference it, but we will come back to it in Chapter 5.)

[vagrant@master ~]$ cat /srv/salt/file/base/default/vim.sls
packages_vim:
 pkg.installed:
 - name: vim
[vagrant@master ~]$ cat /srv/salt/file/base/default/vim-enhanced.sls
packages_vim:
 pkg.installed:
 - name: vim-enhanced

We can rerun our state.highstate and we should see everything run without any
more issues:

[vagrant@master ~]$ sudo salt * state.highstate
minion3.example:

 ID: packages_vim
 Function: pkg.installed
 Name: vim
 Result: True
 Comment: Package vim is already installed.
 Started: 01:28:47.448266
 Duration: 705.834 ms
 Changes:

54 | Chapter 4: Configuration Management: Salt States

Summary

Succeeded: 1
Failed: 0

Total states run: 1
minion4.example:

 ID: packages_vim
 Function: pkg.installed
 Name: vim
 Result: True
 Comment: Package vim is already installed.
<snip>

We have a package installed on every host, with some minor differences on our two
operating systems. We should return to our users and get all of them installed.
Table 3-1 listed our minions with their roles, and Table 3-2 listed the users with their
roles. When we combine them, we should get the list of users to add to every host, as
shown in Table 4-1.

Table 4-1. Minion IDs and corresponding users

Minion ID Users

minion2 wilma

minion3 wilma, barney, betty

minion4 wilma, barney, betty, fred

We can use this to create more structure for the users, as well. We’ll create a users
directory and put our files there. Also, we’ll create a file for each user, a file for both
QA users (barney and betty), and a file with all of the users. Since we are creating
some more structure with the users, let’s also remove the specific call to add wilma
directly. Rather, let’s add all of the DBAs. The include statement will make this easy.

Let’s look at the top file:

[vagrant@master ~]$ cat /srv/salt/file/base/top.sls
base:
 'os:CentOS':
 - match: grain
 - default.vim-enhanced

 'os:Ubuntu':
 - match: grain
 - default.vim

 'minion2.example':

Highstate and the Top File | 55

 - users.dba

 'minion3.example':
 - users.dba
 - users.qa

 'minion4.example':
 - users.all

The top file is really taking shape. We do have to individually specify the minion IDs,
but we will fix that later.

We will create a state file for each user we want to add. This will give us the necessary
flexibility in where we install the users. (We will group them in just a moment.)

[vagrant@master ~]$ cat /srv/salt/file/base/users/{wilma,fred,barney,betty}.sls
user_wilma:
 user.present:
 - name: wilma
 - fullname: Wilma Flintstone
 - uid: 2001
user_fred:
 user.present:
 - name: fred
 - fullname: Fred Flintstone
 - uid: 2002
user_barney:
 user.present:
 - name: barney
 - fullname: Barney Rubble
 - uid: 2003
user_betty:
 user.present:
 - name: betty
 - fullname: Betty Rubble
 - uid: 2004

(We removed the home directory. We just don’t need it any longer.)

Next, we have the grouped user files utilizing include statements:

[vagrant@master ~]$ cat /srv/salt/file/base/users/dba.sls
include:
- users.wilma
[vagrant@master ~]$ cat /srv/salt/file/base/users/qa.sls
include:
- users.barney
- users.betty

This is simple enough. Just as with the top file, directories are separated with dots, not
slashes. One thing to note: all files included are referenced from a file root. Since we
have only the single directory defined in file_roots, all state files must be specified rel‐
ative to that single directory: /srv/salt/file/base. This can be a little tedious, especially

56 | Chapter 4: Configuration Management: Salt States

if we continue to create more subdirectories. There is a shorthand: you can refer to
state files in your current directory simply with a leading dot. Let’s use that shorthand
with the all users state:

[vagrant@master ~]$ cat /srv/salt/file/base/users/all.sls
include:
- .fred
- .wilma
- .barney
- .betty

You can use the cp.list_states execution function to see how
Salt sees the various states and represents them.

With a more complex top file, we can use state.show_top for a specific minion to
make sure it looks as we expect:

[vagrant@master ~]$ sudo salt minion3.example state.show_top
minion3.example:

 base:
 - default.vim
 - users.dba
 - users.qa

Now that we have a top file that looks good, we can simply run a highstate
(state.highstate) against all of the minions, and the correct users and packages will
get installed on every host:

[vagrant@master ~]$ sudo salt '*' state.highstate
minion2.example:

 ID: packages_vim
 Function: pkg.installed
 Name: vim-enhanced
 Result: True
 Comment: Package vim-enhanced is already installed.
 Started: 01:37:18.806663
 Duration: 878.505 ms
 Changes:

 ID: user_wilma
 Function: user.present
 Name: wilma
 Result: True
 Comment: User wilma is present and up to date
 Started: 01:37:19.685347
 Duration: 1.774 ms

Highstate and the Top File | 57

 Changes:

Summary

Succeeded: 2
Failed: 0

Total states run: 2
minion3.example:

<snip>

When we were running individual states, we used state.show_sls to show the
lower-level state data structure. There is an analogous command for highstates:
state.show_highstate:

[vagrant@master ~]$ sudo salt minion4.example state.show_highstate
minion4.example:

 packages_vim:

 __env__:
 base
 __sls__:
 default.vim
 pkg:
 |_

 name:
 vim
 - installed
 |_

 order:
 10000
<snip>

As you can see, the high-level declarations given in top.sls and the referenced state
files are broken down into a Salt data structure. However, there is an added element:
order. When you are running multiple states, the order in which they execute can be
important. The states are ordered using a simple numeric sort. If you need to force an
order in your states, there are a couple of options.

State Ordering
When you compile the states for highstate, the states will always be ordered and
repeatable. However, the order that Salt generates may not be what you need. The
require declaration will force a specific state to be executed before a given state. And
there is also a way to watch another state and then execute code based on any
changes. Lastly, you can peer into the future with prereq, which will look at other

58 | Chapter 4: Configuration Management: Salt States

states to see if they will change. If they are going to change, then run the referencing
state.

require: Depend on Another State
As we mentioned, there are many times when you need to ensure that one action
happens before another. The require declaration will enforce that the named state
executes before the current state. For example, if state A has a require for state B,
then state B will always run before state A.

Before we get to the details of a require, let’s go back to the Nginx package we
installed manually in the previous chapter using the pkg.install execution function.

We can verify the package using the pkg.version execution function:

[vagrant@master ~]$ sudo salt minion1* pkg.version nginx
minion1.example:
 1.0.15-11.el6

Let’s now add a state to automatically install the Nginx package on minion1. Earlier,
when we discussed our five example minions, we gave each one a role. We are going
to add a little more structure to file_roots by adding a roles directory and then a web‐
server subdirectory:

[vagrant@master ~]$ cat /srv/salt/file/base/roles/webserver/packages.sls
roles_webserver_packages:
 pkg.installed:
 - name: nginx

We will also need to make sure the Nginx service is running:

[vagrant@master ~]$ cat /srv/salt/file/base/roles/webserver/start.sls
roles_webserver_start:
 service.running:
 - name: nginx
 - require:
 - pkg: nginx

As you can see, before we can actually start the Nginx service, we need to make sure
that the Nginx package exists. The require declaration takes a list of dictionaries. The
key of the dictionary is the name of the state module—in this case, pkg—and then the
value of the dictionary is the name of the state. Remember, in this context it is the
state’s name (nginx), not the ID (roles_webserver_packages).

Now we have to add these states to the top file. We could easily just add both of them
to the minion1.example target. However, there is another shortcut: init.sls.

State Ordering | 59

init.sls directory shortcut
We have referred to individual states using their filenames, minus the sls extension.
However, we have not discussed how to reference a directory instead of an individual
file. If there is a file named init.sls in a directory, then you can simply reference the
directory name without init.sls.

If we continue our previous example, we can add webserver/roles/init.sls and then ref‐
erence it in the top file:

[vagrant@master ~]$ cat /srv/salt/file/base/roles/webserver/init.sls
include:
- users.www
- .packages
- .start
[vagrant@master ~]$ cat /srv/salt/file/base/top.sls
base:
 'os:CentOS':
 - match: grain
 - default.vim-enhanced

 'os:Ubuntu':
 - match: grain
 - default.vim

 'minion1.example':
 - roles.webserver

 'minion2.example':
 - users.dba

 'minion3.example':
 - users.dba
 - users.qa

 'minion4.example':
 - users.all

The file roles/webserver/init.sls also makes use of the leading dot shorthand to refer‐
ence files within the current directory. In our new top file, we have added a target for
minion1.example and added a single state: roles.webserver. We also included
another state, users/www.sls:

[vagrant@master ~]$ cat /srv/salt/file/base/users/www.sls
user_www:
 user.present:
 - name: www
 - fullname: WebServer User
 - uid: 5001

As you can see, we can include any file into another state. We simply have to refer‐
ence it based off the main file root. We can now run a highstate on minion1:

60 | Chapter 4: Configuration Management: Salt States

[vagrant@master ~]$ sudo salt minion1* state.highstate
minion1.example:

 ID: packages_vim
 Function: pkg.installed
<snip>

 ID: user_www
 Function: user.present
<snip>

 ID: roles_webserver_packages
 Function: pkg.installed
<snip>

 ID: roles_webserver_start
 Function: service.running
 Name: nginx
 Result: True
 Comment: Started Service nginx
 Started: 02:14:13.267952
 Duration: 371.647 ms
 Changes:

 nginx:
 True

Summary

Succeeded: 4 (changed=1)
Failed: 0

Total states run: 4

Most of the output should look familiar. We have left in the entire output from the
roles_webserver_start state. As you can see, it reported back some changes (specif‐
ically, that the service was started up). The important part to note is that the package
was verified before the service was started. While in a setup this small you may be
able to skip the require, there will come a time when you will have to ensure that one
state runs before another. Next, we will talk about how to execute an additional action
only if another state reports a change.

watch: Run Based on Other Changes
Often when you deploy a new version of an application, you will need to restart the
application to pick up these changes. The watch statement will execute additional
states if any change is detected. We are going to create a fake website consisting of a
single file. (You can easily extrapolate this idea to a package with many configuration
files.) We are going to add another state: sites:

State Ordering | 61

[vagrant@master ~]$ cat /srv/salt/file/base/sites/init.sls
sites_first:
 file.managed:
 - name: /usr/share/nginx/html/first.html
 - source: salt://sites/src/first.html
 - user: www
 - mode: 0644
 service.running:
 - name: nginx
 - watch:
 - file: /usr/share/nginx/html/first.html

And the single file we are going to manage:

[vagrant@master ~]$ cat /srv/salt/file/base/sites/src/first.html
<html>
<head><title>First Site</title></head>
<body>
<h3>First Site</h3>
</body></html>

Last, we need to add this new state to the top file so that the given host(s) will always
have it applied on a highstate:

[vagrant@master ~]$ cat /srv/salt/file/base/top.sls
base:
 'os:CentOS':
 - match: grain
 - default.vim-enhanced

 'os:Ubuntu':
 - match: grain
 - default.vim

 'minion1.example':
 - roles.webserver
 - sites

 'minion2.example':
 - users.dba

 'minion3.example':
 - users.dba
 - users.qa

 'minion4.example':
 - users.all

As you can see, we have added this state only to minion1 for the moment. We need to
execute a highstate on this host to get the new site (aka file) onto that host. Before we
actually run this new state, let’s discuss a way to test states using test=true. You can
add an argument of test=true to various state functions—most notably, state.sls

62 | Chapter 4: Configuration Management: Salt States

and state.highstate. Before we run our highstate, let’s look at the new site state
and what happens when we add the test flag:

[vagrant@master ~]$ sudo salt minion1.example state.sls sites test=true
minion1.example:

 ID: sites_first
 Function: file.managed
 Name: /usr/share/nginx/html/first.html
 Result: None
 Comment: The file /usr/share/nginx/html/first.html is set to be changed
 Started: 21:59:40.821641
 Duration: 243.354 ms
 Changes:

 newfile:
 /usr/share/nginx/html/first.html

 ID: sites_first
 Function: service.running
 Name: nginx
 Result: None
 Comment: Service is set to be restarted
 Started: 21:59:41.093111
 Duration: 25.794 ms
 Changes:

Summary

Succeeded: 2 (unchanged=2, changed=1)
Failed: 0

Total states run: 2

The test=true flag is very handy for debugging any issues you
may see with state ordering.

Running a highstate with the same flag will give very similar results:

[vagrant@master ~]$ sudo salt minion1.example state.highstate test=true
minion1.example:

 ID: packages_vim
 Function: pkg.installed
 Name: vim-enhanced
 Result: True
 Comment: Package vim-enhanced is already installed.
 Started: 22:04:16.955372

State Ordering | 63

 Duration: 786.249 ms
 Changes:
<snip>

 ID: sites_first
 Function: file.managed
 Name: /usr/share/nginx/html/first.html
 Result: None
 Comment: The file /usr/share/nginx/html/first.html is set to be changed
 Started: 22:04:17.774924
 Duration: 4.676 ms
 Changes:

 newfile:
 /usr/share/nginx/html/first.html

 ID: sites_first
 Function: service.running
 Name: nginx
 Result: None
 Comment: Service is set to be restarted
 Started: 22:04:17.807615
 Duration: 26.997 ms
 Changes:

Summary

Succeeded: 6 (unchanged=2, changed=1)
Failed: 0

Total states run: 6

Now, we simply run the highstate without the test flag and have our new site
deployed:

[vagrant@master ~]$ sudo salt minion1.example state.highstate
minion1.example:
<snip>

 ID: roles_webserver_start
 Function: service.running
 Name: nginx
 Result: True
 Comment: The service nginx is already running
 Started: 22:06:47.380502
 Duration: 27.698 ms
 Changes:

 ID: sites_first
 Function: file.managed
 Name: /usr/share/nginx/html/first.html
 Result: True
 Comment: File /usr/share/nginx/html/first.html updated

64 | Chapter 4: Configuration Management: Salt States

 Started: 22:06:47.409228
 Duration: 290.492 ms
 Changes:

 diff:
 New file
 mode:
 0644
 user:
 www

 ID: sites_first
 Function: service.running
 Name: nginx
 Result: True
 Comment: Service restarted
 Started: 22:06:47.731534
 Duration: 337.565 ms
 Changes:

 nginx:
 True

Summary

Succeeded: 6 (changed=2)
Failed: 0

Total states run: 6

We can now do a simple test to verify the site is working:

[vagrant@master ~]$ curl 172.31.0.21/first.html
<html>
<head><title>First Site</title></head>
<body>
<h3>First Site</h3>
</body></html>

As you can see, the Nginx service was restarted. At the top of the inserted text, you
can see that the state to verify the service is running (roles/webserver/start.sls
== roles_webserver_start) was verified as already running. But, thanks to our
watch statement, Nginx was restarted. (You can see it in the state with the
sites_first ID.) You can play with this by simply updating the source file (/srv/salt/
file/base/sites/src/first.html) and rerunning the highstate.

State Ordering | 65

The watch functionality uses a function named mod_watch inside
the state module. Not all states have such a method defined. If a
state does not, then it will fall back to using a require. You should
verify that any state where you use a watch directive has a
mod_watch method declared.

Odds and Ends
This book touches on just a few of the different parts of requisite states. There are just
a couple more you should be aware of: order and failhard. When we looked at the
detailed state of a highstate, we saw there was an order attribute in the data structure.
Salt uses this internally for bookkeeping of the states. Specifically, Salt uses order to
track the order of each state as it is parsed from the SLS files. There are a couple of
options for order that may be beneficial.

First, if you want to enforce that a certain state runs first, you can add the order: 1
declaration to your state. Salt will see this and put that state at the top of the list:

[vagrant@master ~]$ cat /srv/salt/file/base/run_first.sls
run_first:
 cmd.run:
 - name: 'echo "I am run first."'
 - order: 1

[vagrant@master ~]$ cat /srv/salt/file/base/top.sls
<snip>
 'minion4.example':
 - users.all
 - run_first

[vagrant@master ~]$ sudo salt minion4.example state.highstate
minion4.example:

 ID: run_first
 Function: cmd.run
 Name: echo "I am run first."
 Result: True
 Comment: Command "echo "I am run first."" run
 Started: 23:47:18.232285
 Duration: 10.165 ms
 Changes:

 pid:
 15305
 retcode:
 0
 stderr:

 stdout:
 I am run first.

66 | Chapter 4: Configuration Management: Salt States

<snip>
Summary

Succeeded: 6 (changed=1)
Failed: 0

Total states run: 6

Try removing the order line and then see what the order is. Related to this is the dec‐
laration of order: last. As the name suggests, it will make sure that the given state is
run last.

Note that using the various requisite states is preferred over using the order
command.

The last tidbit is the failhard option. You can add failhard: True to any state. If
that state fails to run for any reason, then the entire state (which includes a highstate)
will immediately stop. This can prove very useful if you have a service that is abso‐
lutely required for your infrastructure to work. If there is any problem deploying this
service, stop immediately. You can also add failhard as a global option in the minion
configuration.

cmd.run is very powerful, and it is tempting to use it often. How‐
ever, there is a caveat here. As you can see, the various requisite
states can add a lot of power in ordering your states the way you
need. But they need to be able to see any changes in states. Also, the
test=true command-line argument can help you determine
exactly what will happen when a state is run. But cmd.run will
always report a change because it will run a command. It cannot
peer into that command to determine if a particular shell script
actually makes any changes or not. As a result, you should use
cmd.run in your states only as a last resort.

Docker and Salt
Docker has gained a lot interest since its initial release in 2013. It combines several
aspects of the Linux operating system to create a portable container that provides
resource isolation. This layer of abstraction makes it easier to deploy the same appli‐
cation in multiple environments: development, staging, and production. However,
there is a small cost. While not as heavyweight as a complete operating system
deployed via a virtual machine, there is a process that manages the deployed contain‐
ers. This is another process that needs to be managed and monitored.

Salt works with Docker through the docker-ng execution module and the dockerio
state module. The details of these modules are beyond the scope of this book.

State Ordering | 67

2 The dockerio execution module is currently being deprecated.

However, given the high level of interest in Docker containers, we felt it necessary to
mention it and encourage you to read up on the ever-evolving state of these modules.2

Summary
States are a way for you to define how you want a host, or a set of hosts, to look. You
define individual states, like adding a user or installing a package, and then tie them
all together using the top file. The top file uses the exact same targeting mechanisms
we saw in Chapter 2. You can also define the order in which states run using various
requisite states, such as require and watch. But this is only the beginning of what
states can do. We will gain significantly more power when we add the templating
engine Jinja in Chapter 6. In the same chapter you will learn how to write your own
states.

68 | Chapter 4: Configuration Management: Salt States

CHAPTER 5

Minion Data/Master Data

Salt runs on top of other systems—for example, the operating system. But even the
operating system runs on top of the hardware. These systems contain a great deal of
information that Salt can leverage. Salt’s name comes from the fact that there are little
bits of information like grains of salt.

Grains Are Minion Data
Grains are calculated when the minion starts. Therefore, they are considered static
pieces of data. This is great for information like the version of the operating system or
the number of cores in the CPU. This data doesn’t change often, and when it does, it
likely requires a restart of one of the underlying systems, thus a restart of the minion
as well.

This data is all generated on the minion itself. It is then presented to the master for
various targeting operations. The Salt minion will have a number of grains set up by
default. You can add to them by including a static list or by writing some Python
code.

Performing Basic Grain Operations
Let’s look at some of the default grains already configured. We can simply list all of
these grains on a minion with grains.ls:

[vagrant@master ~]$ sudo salt master.example grains.ls
master.example:
 - SSDs
 - cpu_flags
 - cpu_model
 - cpuarch
 - domain

69

 - fqdn
 - fqdn_ip4
 - fqdn_ip6
 - gpus
 - host
 - hwaddr_interfaces
 - id
 - ip4_interfaces
 - ip6_interfaces
 - ip_interfaces
 - ipv4
 - ipv6
 - kernel
 - kernelrelease
 - locale_info
 - localhost
 - lsb_distrib_codename
 - lsb_distrib_id
 - lsb_distrib_release
 - master
 - mem_total
 - nodename
 - num_cpus
 - num_gpus
 - os
 - os_family
 - osarch
 - oscodename
 - osfinger
 - osfullname
 - osmajorrelease
 - osrelease
 - osrelease_info
 - path
 - ps
 - pythonexecutable
 - pythonpath
 - pythonversion
 - saltpath
 - saltversion
 - saltversioninfo
 - selinux
 - server_id
 - shell
 - virtual
 - zmqversion

As you can see, there is a lot of data available via grains. The preceding example is just
the list of keys. We can use grains.items to list all of the keys and their values. Let’s
just look at a single value for a moment. A call to grains.item os will show the value

70 | Chapter 5: Minion Data/Master Data

of the os grain. To simplify the output a little, we will also introduce an option to the
salt command: --out=txt:

[vagrant@master ~]$ sudo salt * grains.item os --out=txt
minion2.example: {'os': 'CentOS'}
minion3.example: {'os': 'Ubuntu'}
minion4.example: {'os': 'Ubuntu'}
minion1.example: {'os': 'CentOS'}
master.example: {'os': 'CentOS'}

We have been using this command for a while now, especially in Chapter 4 in our top
file. Now we want to focus on grains, including setting some of our own.

Setting Grains
We have been using the minion IDs directly to configure them. But this is a little
cumbersome. If we had to add a host explicitly every time we created or changed one,
it would be extremely tedious. We can use grains to set our own metadata about a
host. And then we can target our hosts based on combinations of that data.

Back in Chapter 3, we created a table that listed our minions and some metadata
about them. For convenience, we’ve reproduced that here in Table 5-1.

Table 5-1. Minion IDs, types, and roles

Minion ID Type Role

minion1.example Production (prod) Web server

Application server

minion2.example Production (prod) Database server

minion3.example Staging (stage) Web server

Application server

Database server

minion4.example Development (dev) Web server

Application server

Database server

Let’s use this table to set some grains on each minion.

There are several ways to set grains. Right now, we are going to simply set the grains
from the Salt master itself. We will set two grains: myenv and roles:

Grains Are Minion Data | 71

[vagrant@master ~]$ sudo salt -E 'minion(1|2).*' grains.setval myenv prod
minion2.example:

 myenv:
 prod
minion1.example:

 myenv:
 prod
[vagrant@master ~]$ sudo salt 'minion3.*' grains.setval myenv stage
minion3.example:

 myenv:
 stage
[vagrant@master ~]$ sudo salt 'minion4.*' grains.setval myenv dev
minion4.example:

 myenv:
 dev

[vagrant@master ~]$ sudo salt 'minion1.*' grains.setval roles \
'[webserver,appserver]'
minion1.example:

 roles:
 - webserver
 - appserver
[vagrant@master ~]$ sudo salt 'minion2.*' grains.setval roles \
'[database]'
minion2.example:

 roles:
 - database
[vagrant@master ~]$ sudo salt -E 'minion(3|4).*' grains.setval roles \
'[webserver ,appserver,database]'
minion3.example:

 roles:
 - webserver
 - appserver
 - database
minion4.example:

 roles:
 - webserver
 - appserver
 - database

You will notice we made use of a Perl compatible regular expression (PCRE) match
using the -E flag.

Now, we can query all of these roles with grains.item:

72 | Chapter 5: Minion Data/Master Data

http://www.pcre.org/

[vagrant@master ~]$ sudo salt * grains.item myenv roles
minion2.example:

 myenv:
 prod
 roles:
 - database
minion4.example:

 myenv:
 dev
 roles:
 - webserver
 - appserver
 - database
minion3.example:

 myenv:
 stage
 roles:
 - webserver
 - appserver
 - database
minion1.example:

 myenv:
 prod
 roles:
 - webserver
 - appserver
master.example:

This data is written into a file, /etc/salt/grains, so that Salt will retain this data across
restarts and even reboots of the operating system. Like so much of Salt, this is a sim‐
ple YAML file:

[vagrant@minion1 ~]$ cat /etc/salt/grains
myenv: prod
roles:
- webserver
- appserver

You can also set values in the minion’s configuration file, /etc/salt/minion, by adding it
to the grains: declaration.

Targeting with Grains in the Top File
When we first explored the top file, we used grains for the operating system depen‐
dencies, but we listed each minion individually for things like users. We can now
rewrite the top file using grains:

Grains Are Minion Data | 73

[vagrant@master ~]$ cat /srv/salt/file/base/top.sls
base:
 'os:CentOS':
 - match: grain
 - default.vim-enhanced

 'os:Ubuntu':
 - match: grain
 - default.vim

 'roles:webserver':
 - match: grain
 - roles.webserver
 - sites

 'roles:database':
 - match: grain
 - users.dba

 'myenv:stage':
 - match: grain
 - users.qa

 'myenv:dev':
 - match: grain
 - users.all
 - run_first

We have removed all of the targets with minion IDs and replaced them with the rele‐
vant grains. We can verify this using state.show_top:

[vagrant@master ~]$ sudo salt minion4* state.show_top
minion4.example:

 base:
 - default.vim
 - roles.webserver
 - sites
 - users.dba
 - users.all
 - run_first

There are a few changes. For example, all of the states that were targeted only to
minion1 are now targeted to all minions with the grain roles set to the value web
server. You can see how this is much easier to manage than having to add every min‐
ion individually.

Grains are a very powerful way of assigning metadata to hosts. But they are mostly
static. Next, we will introduce pillar data, which is meant to be more dynamic.

74 | Chapter 5: Minion Data/Master Data

Pillars Are Data from the Master
The first part of this chapter talked about grains—data that is set on the minion. As
you’ve learned, grains are extremely powerful and can be matched in state files or via
the Salt command line. The biggest drawback is that they are meant to be relatively
static data. What happens if you have data that changes? Pillars can solve that prob‐
lem. Pillar data is stored on the master. But the data is available only for the given
minion. So you can have the same key but with different values for different minions.
A given minion can only see its own pillar data; it cannot see any pillar data for other
minions. Since the channel between the master and the minion is encrypted, pillar
data can be thought of as secure to a minion. (Remember that this data is only as
secure as your Salt master.)

Querying Pillar Data
Querying pillar data is almost exactly the same as querying grains:

[vagrant@master ~]$ sudo salt minion4.example pillar.items
minion4.example:

 master:

 __pillar:
 True
 __role:
 master
<snip>
 id:
 minion4.example
<snip>

There is a lot more, but it is all under a key called master. These are actually the mas‐
ter’s configuration settings. However, you will notice the id set is specific to this
minion.

The output of pillar.items can be a little large with the master’s
configuration data. This can be disabled with the pillar_opts con‐
figuration value in the master’s configuration. Set this to False, and
the output of pillar.items should be a little more manageable.
But there is a lot of data in there that can be very useful.

Let’s start adding our own data to the pillar. We have been adding the users based on
what role each minion played. Initially, we set this explicitly for each minion and then
you saw how to use grains to be more efficient. Now, we will use pillar data to set the
list of users for each host. Like most of Salt’s data, simple pillar data can be stored in a
basic YAML file. First, let’s set the pillar root in the master’s configuration:

Pillars Are Data from the Master | 75

[vagrant@master ~]$ cat /etc/salt/master.d/pillar.conf
pillar_roots:
 base:
 - /srv/salt/pillar/base

You will need to restart the salt-master daemon process to pick up that change.

The setup of pillar data is very similar to that of the state files. The pillar file also
needs a top file; it contains targeting information just as with the top file for states:

[vagrant@master ~]$ cat /srv/salt/pillar/base/top.sls
base:
 '*':
 - default

Next, we’ll create a very simple default with some test data, just to get our feet wet:

[vagrant@master ~]$ cat /srv/salt/pillar/base/default.sls
my_data: some data for stuff

We can create some user data for each group of users. Let’s create a pillar that con‐
tains all users, one for just the staging users, and then a specific one for the DBA:

[vagrant@master ~]$ cat /srv/salt/pillar/base/users/all.sls
users:
 wilma: 2001
 fred: 2002
 barney: 2003
 betty: 2004
[vagrant@master ~]$ cat /srv/salt/pillar/base/users/stage.sls
users:
 wilma: 2001
 barney: 2003
 betty: 2004
[vagrant@master ~]$ cat /srv/salt/pillar/base/users/dba.sls
users:
 wilma: 2001

So far this looks very similar to the states we saw in the previous chapter. However,
there is a big difference: you cannot call a pillar file individually like we did with
state.sls. Rather, the entire collection of files is compiled together to create one large
data set available to the minion. So we need a top.sls file to pull it all together:

[vagrant@master ~]$ cat /srv/salt/pillar/base/top.sls
base:
 '*':
 - default

 'G@myenv:prod and G@roles:database':
 - match: compound
 - users.dba

 'myenv:stage':
 - match: grain

76 | Chapter 5: Minion Data/Master Data

 - users.stage

 'myenv:dev':
 - match: grain
 - users.all

We can now query the user pillar data for every minion:

[vagrant@master ~]$ sudo salt * pillar.item users
minion3.example:

 users:

 barney:
 2003
 betty:
 2004
 wilma:
 2001
minion4.example:

 users:

 barney:
 2003
 betty:
 2004
 fred:
 2002
 wilma:
 2001
minion2.example:

 users:

 wilma:
 2001
minion1.example:

master.example:

This is all great, but it seems to duplicate the data we already have in the state files.
This discussion is just meant to introduce pillar data.

In“Introduction to Jinja” on page 83, we introduce the templating
language Jinja, which will allow us to pull all of this together.

Pillars Are Data from the Master | 77

Querying Other Sources with External Pillars
The pillar system provides a data layer, but the data must all be in YAML files within
the pillar file tree. Often, you will have data in other data sources. You can query these
other systems using external pillars (ext_pillar). The external pillar system has sev‐
eral built-in options for querying these other systems. The built-ins range from
MySQL to Git to Amazon’s S3. In order to keep things simple, we are going to look at
the cmd_yaml module.

The cmd_yaml external pillar simply runs a command and then parses the output as
YAML and adds it to the pillar data. As with all pillars, external pillars are run on the
master, not the minions. As a result, the command only needs to be available on your
master. Also, since it just needs to be available to the Salt master somewhere on the
filesystem, it does not need to be anywhere within the file layout we have discussed.
(For example, it does not have to be in the file_roots or pillar_roots directory.) We will
create a very simple bash script to return the list of users:

[vagrant@master ~]$ cat /srv/salt/scripts/user-pillar.sh
#!/bin/bash
echo "users:"
echo " app: 9001"

Earlier, we said that the data that comes from the external pillar is added to the pillar
data. Salt will merge data from the external pillar into the existing pillar data. Since
we already have our users defined, let’s just add another user we want on all hosts:
app.

Let’s look at the users for the minion that has all users defined: minion4:

[vagrant@master ~]$ sudo salt minion4.example pillar.item users
minion4.example:

 users:

 app:
 9001
 barney:
 2003
 betty:
 2004
 fred:
 2002
 wilma:
 2001

As we’ve said, using pillar data does not appear to be very useful at the moment. We
have merely duplicated data in the state files and in the pillar files. However, we will
remedy this in Chapter 6 with the default templating engine, Jinja. But before heading
there, we should briefly mention a few data options other than YAML and Jinja.

78 | Chapter 5: Minion Data/Master Data

Renderers Give Data Options
Until now, we have focused on the default file formats. Specifically, all of the files we
have edited have been in YAML. Since Salt is all written in Python, everything will
eventually be translated into Python data structures. As long as the core Salt code
receives data in a format it understands, it doesn’t matter how that data is edited or
what format any files are in. The core Salt code will translate formats using renderers.

Rendering directly from YAML is simple enough. However, the default case also
includes support for the powerful templating engine Jinja. When Salt needs data,
either from a state file (SLS) or from a pillar, the file is first parsed using the templat‐
ing engine. At that point, the file should be in a data format that Salt understands.
(Again, in the default case the data is in YAML.) It is important to understand these
two phases since you can change either of them.

As of version 2014.1, Salt ships with support for the combinations shown in
Table 5-2.

Table 5-2. Templating engines and data formats currently supported in Salt

Templating engine Data format

Jinja YAML

Mako YAML

Wempy YAML

Jinja JSON

Mako JSON

Wempy JSON

The default renderer is specified in the master config with the renderer config
option.

If you have not edited the default configuation that ships with Salt,
you should see the default case commented out:

#renderer: yaml_jinja

The different combinations of data formats and templating engines give you a num‐
ber of options. This should make it easier to integrate the data sources with third par‐
ties or even to write your own code given your company’s preferences.

Renderers Give Data Options | 79

This book focuses only on using YAML with Jinja templates. (As noted, we will give a
quick introduction to Jinja in the next chapter.) But just to give you a feel for the
power it offers, we will compose a very simple example using JSON.

We don’t want to change how any of our current files are read. So we are not going to
change the master’s configuration option (renderer). Rather, we can change the ren‐
derer on a file-by-file basis using the shebang syntax (#!) common to Unix scripts:

[vagrant@master ~]$ cat /srv/salt/file/base/json.sls
#!json
{
 "json_test": {
 "cmd.run": [
 {
 "name": "echo \"Json test\""
 }
]
 }
}

The first line contains the shebang type directive. (Notice that it is not a full path, just
the renderer to use.) The rest of the file is standard JSON we’ve laid out with diction‐
aries and lists just as we did with YAML. Let’s look at how Salt will interpret this file:

[vagrant@master ~]$ sudo salt master* state.show_sls json
master.example:

 json_test:

 __env__:
 base
 __sls__:
 json
 cmd:
 |_

 name:
 echo "Json test"
 - run
 |_

 order:
 10000

This is exactly the same as our other files. This example further illustrates that all of
these files are just data to Salt. YAML is simply the default format.

Now, let’s run this state to verify that it all works as expected:

80 | Chapter 5: Minion Data/Master Data

[vagrant@master ~]$ sudo salt master* state.sls json
master.example:

 ID: json_test
 Function: cmd.run
 Name: echo "Json test"
 Result: True
 Comment: Command "echo "Json test"" run
 Started: 17:34:03.534634
 Duration: 7.617 ms
 Changes:

 pid:
 4262
 retcode:
 0
 stderr:

 stdout:
 Json test

Summary

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1

While there are several options that ship with Salt, including the ability to add any
renderer you prefer, we are going to use YAML (and, soon, Jinja templates) through‐
out this book. But as long as Salt can get the data into its own data structure, you have
plenty of options for how you store that data.

Renderers Give Data Options | 81

CHAPTER 6

Extending Salt: Part I

If you were to put this book down right now, you should be able to successfully use
Salt to solve a wide variety of problems. A standard install of Salt provides a number
of execution modules that can allow you to maintain a number of off-the-shelf com‐
ponents. When combined with states and pillars, these standard tools allow you to
accomplish a great deal. However, you will likely need to do something that Salt does
not handle by default, whether it’s building a custom module to manage some soft‐
ware you wrote at your company, or creating a custom grain that makes available
some company-specific piece of data. Each piece we have discussed thus far can be
customized. In this chapter, we introduce a few elements to customizing some of the
data focused on a specific minion.

Introduction to Jinja
The data files that Salt uses have a very straightforward syntax. In fact, in the default
case, they are just YAML files. But in the end, they are just data. They don’t allow for
any complex logic. This is where Jinja templates can help.

Jinja is a very powerful templating engine best known for its use in the Flask web
framework. Jinja is complicated, and is a language in its own right. We only intend to
introduce just enough of the Jinja language so you are able to add logic to your data
files. A comprehensive tutorial is beyond the scope of this book. However, the Jinja
site has great documentation.

Jinja Basics
Let’s start with a simple example so you can get a feel for Jinja:

{% set my_name = 'Barney' %}
Hi {{ my_name }}!

83

http://jinja.pocoo.org/
http://jinja.pocoo.org/

This will give the following output:

Hi Barney!

The first thing you should notice is the use of the curly brace as the delimiter. Also
notice how, when we set the variable, we used, {% … %}; on the next line, when we
needed to display the variable, we wrote {{ … }}. The first format is used for various
control structures (e.g., for loops, if blocks, etc.), while the latter (double brace) syn‐
tax makes for a print statement. Lastly, there is {# … #}. This is a simple comment
block.

Before we continue, let’s discuss how various statements can be tested. Since the plan
is to incorporate with Salt, we can use a Salt command. Earlier, we used the
state.show_sls function when viewing states. We can use the same function now to
show the output of Jinja commands. Let’s create a “dummy” state file:

[vagrant@master ~]$ cat /srv/salt/file/base/jinja/simple_var.sls
{% set simple_var = 'a simple variable' %}
jinja_var:
 cmd.run:
 - name: echo "Simple var is {{ simple_var }}"

Then we can run that and see the output of the Jinja variables:

[vagrant@master ~]$ sudo salt master.example state.show_sls jinja.simple_var
master.example:

 jinja_var:

 __env__:
 base
 __sls__:
 jinja.simple_var
 cmd:
 |_

 name:
 echo "Simple var is a simple variable"
 - run
 |_

 order:
 10000

The output of show_sls for the purpose of demonstrating Jinja
templates is a little too verbose. We will be parsing the output to
show only the most relevant material. Just keep in mind that when
you run the command as shown, you should see quite a bit more
output.

84 | Chapter 6: Extending Salt: Part I

As you can see, the substitution for simple_var happens when the state is compiled,
not when it is run.

Jinja has a lot more than just strings. It also has lists (arrays):

[vagrant@master ~]$ cat /srv/salt/file/base/jinja/list.sls
{% set list1 = ['one', 'two', 'three'] %}
jinja_list:
 cmd.run:
 - name: echo "List is {{ list1 }}"

[vagrant@master ~]$ sudo salt master.example state.show_sls jinja.list
master.example:

 jinja_list:
<snip>
 name:
 echo "List is ['one', 'two', 'three']"
<snip>

You can view a single item from a list just as you do in Python:

[vagrant@master ~]$ cat /srv/salt/file/base/jinja/list_item.sls
{% set list1 = ['one', 'two', 'three'] %}
jinja_list_item:
 cmd.run:
 - name: echo "List item 2 is {{ list1[2] }}"

[vagrant@master ~]$ sudo salt master.example state.show_sls jinja.list_item
master.example:

 jinja_list_item:
<snip>
 name:
 echo "List item 2 is three"
<snip>

Jinja includes dictionaries (hashes) as well. And, just as with the list type, you can
refer to an individual item using the same syntax as you would use in Python:

[vagrant@master ~]$ cat /srv/salt/file/base/jinja/dict.sls
{% set my_dict = {'first': 'value 1', 'second': 'value 2'} %}
jinja_dict_first:
 cmd.run:
 - name: echo "First item is {{ my_dict['first'] }}"

[vagrant@master ~]$ sudo salt master.example state.show_sls jinja.dict
master.example:

 jinja_dict_first:
<snip>
 name:
 echo "First item is value 1"
<snip>

Introduction to Jinja | 85

You will find that a lot of the syntax in Jinja is very similar to Python. A number of
Python functions are also supported, for example, listing the keys of a dictionary:

[vagrant@master ~]$ cat /srv/salt/file/base/jinja/keys.sls
{% set my_dict = {'first': 'value 1', 'second': 'value 2'} %}
jinja_keys:
 cmd.run:
 - name: echo "Keys are {{ my_dict.keys() }}"

[vagrant@master ~]$ sudo salt master.example state.show_sls jinja.keys
master.example:

 jinja_keys:
<snip>
 name:
 echo "Keys are ['second', 'first']"
<snip>

Basic control structures

Jinja has a number of standard control structures, for example, if statements and for
loops. Since they are control structures, they need to be encapsulated within the
{% ... %} syntax. Until now, Jinja statements should look very familiar to a Python
programmer. Lists and dictionaries have a similar look and feel. Even some of the
methods of both are exposed. But with control structures, things start to differ.

You have to remember that Jinja is a general-purpose templating language. It is used
to generate HTML pages, among other things. As a result, the “indentation” method
of delimiting blocks of text does not work. So control structures need to explicitly
mark the end of the block.

Let’s look at a simple example of an if statement:

[vagrant@master ~]$ cat /srv/salt/file/base/jinja/if.sls
{% set my_bool = true %}
jinja_if:
 cmd.run:
 {% if my_bool %}
 - name: 'echo "It is true."'
 {% else %}
 - name: 'echo "Is it not true."'
 {% endif %}

[vagrant@master ~]$ sudo salt master.example state.show_sls jinja.if
master.example:

 jinja_if:
<snip>
 name:
 echo "It is true."
<snip>

86 | Chapter 6: Extending Salt: Part I

The basic keywords should look very familiar: if, else, and endif.

Remember that the renderer will pass any files through the Jinja
templating engine before parsing them as YAML and then as a Salt
data structure. As a result, if Jinja removes any statements, Salt
itself will never see them. In the preceding example, if there were a
syntax error in the else block, the renderer would never see it.

Next is a simple for loop. As with the if statement, this should look very familiar:

[vagrant@master ~]$ cat /srv/salt/file/base/jinja/for.sls
{% set my_list = ['a', 'b', 'c'] %}
{% for current in my_list %}
jinja_for_{{ current }}:
 cmd.run:
 - name: "echo 'Current value is {{ current }}'"
{% endfor %}

[vagrant@master ~]$ sudo salt master.example state.show_sls jinja.for
master.example:

 jinja_for_a:
<snip>
 name:
 echo 'Current value is a'
<snip>
 jinja_for_b:
<snip>
 name:
 echo 'Current value is b'
<snip>
 jinja_for_c:
<snip>
 name:
 echo 'Current value is c'
<snip>

Other Jinja statements

There are just a few other Jinja statements that will come in handy: macro, include,
and import. The macro statement allows several statements to be executed as a single,
logical block. You can think of a macro as a mini-template. It allows you to collect
many things together and then refer to them using a single Jinja command. You can
define a number of input arguments and then execute the necessary code. Here’s a
very simple example to emphasize this point:

[vagrant@master ~]$ cat /srv/salt/file/base/jinja/macro.sls
{% macro exclaim(string) -%}
{{ string + '!!!' -}}
{%- endmacro %}

Introduction to Jinja | 87

jinja_macro:
 cmd.run:
 - name: "echo {{ exclaim('Yay') }}"

[vagrant@master ~]$ sudo salt master.example state.show_sls jinja.macro
master.example:

 jinja_macro:
<snip>
 name:
 echo Yay!!!
<snip>

One of the first things you’ll notice is that there isn’t a return from the macro. It sim‐
ply prints the output, which is then propagated back to the caller. You should also
notice the dashes (-) near the various delimiters. A dash signals Jinja to remove the
end-of-line character from the text. Remember that Jinja is a templating engine, so it
is designed to add the text as given, including end-of-line characters. Thus far, this
hasn’t been a problem. But if those end-of-line characters are added to the preceding
SLS, then the text following the colon appears on the following line, and that is not
valid YAML. Rest assured, this is a bit of an edge case. Just be aware of how Jinja
behaves and that the dash can help in situations like the preceding one.

The include statement allows you to pull in rendered data from other files:

[vagrant@master ~]$ cat /srv/salt/file/base/jinja/include.sls
{% include 'jinja/some_vars.jinja' with context %}

[vagrant@master ~]$ cat /srv/salt/file/base/jinja/some_vars.jinja
{% set var = 'the string' %}
some_var_include:
 cmd.run:
 - name: "echo 'From include, var is {{ var }}'"

[vagrant@master ~]$ sudo salt master.example state.show_sls jinja.include
master.example:

 some_var_include:
<snip>
 name:
 echo 'From include, var is the string'
<snip>

Remember that files are included via Jinja before Salt can parse the
data. Be careful to not duplicate state IDs.

Be careful: files that are pulled in via the include statement are rendered. So the vari‐
ables used in the second file will not be available to any files that include that file. If

88 | Chapter 6: Extending Salt: Part I

1 Refer to the following page for more information on Salt-specific details regarding Jinja: http://bit.ly/jinja_salt.

2 Salt will also expose opts, sls, and env into Jinja templates.

you would like to use the Jinja variables, use the import statement. Again, the format
is reminiscent of Python code:

[vagrant@master ~]$ cat /srv/salt/file/base/jinja/vars.jinja
{% set my_var = 'more strings' %}

[vagrant@master ~]$ cat /srv/salt/file/base/jinja/from.sls
{% from "jinja/vars.jinja" import my_var as the_var with context %}
jinja_from:
 cmd.run:
 - name: "echo 'The var is {{ the_var }}'"

[vagrant@master ~]$ sudo salt master.example state.show_sls jinja.from
master.example:

 jinja_from:
<snip>
 name:
 echo 'The var is more strings'
<snip>

Multiple variables can be included as well. Just list them, separated by commas, much
like you would in Python.

This discussion only scratches the surface of Jinja’s capabilities, but it is sufficient for
introducing the power Jinja can bring to your states and pillars. Refer to the Jinja
website for more details on its features.1

Templating with Jinja
So far, we have just shown the basics of Jinja with very little Salt-specific features. Salt
does add a number of additional features on top of Jinja. Salt will expose grains, pillar
data, and even execution modules within Jinja files.2

Let’s take a very simple example of using the minion ID:

[vagrant@master ~]$ cat /srv/salt/file/base/jinja/grains.sls
{% set name = grains['id'] %}
jinja_grains:
 cmd.run:
 - name: "echo 'My name is {{ name }}'"

[vagrant@master ~]$ sudo salt master.example state.show_sls jinja.grains
master.example:

 jinja_grains:
<snip>

Templating with Jinja | 89

http://bit.ly/jinja_salt

 name:
 echo 'My name is master.example'
<snip>

Grains and pillar data are available within Jinja templates as their own dictionaries.

The execution modules are available within a dictionary named salt:

[vagrant@master ~]$ cat /srv/salt/file/base/jinja/cmd.sls
{% set who = salt['cmd.run']('whoami') %}
jinja_cmd:
 cmd.run:
 - name: "echo 'Whoami gives {{ who }}'"

[vagrant@master ~]$ sudo salt master.example state.show_sls jinja.cmd
master.example:

 jinja_cmd:
<snip>
 name:
 echo 'Whoami gives root'
<snip>

You’ll notice that the execution module is given as the value in the salt dictionary.
Following that come any arguments that may be required.

Earlier we discussed importing variables from other Jinja files. This allows you to
share variables with a number of different state files or in pillar definitions. If you
want to be able to use the Salt-provided dictionaries, however, you need to tell Jinja to
import the context. At the end of your import (or from) statement, be sure to add the
phrase with context. This will alert the parsing libraries to expose all of Salt’s data
structures to the child, or imported, file.

Filtering by Grains
With all of the execution modules available, you have a significant number of options
for creating very sophisticated states and pillars. However, one specific command
needs to be called out: grains.filter_by. This command allows you to take a data
set and parse out the piece needed based on a grain value:

[vagrant@master ~]$ cat /srv/salt/file/base/show_users.sls
{% set all_users = {
 'master.example': [],
 'minion1.example': [],
 'minion2.example': ['wilma'],
 'minion3.example': ['wilma', 'barney', 'betty'],
 'minion4.example': ['wilma', 'barney', 'betty', 'fred'],
} %}
{% set cur_users = salt['grains.filter_by'](all_users, grain='id') %}
show_users:

90 | Chapter 6: Extending Salt: Part I

 cmd.run:
 - name: "echo 'User list is {{ cur_users }}'"

[vagrant@master ~]$ sudo salt minion4* state.sls show_users
minion4.example:

 ID: show_users
<snip>
 stdout:
 User list is [wilma, barney, betty, fred]
<snip>

The dictionary all_users lists some values, with key being the minion ID. Remem‐
ber that the default install of Salt sets up a number of grains for you to use. The grains
provide data such as the name of the operating system, the number of CPUs in the
host, and even the version of Salt running. When they are combined with the
grains.filter_by function, you can build a data set that can be customized to any
number of special cases.

Custom Execution Module
We have talked a lot about how Salt can be customized in a bunch of different ways.
Jinja provides a powerful templating engine that, when combined with Salt’s features,
exposes a great deal of functionality. However, it is likely that at some point you will
need to automate a task that would be very difficult with Jinja, states, and the host of
other powerful Salt features. Fortunately, Salt provides a way for you to simply write
some Python code and execute it on every host.

No programming book would be complete without a “Hello, world” example:

hello.py
"""
A collection of simple examples.
"""

def world():
 """
 The simplest of examples.

 CLI Example::

 salt '*' hello.world
 """
 return 'Hello, world.'

The preceding code includes some simple examples of docstrings.
Using docstrings within your custom modules is considered a best
practice, and it is highly encouraged. You can simply use sys.doc
with your module name to see the output.

Custom Execution Module | 91

The first obvious question is “Where do I put this file?”

Up until now, file_roots has contained only state files and maybe a few Jinja files.
But there are a couple of “reserved directories”: _modules, _grains, and _states.
The first one, _modules, is where execution modules are kept. (The other two
will be discussed shortly.) Create the preceding file, hello.py, and place it
in /srv/salt/files/base/_modules. If you try to execute it, you will likely see the
following:

[vagrant@master ~]$ sudo salt master.example hello.world
master.example:
 'hello.world' is not available.

Earlier, we mentioned that the minions may need to sync to see, as an example, pillar
data. With states, Salt will sync as part of the process of executing the state. However,
this is not true with modules. You will need to sync module changes (including the
addition of new modules) using the saltutil command:

[vagrant@master ~]$ sudo salt * saltutil.sync_modules
minion4.example:
 - modules.hello
minion3.example:
 - modules.hello
minion1.example:
 - modules.hello
minion2.example:
 - modules.hello
master.example:
 - modules.hello

This will return any changed modules that were loaded onto the respective minion.
Since each minion received our new module, let’s run it:

[vagrant@master ~]$ sudo salt * hello.world
minion2.example:
 Hello, world.
minion1.example:
 Hello, world.
minion4.example:
 Hello, world.
minion3.example:
 Hello, world.
master.example:
 Hello, world.

92 | Chapter 6: Extending Salt: Part I

The function saltutil.sync_modules will copy the modules from
the master to the cache directory on each minion. Once the files
are copied over, the loader will need to find the public functions. To
do this, it runs parts of the code at this point. For example, any
code not in a method will be run during this load. Be careful about
the code you do not put into methods. Also, this means there is a
delay between when the sync completes and when you are actually
able to run the new module. This delay is usually just a minute or
two.

As with Jinja templates, Salt adds some custom data into the module’s namespace:
grains ,salt, and opts. They are all dictionaries, and as with Jinja, the salt dictio‐
nary exposes the entire wealth of execution modules. The opts dictionary gives you
access to various minion configuration settings. Let’s add a simple call to the grains
dictionary:

[vagrant@master ~]$ cat /srv/salt/file/base/_modules/hello.py
"""
A collection of simple examples.
"""
def world():
 """
 The simplest of examples.

 CLI Example::

 salt '*' hello.world
 """
 return 'Hello, world.'

def id():
 """
 Better example using the minion id.

 CLI Example::

 salt '*' hello.id
 """
 id = __grains__['id']
 return 'Hello, {0}.'.format(id)

[vagrant@master ~]$ sudo salt * hello.id
minion3.example:
 Hello, minion3.example.
minion4.example:
 Hello, minion4.example.
minion2.example:
 Hello, minion2.example.
minion1.example:
 Hello, minion1.example.

Custom Execution Module | 93

master.example:
 Hello, master.example.

(Don’t forget to sync the modules with salt * saltutil.sync_modules and give it
a minute to load the code.)

Let’s see what the documentation looks like:

[vagrant@master ~]$ sudo salt-call sys.doc hello
local:

 hello.id:

 Better example using the minion id.

 CLI Example::

 salt '*' hello.id

 hello.world:

 The simplest of examples.

 CLI Example::

 salt '*' hello.world

There’s one last bit of housekeeping to do: logging. It is good form to import the log‐
ging module and give some feedback as to how your new module is running:

[vagrant@master ~]$ cat /srv/salt/file/base/_modules/hello.py
"""
A collection of simple examples.
"""
import logging
logger = logging.getLogger(__name__)

def world():
 """
 The simplest of examples.

 CLI Example::

 salt '*' hello.world
 """
 return 'Hello, world.'

def id():
 """
 Better example using the minion id.

 CLI Example::

94 | Chapter 6: Extending Salt: Part I

 salt '*' hello.id
 """
 id = __grains__['id']
 logger.debug('Found grain id: {0}'.format(id))
 return 'Hello, {0}.'.format(id)

The preceding example does not conform to PEP 8 (Python
Enhancement Proposals) standards. We are minimizing the
amount of blank lines to help keep the output concise for the book,
but please use the proper PEP standards when coding.

In order to see the output from the logger, you need to use salt-call. When the
module executes on each minion, only the return data is sent back to the master. Any
logging output will be sent to the minion’s logs (depending on your configuration).
But you can run salt-call with log-level set to debug to see the full output.
(Remember, the minion runs the code, so you will need to sync your modules again
before running salt-call.)

[vagrant@master ~]$ sudo salt-call --log-level=debug hello.id
<snip>
[DEBUG] Found grain id: master.example
[DEBUG] LazyLoaded .returner
[DEBUG] Decrypting the current master AES key
[DEBUG] Loaded minion key: /etc/salt/pki/minion/minion.pem
local:
 Hello, master.example.

Custom State Modules
Custom execution modules give you a great deal of power and have a very easy-to-
understand format. However, integrating with the state system exposes a lot more
possibilities. The format of a custom state module has a few more rules you should
follow.

As we previously mentioned, there is a reserved subdirectory inside the file root
called _states. The first big difference with custom states, as opposed to execution
modules, is that custom state modules should respect the test=True argument. Next,
the format of the returned data structure has to be a dictionary with the following
keys: name, changes, result, and comment. The name and comment fields should be
pretty self-explanatory. The changes key has as its value a dictionary with the changes
listed. Lastly, result just gives a Boolean value (True or False) so that Salt knows
whether the state succeeded or not:

Custom State Modules | 95

[vagrant@master ~]$ more /srv/salt/file/base/_states/custom.py
import os

def enforce_tmp(name, contents=None):
 """
 Enforce a temp file has the desired contents.

 name
 The name of the file to change. (Under '/tmp'.)
 contents
 The value you will be storing.
 """

 return_dict = {
 'name': name,
 'changes': {},
 'result': False,
 'comment': ''
 }

 tmp_file = os.path.join('/tmp', name)
 file_ok = False
 content_ok = False
 file_contents = None

 if os.path.isfile(tmp_file):
 file_ok = True
 with open(tmp_file, 'r') as fp:
 file_contents = fp.read()
 file_contents = file_contents.rstrip('\n')

 if file_contents == contents:
 content_ok = True

 comments = ""
 if file_ok:
 comments += 'File exists ({0})\n'.format(tmp_file)
 else:
 comments += 'File created ({0})\n'.format(tmp_file)
 if content_ok:
 comments += 'Contents correct ({0})\n'.format(file_contents)
 else:
 comments += 'Contents updated ({0})\n'.format(contents)
 return_dict['comment'] = comments

 # Check if this is a test run, if so do not change anything.
 if __opts__['test'] == True:
 return_dict['result'] = None
 return_dict['changes'] = {}
 if not content_ok:
 return_dict['comment'] = {
 'contents': {

96 | Chapter 6: Extending Salt: Part I

 'old': file_contents,
 'new': contents
 }
 }
 return return_dict

 if not content_ok:
 with open(tmp_file, 'w') as fp:
 contents += "\n"
 fp.write(contents)
 return_dict['result'] = True
 return_dict['changes'] = {
 'contents': {
 'old': file_contents,
 'new': contents
 }
 }
 else:
 return_dict['changes'] = {}
 return_dict['result'] = True

 return return_dict

Then the accompanying state file:

[vagrant@master ~]$ cat /srv/salt/file/base/custom.sls
custom_state:
 custom.enforce_tmp:
 - name: foo
 - contents: bar

The custom.enforce_tmp takes as its arguments the name of a file (which will live
in /tmp) and then the desired contents of that file.

We want to make sure there is no file named /tmp/foo, after which we can run our
new state (custom) that uses our new state execution function:

[vagrant@master ~]$ ls /tmp/foo
ls: cannot access /tmp/foo: No such file or directory
[vagrant@master ~]$ sudo salt master.example state.sls custom
master.example:

 ID: custom_state
 Function: custom.enforce_tmp
 Name: foo
 Result: True
 Comment: File created (/tmp/foo)
 Contents updated (bar)
 Started: 07:10:41.950351
 Duration: 0.532 ms
 Changes:

 contents:

Custom State Modules | 97

 new:
 bar

 old:
 None

Summary

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1

[vagrant@master ~]$ cat /tmp/foo
bar

While the custom execution module was far easier to write, hopefully you can see the
power you gain by writing a custom state module and then using it in your states. We
could have easily written our simple example using an execution module, but then we
wouldn’t have had the additional power that comes with the test=true flag:

[vagrant@master ~]$ sudo salt master.example state.sls custom test=true
master.example:

 ID: custom_state
 Function: custom.enforce_tmp
 Name: foo
 Result: None
 Comment: File exists (/tmp/foo)
 Contents correct (bar)
 Started: 07:13:50.174386
 Duration: 0.63 ms
 Changes:

Summary

Succeeded: 1 (unchanged=1)
Failed: 0

Total states run: 1

Custom Grains
As you have seen, grains provide a powerful method to annotate hosts. But up until
now, you had to manually set these grains on every host. However, with custom
grains, you can have your minions automatically set their grains.

98 | Chapter 6: Extending Salt: Part I

It’s important to remember that grains are meant to contain rela‐
tively static information. You can set grains using the
grains.setval function. For data that changes often, or that is
very specific to a small number of hosts, you may want to consider
using pillar data instead.

As with custom modules, there is a specific directory for grains modules. All of your
custom grains need to go into the _grains subdirectory within the file_roots directory.
(In this specific case, this means that all grains should be in the directory /srv/salt/
files/base/_grains.)

Earlier, we set the grains for our hosts manually using the grains.setval function.
We are going to move that to a custom grains module. This example is very brute-
force; each minion is listed with the grains we want to set. But you can easily extrapo‐
late this concept to query some kind of metadata store that lists all of the various
pieces of metadata related to your hosts:

[vagrant@master ~]$ cat /srv/salt/file/base/_grains/my_grains.py
"""
Custom grains for the example hosts.
"""
import platform
import logging
logger = logging.getLogger(__name__)

def _get_hostname():
 hostname = platform.node()
 logger.debug('Using hostname: {0}'.format(hostname))
 return hostname

def set_myenv():
 """
 Set the 'myenv' grain based on the host name.
 """
 grains = {}
 hostname = _get_hostname()
 if hostname.startswith('minion1'):
 grains['myenv'] = 'prod'
 elif hostname.startswith('minion2'):
 grains['myenv'] = 'prod'
 elif hostname.startswith('minion3'):
 grains['myenv'] = 'stage'
 elif hostname.startswith('minion4'):
 grains['myenv'] = 'dev'
 return grains

def set_roles():
 """
 Set the 'roles" grain based on the host name.
 """

Custom Grains | 99

 grains = {}
 hostname = _get_hostname()
 if hostname.startswith('minion1'):
 grains['roles'] = ['webserver', 'appserver']
 elif hostname.startswith('minion2'):
 grains['roles'] = ['database']
 elif hostname.startswith('minion3'):
 grains['roles'] = ['webserver', 'appserver', 'database']
 elif hostname.startswith('minion4'):
 grains['roles'] = ['webserver', 'appserver', 'database']
 return grains

Without a custom execution module, the naming was very simple. If the method
were public (i.e., the name did not have a leading underscore, _), then that method
(or function) would be available to be called via the salt command. Also, with cus‐
tom state modules, you have to call the function by module name and function. Cus‐
tom grains work a little bit differently. When a custom grain module is loaded, all of
the public functions are executed and all of their return data (dictionaries) is merged
into the complete set of grains. As a result, we have written our custom grain with
three different functions. The first, _get_hostname(), is considered private and is not
directly called via the grains loader, but is available for use elsewhere in that module.
The next two, set_myenv() and set_roles(), are both called whenever the custom
grains module is loaded. There is nothing special about the method names; Salt will
simply run every nonprivate function.

The first thing we need to do is to remove our custom grains:

[vagrant@master ~]$ sudo salt * cmd.run 'rm /etc/salt/grains'
minion1.example:

minion4.example:

minion2.example:

minion3.example:

master.example:
 rm: cannot remove `/etc/salt/grains': No such file or directory

If you remember, we did not set any grains on the master. So it
should not be a surprise that the grains file was not found.

Next, we should restart the minions to be extra sure there are no remnants of the old
grains lying around:

[vagrant@master ~]$ sudo salt * service.restart salt-minion

100 | Chapter 6: Extending Salt: Part I

Don’t forget that you must sync the grains in order to get your new grains module out
to all of the minions. You can sync directly using saltutil.sync_grains or saltu
til.sync_all. Also, grains modules will be synced automatically whenever
state.highstate is run:

[vagrant@master ~]$ sudo salt * saltutil.sync_grains

Then we can call grains.item to make sure all of our custom grains are available
again:

[vagrant@master ~]$ sudo salt * grains.item myenv roles
minion2.example:

 myenv:
 prod
 roles:
 - database
minion3.example:

 myenv:
 stage
 roles:
 - webserver
 - appserver
 - database
minion1.example:

 myenv:
 prod
 roles:
 - webserver
 - appserver
minion4.example:

 myenv:
 dev
 roles:
 - webserver
 - appserver
 - database
master.example:

We have talked about a couple of different ways to set grains on hosts. Before we con‐
tinue, we should quickly mention the order of precedence for how grains are set:

1. Core grains (from Salt itself)
2. Custom grain modules
3. Custom grains in /etc/salt/grains

Custom Grains | 101

4. Custom grains in the minion configuration

Therefore, if you want to ensure that a grain will not be overwritten, you will want to
put it directly into your minion configuration. (You could create a specific file to
make it easier to manage: /etc/salt/minion.d/grains.conf.)

It’s important to remember that this code will be executed every time the grains are
calculated. Be careful not to execute code that will consume a great deal of system
resources or take too long to complete.

External Pillars
Back in Chapter 5, we saw how we could grab pillar data that was outside the pil
lar_roots by using an external pillar (ext_pillar). While Salt comes with several
ext_pillar modules, there are always cases where your data is not in a system where
it is easy to export the data into YAML or JSON. Writing a custom external pillar
module gives you the flexibility to retrieve data from any source as long as you can
write some Python to get at it.

If you recall, one of the chief aspects of pillar data is that it is run on the master, but
the data is specific to every minion. In our earlier example with cmd_yaml, there
wasn’t any option to target the data by minion, so every minion got the same list of
users. This is a limitation in the cmd_yaml module, specifically. Let’s expand on that
basic concept so we can set the users per host.

Just as a point of fact, the cmd_yaml module is meant to be an
example. So it is not surprising that it uses only the most basic of
functionality. Like most of the examples in this book, it is intended
as a framework from which you can build your own solutions.

The first thing we need to do is set the extension_modules configuration option in
the master’s config:

[vagrant@master ~]$ cat /etc/salt/master.d/ext-modules.conf
extension_modules: /srv/salt/modules

(Don’t forget to restart the salt-master service.)

Next, let’s add our new external pillar:

[vagrant@master ~]$ more /srv/salt/modules/pillar/my_users.py

def __virtual__():
 return True

__all_users = {
 'wilma': {'uid': 2001, 'full': 'Wilma Flintstone'},

102 | Chapter 6: Extending Salt: Part I

 'fred': {'uid': 2002, 'full': 'Fred Flintstone'},
 'barney': {'uid': 2003, 'full': 'Barney Rubble'},
 'betty': {'uid': 2004, 'full': 'Betty Rubble'},
 'app': {'uid': 9001, 'full': 'App User'},
}

def ext_pillar(minion_id, pillar, *args, **kwargs):
 """
 Return the list of users for the given minion.
 """
 users = {}
 users['app'] = __all_users['app']
 if minion_id == 'minion1.example':
 pass
 elif minion_id == 'minion2.example':
 users['wilma'] = __all_users['wilma']
 elif minion_id == 'minion3.example':
 users['wilma'] = __all_users['wilma']
 users['barney'] = __all_users['barney']
 users['betty'] = __all_users['betty']
 elif minion_id == 'minion4.example':
 users['wilma'] = __all_users['wilma']
 users['barney'] = __all_users['barney']
 users['betty'] = __all_users['betty']
 users['fred'] = __all_users['fred']
return {'my_users': users}

Again, this is very brute-force. We are not trying to be overly cute; we are explicitly
listing the users for each minion ID. The goal is to show how you can dynamically
generate your data and feed it into the pillar system. Once you have the basic concept,
you can expand it to call whatever source of truth you use to manage your users.

Please note that we are returning the user list into my_users. Back in Chapter 4, we
were storing the user data in a pillar simply named users. Using a different key name
will make it easier to demonstrate how we are migrating from the old way to the new
way.

Next, we need to add our new, custom, external pillar to our list of external pillars:

[vagrant@master ~]$ more /etc/salt/master.d/pillar.conf
pillar_roots:
 base:
 - /srv/salt/pillar/base

ext_pillar:
 - my_users: []
- cmd_yaml: bash /srv/salt/scripts/user-pillar.sh

As you can see, we have added the my_users external pillar with a single argument of
[] (empty list).

External Pillars | 103

When Salt loads the modules defined via extension_modules, it is looking for a
specifically named method: ext_pillar(). In this particular case, the ext_pillar
configuration value is going to make Salt look for my_users.py inside the direc‐
tory /srv/salt/modules (defined by extension_modules). Inside that file, Salt will exe‐
cute the method named ext_pillar. After we restart the salt-master service, we
should be able to see our new pillar data:

[vagrant@master ~]$ sudo salt * pillar.item my_users
minion3.example:

 my_users:

 app:

 full:
 App User
 uid:
 9001
 barney:

 full:
 Barney Rubble
 uid:
 2003
 betty:

 full:
 Betty Rubble
 uid:
 2004
 wilma:

 full:
 Wilma Flintstone
 uid:
 2001
minion4.example:

 my_users:
<snip>

This means we can clean up the hardcoded user lists we had defined in the pillar
roots. We can combine this user list with some Jinja to significantly simplify our
users state. First, let’s update the user state itself:

[vagrant@master ~]$ cat /srv/salt/file/base/users/init.sls
{% set users = salt['pillar.get']('my_users', {}) %}
{% for login in users.keys() %}
{% set cur_user = users.get(login, {}) %}
{% set uid = cur_user.get('uid', none) %}
{% set full_name = cur_user.get('full', none) %}

104 | Chapter 6: Extending Salt: Part I

users_{{ login }}:
 user.present:
 - name: {{ login }}
 - fullname: {{ full_name }}
 - uid: {{ uid }}
{% endfor %}

include:
 - .www

The users state now pulls the user list and all of the necessary data (like the UID)
directly from the pillar data. The first line sets a dictionary to all of the user data we
just added via the external pillar. It then simply loops through each value, creates a
state ID (e.g., users_wilma), and then sets the rest of the data necessary for the
user.present state.

This leads to a significantly simpler top file for our state tree:

[vagrant@master ~]$ cat /srv/salt/file/base/top.sls
base:
 '*':
 - default
 - users

 'roles:webserver':
 - match: grain
 - roles.webserver
 - sites

Summary
One of the biggest advantages of Salt is that it is very simple to extend many of its
parts. We can use a templating language, such as Jinja, to add some basic data manip‐
ulations into our states and pillars. But that is just the very beginning of what we can
customize. Execution modules lie at the very core of what Salt provides. Writing cus‐
tom modules means we can add any logic to help us manage our hosts. We can even
write custom grains and pillars to add even more advanced logic to our data sources
or even query any data source we like. But, again, this is only the beginning of what
we can customize. Before we continue, we need to look at some additional capabilities
available on the master.

Summary | 105

CHAPTER 7

More on the Master

In the previous chapter we started to discuss the various ways that Salt can be exten‐
ded. But that was just the beginning. Before we can continue, however, we need to
take a moment to discuss more details about the master. We have briefly mentioned
some of these details, but we need a more concrete foundation before tackling addi‐
tional ways of extending Salt.

So far we have focused on the master simply coordinating jobs that run on the min‐
ions. The master provides data via pillars and serves as a central host from which you
can run commands. But up until now, most of the commands have run on the min‐
ions themselves. The master has even more power available to you. There are, among
others, systems that coordinate multiple jobs in a single command as well as systems
that listen to data that comes from the minions.

The first topic we will look at is runners. A runner is very similar in concept to an
execution module. However, execution modules run on the minions, while runners
execute on the master. The minions are isolated and do not have access to much of
the Salt infrastructure. The master, on the other hand, has access to everything. This
includes all of the minions themselves, the job cache, pillar data, and more. There‐
fore, a runner can run a command on one minion and, depending on the results from
that minion, can then run a different command on other minions.

After we discuss runners, we will discuss a “higher-level” state system. The orches
trate runner allows you to define a number of states that run on a single minion,
but the results of those states affect the states that follow. This is similar to requisite
states, except that a failure in an orchestrate runner will affect other minions.

Lastly, we will discuss the event system. Salt works by sending messages over a data
bus (using ZeroMQ). Other applications can utilize this system to send their own
messages. The reactor system allows you to listen for those events (on the master)

107

1 The doc.runner actually does interact with the minions as of version 2015.2.0. This isn’t necessary, and that
runner should probably be rewritten. It’s an important detail if you look at the code, but it doesn’t really affect
this example.

and then execute commands on the master as a result. This allows the minions to
affect the entire Salt system, but only in ways that are predefined.

Runners
The wealth of tools available with grains and modules has proven how powerful Salt
can be. But those commands are specific to a single host. Even in small environments,
there is almost always a need to coordinate actions across many hosts. For example,
you may not want to set up a web server until its corresponding database is ready.
Runners execute on the master and interact with the master process. Thus, they have
access to all of the minions and can handle the kind of coordination with multiple
hosts that you will likely need.

Let’s explore a very simple runner just to see how it’s different from the modules and
states we have discussed previously. One of the earliest commands we exposed with
execution modules was one to read documentation, sys.doc. There is something
similar for runners called doc.runner. As we mentioned back in Chapter 2, runners
are called with the salt-run command:

[vagrant@master ~]$ sudo salt-run doc.runner
cache.clear_all:

 Clear the cached pillar, grains, and mine data of the targeted minions

 CLI Example:

 salt-run cache.clear_all
<snip>

The first thing to notice is that there are no minions listed (i.e., there is no target
defined on the command line). Runners don’t necessarily interact with the minions at
all.1 We are going to introduce a couple of very handy runners: manage and jobs. The
manage runner will help show the status of your minions. The second one, jobs, gives
us the ability to interact with the job cache. Since the job cache is completely con‐
tained on the master, there is no interaction with the minions when we’re using
the jobs runner. Those two runners show the power of interacting closely with either
the minions (as with the manage runner) or something that is totally contained on the
master (e.g., the jobs runner).

108 | Chapter 7: More on the Master

Manage Minions
The manage runner will give you a number of handy routines to gather information
about your minions.

Let’s use the manage.up runner to find all of the minions that are up and reporting to
the master:

[vagrant@master ~]$ sudo salt-run manage.up
master.example
minion1.example
minion2.example
minion3.example
minion4.example

One thing should stand out right away: the format is not the same as when we run the
salt command. As we mentioned earlier, the salt-run command has no targets. You
do not list the minions where the command runs because the very definition of a
runner is that it runs on the master only. In the case of manage.up, the Salt master
simply sends a test.ping out to all minions and reports back all of the minions that
respond.

Now, let’s look at the manage.down runner. To make it interesting, first disable the Salt
minion on the master, then run manage.down:

[vagrant@master ~]$ sudo service salt-minion stop
Stopping salt-minion daemon: [OK]

[vagrant@master ~]$ sudo salt-run manage.down
master.example

In the example with manage.up, things are pretty simple: the Salt master sends out a
test.ping to every minion and reports back all of the minions that respond. But in
the case of manage.down, how do you know what minions are not available? In this
specific case, the manage.down runner uses the list of Salt keys that have been
accepted on the master to get a list of all known minions, and then calls manage.up
and subtracts the two sets of minions.

Fortunately, there is another runner that combines both actions to give you the “sta‐
tus” of every minion: manage.status:

[vagrant@master ~]$ sudo salt-run manage.status
down:
 - master.example
up:
 - minion1.example
 - minion2.example
 - minion3.example
 - minion4.example

Runners | 109

Don’t forget to start the salt-minion daemon back up:

[vagrant@master ~]$ sudo service salt-minion start
Starting salt-minion daemon: [OK]

The takeaway here is that since runners run only on the master, you can utilize all of
the functionality available on the master. In the case of the manage.down and man
age.status runners, they use the data available in Salt’s key lists to determine the
state of every minion. Also, you can interact with all of Salt’s modules and states to
grab information from the minions. With the manage.up runner, the test.ping mod‐
ule is used to determine which minions are available.

Manage Jobs
When we run code using the salt command, a job is posted to the pub-sub bus (via
ZeroMQ) and the minions will respond to that job. But if there are a lot of people
running commands against a number of minions, how does the master keep all of
that data straight? Simply put, the master creates a job ID when the command is sent
to ZeroMQ. The minions will then include that ID when responding back to the mas‐
ter. The jobs runners make it easier to look at jobs.

A common use of the jobs runners is to look at the status of a job that is taking a long
time to complete. We can simulate a slow-running job using the test.sleep module.

Let’s run test.sleep with a value of 20. Then, let’s Ctrl-C out of the command:

[vagrant@master ~]$ sudo salt * test.sleep 20
^CExiting on Ctrl-C
This job's jid is:
20150226174911628089
The minions may not have all finished running and any remaining minions
will return upon completion. To look up the return data for this job
later run:
salt-run jobs.lookup_jid 20150226174911628089

When a salt command exits prematurely, it will give the user the value of the job ID
so that any return data can be examined later. It’s important to remember that even if
the command exits (either by exceeding the timeout or by being forcibly quit) the
master process will continue to receive data from the minions and record it.

In the preceding example, the job ID (jid) is given to the user, along with the exact
command to use to examine any data returned by that job. If we run that exact com‐
mand again, but this time also run the Salt runner jobs.lookup_jid, we can see the
data available in the jobs cache:

[vagrant@master ~]$ sudo salt * test.sleep 20
^CExiting on Ctrl-C
This job's jid is:
20150226175035298308

110 | Chapter 7: More on the Master

The minions may not have all finished running and any remaining minions
will return upon completion. To look up the return data for this job
later run:
salt-run jobs.lookup_jid 20150226175035298308

Wait 20 seconds for the preceding command to complete, and then you should see
the data returned from that job:

[vagrant@master ~]$ sudo salt-run jobs.lookup_jid 20150226175035298308
master.example:
 True
minion1.example:
 True
minion2.example:
 True
minion3.example:
 True
minion4.example:
 True

Try rerunning the command, but with a higher sleep time. Then query the job cache
(with jobs.lookup_jid) right away:

[vagrant@master ~]$ sudo salt * test.sleep 100
^CExiting on Ctrl-C
This job's jid is:
20150226175421153996
The minions may not have all finished running and any remaining minions
will return upon completion. To look up the return data for this job
later run:
salt-run jobs.lookup_jid 20150226175421153996
[vagrant@master ~]$ sudo salt-run jobs.lookup_jid 20150226175421153996
[vagrant@master ~]$

The jobs.lookup_jid command didn’t return any data. What happened?

Remember, the job cache has the return data from the minions. The goal of the
jobs.lookup_jid runner is to display that return data. If you did not see anything
come back (as in the example), then it is likely you didn’t wait long enough for the
minions to finish the command; in this case, you didn’t wait 100 seconds for the com‐
mand to complete and return data to the master. If you wait a minute or two and run
it again, you will likely see the following:

[vagrant@master ~]$ sudo salt-run jobs.lookup_jid 20150226175421153996
master.example:
 True
minion1.example:
 True
minion2.example:
 True
minion3.example:
 True

Runners | 111

minion4.example:
 True

This all assumes you know the job ID with your data. There is a jobs.list_jobs
runner that will show all of the jobs that are still in the job cache:

[vagrant@master ~]$ sudo salt-run jobs.list_jobs
20150226174108241385:

 Arguments:
 Function:
 test.ping
 StartTime:
 2015, Feb 26 17:41:08.241385
 Target:
 *
 Target-type:
 glob
 User:
 sudo_vagrant
20150226174113251518:

<snip>

The format of the output should be pretty clear. The first line contains the job ID,
followed by the Salt module called, when the module was started, and so on.

The Salt master keeps only a limited number of jobs in the job
cache. The default is 24 hours. This value can be modified, but you
should be careful when changing it. If you go too high, the jobs
runner can take a very long time to run because of all of the data it
has to search. If it’s too low, the master may clean out job data for
jobs that have not completed.

The orchestrate Runner
We have seen how useful the state system is for managing a number of hosts, but so
far, we’ve only worked with a single host at a time. There is a feature in Salt for man‐
aging state runs across multiple minions: the orchestrate runner.

The basic format of orchestration SLS files is almost the same as a standard state
(SLS) file. However, since the execution action may span hosts and may need to be
coordinated among hosts, we need a centralized process to manage the actions. This
is the very definition of a runner. The main command is state.orchestrate, and as
with all runners, we need to run it using the salt-run command, not the salt com‐
mand. While the basic formats of the SLS files are nearly the same, since they are con‐
trolled via a runner, they need to know which minions to act upon. So, the
orchestration SLS files have a target attribute, similar to the top file (top.sls).

112 | Chapter 7: More on the Master

You may see references to the OverState runner. That has been
deprecated as of this writing and will be removed in a future
release. But all of the functionality available in the OverState run‐
ner is provided via the orchestrate runner.

Earlier, we showed how to update the version of the web software. We did this with a
state file: sites. Now, we want to make sure the database is updated first. If the data‐
base update should fail, then we want the web servers to remain at their current ver‐
sion of the software:

[vagrant@master ~]$ cat /srv/salt/file/base/orch/web.sls
{% set myenv = 'stage' %}
data_update:
 salt.state:
 - tgt: 'G@roles:database and G@myenv:{{ myenv }}'
 - tgt_type: compound
 - sls: database.update

web_update:
 salt.state:
 - tgt: 'G@roles:webserver and G@myenv:{{ myenv }}'
 - tgt_type: compound
 - sls: roles.webserver
 - require:
 - salt: data_update

As you can see, we are using the require clause to make sure the database update
runs first. Again, since it is a runner, the SLS file needs to have the targeting informa‐
tion available:

[vagrant@master ~]$ sudo salt-run state.orchestrate orch.web
master.example_master:

 ID: data_update
 Function: salt.state
 Result: True
 Comment: States ran successfully. Updating minion3.example.
 Started: 04:47:26.664236
 Duration: 2239.498 ms
 Changes:
 minion3.example:

 ID: database_update
 Function: file.managed
 Name: /tmp/data.txt
 Result: True
 Comment: File /tmp/data.txt updated
 Started: 04:47:28.536697
 Duration: 14.715 ms
 Changes:

The orchestrate Runner | 113

 diff:
 New file

 Summary

 Succeeded: 1 (changed=1)
 Failed: 0

 Total states run: 1

 ID: web_update
 Function: salt.state
 Result: True
 Comment: States ran successfully.
 Started: 04:47:28.904207
 Duration: 190.568 ms
 Changes:

Summary

Succeeded: 2 (changed=1)
Failed: 0

Total states run: 2

The Event System
The event system is at the very core of how Salt communicates. The minions will send
events (via the ZeroMQ pub-sub interface) and the master will react to those events.
You have complete access to the event system. You can view other events as they come
into the master, or you can even fire your own events. Before we start sending our
own events, however, let’s look at the basic structure of an event.

Events are very simple data structures. There is an ID for every message and then its
corresponding data. The name or ID of the event is called the tag. The format of the
tag looks very similar to that of a file in a filesystem. It is a hierarchical format where
the different levels are separated by slashes. Just as in a filesystem, each level of the tag
represents an increasingly specific namespace. All communication by Salt itself is
namespaced with a leading salt/ in the tag. More levels follow, each separated by a
slash (/), just like in a filesystem.

114 | Chapter 7: More on the Master

We will only be discussing the format of the events in the context of
Salt itself. However, Salt uses standard open source software in its
core. The communication between the hosts is over ZeroMQ, as we
have discussed. In addition, the messages are serialized using
msgpack. This is why we don’t discuss looking at the messages in
raw ZeroMQ format. This is certainly possible, but it is beyond the
scope of this book.

As an example, after the master has sent a job to the minion and the minion has per‐
formed whatever action is needed, the minion will return data to the master. The tag
for the event returned to the master would look like:

salt/job/20141201051607849201/ret/minion1.example

If we break that down, we would see the following:

top level: salt
next level: job
job ID: 20141201051607849201
type: ret (return data)
minion ID: minion1.example

By namespacing all of Salt’s internal events to begin with salt, you can more easily
write custom events that will not interfere with any Salt events. Also, if you want to
perform your own actions based on Salt’s events, there is a clean format that you can
learn.

The second part of the event data structure is the data itself. This is simply a Python
dictionary. For example, a very simple data portion of an event would look like the
following:

'{some_key: the_value}'

Now, let’s send an event from a minion to the master. The simplest way to fire your
own event is using the command event.send. Since we are running it on the minion
itself, we will need to use the salt-call command:

[vagrant@minion1 ~]$ sudo salt-call event.send example/test \
'{my_key: some_value}'
local:
 True

The arguments should be pretty straightforward: first the tag and then the data. Also,
salt-call returns a True value to let you know the command succeeded.

If you are watching the Salt master’s log, and you have the log level set to DEBUG, you
should see something like the following in the log:

2015-04-13 03:59:17,903 [salt.utils.event][DEBUG]
Sending event - data = {'tgt_type': 'glob', 'fun_args': ['example/test',
'{my_key: some_value}'], 'jid': '20150413035917901437', 'return': True,

The Event System | 115

http://msgpack.org/

'retcode': 0, 'success': True, 'tgt': 'minion1.example', 'cmd': '_return',
'_stamp': '2015-04-13T03:59:17.903245', 'arg': ['example/test',
'{my_key: some_value}'], 'fun': 'event.send', 'id': 'minion1.example'}

Being able to send messages using the exact same data bus as Salt uses gives us a
wealth of power to extend Salt even more. In the next section, we will discuss how
you can run commands when jobs match a pattern, using the reactor system.

The Reactor System
We have just discussed how the various Salt pieces talk to each other using the event
system. The reactor system allows us to perform custom actions on the master when a
certain event comes in. The reactor is broken up into two parts. The first part is asso‐
ciating the various events with actions to be performed. The association is with the
event’s tag mapping to a list of SLS files. These SLS files are specific to the reactor. The
second part of the reactor is setting up the actions in the SLS file.

First, we need to add the mapping of the event’s tag to an SLS file. This is done in the
master’s configuration. Let’s create a file specifically for this purpose:

[vagrant@master ~]$ cat /etc/salt/master.d/reactor.conf
reactor:
- 'example/*':
 - /srv/salt/reactor/track_example.sls

This should be pretty obvious: take any event that has a tag with a top-level name‐
space of example and execute the track_example.sls file.

Let’s record the data into a file so we can see what’s happening:

[vagrant@master ~]$ cat /srv/salt/reactor/track_example.sls
track_example_tag:
 local.file.append:
 - tgt: master.example
 - arg:
 - /tmp/reactor_example.txt
 - {{ data }}

Just like in state files, Salt will expose custom variables (via Jinja) to the SLS file. We
are simply echoing all of the data to a file.

If we send an event via event.send, as before we should see our data get appended
into /tmp/reactor_example.txt. First, since the example uses file.append, we need to
create the file:

[vagrant@master ~]$ touch /tmp/reactor_example.txt

Then we use salt-call event.send:

116 | Chapter 7: More on the Master

[vagrant@minion1 ~]$ sudo salt-call event.send \
 example/test '{my_key: some_value}'
local:
 True

[vagrant@master ~]$ cat /tmp/reactor_example.txt
{'_stamp': '2015-04-13T04:10:53.830594', 'pretag': 'None',
'cmd': '_minion_event', 'tag': 'example/test', 'data': {'__pub_fun':
'event.send', '__pub_pid': 4017, '__pub_jid': '20150413041053408567',
'my_key': 'some_value', '__pub_tgt': 'salt-call'},
'id': 'minion1.example'}

Also, we should see the event data and the subsequent call to the reactor system in the
Salt master logs:

2015-04-13 04:10:54,215 [salt.utils.event][DEBUG] Sending event -
data = {'fun_args': ['/tmp/reactor_example.txt', {'_stamp':
2015-04-13T04:10:53.830594', 'pretag': 'None', 'cmd': '_minion_event',
'tag': 'example/test', 'data': {'__pub_fun': 'event.send', 'my_key':
'some_value', '__pub_jid': '20150413041053408567', '__pub_pid': 4017,
'__pub_tgt': 'salt-call'}, 'id': 'minion1.example'}], 'jid':
'20150413041053960830', 'return': 'Wrote 1 lines to
"/tmp/reactor_example.txt"', 'retcode': 0, 'success': True, 'cmd':
'_return', '_stamp': '2015-04-13T04:10:54.215204', 'fun': 'file.append',
'id': 'master.example'}

2015-04-13 04:10:54,216 [salt.utils.event][DEBUG] Sending event -
data = {'fun_args': ['/tmp/reactor_example.txt', {'_stamp':
'2015-04-13T04:10:53.830594', 'pretag': 'None', 'cmd': '_minion_event',
'tag': 'example/test', 'data': {'__pub_fun': 'event.send', 'my_key':
'some_value', '__pub_jid': '20150413041053408567', '__pub_pid': 4017,
'__pub_tgt': 'salt-call'}, 'id': 'minion1.example'}], 'jid':
'20150413041053960830', 'return': 'Wrote 1 lines to
"/tmp/reactor_example.txt"', 'retcode': 0, 'success': True, 'cmd':
'_return', '_stamp': '2015-04-13T04:10:54.215523', 'fun': 'file.append',
'id': 'master.example'}

The reactor is very powerful, but you should be careful not to over‐
extend it. As of this writing, the reactor is single-threaded. So, you
will want to make the previous SLS example as fast and lightweight
as possible. You want to keep your reactor execution simple so you
don’t tie up necessary resources. Note, this is for the reactor piece
specifically; the state function that is called can be long-running.

Summary
The Salt master does more than just coordinate the running of execution or state
modules among its minions; it also offers higher-level abstractions where you can
programmatically control more of your infrastructure. The event system allows you to
send messages using the same encrypted communication system that the rest of Salt

Summary | 117

uses. Runners offer a way to execute code specific to the master. The code can give
you more insight into the various data elements on the master (such as the job cache),
or can communicate with your minions just like the salt command does. Lastly, the
orchestrate runner allows you to create abstractions using the state system where
the command coordination needs to span multiple minions. These systems allow you
to tie together many of the minion-specific systems to give you more power over all
of your systems as a whole.

118 | Chapter 7: More on the Master

CHAPTER 8

Extending Salt: Part II

We saw earlier how to extend Salt via custom states, modules, and grains. But we can
customize so much more. In this chapter, we will look at the basics of what is avail‐
able with the Python client API. With this API, you can write standalone Python
scripts that call into the Salt infrastructure. We will also touch on how to write cus‐
tom runners.

Python Client API
The Python client API allows you to interact with the Salt code at a much deeper level
than we have seen thus far. There are many ways to import the Salt code into your
own Python scripts. However, using the client API will make sure the infrastructure is
called properly. For example, the client API will make sure access control lists (ACLs)
are not bypassed. We are going to discuss how to write scripts to mimic behavior on
both the master (using the LocalClient API) and the minion (using the Caller API).
First, though, we need to mention the configuration calls.

Reading Configuration Data on a Master and Minion
There are two primary methods for reading configuration data: client_config and
minion_config. The latter should be obvious; it’s used on a minion to parse the min‐
ion’s configuration files. The former, client_config, is actually for reading and pars‐
ing the configuration files for the Salt master. They both return dictionaries. They are
not always required, but using them will give you more insight into what data the
other APIs need.

As we mentioned, the client_config is actually used to read the configuration for
the master. The API call will make sure all of the files in master.d are read as well as
making sure the proper defaults are assigned. Also, since it simply reads the

119

configuration files, it does not require the Salt master to be running. A very simple
example would be listing the ports used by the master:

[vagrant@master ~]$ cat /srv/salt/scripts/show-master-ports.py
#!/usr/bin/env python
import salt.config
_MASTER_CONFIG_FILE = '/etc/salt/master'
master_config = salt.config.client_config(_MASTER_CONFIG_FILE)
print 'Return port: {0}'.format(master_config.get('ret_port'))
print 'Publish port: {0}'.format(master_config.get('publish_port'))

$ /srv/salt/misc/show-master-ports.py
Return port: 4506
Publish port: 4505

Since all of the Salt configuration files are just YAML files, you can add your own
configuration. As long as you don’t use an existing key and you are using valid
YAML, you can add more data to the configuration for your own use. Let’s add a sim‐
ple configuration file to the master.d directory:

[vagrant@master ~]$ cat /etc/salt/master.d/custom.conf
my_custom:
 first_key: this is the first key
 second_key: this is the other key (#2)

Remember that the salt master will read all of the files matching
*.conf in /etc/salt/master.d. You can change the default behavior by
modifying the configuration key default_include:. The location
is relative to the main master configuration file. If you want to add
other files, perhaps in other locations in the filesystem, you can use
the include: directive.

Then we can write a script very similar to the preceding one and extract that data:

[vagrant@master ~]$ cat /srv/salt/scripts/show-custom.py
#!/usr/bin/env python

import salt.config

_MASTER_CONFIG_FILE = '/etc/salt/master'

master_config = salt.config.client_config(_MASTER_CONFIG_FILE)

print 'Custom data: {0}'.format(master_config.get('my_custom'))

[vagrant@master ~]$ /srv/salt/misc/show-custom.py
Custom data:
 {'second_key': 'this is the other key (#2)',
 'first_key': 'this is the first key'}

The use of the minion_config routine is almost identical:

120 | Chapter 8: Extending Salt: Part II

[vagrant@master ~]$ cat /srv/salt/scripts/show-master.py
#!/usr/bin/env python

import salt.config

_MINION_CONFIG_FILE = '/etc/salt/minion'

minion_config = salt.config.minion_config(_MINION_CONFIG_FILE)

print 'Master: {0}'.format(minion_config.get('master'))

[vagrant@master ~]$ /srv/se-book/example-data/extend-2/show-master.py
Master: 172.31.0.11

I (Craig) used the preceding technique to manage the configura‐
tion of out-of-band scripts—specifically, scripts that gathered met‐
rics about each minion and reported back to a centralized service.
All of the minions had to have (slightly) custom configurations.
Since the minion’s configuration files were already managed by
another application, it was simple to add further configuration.

Using the Master Client (LocalClient) API
The LocalClient (aka the master client) API includes a number of different methods.
While we are only going to explore the cmd method here, be aware that there are sev‐
eral others. For example, the batch method will send a command in batches to the
minions. This is very handy if you will be calling a script often and you have concerns
about overwhelming the master. The remaining methods are well documented, and
the following example should give you a sufficient background to explore the other
methods.

We are going to call out to all of the minions and get a list of all of the users on each
system. But rather than display all of them, we are going to show only those that start
with the letter a:

[vagrant@master ~]$ cat /srv/salt/scripts/user-list.py
#!/usr/bin/env python

import getpass
import logging
import sys
import salt.client
import salt.log

salt.log.setup_console_logger()
logger = logging.getLogger(__name__)
logger.setLevel(logging.WARN)

try:

Python Client API | 121

 master_client = salt.client.LocalClient()
 all_users = master_client.cmd('*', 'user.list_users')
except salt.exceptions.EauthAuthenticationError:
 logger.fatal('Could not authenitcate with master.')
 cur_user = getpass.getuser()
 if cur_user != 'root':
 logger.fatal('Trying running as root (sudo).')
 sys.exit(1)

for min in all_users:
 print min
 for user in all_users[min]:
 if user.startswith('a'):
 print " ", user

We’ll start at the top with the imported modules. The one required for the Local
Client is salt.client. This is where all of the client API code is centralized. Next,
you’ll see the initialization of the logging module and then the subsequent call to set
up the console logger. You can simply create your own logger instance, if you prefer.
However, the salt.client code will create its own handlers if there are none present.
This can make it a little difficult to get logging working. Using salt.log.setup_con
sole_logger() will make that much simpler.

Since we are writing a script to interact with the Salt system, and
not extending Salt itself, the logging messages in the script will not
be seen in the master’s logs. This may or may not be what you want.
Just be aware of it.

The important part is the initialization of the LocalClient object. There are no
required arguments. However, if you have your configuration data somewhere other
than /etc/salt/master, you will need to pass that in via a keyword argument: c_path.
Next, there is a call to the cmd method. The format is pretty simple:

First argument: minion targeting string (*)
Second Argument: module to run (user.list_users)

Any additional arguments required by the module call would be in the third and
fourth positions. In the third position would be a list of positional arguments
required by the module. For example, a call to the cmd.run module would look like:

master_client.cmd('*', 'cmd.run', ['uptime'])

If there are any keyword arguments, they would be put into a dictionary and placed
in the fourth position.

Next, you’ll see the exception handling for authentication errors. The different client
APIs will adhere to whatever ACLs you have in place. In our example, only root can

122 | Chapter 8: Extending Salt: Part II

run commands. If we were to run the previous example as an unprivileged user, we
would raise that exception:

[vagrant@master ~]$ /srv/salt/misc/user-list.py
[CRITICAL] Could not authenitcate with master.
[CRITICAL] Trying running as root (sudo).

However, running it as root, we get the output we were looking for:

[vagrant@master ~]$ sudo /srv/se-book/example-data/extend-2/user-list.py
minion4.example
minion3.example
minion2.example
 adm
minion1.example
 adm
master.example
 adm

Remember, we have a couple of Ubuntu hosts, while the others are CentOS. That is
why they did not all return the same data. While this example is slightly contrived, it
does show the power of the LocalClient API. If you cannot quite figure out how to
either target or parse the output in a way you like, the LocalClient API will allow you
to do whatever you need in Python itself.

Using the Caller Client API
The LocalClient API is great for running more code on the master, but if you need to
run something that interacts with the minion, then the Caller client API is what you
need. The Caller client uses the same interfaces as the salt-call CLI, and it is much
simpler than the LocalClient. The only method we are going to discuss here is
function. The format looks very similar to the preceding LocalClient example. For
this example, let’s get a list of all of the grains that begin with os:

[vagrant@master ~]$ cat /srv/salt/scripts/caller-example.py
#!/usr/bin/env python

import logging
import salt.client
import salt.log

salt.log.setup_console_logger()
logger = logging.getLogger(__name__)
logger.setLevel(logging.WARN)

salt_client = salt.client.Caller()
grains = salt_client.function('grains.items')

for grain in grains:
 if grain.startswith('os'):
 print 'Key {0} = {1}'.format(grain, grains.get(grain))

Python Client API | 123

Running it on the master gives us:

[vagrant@master ~]$ sudo /srv/salt/misc/caller-example.py
Key osrelease = 6.6
Key osfinger = CentOS-6
Key osmajorrelease = 6
Key osfullname = CentOS
Key os_family = RedHat
Key oscodename = Final
Key osarch = x86_64
Key osrelease_info = (6, 6)
Key os = CentOS

This should all look very familiar. Again, we start out by importing the salt.client
module, and salt.log and logging to handle the logging aspects. Next, we initialize
the Salt client. Then, we call the function method with a single argument: the name
of the Salt module we want to execute.

The exception handling for authentication was left out for brevity.
It is just as important for the Caller client as for LocalClient,
however.

You might recall when we first discussed the salt-call CLI, there was an option to
not talk back to the master. We can replicate that behavior here, but we need to
amend the basic configuration options. We’ll have to read in the minion configura‐
tion and then add a directive to tell the API to make only local calls:

[vagrant@master ~]$ cat /srv/salt/scripts/caller-local-example.py
#!/usr/bin/env python

import logging
import salt.client
import salt.log
import salt.config

min_config = salt.config.minion_config('/etc/salt/minion')

min_config['file_client'] = 'local'

salt.log.setup_console_logger()
logger = logging.getLogger(__name__)
logger.setLevel(logging.WARN)

salt_client = salt.client.Caller(mopts=min_config)
grains = salt_client.function('grains.items')

for grain in grains:

124 | Chapter 8: Extending Salt: Part II

1 This step is a bit redundant since we set the configuration option extension_modules in “External Pillars” on
page 102. If we wanted to use that setting, then our custom runners would be located at /srv/salt/modules/
runners.

 if grain.startswith('os'):
 print 'Key {0} = {1}'.format(grain, grains.get(grain))

The big difference is that we set the file_client key to local. That is the equivalent
of running salt-call --local.

The preceding code is only a very small taste of what you can do with the Python
client API. There is a significant number of additional customizations available. Next
we will cover writing a custom runner and look at one additional API, the Runner‐
Client.

Custom Runners
Earlier, you learned that we execute a runner on the master using the salt-run CLI
command. A runner can gather data from a number of minions (as we saw with the
various manage runner functions), or it can simply look at data available only on the
master (as we saw with the jobs runner functions). In this section we will explore two
different options for using the runner libraries: writing a custom runner and utilizing
the RunnerClient Python API.

Writing a Custom Runner
Runners are great for command and control. Since they run on the master, they can
communicate to any minion connected to that master and then munge the data in
any way you need. As we stated earlier, the salt-run command does not take a target
as an argument, unlike the salt command. It is up to the code within the runner
itself to determine which, if any, minion it needs to communicate with. We just intro‐
duced the LocalClient API, and now we are going to use it in our runner.

First, however, we need to add a configuration variable to our master. When we intro‐
duced runners, we just used the ones that are a part of Salt. Now that we want to write
our own, we need to tell the Salt master where to find these files. We will add a file,
runner.conf, to the standard master.d configuration directory:

[vagrant@master ~]$ sudo cat /etc/salt/master.d/runner.conf
runner_dirs:
- /srv/salt/runner

As always, we need to restart the master for the configuration to be active.1

Now, let’s add a simple runner:

Custom Runners | 125

[vagrant@master ~]$ cat /srv/salt/runner/monitor.py
#!/usr/bin/env python

import salt.client

def procs(num_procs_raw):
 '''
 Show any minions that are above a certain number of processes.
 '''
 master_client = salt.client.LocalClient()
 num_procs = int(num_procs_raw)
 all_procs = master_client.cmd('*', 'cmd.run', ['ps -e | wc -l'])
 for minion in all_procs.keys():
 cur_procs = int(all_procs[minion])
 if cur_procs > num_procs:
 print 'Minion {0}: {1} > {2}'.format(minion, cur_procs, num_procs)

Just as with the earlier example, we create an instance of LocalClient and then use
the cmd method to run our commands on the minions of interest. Again, we are tar‐
geting all minions (*). You’ll notice that the method definition has an argument
defined. Salt will make sure that any positional arguments defined in your method
are entered when salt-run is called:

[vagrant@master ~]$ sudo salt-run monitor.procs 80
Minion minion1.example: 81 > 80
Minion master.example: 108 > 80

The argument passed in to the salt-run command is then relayed to the runner
code. Salt will ensure that any arguments are available. Here’s a quick example of what
happens when the argument is left out:

[vagrant@master ~]$ sudo salt-run monitor.procs
[ERROR] An un-handled exception was caught by salt's global exception handler:
TypeError: procs() takes exactly 1 argument (0 given)
Traceback (most recent call last):
 File "/usr/bin/salt-run", line 10, in <module>
 salt_run()
<snip>

If you have optional arguments, you can add them as keyword arguments.

The preceding example doesn’t seem that much different from the example of using
LocalClient directly. However, when you use the runner system, you have access to a
number of Salt’s internal data structures. Just as with custom modules, you can cross-
call other Salt routines using the salt dictionary. Also, configuration variables are
available in the opts dictionary. Let’s look at a way we can combine optional keyword
arguments with the dictionaries that Salt provides:

126 | Chapter 8: Extending Salt: Part II

2 The print statements will be redundant in version 2015.2.

[vagrant@master ~]$ cat /srv/salt/runners/vars.py
#!/usr/bin/env python

def show(match=None):
 '''
 Show the various runner data structures.
 '''
 if match:
 print 'Matching: {0}'.format(match)
 for opt in __opts__.keys():
 if match in opt:
 print 'Option found: {0}'.format(opt)
 for cmd in __salt__.keys():
 if match in cmd:
 print 'Command found: {0}'.format(cmd)
 else:
 print 'Showing all.'
 for opt in __opts__.keys():
 print opt
 for cmd in __salt__.keys():
 print cmd

As you can see, we added a keyword argument (match) to the method definition.2 If
that value is present, the runner will print all commands and configuration keys that
match it:

[vagrant@master ~]$ sudo salt-run vars.show match=stat
Matching: stat
Option found: state_auto_order
Option found: state_verbose
Option found: state_aggregate
Option found: state_events
Option found: state_output
Option found: state_top
Command found: state.orch
Command found: state.show_stages
Command found: state.over
Command found: state.sls
Command found: state.orchestrate
Command found: state.event
Command found: manage.status

Next, let’s look at how we can use the RunnerClient API from the Python client API.

Custom Runners | 127

Using the RunnerClient API
We can use the RunnerClient API to call any runner. The API should look familiar at
this point. One key difference is that it requires the master configuration data to be
passed in:

#!/usr/bin/env python

import salt.runner
import salt.config

master_opts = salt.config.client_config('/etc/salt/master')
run_client = salt.runner.RunnerClient(master_opts)

jobs = run_client.cmd('jobs.list_jobs', [])

for job_id in jobs:
 job_data = jobs[job_id]
 print '{0} started at: {1}'.format(job_id, job_data['StartTime'])

$ sudo /srv/salt/misc/job-start.py
20141215050313918564 started at: 2014, Dec 15 05:03:13.918564
20141215000645762060 started at: 2014, Dec 15 00:06:45.762060
20141215064445473318 started at: 2014, Dec 15 06:44:45.473318
<snip>

Summary
Salt provides a variety of ways for us to extend it and to call into it using various APIs.
We have introduced only a few very basic examples so you can have a rough idea of
what is possible. There is a great deal more to explore, and we hope these examples
inspire you to experiment with the other APIs and methods you can use to increase
Salt’s power.

128 | Chapter 8: Extending Salt: Part II

CHAPTER 9

Topology and Configuration Options

The majority of this book has focused on the various ways to use and extend Salt
using a single master controlling multiple minions. But there are other configurations
that give you a great deal of flexibility. Before getting into different topologies, let’s
look at some of the options in the master configuration.

Master Configuration
The configuration for the master has many options. However, this book is not meant
to cover every one in detail. There are a few options in particular that you need to
understand when learning to use Salt.

Directories and Files
Over the previous chapters, we have mentioned various directories used on the mas‐
ter. These directories were necessary to understand in order to extend Salt itself.
There are a few other directories that, most likely, you will not need to modify, but it
is important to know of them and roughly what they do (see Table 9-1).

Table 9-1. Additional directories used on the master

Option key Summary

root_dir The base directory that is prepended to most other directories.

pki_dir The directory that contains all of the minion and master keys. Since it contains both
private and public keys, be careful of the permissions.

cachedir The directory where the job data is stored.

129

Option key Summary

sock_dir The location of the sockets that Salt uses in its communication channels.

log_file The location of the master’s log.

There are a few scenarios where you may want to detour from the defaults—for
example, if you want all of your Salt master configuration and all of its data on a sepa‐
rate disk volume. The pki_dir and the cachedir directories will have a fair number of
reads and writes. If you are having performance problems, you may want to explore
moving those directories to a faster disk. There are some serious pros and cons with
doing so, however. For example, if you move cachedir to a RAM-backed filesystem
(e.g., tmpfs), and your master reboots, you will lose all of your job data. By default,
however, the master keeps only 24 hours of history, so this may be an acceptable
compromise. Going into a great deal of detail about the strengths and weaknesses of
various approaches is really beyond the scope of this book, but it is important that
you are aware of the aforementioned directories and files.

Logging
Throughout the book we have referred to various entries in the logfiles. The default
location of the master and minion logs is in /var/log/salt/master and /var/log/salt/
minion, respectively. The default logging levels are set to warning. As with many sys‐
tems, you can alter these log levels to anything from debug to critical.

There are two additional levels below debug: garbage and trace.
Setting your logs to debug will generate quite a few messages and
should contain any pertinent details. Be aware that there are addi‐
tional, and uncommon, levels to provide even more information.
They are typically used in development when one needs to see all of
those details.

One of the most important pieces of the logging configuration is that you can have
different levels for console and file logging. As a result, you may see different messages
in Salt’s logfile as opposed to what is seen on the console. (By console, we mean what‐
ever system is tracking that output. It may be the system that controls system dae‐
mons—e.g., upstart—or any other process control system.) If you change either one,
it may be best to change the other, just to minimize confusion. The configuration
options you should search for are: log_level (for the console logs) and
log_level_logfile.

Next, you do not have to log directly to the filesystem. The format of the log_file
option allows for a URI. Specifically, the option can have a leading protocol: file,

130 | Chapter 9: Topology and Configuration Options

tcp, or udp. Thus, you can ship your logs off to a centralized system for parsing,
recording, or whatever you need.

Obviously, changing the logging level will alter the number of messages that are
recorded. But you can also change the format of those messages. This can come in
very handy if you need to centralize your logs and your system expects a very specific
format. There are two different pairs of format configuration options: one for the date
format and another for the body format. It should come as no surprise that the
options for modifying the date formats are log_datefmt and log_datefmt_logfile.
These options will accept standard strftime parameters. (For example, %Y gives the
four-digit year, while %y will give the two-digit year. You can easily search for
strftime to find a complete list.) To modify the body, you have the options
log_fmt_console and log_fmt_logfile. These use the standard Python logging for‐
mat attributes. (For example, %(levelname) will give the log level: debug, info, etc.)
In addition, Salt has added a few other options to help colorize the console log
output:

• %(colorlevel)

• %(colorname)

• %(colorprocess)

• %(colormsg)

The preceding options allow you to change logging output, but at a relatively coarse
level. There is an additional option for more fine-grained logging: log_granular_lev
els. As the name suggests, this allows you to set different parts of the Salt system to
different levels.

For example, if you need to debug why a module is not behaving as intended, but do
not want to get swamped by, say, authentication messages, you can add the following:

log_granular_levels:
 'salt': 'warning'
 'salt.modules': 'debug'

Access Control
All of the examples have called the salt command either directly as the root user or
via sudo. However, there is an access control system that gives you more control.
There are two aspects: a whitelist and a blacklist. The whitelist will allow users to run
the salt command as themselves, while the blacklist will restrict access. You can
specify only the users and which commands they can and cannot run. You cannot, for
example, give a list of hosts for which they can run commands. (A little later, we will
discuss the peer system, which does have such a capability.)

Master Configuration | 131

The whitelist, or client_acl option, can be used to allow non-root users to run the
Salt command. However, you have to change the permissions on several directories:

$ sudo chmod 755
 /var/cache/salt \
 /var/cache/salt/master \
 /var/cache/salt/master/jobs \
 /var/run/salt \
 /var/run/salt/master

When running the salt command, you need access to the cache files (cachedir), the
job data, and the socket files in the run directory (sockdir). In addition, you will
likely need to write to the logfiles. This means changing the master log to be writable
by the users who are running the salt command. One way to handle this situation is
to create a group that has write access to the master’s logfile (/var/log/salt/master).
However, the client_acl supports only a list of users, so you will need to keep those
two lists in sync with each other.

Here’s a simple client_acl example:

client_acl:
 vagrant:
 - test.*

Now you should be able to run salt * test.ping as the vagrant user. The format is
a user key followed by a list of commands that can be run by that user. (The com‐
mand definition is a regular expression and not a simple wildcard.)

The client_acl_blacklist will do the opposite: restrict certain users or certain
commands:

client_acl_blacklist:
 users:
 - root
 - '^(?!sudo_).*$' # all non sudo users
 modules:
 - cmd

The format is slightly different than with the client_acl. Since you can limit either
users or commands, there are two sections to configure each independently. In the
users section, there is a list of users who will be blocked. Just as with client_acl, the
list is a list of regular expressions, not just strings. This is obvious with the second
user. The second user will block any username that does not start with sudo. This will
force users to run the salt command using sudo and not getting a root shell.

132 | Chapter 9: Topology and Configuration Options

Running salt commands as root directly has a lot of appeal since
it is far simpler. However, it creates difficulties because the logs
won’t reflect the ID of a real user who executed a command. When
things go wrong, you really need to find out who did what so you
can get all of the right people together to fix whatever broke. This is
far easier when the logs show the real user ID that ran every com‐
mand.

In the modules section, you see only cmd. The cmd module is very handy, but also very
dangerous. Salt provides a lot of power. If you run rm -rf / on a single host, that’s
bad enough. However, if you run it with salt on every host you have, that could
make for a very long and difficult day. The beauty of Salt is that if you do need to
remove every file in a directory, you can write a simple module for that. In that mod‐
ule, you can check to make sure that / is not the argument given. However, restricting
any command may not work in your infrastructure. The preceding example simply
shows what has been done at other places.

The ACLs just listed are specifically for the salt command, not the
entire Salt system. This only forbids users from using that com‐
mand via the salt CLI, but does allow that command in, say, states.
For example, in the case of the client_acl_blacklist we limited
the use of the cmd module. But if there is an SLS file that uses the
cmd module, then that state could still be run/used.

File Server Options
The file server built in to Salt is used by a large section of Salt, including the state
system and the modules. We touched on the multiple file roots and breaking them
into different environments. But all of these files came off the local disk on the Salt
master. Salt can also query external sources for files. Namely, Salt can talk to Git, Sub‐
version, and Mercurial. They all have very similar functionality, but some are more
developed than others. Also, the nature of each system will lend itself better or worse
to some features. We will show an example using the Git backend.

As we discussed earlier, the file roots are broken up into multiple environments. Min‐
ions can get access to each environment via the top file. Using the Git file server, you
can map these environments to Git branches. The first step is to enable the Git file
server by adding it to the fileserver_backend option:

[vagrant@master ~]$ cat /etc/salt/master.d/git.conf
fileserver_backend:
- roots
- git

Master Configuration | 133

This will tell Salt to look in both the local files and in the Git file server. In order to
minimize issues with third parties, we will use a Git server on the Salt master itself.

We are running the Git server on the Salt master simply for conve‐
nience. In a production setup, you should carefully consider if this
is wise. While it makes a number of things easier (e.g., all of the
code necessary for the master to work properly lives on the mas‐
ter), it does present some security challenges.

To make things easier on ourselves, we are going to create a state to manage the mas‐
ter itself. The first thing we will add is a Git directory:

[vagrant@master srv]$ cat /srv/salt/file/base/top.sls
base:
 '*':
 - default
 - users

 'roles:webserver':
 - match: grain
 - roles.webserver
 - sites

 'master.example':
 - master

[vagrant@master srv]$ cat /srv/salt/file/base/master/init.sls
include:
- .git-dir
[vagrant@master srv]$ cat /srv/salt/file/base/master/git-dir.sls
master_git_dir:
 file.directory:
 - name: /srv/git
 - user: root

We just added a target in the top file for our master (master.example) and then
added a simple state (master.git-dir) to create our Git directory.

Then we can simply run this state and our master will be ready for us:

[vagrant@master srv]$ sudo salt master.example state.sls master.git-dir
master.example:

<snip>

 /srv/git:
 New Dir
<snip>

Then we need to create our Git repository (aka repo):

134 | Chapter 9: Topology and Configuration Options

[vagrant@master srv]$ sudo git init /srv/git/salt-master.git
Initialized empty Git repository in /srv/git/salt-master.git/.git/

This will create a Git server at /srv/git/salt-master.git and then populate it with a few
files for demonstration purposes. Now, we need to configure the Salt master to use
this new repo:

gitfs_remotes:
- git://git@localhost:/srv/git/salt-master.git

As you can see, we simply add the Git URI to the gitfs_remotes configuration
option. Earlier, we mentioned that the environments map to Git branches. This is
simple enough—except in the case of the default branch and environment. In the Git
world, the default branch is often named master. However, the default environment
for Salt is usually named base. The base option used when we set up our Git directory
means we will map the base environment to the base branch, not master. Remember,
that option changes the name of the Git branch that maps to base, not the other way
around.

Now we can see the results of the previous code by simply looking at the documenta‐
tion for the modules. But remember, since this is a new change, we have to either
restart the minions or sync:

$ sudo salt '*' saltutil.sync_all

Now we can look at the output of sys.doc to see the module that is available only via
the preceding Git repo:

$ sudo salt master.example sys.doc git_test

Topology Variations
Throughout this book, we have been working with Salt using a simple, albeit stan‐
dard, setup: a single master with multiple minions. Salt has several other options. The
simplest of these is running the minions without any master. Next, there is a peer sys‐
tem whereby a special group of minions can execute commands via the master to a
set of minions. Also, syndication masters will act as a proxy so that a subset of min‐
ions does not connect directly to the master, but is still controlled by it. Lastly, there is
a way to have several masters, thereby removing the single point of failure.

Masterless Minions
The master allows for centralized control and management of your minions. Salt pro‐
vides a wealth of functionality that is not directly related to the masters controlling
the minions. The state system itself is a powerful way to enforce a specific configura‐
tion on a host. Running a state locally still provides that power. Also, the modules that

Topology Variations | 135

ship with Salt, and those from third parties, provide a fantastic abstraction layer from
which you can execute the same command on many different architectures.

The key to all this power is the salt-call command. We have discussed it in passing
many times throughout this book. As you might recall, the salt-call command is
just like the main salt command, but since it always runs against localhost, it does
not have a target, or a list of minions:

[vagrant@minion1 ~]$ sudo salt-call test.ping
local:
 True

Let’s stop the salt-master process and see what happens:

[vagrant@master ~]$ sudo service salt-master stop
Stopping salt-master daemon: [OK]

[vagrant@minion1 ~]$ sudo salt-call test.ping
Attempt to authenticate with the salt master failed

When we use salt-call on the minion, it still expects to be able to communicate
with the master. The communication with the master allows the minion to make sure
its pillar data, as well as any files from the file server, is up to date. We can skip that
step by adding the --local flag:

[vagrant@minion1 ~]$ sudo salt-call --local test.ping
local:
 True

This is fine for single events, but if this is the layout you desire, then we should con‐
figure the minion to not communicate with the master.

Typing in the --local flag every time would be a pain. Let’s add a configuration
option to the minion so that it always assumes that it is running without a master.
Since the minion no longer needs to communicate with a master, there does not need
to be a daemon running to maintain the communication channel. The salt-call
command will read the configuration and execute commands as needed:

[vagrant@minion1 ~]$ sudo service salt-minion stop
Stopping salt-minion daemon: [OK]
[vagrant@minion1 ~]$ cat /etc/salt/minion.d/masterless.conf
file_client: local
[vagrant@minion1 ~]$ sudo salt-call --local test.ping
local:
 True

Since the minion will no longer communicate with a master, it must know where to
look for data that is normally retrieved via the file server. We can use the same setup
we use on the master, but this time in the minion’s configuration:

136 | Chapter 9: Topology and Configuration Options

[vagrant@minion1 ~]$ cat /etc/salt/minion.d/masterless.conf
file_client: local

file_roots:
 base:
 - /srv/salt/local/file/base

Next, just as with the master, we will need a top.sls file so that Salt will know what
states are in the highstate. Also, let’s create a very simple Salt state on the local filesys‐
tem so we can verify that everything looks good:

[vagrant@minion1 ~]$ cat /srv/salt/local/file/base/top.sls
base:
 '*':
 - mytest
[vagrant@minion1 ~]$ cat /srv/salt/local/file/base/mytest.sls
mytest:
 test.succeed_with_changes:
 - name: foo

Now, we can view the top file and then run a highstate:

[vagrant@minion1 ~]$ sudo salt-call --log-level=warning state.show_top
local:

 base:
 - mytest
[vagrant@minion1 ~]$ sudo salt-call --log-level=warning state.highstate
local:

 ID: mytest
 Function: test.succeed_with_changes
 Name: foo
 Result: True
 Comment: Success!
 Started: 04:37:57.477314
 Duration: 0.681 ms
 Changes:

 testing:

 new:
 Something pretended to change
 old:
 Unchanged

Summary

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1

Topology Variations | 137

When this is combined with the various software configuration management (SCM)-
backed file stores (e.g., gitfs), you can create a system that is entirely standalone, yet
provides many of the features that make up the core of Salt.

Peer System
Having a centralized master makes it very easy for a small group to manage a great
many systems. And the ACL system can provide a way for others to log in to the mas‐
ter and run a small set of commands. But giving others access to that main host does
present some security challenges. The peer system provides a way for select minions
to send commands through the master to other minions. The list of commands can
also be limited.

Publishers
The first step is configuring the master with the list of minions and the list of com‐
mands they can run. We will use a very simple case of a single minion (minion1) to be
able to run all of the commands in the test module:

[vagrant@master ~]$ sudo cat /etc/salt/master.d/peer.conf
peer:
 minion1.example:
 - test.*

Now we should be able to run the command from the peer, minion1. Remember that
the minions do not have the salt command; however, they do have the salt-call
command. There is a module specifically for peer communication: publish. Keep in
mind that all we are essentially doing is publishing a command onto the publish port
of the pub-sub system. (Also, we need to listen for return data on that same system.)

[vagrant@minion1 ~]$ sudo salt-call publish.publish * test.ping
[INFO] Publishing 'test.ping' to tcp://172.31.0.11:4506
local:

 master.example:
 True
 minion1.example:
 True
 minion2.example:
 True
 minion3.example:
 True
 minion4.example:
 True

Runners

The publish.publish command simply takes as arguments a target (for which min‐
ions should run a command) and then the command itself. But you can also execute

138 | Chapter 9: Topology and Configuration Options

runners from the master using the publish.runner command. As with the salt-run
command, there is no targeting information given.

We need to again configure the master to specify which minions can execute which
runner commands:

[vagrant@master ~]$ cat /etc/salt/master.d/peer.conf
peer:
 minion1.example:
 - test.*
peer_run:
 minion1.example:
 - jobs.*

Now we can run any jobs runners from minion1:

[vagrant@minion1 ~]$ sudo salt-call publish.runner jobs.list_jobs
[INFO] Publishing runner 'jobs.list_jobs' to tcp://172.31.0.11:4506
local:

 20150111230518279413:

 Arguments:
 Function:
 test.ping
 StartTime:
 2015, Jan 11 23:05:18.279413
 Target:
 minion1.example
 Target-type:
 glob
 User:
 root
<snip>

Remember that the minion that has access to the peer system simply has access to the
master—nothing else. In the case of execution modules, the modules still run on each
minion and then return data to the master. And with runners, the Python code exe‐
cutes on the master, not on the peer.

The peer system provides a great deal of flexibility, but it does open up some security
concerns. You need to treat any minions with such rights as “special.”

Syndication Masters
With the peer system, a minion can run a command, but it still needs to go through
the master. This means that all minions will still need a connection to the master on
both the publish and return ports. There are situations where this may become a
problem—for example, if you have a significant number of minions and the sheer
volume of TCP (transmission control protocol) connections is too much, or if you

Topology Variations | 139

have a geographically dispersed network and you still need a centralized master. This
is where the syndication master comes into play. The syndication master looks like a
minion to the “master of masters,” but looks like a master to the minions attached to
it. It simply forwards commands down to its minions and then also relays return
information from the minions back to its master.

With our relatively small setup, it is difficult to simulate a variety of topologies. We
will show a very basic setup where minion1 is a syndication master (syndic) and min
ion2 is attached to it.

First, we need to set up the syndic master on minion1. We can leverage Salt’s pkg
module:

[vagrant@minion1 ~]$ sudo salt-call pkg.install salt-syndic
<snip>

Next, we need to configure the syndic running on minion1:

[vagrant@minion1 ~]$ cat /etc/salt/master/syndic.conf
syndic_master: 172.31.0.11
syndic_master_port: 4506
syndic_log_file: /var/log/salt/syndic.log
syndic_pidfile: /var/run/salt-syndic.pid

Now just start the salt-syndic service:

[vagrant@minion1 ~]$ sudo service salt-syndic start
Starting salt-syndic daemon: [OK]

We also need to change the minion configuration on both minion2 and minion1 to
communicate with the syndic, not the main master:

[vagrant@minion1 ~]$ cat /etc/salt/minion.d/99-master-address.conf
master: 172.31.0.21
[vagrant@minion2 ~]$ cat /etc/salt/minion.d/99-master-address.conf
master: 172.31.0.21

(Obviously, you will need to restart the salt-minion daemon on each host as well.)

Since the syndication master is, essentially, a Salt master for all
minions connected to it, the syndic needs to track the public keys
of those minions. It also needs a file_roots directory, pillar_roots
directory, and so on.

Multiple Masters
The previous solutions provide several ways of working with different topologies.
However, when running a master with directly attached minions, we still face the
problem of a single point of failure. You can run multiple masters if this is a concern.

140 | Chapter 9: Topology and Configuration Options

There are a number of considerations when you are running multiple masters against
a set of minions, though.

Since each minion can only have a single master key, all of your masters in that clus‐
ter must have the same key pair.

Next, the minions will return data only to the master that sent the command. Thus, if
you have two masters where each one is “equal,” then you will need to check both for
return data. You can share the job cache between all masters using, say, an NFS (Net‐
work File System) server. However, this further complicates the maintenance and
setup.

Also, remember that the master checks that a command sent to a minion does not
interfere with a command that is still in progress. With multiple masters, this data
would not be shared between them. As a result you may get into a very nasty situa‐
tion of deadlock, where one master is trying to perform a command that the other
master is actively trying to revert.

Since both masters will be sending data (via the file server and pillar roots) to each
minion, you will need to keep all of those files in sync on every master.

Lastly, all minions will need to talk to all masters on both the publish and return
ports. This can be a significant amount of network connections and/or traffic.

Another possibility with multiple masters is to have a master for a specific purpose.
For example, if you have a number of regularly scheduled jobs that run through Salt,
you may consider running the scheduled jobs on one master and leave the other mas‐
ter for interactive jobs. If you break up the files involved and the states/modules, you
can even minimize the possibility of the deadlock just mentioned. However, this does
not give you a real high-availability solution; it simply spreads the load onto multiple
hosts. If your master is greatly overburdened, though, this may be an option for you.

While working at a very large company with tens of thousands of
minions, we never ran multiple masters for a given set of minions.
We did have an additional host as a warm standby, just in case. But
we never had to use it. There is continued work around a true
high-availability setup, but it has not been completed at the time of
this writing.

Running multiple masters may work in certain situations, but it is not something you
should do haphazardly. Consider the aforementioned issues and weigh them carefully
against the problem you are trying to solve. As with the rest of Salt, this area is evolv‐
ing and maturing every day. Having a true high-availability solution is of interest to
many people.

Topology Variations | 141

CHAPTER 10

Brief Introduction to salt-cloud

Overview
This entire book has used examples running on virtualized systems. But the setup and
install of those systems was a bit manual. More and more companies are using virtual
machines to quickly introduce new applications and to expand existing ones. Hope‐
fully, the advantages of virtual machines are evident. As powerful as they are, though,
virtual machines still require an operating system to be installed and managed. This is
where salt-cloud can help. It provides an abstraction layer that makes interacting
with the different vendors easier.

There are several very large vendors that provide cloud services and a number of
smaller ones. Amazon is one of the leaders in cloud services, offering a number of
different services above and beyond basic virtual machines. In order to keep this
chapter focused on the basics, we are going to focus on Amazon’s service, Amazon
Web Services (AWS). The salt-cloud documentation has examples for many other
providers.

We are going to assume some basic familiarity with AWS. There are numerous sites
that can help you get started quickly. A simple web search should provide you with
plenty of options to get your feet wet.

Setup: AWS and salt-cloud
The first thing we need to do is create a user specific to our new infrastructure. While
using your existing credentials will work, it is advised that you keep your primary
credentials to yourself. If you, for example, happen to check in your keys accidentally,
you will want to easily delete that user and add a new one.

143

http://bit.ly/salt_docs
http://bit.ly/aws_get_started

Create a user named se-book-demo via the IAM (Identity and Access Management)
user management console. You will need to copy the credentials right after you create
the user. Next, you will need to attach a policy with administrator access.

Now that you have a user created, you will need to create a key pair so you can access
any new instances created. In the main EC2 console, select Key Pairs and create a new
pair. We need to put this key somewhere Salt can access it. Copy the key to your cur‐
rent master and place it in the root home directory. The permissions need to be
pretty restrictive, so change them as follows just to prevent any problems later:

[vagrant@master ~]$ sudo chmod 400 /root/se-book-key.pem
[vagrant@master ~]$ sudo ls -l /root/se-book-key.pem
-r--------. 1 root root 1692 Mar 1 23:22 /root/se-book-key.pem

At this point, we have the necessary information from Amazon to get started.
Remember that the minions need to connect to the master, not the other way around.
Since our current Salt master is running on our local system, we need to create a mas‐
ter in AWS that the minions can use. Fortunately, Salt can help us with that. We will
need to install salt-cloud on our current Salt master.

Installing salt-cloud
In the past, the salt-cloud code was stored in a different repo from the Salt core.
Today, salt-cloud has been rolled into the Salt core, but there is still a different pack‐
age for salt-cloud. Rather than installing the package directly, we should continue to
use Salt to make sure our master is in the state we desire.

We can expand on our earlier use of the master state file. Add a new entry specifically
for setting up salt-cloud:

[vagrant@master ~]$ cat /srv/salt/file/base/master/init.sls
include:
- .peer-setup
- .cloud-setup

[vagrant@master ~]$ cat /srv/salt/file/base/master/cloud-setup.sls
master_cloud_setup_packages:
 pkg.installed:
 - pkgs:
 - salt-cloud

[vagrant@master ~]$ sudo salt master.example state.sls master.cloud-setup
<snip>

This will add the necessary binaries and create the base directories that we will use to
bootstrap our AWS infrastructure.

144 | Chapter 10: Brief Introduction to salt-cloud

Before we actually create the Salt master, we need to set up a couple of Salt’s configu‐
ration files. The cloud providers configuration lists the details of the hosting provider.
Next is the cloud profiles, which will list how we want individual instances configured.

Cloud Providers
As we mentioned, Salt can interact with a number of different vendors that provide
virtualization services. They all have slight differences in general credential manage‐
ment and a host of other properties. The cloud providers configuration will allow us
to encapsulate that information for various vendors. But even within a single vendor
like AWS, there may be different options at a very high level. A great example is the
different regions that AWS supports. You can define a different provider for each
region. Or, maybe, you have different subaccounts that link back to a main account.
Or, you may have different security groups within the same account. Many of these
different, high-level settings can be grouped together in the providers configuration.
We are going to use a very simple example.

As we saw in the configuration of the Salt master, you can either edit a single, large
file or create multiple smaller files in a configuration directory. We are going to opt
for the latter. So, let’s create a simple file for AWS:

[vagrant@master ~]$ cat /etc/salt/cloud.providers.d/aws.conf
se-book-aws:
 id: [AWS_ACCESS_KEY]
 key: [AWS_SECRET_KEY]
 keyname: se-book-key
 securitygroup: default
 private_key: /root/se-book-key.pem
 provider: ec2

In place of the id and key values, you would use the values of the AWS access and
secret keys generated when you created the user named se-book-user. The key pair
file should be located at /root/se-book-key.pem, as we showed in the previous section.
The security group is simply set to default. This is a setting within AWS itself. Feel
free to use any security group that you have set up. We will use the simplest case, the
default group, to keep ourselves from getting bogged down in the huge number of
options that AWS provides. The last line, provider: ec2, will direct salt-cloud as to
which set of modules to use when managing our instances. This line needs to come
from the list of providers known to salt-cloud. We can verify using the --list-
providers argument to salt-cloud:

[vagrant@master ~]$ sudo salt-cloud --list-providers
[INFO] salt-cloud starting
se-book-aws:

 ec2:

Setup: AWS and salt-cloud | 145

As you can see, the key we created, se-book-aws, is present. While this simple case
doesn’t tell us much, once you start adding providers, this command is a good place
to go if you are having configuration problems.

Now that salt-cloud knows some additional details about the provider, we need to
tell it more information about the instances we want to create. For this, we will need
to configure the cloud profiles.

Cloud Profiles
After the cloud provider is configured, we need to define how we want the specific
instances configured:

[vagrant@master ~]$ cat /etc/salt/cloud.profiles.d/se-book.conf
se-book-basic:
 provider: se-book-aws
 image: ami-8e682ce6
 size: t1.micro
 ssh_username: ec2-user
 securitygroup:
 - default

This should all look pretty familiar if you have worked with AWS before. The pro
vider key is a reference to the provider we just created. An image is an operating sys‐
tem base image; this particular image is a generic Amazon Linux install. The image is
important for the default user specified with ssh_username. This user, combined with
the key pair defined in the provider, will allow Salt to connect and get the host prep‐
ped for Salt use. The size uses AWS-specific terms and gives the amount of CPU,
RAM, and a few other system parameters.

At this point we could create the image using salt-cloud. However, given that our
current master is a virtual machine on your local system, the new hosts won’t be able
to communicate with our current master. (You could definitely configure your fire‐
wall to talk to your current master, if you wish. But that is well beyond the scope of
this book.) We need to create a master using the make_master declaration inside a
cloud map file. The cloud map will connect the preceding profile with hostnames and
any additional configuration settings.

Cloud Maps
The cloud map is very straightforward. It simply maps any of the profiles defined to a
list of hosts. All we want to do for the moment is create a new Salt master, so we only
need a single entry:

[vagrant@master ~]$ cat /etc/salt/cloud.maps.d/se-book.conf
se-book-basic:
 - host0:
 make_master: True

146 | Chapter 10: Brief Introduction to salt-cloud

We just start out with a key with the name of a valid profile: se-book-basic. Then we
simply list the hostnames with any additional configuration defined. In this case, we
are adding the make_master key to our first host so we can get our infrastructure
started. We then just call salt-cloud to get our first host set up:

[vagrant@master ~]$ sudo salt-cloud -m /etc/salt/cloud.maps.d/se-book.conf
[INFO] salt-cloud starting
[INFO] Applying map from '/etc/salt/cloud.maps.d/se-book.conf'.
The following virtual machines are set to be created:
 host0

Proceed? [N/y] y
... proceeding
[INFO] Calculating dependencies for host0
<snip>

Now we can log in using the username defined previously and our key pair:

local-system$ ssh -i .ssh/se-book-key.pem \
 ec2-user@ec2-private-ip-addr.compute-1.amazonaws.com

Introspection via salt-cloud
After you have logged in to your new master, you will need to copy over the various
cloud settings files:

/etc/salt/cloud.providers.d/aws.conf
/etc/salt/cloud.profiles.d/se-book.conf
/etc/salt/cloud.maps.d/se-book.conf
/root/se-book-key.pem

Remember to update the permissions on the private key file: /root/
se-book-key.pem.

The salt-cloud command has a few options to give you a better look into your cloud
infrastructure and what is available. We already saw the --list-providers option:

[ec2-user@private-ip-addr ~]$ sudo salt-cloud --list-providers
se-book-aws:

 ec2:

We can also look at the images available using --list-images. You need to supply the
provider name as an argument. The list of images is very large. You can narrow it
down by adding an owner key to your provider configuration.

Introspection via salt-cloud | 147

AWS has several data centers throughout the world. You can query the available loca‐
tions using --list-locations. Again, it takes as an argument the provider ID.
(Remember, the provider configuration includes the AWS access and secret keys,
which are used to communicate with the various AWS data stores.)

[ec2-user@private-ip-addr ~]$ sudo salt-cloud --list-locations se-book-aws
se-book-aws:

 ec2:

<snip>
 us-east-1:

 endpoint:
 ec2.us-east-1.amazonaws.com
 name:
 us-east-1
<snip>

Lastly, AWS has many options for the size of machine you can provision. No surprise:
salt-cloud includes the --list-sizes flag:

[ec2-user@private-ip-addr ~]$ sudo salt-cloud --list-sizes se-book-aws
se-book-aws:

 ec2:

<snip>
 Micro:

 t1.micro:

 cores:
 1
 disk:
 EBS
 id:
 t1.micro
 ram:
 615 MiB
 Standard:

 m1.large:
<snip>

That list is also very large. The details aren’t that important, but it is important to
know there is more in salt-cloud than just creating instances; you can also query
the provider and gain some insight into what they provide. However, this functional‐
ity varies widely among the different cloud providers. Be sure to verify that any spe‐
cific function you need is actually supported by your given vendor.

148 | Chapter 10: Brief Introduction to salt-cloud

So far we have created only our single master. We are going to finish up with some
simple examples of how you can manage an entire infrastructure using salt-cloud.

Creating an Infrastructure
Let’s get right to it and add another host. Earlier we showed you the map file when we
created the master. We simply want to add another host to that list. However, we also
want to customize the information about that host just a little:

[ec2-user@private-ip-addr ~]$ cat /etc/salt/cloud.maps.d/se-book.conf
se-book-basic:
 - host0:
 make_master: True
 - host1:
 grains:
 role: test
 myenv: prod

We added a host named host1 and configured it with a couple of familiar grains. One
of the first things you’ll notice is that we do not have to accept the key of the minions
we add. salt-cloud will automatically add any new hosts it configures to the known
list of keys:

[ec2-user@private-ip-addr ~]$ sudo salt-key
Accepted Keys:
host1
Unaccepted Keys:
Rejected Keys:

We will add just one more host to show how you can add further minion settings in
the map file:

[ec2-user@private-ip-addr ~]$ cat /etc/salt/cloud.maps.d/se-book.conf
se-book-basic:
 - host0:
 make_master: True
 - host1:
 grains:
 role: test
 myenv: prod
 - host2:
 minion:
 log_level: debug
 grains:
 role: test
 myenv: dev

While it may not be very exciting to just enable debug logging on our third host, it
gives you an indication of what can be done. Most minion settings are available via

Creating an Infrastructure | 149

the map file. This will allow you to control your new infrastructure right from the
creation of your instances.

More Information
We have only scratched the surface of what you can do with salt-cloud. There are
over a dozen different providers supported with the basic installation. And as with
the rest of Salt, you can create your own provider. But there is a caveat here: the data
and functionality provided will vary greatly from vendor to vendor. Salt does its best
to abstract out the details and provide a common interface to all of its supported ven‐
dors. But sometimes the data or function needed simply isn’t there. As a result, the
capabilities of salt-cloud are strongly linked to the vendor you choose. Also, since
Salt is a large open source community, the larger vendors will simply have better sup‐
port due to the large percentage of Salt users using them. It should not come as a sur‐
prise that we chose AWS for the examples in this chapter. It is heavily used
throughout the industry, so there are a lot of people pairing salt-cloud with AWS
because it’s a more thoroughly tested provider.

Providers change their APIs and update their infrastructure. salt-cloud has to keep
up with all of these changes. But don’t view this as a problem; rather, it is an opportu‐
nity for you to contribute to a growing community.

150 | Chapter 10: Brief Introduction to salt-cloud

APPENDIX A

Using Vagrant to Run Salt Examples

There are many options for setting up a suite of minions to use in the examples.
Vagrant is a great solution that runs on top of a free virtual machine manager called
VirtualBox.

There is a Git repo at GitHub that contains the companion code for this book.

Install Companion Code, VirtualBox, and Vagrant
To get started, simply clone the repo to your local machine:

git clone https://github.com/craig5/salt-essentials-utils

You will also need to install Vagrant and VirtualBox using the instructions on their
respective websites.

Once you have all three pieces ready, you can start up the virtual machines used in
the examples with:

host$ cd salt-essentials-utils/virtual-machines/
host$ vagrant up

This will download the base images and create a master running CentOS 6.6, two
minions also running CentOS 6.6, and two more minions running Ubuntu Trusty
Tahr (14.04).

The virtual machines do require unused memory if you do not
want to degrade the performance of your host machine. Each node
will use 512 MB of RAM. If you are not able to spare that much
memory, consider running only a single minion of each OS type.
You will have to modify the example accordingly.

151

https://www.vagrantup.com/
https://www.virtualbox.org/
https://github.com/craig5/salt-essentials-utils

Configure Salt
Once you have the virtual machines set up, you will need to install Salt on each one.
Fortunately, the example code is made available to each host via a special mount: /srv/
se-book. There is a setup script in the bin directory that will configure each host:

[vagrant@minion1 ~]$ sudo /srv/se-book/bin/setup

The Salt packages are downloaded via the bootstrap script mentioned in Chapter 2.
The shared code packages are installed, as well as the salt-minion. For the virtual
machine named master.example, the salt-master package is also installed. The nec‐
essary daemons are then started. At this point, you should have the minions ready to
go to proceed to “Key Management” on page 19 and accept all of the keys.

The bootstrap script is meant to be an easy way to get a demo ver‐
sion set up. The underlying command is not 100 percent secure.
While it uses a reliable server to download the script, it does so
using an insecure channel. If you are concerned about security in
the slightest, please install Salt using the instructions on Salt’s web‐
site. This only affects the install of Salt, not the setup of the virtual
machines themselves.

152 | Appendix A: Using Vagrant to Run Salt Examples

APPENDIX B

YAML

YAML stands for YAML Ain’t Markup Language. (It used to be something else, but
was changed to focus more on its data-oriented nature.) YAML is used heavily
throughout Salt; from state files (SLS) to all of the configuration files, you will find
YAML in many places. We have assumed that you have some basic familiarity with
YAML and can thus follow along with the simple use cases in this book.

In order to better visualize the following example, we will use an online YAML parser.
You can enter YAML in one text box and see a JSON representation next to it.

However, as with any language, YAML does have some quirks. Just like Python,
YAML uses indentation for scoping, but you have to use spaces and not tabs. If you
are having difficulty with states not compiling properly or with configuration files not
being read as you expect, first make sure you do not have your editor set to replace
spaces with tabs.

The next thing you should know is that YAML uses a leading hash (#) as an indicator
for a comment. This is just like many scripting languages. For example, bash, Perl,
and Python all use the hash for comments.

YAML has data structures for strings, integers, lists (arrays), and dictionaries. There
are even shorthand ways of creating some of them. The data structures are formed
using simple a key: value format.

While strings may be simple enough to understand, multiline strings have a couple of
options. If you add a greater than sign (>), the end-of-line characters are removed:

mystring: >
 first line
 second line
 third line

153

http://yaml-online-parser.appspot.com/

{
 "mystring": "first line second line third line"
}

But if you replace that with a vertical pipe (|), then the end-of-line characters are pre‐
served:

mystring: |
 first line
 second line
 third line

{
 "mystring": "first line\nsecond line\nthird line"
}

Lists can be specified on separate lines with a leading dash:

list:
- first
- second
- third

{
 "list": [
 "first",
 "second",
 "third"
]
}

Or you can express them using a compact form that looks very similar to Python uti‐
lizing braces ([,]):

list: [first, second, third]

{
 "list": [
 "first",
 "second",
 "third"
]
}

Likewise, dictionaries have a longer and shorter format. Keys in a dictionary are
indented below their parent:

dict:
 first: one
 second: two
 third: three

{
 "dict": {
 "second": "two",
 "third": "three",

154 | Appendix B: YAML

 "first": "one"
 }
}

Here’s the compact form, again similar to Python:

dict: {first: one, second: two, third: three}

{
 "dict": {
 "second": "two",
 "third": "three",
 "first": "one"
 }
}

YAML will also attempt to preserve integers as numeric data and not simply translate
them into strings. So a value of 123 will not be a string, but an integer.

YAML does not require a value with every key. If a key exists by itself, a null value
will be used. (In the case of Salt, this corresponds to a value of None.)

A couple of other features of YAML that we did not use in this book are anchors and
references. Anchors are marked with an ampersand (&) and then can be referenced
with an asterisk (*):

my_anchor: &mine bar
my_ref: *mine

{
 "my_anchor": "bar",
 "my_ref": "bar"
}

We define the key my_anchor, but we define the anchor itself with the name mine. It’s
important to note that the key does not play into the anchor at all. You can use the
same name for the anchor as the key, or not. In the next key, my_ref, we reference the
mine anchor using an asterisk. This allows us to define a value once, but use it many
times in the same file.

This is only a quick introduction to YAML. You can find the complete specification
on the YAML website.

Next, we will mention some specifics about YAML and Salt.

One of the main things to keep in mind is that Salt uses the PyYAML library for pars‐
ing all of its YAML files. PyYAML has many handy features. If there is a value that
seems to be a date-time, it will convert it into a datetime object. For example:

2015-03-02 07:06:15

PyYAML will interpret several different strings to be Boolean values—for example,
yes/no, true/false, TRUE/FALSE.

YAML | 155

http://www.yaml.org/

If you use UTF-8 in your state files, you should enable the yaml_utf8 setting in your
master’s configuration. This will enable additional routines to parse UTF-8 strings.

Lastly, Salt recommends using two spaces for indentation in your YAML files. Obvi‐
ously, you can use any spacing you prefer, as long as you are consistent in each file.
But once you start to share files with others, any inconsistencies will be a little jarring.

156 | Appendix B: YAML

Index

A
acc (accepted) flag, 19
--accept flag, 14, 21
--accept-all argument, 15
accepted state, 14
access control lists (ACLs), 119, 131
AES encryption, 4, 19
Amazon Web Services (AWS), 143
apt package installation, 34
aptpkg.py module, 34
authentication errors, 122

B
base environment, 46, 51
batch method, 121
blacklists, 131
bootstrap installation script, 10, 152

C
cache directory, 129
Caller client API, 123
client_acl option, 132
client_acl_blacklist option, 132
client_config method, 119
cloud infrastructure

cloud maps, 146
cloud profiles, 146
cloud providers configuration, 145
creating, 149
introspection via salt-cloud, 147
salt-cloud benefits, 143
salt-cloud installation, 144
setup, 143
vendor selection, 150

vendors providing, 143
cmd method, 121
cmd module, 31, 133
cmd.run function, 32, 67
cmd_yaml function, 78
command-line utilities

salt, 13
salt-call, 16
salt-key, 14
salt-run, 17
summary of, 18
useradd, 38

commands
escaping, 22
publishing, 138
running arbitrary, 31
running directly, 16
running on every minion, 32
running single on several hosts, 13
sending in batches, 121

compound matcher, 27
configuration management

adding variables, 125
benefits of state system, 43
example of, 5
imperative vs. declarative, 4
reading configuration data, 119
state files, 43-51
state ordering, 58-67
summary, 68
top files, 51-58
for virtual machines, 152

configuration options
access control, 131

157

custom, 130
directories and files, 129
file server, 133
logging, 130

console logging, 130
cp.list_states execution function, 57
custom execution modules, 91-95
custom grains, 98-102
custom runners, 125
custom state modules, 95
custom.enforce_tmp function, 97
cwd (change working directory) argument, 32

D
daemons

salt-master, 11
salt-minion, 11

data elements
dynamic, 75, 99
grains, 69-74
pillars, 75-78
querying other data sources, 78
retaining across restarts/reboots, 73
static, 69, 99
translation via renderers, 79-81

data structures
accessing with runner system, 126
custom modules and, 8, 14
events, 114
exposing, 90
Python, 79
used in states, 43
YAML, 153

debugging
execution on a single host, 16
log files, 95
using state.show_sls, 48

declarative management, 4
directories

changing current, 32
configuration options for, 129

doc.runner function, 108
Docker, 67
docstrings, 30, 91

E
encryption, 4, 14, 19
env argument, 32
environment variables, setting, 32

environments, 46
EPEL (Extra Packages for Enterprise Linux), 10
event system

communication via, 114
overview of, 107
summary, 117

exception handling, 122
execution modules

core package of, 13
creating custom, 91-95
documentation, 29, 41
list of available, 29
managing users, 36
package managers, 33
running arbitrary commands, 31
structure of, 18
summary, 41
utility function, 38
vs. runners, 107

extensibility
benefits of, 7, 83
custom execution modules, 91-95
custom external pillars, 102
custom grains, 98-102
custom runners, 125-128
custom state modules, 95
Python client API, 119-125
summary, 105
using Jinja, 83-91

external pillar system, 78, 102

F
failhard option, 67
file logging, 130
file server, 6, 46, 133
files, configuration options for, 129
fileserver_backend option, 133
file_roots configuration option, 46
--finger-all argument, 20
fingerprints, 15, 20
firewalls, 12
for loops, 86
fully qualified domain name (FQDN), 12
function method, 123
functions

displaying, 30
keyword arguments, 32
listing, 31
vs. modules, 18, 49

158 | Index

G
Git, 133
global secrets, 4
globs, 2, 25
grains

creating custom, 98-102
filtering by, 90
Jinja templating engine and, 90
listing, 69
listing keys and values, 70
matching, 3
minion targeting with, 26
order of set precedence, 101
overview of, 69
querying, 72
setting metadata with, 71
showing value of specific, 70
syncing, 101
targeting in top files, 73
vs. pillar data, 5, 99

grains.filter_by function, 90
grains.item function, 72
grains.items function, 70
grains.ls function, 69
grains.setval function, 99

H
high-availability setup, 141
highstate layer, 51

I
IAM (Identity and Access Management), 144
idempotent state calls, 44
if statements, 86
imperative management, 4
import statement, 88
include statement, 46, 88
--include-all flag, 22
init.sls shorcut, 60

J
Jinja

basic control structures, 86
benefits of, 83
dictionaries in, 85
documentation, 83, 89
example, 83
filtering by grains, 90

Python support in, 86
showing output of commands, 84
statements, 87
syntax, 84
templating with, 89
viewing list items, 85

job cache, 112
job ID, 110
jobs

interacting with job cache, 108
managing, 110
managing with saltutil, 40

jobs runner, 110
jobs.list_jobs runner, 112
jobs.lookup_jid runner, 111
JSON, 80

K
key management, 19-24

accepting keys, 20
key files, 23
overview of, 19
rejecting keys, 21
showing accepted keys, 19
viewing keys, 19
with salt-key, 14
with saltutil module, 39

keyword arguments, 32, 127

L
list (-L), 25
--list flag, 19
--local flag, 17
LocalClient API, 121
--log-level flag, 16
logging, 94, 122, 130
low chunk file layer, 50

M
macro statement, 87
manage runner, 17
manage.down runner, 109
manage.status runner, 109
manage.up module, 17
manage.up runner, 109
master

command-line utilities for, 9
communication with minions, 3

Index | 159

configuration options for, 129-135
coordination of jobs on, 17, 107
data elements for, 69-78
definition of term, 1
encryption keys, 4
event system, 114
interaction via LocalClient API, 121
master files, 23
multiple, 140
orchestrate runner, 112
reactor system, 116
reading configuration data on, 119
runners, 108-112
single-master setup, 9
syndication, 139

master client API, 121
masterless minions, 7, 135
master_finger option, 16
metadata

listing, 99
setting with grains, 71

minion ID, 2, 12, 19, 24
minion targeting, 24-27

based on ID, 24
glob, 25
grains (-G), 26
list (-L), 25
regular expression (-E), 26, 72
summary of, 27
testing setup, 24

minions
basics of, 2
CentOS, 10, 32
command-line utilities for, 9
communication with master, 3
coordinating tasks across, 17
data elements for, 69-78
execution on, 16
firewalls and, 12
grains vs. pillar data, 5
interaction via Caller client API, 123
managing, 109
masterless, 7, 135
minion files, 23
reading configuration data, 119
showing status of, 108
Ubuntu, 10, 32
validation of, 4
verifying communication with master, 11

viewing topfiles, 52
minion_config method, 119
modules

copying, 93
execution, 29

(see also execution modules)
listing, 31
logging module, 94
syncing changes to, 92
virtual modules, 34
vs. functions, 18, 49

mod_watch function, 66
msgpack serialization format, 28
multilayered state systems, 49
multiple masters, 140
MySQL, 33

N
Nginx, 33, 36
non-root users, 132

O
opts dictionary, 93
orchestrate runner

files for, 112
overview of, 107
purpose of, 112
summary, 118
vs. OverState runner, 113

order attribute, 66
out-of-band scripts, 121
--out=txt option, 71
OverState runner, 113

P
packages

adding, 33
checking versions, 35
installing, 36
listing installed, 35
managing, 36
single-master setup via, 10

peer communication system, 138
peer publisher system, 7
PEP 8 (Python Enhancement Proposals), 95
performance, increasing, 130
pillar data

adding to, 75

160 | Index

file handling, 76
Jinja templating engine and, 90
overview of, 75
querying, 75
querying other data sources, 78, 102
top file setup, 76
vs. grains, 5, 99

pillar.items function, 75
pillar_opts configuration value, 75
ping function, 18
pkg module, 34
pkg.available_version function, 35
pkg.check_db function, 34
pkg.install function, 36
pkg.installed state function, 52
pkg.list_pkgs function, 35
pkg.version_cmp function, 34
PKI (public key infrastructure), 23, 129
ports

connecting to, 139
firewalls and, 12
listing, 120
publish and return, 17

present function, 44
print statement, 127
publish and subscribe (pub-sub), 3, 28, 138
publish port, 12, 17, 28
publish.publish command, 138
publish.runner command, 138
Python client API, 119-125

benefits of, 119
Caller client API, 123
reading configuration data, 119
RunnerClient API, 128
using master client, 121

PyYAML library, 155

R
reactor system, 107, 116
RedHat, 34
regular expression (-E), 26, 72
rejected state, 14
remote execution

pub-sub, 28
test.ping argument, 13

renderers, 8, 44, 79
require declaration, 59
return port, 12, 17, 28
root commands/users, 31

root directory, 129
RPM package installation, 10, 34
runas argument, 32
RunnerClient API, 128
runners

benefits of, 108
calling, 108
concept of, 17, 107
creating custom, 125
finding minion status with, 109
finding minions with, 109
interacting with job cache, 108
listing jobs with, 112
looking up job IDs, 110
managing jobs with, 110
managing minions with, 109
managing state runs across multiple min‐

ions, 112
showing minion status with, 108
summary, 118
topology variations for, 138
vs. modules and states, 108

S
Salt

basic organization of, 1-5
benefits of, vii, 1
companion code, ix
configuration management example, 5
configuring for virtual machines, 152
configuring with Git, 133
documentation, viii
extending, 7
history of, 6, 69
installing, 9
managing with saltutil module, 39
online resources, ix
open core commitment, viii
starting up, 11
system management example, 5
topology options, 7

salt command
coordination of jobs with, 18
--out=txt option, 71
single commands on many hosts, 13

salt-call command
key management with, 20
localhost activity, 136
--log-level flag, 16

Index | 161

running commands directly, 16
running modules on specific minions, 19

salt-call function, 95
salt-cloud (see cloud infrastructure)
salt-key command, 14, 18-24

acc (accepted) flag, 19
--accept flag, 14, 21
--accept-all argument, 15
--finger-all argument, 20
--include-all flag, 22
--list flag, 19
--local flag, 17

salt-master daemon, 11
salt-minion daemon, 11
salt-run command, 17, 19
salt-run utility, 9
salt.client module, 122
salt.log.setup_console_logger(), 122
saltutil module, 38
saltutil.kill_job function, 40
saltutil.running function, 40
saltutil.sync_all function, 39, 101
saltutil.sync_grains function, 101
saltutil.sync_modules function, 39, 93
secrets, global, 4
shebang syntax (#!), 80
show_sls function, 84
single-master setup, 9
socket directory, 130
sockets, 2
software configuration management (SCM),

138
startup, 11
state

calling using data on command line, 49
list of state modules, 43
multilayered systems, 49

state (SLS) files
adding users automatically, 44
data structures used, 43
executing, 46
format of, 44
low chunk layer, 50
multilayered systems and, 49
setting file roots, 46

state declaration, 44
state execution module, 47
state modules, 44, 95
state ordering

enforcing with order declaration, 66
failhard option, 67
init.sls shortcut, 60
overview of, 58
requiring named state execution, 59
run based on other changes, 61

state.orchestrate command, 112
state.show_highstate command, 58
state.show_sls function, 47, 84
state.show_top function, 74
state.single execution module, 49
state.sls function, 48
states

combining, 51
executing, 48
executing upon change, 61
managing with salt-key command, 14
purpose of, 3, 43
testing with test=true, 62
vs. state execution module, 47
with low data, 50

sudo command, 132
sync functions, 39
syndication master, 7
syndication masters, 139
syntax errors, 87
sys module, 29
sys.argspec function, 31
sys.doc function, 30, 91
sys.list_functions function, 31, 34
sys.list_modules function, 31
sys.list_state_functions function, 45
sys.list_state_modules function, 45
sys.state_doc function, 45
system management, 5

T
targeting, 2, 24

(see also minion targeting)
TCP (transmission control protocol), 139
templating engines, 79, 83
test execution module, 18
test.ping argument, 13
test.ping execution function, 18
test.ping module, 24
test=true argument, 62, 95
top file

basics of, 6
environment for, 51

162 | Index

pillar data, 76
targeting with grains in, 73
viewing effective, 52

top.sls file, 51
topology options

masterless minions, 135
multiple masters, 140
overview of, 7, 135
peer system, 138
syndication masters, 139

U
Ubuntu package installation, 34
unaccepted state, 14
updates, managing with saltutil, 39
user ID (uid), 45
user module, 36, 44
user.add function, 37, 44
user.info function, 38
user.present function, 44
users

adding, 37
adding automatically, 44
getting info on, 37
listing, 78, 121
managing, 36
non-root, 132
root users, 31

users.list_users function, 37
UTF-8 strings, 156
utilities (see command-line utilities)

V
Vagrant, 9, 151
vim-enhanced.sls file, 54
vim.sls file, 54
virtual machines, 143, 151

(see also cloud infrastructure)
virtual modules, 34
VirtualBox, 151

W
watch statement, 61
whitelists, 131
wildcard pattern, 22

Y
YAML

anchors, 155
benefits of, 43
data structures, 153
integers in, 155
online parser, 153
references, 155
syntax, 153
syntax validator, 33

yum package installation, 10, 34
yumpkg.py module, 34

Z
ZeroMQ data bus, 2

Index | 163

About the Authors
Craig Sebenik was responsible for the Salt infrastructure while at LinkedIn. LinkedIn
is still one of the largest deployments of Salt in the world today. He is now at a
startup, Matterport, using Salt in the cloud and with a small team of developers.
Working in companies both large and small has given him rare insight into the use of
Salt, and being involved since version 0.8 has given Craig a front-row seat for the evo‐
lution of Salt through the years.

Thomas Hatch is the creator of Salt and CTO of SaltStack. Thomas is still the largest
contributor to the Salt project despite the fact that Salt is now the largest developer
community in DevOps.

Colophon
The animal on the cover of Salt Essentials is a conger eel, found in ocean waters
around the world. Several species of eel belong to the genus Conger, including the
European conger, which can grow to almost 10 feet and weigh more than any other
species of eel on the planet.

Details about the conger eel’s lifecycle are not abundant, but both the European and
American conger eels appear to exhibit the reproductive behaviors common to other
kinds of eel. For instance, they both seem to take as many as 15 years to reach sexual
maturity, when they travel to deeper waters to spawn. Females produce eggs in the
millions and, according to popular conception, die immediately after spawning. Con‐
ger eel larvae drift from deeper to shallower waters over a period of up to two years
after hatching. They complete this journey as leptocephali, that is, as transparent, lat‐
erally compressed fish in the process of metamorphosing into mature eels.

Mature congers pass days in the crevices and holes of rocky ocean landscapes or
among the rotting remains of shipwrecks and can venture out as predators at night.
They hunt smaller fish and crustaceans but are not above scavenging the ocean floor
for dead or dying fish. They have been known to attack humans.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Johnson’s Natural History. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://matterport.com/
http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why We Wrote This Book
	What This Book Is Not
	A Word on Salt Today
	Navigating This Book
	Online Resources
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	What Is Salt?
	High-Level Architecture
	Some Quick Examples
	System Management
	Configuration Management

	A Brief History
	Topology Options
	Extending Salt

	Chapter 2. Quick Start: First Taste of Salt
	Single-Master Setup
	From Packages
	Bootstrap Script

	Starting Up
	Basic Commands
	salt: The Main Workhorse
	salt-key: Key Management
	salt-call: Execution on the Minion
	salt-run: Coordination of Jobs on the Master
	Summary of Commands

	Key Management
	Viewing Keys
	Accepting Keys
	Rejecting Keys
	Key Files

	Minion Targeting
	Minion ID
	List (-L)
	Glob
	Regular Expression (-E)
	Grains (-G)
	Compound (-C)
	Targeting Summary

	Additional Remote Execution Details
	Conclusion

	Chapter 3. Execution Modules: The Functional Foundation
	sys: Information and Documentation About Modules
	sys.doc Basic Documentation
	sys.list_modules, sys.list_functions: Simple Listings

	cmd: Execute Via a Shell
	cmd.run: Run Any Command

	pkg: Manage Packages
	Virtual Modules
	pkg.list_pkgs: List All Installed Packages
	pkg.available_version: See What Version Will Be Installed
	pkg.install: Install Packages

	user: Manage Users
	user.add: Add Users
	user.list_users, user.info: Get User Info

	saltutil: Access Various Salt Utilities
	Summary

	Chapter 4. Configuration Management: Salt States
	State File Overview
	SLS Example: Adding a User
	Working with the Multilayered State System

	Highstate and the Top File
	The Top File

	State Ordering
	require: Depend on Another State
	watch: Run Based on Other Changes
	Odds and Ends

	Summary

	Chapter 5. Minion Data/Master Data
	Grains Are Minion Data
	Performing Basic Grain Operations
	Setting Grains
	Targeting with Grains in the Top File

	Pillars Are Data from the Master
	Querying Pillar Data
	Querying Other Sources with External Pillars

	Renderers Give Data Options

	Chapter 6. Extending Salt: Part I
	Introduction to Jinja
	Jinja Basics

	Templating with Jinja
	Filtering by Grains

	Custom Execution Module
	Custom State Modules
	Custom Grains
	External Pillars
	Summary

	Chapter 7. More on the Master
	Runners
	Manage Minions
	Manage Jobs

	The orchestrate Runner
	The Event System
	The Reactor System
	Summary

	Chapter 8. Extending Salt: Part II
	Python Client API
	Reading Configuration Data on a Master and Minion
	Using the Master Client (LocalClient) API
	Using the Caller Client API

	Custom Runners
	Writing a Custom Runner
	Using the RunnerClient API

	Summary

	Chapter 9. Topology and Configuration Options
	Master Configuration
	Directories and Files
	Logging
	Access Control
	File Server Options

	Topology Variations
	Masterless Minions
	Peer System
	Syndication Masters
	Multiple Masters

	Chapter 10. Brief Introduction to salt-cloud
	Overview
	Setup: AWS and salt-cloud
	Installing salt-cloud
	Cloud Providers
	Cloud Profiles
	Cloud Maps

	Introspection via salt-cloud
	Creating an Infrastructure
	More Information

	Appendix A. Using Vagrant to Run Salt Examples
	Install Companion Code, VirtualBox, and Vagrant
	Configure Salt

	Appendix B. YAML
	Index
	About the Authors

