
Beginning iOS
AR Game
Development

Developing Augmented Reality
Apps with Unity and C#
—
Allan Fowler

Beginning iOS AR
Game Development

Developing Augmented Reality
Apps with Unity and C#

Allan Fowler

Beginning iOS AR Game Development: Developing Augmented Reality

Apps with Unity and C#

ISBN-13 (pbk): 978-1-4842-3617-8 ISBN-13 (electronic): 978-1-4842-3618-5
https://doi.org/10.1007/978-1-4842-3618-5

Library of Congress Control Number: 2018964038

Copyright © 2019 by Allan Fowler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3617-8.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Allan Fowler
Marietta, GA, USA

https://doi.org/10.1007/978-1-4842-3618-5

For Hao, Ciaran, & Annah - kia kaha, kia aroha, kia mana

v

About the Author ���xi

About the Technical Reviewer ���xiii

Table of Contents

Chapter 1: Introduction���1

Unity3D��2

Unity Requirements ���3

Preparing Your Mac ���3

Getting Registered ���4

Download Xcode ��4

Download Unity ���4

Install Unity ��5

Welcome ��7

Setting Up Unity ���9

iOS Development Requirements ��13

The Unity Website ��13

The Unity Community ��13

Chapter 2: Getting Started ��15

Installing Unity ARKit ���19

The Editor Layout ��21

Preset Layouts ���23

Custom Layouts ���26

The Inspector View ��30

vi

The Project View ���34

Switch Between One Column and Two Columns ���35

Scale Icons ��35

Inspect Assets ���36

Search for Assets ��36

Operate on Assets��38

The Hierarchy View ���39

Inspect Game Objects ��40

Parent and Child GameObjects ��41

The Scene View ���41

Navigate the Scene ���41

Scene View Options ���46

Scene View Gizmos ���48

The Game View ���49

Maximize on Play���50

Stats ��51

Game View Gizmos ��52

The Console View ��53

Explore Further ���54

Unity Manual ��55

Tutorials ���55

Version Control ��55

Chapter 3: The Unity ARKit ���57

Creating a Scene ���57

Cameras ��62

Transformation ��64

Testing ���70

Table of ConTenTsTable of ConTenTs

vii

ARKit Remote ��71

Setting Up the Main Camera ���72

Adding a Component ���72

Tracking the Phone Movement ��76

Build and Run ��78

Saving the Scene ���84

Understanding Scenes���85

Introducing Visual Inertial Odometry ���86

Feature Points ���86

Point Clouds ���87

Testing ���89

Unity ARKitRemote ���90

Using ARKit Remote Connection ��95

Plane Visualization ���99

Testing ���101

Summary ���102

Chapter 4: Hit Testing and Lighting ��103

Hit Testing ���103

Scale ��106

Transformation ��107

The Editor Hit Test Script ���109

Lighting ��121

Positioning the Camera ���128

Summary ���130

Table of ConTenTsTable of ConTenTs

viii

Chapter 5: Making AR Games ���131

Fugu BowlAR Game ��131

Creating a New Scene ���132

Creating AR Assets ��134

Transform the BowlingBall ��137

Adding a Rigidbody ��137

Opening the Asset Store ��141

PhysicsMaterials ���145

Creating a (Temporary) Plane ��147

Importing an OBJ file to Unity ��150

Creating a new Project Folder ���151

Adding the Bowling_Pin to the Scene ���153

Transform Settings for the Bowling_Pin and BowlingBall ���������������������������154

Adding a RigidBody to the Bowling_Pin ��154

Adding a Collider to the Bowling_Pin ��155

Adding a PhysicsMaterial to the Bowling_Pin ���158

Making the Bowling_Ball Roll ��160

Editing the PlayerController Script ��163

Creating Our Own Collider ���164

Remembering the Parents ���169

Making a Parent ��169

Making the Bowling_Pin fall Over ���170

Summary���171

Chapter 6: Introducing Touch ���173

Testing the Game in AR ���173

Some Challenges ���178

Disabling the Plane(t) ��178

Table of ConTenTsTable of ConTenTs

ix

Testing ���178

Implementing Touch Controls ��180

Importing the Unity CrossPlatformInput Package ��180

Adding Touch Controls ���182

Download the Joystick Asset Pack ��182

Creating a Canvas ��184

Adding the Joystick UI to the Canvas ��185

Adding a Script ��186

Testing ���189

On Device Testing ��190

Success ���192

Chapter 7: Adding Plane Detection and Point Clouds �����������������������193

Creating the Generated Planes GameObject ���193

Creating the Point Cloud GameObject ���197

Setting Up the Main Camera ��200

Setting the Unity AR Video Script Clear Materials ���������������������������������������203

Lighting ��216

Chapter 8: Final Steps ��223

Creating Prefabs ���223

Adding More Bowling Pins ���226

Instantiating GameObjects at Runtime ��228

Creating an Instantiate_GameObjects Script ���229

Disabling a GameObject from the Scene ���232

Creating a Game Manager ���233

FindWithTag ���234

Testing ���235

 Index ���239

Table of ConTenTsTable of ConTenTs

xi

About the Author

Dr. Allan Fowler is a Professor in Game Design at Kennesaw State

University. Fowler lives in Atlanta, GA. Fowler is a published author,

game designer, and dedicated educator. Apart from looking after his two

children, in his spare time he makes games and practices martial arts and

is a keen amateur photographer. Dr. Fowler holds a fifth degree black belt

in Shorin-Ryu karate and has competed in State and International karate

tournaments.

xiii

About the Technical Reviewer

Felipe Laso is a Senior Systems Engineer working at Lextech Global

Services. He’s also an aspiring game designer/programmer. You can follow

him on Twitter as @iFeliLM or on his blog.

http://www.lextech.com/
http://www.lextech.com/
http://twitter.com/#!/iFeliLM
http://ifeli.me/

1© Allan Fowler 2019
A. Fowler, Beginning iOS AR Game Development,
https://doi.org/10.1007/978-1-4842-3618-5_1

CHAPTER 1

Introduction
In this book, we are going to learn how to create an Augmented Reality

(or AR) Game using the game development software from Unity (Unity3D

2018 or, more commonly, Unity). In this chapter, we will go through the

process of downloading and installing Unity and learn about some of the

tools that Unity provides. We will also install an existing AR project from the

Unity Asset Store and explore some of the features of this game. In Chapter 2,

we will install the ARKit and provide an overview of the Unity user interface.

In Chapter 3, we will start using the Unity ARKit and use some of the key

functions. I will also provide a basic overview of visual inertial odometry and

what this means for creating AR projects. We will make a basic scene to use

and test Unity ARKit. In Chapter 4, we will use some of the more advanced

functions in Unity ARKit such as hit testing and lighting an AR scene. Finally,

in Chapter 5, we will put this all together and make an AR game using the

Unity ARKit.

This book has been written for a beginner that has no prior experience

using Unity or making games. The chapters have been prepared in a

sequence to help learn each step. However, if you are reading this book

and already know about Unity or making games, then feel free to skip

whatever chapters you feel you already know.

2

 Unity3D
The Unity game engine is a cross-platform game development tool

for creating both 2D and 3D games. The term cross-platform can

mean different things to different people. As Unity can be used on

macOS, Windows, or Linux, this could be considered a cross-platform

development tool. However, as Unity can be used to develop games for

a games console, personal computer, web browser, mobile devices, VR

systems, etc., this could also be why Unity is considered a cross-platform

development tool.

Unity can be used to create 3D games, that is, the game looks like it

operates in a 3D space (it has an X, Y, and a Z). Unity can also be used to

create 2D games. More recently, Unity has been used to create VR and AR

games or simulations.

In this book, we will use the latest version of Unity, which is currently

2018.1. However, like most software (and a lot of hardware), Unity is

constantly introducing new features, functionality, and by the time this

book has been printed, there may be a more current version of Unity

available. When Unity makes a minor change to their software, they will

typically add a number (like 2018.1.1). When the update is a bit more

substantial, then the version number will change (like 2018.2). When

Unity typically make a major change, then the version number will change

completely (Unity 1, 2, 3, 4, 5). In July 2017, Unity changed the version

numbering system to the year of release (2017 and now 2018).

Chapter 1 IntroduCtIon

3

 Unity Requirements
Before you start learning to make games, you will need to download Unity

and install it on your Mac. Although it is possible to make games for iOS

devices with Unity installed on a Windows Personal Computer, you will

need to use a piece of software called Xcode to port the Unity code so it

can run on a Mac or iOS device. Currently, Xcode is only available on a

Mac. So, if you have a Windows PC, then at some stage you will need to use

a Mac to port the game. Throughout this book, I will use a Mac; if you are

using a Windows PC, then many of the instructions or directions may not

apply to you.

 Preparing Your Mac
For iOS development using Unity, you will need a Mac running the Lion

or Mountain Lion of Mac OS X 10.9 or higher and Xcode 7.0 or higher.

Unity 2018 may still run on some older systems, but you will need the

latest version of Xcode, which, as noted, is required for iOS development.

The latest version of Xcode typically supports the more recent versions of

iOS. At the time of writing, the current version of Xcode is version 9, which

is what I’ll be using throughout this book.

Chapter 1 IntroduCtIon

4

 Getting Registered
I highly recommend checking out the Apple Developer website (https://

developer.apple.com/) and registering as an iOS developer. Although it is

not an absolute requirement of this book, if you want to publish games on

the App Store, then you will need to be a registered Apple Developer. The

process of registering as an Apple Developer can take a while, especially

if you are registering a company. The first step is registering as an Apple

Developer (which is currently free), then once you are registered, the next

step is registering as an iOS developer (which is currently $99 per year).

 Download Xcode
You won’t need Xcode until much later in the book, but it would be worth

downloading and installing Xcode. You can find the latest version of Xcode

on the Apple Developer website (https://developer.apple.com/).

 Download Unity
Now would be a great time to install Unity. Go to the Unity website at

https://unity3d.com and then select Get Unity or type in https://

store.unity.com/. On this page, you will find the latest release of Unity

(at the time of writing, 2018.1). You can also find previous releases of Unity

on the Unity website.

While there is only a single Unity application, you can subscribe to

different licensing options, depending on your needs and the size of your

company (if you have one). The three licensing options are currently

Personal, Plus, and Pro. To start the download process, click on the button

of the subscription option that suits your needs (at the time of writing, this

will be either Try Personal, Get Plus, or Go Pro). The file is about 1GB, so

it may take a while to download. While you’re waiting, and you are on the

Chapter 1 IntroduCtIon

https://developer.apple.com/)
https://developer.apple.com/)
https://developer.apple.com/)
https://unity3d.com
https://store.unity.com/
https://store.unity.com/

5

Unity website, take some time to check out some of the games and demos

that have been published, the community site, and the user forum. These

will be very useful throughout the development of games using Unity.

 Install Unity
The file you downloaded from Unity is a Download Installer, which at the

time of writing is named UnityDownloadAssistant.

 Running the Download Assistant

When the UnityDownloadAssistant file has been downloaded, double-

click the file to run the Unity Download Assistant. Double-click the Unity

Download Assistant icon to start installing Unity (Figure 1-1).

Figure 1-1. The Unity Download Assistant

Chapter 1 IntroduCtIon

6

The installer will process through the installation cycle, and when this

is complete, a Unity folder will be placed in the Applications folder (unless

you selected a different location). If you have previous versions of Unity

installed, an installation of a new version may replace the previous version.

I recommend renaming the folder of the previous version before installing

the new version (for example, Unity2017). This way you can still use both

versions of Unity.

The Unity installation folder contains the Unity application and several

support folders and applications (Figure 1-2).

Figure 1-2. The Unity installation folder

One of the most important files in the Unity folder is the Unity

application, which will provide the tools used to create and test your

games. This application is sometimes referred to as the Unity Editor,

Chapter 1 IntroduCtIon

7

which is different from another application, the Unity Runtime Engine

(also known as the Unity Player). The Unity Runtime Engine is integrated

into the final builds, which will enable the game to be played on the target

hardware. When I refer to Unity, I am usually referring to the Unity Editor.

I sometimes will refer to the company Unity technologies as Unity. But

hopefully, the context will be clear.

The Documentation folder contains the User Manual, Component

Reference, and the Script Reference documents. These are also available

on the Unity website (select the Learn link). All of these files are HTML

documents and can be opened in a web browser from the Unity Help

menu system, or they can be opened directly by double-clicking the file.

The Standard Assets folder contains several files with the .unityPackage

file extension. These are Unity package files that contain collections of

Unity assets, which can be imported into Unity. It is also possible to create

your own Standard Assets and export these assets to a package file.

There is also the Unity Bug Reporter Application. This application is

typically run directly from within the Unity Editor using the Report a Bug

function. However, this application run directly from the Unity installation

folder.

If you downloaded the Example Project with the Unity installation, be

sure to open this in Unity. If you did not download this at installation, it

still could be downloaded at any time.

 Welcome
After Unity has finished installing (and be prepared for it to take a while),

the Unity editor welcome screen will appear with the Unity Hello! Window

(Figure 1-3). The Unity Hello! Window is where you sign into your Unity

account (if you have one). If you don’t have a Unity account, select the

create one link. If you are not currently connected to the Internet, you can

work offline by selecting the Work offline button.

Chapter 1 IntroduCtIon

8

The Unity Hello! window will appear when you start up Unity

(Figure 1-3). I highly recommend creating a Unity account, if you haven’t

already created one.

After signing in for the first time, you will see the License management

screen. If you have paid for the licensed version of Unity, enter your license

serial number in the dialog box. If you want to use the free version of Unity,

select the Unity Personal radio button (Figure 1-4).

Figure 1-3. The Unity Hello! screen

Chapter 1 IntroduCtIon

9

 Setting Up Unity
Before we get into making a game with Unity, this is a good time to review

some of the options and administrative features of Unity.

 Changing Skins (Pro Version)

If you have purchased a Pro license of Unity, you will be able to choose

between a light or dark skin. If you are using the free version of Unity, you

will only see the Light Skin.

As most beginner game developers use the free version of Unity,

I will use the light skin for screenshots. The light skin also produces better

screenshots for the paperback version of this book. If you have the Pro

version and want to change the skin, select Preferences in the Unity menu

(Figure 1-5).

Figure 1-4. The Unity license management screen

Chapter 1 IntroduCtIon

10

With the Preferences menu open, you can change the skin from Dark

to Light or Light to Dark (Figure 1-6). If you are using Unity Personal

edition, you’re stuck with the Light skin.

Figure 1-5. The Unity Preferences menu

Figure 1-6. The General Preferences menu in the Unity Editor

Chapter 1 IntroduCtIon

11

While you have the General Preferences menu open, I would

recommend making sure the Load Previous Project on Startup option is

deselected. This will ensure that Unity loads the project selection dialog at

startup. This will make sure you avoid updating the wrong version of the

project or update the version of Unity you are using before you are ready.

 Reporting Problems

If you continue to use Unity for several years, you will encounter some

bugs (both real and imagined). I have been using Unity since version

1.6 and have encountered several bugs with Unity. Software bugs are

not unique to Unity. A game development engine is a complex piece of

software and Unity certainly appreciates and values bug reports. If the

bugs aren’t reported, then it’s difficult for Unity to fix them. The Unity Bug

Reporter application provides this feature. As noted earlier, the Report a

Bug Reporter is available in the Unity installation folder and is available

from the Help menu in the Unity Editor (Figure 1-7).

Figure 1-7. The Report a Bug option in the Help menu

Chapter 1 IntroduCtIon

12

Selecting the Report, a Bug option on the help menu or double-

clicking the Report a Bug application in the Unity installation folder opens

the Unity Report a Bug application (Figure 1-8). The application provides

menu options and dialog boxes for the user to specify what the problem is

related to, how often the problem happens, the title of the bug, the details

of the bug, and an option to attach any relevant files that will help fix the

bug. The Unity Bug Reporter requires the user to specify an email address

so that the team at Unity can respond to the bug report.

Figure 1-8. The Unity Bug Reporter window

Chapter 1 IntroduCtIon

13

 iOS Development Requirements
Earlier in this chapter, I suggested that it would be a good idea to download

Xcode and register for the Apple Developer Program. If you have not down

this already, now would be a good time to stop and do this.

The hardware and software requirements for iOS development and

details about the Apple Developer Program are listed on Apple’s Developer

support page (https://developer.apple.com/). You can also find the

requirements and download page for Xcode at https://developer.

apple.com/Xcode/.

 The Unity Website
As Unity Technologies has increased the features and functionally of Unity,

so has the also increased in breadth and depth of content. There is a lot of

information on this website, but I would recommend looking at the FAQ

section (https://unity3d.com/unity/faq). There are also some great

tutorials, documentation, and videos that will help you learn to create

games in Unity (https://unity3d.com/unity/faq).

 The Unity Community
In the Help menu, there are links to the official Unity community sites.

This includes the official Unity Forum (https://forum.unity.com),

which is moderated by Unity staff. This is a great resource for any game

developer. Also on this menu is a link to Unity Answers, which uses a

Stack Exchange format and includes some control (or moderation) of the

questions and answers.

The Unity feedback site (https://feedback.unity3d.com) enables

developers to request and vote on possible future features.

Welcome to Unity.

Chapter 1 IntroduCtIon

https://developer.apple.com/)
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://unity3d.com/unity/faq)
https://unity3d.com/unity/faq)
https://forum.unity.com
https://feedback.unity3d.com

15© Allan Fowler 2019
A. Fowler, Beginning iOS AR Game Development,
https://doi.org/10.1007/978-1-4842-3618-5_2

CHAPTER 2

Getting Started
Hopefully, you might already have a good idea of what Augmented Reality

(or AR) is. As there is some confusion about the difference between the terms

Virtual Reality (or VR), Augmented Reality, and Mixed Reality, I thought it

might be worth trying to clarify what I mean by AR in this book.

Virtual Reality (VR) is a computer-generated environment that

simulates experience through senses and perception. Unlike a traditional

computer system, VR systems place the user inside an experience. Instead

of viewing a screen in front of them, users are immersed and able to

interact with 3D worlds.

Now, let’s look at Augmented Reality (AR). The general consensus is

that AR is defined as a direct live view of a real-world environment whose

elements are “augmented” by computer-generated information. The key

difference between VR and AR is that AR includes a live view of the real

environment. VR systems typically do not include a live view of the real

environment. The VR headsets are fully enclosed, and the display is fully

computer generated.

Mixed Reality (MR, although the acronym is rarely used), is a term

that has mostly been used by Microsoft to differentiate their HoloLens.

I feel that Mixed Reality is another form of AR. However, there is still some

debate about this. When I asked my good friends at Microsoft, they felt that

Mixed Reality is somewhere between AR and VR and fully integrates digital

objects into your world, making it look as if they are really there.

16

It might surprise you that the terms VR and AR have been around for

many years. While there is considerable debate about the first use of the

term VR (mostly due to an agreed definition on the term), there is some

general consensus that the term was first used around the 1950s where

authors referred to fully immersive systems or environments. Throughout

the U.S. Military and NASA, aircraft manufacturers used AR systems

for training, research, and development. However, it was not until 2016

that we saw the first commercially available consumer AR system, the

Oculus Rift. The Occulus Rift was manufactured by Oculus VR (which was

eventually bought out by Facebook for $2,000,000,000).

References to AR have also been made for many years. The difficulty

with agreeing as to then the first reference to AR was made is also due to

an agreed definition of what is AR. In 1989, George Douglas wrote about

a computer-driven astronomical telescope guidance and control system

with a superimposed star field and celestial coordinate graphics display

that appears to be the first AR system.

More recently, there have been several interesting developments in

AR. Although there were some proprietary systems, the first most notable

development was the introduction of Pokémon Go for Android and iOS

phones. Using the geolocation capabilities and the integrated camera of

the phone, users were able to see a virtual object appear on the screen to

be in the real world.

In this book, I am going to focus on developing an AR game for iOS.

I have chosen iOS for a number of reasons. First, there are a lot of devices

that use iOS. More importantly, Apple is investing in AR development in

both hardware and software. With iOS 11, Apple included the ARKit. ARKit

makes it easy for us to create AR games and simulations that put virtual

objects into the user’s environment. Through combining information from

the devices’ motion sensors with data from its cameras, ARKit can help

an iPhone or iPad analyze the surroundings. Apple also beefed up the

capability of the cameras in both the iPhone 8 and iPhone X. The cameras

Chapter 2 GettinG Started

17

in the iPhone 8 and iPhone X have been designed for shooting in low

light and at 60-fps video. The dual optical image stabilization on iPhone

X and improved optical image stabilization on the iPhone 8 also provide

improved visual clarity. These hardware and software features help make

the game appear more naturally in the user’s environment. Apple is also

investing heavily in improving the AR capabilities of their future iPhones

and iPads.

Unity recently introduced the Unity ARKit in the Unity Store.

This makes it a lot easier for us to make AR games for iOS. Therefore,

throughout this book, I will be using the Unity ARKit. So now would be a

good time to install the latest version of the Unity ARKit. The minimum

requirements for the Unity ARKit are the following:

iOS device that supports ARKit and has the latest

version of iOS 11.3 or higher.

Mac with macOS 10.13 (High Sierra) or higher.

Unity version 2017.1 or higher.

The latest version of XCode 9.3 (or higher) from the

Apple Developer website (requires macOS 10.13).

Now that you have Unity installed, it’s time to get acquainted with

the various elements of the Unity ARKit that we will use to make and test

our game. While we explore the different components of the Unity ARKit,

I will discuss some of the technical principles of developing AR games.

As this is an introductory book, I won’t go too deep into the technical

details and try to keep this relatively high level. My editor is asking me

for recommendations on additional AR books, so I might keep the more

advanced or technical content for the second book on AR.

Now let’s start Unity and create a new project.

When you start Unity, you will see the Projects screen (Figure 2-1).

Chapter 2 GettinG Started

18

Select the New icon on the top right of the screen. This will open

the Unity New Project screen (Figure 2-2). In the dialog boxes, type the

Project name in, set the location of the Unity file, type in the name of your

organization, and set the Template to 3D.

Figure 2-1. The Unity Projects Screen

Figure 2-2. The Unity New Project Screen

Chapter 2 GettinG Started

19

In the dialog boxes of the Unity New Project screen, enter in the name

of the project, select where you want to save this file, and select the Create

project icon (Figure 2-2). I have chosen AR project as the file name and

selected the Users folder on the hard drive.

Now Unity will open with a blank Unity project (Figure 2-3).

Figure 2-3. A blank Unity projects screen

 Installing Unity ARKit
Now would be a great time to install the Unity ARKit. To install the Unity

ARKit from the Unity Store, you will need to access the Unity Asset Store.

The Unity Asset Store can be accessed a number of ways. In the main

window of the Unity screen, there is an Asset Store tab, and this will bring

up the Asset Store Window. This window can also be accessed by using

the Command button and 9 (⌘+9). To download resources from the Asset

Store, you will need to register with Unity to create a Unity ID. When you

have created a Unity ID, in the Unity Asset Store window, there is a search

bar. Type in the search bar ARKit, and this will bring up a list of files that

Chapter 2 GettinG Started

20

meet this search criterion (Figure 2-4). The default window settings in

Unity will show the Unity Store window minimized; to view the Asset Store

in Full-Screen mode, there is a drop-down menu on the top-right side of

the screen. Select this and click with the left mouse button. This will show

the screen options, Reload, Maximize, Close Tab, and Add Tab. Select the

maximize option (click the left mouse button). At the top of the screen,

there are several filter options. Below the filter options, there will be the

assets that meet your search criteria. Double-click the ARKit, and this will

load the screen for this asset. Select the import button, and this Asset will

be imported into Unity (Figure 2-5).

Figure 2-4. The Unity Asset Store

Chapter 2 GettinG Started

21

 The Editor Layout
Now would be a good time to take a closer look at the layout of the Unity

Editor. The main window is divided into panels. The default displayed view

(factory Settings) for an area is selected by clicking the view’s tab. Views can

be added, moved, removed, and resized, and the Editor supports switching

among layouts, so a layout essentially is a specific arrangement of views.

For example, the default layout of the main window (Figure 2- 6) has an

area containing a Scene View (Figure 2-7) and a Game View (Figure 2-8).

Figure 2-5. Unity Project Folder with the ARKit in the scene folder

Chapter 2 GettinG Started

22

Figure 2-6. The default layout of the Unity Editor

Figure 2-7. The Scene View selected in a multitabbed area

Chapter 2 GettinG Started

23

 Preset Layouts
The default layout is just one of several preset layouts. Alternate layouts

can be selected from the menu in the top-right corner of the main window

(Figure 2-9). Unity also enables us to create our own layout. In Figure 2-9,

you will see that my menu has a Mobile Game Config. This is my custom

Layout that I created for when I create Mobile Games. Check out the

various Layouts on your menu. Figures 2-6 through 2-7 show the resulting

layouts.

Figure 2-8. The Game View selected in a multitabbed area

Chapter 2 GettinG Started

24

I’ll describe the individual types of views in more detail shortly, but

for now, note that the 2-by-3 layout (Figure 2-10) is an example of a layout

where the Scene View and Game View are in separate areas instead of

sharing the same one. The 4-split layout (Figure 2-11) has four instances of

the Scene View, demonstrating that a layout is not restricted to one of each

type of view. The Tall Layout (Figure 2-12) provides a Portrait Scene View.

The Wide Layout (Figure 2-13) provides a landscape Scene View.

Figure 2-9. The Layout menu

Figure 2-10. The 2-by-3 layout

Chapter 2 GettinG Started

25

Figure 2-11. The 4-split layout

Figure 2-12. The Tall layout

Chapter 2 GettinG Started

26

 Custom Layouts
The preset layouts provide a variety of workspaces, but fortunately,

you’re not restricted to using them exactly as they are. Unity provides the

flexibility to completely rearrange the Editor window as you like.

 Resize Areas

For starters, you may notice while trying out the various preset layouts that

some of the areas are too narrow, for example, in the left panel of the Wide

layout (Figure 2-13). Fortunately, you can click the border of an area and

drag it to resize the area.

 Move Views

Even cooler, you can move views around. Dragging the tab of a view into

another tab region will move the view there. And dragging the tab into a

“docking” area will create a new area. For example, start with the Default

Figure 2-13. The Wide layout

Chapter 2 GettinG Started

27

layout, and drag the Inspector tab to the right of the Hierarchy tab. Now

the Inspector View shares the same area as the Hierarchy View. The result

should look like Figure 2-14.

Figure 2-14. Workspace customized with views moved

 Detach Views

You can even drag a view outside the Editor window so that it resides in

its own “floating” window, which can be treated just like any other area.

Drag the Scene tab outside the Editor, so it resides in a floating window,

and then drag the Game tab into its tab region. The result should look like

Figure 2-15. Likewise, dragging a tab into a docking region of the floating

window will add another area to the window.

Tip i like to detach the Game View into a floating window, since i
normally don’t need to see it while i’m working in the editor until i
click play, and this allows me to maximize the Game View to fill up to
the entire screen. i also like working with more than one monitor. this
way, i can maximize my screen space.

Chapter 2 GettinG Started

28

Floating windows are often covered up by other windows, so the

Windows menu on the menu bar has menu items for making each view

visible. Notice there is a keyboard shortcut for each, and there is also a

Layouts submenu that is identical to the layout menu inside the Editor.

 Add and Remove Views

You can also add and remove views in each area using the menu at the

top-right corner of the area (Figure 2-15). The Close Tab item removes the

currently displayed view. The Add Tab item provides a list of new views for

you to choose from.

You may want to have different layouts for different target platforms, or

different layouts for development vs. playtesting, or even different layouts

for different games. For example, I have a custom layout specifically for my

mobile games that pre-saves the Game View in a suitable portrait aspect

ratio. It would be a hassle to manually reconfigure the Editor every time

you start up Unity. Fortunately, you can name and save layouts by selecting

the Save Layout option in the layout menu, which will prompt you for the

new layout name (Figure 2-16).

Figure 2-15. The list of new views

Chapter 2 GettinG Started

29

After saving, the new layout will be listed in the layout menu and

also in the list of layouts available for deletion if you select Delete Layout

(Figure 2-17).

Figure 2-16. Prompt for new layout

Figure 2-17. Deletion menu for layouts

If you’ve messed up or deleted the original layouts, you can select the

Restore Factory Settings option in the area menu (Figure 2-18). This will

also delete any custom layouts.

Chapter 2 GettinG Started

30

If you change a layout and haven’t saved the changes, you can always

discard them by just reselecting that layout in the layout menu.

 The Inspector View
The best view to describe in detail first is the Inspector View since its

function is to display information about objects selected in other views. It’s

really more than an inspector since it can typically be used to modify the

selected item.

The Inspector View is also used to display and adjust the various

settings that can be brought up in the Edit menu (Figure 2-19).

Figure 2-18. Restore original layout settings

Chapter 2 GettinG Started

31

The Inspector View displays the Editor Settings. If the project currently

has metafiles, then the Version Control Mode is set to Meta Files (and if

you’re using the Asset Server, this option is set to Asset Server). To hide the

metafiles, set the Version Control Mode to Hidden (Figure 2-20).

Figure 2-19. Bringing up the Editor Settings

Chapter 2 GettinG Started

32

Figure 2-20. Editor Settings in the Inspector View

Chapter 2 GettinG Started

33

With the Version Control Mode set to Disabled, Unity will remove the

metafiles. The asset tracking is now handled within binary files inside the

Library folder of the project.

Note Unity users who are using metafiles for version control
support also have the option of setting asset Serialization Mode to
Force text. in that mode, Unity scene files are saved in a text-only
YaML (YaML ain’t Markup Language) format.

Normally, the Inspector View displays the properties of the most

recently selected object (when you bring up the Editor Settings, you really

selected it). But sometimes you don’t want the Inspector View to change

while you’re selecting other objects. In that case, you can pin the Inspector

View to an object by selecting the Lock option in the menu at the top right

of the view (Figure 2-21).

Chapter 2 GettinG Started

34

 The Project View
While the Inspector View can be thought of as the lowest-level View in the

Editor, since it displays the properties of just a single object, the Project View

can be considered the highest-level view (Figure 2-22). The Project View

displays all of the assets available for your game, ranging from individual

models, textures, and scripts to the scene files that incorporate those assets.

All of the project assets are files residing in the Assets folder of your project

(so you might want to think of the Project View as the Assets View).

Figure 2-21. Locking the Inspector View

Chapter 2 GettinG Started

35

 Switch Between One Column and Two Columns
In several older versions of Unity, the Project View had only a one-column

display. That option is still available in the menu for the Project View (click

the little three-line icon at the top right of the view), so you can now switch

between one and two columns.

 Scale Icons
The slider on the bottom scales the view in the right panel—a larger scale

is nice for textures, and smaller is better for items like scripts that don’t

have interesting icons. This is a good reason to partition assets by asset

type (i.e., put all textures in a Textures folder, scripts in a Script folder,

and so on). Chances are, a single-scale slider setting won’t be good for a

mixture of asset types.

Figure 2-22. Top level of the Project view

Chapter 2 GettinG Started

36

 Inspect Assets
Selecting an asset on the right will display the properties of that asset in

the Inspector View. For example, if you select an animation sample, the

Inspector View displays information about the animation, some of which

you can change, like the duration, and it even lets you play the animation

in the Editor (Figure 2-23). We will look at changing asset properties in a

later chapter, but for now feel free to select various types of assets in the

Project View and see what shows up in the Inspector View.

Figure 2-23. Inspecting a selected asset in the Project View

 Search for Assets
In a large and complex project, it’s difficult to manually search for a

particular asset. Fortunately, just as in the Finder, there is a search box that

can be used to filter the results showing in the right panel of the Project

view. In Figure 2-24, the Project View displays the result of searching for

assets with “add” in their names.

Chapter 2 GettinG Started

37

The right panel displays the search results for everything under Assets

(i.e., all of our assets). The search can be narrowed further by selecting one

of the subfolders in the left panel. For example, if you know you’re looking

for a scene, and you’ve arranged your assets into subfolders by the type of

asset, you can select the folder to search. In Figure 2-25, I have searched

the examples folder for any asset with add in the file name.

Figure 2-24. Searching for assets with “add” in the name

Figure 2-25. Searching assets in a specific folder

Chapter 2 GettinG Started

38

Notice just below the search; there is a tab with the name of the folder

that was selected. You can still click the Assets tab to the left to see the

search results for all your assets, both locally and on the Unity Asset Store,

which we’ll make numerous uses of in this book.

You can also filter your search by asset type, using the menu

immediately to the right of the search box. Instead of just searching in the

Examples folder, you could have selected scenes as the asset type of interest

(Figure 2-26). Notice how that resulted in being added to the search box.

The t: prefix indicates the search should be filtered by the following asset

type. You could have just typed that in without using the menu.

Figure 2-26. Search filtered by asset type

The button to the right of the asset type menu is for filtering by label

(you can assign a label to each asset in the Inspector View), which is also

pretty handy for searching the Asset Store. And the rightmost button, the

star, will save the current search in the Favorites section of the left panel.

 Operate on Assets
Assets in the Project View can be manipulated very much like their

corresponding files in the Finder.

Chapter 2 GettinG Started

39

Double-clicking an asset will attempt to open a suitable program to view

or edit the asset. This is equivalent to right-clicking the asset and selecting

Open. Double-clicking a scene file will open the scene in this Unity Editor

window, just as if you had selected Open Scene in the File menu.

You can also rename, duplicate and delete, and drag files in and out of

a folder just as you can in the Finder. Some of the operations are available

in the Unity Edit menu and in a pop-up menu when you right-click on an

asset. You’ll get some practice with that in the next few chapters.

Likewise, in the next chapter, you will work on adding assets to a

project. That involves importing a file or importing a Unity package, using

the Assets menu on the menu bar or just dragging files into the Assets

folder of the project using the Finder.

 The Hierarchy View
Every game engine has a top-level object called a game object or entity to

represent anything that has a position, potential behavior, and a name to

identify it. Unity game objects are instances of the class GameObject.

Note in general, when we refer to a type of Unity object, we’ll use
its class name to be precise and make clear how that object would
be referenced in a script.

The Hierarchy View is another representation of the current scene.

While the Scene View is a 3D representation of the scene that you can work

in as you would with a content creation tool, and the Game View shows

the scene as it looks when playing the game, the Hierarchy View lists all the

GameObjects in the scene in an easily navigable tree structure.

Chapter 2 GettinG Started

40

 Inspect Game Objects
When you click a GameObject in the Hierarchy View, it becomes the

current Editor selection, and its components are displayed in the Editor.

Every GameObject has a Transform Component, which specifies its

position, rotation, and scale, relative to its parent in the hierarchy (if you’re

familiar with the math of 3D graphics, the Transform is essentially the

transformation matrix of the object). Some components provide a function

for the game object (e.g., a light is a GameObject with a Light Component

attached). Other components reference assets such as meshes, textures,

and scripts. Figure 2-27 shows the components of the Main Camera

GameObject (in the Hierarchy view, the entire Player tree of GameObjects

is displayed in blue because it’s linked to a prefab, a special type of asset

that is used to clone a GameObject or group of GameObjects).

Figure 2-27. Hierarchy View and Inspector View

Chapter 2 GettinG Started

41

 Parent and Child GameObjects
You will find that many of the GameObjects are arranged in a hierarchy,

hence the name of this view. Parenting makes sense for game objects that

are conceptually grouped together. For example, when you want to move

a car, you want the wheels to automatically move along with the car. So,

the wheels should be specified as children of the car, offset from the center

of the car. When the wheels turn, they turn relative to the movement of

the car. Parenting also allows us to activate or deactivate whole groups of

game objects at one time.

 The Scene View
Whereas the Hierarchy View allows us to create, inspect, and modify the

GameObjects in the current scene, it doesn’t give us a way to visualize the

scene. That’s where the Scene View comes in. The Scene View is similar to

the interfaces of 3D modeling applications. It lets you examine and modify

the scene from any 3D vantage point and gives you an idea how the final

product will look.

 Navigate the Scene
If you’re not familiar with working in 3D space, it’s a straightforward

extension from working in 2D. Instead of just working in a space with x and

y-axes and (x,y) coordinates, in 3D space, you have an additional z-axis

and (x,y,z) coordinates. The x- and z-axes define the ground plane, and

y- is pointing up (you can think of y as height).

Note Some 3d applications and game engines use the z-axis for
height and the x and y-axes for the ground plane, so when importing
assets, you might have to adjust (rotate) them.

Chapter 2 GettinG Started

42

The viewpoint in 3D space is usually called the camera. Clicking the x,

y, and z arrows of the multicolored Scene Gizmo in the upper-right corner

is a quick way of flipping the camera so that it faces along the respective

axis. For example, clicking the y arrow gives you a top-down view of the

scene (Figure 2-28), and the text under the Scene Gizmo says “Top.”

Figure 2-28. A top view in the Scene View

The camera here is not the same as the Camera GameObject in the

scene that is used during the game, so you don’t have to worry about

messing up the game while you’re looking around in the Scene View.

To demonstrate how to use the Navigation tools, I have selected

the Player GameObject from the Project Folder and dragged this to the

Hierarchy View.

Chapter 2 GettinG Started

43

Clicking the box in the center of the Scene Gizmo toggles the camera

projection between perspective, which renders objects smaller as they

recede in the distance; and orthographic, which renders everything at their

original size whether they are close or far. Perspective is more realistic,

and what you normally use in games, but orthographic is often more

convenient when designing (hence its ubiquity in computer-aided design

applications). The little graphic preceding the text under the Scene Gizmo

indicates the current projection.

You can zoom in and out using the mouse scroll wheel or by selecting

the Hand tool in the upper-right toolbar of the Editor window and click-

dragging the mouse while holding the Control key down. When the Hand

tool is selected, you can also move the camera by click-dragging the view,

and you can rotate (orbit) the camera by dragging the mouse while holding

the Option (or Alt) key down, so you’re not restricted to just the axis

camera angles, like in Figure 2-29.

Figure 2-29. A tilted perspective in the Scene View

Chapter 2 GettinG Started

44

Notice that when you’re looking from an arbitrary angle, the text under

the Scene Gizmo says Persp or Iso, depending on whether you’re using

perspective or orthographic projection (Iso is short for isometric, which is

the tilted orthographic view common in games like StarCraft).

The other buttons on the toolbar activate modes for moving, rotating,

and scaling GameObjects. There’s no reason to change them at the

moment, so those modes will be explained in more detail when you start

creating new projects.

Tip if you accidentally make a change to the scene, you can select
Undo from the edit menu. if you made a lot of changes you don’t
want to keep, you could just decline to save this scene when you
switch to another scene or exit Unity. in the meantime, note that
you can still move the camera while in those modes, using alternate
keyboard and mouse combinations. table 2-1 lists all the possible
options.

Table 2-1. Available Scene View Camera Controls

Action Hand tool 1-button mouse
or trackpad

2-button mouse 3-button mouse

Move Click-drag hold alt-Command

and click-drag

hold alt-Control

and click-drag

hold alt and

middle

click-drag

Orbit hold alt and

click-drag

hold alt and

click- drag

hold alt and

click-drag

hold alt and

click- drag

Zoom hold Control

and click- drag

hold Control and

click-drag or

two- finger swipe

hold alt and

right-click drag

hold alt and

right- click drag

or scroll wheel

Chapter 2 GettinG Started

45

There are a couple of other handy keyboard-based scene navigation

features. Pressing the Arrow keys will move the camera forward, back, left,

and right along the x–z plane (the ground plane). And holding the right

mouse button down allows navigation of the scene as in a first-person

game. The AWSD keys move left, forward, right, and back, respectively,

and moving the mouse controls where the camera (viewpoint) looks.

When you want to look at a particular GameObject in the Scene View,

sometimes the quickest way to do that is to select the GameObject in the

Hierarchy view, then use the Frame Selected menu item in the Edit menu

(note the handy shortcut key F). In Figure 2-28, I clicked on the x-axis

of the Scene Gizmo to get a horizontal view, then selected the Player

GameObject in the Hierarchy View, and pressed the F key (shortcut for

Frame Selected in the Edit menu) to zoom in on and center the player in

the Scene View.

You can also select a GameObject directly in the Scene View, but

you have to exit the Hand tool first. Just as selecting a GameObject in

the Hierarchy View will result in that selection displaying in the Scene

View and Inspector View, selecting a GameObject in the Scene View will

likewise display that selection in the Inspector View and display it as the

selected GameObject back in the Hierarchy view. In Figure 2-30, after I

invoke Frame Selected on the Player, I clicked the Move tool (the button

directly right of the Hand tool button in the top right corner of the Editor

window) and then clicked a GameObject near the Player in the Scene

View. The Hierarchy View automatically updates to show that GameObject

is selected, and the GameObject is also displayed in the Inspector View.

Chapter 2 GettinG Started

46

 Scene View Options
The buttons lining the top of the Scene View provide display options to

assist in your game development. Each button configures a view mode.

The leftmost button sets the Draw mode. Normally, this mode is

set to Textured, but if you want to see all the polygons, you can set it to

Wireframe (Figure 2-31).

Figure 2-30. Selecting a GameObject in the Scene View

Chapter 2 GettinG Started

47

Figure 2-31. Wireframe display in the Scene view

The next button sets the Render Paths, which controls whether the

scene is colored normally or for diagnostics.

The three buttons to the right of the Render Paths mode button

are simple toggle buttons. They each pop up some mouse-over

documentation (otherwise known as tooltips) when you let the mouse

hover over them.

The first of those controls the Scene Lighting mode. This toggles

between using a default lighting scheme in the Scene View or the actual

lights you’ve placed in the game.

The middle button toggles the Game Overlay mode, whether the sky,

lens flare, and fog effects are visible.

And finally, there is the Audition Mode, which toggles sound on and off.

Chapter 2 GettinG Started

48

 Scene View Gizmos
The Gizmos button on the right activates displays of diagnostic graphics

associated with the Components. The Scene View in Figure 2-32 shows some

gizmos. By clicking the Gizmos button and checking the list of available

gizmos, you can see those icons representing a Camera and a Light.

Figure 2-32. Gizmos in the Scene View

Chapter 2 GettinG Started

49

You can select and deselect the various check boxes in the Gizmos

window to focus on the objects you’re interested in. The check box at the

top left toggles between a 3D display of the gizmos or just 2D icons. The

adjacent slider controls the scale of the gizmos (so a quick way to hide all

gizmos is to drag the scale slider all the way to the left).

 The Game View
Now let’s look at the Game View. Like the Hierarchy View and Scene View,

the Game View depicts the current scene, but not for editing purposes.

Instead, the Game View is intended for playing and debugging the game.

The Game View appears automatically when you click the Play button

at the top of the Unity Editor window. If there isn’t an existing Game View

when you click Play, a new one is created. If the Game view is visible while

the Editor is not in Play mode, it shows the game in its initial state (i.e.,

from the vantage of the initial Camera position).

The Game View shows how the game will look and function when you

actually deploy it, but there may be discrepancies from how it will look and

behave on the final build target. One possible difference is the size and

aspect ratio of the Game View. This can be changed using the menu at the

top left of the view. Figure 2-33 shows what happens when you switch from

the Free Aspect ratio, which adjusts to the dimensions of the view, to a 5:4

aspect ratio, which results in the scaling down the game display so that it

fits within the area and maintains the chosen aspect ratio.

Chapter 2 GettinG Started

50

 Maximize on Play
Clicking the Maximize on Play button will result in the Game view

expanding to fill the entire Editor window when it is in the Play mode

(Figure 2-34). If the view is detached from the Editor window, the button

has no effect.

Figure 2-33. The Game view

Chapter 2 GettinG Started

51
Figure 2-35. Game view with Stats

Figure 2-34. Game view with Maximize on Play

 Stats
The Stats button displays statistics about the scene (Figure 2-35) that

update as the game runs.

Chapter 2 GettinG Started

52

 Game View Gizmos
The Gizmos button activates displays of diagnostic graphics associated

with the Components. The Game View in Figure 2-36 shows two icons that

are gizmos for an Audio Source. The list to the right of the Gizmos button

allows you to select which gizmos you want displayed.

Figure 2-36. Game View with Gizmos

Both the Game View and Scene View are both depictions of the current

scene. A Unity project consists of one or more scenes, and the Unity Editor

has one scene open at a time. Think of the project as a game and the

scenes as levels (in fact, some Unity script functions that operate on scenes

use “level” in their names). Unity GameObjects are made interesting by

attaching Components, each of which provides some specific information

Chapter 2 GettinG Started

53

or behavior. That’s where the Inspector View comes in. If you select a game

object in the Hierarchy View or Scene View, the Inspector View will display

its attached components.

 The Console View
The remaining view in all the preset layouts, the Console View, is easy to

ignore but it’s pretty useful (Figure 2-37).

Figure 2-37. The Console view

Informational, warning, and error messages appear in the Console

View. Errors are in red, warnings in yellow, and informational messages

in white. Selecting a message from the list displays it with more detail in

the lower area. Also, the single-line area at the bottom of the Unity Editor

displays the most recent Console message, so you can always see that a

message has been logged even if the Console view is not visible.

Tip Warning messages are easy to ignore, but you can ignore
them at your risk. they are there for a reason and usually indicate
something has to be resolved. and if you let warnings accumulate, it’s
difficult to notice when a really important warning shows up.

Chapter 2 GettinG Started

54

The Console can get cluttered pretty quickly. You can manage that

clutter with the leftmost three buttons on top of the Console View. The

Clear toggle button removes all the messages. The Collapse toggle button

combines similar messages. The Clear on Play toggle will remove all

messages each time the Editor enters Play mode.

The Error Pause button will cause the Editor to halt on an error

message, specifically when a script calls a Log.LogError.

While operating in the Editor, log messages end up in the Editor log,

while messages generated from a Unity-built executable are directed to

the Player log. Selecting Open Player Log or Open Editor Log from the view

menu (click the little icon at the top right of the Console View) will bring

up those logs, either in a text file or in the Console app (Figure 2-38).

Figure 2-38. The Unity logs in the Mac Console app

 Explore Further
We’ve come to the end of this Unity tour. In Chapter 3, you’ll start learning

some of the ARKit features. This is the first chapter that really starts using

Unity. You haven’t yet started building your own scene (that will begin in

Chapter 3), but you’ve been able to get familiar with the Unity Editor. There are

plenty of official Unity resources that expand on the topics I will be covering.

Chapter 2 GettinG Started

55

 Unity Manual
As you can see, there’s a lot of Unity user interface, and we’ve hardly

covered it all. This is a good time to get serious about reading the Unity

Manual, either from within the Unity Editor (the Welcome screen or the

Help menu) or on the Unity website (http://unity3d.com/) under the

Learn tab in the “Documentation” section. The web version is pretty handy

when you want to look something up or just read about Unity without

having a Unity Editor running nearby.

Most of what was covered in this chapter match topics in the Unity

Basics section of the Unity Manual, particular the sections on “Learning

the Interface,” “Customizing Your Workspace,” “Publishing Builds,” and

“Unity Hotkeys.” We did jump ahead into the Advanced section of the

Unity Manual and touch on Unity’s support for version control. That’s

covered more in-depth with the Unity Manual’s page on “Using External

Version Control with Unity.”

 Tutorials
Besides the “Documentation” section, the Learn tab on the Unity website

also includes a “Tutorials” section that features an extensive set of

Beginning Editor videos. As the name implies, these videos introduce

the Unity Editor, and in fact the set of videos covers much of what was

discussed in this chapter, including descriptions of the most important

views (the Game View, Scene View, Hierarchy View, Inspector View, and

Project View) and even the process of publishing a build.

 Version Control
Although I only discussed version control briefly, in the context of

explaining how to remove metafiles, that topic is worth a little more

discussion, since a version control system (or VCS) is so important to

Chapter 2 GettinG Started

http://unity3d.com/

56

software development (which you’ll realize the first time you lose your

project or can’t remember what change you made that broke your game!).

If you already have a favorite VCS, you may want to use it with Unity, and

if you haven’t been using one, then you may want to consider it if only to

keep old versions of your project around in case you need to roll back, with

the ability to check differences between versions,

Among version control systems, Perforce is a popular commercial tool

used in game studios, and Subversion (svn) has a long history as an open

source option. These days, distributed version control systems like Git and

Mercurial are trending. I use Mercurial on Bitbucket (http://bitbucket.

com/) for my internal projects and post public projects on GitHub,

including the projects for this book.

To say Unity VCS support is product agnostic is really another way of

saying Unity doesn’t have any particular version control system integrated

into the Unity Editor. The metafiles, and YAML scene files for Unity Pro

users, simply provide better compatibility with text-oriented version

control systems that are commonly used for source code. You still have to

run the VCS operations yourself outside of Unity. You can find out more

about YAML, by the way, on http://yaml.org/.

I find it convenient to use the Mac GitHub app provided on the

GitHub website and similarly SourceTree for BitBucket, also available on

that website.

Chapter 2 GettinG Started

http://bitbucket.com/
http://bitbucket.com/
http://yaml.org/

57© Allan Fowler 2019
A. Fowler, Beginning iOS AR Game Development,
https://doi.org/10.1007/978-1-4842-3618-5_3

CHAPTER 3

The Unity ARKit
Now that you have installed Unity and the Unity ARKit Plug-in, it’s time to

get to learn a bit more about this tool and make our first AR experience.

Note, I called this an experience and not a game, although it could possibly

be used as a game in some way; from my point of view a game needs some

key elements, which I will go into detail in Chapter 4.

If you have not already opened the AR Project we created in the last

chapter, now would be a good time to do this. If you look in the Project

folder (Figure 3-1) and look in each folder, you will see that the Unity ARKit

Plug-in comes with a number of resources that we will explore and use

throughout this book.

 Creating a Scene
The first task we are going to do is create GameObject and put it in our

scene and look at it in AR. From the Menu, select GameObject ➤ 3D Object

➤ Cube (Figure 3-1). We could choose any of the 3D objects, but I want you

to see the Cube in AR and move around it in 3D space. Although I prefer

Spheres, the 3D Cube has six vertices (the angular point of a polygon), and

these are going to be easier to see. We will, however, add different shaped

game objects very soon.

58

Once you have completed this task, you will see our amazing Cube in

the Scene panel (Figure 3-2).

Figure 3-1. Creating a 3D GameObject

Figure 3-2. The Cube GameObject in the Scene

Chapter 3 the Unity arKit

59

Now let’s have a look in the Inspector (Figure 3-3). If your Transform

positions are not the same as mine, don’t worry about this for now (we are

going to move the GameObject anyway). Note the scale is 1,1,1. Unity uses

the metric standard for measurement, and therefore 1 unit in Unity space

is the equivalent of 1 meter in real-world terms. Now for most traditional

games (that are not AR), this is not really something that beginner

developers need to worry about (much). However, because we will be

projecting the game assets into a real-world space, getting measurements

and scale correctly become very important. So, if we leave the scale of our

Cube at 1 meter wide, by 1 meter tall, by 1 meter deep, this is going to be a

pretty big cube. The convention for describing coordinates in 3D graphics

is X,Y,Z. I will use this standard throughout this book. I am going to scale

our amazing Cube, so it is going to fit into my very small apartment. It

might surprise a few readers that most authors of instructional books don’t

live in multi-million-dollar mansions (well at least this author doesn’t).

Chapter 3 the Unity arKit

60

Figure 3-3. The Cube GameObject in the Inspector

Chapter 3 the Unity arKit

61

In the Inspector, set the scale to 0.25,0.25,0.25 (Figure 3-4).

Figure 3-4. The Cube GameObject reduced Scale

Chapter 3 the Unity arKit

62

Now if you look at the Cube in the Scene, it will (or should) look

smaller (Figure 3-5). If you want to want a closer look at the GameObject,

you can move the camera in the Scene view closer to the Cube. There are

two main ways of moving the Scene view camera. The easiest way is by

selecting the GameObject in the Hierarchy panel and pressing the f key

(I remember this as f for focus). The other way is to use the middle mouse

wheel (if you have a 3-button mouse) to move the camera in or out or

double tab the mouse (if you have a Magic Mouse). I’m (very) old school

and prefer to use my 5-button mouse.

Figure 3-5. The Scene view of the Cube GameObject at reduced Scale

 Cameras
Now would be a good time to talk about cameras. We just moved the

camera in the Scene view. This camera enables you, the developer, to see

what is in the Scene. However, if you look in the Hierarchy panel, you will

see a GameObject Main Camera. This is the camera that the player will be

looking through. You will note in Figure 3-5, there is a camera icon in my

Scene view. This is where the Player’s camera is positioned in the scene.

Chapter 3 the Unity arKit

63

I want you to select the Main Camera in the Hierarchy panel. You will

see a small window in the lower right of the Scene view a small window

(Figure 3-6). This window displays a view from the Player’s camera

(Camera Preview).

Figure 3-6. Camera Preview

Although the Camera Preview window provides us with a good idea of

what the scene will look like to the player, to get a better view, we can select

the Game view tab (Figure 3-7).

Chapter 3 the Unity arKit

64

As we saw in the previous chapter, there are a number of settings

that we can use (aspect ratio, scale, and so on). We can see here that

our amazing Cube is a bit far away. We are going to first move the Game

Object, and then we are going to move the Main Camera.

 Transformation
There are several ways to move (transform) a GameObject in Unity.

The first way we will use (and is the main method I use) is to set the

transform settings in the Inspector. First, select the GameObject we want

to transform. Then, in the inspector set the transform positions to 0,0,0

(Figure 3-8).

Figure 3-7. The Game view

Chapter 3 the Unity arKit

65

Now let’s have a look in the Main Camera to check what this looks will

like to the player (Figure 3-9).

Figure 3-8. The GameObject with the updated Transform positions

Figure 3-9. Camera Preview of the GameObject with reset Transform
positions

Chapter 3 the Unity arKit

66

You will note that the GameObject is still a bit too far away from the

Main Camera. At the top left of the screen (just above the Hierarchy panel),

there are six icons (Figure 3-10).

Figure 3-10. Six transform icons

The first icon is the Hand tool (Q shortcut), and it is used for

transforming (or panning) the camera in the scene view. With this tool

selected, select any GameObject in Hierarchy move mouse and note that

the transform settings of the GameObject don’t change, but the view of the

GameObject changes. While holding down the alt (option) key, the Hand

tool enables you to orbit the camera around its pivot point. By holding

down the control button, you can move (or dolly) the camera closer or

farther away from the GameObject.

The next icon is the Move tool (W shortcut). The move tool, as you

can probably guess, is for moving a GameObject’s position in the scene.

With the Main Camera selected, select the Move tool (by selecting the

Move icon or pressing the W key), and you will note that in the Scene view

the Main Camera icon now has the move Gizmo (the Red, Green Blue

lines with arrow points – Figure 3-11). First, select the Green line (Y-axis)

and move the Main Camera down. Note that when you select this line,

the other arrow lines are grayed out and the line you selected changes to

yellow. Now try to move the camera to 0 on the Y-axis. You will note that

this might take some time. You might want to enter zero in the Y in the

Inspector if you can’t get the placement correct (which is why I prefer to

type the values in the Inspector).

Chapter 3 the Unity arKit

67

The next tool is the Rotate tool (E shortcut). As you probably guessed,

this tool is used for rotating the GameObject. Try selecting the Cube and

then press the R key. You will see the Rotate Gizmo (Figure 3-12). With

the Rotate Gizmo, you can change the rotation of the GameObject by

clicking and dragging the axes of the wireframe Rotate Gizmo that appears

around it. With the Rotate Gizmo, the red, green, and blue circles perform

a rotation around the red, green, and blue axes (red is the x-axis, green

is the y-axis, and blue is the z-axis). The outer circle is used to rotate the

GameObject around the Scene view z-axis.

Figure 3-11. The move Gizmo

Chapter 3 the Unity arKit

68

The next tool is the Scale toll (R shortcut). The scale tool is used to

scale or rescale GameObjects on all axes by selecting the center of the Scale

Gizmo and then dragging the mouse (Figure 3-13). You can also use this tool

to scale on an individual axis by selecting any one of the individual axes.

Figure 3-12. The rotate Gizmo

Figure 3-13. The scale Gizmo

Chapter 3 the Unity arKit

69

Scaling the Cube with the Cube GameObject selected sets the position

of the cube, or it has been moved while we were using the transform tools;

now would be a good time to set or reset the position to 0,0,0 (Figure 3-14).

Figure 3-14. The Cube GameObject Position settings

Chapter 3 the Unity arKit

70

Now we need to position the Main Camera at the origin (0,0,0). If you

look at the position of my cube, this would mean our camera will be right

in the middle of our Cube. So, let’s first move the cube out of the way. Set

the Cube transformation position settings to 0,0,1 and then move the Main

Camera to 0,0,0 (Figure 3-15). Now the cube will look like it is positioned 1

meter away from our camera.

Figure 3-15. The new Main Camera settings

 Testing
Now it’s time to see how our amazing cube is going to look in the real

world. When developing for iOS, we need to use Xcode before we can

test or deploy the game. To publish an AR game on iTunes, we need to

submit the game to Apple for approval, and then when it gets approved,

we can download it from the iTunes store and see what it looks like on

our device. With Xcode, we can preview what our game will look like

on our device, but this still requires us to build and run the game and

use Xcode to preview the game. As you might imagine, this was a very

time- consuming (and a little bit frustrating) experience. Unity came

to the rescue and provided us with Unity Remote. Unity Remote is an

application (or app) available for iOS devices in the iTunes app store.

This tool helps us test a game on an iOS device without the need for

Chapter 3 the Unity arKit

71

submitting the game to the iTunes store. However, at the time of writing,

Unity Remote (version 5) does not support AR. The fine people at Unity

have thought about this challenge and have included in the Unity ARKit a

small program called UnityARKitRemote. Unity ARKitRemote provides us

with the tools needed to test our AR project on an iOS device.

 ARKit Remote
In the Project folder, type in a search text to find the ARKit Remote Prefab

(Figure 3-16). Now drag this file to the Hierarchy tab (Figure 3-17).

Figure 3-16. Searching for the ARKit Remote

Figure 3-17. The ARKitRemote Prefab in the Hierarchy

Chapter 3 the Unity arKit

72

 Setting Up the Main Camera
Now in the Main Camera settings, set the clear flags to Depth only

(Figure 3-18).

Figure 3-18. Set the Camera’s Clear Flags to Depth only

 Adding a Component
Now we are going to add a Component to our camera. In this example,

we are going to add the Unity AR Video script. To add this script, with the

Main Camera selected, in the Inspector select Add Component.

Chapter 3 the Unity arKit

73

In the Inspector, you will see a list of possible components that you

can add (Figure 3-18). It might take you a while to find it, so I recommend

using the search bar in the Add Component menu for the Script we are

looking for. In Figure 3-19, in the search bar, I searched for video.

Figure 3-19. Searching for the Unity AR Video Script component

Chapter 3 the Unity arKit

74

Once you have found the Unity AR Video script, select it (single

mouse-click) and now you should see this component is now added to the

Main Camera (Figure 3-20).

Figure 3-20. The Unity AR Video Script component added to the
main camera

In the Unity AR Video script, there is a property called Clear Material.

We are going to add a material. In the Unity AR Video script Clear

Materials properties, on the right of the properties box, there is a small

gear (Figure 3-19); if you select this gear, you will see a list of all the

possible materials available in this project folder (Figure 3-21). Again, you

Chapter 3 the Unity arKit

75

can search for this manually, or use the search bar. Search for the YUV

material. I will go into a bit more detail on what this material is doing and

why we use it in a later chapter.

Figure 3-21. Selecting the YUV material for the Clear Material

Chapter 3 the Unity arKit

76

 Tracking the Phone Movement
To make the AR project look real, we need to track the movement of the phone

in the real world and project an accurate representation of the virtual object

on the phone’s screen. The fine folk at Unity have (again) made our lives easier

and in the Unity ARKit has a Script called the Unity AR Camera Manager.

Following the steps that we did to add the Unity AR Video script, we are going

to add the Unity AR Camera Manager. First select the Main Camera and in the

Inspector, select Add Component (Figure 3-22); now search for AR Camera

Manager (Figure 3-23), and add it to the Main Camera.

Figure 3-22. Add Component

Chapter 3 the Unity arKit

77

It is good practice to add the Main Camera to the Tracked Camera

Properties of the Unity AR Camera Manager; this will ensure that the AR

Camera Manager uses the correct camera. However, if you don’t select

this, the Unity AR Camera Manager will choose it for you. To add the Main

Camera to the Camera Properties of the Unity AR Camera Manager, select

the Main Camera from the Hierarchy and drag this to the Tracked Camera

properties of the Unity AR Camera Manager (Figure 3-24).

Figure 3-23. Searching for the Unity AR Camera Manager

Chapter 3 the Unity arKit

78

 Build and Run
Now we are ready to build and run our app. Make sure you have connected

your iOS device to your Mac and then select Build & Run from the Unity

File menu (Figure 3-25). If you have not already downloaded the latest

version of Xcode, you need to do this now (it’s going to take a while).

Figure 3-24. Setting the Main Camera as the Tracked Camera

Chapter 3 the Unity arKit

79

Figure 3-25. Selecting Build & Run

Figure 3-26. The Build Settings

Chapter 3 the Unity arKit

80

In the Build setting menu, first select the Platform you want to build

this on, which in our example will be iOS. Also, select the Development

Build check box. Finally, it is really important to select only the scene you

want to build. If your current scene is not listed, click the Add Open scenes

button (Figure 3-26) and uncheck any other scene.

From the Build Setting screen, select the Player Settings icon. This

will open the Inspector for the Player Settings where we will enter the

Company Name and Product Name (Figure 3-27).

Figure 3-27. The Inspector view of the PlayerSettings

Scroll down the menu to find the Bundle Identifier (Figure 3-26). It is

important to note that once you have registered a bundle identifier to a

Personal Team in Xcode, the same bundle identifier cannot be registered

to another Apple Developer Program team in the future. This means that

when you are testing your game using a free Apple ID and a Personal

Team, you should choose a bundle identifier that is for testing only - you

won’t be able to use the same bundle identifier to release the game.

The best solution to do this is to add “Test” to the end of the test bundle

Chapter 3 the Unity arKit

81

identifier - for example, com.yourCompanyName.yourAppNameTest.

Also note that the bundle identifier is written in what is known as

reverse-DNS style. The accepted characters are alphanumeric characters,

periods, and hyphens. In my example (Figure 3-28), I have used com.

RottenEggProductions.HelloWorldARTest as the bundle identifier (You

will need your own name). If you have a signing team ID, you may want to

include that as well. But for testing purposes, this is not needed.

Figure 3-28. Setting the Bundle Identifier in the PlayerSettings

Chapter 3 the Unity arKit

82

Now select the Build and Run icon. Unity will Prompt you to Save the

Project. The tradition when learning Introductory Programming courses

is to name our first application Hello World (don’t ask me why). So, in

this tradition, I am going to name my first AR App, Hello WorldAR. Note

in Figure 3-29, I am saving this in the same folder as my Unity Project.

Some people would argue that this is not good practice, but it’s good

enough for now.

Figure 3-29. Saving the Hello WorldAR Menu

After saving the file, Unity will start compiling the application

(Figure 3-28) and will eventually open Xcode (Figure 3-29). When Xcode

opens (Figure 3-31), make sure you have selected the correct device

(iPhone or iPad), select the play button to launch your game on your

device (Figure 3-30). If Unity reports any errors, be sure to check what the

errors are and address these issues before retrying.

Chapter 3 the Unity arKit

83

Figure 3-30. Unity Compiling our application

Figure 3-31. Xcode

Chapter 3 the Unity arKit

84

You will be prompted to allow the Unity ARKit to access your camera

and if everything works, you should see your amazing cube in the real

world. In my example, you can see my amazing cube projected in front of

my photo of Mount Aoraki (Figure 3-32).

Figure 3-32. My Hello WorldAR app

 Saving the Scene
Now would be a good time to save our scene. From the file menu, select

File ➤ Save Scene As and name this scene (Figure 3-33). I have chosen

Hello WorldAR as the name of this Scene (Figure 3-34).

Chapter 3 the Unity arKit

85

 Understanding Scenes
Now might be a good time to discuss the difference between Unity scenes

and projects. A Unity Project contains all the scenes and necessary code

that might be used for the game or application. A Scene is an element (or

component) of the project. Think of the project as an entire movie and the

scenes as parts of that movie. In a game, those scenes could be the menus,

levels, credits, and so on.

Figure 3-33. Save Scene as menu

Figure 3-34. Saving the Scene and selecting its location

Chapter 3 the Unity arKit

86

 Introducing Visual Inertial Odometry
Now we are going to look at some more of the important tools used for

creating an AR game. In our Hello WorldAR project, we created a cube

that was positioned in front of the iPhone’s camera and stayed there while

we moved the camera position. How does the camera know where it is

positioned? As you may already know, the iPhone has some pretty cool

ways of knowing where it is positioned. The one I use most frequently

is the accelerometer. The accelerometer allows the iPhone to know

its position in 3 Axes (X,Y,Z). This is very useful for switching between

portrait and landscape mode. The other tool I use is the compass (or

magnetometer), and as you probably already know, this is very useful for

navigation. The last tool is the gyroscope. The gyroscope tracks the rotation

or twist of the iPhone. Although these are great tools for navigation, they

do not have the level of precision needed for tracking the movement of the

phone in AR. To track the movement of the iPhone needed for AR, Apple

recently included some technologies in the phone’s camera. Through

combining the Visual information (from the camera) and the Inertial

information (from the accelerometer and the gyroscope), it is possible to

accurately measure the position of the iPhone.

 Feature Points
So how does the camera track the position of the phone? Good question!

The camera in the iPhone (currently iPhone 8 or higher) is smart enough

to identify key points (or feature points) in the real world and when the

camera is moved, track where these points are. This process requires some

pretty impressive mathematics, but the more recent iPhones have enough

processing power to do this.

Chapter 3 the Unity arKit

87

 Point Clouds
The Unity ARKit includes a prefab for helping the phone identify feature

points in the physical world. The first one we are going to use is the

PointCloud Prefab.

With your Hello WorldAR app open in Unity, we are going to create

an empty GameObject. From the file menu, select GameObject ➤ Create

Empty (Figure 3-35).

Figure 3-35. Creating an empty GameObject

With the Empty GameObject Selected in the Inspector, rename it Point

Cloud. Now add a component. In the search bar, search for the Unity Point

Cloud Example and add this to the Point Cloud GameObject (Figure 3-36).

Chapter 3 the Unity arKit

88

Figure 3-37. Setting the Max Points to Show

Figure 3-36. Searching for the Point Cloud Example

With the Unity Point Cloud Example script added, now set the number

of Max Points to Show at 120 (Figure 3-37). You can set as many Point

Clouds as you like.

Now we need to add a Point Cloud Particle Prefab to Point Cloud.

Select the small gear to the right of the Point Cloud Prefab box and then

search for Prefab (Figure 3-38). Select and drag the PointCloudPrefab to

the Point Cloud Particle Prefab box in the Point Cloud Particle Example

script (Figure 3-39).

Chapter 3 the Unity arKit

89

Figure 3-38. Searching for the PointCloud Prefab

Figure 3-39. The PointCloudPrefab set as the Point Cloud Prefab

 Testing
Now we are going to test our Point Cloud. When we tested our Hello

WorldAR app, we went through the long (and possibly tedious) task

of building the App, launching it in Xcode. and then finally being able

to see our App on our iOS device. The wonderful people at Unity have

thought about this and have created a way for us to reduce the time of

testing our development. In the Unity ARKit, there is a Scene that will

enable us to preview the build in the Game tab of Unity. If you want to go

Chapter 3 the Unity arKit

90

through the process of using Xcode every time you want to preview the

development, that’s fine. However, I will show you a more efficient way

that you might value.

 Unity ARKitRemote
Because Unity Remote Connection currently does not support AR, we

need to build and deploy an App to our iOS device. The fine folk at Unity

have included in the Unity ARKit, a scene called ARKit Remote. You can

find this in the Project folder using the search bar. In Figure 3-40, I have

used the search string remote.

Figure 3-40. Searching for the UnityARKitRemote Scene

Figure 3-41. UnityARKitRemote

Double-click the Scene to open it. If you have not saved any changes

to the current scene, you will be prompted to save it before Unity will open

another scene. You will see that this is a very simple Scene that consists of

a Main Camera and a Directional Light (Figure 3-41).

Chapter 3 the Unity arKit

91

If you select the Main Camera in the Hierarchy, you will see that the

Main Camera has several scripts added (Figure 3-42). These scripts will

enable the phone camera to track its position as well as enable us to see

the camera view in the Unity Editor.

Figure 3-42. Main Camera Scripts

Chapter 3 the Unity arKit

92

Just like we did with the Hello WorldAR app that we created, we need

to deploy this App to our phone. From the file menu, select File ➤ Build

Settings (Figure 3-43).

Figure 3-43. Selecting the Build Settings

In the Build Setting menu, select the Player Settings menu and make

changes to the Product Name and the Bundle Identifier (Figure 3-44).

Chapter 3 the Unity arKit

93

Figure 3-44. The Inspector view of the PlayerSettings

Chapter 3 the Unity arKit

94

Note, I have changed the Product Name to ARKitRemote and the

Bundle Identifier to com.RottenEggProductions.ARKitRemoteTest

(Figure 3-45).

Figure 3-45. Bundle Identifier settings

Chapter 3 the Unity arKit

95

Make sure you have the correct Scene to build and select Build and

Run from the Build Menu. Now Unity will compile our App and run Xcode

and Xcode will deploy this to our Device (Figure 3-46).

Figure 3-46. ARKitRemote installed on my iPhone

Now we need to add the ARKit Connection Prefab to our Hello

WorldAR project. Open your Hello WorldAR Scene (double-click).

 Using ARKit Remote Connection
In the Project Folder, search for a Prefab called ARKitRemoteConnection

(Figure 3-47).

Chapter 3 the Unity arKit

96

Select this Prefab and add it to the Scene (drag it to the Hierarchy)

(Figure 3-48).

Figure 3-47. Searching for the UnityARKitRemoteConnection Prefab

Figure 3-48. The UnityARKitRemoteConnection in the Scene

Now we are going to open the ARKitRemote on our iOS device. In

Unity, open up the Hello World AR scene and then select the Game tab

and press the Play button. Unity will prompt you to connect to player in the

console menu (Figure 3-49).

Chapter 3 the Unity arKit

97

In the Console table, select Editor and select your iOS device (Figure 3- 50).

Figure 3-49. Unity connect to player message

Figure 3-50. Selecting the iOS device in the Console menu

Then Unity will prompt you to Start Remote ARKit Session (Figure 3- 51).

Click the icon on the Game screen in Unity and your application can now

run on your iOS device.

Chapter 3 the Unity arKit

98

Figure 3-51. Start Remote ARKit Session prompt

Figure 3-52. The Cube and the Point Cloud in the Game View

In Figure 3-52, you can see that I have successfully been able to view

the Hello WorldAR app on my iPhone and see the Scene in Unity. If you

move your device, you should see the Camera move in the Unity Scene tab

and the picture change in the Game tab. I would like to point out that it’s

going to be a bit slow (lag), but the ARKitRemote is currently the best way

to develop and test Unity AR development for iOS.

Chapter 3 the Unity arKit

99

While the point cloud system is great for identifying a non-symmetric

object (like a sofa). It will be more efficient and more effective if we use

another feature provided in the UnityARKit that will help identify a flat

plane (like a floor, wall, or table).

 Plane Visualization
First, create another empty GameObject that will contain the scripts

needed. To create an Empty GameObject, from the menu, select

GameObject ➤ Create Empty (Figure 3-53).

Figure 3-53. Creating an Empty GameObject

With the GameObject selected, in the Inspector, name this Created

Planes (Figure 3-54).

Chapter 3 the Unity arKit

100

Now we need to add a component. Select the Add Component button

in the Created Planes Inspector and in the search bar, search for the Unity

AR Generate Plane script (Figure 3-55).

Figure 3-54. Naming the new GameObject Created Planes

Figure 3-55. Searching for the Unity AR Generate Plane script

Chapter 3 the Unity arKit

101

With the Unity AR Generated Plane script included in the Created

Planes GameObject, in the Plane Prefab setting of the Unity AR Generated

Plane script. select the small gear to the right of the option box and search

for and select the DebugPlanePrefab (Figure 3-56).

Figure 3-56. Searching for the debugPlanePrefab

 Testing
Now with your iOS device connected to your Mac, run the

UnityARKitRemote App. Now in Unity. connect to your device in the Editor

and click the Play button. With your iOS device, turn the camera to view

a flat surface, and you should see your point cloud and a rectangle in the

Unity Game view screen (Figure 3-57).

Chapter 3 the Unity arKit

102

Figure 3-57. The Point Clouds and Created Plane

Both the Point Clouds and Created Planes will be useful in the game

that we create for finding and tracking the reference points from the iOS

camera. If you are feeling brave, you might want to try deploying the final

build to your iOS device. However, at the moment, our Cube is not quite

ready for really using the reference point tracking of the camera.

 Summary
In this chapter, we have learned about using the Unity ARKit and

configuring our iOS device to preview our applications and games in real

time. We also learned some theory of how the Unity ARKit can track the

position of the device. Finally, we used some tools to help us accurately

track the fine movements of the device.

Chapter 3 the Unity arKit

103© Allan Fowler 2019
A. Fowler, Beginning iOS AR Game Development,
https://doi.org/10.1007/978-1-4842-3618-5_4

CHAPTER 4

Hit Testing and
Lighting
In our last chapter, we used both Cloud Points and Generated Planes

to help the camera track the movement of the device. However, you

may have noticed that our amazing cube continued to stay at the point

of origin. While this may be okay for our first AR App, I’m sure in time

you might want to create virtual objects that appear to be located on a

physical object in the real world. To do this, we are going to use a feature

of the Unity ARKit called hit testing. You may have also noted that the

lighting of the GameObject on the screen of your iOS device is not

consistent with the lighting in the real world; we are also going to address

this issue in this chapter.

 Hit Testing
Hit testing will enable us to place something on the Generated Planes we

created in Chapter 3. This will also enable the AR App to place an object to

look like it is in a position in the real world that is relative to where the user

taps on the screen of their device.

Let’s open the Hello WorldAR scene we created in the last chapter.

With the Hello World AR Scene open in Unity, now select the Created

Planes GameObject in the Hierarchy (Figure 4-1).

104

With the Created Planes GameObject selected in the Hierarchy, select Add

Component; and in the search bar, search for the Editor Hit test (Figure 4-2).

Now select this to add it to our Created Planes Game Object. This script will

enable us to test out the basic functionality of Hit Testing in the editor.

Figure 4-1. Selecting the Created Planes GameObject in the Hierarchy

Figure 4-2. Searching for the Editor Hit Test

Chapter 4 hit testing and Lighting

105

By now you might be keen to include something in the AR App a bit more

interesting than our cube. We could search the Asset Store for an interesting or

relevant asset to include, or we could create our own one. As making our own

game assets is very time consuming and outside of the scope of this book, for

now, let’s use one of the existing assets in the Unity ARKit. In the Project folder

search for the asset Player (Figure 4-3). If this GameObject is not included in

the version of the Unity ARKit you download, it can be downloaded from the

Unity Asset Store (https://assetstore.unity.com/packages/essentials/

tutorial-projects/survival-shooter-tutorial-40756).

Figure 4-3. Searching for the Player game asset
With this asset selected, drag it to the Hierarchy (Figure 4-4).

Figure 4-4. The Player character added to the Hierarchy

Chapter 4 hit testing and Lighting

https://assetstore.unity.com/packages/essentials/tutorial-projects/survival-shooter-tutorial-40756
https://assetstore.unity.com/packages/essentials/tutorial-projects/survival-shooter-tutorial-40756

106

Now it’s time to say goodbye to our amazing cube. Select the Cube in

the Hierarchy and right-click and select delete (Figure 4-5).

Figure 4-5. Deleting the Cube

 Scale
You might recall that in Chapter 2, I discussed the importance of scale in

AR. If you select the Player GameObject in the Hierarchy, you will see that

this asset is 1 meter tall. Now, this may be fine, but I want to make this

asset look a lot smaller in the real world. I suspect that this is the intention

of the person that created this asset. With the Player GameObject selected,

change the scale to .25,.25,.25 (Figure 4-6).

Chapter 4 hit testing and Lighting

107

 Transformation
If you select the Main Camera and look at the Camera Preview window,

you will notice that our Player GameObject is not visible to the player.

If you look at the Inspector or both the Main Camera and the Player

GameObjects, you will see that the positions of both of these assets are

0,0,0. Let’s move the Player GameObject. With the Player, GameObject

selected, in the Inspector change the position to 0,0,1 (Figure 4-7).

Figure 4-6. The Rescaled Player GameObject

Chapter 4 hit testing and Lighting

108

You will notice in Figure 4-7 that the Player GameObject is facing away

from the camera. I think it would be better if the Player GameObject was

facing the player. With the Player GameObject selected, using the rotate

tool, and rotate the Player Game Object in the Y-axis until it faces the main

Camera (Figure 4-8).

Figure 4-7. The Player GameObject Repositioned

Figure 4-8. Rotating the Player GameObject

When rotating a GameObject, it is possible to also unintentionally

change another axis. In Figure 4-8, notice how the Transform positions of

the X-axis and the Y-axis have also changed. Let’s reset the positions of the

X-axis to 0 and the Z-axis to 1. I prefer whole numbers, so I am going to set

the rotation of the Y-axis to 156 (Figure 4-9).

Chapter 4 hit testing and Lighting

109

 The Editor Hit Test Script
Now select the Editor Hit Test script that is in the Created Planes

GameObject. The Editor Hit Test script has three changeable parameters:

the Hit Transform, the Max Ray Distance, and the Collision Layer Mask

(Figure 4-10).

Figure 4-9. The rotated Player GameObject

Figure 4-10. Editor Hit Test script

 Hit Transform

The Hit Transform parameter box specifies the transform of the

GameObject. In our example, this will be the x,y,z of our Player

GameObject that will be moved to where the player has selected. The

Editor Hit test script does not currently support tap or touch, so in this

case, the GameObject will be positioned where the player clicked in the

Game tab of the Unity Editor.

Chapter 4 hit testing and Lighting

110

Select the Player GameObject in the Hierarchy and drag this to the Hit

Transform property box in the Hit Editor Test script (Figure 4-11).

Figure 4-11. The Player GameObject Transform set in the Hit
Transform property

 Max Ray Distance

For this exercise, we are not going to change the Max Ray Distance. If

you are interested in learning about this parameter, there is a wealth of

information on Ray Casting on the Internet. In summary, it is the process

of casting an invisible ray to detect if anything (like a collider) is in the path

of the ray.

 Collison Layer mask

The Collision Layer Mask drop-down menu has several options (Figure 4- 12).

Chapter 4 hit testing and Lighting

111

We are going to select the ARKitPlane option. The Collision Layer

Mask option sets what collision layer mask to take into consideration

during hit testing. In our case, we will select the ARKitPlane.

 Testing

Now connect your iOS device to your Mac and run the UnityARKitRemote

App on your device. In the Console in Unity, select your device from the

Editor, and press the Play button. In the Game Screen, click the Start

ARKitRemote icon, and then move the device slowly for the camera to find

suitable planes. When you see a plan in the Game tab of Unity, click inside that

plane, and you will see your Player avatar in the Game view screen (Figure 4-13).

Figure 4-12. The Collision Layer Mask options

Chapter 4 hit testing and Lighting

112

 Testing On Our Device

Now that we have successfully been able to test our AR App in the editor,

it’s time to see what it looks like on our device. You may recall during our

test build, we added the Editor Hit Testing script. This script is very useful

for testing our App in the editor, but as we found, it does not support tap

or touch user interaction on our device. If we want to test the App on our

device, there is a better option.

 Removing a Component

To remove the Editor Hit Testing script component from the Created Plane

GameObject, we need to select the Gear on the right (Figure 4-14). Select

the Remove Component option.

Figure 4-13. The Player GameObject in the Game view screen

Chapter 4 hit testing and Lighting

113

 Adding a Component

Now let’s add a component that will support a fully functional user

interaction on our device. In the Inspector of our Created Planes

GameObject, select the Add Component button and in the search bar

search for hit (Figure 4-15). Now select the Unity AR Hit Test Example

Script to add it to our Created Plane GameObject (4-16).

Figure 4-14. Remove Component menu option

Chapter 4 hit testing and Lighting

114

Figure 4-15. Searching for the Unity AR Hit Test Example

Figure 4-16. The Unity AR Hit Test Example script added to the
Generated Planes GameObject

Chapter 4 hit testing and Lighting

115

 Adding the Hit Transform

As we did with the Editor Hit Test Example, we need to add the Hit

Transform parameters. To do this, select the Player GameObject and drag

it to the Hit Transform properties box in the Unity AR Kit Test Example

(Figure 4-17). If the ArKitPlane is not set as the Collision Layer, using the

drop-down menu, change this to ARKitPlane.

Figure 4-17. The Player Transform added to the Hit Transform
properties

 Preparing to Deploy

Before we build and run our new App, we need to change the Build

settings. From the menu, select File ➤ Build Settings (Figure 4-18).

Chapter 4 hit testing and Lighting

116

 Changing the Build Settings

In the Build Settings menu, check that you are building the current scene

(Hello WorldAR) in the Scenes to Build option (Figure 4-19).

Figure 4-18. Select the Build Settings

Figure 4-19. Selecting the Scenes to Build option

Chapter 4 hit testing and Lighting

117

Select the Player Settings and in the Inspector, change the Product

Name and Bundle Identifier (Figure 4-20).

Figure 4-20. PlayerSettings Inspector

Chapter 4 hit testing and Lighting

118

Before we select Build and Run, I recommend opening Xcode first

and making sure we have selected the target device and have set the

Team in Signing menu (Figure 4-21). If you don’t select this now, you will

encounter a build failed message. Now in the Build Settings menu. select

the Build and Run.

Figure 4-21. Xcode Menu Signing Team selection box

After you have successfully built and deployed the App to your iOS

device, you should be able to run the App; and when you tap the screen on

your device, you should see the Player GameObject on your screen placed

in a position in the real world that is relative to the position of where you

tapped on the screen (Figure 4-22).

Chapter 4 hit testing and Lighting

119

While our Player GameObject is a lot more interesting than our

cube, we can improve this App. If we look at the lighting of the Player

GameObject, the lighting is not completely consistent with the lighting

in the real world. We are going to change the lighting of the AR image, so

it is closer to the lighting in the real world. My children think we should

rename our Player GameObject to Nightmare Chaser, so let’s also rename

our Player GameObject to Nightmare Chaser.

Figure 4-22. The Hello WorldAR App deployed on an iPhone

Chapter 4 hit testing and Lighting

120

Figure 4-23. Changing the Player GameObject’s name in the Inspector

Figure 4-24. Changing the Player GameObject’s name in the
Hierarchy

 Changing the Player GameObject Name

Changing the Player GameObject name can be done by selecting this

GameObject in the Hierarchy and then in the Inspector, select the current

name and typing in our new name (Figure 4-23). Another option is to

Right-Click the Player GameObject in the Hierarchy and select the Rename

option from the drop-down menu (Figure 4-24).

Chapter 4 hit testing and Lighting

121

 Lighting
Some of you might have noticed that the lighting of the Nightmare Chaser

was not consistent with the lighting in the real world. Once again, the fine

people at Unity have provided us with a solution (for the record, I have no

affiliation with Unity; I do think they did a great job on the Unity ARKit).

 Turning Off the Lights

We are going to use a different light source for our App. However, for best

results, let’s make sure we have turned off all the lights in the scene.

From the Main Menu, select Window ➤ Lighting ➤ Settings (Figure 4- 25).

Figure 4-25. Selecting the Lighting Settings

Chapter 4 hit testing and Lighting

122

In the Lighting Settings, in the Environment settings change the

Intensity Multiplier to zero. In the Mixed Lighting settings, uncheck the

Baked Illumination settings (Figure 4-26).

Figure 4-26. Changing the Lighting Settings

Now select the Directional Light and in the Inspector, change the

color to white. There are a number of ways to change the color. First in the

Inspector, select the color properties box and a color selector will appear

Chapter 4 hit testing and Lighting

123

(Figure 4-27). In the Color selector menu, there is a color selector wheel to

select the color. To use this wheel, select and drag the small color selection

circle until you find a color that is close to what you want. In the center of

the circle, there is a square for selecting the tone. Once you have selected

a color close to the one you want, then you can use the small circle in the

square to refine your choice. This method may work for some people, but I

just type in the RGB or HSV values of the color that I want in the properties

box (Figure 4-28).

Figure 4-27. Using the color wheel

Chapter 4 hit testing and Lighting

124

Figure 4-28. Typing in the color properties

Chapter 4 hit testing and Lighting

125

 Setting the Ambient Light Source

Now we can set the ambient light source. With the Directional Light

selected, select the Add Component button and search for ambient

(Figure 4-29).

Figure 4-29. Searching for the Unity AR Ambient Component

You will see that the Unity ARKit has also included a script called Unity

AR Ambient. Select this script to add it to our directional light (Figure 4- 30).

Chapter 4 hit testing and Lighting

126

Figure 4-30. The Unity AR Ambient script added to the Directional
Light

This script estimates the real-world lighting and will make changes to

the lighting in our App. This will make our App look more realistic. Now

let’s test this app under different lighting conditions. By now, you should

already know how to build and run the scene. Before we do this, I would

recommend making one small change in the Player Settings.

Chapter 4 hit testing and Lighting

127

 Build and Run – Version Control

I am a huge fan of version control. I think it is good practice to save our work

with a different version number when making any major or minor change.

In fact, when writing this book, I have used version control. I have had too

many instances of my system crashing and not being able to recover the last

version of a project I was working on. Thankfully, most times, I have a prior

version that I can use and get back to work relatively quickly.

Because we already have a prior version of our Hello WorldAR Hit

test, I am going to save this next test with a different version number.

Select Build Settings from the main menu and then select Player Settings

(Figure 4-31). In the Inspector of the Player settings, scroll down to see the

Identification settings, and under the Version change the version to 2.0.

Some people might argue that the version should be 1.1 (as this is only a

minor change), but as long as we change the version number, that is what

is most important.

Figure 4-31. The Changing the Version Identification in the
Inpsector view

Chapter 4 hit testing and Lighting

128

Now open Xcode, make sure you are signed in, and connect your iOS

device to your Mac and select Build and Run. If your build is successful,

you should notice the lighting in the App changing under different lighting

conditions.

 Positioning the Camera
You may have discovered that even though we carefully positioned our

Nightmare Chaser so that he faced the player camera, he does not always

face the camera when we run the App on our device. The position of the

Nightmare Chaser will depend on where your iOS device is facing when

you start the App. Although this is a book for beginners, we are going to

have to write some code. Hopefully, this will not be too painful for you.

This code is going to automatically rotate our Nightmare Chaser to face the

camera every time we start the App.

 Editing the Unity AR Hit Test Script

In the Hierarchy, select the Created Planes GameObject; and in the

Inspector. select the UnityARHitTestExample in the Script Properties box.

This should find and highlight the UnityARHitTestExample.cs script in the

Project Folder (Figure 4-32).

Chapter 4 hit testing and Lighting

129

If you do not have a copy of Visual Studio or Mono Develop, I highly

recommend downloading a copy and installing this now. Although we

won’t be writing a lot of code throughout this book, if you are serious

about developing AR games for iOS, then you will need an IDE.

With the UnityARHitTestExample.cs script selected, double-click this

file, and it should open in your IDE (Visual Studio or MonoDevelop). On

Line 18, enter the following code:

//Automatically Face the Camera

m_HitTransform.LookAt (Camera.main.transform.position);

m_HitTransform.eulerAngles = new Vector3 (0, m_HitTransform.

eulerAngles.y, 0);

Now save the script and test it to see if this runs. The // adds a

comment to the code and is ignored when compiled. If you encounter

any runtime errors or bugs with the code, simply comment out these

three lines, and it should run (although, our Nightmare Chaser will not

automatically be positioned so that it faces the camera).

Figure 4-32. Selecting the UnityARHitTestExample.cs script

Chapter 4 hit testing and Lighting

130

 Summary
In this chapter, we have learned about Hit Testing, which helps our App

identify surfaces in the real world and “place” the GameObjects on those

surfaces. We also learned how to change the lighting so that it is consistent

with the lighting in the real world.

Chapter 4 hit testing and Lighting

131© Allan Fowler 2019
A. Fowler, Beginning iOS AR Game Development,
https://doi.org/10.1007/978-1-4842-3618-5_5

CHAPTER 5

Making AR Games
Now that you have learned some fundamentals of using the ARKit and

have a grasp of Unity, we are going to start making an AR Game. Along the

way, we will also cover some of the more advanced functions of the ARKit.

 Fugu BowlAR Game
Now it’s time to create an AR Game. I have decided to resurrect the game

that we created in our last book, Learn Unity for iOS Game Development

(Apress, 2017). In case you are one of the few people that didn’t get this

book, our game was Fugu Bowl, which was a small bowling game for iOS

devices. In our last book, we used JavaScript, but for the AR version, we

are going to use C#. Although JavaScript is a great programming language,

if you are going to continue to use Unity, then learning C# will be much

more important and valuable. If you don’t know how to program in C#, I

would highly recommend learning this language. The focus of this book

is on learning to make an AR Game, so I won’t focus on teaching how to

program in C#. However, I have included comments in the code to try to

help anyone who is not familiar with C# understand what the code is going

to do.

132

 Creating a New Scene
As we have already downloaded and installed the Unity ARKit package

into our AR Project, let’s continue to use this. Typically, I prefer (and

recommend) starting a new Project for each new game that is created.

However, as this would involve downloading the Unity ARKit package, let’s

pass on doing that this time.

To create a New Scene, from the main menu, select File ➤ New Scene

(Figure 5-1). It is probably more efficient to use the shortcut keys (⌘-N),

and I will also be including the shortcut keys for frequent commands for

those readers who prefer to use them.

Figure 5-1. Creating a New Scene

Let’s Save our Scene. Select from the main menu, File ➤ Save Scene as

(Figure 5-2).

Chapter 5 Making ar gaMes

133

You will be presented with the Save As Dialog box (Figure 5-3) and type

in the name for our Scene. I have decided to name this game Fugu BowlAR

(see what I did there?).

Figure 5-2. Save Scene as

Figure 5-3. Saving the Scene As Fugu BowlAR

Select Save to save this Scene. You will note that this file is now saved

in the Assets folder. I believe that in software development, it is better to

be well organized (some might call this obsessive). Therefore, this Scene

should probably be saved in the Scene folder. In the project folder, select

the Fugu BowlAR scene (Figure 5-4) and drag it to the Scenes folder

(Figure 5-5).

Chapter 5 Making ar gaMes

134

Figure 5-4. Selecting the Fugu BowlAR Scene in the Project Assets
folder

Figure 5-5. Fugu BowlAR in the Scenes Project folder

 Creating AR Assets
You may recall creating our amazing cube, and we are going to repeat this

process. First, we are going to create an amazing bowling ball. We could

probably find a really amazing one online or possibly in the Unity Asset

Chapter 5 Making ar gaMes

135

Store, but I’m a big fan of creating my own game assets when I have time

and don’t have the budget for paying someone with more artistic talent

than I do to do this for me (I have very limited artistic talent).

In the main menu, select GameObject ➤ 3D Object ➤ Sphere

(Figure 5- 6).

Figure 5-6. The Sphere GameObject in the Scene

Let’s change some of the properties. The first task is to rename this

GameObject. I’m going to name this GameObject BowlingBall. With

the Sphere GameObject selected, in the Inspector, select GameObject

name (Figure 5-7) and select the current text and type in our new name

(Figure 5-8).

Chapter 5 Making ar gaMes

136

Figure 5-7. The selected Sphere GameObject

Figure 5-8. The Sphere GameObject renamed as BowlingBall

Chapter 5 Making ar gaMes

137

 Transform the BowlingBall
You may recall that in Unity we work in metric. This means that our

BowlingBall GameObject is going to be 1 meter, by 1 meter, by 1 meter.

I haven’t spent a lot of time bowling, but even I know that this is going to

be a really big bowling ball. Let’s resize (scale) it and put the BowlingBall

at the origin (0,0,0).

First, select the Scale and type in the following Scale settings

0.25,0.25,0.25. Now let’s set the Transform Position to 0,0,0 (Figure 5-9).

Figure 5-9. Repositioned and rescaled BowlingBall

 Adding a Rigidbody
When we created our cube, it floated in the air, which was pretty cool. But

as we want the ball to roll on a floor in the real world, we need to add a

Rigidbody component. The Rigidbody component provides a rigid body

simulation that simulates how nonchanging shapes react to forces and

collisions. We want our BowlingBall GameObject to react to gravity (stay on

the floor, and we are also going to apply some force to it to make it move).

Chapter 5 Making ar gaMes

138

Finally, we want it to collide with our bowling pins. So, we need to add a

Rigidbody component to our BowlingBall.

With the BowlingBall selected in the Hierarchy view, in the Inspector,

select Add Component (Figure 5-10).

Figure 5-10. Adding a Component

Chapter 5 Making ar gaMes

139

In the Add Component menu, there is a search bar. In the search bar,

type in Rigid and select the Rigidbody component (Figure 5-11).

Figure 5-11. Searching for the RigidBody Component

Chapter 5 Making ar gaMes

140

The default settings of the Rigidbody Component are pretty good, but

a mass of 1 kilogram is a bit light for a bowling ball. Let’s set the Mass to 5,

as 5 kg, is about right for a bowling ball. The other settings are fine for now

(but we may have to adjust these later on after testing). Figure 5-12 shows

the settings for the BowlingBall.

Figure 5-12. The BowlingBall RigidBody settings

Chapter 5 Making ar gaMes

141

In Figure 5-12, we can see that our BowlingBall has a component called

Sphere Collider. A Collider Component provides our GameObject with a

collision shape. In this case, when we created our Sphere GameObject,

a Sphere-shaped collider was also added. The Collider components will

dictate at what point a GameObject will collide. But, a collider does not

determine how it will collide (bounce, slide, or not move at all). To set how

the GameObject reacts to a Collision, we need to add a Physics Material. To

get the physics materials, we need to download the Unity Standard Assets

package from the Unity Store (we could have added this to our Project

when we first created it). There are other Physics materials available in the

Asset Store, some of these are free, and others you need to pay for.

 Opening the Asset Store
Select the Asset Store view tab to show the Asset Store (Figure 5-13). In

the search bar, type in Standard Assets. If you want to add the filter to only

show free assets, that will limit the search results (Figure 5-14).

Figure 5-13. The Unity Asset Store view

Chapter 5 Making ar gaMes

142

Select the Standard Assets package and this will open the information

screen on this package (Figure 5-15). Select Install (or Update if you have

installed this when you created the Project).

Figure 5-14. Searching for Standard Assets (Free)

Figure 5-15. The package information screen

After a few minutes (depending on your download speed), Unity will

open the Import Unity package Menu (Figure 5-16). While we don’t need

all of these assets, let’s just select Import (we can always delete anything

we don’t need or want later on).

Chapter 5 Making ar gaMes

143

Figure 5-16. The Unity Import Package screen

Chapter 5 Making ar gaMes

144

If we select the PhysicsMaterials folder, we can see that now we have a

selection of PhysicsMaterials to select from (Figure 5-18).

Figure 5-17. The Unity Standard Assets Package in the project
folder

After a few minutes, the package will be imported, and you will see

some additional assets in your Project folder (Figure 5-17).

Chapter 5 Making ar gaMes

145

 PhysicsMaterials
The Standard Assets Package has given us a base of PhysicsMaterials

to use. However, none of them provide the best PhysicsMaterial for our

BowlingBall. For now, let’s use the Wood PhysicsMaterial. As we may need

to use this material for another part of the game, let’s duplicate it. From the

main menu select Edit ➤ Duplicate (or Command+D). Now in the Project

folder, select the duplicate PhysicsMaterial (Wood 1) and rename it Ball

(Figure 5-19).

Figure 5-18. The Unity Standard Assets Package PhysicsMaterials
folder

Chapter 5 Making ar gaMes

146

Now in select the BowlingBall GameObject and in the Hierarchy,

select the small gear next to the properties box of the Material property in

the Sphere Collider component and then select the Ball PhysicsMaterial

we just created (technically duplicated) (Figure 5-19). In the Project tab

double-click the Ball PhysicsMaterial to set the physics properties. Set

the Dynamic Friction to 1, the Static Fiction to 1, the Bounciness to 0, the

Friction Combine to Maximum, and the Bounce Combine to Minimum

(Figure 5-20).

Figure 5-19. Selecting the Ball PhysicsMaterial

Chapter 5 Making ar gaMes

147

 Creating a (Temporary) Plane
If we were to test our game right now, we would see our ball drop (and

never stop). Although, we are going to use real-world surfaces, for now,

let’s install a temporary Plane GameObject to help us test our game in the

Game view.

From the main menu, select GameObject ➤ 3D Object ➤ Plane

(Figure 5-21). Select the Plane in the Hierarchy and rename it Plane(t). If

you look in the Scene view, you will note that the plane has been created at

the Origin and, as a result, cuts through our BowlingBall. Let’s reposition

our Plane(t) so it sits just under the BowlingBall (Figure 5-22).

Figure 5-20. Setting the Ball PhysicsMaterial Properties

Chapter 5 Making ar gaMes

148

Figure 5-21. Creating a Plane

Figure 5-22. The Plane(t) Transform settings

If we look at the Scene view, the color of Plane(t) and the BowlingBall

are the same. Let’s change the color of the Plane(t). In the Project folder

search for Material (Figure 5-23), you will see there are several assets that

we can use; I am going to use the BallMaterial for the Plane(t). There are

several ways of changing the Material properties, but the easiest is to select

and drag and drop the BallMaterial onto the Plane(t) in the Scene view

(Figure 5-24).

Chapter 5 Making ar gaMes

149

Now, let’s add some Pins (or Skittles depending on where you’re

from). If we look in the Asset Store for Bowling Pins, we will find that the

only options are Paid Assets. However, our good friends at Google have a

fantastic library of AR and VR assets on https://poly.google.com/. Open

this site with your favorite browser and search for Pins. You will find there

are a couple of great choices (Figure 5-25).

Figure 5-23. Searching for the BallMaterial

Figure 5-24. The Plane(t) with the BallMaterial

Chapter 5 Making ar gaMes

https://poly.google.com/

150

Select the Pins you want to use; I am going to use the Bowling Pin from

Poly by Google. If we check the license, we can see that it is available under

the Creative Commons License, which allows us to use it (see https://

creativecommons.org/ for more detail). Select the Download link and

choose OBJ to download this image. While you’re on the Google Poly page,

check out some of the amazing content.

 Importing an OBJ file to Unity
When the file has finished downloading, open the folder it was saved to

and right-click (or double-click) to Unzip the folder (Figure 5-26). In the

folder, you will see that there is an OBJ file (which is what we need). Now in

Unity select from the main menu Assets ➤ Import New Assets and browse

to the Unzipped folder with the Pin OBJ file and select the OBJ file and

select Import.

Figure 5-25. Searching for Pins in Google Poly

Chapter 5 Making ar gaMes

https://creativecommons.org/
https://creativecommons.org/

151

After Unity has finished importing this asset, it should appear in the

Assets folder (Figure 5-27). I am going to create a new folder to keep any

imported Art that I might use. If you don’t find this asset in the Assets

folder, be sure to search for it in the Project View tab.

Figure 5-26. Unzipping the Bowling_Pin.obj folder

Figure 5-27. The Bowling_Pin Asset in the Asset Folder

 Creating a new Project Folder
To create a new folder in the Project view, in the Project Folder right-click

and select from the menu and select Create ➤ Folder (Figure 5-28).

Chapter 5 Making ar gaMes

152

Figure 5-28. Creating a new Project Folder

Unity will create the folder in the Assets Project folder, and now we

need to name it and drag and drop our Bowling_Pin asset to this folder.

I am going to name this folder Art Assets (Figure 5-29).

Chapter 5 Making ar gaMes

153

 Adding the Bowling_Pin to the Scene
With the Bowling_Pin asset selected, drag it to the Hierarchy (or the Scene

view) (Figure 5-30). You will note that once again, we need to Transform

the position and scale of this GameObject.

Figure 5-29. The Art Assets folder with the Bowling_Pin asset

Figure 5-30. The Bowling_Pin in the Hierarchy

Chapter 5 Making ar gaMes

154

 Transform Settings for the Bowling_Pin
and BowlingBall
Let’s first scale our Bowling_Pin, as it is currently set at a scale of 1,1,1.

However, the correct dimensions 121mm wide (at the widest point) and

380 mm tall. Let’s scale the Bowling_Pin to 0.4,0.4,0.4. It’s not to perfect

scale but looks pretty good. Let’s also scale the BowlingBall to a relative

scale. According to Wikipedia, A bowling ball may have a circumference

between 67.83 cm and 68.59 cm, and a diameter in the range of 21.59 cm to

21.83 cm. Let’s set our BowlingBall scale to 0.1,0.1,0.1. It’s not quite to scale

but good enough for now. Figure 5-31 shows my BowlingBall next to my

BowlingPin. They look pretty good (to me).

Figure 5-31. The Game view of the rescaled BowlingBall and
Bowling_Pin

 Adding a RigidBody to the Bowling_Pin
We are going to follow the same process of adding the RigidBody and

PhysicsMaterial to the Bowling_Pin as we did with the BowlingBall. With

the Bowling_Pin selected in the Hierarchy, in the Inspector, select Add

Component and search for and add a RigidBody component (Figure 5-32).

Chapter 5 Making ar gaMes

155

 Adding a Collider to the Bowling_Pin
If we look at the Inspector of our Bowling_Pin, you will note that there

is no Collider. That’s because it did not come with a Collider as it is

a non-convex shape. We are going to Add a Collider, so we can add a

PhysicsMaterial. With the Bowling_Pin selected, in the Inspector, select

Add Component and search for a mesh (Figure 5-33).

Figure 5-32. The Bowling_Pin GameObject with the RigidBody
component

Chapter 5 Making ar gaMes

156

Now, select and add the Mesh Collider component. The Mesh Collider

will enable us to create a mesh that will surround a Game Object. In the

Mesh Collider component, we just added, there is a properties box for us to

set the type of mesh we want to use. The mesh collider component enables

us to add a mesh that is a convex shape (cylinder, cube, sphere, or plane).

Figure 5-33. Searching for the Mesh Collider component

Chapter 5 Making ar gaMes

157

Figure 5-34. Searching for the Cylinder Mesh

As our Bowling_Pin is closest to a cylinder shape, let’s search for a cylinder

mesh and add this to the Bowling_Pin GameObject. Select the small gear

to the right of the properties box of the Mesh settings of the Mesh Collider

and search for Cylinder (Figure 5-34). Select the Cylinder mesh to set this

as the shape of the Mesh Collider (Figure 5-35). Also note, I have set the

Rigidbody component as a Kinematic.

Chapter 5 Making ar gaMes

158

 Adding a PhysicsMaterial to the Bowling_Pin
Just like we did for the BowlingBall, we need to add a physics property

to set how our bowling pin reacts to collisions. As the physics properties

of a bowling pin are similar to a bowling ball, let’s duplicate the Ball

PhysicsMaterial and rename it BowlingPin and change the settings.

Figure 5-35. The Cylinder Mesh set as the Mesh Collider

Chapter 5 Making ar gaMes

159

First, select and duplicate the ball PhysicsMaterial and name it

BowlingPin (Figure 5-36). Select the BowlingPin PhysicsMaterial and

change the settings to the following; Dynamic Friction = 1, Static Friction = 1,

Bounciness = 0.5, Friction Combine = Maximum, Bounce Combine =

Minimum (Figure 5-37).

Figure 5-36. The BowlingPin PhysicsMaterial

Figure 5-37. The BowlingPin PhysicsMaterial settings

Now add the BowlingPin PhysicsMaterial to the BowlingPin

GameObject Mesh Collider (Figure 5-38).

Chapter 5 Making ar gaMes

160

 Making the Bowling_Ball Roll
To make our Bowling_Ball roll based on the Player input, we need to

create a script. As I have already indicated, this is not an Introductory

Programming book, so I won’t spend a lot of time going into the purpose

of each line of code. There may be some important parts of the code that I

feel are worth noting, and I will include comments in the Script to explain

the purpose of those lines of code. Let’s first make a folder to keep all our

Scripts in. In the Project view, right-click and select Create ➤ Folder. Let’s

name this Scripts (Figure 5-39). You may want to call this folder something

Figure 5-38. The BowlingPin PhysicsMaterial set as the Material

Chapter 5 Making ar gaMes

161

really funny or cool, but it’s good practice to use a file-naming convention

so that if someone else needs to edit or modify your game, they can easily

identify where to find the assets in your project.

Figure 5-39. The Scripts folder

For now, we are going to create a script that will enable us to test

the user input in Unity. As a result, we are going to get our BowlingBall

GameObject to move based on Keyboard (or Mouse) input. We will change

this later on so that the input is based on Touch, Tap, or Swipe. In the

Hierarchy, select our BowlingBall GameObject and select Add Component.

In the Add Component, select New Script (Figure 5-40). First, let’s name

this Script PlayerController and select Create and Add. This option enables

us to both create the Script and Add it to our BowlingBall GameObject.

Unity will place this Script in the Assets folder. We need to select and move

(drag and drop) this script to our Scripts menu (Figure 5-41).

Chapter 5 Making ar gaMes

162

Figure 5-40. Adding a New Script Component

Chapter 5 Making ar gaMes

163

 Editing the PlayerController Script
Now let’s edit the PlayerController Script. If you select the PlayerController

Script, you can see the code for this asset in the Inspector. Let’s edit this

code. Double-click the PlayerController script and this will open your

default IDE. I am using Visual Studio. Enter the following code as shown in

Listing 5-1.

Listing 5-1. The PlayerController Script

using UnityEngine;

using System.Collections;

public class PlayerController : MonoBehaviour {

 public float speed;

 private Rigidbody rb;

 void Start ()

 {

 rb = GetComponent<Rigidbody>();

 }

Figure 5-41. The PlayerController Script added to the Scripts
folder

Chapter 5 Making ar gaMes

164

 void FixedUpdate ()

 {

 float moveHorizontal = Input.GetAxis ("Horizontal");

 float moveVertical = Input.GetAxis ("Vertical");

 Vector3 movement = new Vector3 (moveHorizontal, 0.0f,

moveVertical);

 rb.AddForce (movement * speed);

 }

}

Now we are ready to see if our code works. If we run and test our game

when we press either arrow key, the BowlingBall moves in either direction

(which is good, well kind of, as we only really need the ball to move in one

direction). However, you will note that the collider on the Bowling_Pin is

too big, and the collisions are not realistic. Now, we could edit this collider,

but we are going to create our own collider.

 Creating Our Own Collider
To create our own Collider, we are going to use a bit of game design

magic (also known as faking it). To do this, in the Hierarchy select the

Bowling_Pin GameObject and in the Mesh Collider Component select the

small gear and right-click and remove the current Collider (Figure 5-42).

Now from the Main menu, select GameObject ➤ 3D Object ➤ Capsule

(Figure 5- 43).

Chapter 5 Making ar gaMes

165

Figure 5-42. The PlayerController Script added to the Scripts
folder

Chapter 5 Making ar gaMes

166

You will notice that our Capsule GameObject is a bit big and therefore,

we need to Transform the Scale. Also note, that the Capsule has its own

Collider. In Figure 5-44, I have Transformed the Scale and Position, so it is

about the same height and width as the Bowling_Pin.

Figure 5-43. Creating a 3D Capsule GameObject

Figure 5-44. The Rescaled and repositioned Capsule

Chapter 5 Making ar gaMes

167

Now we add a PhysicsMaterial to our Capsule, so that it can respond

to the force of our BowlingBall. For now, let’s use the BowlingPin

PhysicsMaterial. With the Capsule selected, in the Inspector, select the

small gear next to the Material properties box and right-click and add the

BowlingPin PhysicsMaterial (Figure 5-45).

Figure 5-45. Adding the BowlingPin Physics Material

With the Capsule GameObject selected, let’s give this a meaningful

name. I’m going to go with BowlingPinCollider.

Now that we have moved the BowlingPinCollider so it totally covers the

Bowling_Pin GameObject, the next step is to make it invisible to the player.

To make the BowlingPinCollider GameObject invisible to the player, in the

Chapter 5 Making ar gaMes

168

Hierarchy select the BowlingPinCollider GameObject and in the Inspector,

in the Mesh Renderer Component, select the gear to the right and select

Remove Component (Figure 5-46).

Figure 5-46. Removing the Mesh Renderer Component

Chapter 5 Making ar gaMes

169

 Remembering the Parents
You might recall earlier in Chapter, I discussed Parents and Children

in software development. We are going to make the Bowling_Pin a

Child of the BowlingPinCollider. This way, whatever happens to the

BowlingPinCollider will also happen to the Bowling_Pin.

 Making a Parent
Becoming a parent was one of the most exciting and intimidating

experiences of my life. Fortunately, Unity makes the process of creating a

Parent GameObject a lot less intimidating (and probably a lot less exciting

as well). To make our BowlingPinCollider a Parent of the Bowling_Pin

GameObject, we simply drag the Bowling_Pin GameObject to the

BowlingPinCollider and it will become a child of the BowlingPinCollider

(Figure 5-47). If only life was that easy.

Figure 5-47. The BowlingPinCollider as a Parent of the Bowling_Pin

Chapter 5 Making ar gaMes

170

Now let’s test our work to see if our Collider does what it should. Phew,

my collider worked (Figure 5-48). But the BowlingPinCollider Parent and

the Child Bowling_Pin still do not fall over. I’ll be really honest with you,

this pretty much reflects my bowling ability in real life. However, I think the

players are going to get a bit frustrated if they can’t knock over the bowling

pin. So, let’s make a couple of changes to make this a bit more realistic.

Figure 5-48. The Game view of the collision

 Making the Bowling_Pin fall Over
If your Bowling_Pin does not fall over, check the Rigidbody Components

on each GameObject. In my settings, I have set the Mass of the RigidBody

Component of the BowlingBall to 5 (that is the BowlingBall is 5 kg). I have

set the Bowling_Pin to 1 kg. Technically, a Bowling Pin should weigh 1.6 kg.

So, I’m going to leave my settings as they are. If your BowlingBall does

not make the Bowling_Pin fall over, try adjusting the weight. The player

will never physically pick up either of them and will never know the exact

weight. Plus, in Game Design, it is sometimes fun to overemphasize reality.

Chapter 5 Making ar gaMes

171

 Summary
In this chapter, we have created a new scene and added GameObjects.

We have added RigidBody Components and PhysicsMaterials. We have

successfully tested out our game to see if it works in the GameView. In the

next chapter, we will test the game in AR to see how it looks.

Figure 5-49. The BowlingBall and Bowling_Pin Rigidbody
Components

Chapter 5 Making ar gaMes

173© Allan Fowler 2019
A. Fowler, Beginning iOS AR Game Development,
https://doi.org/10.1007/978-1-4842-3618-5_6

CHAPTER 6

Introducing Touch
 Testing the Game in AR
In the last chapter we were able to test our Game in the Unity Game View;

now, let’s see what the game will look like in AR. With the FuguBowlAR

Game open in Unity, let’s add the Unity AR Camera Manager to our

Main Camera. In the Hierarchy select the Main Camera and then in the

Inspector, select Add Component (Figure 6-1). In the Add Component

search bar, search for Camera and select the Unity AR Camera Manager

(Figure 6-2).

174

Figure 6-1. Add Component

Chapter 6 IntroduCIng touCh

175

Figure 6-2. Adding the Unity AR Camera Manager Component

Chapter 6 IntroduCIng touCh

176

With the Unity AR, Camera Manager Component added, now select

and drag the Main Camera from the Hierarchy and add this to the Camera

properties box of the Unity AR Camera Manager component (Figure 6-3).

Figure 6-3. Adding the Main Camera to the Camera Properties

Now with the Unity AR Camera Manager component added to the

Main Camera, let’s preview what the game will look like in the Game

view, using the Unity AR Kit Remote App we installed on our device. First,

connect your device to your Mac, and then start the Unity AR Kit Remote

App on your device. In Unity, select the Console view and select Editor

and then select your device (Figure 6-4). Now, select the Play button from

the Unity Game view and then in the game view, select (Figure 6-5). You

should see the game now working in the Game view of Unity (Figure 6-6).

Chapter 6 IntroduCIng touCh

177

Figure 6-4. Connecting to the iPhonePlayer

Figure 6-5. Start the Remote ARKit Session

Figure 6-6. Game view of the AR version

Chapter 6 IntroduCIng touCh

178

 Some Challenges
You will note there are a couple of challenges with our game. First, as

expected, the Bowling Ball does not move. This is because we initially

set the BowlingBall code to respond to keyboard input. We did this

intentionally because the Unity Game view does not (currently) enable

us to test out user iteration with touch. The other challenge is that our

Plane(t) is still visible. Let’s first disable the Plane(t). I don’t want to delete

it right now, because I might want to use it for testing later on.

 Disabling the Plane(t)
Disabling the Plane(t) GameObject is relatively straightforward. In the

Hierarchy view, select the Plane(t) GameObject and then in the Inspector,

select the check box to the left of the GameObject name (Figure 6-7). You

will immediately see that the Plane(t) GameObject is no longer visible. The

impact of this will be clearly visible when we test our game.

Figure 6-7. The Plane(t) GameObject disabled

 Testing
To test our game, there are two ways. The first and most efficient way

would be to test it in the Game view. To do this, we need to disable the

Unity AR Camera Manager Component that we added to the camera.

Select the Main Camera, and then deselect the check box to the left of the

file name (Figure 6-8).

Chapter 6 IntroduCIng touCh

179

Now press the play button, and you should see the BowlingBall and the

Bowling_Pin fall to infinity (and quite possibly beyond infinity).

The second way to test our game would be leaving the Unity AR

Camera manager selected and connecting our device to our Mac and then

running the Unity AR Kit Remote App on our device. Then in the Console

tab, select our device and select the play button in Unity. After selecting

the Play button, you will be prompted with the Start ARKit Remote Session

prompt, and the preview of the game will appear in the Unity Game tab.

However, once again, the BowlingBall and Bowling_Pin GameObject’s fall

and keep on falling.

Figure 6-8. The Unity Camera Manager deselected

Chapter 6 IntroduCIng touCh

180

 Implementing Touch Controls
Now we are going to try to get the Bowling_Ball to respond to the user

touching the screen on their device. Over the years, Unity has made a

number of changes on how to manage user input using a device with touch

controls. In my example, I am going to use the Unity CrossPlatformInput

Manager, which was the way to manage multiple forms of input (including

touch), when I wrote this book.

 Importing the Unity CrossPlatformInput Package
Let’s import the Unity CrossPlatformInput package. From the menu, select

Assets ➤ Import Package ➤ CrossPlatformInput (Figure 6-9).

Figure 6-9. Import the Unity CrossPlatformInput Package

Chapter 6 IntroduCIng touCh

181

The file will download and, when complete, will open the Import Unity

Package utility (Figure 6-10). While we don’t need all of this content, let’s select

Import. The Import Unity Package utility will now add the complete package.

Figure 6-10. Importing the Unity CrossPlatformInput Package

Chapter 6 IntroduCIng touCh

182

 Adding Touch Controls
Now we are going to create a graphical user interface (or GUI) so that

the player can control the bowling ball by touching the screen. As we are

creating an AR version of Fugu Bowl, we are going to need to do things a

bit different. We are going to create a Joystick controller and put this on the

screen so that the player can move the bowling ball in both the X- and

Y- axes. Now, I don’t do a lot of bowling, but even I know that this is not

how we would typically control a bowling ball.

 Download the Joystick Asset Pack
First, we need some good assets, so let’s go and get something from the

Unity Asset Store. In the Unity Asset store Tab, from the search bar, search

for Joystick (Figure 6-11). If you want to add the Free Only filter, that might

save you some time.

Figure 6-11. Searching for the Joystick Pack asset pack

Select the Joy Stick Pack asset pack (the one with the green icon) and

select Import (Figure 6-12).

Chapter 6 IntroduCIng touCh

183

From the Unity Import Package Utility, select Import All (Figure 6-13).

Figure 6-12. Importing the Joy Stick Asset Pack

Figure 6-13. Import Unity Package Utility

Chapter 6 IntroduCIng touCh

184

 Creating a Canvas
In Unity to create a UI, we need to create a canvas. In the Hierarchy,

right- click and select UI ➤ Canvas (Figure 6-14).

Figure 6-14. Creating a Canvas

When we created the Canvas, Unity also added the EventSystem

GameObject (Figure 6-15). The EventSystem is currently how Unity

handles UI events.

Chapter 6 IntroduCIng touCh

185

 Adding the Joystick UI to the Canvas
Now we are going to move the Fixed Joystick Prefab from the Virtual

Joystick Folder in the Project tab to the Canvas. To do this, in the Project

tab, search for Fixed (Figure 6-16) and select the Fixed Joystick Prefab and

then drag this to the Canvas folder in the Hierarchy (Figure 6-17). Once

added, you can actually playtest the Joystick to see it in action. It won’t

move our BowlingBall; we need to add a script to do this.

Figure 6-15. The EventSystem GameObject added to the Hierarchy

Figure 6-16. Searching for the Fixed Joystick Prefab

Chapter 6 IntroduCIng touCh

186

 Adding a Script
In the Hierarchy, select the BowlingBall GameObject and in the Inspector,

disable or remove the Player Controller Script. To remove the Player

Controller Script Component, in the Inspector right-click the small gear

to the right of the Player Controller Script Component and select Remove

Component (Figure 6-18).

Now in the Project tab, search for and select the PlayerExample Script

(Figure 6-19) and drag this script onto the BowlingBall Game Object

(Figure 6-20).

Figure 6-17. The Fixed Joystick Prefab added to the Canvas

Figure 6-18. Removing the Player Controller Script Component

Chapter 6 IntroduCIng touCh

187

Figure 6-19. Searching for the PlayerExample Script

Figure 6-20. The Player Example Script added to the BowlingBall

Chapter 6 IntroduCIng touCh

188

Before you do anything else, make sure the speed is set. From the

Hierarchy, select the FixedJoysick GameObject (Figure 6-21) and drag this

to the Joystick properties box of the Player Example Component of the

BowlingBall GameObject (Figure 6-22). I have set the Speed to 5. This may

be a bit fast, but we can change this later on.

Figure 6-21. Selecting the Fixed Joystick GameObject

Chapter 6 IntroduCIng touCh

189

Figure 6-22. Setting the Move Speed and Joystick properties

 Testing
Now we can test our Virtual Joystick and see if it works. First, I highly

recommend you test it in the Game tab. This will save you exporting the build

to your device and finding that it does not work (however, just because the

game will work in Unity, this does not always mean it will work on our device).

If the game works in Unity, now test it on a device.

Chapter 6 IntroduCIng touCh

190

Figure 6-23. Build Settings

 On Device Testing
From the Unity menu, select File ➤ Build Settings (Figure 6-23). In the

Build Settings select player settings and, in the Inspector, change the

version number (Figure 6-24).

Chapter 6 IntroduCIng touCh

191

Figure 6-24. Player Settings

Chapter 6 IntroduCIng touCh

192

 Success
After we select Build and Run from the Build menu, Unity will compile the

code and open Xcode. After the code has compiled in Xcode, the game will

be installed on your iOS device. In Figure 6-25, I have successfully created

the App and the Virtual Joystick works. As noted, the BowlingBall speed is

too fast, but for now, let’s leave it as it is.

Figure 6-25. FuguBowlAR on my iPhone

Chapter 6 IntroduCIng touCh

193© Allan Fowler 2019
A. Fowler, Beginning iOS AR Game Development,
https://doi.org/10.1007/978-1-4842-3618-5_7

CHAPTER 7

Adding Plane
Detection and Point
Clouds
Now we are going to add the Generated Planes to our game, which will

help the ARKit camera track the movement of the device.

 Creating the Generated Planes GameObject
Just like we did in Chapter 3, create an empty GameObject. From the file

menu, select GameObject ➤ Empty (Figure 7-1).

194

With the GameObject selected, in the Inspector, name this Created

Planes (Figure 7-2).

Figure 7-1. Creating an empty GameObject

Figure 7-2. Naming GameObject Created Planes

Chapter 7 adding plane deteCtion and point Clouds

195

Now we need to add a component. Select the Add Component button

in the Created Planes Inspector; and in the search bar, search for the Unity

AR Generated Plane script (Figure 7-3).

Figure 7-3. Searching for the Unity AR Generated Plane script

With the Unity AR Generated Plane script included in the Created

Planes GameObject, in the Plane Prefab setting of the Unity AR Generated

Plane script, select the small gear to the right of the option box and search

for and select the DebugPlanePrefab (Figure 7-4).

Chapter 7 adding plane deteCtion and point Clouds

196

Figure 7-4. Searching for the debugPlanePrefab

Chapter 7 adding plane deteCtion and point Clouds

197

 Creating the Point Cloud GameObject
Creat an empty GameObject (Figure 7-5). With the Empty GameObject

selected in the Inspector, rename it Point Cloud. Now add a component.

In the search bar, search for the Unity Point Cloud Particle Example and

add this to the Point Cloud GameObject (Figure 7-6).

Figure 7-5. Creating an empty GameObject

Chapter 7 adding plane deteCtion and point Clouds

198

With the Unity Point Cloud Particle Example script added, now set the

number of Max Points to Show at 120 (Figure 7-7). You can set as many

Point Clouds as you like.

Figure 7-6. Searching for the Point Cloud Particle Example

Figure 7-7. Setting the Max Points to Show

Chapter 7 adding plane deteCtion and point Clouds

199

Now add a Point Cloud Particle Prefab to the Point Cloud Prefab

properties box. Select the small gear to the right of the Point Cloud Prefab

properties box and then search for the Point Cloud Prefab (Figure 7-8).

Select and drag the PointCloudPrefab to the Point Cloud Particle Prefab

box in the Point Cloud Particle Example script (Figure 7-9).

Figure 7-8. Searching for the PointCloud Prefab

Figure 7-9. The PointCloudPrefab set as the Point Cloud Prefab

Chapter 7 adding plane deteCtion and point Clouds

200

 Setting Up the Main Camera
You might recall that in Chapter 3, we needed to set up the game for

AR. The first thing we need to do is change the settings of the Main

Camera. If you remember how to do this, you can skip this section.

However, I will provide a guide to setting this up for those readers who

read Chapter 3 some time ago and might need a reminder on how we set

this up,

In the Hierarchy, select the Main Camera and in the Inspector, set the

Clear Flags to Depth only (Figure 7-10).

Figure 7-10. Set the Clear Flags to Depth only

Chapter 7 adding plane deteCtion and point Clouds

201

With the Main Camera selected, in the Inspector select Add Component.

Now search for and add the Unity AR Video Script (Figure 7- 11).

Figure 7-11. Searching for the Unity AR Video Script component

Chapter 7 adding plane deteCtion and point Clouds

202

Now select the Unity AR Video Script (single, left mouse click) and this

component should be added to the Main Camera (Figure 7-12).

Figure 7-12. The Unity AR Video Script component added to the
main camera

Chapter 7 adding plane deteCtion and point Clouds

203

 Setting the Unity AR Video Script Clear Materials
On the right of the properties box of the Unity AR Video Script component,

there is a small gear (Figure 7-12); select this gear, and search for the YUV

material (Figure 7-13).

Figure 7-13. Selecting the YUV material for the Clear Material

Chapter 7 adding plane deteCtion and point Clouds

204

 Adding the Unity AR Camera Manager

With the Main Camera still selected, in the Inspector, select Add Component

(Figure 7-14); now search for AR Camera Manager (Figure 7- 15), and now

add it to the Main Camera.

Figure 7-14. Add Component

Chapter 7 adding plane deteCtion and point Clouds

205

Now add the Main Camera as the Tracked Camera. To add the Main

Camera to the Camera Properties of the Unity AR Camera Manager, select

the Main Camera from the Hierarchy and drag this to the Tracked Camera

properties of the Unity AR Camera Manager (Figure 7-16).

Figure 7-15. Searching for the Unity AR Camera Tracker

Chapter 7 adding plane deteCtion and point Clouds

206

 Adding the Unity Remote Connection

To test our game in the Game tab, we also need to add the Unity Remote

Connection to our Hierarchy. In the Project Tab, search for a Prefab called

ARKitRemoteConnection (Figure 7-17).

Figure 7-16. Setting the Main Camera as the Tracked Camera

Chapter 7 adding plane deteCtion and point Clouds

207

Select this Prefab and add it to the Scene (drag it to the Hierarchy)

(Figure 7-18).

Figure 7-17. Searching for the UnityARKitRemoteConnection Prefab

Figure 7-18. The UnityARKitRemoteConnection in the Scene

Now we need to open the ARKitRemote on our iOS device. First,

connect your iOS device to your development computer. In Unity, select

the Game tab and press the Play button. Unity will prompt you to connect

to the player in the console menu (Figure 7-19).

Chapter 7 adding plane deteCtion and point Clouds

208

In the Console table, select Editor and select your iOS device (Figure 7- 20).

Figure 7-19. Unity connect to player message

Figure 7-20. Selecting the iOS device in the Console menu

Then Unity will prompt you to Start Remote ARKit Session (Figure 7- 21).

Click the icon on the Game screen in Unity and your application can now

run on your iOS device.

Chapter 7 adding plane deteCtion and point Clouds

209

In Figure 7-22 you can see that I have successfully been able to view the

Hello WorldAR App on my iPhone and see the Scene in Unity. If you move

your device, you should see the Camera move in the Unity Scene tab and

the picture change in the Game tab. I would like to point out that it’s going

to be a bit slow (lag), but the ARKitRemote is currently the best way to test

Unity AR development for iOS.

Figure 7-21. Start Remote ARKit Session prompt

Chapter 7 adding plane deteCtion and point Clouds

210

 Houston, We Have a Problem…

If you get a similar result as I have in Figure 7-23, don’t panic! The scene

is rendering in real time. The BowlingBall and Bowling_Pin are being

rendered and so is the Virtual Joystick. We can see the Point Clouds. But…

the Pane(t) is still visible.

Figure 7-22. The Game View

Chapter 7 adding plane deteCtion and point Clouds

211

To fix this challenge, we are going to disable the Mesh Renderer

Component of our Plane(t). To do this, in the Hierarchy, select the Plane(t)

GameObject and in the Inspector, deselect the Mesh Renderer (Figure 7- 24).

To do this, left mouse click the check mark in the check box to the left of the

Mesh Renderer Component.

Now retest your build and see the result. Your result should be similar

to mine (Figure 7-24).

Figure 7-23. The Mesh Renderer de-selected

Chapter 7 adding plane deteCtion and point Clouds

212

 Testing on an iOS device

As we have successfully been able to test the current build in the Game

View, now would be a good time to see if this works on our device.

From the Main Menu, select from the Main Menu, File ➤ Build Settings

(Figure 7-25). Make sure you have selected iOS as the Platform, and the

Development Build check box is selected. Also, be sure to check that you

are building the correct scene (Figure 7-26). In the Build Settings Menu,

select Player Settings and in the Inspector make sure that the Other

Settings options are set correctly. I have set my version to version 3.0.

However, you might want to use a different version number (Figure 7-27).

Figure 7-24. The Game View without the Plane(t)

Chapter 7 adding plane deteCtion and point Clouds

213

Figure 7-25. Selecting the Build Settings

Figure 7-26. The Build Settings Menu

Chapter 7 adding plane deteCtion and point Clouds

214

From the Build Settings menu, select Build and Run. Unity will compile

the code and then open Xcode. Make sure your iOS device is connected

and that you have correctly set the Provisioning Profile in Xcode. If

everything is set correctly, Xcode will deploy your game to your iOS device,

and you can test the build.

Figure 7-27. The Other Settings Menu options

Chapter 7 adding plane deteCtion and point Clouds

215

 Bringing Balance to the Force

When we tested our game in the Game view, we found that the BowlingBall

GameObject was probably going a bit too fast. If you were able to test the

game on your iOS device, you probably felt that we had a similar situation.

The process of making a game fair or balanced is not easy; it requires a lot

of planning and testing. In our game we have the BowlingBall GameObject

set at 5 m/h. As you might imagine, the average bowler is unlikely to be

able to bowl a bowling ball at 5 m/h. However, as this is a game, we have

some latitude and creative license. But, we don’t want to make the game

too hard or too easy. Finding this balance is challenging. Like all the great

cooking shows, I am going to test the settings and report on the result.

However, if you want to try testing different speeds for the bowling ball,

this would be a great experience. I would, however, recommend testing the

game in the Game view and not deploying the build to your iOS device.

 Slowing Down the Bowling Ball

There are two ways we can slow down the bowling ball. We could increase

its mass (make it heavier) or we can slow down its move speed. I prefer the

second option. In the Hierarchy, select the BowlingBall GameObject and

in the Inspector set the Move Speed in the Player Example component to

0.5 (Figure 7-28).

Chapter 7 adding plane deteCtion and point Clouds

216

I am reasonably happy with this setting, but some user testing is going

to help us confirm if this speed is too slow.

 Lighting
Just like we did in Chapter 4, we are going to adjust our lighting so that

the lights in the game are a closer approximation to the lighting in the real

world.

Figure 7-28. The adjusted Move Speed settings

Chapter 7 adding plane deteCtion and point Clouds

217

 Turning Off the Lights

We are going to use a different light source for our App. However, for best

results, let’s make sure we have turned off all the lights in the scene.

From the Main Menu, select Window ➤ Lighting ➤ Settings (Figure 7- 29).

Figure 7-29. Selecting the Lighting Settings

Chapter 7 adding plane deteCtion and point Clouds

218

In the Lighting Settings, in the Environment settings, change the

Intensity Multiplier to zero. In the Mixed Lighting settings, uncheck the

Baked Illumination settings (Figure 7-30).

Figure 7-30. Changing the Lighting Settings

Chapter 7 adding plane deteCtion and point Clouds

219

Now select the Directional Light and in the Inspector, change the color

to white. And type in the RGB or HSV values of the color you want in the

properties box (Figure 7-31).

Figure 7-31. Typing in the color properties

 Setting the Ambient Light Source

Now we can set the ambient light source. With the Directional Light

selected, select the Add Component button and search for ambient

(Figure 7-32).

Chapter 7 adding plane deteCtion and point Clouds

220

You will see that the Unity ARKit has also included a script called

Unity AR Ambient. Select this script to add it to our Directional Light

(Figure 7- 33).

Figure 7-32. Searching for the Unity AR Ambient

Chapter 7 adding plane deteCtion and point Clouds

221

 Summary

In this chapter, we added the Plane Detection and Point Clouds to our

Game. We also improved the lighting to make the lighting in the game look

closer to the lighting in the real world. In our next chapter, we will look at

adding Sound to our game.

Figure 7-33. The Unity AR Ambient script added to the Directional Light

Chapter 7 adding plane deteCtion and point Clouds

222

The more experienced developers that read this chapter will probably

realize that we still have the Plane(t) GameObject in the Game. If we

remove the Plane(t) GameObject completely, the BowlingBall and the

Bowling_Pin will keep on falling. This is because these GameObjects are

instantiating before the Created Plane is. In Chapter 8, we will cover how

to instantiate these GameObjects in Unity after the Created Planes are

created. For now, we have a reasonably solid test environment.

Chapter 7 adding plane deteCtion and point Clouds

223© Allan Fowler 2019
A. Fowler, Beginning iOS AR Game Development,
https://doi.org/10.1007/978-1-4842-3618-5_8

CHAPTER 8

Final Steps
In the previous chapter, we found that in order to stop the bowling ball

and pin to stop falling through our generated plane, we needed to keep the

Plane(t) GameObject in the scene. The reason for this is that Unity creates

(or instantiates) the bowling ball and pins GameObjects before generating

the generated plane. In this chapter, we are going to make some changes to

our project to be able to do this

 Creating Prefabs
The first step we need to take is to change our BowlingBall and Bowling_

Pin GameObjects into prefabs. To do this, we need to create a Prefabs

subfolder in the Assets folder. To do this, select the Assets folder in the

Project Tab and right-click and select Create Folder (Figure 8-1).

224

With the new subfolder selected, rename this to Prefabs (Figure 8-2).

Figure 8-1. Creating a subfolder in the Assets folder

Figure 8-2. Creating a Prefabs folder

Chapter 8 Final StepS

225

First, I am going to rename my BowlingPinCollider GameObject to

BowlingPin. To do this in the Hierarchy tab, select the BowlingPinCollider

GameObject and right-click the game object and select Rename (you can

also select the GameObject in the Hierarchy and then left click the file

name). Now rename this file BowlingPin. This will not only keep our file-

naming convention consistent, but it will also help in identifying the prefab

when it is created.

Now in the Hierarchy tab, select the BowlingBall and BowlingPin

GameObjects and drag these to the Prefabs folder (Figure 8-3).

Figure 8-3. The BowlingBall and Bowling Pin prefabs

Now Unity has nicely converted these GameObjects to Prefabs, and

now we can include them to instantiate these newly created assets at

runtime. To check if these assets are now prefabs, select the BowlingPin

in the Hierarchy and in the Inspector, you will see that the properties have

changed (Figure 8-4).

Chapter 8 Final StepS

226

In Figure 8-4, look at the top of the Inspector (just below the Tag

properties), and you will see that we now have Prefab Properties

(Select, Revert, Apply). This confirms we have successfully changed

this GameObject into a Prefab. Now, we can instantiate these prefabs at

runtime. The added benefit is that we can also instantiate as many prefabs

as we wish. To instantiate these game objects at runtime, we are going to

need to create some code.

 Adding More Bowling Pins
The first step is that we are going to add more bowling pins. To do this,

we are going to update our BowlingPin Prefab. In the Hierarchy, select

the Bowling_Pin GameObject and duplicate it nine times. Now we are

going to rename these duplicates and transform their starting position.

If you look in the Scene view or the Game View, you will note that all of

the copies we made are nicely positioned at the same transform position.

While this might be great for the player, we want to make this a little more

challenging.

Figure 8-4. The properties of the BowlingBall prefab

Chapter 8 Final StepS

227

While there are correct dimensions for setting the placement for the

Pin Rack, we are going to place the pins in an inverted triangle but will add

a bit of artistic flair to our design.

In the Hierarchy, select the first Bowling_Pin GameObject and rename

this BowlingPin 5, and in the Inspector on the Prefab settings, select Apply.

Although not completely necessary in this instance, we are going to make

changes to all of the Bowling_Pin GameObject’s, so it is good practice to do

this on all of them.

In the Hierarchy, select the second Bowling Pin GameObject and rename

it BowlingPin 4. Now in the Inspector set the X transform position to -1.12

and then select Apply to apply all the changes to this Prefab. We will follow

the same steps for the remaining Bowling Pins. However, to save repeating

these steps on every Pin, I have summarized them in Table 8- 1. When

completed, you should have a similar view to what I have in Figure 8-5.

Table 8-1. BowlingPin Settings

BowlingPin Number X Y Z

Bowlingpin 1 −2.40 0 0

Bowlingpin 2 −0.50 0 −1.24

Bowlingpin 3 0.50 0 −1.24

Bowlingpin 4 −1.12 0 0

Bowlingpin 5 0 0 0

Bowlingpin 6 1.12 0 0

Bowlingpin 7 1.72 0 1.12

Bowlingpin 8 0.60 0 1.12

Bowlingpin 9 0.60 0 1.12

Bowlingpin 10 −2.40 0 1.12

Chapter 8 Final StepS

228

Figure 8-5. The final Pin Rack view

Figure 8-6. Deselecting the BowlingBall from the Scene

For the final touch, rename the Parent BowlingPin GameObject to

Pin Rack (which is technically the correct term for our inverted triangle of

Bowling Pins).

 Instantiating GameObjects at Runtime
As we are going to instantiate the BowlingBall and BowlingPin Prefabs at

runtime, we can disable the relevant assets in the Hierarchy. Select the

BowlingBall GameObject and in the Inspector, deselect the check box next

to the name of the Prefab (Figure 8-6).

Chapter 8 Final StepS

229

You will note that that the BowlingBall Prefab is no longer visible in the

Scene view. Repeat this same step for the Pin Rack.

 Creating an Instantiate_GameObjects Script
In case, you might have forgotten how to create a script, I’m going to repeat

these steps here. If you already know, then feel free to skip the next few

paragraphs.

In the Project view, select the Scripts folder and right-click and select

Create ➤ C# Script (Figure 8-7).

Figure 8-7. Creating a C# Script

Chapter 8 Final StepS

230

With the new Script selected, rename this script Instantiate_

GameObjects (Figure 8-8).

Figure 8-8. The Instantiate_GameObjects Script file in the Scripts folder

Now we are ready to enter our script for instantiating our Prefabs in the

game at runtime. Double-click the new Instantiate_GameObjects script file

we just created an in your IDE, and enter the code in Listing 8-1.

Listing 8-1. The Instantiate_GameObjects script

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class Instantiate_GameObjects : MonoBehaviour

{

 public GameObject bowlingBallPrefab; //Used to store the

bowling ball prefab and create an object based on that.

Chapter 8 Final StepS

231

 public GameObject bowlingPinPrefab; //Used to store the

bowling pin prefab and create an object based on that.

 public Transform terrain; //Here just to easily double

check if we are finding the correct plane object.

 public bool once = false;

 // Update is called once per frame

 void LateUpdate()

 {

 // Look for a plane with the tag "Terrain" that will

be generated based off another script and a prefab

attached to it.

 terrain = GameObject.FindWithTag("Terrain").transform;

 if (once && (terrain != null))

 {

 once = false;

 InstantiateGameObjects(terrain.position);

 }

 }

 // Create a Bowling Ball and Pin Rack slightly above the

plane/terrain/bowling lane.

 // Called from the ARGeneratePlane script, so that

immediately after the plane is created, the game objects

are too with minimal resource usage.

 public void InstantiateGameObjects(Vector3 plane)

 {

 once = false;

 plane.y += 0.5f;

//Make sure that the objects appear above the plane.

Chapter 8 Final StepS

232

 // Make sure the the objects appear towards the middle

of the plane.

 if(plane.x >= 0)

 {

 plane.x += 2;

 }

 else

 {

 plane.x += -2;

 }

 Instantiate(bowlingBallPrefab, plane, Quaternion.

identity); //Create the Pin Rack

 }

}

 Disabling a GameObject from the Scene
Just in case you’re not sure how to disable a GameObject, select the Plane(t)

GameObject in the Hierarchy, and in the Inspector, deselect it by clicking the

check box just next to the name of the GameObject (Figure 8- 9).

Figure 8-9. A disabled GameObject

Chapter 8 Final StepS

233

 Creating a Game Manager
We are now going to create a Game Manager. Game Managers are great

places to hold assets like Scoring Systems, Audio managers, and they will

be a good place to contain the Instantiate_GameObjects script we created.

In the Hierarchy, create an Empty GameObject and name it

GameManager. From the Scripts Folder in the Project view, drag the

Instantiate_GameObjects script onto this GameObject (Figure 8-10).

Figure 8-10. The GameManager with the Instantiate_GameObjects
script

In Figure 8-10, I have added the BowlingBall and the BowlingPin

Prefab to the GameManager.

Chapter 8 Final StepS

234

 FindWithTag
The astute reader will notice that in our Instantiate_GameObjects Script,

we referred to the FindWithTag function. We need to update our Created

Planes GameObject to add this tag.

In the Hierarchy, select the Created Planes GameObject and in the

Inspector, select the drop-down menu of the Tag Properties and Select the

Tag Terrain (Figure 8-11).

Figure 8-11. Selecting the Terrain Tag for the Created Planes
GameObject

As we are no longer using the Hit Testing Component, we can disable

this (Figure 8-12).

Chapter 8 Final StepS

235

For our game, we really don’t need the Point Clouds, so I’m going to

also disable them from the scene.

Now would be a good time to save our game.

 Testing
In the world of game development (and application development), we

can’t avoid testing and retesting. However, this time, I am going to build

and try to run my awesome game on my device. The first thing we need

to do is disable the ARKitRemote GameObject in the scene. I’m not

going to remove it just yet, as I feel we might have some more testing and

development to do.

In the Hierarchy, select the ARKitRemote Game Object and deselect it.

Now would be a good time to save our game. I have decided to use

version control for my scene file name. This way, if anything goes wrong,

I can go back to the scene that worked. Therefore, from the menu, I selected

Figure 8-12. The Created Planes GameObject settings

Chapter 8 Final StepS

236

File ➤ Save As and I choose to call my Scene file name FuguBowlAR Test,

and I saved this in the Scene folder.

Now from the Main menu, select Build settings. Make sure you have

the current scene selected and in the Player Settings, change the version

number.

Now select Build and Run.

Well, it worked. Now we can remove all the GameObjects and

components that we are not using and test it again. If it does not work,

check your settings and try again. It worked for me, and I’ll admit, it’s far

from a fully developed shippable game, but it’s a great place to start.

 Final Words

In an earlier chapter, I indicated I would explain what the YUV Material

does in the properties box of the Clear Material settings in the Unity

AR Video Script. The YUV Material is a shader that fills the background

buffer with real-world video. In this case, we are using the shader to

“project” real-world video from the camera onto the game. YUV is a

color-encoding system typically used as part of a color image pipeline. It

encodes a color image or video taking human perception into account. For

a detailed explanation of the YUV color-encoding system, there is a very

good explanation here: https://docs.microsoft.com/en-us/windows/

desktop/medfound/about-yuv-video.

There is a lot more to game development than what we covered in

this book. The next step would be adding a user interface, and when fully

polished, we might want to publish our game on the Asset Store. There are

already a number of great books and tutorials on publishing on the Asset

Store (for example: https://unity3d.com/learn/tutorials/topics/

mobile-touch/how-submit-ios-app-store-overview, or https://

developer.apple.com/app-store/resources/). I recommend that you

check these resources out and hope you will let me know when you have

published your AR game. Ganbatte kudasai (good luck)!

Chapter 8 Final StepS

https://docs.microsoft.com/en-us/windows/desktop/medfound/about-yuv-video
https://docs.microsoft.com/en-us/windows/desktop/medfound/about-yuv-video
https://unity3d.com/learn/tutorials/topics/mobile-touch/how-submit-ios-app-store-overview
https://unity3d.com/learn/tutorials/topics/mobile-touch/how-submit-ios-app-store-overview
https://developer.apple.com/app-store/resources/
https://developer.apple.com/app-store/resources/

237

 Summary

In this chapter, we converted our two GameObjects into prefabs. Then

we created and updated our BowlingBall Prefab. We then added a script

to Instantiate the GameManager Script that will add these prefabs to the

game at runtime.

Chapter 8 Final StepS

239© Allan Fowler 2019
A. Fowler, Beginning iOS AR Game Development,
https://doi.org/10.1007/978-1-4842-3618-5

Index

A, B
ARKit

installation, 19
requirements, 17
scene (see Scene View)
scene folder, 20–21
unity asset store, 19–20

ARKitRemoteConnection
console menu, 96–97
Game View, 98–99
iOS device, 97
prefab search, 95
session prompt, 97–98
UnityARKitRemote

Connection, 95–96
ARKitRemote scene

build selection, 92
bundle identifier, 94
Inspector View, 92–93
main camera scripts, 91
search of, 90
UnityARKitRemote, 90
Xcode, 95

Asset store
import package screen, 143
package information screen, 142
PhysicsMaterials folder, 145

project folder, 144
standard assets (free), 142
view tab, 141

Augmented Reality (AR), 15

C, D
Collison layer mask, 110–111

E
Editor layout

default layout, 22
Game View, 23
preset layout

2-by-3 layout, 24
layout menu, 24
4-split layout, 25
tall layout, 25
wide layout, 26
workspace

customization, 26–27
Scene View, 21–22
workspace customization

add and remove views, 28
close tab, 28
deletion menu, 29
detach view, 27

https://doi.org/10.1007/978-1-4842-3618-5

240

layout name, 29
move views, 26
resize areas, 26
restore settings and layout, 30

F, G
FindWithTag function, 234
Fugu BowlAR game, 131

H, I, J, K, L
Hit testing

camera position, 128–129
character adding, 105
delete cube, 106
editor hit test, 104
hierarchy, 103–104
lighting

ambient light source, 125
color properties, 124
color wheel, 123
directional light, 126
Inspector View, 127
turning off, 121
version control, 127

player game asset, 105
scale, 106
script testing

AR Hit test, 114
build menu, 116
collision layer mask, 110–111
deploy, 115

device testing, 112
editor, 109
GameObject name, 120
Hello WorldAR App, 119
hit transform, 109
inspector, 117
max ray distance, 110
planes GameObject, 114
properties of transform, 115
remove component

menu, 113
testing, 111–112
Xcode Menu, 118

transformation
camera preview

window, 107
GameObject, 107–108
rotate tool, 108–109

M, N, O
Mixed Reality (MR), 15

P, Q, R
Plane detection (GameObject)

debugPlanePrefab, 196
empty menu, 193–194
name option, 194
search bar, 195

Point Cloud
GameObject

creation, 197
max points, 198

Editor layout (cont.)

Index

241

particle, 197
Prefab properties box, 199

lighting
ambient source, 219–221
closer approximation, 216
color properties, 219
turning off, 217–219

main camera
clear flags, 200
script component, 201–202

unity AR video script
balance-force, 215
bowling ball, 215–216
camera manager, 204
component, 204
console menu, 208
Game View, 210
iOS device testing, 212–214
mesh renderer

component, 211–212
player message, 208
properties box, 203
remote connection, 206–207
session prompt, 209
tracked camera, 205–206
UnityARKitRemote

Connection, 207
Prefabs creation

BowlingBall and Bowling Pin
deselect, 228
final pin rack view, 227–228
instantiate, 228
properties of, 225–226
touch and rename folder, 228

disabled GameObject, 232
FindWithTag, 234
hierarchy tab, 225
folder selection and rename, 224
game manager, 233
Instantiate_GameObjects script

C# script, 229
scripts folder, 230
source file, 230–232

Project tab, 223
properties of, 226
sub-folder, 223–224
testing and re-testing, 235
YUV material tool, 236

S
Scene View

AR asset creation, 134
ARKitRemote prefab, 71
assets folder, 134

asset store (see Asset store)
BowlingBall, 137, 171
Bowling_Pin

adding, 153
BowlingBall, 154
component, 162
fall over, 170
mesh collider, 155–158
PhysicsMaterial, 158–159
Rigidbody components,

154, 171
roll, 160
script folder, 161, 163

Index

242

Bowling_Pin.obj folder, 151
build and run options

bundle identifier, 81
Hello WorldAR menu, 82
Inspector View, 80
My Hello WorldAR app, 84
selection, 78–79
unity compiles, 83
Xcode, 83

cameras
Game View, 64
preview, 62–63

collider creation, 164
BowlingPin physics

material, 167
3D Capsule GameObject, 166
mesh renderer

component, 168
PlayerController script, 165
rescaled and repositioned

capsule, 166
component menu

build and run, 78
main camera, 74
phone movement tracking, 76
save option, 84
search bar, 72–73
understand level, 85
YUV material selection, 75

creation, 132
cube, 58, 62
3D GameObject, 58
Fugu BowlAR game, 133

inspector, 60–61
main camera, 72
OBJ file, 150–151
parents and children

BowlingPinCollider, 169
Game View, 170

PhysicsMaterials
project folder, 145–146
properties, 147

plane visualization
debugPlanePrefab, 101
empty GameObject, 99
plane name, 99
search of, 100

PlayerController script, 163–164
project folder

art assets folder, 153
creation, 151
Fugu BowlAR scene, 133–134

Rigidbody
BowlingBall setting, 140
component, 137–139

save option, 132–133
sphere GameObject, 135–136
temporary plane

BallMaterial, 149
Google Poly, 150
plane creation, 147–148
transform settings, 148

text and type selection, 135–136
transformation

GameObject, 64–65
icons transforms, 66
main camera, 70

asset store (cont.)

Index

243

move Gizmo, 66–67
position reset, 69
reset option, 65
rotate Gizmo, 68
scale Gizmo, 68
testing, 70

UnityARKitRemote
Connection, 207

Visual inertial odometry (see
Visual inertial odometry)

T
Touch controls

canvas
creation, 184
EventSystem Game

Object, 185
Joystick UI, 185–186

FuguBowlAR, 192
game testing

adding menu, 182
AR camera manager

component, 175
camera properties, 176
challenges, 178
component, 173–174
CrossPlatformInput

package, 180–181
Game View, 177
implementation, 180
import option, 180
Joystick asset pack, 182–183
Plane(t) GameObject, 178

remote ARKit session, 177
testing, 178

script adding
BowlingBall, 187
fixed Joystick Game

Object, 188
player controller script

component, 186
PlayerExample script, 187
properties of, 189
testing, 189

unity menu
build settings, 190
player settings, 191
testing, 190

U
Unity game engine

application download, 4
assistant icon, 5
community sites, 13
cross-platform development

tool, 2
2D and 3D, 2
folder installation, 6
installation, 5
iOS development

requirements, 13
Mac, 3
registration process, 4
requirements, 3
skins (Pro version)

bug reporter window, 11

Index

244

preferences menu, 9–10
reporting problems, 11–12
unity editor, 10

Website, 13
Welcome screen

Hello! screen, 7–8
license management

screen, 9
Xcode, 4

Unity tour
ARKit (see ARKit)
blank screen, 19
Console View, 53
editor(see Editor layout)
Game View, 49–50

Gizmos, 52
play button, 50
stats, 51

game viewStats, 51
Hierarchy View

child GameObjects, 41
GameObject, 40
game object/entity, 39
Inspector View, 40, 42
parent GameObjects, 41
scene graph, 41

Inspector View
edit menu, 30–31
locking option, 34
version control

mode, 31–32
Mac console app, 54
project screen, 17–19
Project View

assets search, 36–37
filtering asset search, 38
Inspector View, 36
level of, 35
operations, 38
scale icons, 34–35
switching (one and two

column), 35
resources

manual, 55
tutorials, 55
version controls, 55

Scene View, 41
camera controls, 44
camera view, 42
GameObject selection, 46
Gizmos, 48
navigation of, 41
options, 46
tilted perspective, 43
tooltips, 47
wireframe display, 47

V, W, X, Y, Z
Virtual Reality (VR), 15
Visual inertial odometry

ARKitRemote, 90–95
ARKitRemoteConnection, 95–99
empty GameObject, 87
feature points, 86–89
Hello WorldAR project, 86
plane visualization, 99–101
point clouds, 87
testing, 89–90, 101–102

Unity game engine (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction
	Unity3D
	Unity Requirements
	Preparing Your Mac
	Getting Registered
	Download Xcode
	Download Unity
	Install Unity
	Running the Download Assistant

	Welcome
	Setting Up Unity
	Changing Skins (Pro Version)
	Reporting Problems

	iOS Development Requirements
	The Unity Website
	The Unity Community

	Chapter 2: Getting Started
	Installing Unity ARKit
	The Editor Layout
	Preset Layouts
	Custom Layouts
	Resize Areas
	Move Views
	Detach Views
	Add and Remove Views

	The Inspector View
	The Project View
	Switch Between One Column and Two Columns
	Scale Icons
	Inspect Assets
	Search for Assets
	Operate on Assets

	The Hierarchy View
	Inspect Game Objects
	Parent and Child GameObjects

	The Scene View
	Navigate the Scene
	Scene View Options
	Scene View Gizmos

	The Game View
	Maximize on Play
	Stats
	Game View Gizmos

	The Console View
	Explore Further
	Unity Manual
	Tutorials
	Version Control

	Chapter 3: The Unity ARKit
	Creating a Scene
	Cameras
	Transformation
	Testing

	ARKit Remote
	Setting Up the Main Camera
	Adding a Component
	Tracking the Phone Movement
	Build and Run
	Saving the Scene
	Understanding Scenes

	Introducing Visual Inertial Odometry
	Feature Points
	Point Clouds
	Testing
	Unity ARKitRemote
	Using ARKit Remote Connection
	Plane Visualization
	Testing
	Summary

	Chapter 4: Hit Testing and Lighting
	Hit Testing
	Scale
	Transformation
	The Editor Hit Test Script
	Hit Transform
	Max Ray Distance
	Collison Layer mask
	Testing
	Testing On Our Device
	Removing a Component
	Adding a Component
	Adding the Hit Transform
	Preparing to Deploy
	Changing the Build Settings
	Changing the Player GameObject Name

	Lighting
	Turning Off the Lights
	Setting the Ambient Light Source
	Build and Run – Version Control

	Positioning the Camera
	Editing the Unity AR Hit Test Script

	Summary

	Chapter 5: Making AR Games
	Fugu BowlAR Game
	Creating a New Scene
	Creating AR Assets
	Transform the BowlingBall
	Adding a Rigidbody
	Opening the Asset Store
	PhysicsMaterials
	Creating a (Temporary) Plane
	Importing an OBJ file to Unity
	Creating a new Project Folder
	Adding the Bowling_Pin to the Scene
	Transform Settings for the Bowling_Pin and BowlingBall
	Adding a RigidBody to the Bowling_Pin
	Adding a Collider to the Bowling_Pin
	Adding a PhysicsMaterial to the Bowling_Pin
	Making the Bowling_Ball Roll
	Editing the PlayerController Script
	Creating Our Own Collider
	Remembering the Parents
	Making a Parent
	Making the Bowling_Pin fall Over

	Summary

	Chapter 6: Introducing Touch
	Testing the Game in AR
	Some Challenges
	Disabling the Plane(t)
	Testing
	Implementing Touch Controls
	Importing the Unity CrossPlatformInput Package
	Adding Touch Controls
	Download the Joystick Asset Pack
	Creating a Canvas
	Adding the Joystick UI to the Canvas
	Adding a Script
	Testing
	On Device Testing
	Success

	Chapter 7: Adding Plane Detection and Point Clouds
	Creating the Generated Planes GameObject
	Creating the Point Cloud GameObject
	Setting Up the Main Camera
	Setting the Unity AR Video Script Clear Materials
	Adding the Unity AR Camera Manager
	Adding the Unity Remote Connection
	Houston, We Have a Problem…
	Testing on an iOS device
	Bringing Balance to the Force
	Slowing Down the Bowling Ball

	Lighting
	Turning Off the Lights
	Setting the Ambient Light Source
	Summary

	Chapter 8: Final Steps
	Creating Prefabs
	Adding More Bowling Pins
	Instantiating GameObjects at Runtime
	Creating an Instantiate_GameObjects Script
	Disabling a GameObject from the Scene
	Creating a Game Manager
	FindWithTag
	Testing
	Final Words
	Summary

	Index

