

Machine Learning for
Cloud Management

http://www.taylorandfrancis.com

Machine Learning for
Cloud Management

Jitendra Kumar
Ashutosh Kumar Singh

Anand Mohan
Rajkumar Buyya

First edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2022 Jitendra Kumar, Ashutosh Kumar Singh, Anand Mohan, Rajkumar Buyya

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot as-
sume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have
attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders
if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please
write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are
not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for iden-
tification and explanation without intent to infringe.

ISBN: 978-0-367-62648-8 (hbk)
ISBN: 978-0-367-62256-5 (pbk)
ISBN: 978-1-003-11010-1 (ebk)

DOI: 10.1201/9781003110101

Publisher’s note: This book has been prepared from camera-ready copy provided by the authors.

Library of Congress Cataloging-in-Publication Data

Names: Kumar, Jitendra, 1975- author. | Singh, Ashutosh Kumar, author. |
Mohan, Anand (Of Indian Institute of Technology), author. | Buyya,
Rajkumar, 1970- author.
Title: Machine learning for cloud management / Jitendra Kumar, Ashutosh
Kumar Singh, Anand Mohan, Rajkumar Buyya.
Description: First edition. | Boca Raton : CRC Press, 2022. | Includes
bibliographical references and index.
Identifiers: LCCN 2021027713 | ISBN 9780367626488 (hardback) | ISBN
9780367622565 (paperback) | ISBN 9781003110101 (ebook)
Subjects: LCSH: Cloud computing. | Machine learning.
Classification: LCC QA76.585 .K85 2022 | DDC 004.67/82--dc23
LC record available at https://lccn.loc.gov/2021027713

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov/
https://doi.org/10.1201/9781003110101

Dedicated to,
My wife: Gita, daughter: Aru, and Parents

∼Jitendra Kumar

Anushka, Aakash, Akankshya, and Parents

∼Ashutosh Kumar Singh

My wife: Sudha Mohan, son: Ashish Mohan, daughter: Amrita
Mohan, and Late parents

∼Anand Mohan

My international collaborators and team members in Melbourne
CLOUDS Lab!

∼Rajkumar Buyya

http://www.taylorandfrancis.com

Contents

List of Figures xi

List of Tables xvii

Preface xix

Author xxi

Abbreviations xxv

Chapter 1 � Introduction 1

1.1 CLOUD COMPUTING 1

1.2 CLOUD MANAGEMENT 2

1.2.1 Workload Forecasting 3
1.2.2 Load Balancing 4

1.3 MACHINE LEARNING 5

1.3.1 Artificial Neural Network 5
1.3.2 Metaheuristic Optimization Algorithms 6
1.3.3 Time Series Analysis 7

1.4 WORKLOAD TRACES 7

1.5 EXPERIMENTAL SETUP & EVALUATION METRICS 8

1.6 STATISTICAL TESTS 9

1.6.1 Wilcoxon Signed-Rank Test 10
1.6.2 Friedman Test 10
1.6.3 Finner Test 10

Chapter 2 � Time Series Models 13

2.1 AUTOREGRESSION 14

2.2 MOVING AVERAGE 14

2.3 AUTOREGRESSIVE MOVING AVERAGE 15

vii

viii � Contents

2.4 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE 15

2.5 EXPONENTIAL SMOOTHING 17

2.6 EXPERIMENTAL ANALYSIS 17

2.6.1 Forecast Evaluation 17
2.6.2 Statistical Analysis 21

Chapter 3 � Error Preventive Time Series Models 25

3.1 ERROR PREVENTION SCHEME 25

3.2 PREDICTIONS IN ERROR RANGE 27

3.3 MAGNITUDE OF PREDICTIONS 28

3.4 ERROR PREVENTIVE TIME SERIES MODELS 29

3.4.1 Error Preventive Autoregressive Moving Average 29
3.4.2 Error Preventive Autoregressive Integrated Moving Average 35
3.4.3 Error Preventive Exponential Smoothing 38

3.5 PERFORMANCE EVALUATION 47

3.5.1 Comparative Analysis 47
3.5.2 Statistical Analysis 53

Chapter 4 � Metaheuristic Optimization Algorithms 59

4.1 SWARM INTELLIGENCE ALGORITHMS IN PREDICTIVE MODEL 59

4.1.1 Particle Swarm Optimization 60
4.1.2 Firefly Search Algorithm 61

4.2 EVOLUTIONARY ALGORITHMS IN PREDICTIVE MODEL 62

4.2.1 Genetic Algorithm 63
4.2.2 Differential Evolution 63

4.3 NATURE INSPIRED ALGORITHMS IN PREDICTIVE MODEL 64

4.3.1 Harmony Search 64
4.3.2 Teaching Learning Based Optimization 66

4.4 PHYSICS INSPIRED ALGORITHMS IN PREDICTIVE MODEL 67

4.4.1 Gravitational Search Algorithm 68
4.4.2 Blackhole Algorithm 69

4.5 STATISTICAL PERFORMANCE ASSESSMENT 71

Contents � ix

Chapter 5 � Evolutionary Neural Networks 75

5.1 NEURAL NETWORK PREDICTION FRAMEWORK DESIGN 75

5.2 NETWORK LEARNING 77

5.3 RECOMBINATION OPERATOR STRATEGY LEARNING 78

5.3.1 Mutation Operator 78
5.3.1.1 DE/current to best/1 78
5.3.1.2 DE/best/1 78
5.3.1.3 DE/rand/1 78

5.3.2 Crossover Operator 79
5.3.2.1 Ring Crossover 79
5.3.2.2 Heuristic Crossover 79
5.3.2.3 Uniform Crossover 80

5.3.3 Operator Learning Process 80
5.4 ALGORITHMS AND ANALYSIS 83

5.5 FORECAST ASSESSMENT 86

5.5.1 Short Term Forecast 87
5.5.2 Long Term Forecast 88

5.6 COMPARATIVE ANALYSIS 92

Chapter 6 � Self Directed Learning 97

6.1 NON-DIRECTED LEARNING-BASED FRAMEWORK 97

6.1.1 Non-Directed Learning 98
6.2 SELF-DIRECTED LEARNING-BASED FRAMEWORK 99

6.2.1 Self-Directed Learning 100
6.2.2 Cluster-Based Learning 100
6.2.3 Complexity analysis 102

6.3 FORECAST ASSESSMENT 103

6.3.1 Short Term Forecast 103
6.3.1.1 Web Server Workloads 104
6.3.1.2 Cloud Workloads 104

6.4 LONG TERM FORECAST 106

6.4.0.1 Web Server Workloads 106
6.4.0.2 Cloud Workloads 107

6.5 COMPARATIVE & STATISTICAL ANALYSIS 108

x � Contents

Chapter 7 � Ensemble Learning 121

7.1 EXTREME LEARNING MACHINE 121

7.2 WORKLOAD DECOMPOSITION PREDICTIVE FRAMEWORK 122

7.2.1 Framework Design 122
7.3 ELM ENSEMBLE PREDICTIVE FRAMEWORK 125

7.3.1 Ensemble Learning 126
7.3.2 Expert Architecture Learning 127
7.3.3 Expert Weight Allocation 129

7.4 SHORT TERM FORECAST EVALUATION 130

7.5 LONG TERM FORECAST EVALUATION 133

7.6 COMPARATIVE ANALYSIS 137

Chapter 8 � Load Balancing 141

8.1 MULTI-OBJECTIVE OPTIMIZATION 141

8.2 RESOURCE-EFFICIENT LOAD BALANCING FRAMEWORK 142

8.3 SECURE AND ENERGY-AWARE LOAD BALANCING FRAMEWORK 146

8.3.1 Side-Channel Attacks 147
8.3.2 Ternary Objective VM Placement 148

8.4 SIMULATION SETUP 151

8.5 HOMOGENEOUS VM PLACEMENT ANALYSIS 151

8.6 HETEROGENEOUS VM PLACEMENT ANALYSIS 152

Chapter 9 � Summary 155

Bibliography 159

Index 171

List of Figures

1.1 Service model view of cloud computing 2
1.2 Cloud resource management view 2
1.3 Cloud resource management approaches 3
1.4 Schematic representation of workload forecasting 4
1.5 Load balancing 5
1.6 Artificial neural network 6
1.7 An arbitrary optimization function with multiple local optima 7

2.1 Autoregression process 14
2.2 Moving average process 15
2.3 Autoregressive moving average process 15
2.4 Autoregressive integrated moving average process 16
2.5 Exponential smoothing process 17
2.6 Autoregression forecast results on MAE 18
2.7 Autoregression forecast results on MASE 18
2.8 Moving average forecast results on MAE 19
2.9 Moving average forecast results on MASE 19
2.10 Autoregressive moving average forecast results on MAE 20
2.11 Autoregressive moving average forecast results on MASE 20
2.12 Autoregressive integrated moving average forecast results on MAE 21
2.13 Autoregressive integrated moving average forecast results on MASE 21
2.14 Exponential smoothing forecast results on MAE 22
2.15 Exponential smoothing forecast results on MASE 22

3.1 Error preventive workload forecasting model 26
3.2 An example of error preventive and non-error preventive forecast 27
3.3 Prediction error range and segments 28
3.4 Error preventive ARMA forecast analysis for 10-minute prediction

interval 30

xi

xii � LIST OF FIGURES

3.5 Error preventive ARMA forecast analysis for 20-minute prediction
interval 31

3.6 Error preventive ARMA forecast analysis for 30-minute prediction
interval 32

3.7 Error preventive ARMA forecast analysis for 60-minute prediction
interval 33

3.8 R-score comparison of non-error preventive and error preventive ARMA 34
3.9 SEI comparison of non-error preventive and error preventive ARMA 35
3.10 MPE comparison of non-error preventive and error preventive ARMA 35
3.11 PER comparison of non-error preventive and error preventive ARMA 36
3.12 Positive magnitude comparison of non-error preventive and error

preventive ARMA 37
3.13 Negative magnitude comparison of non-error preventive and error

preventive ARMA 37
3.14 Error preventive ARIMA forecast analysis for 10-minute prediction

interval 39
3.15 Error preventive ARIMA forecast analysis for 20-minute prediction

interval 40
3.16 Error preventive ARIMA forecast analysis for 30-minute prediction

interval 41
3.17 Error preventive ARIMA forecast analysis for 60-minute prediction

interval 42
3.18 R-score comparison of non-error preventive and error preventive ARIMA 43
3.19 SEI comparison of non-error preventive and error preventive ARIMA 43
3.20 MPE comparison of non-error preventive and error preventive ARIMA 44
3.21 Positive magnitude comparison of non-error preventive and error

preventive ARIMA 45
3.22 Negative magnitude comparison of non-error preventive and error

preventive ARIMA 45
3.23 PER comparison of non-error preventive and error preventive ARIMA 46
3.24 Error preventive ES forecast analysis for 10-minute prediction interval 47
3.25 Error preventive ES forecast analysis for 20-minute prediction interval 48
3.26 Error preventive ES forecast analysis for 30-minute prediction interval 49
3.27 Error preventive ES forecast analysis for 60-minute prediction interval 50
3.28 R-score comparison of non-error preventive and error preventive ES 51
3.29 SEI comparison of non-error preventive and error preventive ES 51
3.30 MPE comparison of non-error preventive and error preventive ES 52
3.31 Positive magnitude comparison of non-error preventive and error

preventive ES 52

LIST OF FIGURES � xiii

3.32 Negative magnitude comparison of non-error preventive and error
preventive ES 53

3.33 PER comparison of non-error preventive and error preventive ES 54
3.34 R-score performance relative improvement 55
3.35 SEI performance relative improvement 55
3.36 MPE performance relative improvement 56
3.37 Friedman test ranks of non-error preventive and error preventive models 56

4.1 Population-based metaheuristic optimization algorithms’ taxonomy 59
4.2 Forecast accuracy comparison of swarm intelligence based prediction

models 62
4.3 Wilcoxon test statistics of swarm intelligence based prediction models 62
4.4 Forecast accuracy comparison of evolutionary algorithms based pre-

diction models 65
4.5 Wilcoxon test statistics of evolutionary algorithms based prediction

models 65
4.6 Forecast accuracy comparison of nature-inspired algorithms based

prediction models 67
4.7 Wilcoxon test statistics of nature-inspired algorithms based prediction

models 68
4.8 Forecast accuracy comparison of physics-inspired algorithms based

prediction models 70
4.9 Wilcoxon test statistics of physics-inspired algorithms based prediction

models 71
4.10 Friedman test ranks of metaheuristic algorithms based prediction

models 71

5.1 Neural network-based workload prediction model 76
5.2 Ring crossover 79
5.3 Heuristic crossover 80
5.4 Uniform crossover 81
5.5 Learning period effect on forecast accuracy of self-adaptive differential

evolution algorithm based workload prediction model 86
5.6 Short term forecast assessment of self-adaptive differential evolution

algorithm based prediction model on 1-minute prediction interval 87
5.7 Short term forecast residuals of self-adaptive differential evolution

algorithm based prediction model on 1-minute prediction interval 88
5.8 Short term forecast assessment of biphase adaptive differential evolu-

tion algorithm based prediction model on 1-minute prediction interval 89

xiv � LIST OF FIGURES

5.9 Short term forecast residual of biphase adaptive differential evolution
algorithm based prediction model on 1-minute prediction interval 89

5.10 Comparing short term forecast errors of SaDE and BaDE based pre-
dictive frameworks 90

5.11 Long term forecast assessment of self-adaptive differential evolution
algorithm based prediction model on 60-minute prediction interval 91

5.12 Long term forecast residuals of self-adaptive differential evolution
algorithm based prediction model on 60-minute prediction interval 91

5.13 Long term forecast assessment of biphase adaptive differential evolu-
tion algorithm based prediction model on 60-minute prediction interval 92

5.14 Long term forecast residuals of biphase adaptive differential evolution
algorithm based prediction model on 60-minute prediction interval 92

5.15 Comparing long term forecast errors of SaDE and BaDE based pre-
dictive frameworks 93

5.16 Comparing forecast accuracy of Maximum, Average, BPNN, SaDE,
BaDE based predictive frameworks on NASA Trace 93

5.17 Comparing forecast accuracy of Maximum, Average, BPNN, SaDE,
BaDE based predictive frameworks on Saskatchewan Trace 94

6.1 Non-directed predictive framework 98
6.2 Self-directed predictive framework 99
6.3 Self-directed learning process 100
6.4 Position update procedures in blackhole algorithm (standard vs. mod-

ified) 101
6.5 Web server workload prediction results of self-directed learning pre-

dictive framework on 5-minute prediction interval 105
6.6 Web server workload prediction residuals auto-correlation of self-

directed learning predictive framework on 5-minute prediction interval 106
6.7 Mean squared error of non-directed and self-directed predictive frame-

works on short term forecasts of web server workloads 107
6.8 Training time (min) of non-directed and self-directed predictive frame-

works on short term forecasts of web server workloads 108
6.9 Cloud server workload prediction results of self-directed learning pre-

dictive framework on 5-minute prediction interval 109
6.10 Cloud server workload prediction residuals auto-correlation of self-

directed learning predictive framework on 5-minute prediction interval 110
6.11 Web server workload prediction results of self-directed learning pre-

dictive framework on 60-minute prediction interval 111
6.12 Web server workload prediction residuals auto-correlation of self-

directed learning predictive framework on 60-minute prediction interval 112

LIST OF FIGURES � xv

6.13 Mean squared error of non-directed and self-directed predictive frame-
works on long term forecasts of web server workloads 113

6.14 Training time (min) of non-directed and self-directed predictive frame-
works on long term forecasts of web server workloads 114

6.15 Cloud server workload prediction results of self-directed learning pre-
dictive framework on 60-minute prediction interval 115

6.16 Cloud server workload prediction residuals auto-correlation of self-
directed learning predictive framework on 60-minute prediction interval 116

7.1 Decomposition based predictive framework 122
7.2 Decomposition of CPU requests trace 123
7.3 A conceptual view of ensemble stacking 125
7.4 An ensemble of ELMs in workload prediction 127
7.5 Input node selection 128
7.6 Network architecture analysis for short term forecast of decomposition

predictive framework 131
7.7 CPU and Memory data-trace auto-correlation for 5-minute prediction

interval 132
7.8 Short term forecast accuracy of ensemble prediction framework on

CPU Trace 133
7.9 Short term forecast accuracy of ensemble prediction framework on

Memory Trace 134
7.10 Network architecture analysis for long term forecast of decomposition

predictive framework 135
7.11 Long term forecast accuracy of ensemble prediction framework on

CPU Trace 136
7.12 Long term forecast accuracy of ensemble prediction framework on

Memory Trace 136

8.1 An illustration of virtual machine placement scenarios 142
8.2 Resource-efficient load balancing framework design 143
8.3 Chromosome encoding for VM placement 144
8.4 Single point crossover operator for VM placement 145
8.5 Swapping based mutation operator for VM placement 145
8.6 Three cases of VM allocation 149
8.7 Secure and energy-aware load balancing framework design 150
8.8 Power consumption (W) for homogeneous VM requests 152
8.9 Resource utilization for homogeneous VM requests 152
8.10 Presence of conflicting servers (%) for homogeneous VM requests 153

xvi � LIST OF FIGURES

8.11 Power consumption (W) for heterogeneous VM requests 153
8.12 Resource utilization for heterogeneous VM requests 154
8.13 Presence of conflicting servers (%) for heterogeneous VM requests 154

List of Tables

2.1 Friedman test statistics for time series forecasting models 23
2.2 Friedman test ranks for time series forecasting models 23
2.3 Finner test post-hoc analysis of time series forecasting models 23

3.1 Wilcoxon test statistics for error preventive and non-error preventive
time series forecasting model 57

3.2 Finner test post-hoc analysis of error preventive and non-error pre-
ventive time series forecasting models 57

4.1 Friedman test statistics of metaheuristic algorithms based prediction
models 71

4.2 Finner test post-hoc analysis statistics of metaheuristic algorithms
based prediction models (ℵ = 0.05) 73

4.3 Finner test post-hoc analysis results on the null hypothesis of meta-
heuristic algorithms based prediction model 74

5.1 Number of iterations and time elapsed in the training of differential
evolution based predictive models for short term forecasts 90

5.2 Number of iterations and time elapsed in the training of differential
evolution based predictive models for long term forecasts 90

5.3 Iterations elapsed for the training of predictive models using back-
propagation, self-adaptive differential evolution, and biphase adaptive
differential evolution 94

5.4 Training time (sec) elapsed in the training of predictive models us-
ing backpropagation, self-adaptive differential evolution, and biphase
adaptive differential evolution 95

6.1 Mean squared error of non-directed and self-directed predictive frame-
works on short term forecasts of cloud server workloads 110

6.2 Training time (min) of non-directed and self-directed predictive frame-
works on short term forecasts of cloud server workloads 111

6.3 Mean squared error of non directed and self-directed predictive frame-
works on long term forecasts of cloud server workloads 117

xvii

xviii � LIST OF TABLES

6.4 Training time (min) of non-directed and self-directed predictive frame-
works on long term forecasts of cloud server workloads 117

6.5 Mean squared error comparison of non-directed and self-directed learn-
ing based models’ NASA Trace forecasts with state-of-art models 117

6.6 Mean squared error comparison of non-directed and self-directed learn-
ing based models’ Calgary Trace forecasts with state-of-art models 117

6.7 Mean squared error comparison of non-directed and self-directed learn-
ing based models’ Saskatchewan Trace forecasts with state-of-art
models 118

6.8 Mean squared error comparison of non-directed and self-directed learn-
ing based models’ CPU Trace forecasts with state-of-art models 118

6.9 Mean squared error comparison of non-directed and self-directed learn-
ing based models’ Memory Trace forecasts with state-of-art models 118

6.10 Mean squared error comparison of self-directed learning-based model’s
PlanetLab Trace forecasts with deep learning model 118

6.11 Friedman test ranks of non-directed, self-directed, LSTM, SaDE, and
backpropagation based predictive models 119

6.12 Friedman test statistics of non-directed and self-directed learning
predictive frameworks 119

6.13 Wilcoxon signed test ranks for self-directed learning predictive frame-
work 119

7.1 ARIMA analysis orders for cloud resource demand traces 124
7.2 Network configuration parameter choices for decomposition predictive

framework 124
7.3 List of experiments selected by D-Optimal Design 124
7.4 Mean squared error of short term forecast of ELM based predictive

framework 134
7.5 Mean squared error of long term forecast of ELM based predictive

framework 137
7.6 Forecast accuracy comparison of ELM based predictive models on

CPU trace with state-of-art models 138
7.7 Forecast accuracy comparison of ELM based predictive models on

Memory trace with state-of-art models 138
7.8 Forecast accuracy comparison of ELM based predictive models on

Google cluster trace and PlanetLab Trace with state-of-art models 139

8.1 Virtual machine details for illustration 148

Preface

Cloud computing has become one of the revolutionary technology in the history
of the computing world. It offers subscription-based on-demand services and has
emerged as the backbone of the computing industry. It has enabled us to share
resources among multiple users through virtualization by the means of creating a
virtual instance of a computer system running in an abstracted hardware layer. Unlike
early distributed computing models, it assures limitless computing resources through
its large-scale cloud data centers. It has gained wide popularity over the past few
years, with an ever-increasing infrastructure, number of users, and amount of hosted
data. The large and complex workloads hosted on these data centers introduce several
challenges: resource utilization, power consumption, scalability, operational cost, and
many others. Therefore, a practical resource management scheme is essential to bring
operational efficiency with improved elasticity. The elasticity of a system depends on
several factors such as the accuracy of anticipated workload information, performance
behavior of applications in different scenarios communicating the forecast results, use
of the anticipated information, and many others.

Effective resource management can be achieved through workload prediction,
resource scheduling, and provisioning, virtual machine placement, or a combination
of these approaches. The workload prediction has been widely explored and a number
of methods are presented. However, the existing methods suffer from various issues
including the incapability of capturing the non-linearity of workloads and iterative
training that consumes huge computing resources and time. This book discusses
the machine learning-based approaches to address the above-mentioned issues. The
highlights of the discussed models are continuous learning from error feedback, adaptive
nature, decomposition of workload traces, and ensemble learning. Detailed analysis of
predictive methods on different workload traces is also included and their performance
is compared with state-of-art models. Virtual machine placement is another aspect
that is explored to achieve efficient resource management. In general, virtual machine
placement is a multiobjective problem that involves multiple conflicting objectives to
be optimized simultaneously. The frameworks discussed in this book address the issues
of resource utilization, power consumption, and security while placing the workloads
on servers.

The remainder of the book is organized as follows: Chapter 1 briefs the basic cloud
computing concepts. The discussion on the workload prediction mechanisms begins
in chapter 2. First, the basic time series forecasting models are discussed with their
performance on different workload traces. Chapter 3 discusses the error preventive time
series forecasting models which significantly improve the performance over classical
time series models. Then, a discussion on various nature-inspired algorithms is included

xix

xx � Preface

in chapter 4. It also evaluates the performance of neural network-based forecasting
models trained by these algorithms. Next, the forecasting models trained by adaptive
differential evolution are presented in Chapter 5. The first learning algorithm allows
learning the best suitable mutation strategy and crossover rate. In contrast, the second
algorithm allows learning both crossover and mutation strategies along with mutation
and crossover rates. Chapter 6 discusses the blackhole neural network-based forecasting
scheme and evaluates its performance on several workload traces. It also discusses
the concept of self-directed learning. Also, it discusses the self-directed workload
forecasting model inspired by an error preventive scheme along with a modification
in the blackhole learning algorithm to improve the learning capability of the model.
Chapter 7 introduces the decomposition and ensemble learning-based models. The
decomposition-based model trains one network for each component extracted from the
decomposition of workload trace whereas the second approach creates an ensemble
of extreme learning machines and weights their opinions using a blackhole learning
algorithm. Chapter 8 introduces two multi-objective load balancing frameworks. The
first framework considers the resource utilization and power consumption as objectives
to be optimized whereas the second framework also considers the security aspect
into consideration while assigning the VMs to servers. The framework deals with
side-channel attacks only and minimizes the likelihood of the attack occurring. It also
ensures to reduce the number of victim users if any attack occurs. Finally, Chapter 9
summarizes the work discussed in the book.

Author

Dr. Jitendra Kumar is an assistant professor in machine learning at the National
Institute of Technology Tiruchirappalli, Tamilnadu, India. He obtained his doctorate
in 2019 from the National Institute of Technology Kurukshetra, Haryana, India. He is
also a recipient of the Director’s medal for the first rank in the University examination
at Dayalbagh Educational Institute, Agra, Uttar Pradesh in 2011. He has experience
of three years in academia. He has published several research papers in international
journals and conferences of high repute, including IEEE Transactions on Parallel and
Distributed Systems, Information Sciences, Future Generation Computer Systems,
Neurocomputing, Soft Computing, Cluster Computing, IEEE-FUZZ, etc. He has
also obtained the best paper awards in two international conferences. His research
interests are machine learning, cloud computing, healthcare, parallel algorithms, and
optimization. He is also a review board member of several journals, including IEEE
Transactions on Computers, IEEE Transactions on Parallel and Distributed Systems,
IEEE Access, Journal and Parallel Distributed Computing, and more.

Prof. Ashutosh Kumar Singh is an esteemed researcher and academician in
the domain of Electrical and Computer engineering. Currently, he is working as a
Professor; Department of Computer Applications; National Institute of Technology;
Kurukshetra, India. He has more than 20 years of research, teaching, and admin-
istrative experience in various University systems of the India, UK, Australia, and
Malaysia. Dr. Singh obtained his Ph.D. degree in Electronics Engineering from Indian
Institute of Technology-BHU, India; Post Doc from Department of Computer Science,
University of Bristol, UK and Charted Engineer from UK. He is the recipient of
the Japan Society for the Promotion of Science (JSPS) fellowship for a visit to the
University of Tokyo and other universities of Japan. His research area includes Verifi-
cation, Synthesis, Design, and Testing of Digital Circuits, Predictive Data Analytics,
Data Security in Cloud, Web Technology. He has more than 250 publications till
now which includes peer-reviewed journals, books, conferences, book chapters, and
news magazines in these areas. He has co-authored eight books including ‘‘Web Spam
Detection Application using Neural Network’’, ‘‘Digital Systems Fundamentals’’ and
‘‘Computer System Organization & Architecture’’. Prof. Singh has worked as principal
investigator/investigator for six sponsored research projects and was a key member on
a project from EPSRC (United Kingdom) entitled ’’Logic Verification and Synthesis
in New Framework’’.

Dr. Singh has visited several countries including Australia, United Kingdom, South
Korea, China, Thailand, Indonesia, Japan, and the USA for collaborative research
work, invited talks, and present his research work. He had been entitled to 15 awards
such as Merit Awards-2003 (Institute of Engineers), Best Poster Presenter-99 in 86th

xxi

xxii � Author

Indian Science Congress held in Chennai, INDIA, Best Paper Presenter of NSC’99
INDIA and Bintulu Development Authority Best Postgraduate Research Paper Award
for 2010, 2011, 2012.

He has served as an Editorial Board Member of International Journal of Networks
and Mobile Technologies, International Journal of Digital Content Technology and
its Applications. Also, he has shared his experience as a Guest Editor for Pertanika
Journal of Science and Technology, Chairman of CUTSE International Conference
2011, Conference Chair of series of International Conference on Smart Computing and
Communication (ICSCC), and as an editorial board member of UNITAR e-journal.
He is involved in reviewing processes in different journals and conferences of repute
including IEEE transaction of computer, IET, IEEE conference on ITC, ADCOM,
etc.

Prof. Anand Mohan has nearly 44 years of experience in teaching and research
and the administration and management of higher educational institutions. He is
currently an institute professor in the Department of Electronics Engineering, Indian
Institute of Technology (BHU), Varanasi, India. Besides his present academic assign-
ment, Prof. Mohan is a Member of the Executive Council of Banaras Hindu University
and Vice-Chairman of the Board of Governors of Indian Institute of Technology
(BHU), Varanasi, India. Prof. Mohan served as Director (June 2011-June 2016) of
the National Institute of Technology (NIT), Kurukshetra, Haryana, India, and was
also Mentor Director of the National Institute of Technology, Srinagar, Uttarakhand,
India. For his outstanding contributions in the field of Electronics Engineering, Prof.
Mohan was conferred the ’’Lifetime Achievement Award’’ (2016) by Kamla Nehru
Institute of Technology, Sultanpur, India.

Prof. Rajkumar Buyya is a Redmond Barry Distinguished Professor and Direc-
tor of the Cloud Computing and Distributed Systems (CLOUDS) Laboratory at the
University of Melbourne, Australia. He is also serving as the founding CEO of Manjra-
soft Pty Ltd., a spin-off company of the University, commercializing its innovations in
Cloud Computing. He served as a Future Fellow of the Australian Research Council
during 2012-2016. He serving/served as an Honorary/Visiting Professor for several
elite Universities including Imperial College London (UK), University of Birmingham
(UK), University of Hyderabad (India), and Tsinghua University (China). He received
B.E and M.E in Computer Science and Engineering from Mysore and Bangalore
Universities in 1992 and 1995 respectively; and a Doctor of Philosophy (Ph.D.) in
Computer Science and Software Engineering from Monash University, Melbourne,
Australia in 2002. He was awarded Dharma Ratnakara Memorial Trust Gold Medal
in 1992 for his academic excellence at the University of Mysore, India. He received
Richard Merwin Award from the IEEE Computer Society (USA) for excellence in
academic achievement and professional efforts in 1999. He received Leadership and
Service Excellence Awards from the IEEE/ACM International Conference on High-
Performance Computing in 2000 and 2003. He received the ‘‘Research Excellence
Awards’’ from the University of Melbourne for productive and quality research in
computer science and software engineering in 2005 and 2008. With over 112,400
citations, a g-index of 322, and an h-index of 145, he is the highest cited computer
scientist in Australia and one of the world’s Top 30 cited authors in computer science

Author � xxiii

and software engineering. He received the Chris Wallace Award for Outstanding
Research Contribution 2008 from the Computing Research and Education Association
of Australasia, CORE, which is an association of university departments of computer
science in Australia and New Zealand. Dr. Buyya received the ‘‘2009 IEEE TCSC
Medal for Excellence in Scalable Computing’’ for pioneering the economic paradigm for
utility-oriented distributed computing platforms such as Grids and Clouds. He served
as the founding Editor-in-Chief (EiC) of IEEE Transactions on Cloud Computing
(TCC). Dr. Buyya is recognized as a ‘‘Web of Science Highly Cited Researcher’’ for
five consecutive years since 2016, a Fellow of IEEE and Scopus Researcher of the
Year 2017 with Excellence in Innovative Research Award by Elsevier, and ‘‘Lifetime
Achievement Award’’ from two Indian universities for his outstanding contributions
to Cloud computing and distributed systems. He has been recently recognized as the
‘‘Best of the Worl’’, in the Computing Systems field, by The Australian 2019 Research
Review.

Dr. Buyya has authored/co-authored over 850 publications. Since 2007, he received
twelve ‘‘Best Paper Awards’’ from international conferences/journals including a
‘‘2009 Outstanding Journal Paper Award’’ from the IEEE Communications Society,
USA. He has co-authored five text books: Microprocessor x86 Programming (BPB
Press, New Delhi, India, 1995), Mastering C++ (McGraw Hill Press, India, 1st
edition in 1997 and 2nd edition in 2013), Object Oriented Programming with Java:
Essentials and Applications (McGraw Hill, India, 2009), Mastering Cloud Computing
(Morgan Kaufmann, USA; McGraw Hill, India, 2013; China Machine Press, 2015),
and Cloud Data Centers and Cost Modeling (Morgan Kaufmann, USA, 2015). The
books on emerging topics that he edited include High Performance Cluster Computing
(Prentice Hall, USA, 1999), High Performance Mass Storage and Parallel I/O (IEEE
and Wiley Press, USA, 2001), Content Delivery Networks (Springer, Germany, 2008),
Market Oriented Grid and Utility Computing (Wiley Press, USA, 2009), and Cloud
Computing: Principles and Paradigms (Wiley, USA, 2011). He also edited proceedings
of over 25 international conferences published by prestigious organizations, namely
the IEEE Computer Society Press (USA) and Springer Verlag (Germany). He served
as Associate Editor of Elsevier’s Future Generation Computer Systems Journal (2004-
2009) and currently serving on editorial boards of many journals including Software:
Practice and Experience (Wiley Press). Dr. Buyya served as a speaker in the IEEE
Computer Society Chapter Tutorials Program (from 1999-2001), Founding Co-Chair
of the IEEE Task Force on Cluster Computing (TFCC) from 1999-2004, and member
of the Executive Committee of the IEEE Technical Committee on Parallel Processing
(TCPP) from 2003-2011. He served as the first elected Chair of the IEEE Technical
Committee on Scalable Computing (TCSC) during 2005-2007 and played a prominent
role in the creation and execution of several innovative community programs that
propelled TCSC into one of the most successful TCs within the IEEE Computer
Society. In recognition of these dedicated services to the computing community
over a decade, the President of the IEEE Computer Society presented Dr. Buyya a
Distinguished Service Award in 2008.

Dr. Buyya has contributed to the creation of high-performance computing and
communication system software for PARAM supercomputers developed by the Centre

xxiv � Author

for Development of Advanced Computing (C-DAC), India. He has pioneered Economic
Paradigm for Service-Oriented Distributed Computing and demonstrated its utility
through his contribution to conceptualization, design, and development of Grid and
Cloud Computing technologies such as Aneka, GridSim, Libra, Nimrod-G, Gridbus,
and Cloudbus that power the emerging eScience and eBusiness applications. He has
been awarded, over $8 million, competitive research grants from various national and
international organizations including the Australian Research Council (ARC), Sun
Microsystems, StorageTek, IBM, and Microsoft, CA Australia, Australian Department
of Innovation, Industry, Science, and Research (DIISR), and European Council. Dr.
Buyya has been remarkably productive in a research sense and has converted much
of that knowledge into linkages with industry partners (such as IBM, Sun, and Mi-
crosoft), into software tools useful to other researchers in a variety of scientific fields,
and into community endeavors. Software technologies for Grid and Cloud computing
developed under Dr. Buyya’s leadership have gained rapid acceptance and are in use
at several academic institutions and commercial enterprises in 50+ countries around
the world. In recognition of this, he received Vice Chancellor’s inaugural ‘‘Knowledge
Transfer Excellence (Commendation) Award’’ from the University of Melbourne in
Nov 2007. Manjrasoft’s Aneka technology for Cloud Computing developed under
Dr.Buyya’s leadership has received the ‘‘2010 Asia Pacific Frost & Sullivan New Prod-
uct Innovation Award’’. Recently, Dr. Buyya received the ‘‘Bharath Nirman Award’’
and the ‘‘Mahatma Gandhi Award’’ along with Gold Medals for his outstanding and
extraordinary achievements in Information Technology field and services rendered to
promote greater friendship and India-International cooperation.

Abbreviations

SLA Service Level Aggrement
QoS Quality of Service
DE Differential Evolution
PSO Particle Swarm Optimization
EA Evolutionary Algorithm
FSA Firefly Search Algorithm
HS Harmony Search
TLBO Teaching Learning Based Optimization
GSA Gravitational Search Algorithm
BhOA Blackhole Algorithm
BhNN Bloackhole Network
MSE Mean Squared Error
RMSE Root Mean Squared Error
MAE Mean Absolute Error
RMAE Relative Mean Absolute Error
CoC Correlation Coefficient
SEI Sum of Elasticity Index
EP Error Preventive
EPS Error Prevention Score
NEP Non Error Preventive
PER Predictions in Error Range
MoP Magnitude of Prediction
SaDE Self Adaptive Differential Evolution
BaDE Biphase Adaptive Differential Evolution
SDL Self Directed Learning
ELM Extreme Learning Machine
RELB Resource Efficient Load Balancing
SCA Side Channel Attack
SEALB Secure and Energy Aware Load Balancing
PWS Prediction Window Size
WPBPNN BPNN based Workload Prediction Model
WPBhNN BhNN based Workload Prediction Model
WPSDL

BhNN BhNN and SDL based Workload Prediction Model
WPSaDE SaDE based Workload Prediction Model
WPBaDE BaDE based Workload Prediction Model
ELMNN ELM based Neural Network

xxv

xxvi � Abbreviations

eELMNN Ensemble of ELM based Neural Networks
WPELMNN ELMNN based Workload Prediction Model
WPeELMNN eELMNN based Workload Prediction Model
NDS Non Dominated Sorting

C H A P T E R 1

Introduction

C loud computing paradigm enables the delivery of computing resources and
applications to users across the globe as subscription-oriented services. Virtu-

alization is the technique behind the scene that helps in resource sharing among
multiple users in this cloud computing environment.

1.1 CLOUD COMPUTING

Cloud computing is a form of distributed computing environment where multiple
virtual instances of a computer system run in abstracted hardware level and every user
experiences like owning the entire system. The cloud infrastructure may be private
(serves to a single organization), public (shared among multiple organizations), and
hybrid (combination of both). A cloud system provides the on-demand services at
three different levels, referred to as Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS), as shown in Fig. 1.1. In IaaS, the
infrastructure components such as servers, networking and storage, and operating ser-
vices hosted by service providers are delivered to the consumers through virtualization.
These components are provided with various services including monitoring, security,
log access, backup and recovery, and load balancing. While in PaaS, users get required
and associated infrastructure to develop, run, and manage their applications. The
service provider is responsible for providing the servers, operating system, storage,
database, and middleware such as Java and .NET runtime. In the case of SaaS
that is a software distribution model, the software or applications are hosted in the
data centers, and users access these applications over the Internet. The applications
delivered through SaaS eliminate the requirement of hardware, installation, support,
and maintenance as they do not need any installation on local computers and can be
accessed through web browsers.

In the last decade, cloud systems have received wide popularity due to ever-
growing services, infrastructure, clients, and the ability to host big data [17]. A
survey conducted in 2017 reported that organizations would shift their 90% enterprise
workload on a cloud by 2021 [29]. The cloud infrastructure is growing very fast, and
the cloud industry is expected to grow with 14.6% compound annual growth rate
to reach the $300 billion mark by 2022 [62,63]. Modern cloud systems are equipped
with characteristics such as on-demand service, reliability, scalability, elasticity,

DOI: 10.1201/9781003110101-1 1

https://doi.org/10.1201/9781003110101-1

2 � Machine Learning for Cloud Management

SaaS

Google Apps, Drop-
box, Salesforce, etc.

End Users

User Ap-
plications

PaaS

Amazon Elastic Compute
Cloud, Microsoft Azure,

Google Apps Engine, etc.

Software Developers

UI Services Database
Grid

Application
Grid

IaaS

Amazon Web Services,
Google Compute Engine, etc.

Infrastructure & Network Architects

Virtual
Network

Virtual
Storage

Virtual
Server

Virtual
Machine

Virtual
Machine

FIGURE 1.1 Service model view of cloud computing

disaster recovery, accessibility, measured services, and many others [25, 73, 75, 98].
However, various challenges and limitations are still open including inefficient resource
management, security and privacy, heterogeneity, elasticity, usability, response time,
and many more [18,19,21,52--54,90,109,124,125].

Workload Workload
Analysis

Resource
Provision

Resource Management

Web
Portal

Clients
Resource

Information

Cloud Scheduler

R
esource Pool

FIGURE 1.2 Cloud resource management view

1.2 CLOUD MANAGEMENT

Resource management is one of the core functions of cloud systems and must be
improved for better system performance [66, 102, 119]. The inefficiency in resource
management directly affects the system performance and operational cost. The poor
resource utilization degrades the overall system performance and may increase the
service cost as well. A simple resource management block diagram in a cloud system is
depicted in Fig. 1.2. It can be seen that clients are connected to a cloud server through
a web portal. Users send their workloads to the cloud server for the execution. In turn,

Introduction � 3

a modern cloud system tries to assign the workloads to one of the server machines
based on different criteria including resource utilization, system performance, user
priorities, operational cost, quality of service, etc. Typically, the complete process of
workload placement over a time to improve different variables of a system is referred
to as cloud resource management. As depicted in Fig. 1.2, the major tasks of a cloud
resource management application are workload analysis and forecasting, resource
provisioning, and scheduling the workloads on hardware. The workload analysis
module is responsible for analyzing the upcoming workload and for forecasting the
expected workload in the near future. This information is used by the resource
provisioning module to allocate the physical resources. The resource scheduler places
the workloads on the servers based on the input from the resource provisioning module
and current resource usage information. Typically, resource management is achieved
through prediction, scaling, provisioning, and load balancing, as shown in Fig. 1.3.
However, this book concentrates on workload forecasting using different approaches
of regression analysis and artificial neural networks, and load balancing.

Cloud Resource
Management

Resource Utilization Scheduling

Application Scaling and
Provisioning

Workload
Prediction

Resource Demand

Load Balancing

VM Placement

FIGURE 1.3 Cloud resource management approaches

1.2.1 Workload Forecasting

The workload prediction is a mechanism that estimates the future workload on the
servers and can be classified as either a homeostatic or history-based method [89].
The first class of methods detect a trend in previous actual values and add or subtract
it to the current value to forecast the next value. It could be a static or dynamic
value that is to be added/subtracted. On the other hand, the second class of models
analyzes the workload history and extracts a pattern to forecast the next value. A
homeostatic method attempts to follow the mean of the previous values, while the
history-based approach uses the behavior of previous workload information to forecast
the next instance [70,114,116−118].

4 � Machine Learning for Cloud Management

x1 x2 . . . xt

Learning Window

f

Forecaster

x̂t+1

Forecast

FIGURE 1.4 Schematic representation of workload forecasting

x̂t+1 = f (xt, xt−1, . . . , x1) (1.1)

Let f be a function of X which determines the value of x̂t+1 i.e. the estimated
workload at time t+ 1. In order to forecast the upcoming workload, the f analyses the
historical workloads of the length of the learning window (eq. 1.1). For instance, the
function analyses the previous 10 instances from history if the length of the learning
window is 10. Since the forecast function of a real data-trace is generally non-linear
and complex, it becomes a challenging task to find the set of optimal parameters.
And machine learning becomes the natural choice to optimize the model parameters
to forecast the dynamic and non-linear workloads. A typical workload forecasting
model is depicted in Fig. 1.4. The learning window defines the number of recent past
workload instances to be analyzed for anticipation of next the value.

The prediction models have been explored and developed for various applica-
tions [13, 37, 46, 96, 97, 99]. The workload predictive resource management approaches
are tailored with estimations of demand and utilization of resources. The workload
of cloud services is dynamic and varies over time [30, 100]. Therefore a robust pre-
diction model is required to produce reasonably accurate forecasts. On the other
hand, the resource utilization prediction helps in accessing the free resources and
also in accessing the impact of allocating the free resources to individual work-
loads [35,76,77,79,80,115,121,123,134].

1.2.2 Load Balancing

The task of a load balancing process is to distribute the workloads uniformly among
servers. The load balancers are responsible for identifying the best suitable servers
or computing resources that meet the application requirements. It ensures that the
high volume of network traffic is not diverted to a single server. The schematic
representation of load balancing in a distributed computing environment is shown in
Fig. 1.5. The load balancer receives the traffic of users’ requests through the Internet
and distributes it among accessible and eligible servers. For instance, when seven users
send their workloads, the load balancer balances the load distribution by assigning
the load to three of the four servers.

Introduction � 5

WWW Load
Balancer

Cloud Datacenter

Server
Server

Server
Server

Cloud Users

FIGURE 1.5 Load balancing

The effective load balancing is another approach that helps in achieving better
usage of resources and their management. The efficiency of load balancing approaches
has been an issue for cloud systems since its development [84,129]. The efficiency in
load balancing can be achieved using different approaches such as optimal scheduling
and placement of workloads or virtual machines (VMs). The optimal mapping of
VMs is a complex and challenging task as it involves multiple objectives to optimize
at the same time and belongs to NP-Complete class of problems [16,88]. Generally,
the existing VM placement algorithms consider the different dimensions of resource
utilization and power consumption in the data centers [4, 138]. We will focus on the
load balancing approaches, also dealing with the security while balancing the load on
cloud servers as it is one of the most important issues in the cloud architectures, and
various approaches have been discovered including [43,85].

1.3 MACHINE LEARNING

Machine learning allows a computer to master a specific task without being explicitly
programmed. A computer can extract the underlying rules to perform the given task
from a bunch of data points. In this book, we will discuss the cloud management
models which are developed using the following techniques:

1.3.1 Artificial Neural Network

An artificial neural network (ANN) is composed of huge interconnected nodes called
neurons, as shown in Fig. 1.6, that processes any information in a similar way as
of human brain. Typically, a neural network is trained to solve a specific complex
problem such as recognition, classification, forecasting, and others. Similar to the
brain, a neural network adjusts the connections and their weights during the learning
phase. The neural networks are capable of analyzing the complex and large amount
of data and extracting the patterns from it.

6 � Machine Learning for Cloud Management

Input
Layer

Hidden
Layer-1

Hidden
Layer-2

Hidden
Layer-3

Hidden
Layer-4

Output
Layer

FIGURE 1.6 Artificial neural network

The key difference between a traditional computing approach and a neural network
is that the traditional approach follows a set of rules that must be known to the
computer in advance, while a neural network can learn from the data itself to draw
insightful inferences using some specific rules. Let κ1 = [x1, x2, . . . , xt] be an input
vector, and the network, as shown in Fig. 1.6, is applied to estimate the value of xt+1.
Assuming that ωki,j represents the weight of a synaptic connection between the ith
node of the kth layer and the jth node of the next layer, and ζk denotes the activation
function applied on kth layer nodes. The output of the jth node of layer k + 1 can be
computed as zj =

∑t
i=1 ζk+1(xi · ωki,j) that acts as the input to next layer nodes.

1.3.2 Metaheuristic Optimization Algorithms

Optimization has become an integral part of solving real-world problems which are
multi-modal and highly non-linear in nature. These problems can be represented
as a constrained optimization problem with one or more decision variables. Some
of the real-world optimization problems are routing, engineering designs, resource
assignment, and most of these problems are NP-hard [16,86]. Consider that Fig. 1.7
shows an arbitrary function farb of decision variable x that needs to be minimized.
The solution space has an infinite number of solutions along with multiple local
optima such as Sl1 , Sl2 , Sl3 , and many others. If the solution space is multidimensional,
complex, and large enough, it becomes a challenging task to find the global optimal
(Sg∗) in a reasonable time. The metaheuristic optimization algorithm helps in solving
such problems. The term metaheuristic was first used by Fred Glover [47] for an
approach that has the capability of guiding and modifying the other heuristics to
produce the solutions beyond their ability [48]. A metaheuristic algorithm does not
guarantee to produce an optimal solution, but it generates an approximated solution
in a reasonable amount of time.

Introduction � 7

Sl1 Sl2 Sg∗ Sl4 Decision Variable (x)

farb

FIGURE 1.7 An arbitrary optimization function with multiple local optima

These algorithms can be classified into two major categories i.e. trajectory-based
and population-based approaches. A trajectory-based algorithm such as Simulated
Annealing works around a single solution to find an optimal solution for the problem
under consideration. On the other hand, a population-based algorithm uses a set
of solutions to search for an optimal solution. A detailed study on metaheuristic
optimization can be seen in [14].

1.3.3 Time Series Analysis

A sequence of data points obtained at regular interval and indexed in time is referred
to as time series data. Time series analysis started a long ago in 1927 [128] and has
a range of applications including finance, signal processing, astronomy, forecasting,
stock market, statistics, defense, politics, etc. In general, the task of a time series
analysis model is to extract the meaningful data characteristics to predict the data
trends. The time series models predict the future event after analyzing the historical
events, and a number of models are introduced. Time series analysis is applicable to
any kind of data including numeric, symbolic, continuous, and real-valued data.

1.4 WORKLOAD TRACES

The analysis reported in this book is carried out on various data traces. The workload
data traces belong to two different categories, namely web server workloads and cloud
server workloads.

HTTP-Web Server Logs: The HTTP traces of web servers of NASA, Calgary, and
Saskatchewan servers are used [1]. In this book, these data traces are referred to as
NASA Trace (D1), Calgary Trace (D2), Saskatchewan Trace (D3), respectively. The
D1 is composed of two months of HTTP web requests obtained from the WWW server
of NASA Kennedy Space Center in Florida. Similarly, the D2 data-trace contains the
HTTP request of one-year duration obtained from the WWW server located at the
University of Calgary, Alberta, Canada. On the other hand, the D3 is a data-trace
that contains the HTTP server requests of seven months obtained from a WWW

8 � Machine Learning for Cloud Management

server of a university at Saskatchewan. Every data trace stores the records in ASCII
files, and every line stores one record. Every record is composed of five records i.e.
host, timestamp, request, HTTP reply code, and bytes in the reply.

Google Cluster Trace: It contains the data collected from the cluster cell of Google
for 29 days of duration. The workload trace was released in 2011, and it contains
the data from 10388 servers, 20 million tasks, and more than 0.67 million jobs [112].
A job is a set of one or more tasks, and tasks are further decomposed into one or
more processes. In this book, the CPU and Memory resource demands are used and
referred to as CPU Trace (D4) and Memory Trace (D5).

PlanetLab Trace: It is a collection of mean CPU utilization data which is collected
from 11,746 virtual machines. These virtual machines are scattered at 500 different
locations across the world. The data was collected for randomly selected 10 days
during March and April of 2011, and data was sampled on five minutes intervals. The
CPU utilization data of 22 randomly selected virtual machines is used in this book
and referred to as PlanetLab Trace (D6).

1.5 EXPERIMENTAL SETUP & EVALUATION METRICS

A machine equipped which contains two Intel® Xeon® E5-2630 v4 processors, and
both processors run at the clock speed of 2.20 GHz. The machine is equipped with
128GB of main memory, and it operates on 64-bit windows servers 2012 R2. The
predictive frameworks discussed in this book are evaluated using below mentioned
metrics:

Mean Squared Error: The mean squared error (MSE) measures the forecast accuracy,
and it is one of the popular metrics used in the literature. This method heavily penalizes
the large error terms. Mathematically, it is denoted as given in eq. (1.2), where m
represents the size of data in a given trace. The term MSE and MPE (mean squared
prediction error) are interchangeably used in the book. Moreover, the square root of
MSE (RMSE) may also be used as an error metric.

MSE = 1
m

m∑
t=1

(xt − x̂t)2 (1.2)

Mean Absolute Error: A small number of very large magnitude errors may influence
the accuracy measured using mean squared error. Whereas mean absolute error equally
weights every error term, and it computes the mean of absolute differences between
predicted and actual workloads as given in eq. (1.3). The forecasts are close to the
actual workload values if the measured score is close to zero.

MAE = 1
m

m∑
t=1
|xt − x̂t| (1.3)

Introduction � 9

Relative Mean Absolute Error: A scale-free error metric is required to compare the
forecast models on different data sets, and relative mean absolution error (RelMAE)
is one such metric. The score can be calculated using eq. (1.4), which represents the
mean absolute error of the algorithm (MAEA) normalized by the mean absolute error
of a base or state of the art model (MAEBM)

RelMAE = MAEA
MAEBM

(1.4)

Mean Absolute Scaled Error: Rob J. Hyndman and Anne B. Koehler introduced a
new metric as a substitution of percentage error metrics [61]. The prediction errors
are scaled on the basis of the training mean absolute error of a näıve forecast method.
It computes the measured score using eq. (1.5), where ms denotes the seasonal term.
This metric is a good choice of accuracy measurement when the prediction model is
compared across a number of different scales.

MASE(x, x̂) = 1
m

m∑
t=1

(
|xt − x̂t|

1
m−ms

∑m
t=ms+1|xt − xt−1|

)
(1.5)

Correlation Coefficient: The correlation coefficient (CoC) statistically evaluates the
statistical relationship of two variables by measuring the degree of movements. The
CoC score can be computed as given in eq. (1.6), where x̄ and ¯̂x are the mean values
of actual and predicted workloads, respectively.

CoCxx̂ =
∑

(xt − x̄)(x̂t − ¯̂x)√∑
(xt − x̄)2∑(x̂t − ¯̂x)2

(1.6)

Sum of Elasticity Index: Messias et al. proposed to use the sum of elasticity index
(SEI) as a measure of forecast accuracy [92]. This metric supports a forecast model
having the best performance most of the time. As opposed to MAE and RMSE, it is
very less sensitive to the outliers. The SEI score is computed as given in eq. (1.7) and
it always lies between zero and one, where zero and one define the worst and best
accuracy of the model.

SEI =
m∑
t=1

min(xt, x̂t)
max(xt, x̂t)

(1.7)

1.6 STATISTICAL TESTS

The statistical techniques are used to analyze the forecasting behavior of different
approaches. The non-parametric tests are used due to the fact that they are not highly
restrictive and can be used over small sample sizes [44]. The significance tests help in
finding the presence of significant differences in two or more forecasting models.

10 � Machine Learning for Cloud Management

1.6.1 Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test is one of the non-parametric tests that compare two
samples to find out whether they represent the same population or not [130]. It
assumes a null hypothesis (HWC

0) that the mean of both samples is the same. If a
significant difference is detected, HWC

0 gets rejected.
Considering that two algorithms are being evaluated on k problems and εi denotes

the performance score difference on the ith problem. The method ranks the absolute
differences and computes the ranks accordingly. The ties can be addressed using one
of the available approaches. In this book, the number of ties is equally divided to
compute the rank of both algorithms. The total rank of the first algorithm where it
outperforms the second is computed using eq. (1.8) whereas eq. (1.9) computes the
sum of ranks for the problems where the second algorithm gives better results than
the first algorithm.

R+
WC =

∑
εi>0

rank(εi) + 1
2
∑
εi=0

rank(εi) (1.8)

R−WC =
∑
εi<0

rank(εi) + 1
2
∑
εi=0

rank(εi) (1.9)

1.6.2 Friedman Test

It is a non-parametric test developed by M. Friedman [40, 41] that provides an
alternative to one-way ANOVA with repeated measures. It conducts multiple tests
that target to detect the presence of differences between the performance behavior of
two or more models [34].

Let HFR
0 be the null hypothesis of Friedman test that states the equality in the

mean of every prediction model’s result. The alternate hypothesis (HFR
1) of the test

is the negation of HFR
0 . First, it converts the original results of each algorithm into

ranks. Let Rεj
i

FR be the Friedman rank of jth algorithm on the ith problem, the final
rank of jth algorithm can be observed by calculating the average of Rεj

i

FR as shown in
eq. (1.10), where j = {1, 2, . . . , k} and i = {1, 2, . . . , |D|} denote the algorithms and
datasets respectively, |D| is the number of datasets. The minimum value of ranks
represents the best algorithm.

Rεj

FR =
|D|∑
i=1

Rεj
i

FR (1.10)

1.6.3 Finner Test

The Friedman test conducts the multiple comparison test and detects the significant
difference over the whole population test. However, it is unable to conduct comparisons
to detect the difference between some of the algorithms. Post-hoc analysis tests deliver
the purpose and allow to detect the presence of difference in the performance of
two algorithms on the basis of a control method [38]. The test adjusts the value of

Introduction � 11

significance level (ℵ) in a step-down manner [34]. Considering that the generated
p-values are sorted in an increasing fashion in such a way that pi ≤ pi+1;∀i =
{1, 2, . . . , k − 2}. Let HFN

i be the corresponding hypothesis for tests. The Finner test
rejects the hypothesis from HFN

1 to HFN
i−1 provided i is the smallest integer number

that satisfy pi > 1− (1− ℵ) k−1
i property [34].

http://www.taylorandfrancis.com

C H A P T E R 2

Time Series Models

T ime series analytical models are being used in forecasting since a long ago in
1927 [128]. A time series-based model forecasts the trends after analyzing the

various characteristics of data indexed in time. Since their first usage, they have been
widely used in scientific research and industry-oriented applications. This chapter
concentrates on univariate time series-based workload forecasting. A univariate time
series can be defined as a collection of measurements of the same variable over time
(typically, at regular time intervals). The essential characteristic of any time series
data is that the order of observation matters and change in order may alter the
significance of the data.

The time series analysis is typically associated with the process of finding a model
to fit the time series data. The observed model can be used to extract the pattern,
forecast future events, and explain the effects of past events on the future. Some of
the essential characteristics of a time series are:

• The trend depicts the direction of the data i.e. to increase or decrease. The
direction is always need not be in the same direction for a long period of time.
According to the Organisation for Economic Co-operation and Development
(OECD), ‘‘The trend is the component of a time series that represents variations
of low frequency in a time series, the high and medium frequency fluctuations
having been filtered out.’’

• The seasonality also depicts similar characteristics as of trend. The difference
between the two terms is that the seasonality shows repetitive patterns.

• The noise referred to the component depicting neither trend nor seasonality in
the data.

• Outliers are the far-away data points from the data.

• The other common characteristics in a time series data are long-run cycle,
constant variance over time, and spikes.

This chapter discusses the five basic time series analysis models and uses them
to forecast the different types of workloads on cloud servers. A detailed analysis is
conducted to validate their performance on real-world data traces.

DOI: 10.1201/9781003110101-2 13

https://doi.org/10.1201/9781003110101-2

14 � Machine Learning for Cloud Management

2.1 AUTOREGRESSION

An autoregressive model is used to present a phenomenon where the future values of
any variable are the function of its historical values. It is used to depict a random
process in real-world applications of statistics, signal processing, data analysis, etc.
Formally, an autoregressive model can be defined as a process that considers the
historical data with a white noise term to generate the future outcome of a variable.
This model gets the name from its functioning as it regresses the same variable.
Considering that the cloud workload x is indexed in equally spaced time interval
1, 2, . . . , t as x1, x2, . . . , xt then the autoregressive model of order p can be defined as
eq. (2.1) [91].

x̂t = φ1 × xt−1 + φ2 × xt−2 + . . .+ φp × xt−p + ℵt (2.1)

The x̂t and xt are predicted and actual workloads respectively at time t; and
model parameters are represented as φi (i = 1, 2, . . . , p) which should hold any value
from -1 to +1. The term ℵt is used to denote the white random noise. The working of
an autoregressive model is graphically shown in Fig. 2.1.

xt−p . . . xt−2 xt−1 x̂t

fAR

φp
φ2

φ1

Prediction

ℵt

FIGURE 2.1 Autoregression process

2.2 MOVING AVERAGE

The moving average (MA) model uses the errors in the previous forecasts rather than
the previous actual values. According to Box et al., the time series can be modeled
using Ξ if successive actual values of the series are highly correlated [15]. These error
terms can be considered as the zero-mean white noise series generated using a fixed
distribution. A typical moving average model of order q can be written as eq. 2.2,
where θj represents the weight for jth model term. These weights are required neither
to be positive nor to be total unity [15]. The graphical illustration of a moving average
model with q model terms is shown in Fig. 2.2, where fMA denotes the function that
learns the moving average model.

x̂t = θ1 × ξt−1 + θ2 × ξt−2 + . . .+ θq × ξt−q + ℵt (2.2)

Time Series Models � 15

ξt−q . . . ξt−2 ξt−1 x̂t

fMA

θq
θ2

θ1

Prediction

ℵt

FIGURE 2.2 Moving average process

2.3 AUTOREGRESSIVE MOVING AVERAGE

The autoregressive moving average (ARMA) model is a combination of two different
forecasting models. It suggests using the actual historical values along with the
errors associated with the previous forecasts. The ARMA process can be represented
mathematically as shown in eq. 2.3. The ARMA model parsimoniously represents
time-series data using two different polynomial fits associated with the auto regression
and moving average models respectively. For a complicated time series data, the
ARMA process is preferred over autoregression and moving average models. The
graphical representation of the ARMA model is shown in Fig. 2.3 having p and q
model terms for autoregression and moving average models.

x̂t = φ1×xt−1+φ2×xt−2+. . .+φp×xt−p+ℵt+θ1×ξt−1+θ2×ξt−2+. . .+θq×ξt−q (2.3)

xt−p . . . xt−2 xt−1

x̂tfARMA

φp
φ2 φ1

Prediction
ℵt

ξt−q . . . ξt−2 ξt−1

φp φ2
φ1

FIGURE 2.3 Autoregressive moving average process

2.4 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE

The more general form of an ARMA process is the autoregressive integrated moving
average, commonly referred to as ARIMA. This model is composed of three components
viz. Autoregression (AR), Integration (I), and Moving Average (MA). The ARIMA

16 � Machine Learning for Cloud Management

process is a good choice to model non-stationary time series. The ARIMA process
integrates the non-stationary data to transform into stationary data by applying
the difference operator. The difference operator is depicted as δd, where d is the
number of different terms. For instance, the first-order difference operation can be
defined as δ1 = xt − xt−1. The graphical representation of an ARIMA(p, d, q) is
depicted in Fig. 2.4, where p, d, and q are the model terms or weights associated with
autoregression, difference, and moving average respectively. The workload values
at time t obtained after applying the difference are denoted as x̃t. The first order
ARIMA is one of the simplest models that can be represented as shown in eq. 2.4,
where the term B denotes the backward shift operator (B × xt = xt−1) [91].

(1− θ1B)︸ ︷︷ ︸
AR(1)

(1−B)xt︸ ︷︷ ︸
First Difference

= (1− θ1B)ξt︸ ︷︷ ︸
MA(1)

(2.4)

xt−p . . . xt−2 xt−1

x̃t−p . . . x̃t−2 x̃t−1

δd . . . δd δd

ξt−q . . . ξt−2 ξt−1 x̂t

fARIMA

θq
θ2

θ1

φq φ2 φ1

Prediction

ℵt

FIGURE 2.4 Autoregressive integrated moving average process

Time Series Models � 17

2.5 EXPONENTIAL SMOOTHING

As opposed to the regression-based time series analysis models, the exponential
smoothing (ES) model uses the historical actual values and their corresponding
forecasts. This model suggests that the recent predictions are highly important to
consider for better modeling of time series data. The term exponential comes from the
principle of exponentially reducing the weights associated with the previous forecasts.
The mathematical representation of the model is shown in eq. 2.5, where the term α
is associated with the smoothing constant. The exponential smoothing is graphically
illustrated in Fig. 2.5. One of the obvious characteristics of the model is that it does
not need to store a large amount of historical values as oppose to the regression-based
time series models.

x̂t = αxt−1 + (1− α)x̂t−1 (2.5)

xt−1

x̂t−1 x̂t

fES

α

(1
−
α

)

Fo
re

ca
st

FIGURE 2.5 Exponential smoothing process

2.6 EXPERIMENTAL ANALYSIS

The performance of these models on forecasting the cloud server workloads is assessed
with a number of experiments. The workload is forecasted with different values of the
prediction window size. The term PWS defines the time interval in two consecutive
forecasts, for instance, if a model estimates the upcoming workload for every 60
minutes then the length of the prediction window size is 60 minutes. This study is
conducted with the length of the prediction window of size 5, 10, 20, 30, and 60
minutes duration. Also, the model parameters are estimated using 60% of the data
and the remaining 40% of the data is used to observe the accuracy of the time series
models with estimated parameter values.

2.6.1 Forecast Evaluation

The forecast accuracy is measured using mean absolute error (MAE) and mean
absolute scaled error (MASE). The data sets are categorized into two categories viz.
web server workloads and cloud server workloads. The forecast accuracy on web

18 � Machine Learning for Cloud Management

server workloads is shown in Figs. 2.6a and 2.7a using MAE and MASE respectively.
The model forecasts Calgary Trace with the least MAE for the prediction window of
length 5, 10, 20, and 40 minutes. For the prediction window of 60 minutes duration,
the least mean absolute error is obtained on the forecasts of Saskatchewan Trace.
Similarly, the MASE-based forecast results are depicted in Figs. 2.6a and 2.7b for web
and cloud server workloads respectively. It is evident that the D2 forecasts are most
accurate for the length of the prediction window of 5, 10, 30, and 60 minutes as per
the MASE. For 20 minutes of the duration, the best forecast accuracy measured using
MASE is generated for D1. Based on the results, the first-order autoregressive process
models the web server workloads with better accuracy than cloud server workloads.
For cloud server-based workloads, the memory trace (D5) obtained better results over
CPU trace. In general, the first-order autoregressive process learns the pattern from
Calgary trace in a better way.

(a) Web workloads (b) Cloud workloads

FIGURE 2.6 Autoregression forecast results on MAE

(a) Web workloads (b) Cloud workloads

FIGURE 2.7 Autoregression forecast results on MASE

Time Series Models � 19

(a) Web workloads (b) Cloud workloads

FIGURE 2.8 Moving average forecast results on MAE

For moving average model also, the experiments are conducted with the same
settings as of autoregression. Again, the first-order moving average model is used for
the study to ensure similarity and simplicity. The MAE-based forecast results are
shown in Figs. 2.8a and 2.8b. It is evident from the results that the model learns
the pattern of Calgary trace with more accuracy over other data sets. In overall
comparisons, it is observed that the MA(1) model is more suitable to the web workloads
due to the fact that the model attained large errors while forecasting the workload
on cloud servers. Among the cloud workloads, the model generates better forecasts
for memory workload over the other trace. The forecast results obtained on MASE
are shown in Figs. 2.9a and 2.9b for web and cloud server workloads respectively. A
similar trend is observed in the assessment of MASE-based experiments.

(a) Web workloads (b) Cloud workloads

FIGURE 2.9 Moving average forecast results on MASE

For ARMA process also, the experiments are done with first-order ARMA i.e.
ARMA(1,1). The forecast results based on MAE for web and cloud server workloads
are shown in Figs. 2.10a and 2.10b respectively. While the forecast results obtained on
MASE are depicted in Figs. 2.11a and 2.11b respectively. The model has successfully

20 � Machine Learning for Cloud Management

(a) Web workloads (b) Cloud workloads

FIGURE 2.10 Autoregressive moving average forecast results on MAE

obtained better forecasts for Calgary trace on the prediction window size of 5, 10,
and 20 minutes. For 30 and 60 minutes prediction intervals, the model is able to
generate better forecasts for Saskatchewan trace. The similar trends are observed for
MASE-based assessment. Moreover, the prediction error based on MASE is low for
Calgary trace in 20 minutes. The ARMA model shows a similar trend on web and
cloud server workloads.

(a) Web workloads (b) Cloud workloads

FIGURE 2.11 Autoregressive moving average forecast results on MASE

The performance of the ARIMA process is also assessed on the same experiments
and the results are depicted in Figs. 2.12 and 2.13 for MAE and MASE respectively.
The Calgary trace forecasts are obtained with the least prediction error. On the other
hand, the MASE-based results advocate that the Saskatchewan trace and NASA
trace are forecasted with the least error while the prediction window size is 5 and 20
minutes duration.

Unlike the regression-based models’ forecast results, the exponential smoothing
process does not model any single workload for different prediction window sizes.

Time Series Models � 21

(a) Web workloads (b) Cloud workloads

FIGURE 2.12 Autoregressive integrated moving average forecast results on MAE

(a) Web workloads (b) Cloud workloads

FIGURE 2.13 Autoregressive integrated moving average forecast results on MASE

For different duration of prediction window sizes, the least forecast error is obtained
for different workload traces. For instance, during the prediction window size of
5, 10, and 60 minutes, and in other cases, the D1 results are better, according to
the MAE-based results shown in Fig. 2.14. The MASE forecast errors are shown in
Fig. 2.15 and it shows that the D2 trace forecast errors are low during the 10 and 30
minutes prediction window. In the case of a 20-minute prediction interval, the model
generates the best forecasts for the Saskatchewan trace. Similarly, the CPU trace is
best modeled during a 60-minute prediction window. The D2 and D3 attained the
least and equal forecast accuracy during 5-minute intervals.

2.6.2 Statistical Analysis

The experimental observations find that each data set is modeled with different related
forecast accuracy by all-time series models. Thus, it becomes a challenging task to
conclude the rankings of the models or to advocate the use of a model for given data

22 � Machine Learning for Cloud Management

traces. Therefore, a deep investigation is carried out using statistical analysis which
helps in finding the significant difference in the performance of different models. For
this purpose, the Friedman test [40] is applied because this test is believed to be one of
the most powerful tests if the sample size is five or more [28]. A null hypothesis (HFR

0)
is followed which states that there is no significant difference in the performance and
each model behaves similarly. On the other hand, the alternate hypothesis (HFR

1)
is the negation of the null hypothesis i.e. the performance of one of the models is
significantly different than others.

(a) Web workloads (b) Cloud workloads

FIGURE 2.14 Exponential smoothing forecast results on MAE

(a) Web workloads (b) Cloud workloads

FIGURE 2.15 Exponential smoothing forecast results on MASE

The STAC web platform [113] is used to conduct a detailed statistical analysis.
The corresponding F-statistics and p-values are listed in Table 2.1, where the rejection
of null hypothesis (HFR

0) is represented by HFR
0 .R. The algorithms are ranked by the

test as per the difference in their performance and the rank results based on both
MAE and MASE are shown in Table 2.2 for ℵ = 0.05. The lowest value indicates the
highest rank and vice-versa.

Time Series Models � 23

TABLE 2.1 Friedman test statistics for time series forecasting models

Accuracy Metric F-Statistics p-value HFR
0 Result

MAE 45.42 0.0 HFR
0 .R

MASE 34.70 0.0 HFR
0 .R

TABLE 2.2 Friedman test ranks for time series forecasting models

Model MAE MASE
AR (M1) 3.60 3.54
MA (M2) 4.94 4.86

ARMA (M3) 2.44 2.42
ARIMA (M4) 2.28 2.38

ES (M5) 1.74 1.80

TABLE 2.3 Finner test post-hoc analysis of time series forecasting models

MAE MASE
Comparison Statistic p-value HFN

0 Result Statistic p-value HFN
0 Result

M1 vs M2 2.996 0.00546 HFN
0 .R 2.951 0.00631 HFN

0 .R
M1 vs M3 2.593 0.01353 HFN

0 .R 2.504 0.01748 HFN
0 .R

M1 vs M4 2.951 0.00546 HFN
0 .R 2.593 0.01577 HFN

0 .R
M1 vs M5 4.159 0.00008 HFN

0 .R 3.890 0.00025 HFN
0 .R

M2 vs M3 5.590 0.00000 HFN
0 .R 5.545 0.00000 HFN

0 .R
M2 vs M4 5.947 0.00000 HFN

0 .R 5.545 0.00000 HFN
0 .R

M2 vs M5 7.155 0.00000 HFN
0 .R 6.842 0.00000 HFN

0 .R
M3 vs M4 0.357 0.72051 HFN

0 .A 0.089 0.92873 HFN
0 .A

M3 vs M5 1.565 0.14468 HFN
0 .A 1.386 0.20257 HFN

0 .A
M4 vs M5 1.207 0.24907 HFN

0 .A 1.296 0.21380 HFN
0 .A

It is evident that the test does not accept the null hypothesis which means there
are at least one of the algorithms whose results are significantly different. However,
the Friedman test is incapable of further investigation on which model is better or so.
Fortunately, the post-hoc analysis does the job and gives a detailed analysis. This
study uses the Finner post-hoc test [38] which conducts multiple comparisons. One
of the methods is selected as the control method and compares its performance with
every other model. This test also works with a null hypothesis represented as HFN

0
which assumes the equality between the mean of the results of the selected control
method and every other group member participating in the test. The results of the
pairwise comparisons conducted by the Finner test are shown in Table 2.3, where
rejection and acceptance of the null hypothesis are represented using HFN

0 .R and
HFN

0 .A respectively, and M1,M2,M3,M4, and M5 denote AR, MA, ARMA, ARIMA,
and ES processes respectively. The test does not accept the null hypothesis in most

24 � Machine Learning for Cloud Management

of the paired comparisons that indicate the presence of a significant difference in the
performance of compared models. The statistical observations recommend a similar
forecast accuracy of ARMA, ARIMA, and ES as the post-hoc analysis does not find
any significant difference in their results. The Friedman test results also support
the above observation as the difference in the ranking of these models is very low.
However, the ES process has produced the best forecasts measured using both error
metrics as the model has achieved the best ranking which supports the fact of using
both historical actual and forecast values to predict the future event. The moving
average is the worst performing model as it receives the lowest rank in the test.

C H A P T E R 3

Error Preventive Time Series
Models

T ime series analysis is a popular choice to forecast future events if historical data
indexed in time is available. These models are good in learning and extracting

the patterns from the time-series data. However, they need to tune the parameters
periodically to model the behavioral changes in data [6]. Dynamic systems such as
cloud servers usually see frequent changes in the data pattern. Thus, time series
analysis models may not forecast the cloud workloads with reasonable accuracy. An
error prevention method is introduced to address the issue of periodic parameter
tuning [78]. This method is generic in nature and can be integrated with any time
series analysis model. It also improves the pattern capturing ability of a forecasting
model.

3.1 ERROR PREVENTION SCHEME

The error prevention scheme aims to improve the pattern learning ability of a
forecasting model. The recent forecasts are analyzed to compute the residual trend
which is further used as an input for the next forecast. Let X = {x1, x2, . . . , xt}
be the set of workload values indexed in time and X̂ = {x̂1, x̂2, . . . , x̂t} is a set of
corresponding forecasts obtained by a forecasting function given in eq. (3.1). The
forecast error (ξt) is the difference between xt and x̂t. Further, these errors are used
to compute the error preventive score (EPS) at time t (EPSt) using eq. (3.2), where
the value of k is the length of the feedback window which is defined by the user. The
operational summary of the model is shown in Fig. 3.1.

x̂t = f(xt−1, xt−2, . . . , xt−n) (3.1)

EPSt = 1
k

(ξt−1 + ξt−2 + . . .+ ξt−k)

= 1
k

k∑
i=1

ξt−i (3.2)

DOI: 10.1201/9781003110101-3 25

https://doi.org/10.1201/9781003110101-3

26 � Machine Learning for Cloud Management

WWW Server

Datacenter

Cloud Users

Error
Reporting

f(x1, x2, ... , xt) Calculate EPS

Actual Workload

Actual
Workload

Pr
ed

ic
te

d
W

or
kl

oa
d

Repository

Prediction
Error

Pr
ed

ic
tio

n
Er

ro
r

Prevention
Score

Workload
Requests

FIGURE 3.1 Error preventive workload forecasting model

Let X = {0.8147, 0.9058, 0.1270, 0.9134, 0.6324, 0.0975, 0.2785, 0.5469, 0.9575,
0.9649, 0.1576, 0.9706, 0.9572, 0.4854, 0.8003, 0.1419, 0.4218, 0.9157, 0.7922, 0.9595}
and X̂ = {*, 0.9755, 0.9974, 0.8105, 0.9992, 0.9318, 0.8034, 0.8468, 0.9113, 1.0098,
1.0116, 0.8178, 1.0129, 1.0097, 0.8965, 0.9721, 0.8141, 0.8812, 0.9998, 0.9701 } are
randomly selected data points and their corresponding forecasts obtained by a random
function shown in eq. 3.3. The forecasted value at time t = 1 is not available due to
non availability of x0 and denoted as *.

x̂t = 0.78 + 0.24× xt−1 (3.3)

The corresponding prediction errors are (Ξ={*, -0.0697, -0.8704, 0.1029, -0.3669,
-0.8342, -0.5249, -0.3000, 0.0463, -0.0449, -0.8540, 0.1528, -0.0558, -0.5243, -0.0962,
-0.8302, -0.3923, 0.0345, -0.2076, -0.0106}). The error prevention score is computed
using k = 4 as mentioned in eq. (3.4). The modified forecasting model that we referred
to as error preventive model is obtained by including the error prevention score as
shown in eq. 3.5.

EPS = 1
4

4∑
i=1

ξi (3.4)

x̂t = 0.9 + 0.1× xt−1 + 1
3

t−3∑
i=t−1

ξi (3.5)

After employing the error prevention score in the forecasting model, the new
forecasts become X̂EP = {*, 0.9755, 0.9974, 0.8105, 0.9992, 0.6308, 0.3865, 0.6206,
0.6408, 0.9102, 1.0590, 0.6669, 0.9564, 0.8742, 0.6501, 0.9886, 0.5430, 0.5796, 0.8794,
0.7904}. The corresponding forecast errors are ΞEP = {*, -0.0697, -0.8704, 0.1029, -
0.3668, -0.5333, -0.1080, -0.0736, 0.3167, 0.0547, -0.9014, 0.3037, 0.0008, -0.3888, 0.1502,
-0.8467, -0.1212, 0.3361, -0.0872, 0.1691}. Figure 3.2 plots the actual workloads along
with the forecasts generated by both original and modified prediction functions given
in eqs. (3.1) and (3.5). It is evident that error preventive (EP) forecasts are closer to
the actual workloads as opposed to the non-error preventive (NEP) forecasts. Thus,
the error preventive score is useful to reduce the error in forecasts.

Error Preventive Time Series Models � 27

0 5 10 15 200

0.5

1

1.5

Time

W
or

kl
oa

d

Actual Workload
Predicted Workload (NEP)
Prediction Workload (EP)

FIGURE 3.2 An example of error preventive and non-error preventive forecast

The order of execution time and required memory of a model is defined by its
complexity. Any modification in the model will also change its complexity. Similarly,
the inclusion of error prevention scores in the forecasting model also affects the
complexity of the original model. Assuming that the k forecast errors which are used
in computing the error prevention score are stored in an array of length k. Since
computing the average of k values of an array consumes O(k), the inclusion of an
error preventive score does not affect the complexity of a forecasting model by a large.
In fact, the complexity of a predictive model will increase by a factor of O(k) only.
Since the value of k is a very small number and can be considered as a constant factor.
Therefore, the complexity of the updated model after including the error prevention
score will remain as its original complexity provided that the forecasting model’s
complexity is more than O(k). Similarly, an array of length k needs O(k) memory
space for storage. Thus the space complexity of a predictive model also gets increased
by a factor of O(k) only.

3.2 PREDICTIONS IN ERROR RANGE

The prediction errors can be categorized and arranged into different categories or
ranges as per the error margin. The ‘predictions in error range’ metric compute the
ratio between the magnitude of the forecast and actual workload which is further
multiplied with 100 to compute the percentage error as shown in eq. (3.6), where ξpt
denotes the percentage prediction error in x̂t. The magnitude of the error may lie in
the range of 0 to ∞ which implies that 0 ≤ ξpt < ∞. Five different categories are
suggested to create the clusters of forecasts with different values as shown in Fig. 3.3.
The number of categories is user input and can vary accordingly. The forecasts having
ξpt up to 25% are kept in the first category. The second, third, fourth, and fifth
categories keep the records of forecasts having ξp values as shown in eq. (3.7). With

28 � Machine Learning for Cloud Management

this assignment each forecast gets associated with one of the categories. The number
of data points belonging to each category is counted and stored in a variable PERri

as shown in eq. (3.8), where ξp(ri) is an array containing the forecasts belonging to
ri. This process is followed by the computation of a share of predictions for each
category which is denoted as PERs

ri
(see eq. (3.9)). A model can be considered better

if it increases PERs
ri

and reduces PERs
rj

, where i < j.

ξpt = |xt − x̂t|
xt

× 100 (3.6)

0 25 50 75 100

FIGURE 3.3 Prediction error range and segments

ξpt ∈ r1 0 ≤ ξpt ≤ 25
ξpt ∈ r2 25 < ξpt ≤ 50
ξpt ∈ r3 50 < ξpt ≤ 75 (3.7)
ξpt ∈ r4 75 < ξpt ≤ 100
ξpt ∈ r5 100 < ξpt <∞

PERri = count(ξp(ri)) (3.8)

PERs
ri

= PERri∑5
i=1 PERri

× 100 (3.9)

where
5∑
i=1

PERs
ri

= 100

3.3 MAGNITUDE OF PREDICTIONS

In this competitive era, a cloud service provider would always prioritize the user
experience to maintain its customer base. In this case, a cloud resource management
application can tolerate the workload prediction more than the corresponding actual
workload. If a lot of lower predictions (less than corresponding actual workloads) are
produced, it would be more difficult to improve the user experience because as per the
predictions less resources may be reserved to handle the future workload. Whereas the
higher forecasts (more than the corresponding actual workload) will suggest reserving
more active resources than required which can be helpful in improving the user
experience by allowing a service provider to keep itself ready to fulfill all incoming
requests without any wait on the cost of increased operational cost (in comparison to

Error Preventive Time Series Models � 29

the optimal operational cost). Thus, a predictive model which generates more higher
forecasts is preferred for the applications such as cloud resource management.

The ‘magnitude of forecasts’ (MoP) measures the accuracy of a predictive model
on the basis of the magnitude of the forecast error. If a forecast (x̂t) is higher than
the corresponding xt, the model assigns the data sample to a cluster of positive or
higher forecasts (MoP+) as shown in eq. (3.10). Whereas a forecast with negative
magnitude error is assigned to a cluster of lower predictions (MoP−). Further, the
predictive models are assessed by comparing the number of forecasts in both clusters.
Here, a predictive model with more forecasts in MoP+ cluster is considered better.

MoPt =
{
MoP+ if x̂t > xt

MoP− if x̂t < xt
(3.10)

3.4 ERROR PREVENTIVE TIME SERIES MODELS

In this section, we will discuss the time series models equipped with error prevention
schemes, and their performance is compared with non-error preventive time series
models.

3.4.1 Error Preventive Autoregressive Moving Average

An ARMA process simply combines two basic time series processes viz. autoregression
and moving average. Thus, it uses two different polynomials for autoregression and
moving average respectively to model the time series data as shown in eq. (2.3). A
workload forecasting model (WPARMA) which uses an ARMA(1,1) can be represented
as shown in eq. (3.11) and it is being referred to as WPARMA in this chapter.

x̂t = φ1 × xt−1 + θ1 × ξt−1 + ℵt (3.11)
An ARMA process enabled with the error prevention score is referred to as error

preventive ARMA (WPEPARMA) as illustrated in eq. (3.12). A set of experiments are
conducted on five data sets (D1, D2, D3, D4, and D5) with different values of the
prediction window. The performance of the models is assessed using five different
metrics viz. R-Score, SEI (Sum of Elasticity Index), MPE (Mean Prediction Error),
Predictions in Error Range (PER), and Magnitude of Predictions (MoP).

x̂t = φ1 × xt−1 + θ1 × ξt−1 + ℵt + EPSt (3.12)
The choice of error feedback window length is very important. Therefore, a

critical analysis is conducted to choose a suitable length of the feedback window. The
performance of both models (error preventive and non-error preventive) is assessed on
different lengths of error feedback window i.e. k = {0, 5, 10, . . . , 1000}. The forecast
results for all data traces for prediction windows of sizes 10, 20, 30, and 60 minutes
are depicted in Figs. 3.4, 3.5, 3.6, and 3.7 respectively. A lower value of error feedback
window length is a preferable value as indicated by the observed results. Thus, the
performance of both models is further compared on five terms of the feedback window
length.

30 � Machine Learning for Cloud Management

FIGURE 3.4 Error preventive ARMA forecast analysis for 10-minute prediction interval

Error Preventive Time Series Models � 31

FIGURE 3.5 Error preventive ARMA forecast analysis for 20-minute prediction interval

32 � Machine Learning for Cloud Management

FIGURE 3.6 Error preventive ARMA forecast analysis for 30-minute prediction interval

Error Preventive Time Series Models � 33

FIGURE 3.7 Error preventive ARMA forecast analysis for 60-minute prediction interval

34 � Machine Learning for Cloud Management

The forecast accuracy measured using R-Score is shown in Fig. 3.8. It is evident
that the value of R-Score lies between 0 and 1, and larger the value, better the
accuracy. From results, it can be observed that the R-Score is improved after the
inclusion of the error prevention score. The error preventive ARMA model witnesses
an improvement between 21% and 183%. Similarly, the performance of both models
is compared on SEI and the results are depicted in Fig. 3.9. Similar to R-Score, the
value of the SEI metric ranges between 0 and 1, and a higher value indicates better
model accuracy. The MPE-based forecast results are depicted in Fig. 3.10. As opposed
to R-Score and SEI, the MPE metric advocates a model with lower values. The results
clearly show the reduction in MPE by error preventive ARMA.

D1 D2 D3 D4 D5
20

40
60

0.5

1

Data Trace
PWS (min)

R
-S

co
re

Non Error Preventive Error Preventive

FIGURE 3.8 R-score comparison of non-error preventive and error preventive ARMA

A critical comparison of the error preventive and non-error preventive ARMA
process shows that reasonable improvement is obtained through the error prevention
scheme. For instance, WPEPARMA reduced the MPE at least by a factor of 72% over
the non-error preventive counterpart. Figure 3.11 shows the forecast accuracy on
PER which validates the better performance of the error preventive process. It is
verified from the results that the WPEPARMA generates more forecasts with lower error
magnitude. Further, the performance is assessed on MoP, and results are shown in
Figs. 3.12 and 3.13 corresponding to the positive and negative magnitudes respectively.
A model with a lower value of MoP− is always preferred over a model having higher
values and the error preventive ARMA has significantly reduced the count. Thus, a
resource management framework enabled with an error preventive forecasting model
helps in keeping reasonably enough computing resources active to fulfill user workload
demands. In general, the error preventive model improves the forecast quality of
different data sets measured using various metrics. However, it is on the cost of a
little excess use of resources.

Error Preventive Time Series Models � 35

D1 D2 D3 D4 D5
20

40
60

0.4

0.6

0.8

Data Trace
PWS (min)

SE
I

Non Error Preventive Error Preventive

FIGURE 3.9 SEI comparison of non-error preventive and error preventive ARMA

D1 D2 D3 D4 D5
20

40
6010

20

Data Trace
PWS (min)

M
PE

(lo
g 2

)

Non Error Preventive Error Preventive

FIGURE 3.10 MPE comparison of non-error preventive and error preventive ARMA

3.4.2 Error Preventive Autoregressive Integrated Moving Average

The more general form of an ARMA model includes the integration of time series
data and it is commonly referred to as ARIMA. The ARIMA process combines
three operations viz. Autoregression (AR), integration (I), and moving average (MA).
The ARIMA process is a preferable choice for non-stationary time series data as
it is capable of transforming the non-stationary data into stationary data by the
means of differentiation or integration. In general, an ARIMA process is denoted as

36 � Machine Learning for Cloud Management

0-25 (r1) 25-50 (r2) 50-75 (r3) 75-100 (r4) 100-∞ (r5)

0
20
40
60
80

PE
R

(D
1)

NEP (10 min) NEP (20 min) NEP (30 min) NEP (60 min)
EP (10 min) EP (20 min) EP (30 min) EP (60 min)

0-25 (r1) 25-50 (r2) 50-75 (r3) 75-100 (r4) 100-∞ (r5)

0

50

100

PE
R

(D
2)

0-25 (r1) 25-50 (r2) 50-75 (r3) 75-100 (r4) 100-∞ (r5)

0
20
40
60
80

PE
R

(D
3)

0-25 (r1) 25-50 (r2) 50-75 (r3) 75-100 (r4) 100-∞ (r5)

0
20
40
60

PE
R

(D
4)

0-25 (r1) 25-50 (r2) 50-75 (r3) 75-100 (r4) 100-∞ (r5)

0
20
40
60

PE
R

(D
5)

FIGURE 3.11 PER comparison of non-error preventive and error preventive ARMA

Error Preventive Time Series Models � 37

D1 D2 D3 D4 D5

0
2000
4000
6000
8000 NEP

EP

(a) PWS = 10 min

D1 D2 D3 D4 D5

0

2000

4000 NEP
EP

(b) PWS = 20 min

D1 D2 D3 D4 D5

0

1000

2000

3000 NEP
EP

(c) PWS = 30 min

D1 D2 D3 D4 D5

0

500

1000

1500
NEP
EP

(d) PWS = 60 min

FIGURE 3.12 Positive magnitude comparison of non-error preventive and error pre-
ventive ARMA

D1 D2 D3 D4 D5

0

0.5

1

1.5
·104

NEP
EP

(a) PWS = 10 min

D1 D2 D3 D4 D5

0
2000
4000
6000
8000 NEP

EP

(b) PWS = 20 min

D1 D2 D3 D4 D5

0

2000

4000
NEP
EP

(c) PWS = 30 min

D1 D2 D3 D4 D5

0

1000

2000
NEP
EP

(d) PWS = 60 min

FIGURE 3.13 Negative magnitude comparison of non-error preventive and error
preventive ARMA

38 � Machine Learning for Cloud Management

ARIMA(p, d, q), where p, d, and q represent the order of autoregression, integration,
and moving average. The first order ARIMA(1,1,1) process-based WPARIMA can be
written as shown in eq. (3.13), where the term x̃t−1 represents the workload at time
t− 1 obtained after applying the first-order difference operator.

x̂t = φ1 × x̃t−1 + θ1 × ξt−1 + ℵt (3.13)

A prediction model based on the ARIMA process and enabled with error prevention
is represented as WPEPARIMA and shown in eq. (3.14), where EPSt denotes the error
prevention score at time t. Again, a detailed experimental study is conducted to
assess the performance of error preventive and non-error preventive ARIMA-based
forecasting models. In an error preventive model, it is critically important to find
out the reasonably suitable length of the error feedback window to harness the
power of the error prevention scheme. Figures 3.14, 3.15, 3.16, and 3.17 depict the
corresponding results for 10, 20, 30, and 60-minute prediction intervals respectively.
It can be verified from the results that a lower value of feedback window length is a
better choice which indicates that recent forecast errors are more useful in capturing
the pattern. Therefore, the forecast accuracy of both models is compared on feedback
window of length five terms. The R-score-based forecast accuracy is shown in Fig. 3.18
and it can be seen that a notable improvement is obtained by the error preventive
model. The WPEPARIMA witnesses an improvement of up to 182% over WPARIMA.
Similarly, an improvement of up to 92% is obtained in SEI by WPEPARIMA as shown
in Fig. 3.19. The forecast accuracy is measured on another standard parameter i.e.
MPE and corresponding results are shown in Fig. 3.20. Again, the results show that
the error prevention-based model improves the forecast quality.

x̂t = φ1 × x̃t−1 + θ1 × ξt−1 + ℵt + EPSt (3.14)

The forecast quality is also measured on two self-proposed metrics i.e. PER
and MoP. Figure 3.23 shows the results obtained on PER which clearly depict the
significant increment in the number of data points falling in r1. Subsequently, the
error preventive model substantially reduces the number of forecasts from the high
margin error ranges. Another criterion of quality measurement is MoP which checks
the magnitude of forecast errors. As per the assumption that a cloud management
system would prefer a forecasting application with more data points forecasted with
positive error magnitude which is supported by various reasons. The corresponding
results are depicted in Figs. 3.21 and 3.22 for the positive and negative magnitude of
forecast errors. The error preventive model has significantly improved the number
of forecasts with positive magnitude errors as opposed to the non-error preventive
counterpart.

3.4.3 Error Preventive Exponential Smoothing

Exponential smoothing is another popular forecasting model based on time series
analysis. This model suggests including both information i.e. actual and predicted
workload values and can be represented as x̂t = αxt−1 + (1−α)x̂t−1 (see eq. (2.5)). It

Error Preventive Time Series Models � 39

FIGURE 3.14 Error preventive ARIMA forecast analysis for 10-minute prediction
interval

40 � Machine Learning for Cloud Management

FIGURE 3.15 Error preventive ARIMA forecast analysis for 20-minute prediction
interval

Error Preventive Time Series Models � 41

FIGURE 3.16 Error preventive ARIMA forecast analysis for 30-minute prediction
interval

42 � Machine Learning for Cloud Management

FIGURE 3.17 Error preventive ARIMA forecast analysis for 60-minute prediction
interval

Error Preventive Time Series Models � 43

D1 D2 D3 D4 D5
20

40
600.5

1

Data Trace
PWS (min)

R
-S

co
re

Non Error Preventive Error Preventive

FIGURE 3.18 R-score comparison of non-error preventive and error preventive ARIMA

D1 D2 D3 D4 D5
20

40
60

0.4

0.6

0.8

Data Trace
PWS (min)

SE
I

Non Error Preventive Error Preventive

FIGURE 3.19 SEI comparison of non-error preventive and error preventive ARIMA

also argues that a more recent forecast may contribute more in modeling a time series
data due to the factor of localization in time. The associated weight corresponding to
the previous forecasts gradually gets reduced as the forecast becomes older in time.
The error preventive forecasting model based on exponential smoothing (WPEPES) is
shown in eq. (3.15), where α is a constant term associated with smoothing which
lies in (0, 1). The value of α determines the contribution weights associated with
the previous workload values and the remaining weight is assigned to the recent
predictions. If the actual workload at the previous time instance is stable, a lower

44 � Machine Learning for Cloud Management

D1 D2 D3 D4 D5
20

40
6010

20

Data Trace
PWS (min)

M
PE

(lo
g 2

)

Non Error Preventive Error Preventive

FIGURE 3.20 MPE comparison of non-error preventive and error preventive ARIMA

value of α is selected. Otherwise, the value of α reaches 1, if the previous workload
value recorded any fluctuations. The value of α was selected based on an experimental
analysis which records the performance of the model at different values of α and the
best performing value had been selected for further experiments.

In this case also, a set of experiments are conducted to find the suitable length
of the error feedback window. Again, the results recommended using a lower length
of windows and it can be seen in Figs. 3.24, 3.25, 3.26, and 3.27 corresponding to
prediction intervals of 10, 20, 30, and 60 minutes respectively. Therefore, the forecast
results with a feedback window length of five error terms are reported. Figure 3.28
depicts the forecast accuracy measured on the R-Score metric and it can be seen that
the error preventive model has significantly improved the quality of forecasts. Similarly,
the non-error preventive model is outperformed on SEI as shown in Fig. 3.29. Another
interesting point about SEI-based results is that the forecast accuracy improves as
the prediction interval increases. Similarly, the error preventive model substantially
improves the mean prediction error overWPES. For instance, theWPEPES reduced the
forecast error from 15% to 100% over its standard counterpart as shown in Fig. 3.30.

x̂t = αxt−1 + (1− α)x̂t−1 + EPSt (3.15)

The forecast accuracy measured on two self introduced metrics is also reported.
Figure 3.33 shows the results of prediction in error range metrics and a similar trend
is observed where the error magnitude is relatively reduced with a significant factor.
While Figs. 3.31 and 3.32 depict the performance of both models on the magnitude of
the forecast. In this case as well, the error preventive model is performing better over
a non-error preventive model.

Error Preventive Time Series Models � 45

D1 D2 D3 D4 D5

2000
4000
6000
8000 NEP

EP

(a) PWS = 10 min

D1 D2 D3 D4 D5

2000

4000 NEP
EP

(b) PWS = 20 min

D1 D2 D3 D4 D5

1000

2000

3000 NEP
EP

(c) PWS = 30 min

D1 D2 D3 D4 D5

500

1000

1500 NEP
EP

(d) PWS = 60 min

FIGURE 3.21 Positive magnitude comparison of non-error preventive and error pre-
ventive ARIMA

D1 D2 D3 D4 D5

2000

4000

6000 NEP
EP

(a) PWS = 10 min

D1 D2 D3 D4 D5

1000

2000

3000 NEP
EP

(b) PWS = 20 min

D1 D2 D3 D4 D5

1000

2000 NEP
EP

(c) PWS = 30 min

D1 D2 D3 D4 D5

500

1000 NEP
EP

(d) PWS = 60 min

FIGURE 3.22 Negative magnitude comparison of non-error preventive and error
preventive ARIMA

46 � Machine Learning for Cloud Management

0-25 (r1) 25-50 (r2) 50-75 (r3) 75-100 (r4) 100-∞ (r5)

0

50

100

PE
R

(D
1)

NEP (10 min) NEP (20 min) NEP (30 min) NEP (60 min)
EP (10 min) EP (20 min) EP (30 min) EP (60 min)

0-25 (r1) 25-50 (r2) 50-75 (r3) 75-100 (r4) 100-∞ (r5)

0

50

100

PE
R

(D
2)

0-25 (r1) 25-50 (r2) 50-75 (r3) 75-100 (r4) 100-∞ (r5)

0

50

100

PE
R

(D
3)

0-25 (r1) 25-50 (r2) 50-75 (r3) 75-100 (r4) 100-∞ (r5)

0

50

100

PE
R

(D
4)

0-25 (r1) 25-50 (r2) 50-75 (r3) 75-100 (r4) 100-∞ (r5)

0
20
40
60
80

PE
R

(D
5)

FIGURE 3.23 PER comparison of non-error preventive and error preventive ARIMA

Error Preventive Time Series Models � 47

FIGURE 3.24 Error preventive ES forecast analysis for 10-minute prediction interval

3.5 PERFORMANCE EVALUATION

The experimental results presented in the above section show that the error preventive
models are performing better than the non-error preventive models. In this section,
detailed comparison and statistical analysis are conducted.

3.5.1 Comparative Analysis

According to the experimental findings presented in the above section, it is evident
that the error prevention scheme is able to improve the performance of a forecasting
model. For instance, WPEPARMA successfully improved the R-Score by a factor of

48 � Machine Learning for Cloud Management

FIGURE 3.25 Error preventive ES forecast analysis for 20-minute prediction interval

Error Preventive Time Series Models � 49

FIGURE 3.26 Error preventive ES forecast analysis for 30-minute prediction interval

22.4% while forecasting D1 on a 10-minute prediction interval. The improvement
term here refers to the relative improvement in the performance of a model over
another model. A positive value of relative improvement in R-Score and SEI indicates
better performance. The error preventive ARMA model achieves an improvement on
R-Score up to 148.0%, 183.9%, 50.1%, 142.1%, and 173.8% for D1, D2, D3, D4, and
D5 respectively as shown in Fig. 3.34. Among the datasets used for the experimental
study, D2 forecasts are much better than others. The Calgary Trace received the best
forecast quality on prediction intervals of size 10, 20, and 30 minutes. On the other
hand, D5 forecasts are best at 60-minute forecast intervals. Similarly, the ARIMA
model was able to achieve a maximum relative improvement up to 10.2%, 182.3%,

50 � Machine Learning for Cloud Management

FIGURE 3.27 Error preventive ES forecast analysis for 60-minute prediction interval

49.0%, 142.6%, and 140.9% for D1, D2, D3, D4, and D5 correspondingly. The Memory
Trace witnesses the best improvement among the used data traces. A similar pattern
was observed on comparing the performance of the exponential smoothing model with
its error preventive counterpart approach. The next metric of interest is SEI and it
was noticed that WPEPARMA gets maximum improvement up to 53.4%, 80.6%, 53.7%,
52.9%, and 63.5% for D1, D2, D3, D4, and D5 correspondingly as depicted in Fig. 3.35.
Subsequently, theWPEPARIMA model notices a relative performance improvement of up
to 95.4%. As opposed to the R-Score and SEI, a negative value of relative performance
comparison indicates the better performance measured using MPE. It is due to the fact
that the least value of MPE indicates the best forecast. It can be seen that the error

Error Preventive Time Series Models � 51

D1 D2 D3 D4 D5
20

40
600.5

1

Data Trace
PWS (min)

R
-S

co
re

Non Error Preventive Error Preventive

FIGURE 3.28 R-score comparison of non-error preventive and error preventive ES

D1 D2 D3 D4 D5
20

40
600.6

0.8

1

Data Trace
PWS (min)

SE
I

Non Error Preventive Error Preventive

FIGURE 3.29 SEI comparison of non-error preventive and error preventive ES

preventive version of ARMA model reduces the forecast errors (MPE) up to 95.5%,
98.1%, 96.0%, 84.7%, and 79.5% for data traces D1, D2, D3, D4, and D5 respectively
as shown in Fig. 3.36. Whereas the WPEPARIMA and WPEPES subsequently reduce the
forecast errors up to 99.5% and 100.0% respectively. Thus, the comparative analysis
advises the inclusion of the error prevention scheme for better forecasts.

Further, the comparative analysis is conducted on the performance measured using
the newly introduced performance indicators. It can be observed from the results that
70.00%, 71.72%, 70.62%, and 54.18% of D1 predictions obtained from WPEPARMA on

52 � Machine Learning for Cloud Management

D1 D2 D3 D4 D5
20

40
6010

20

Data Trace
PWS (min)

M
PE

(lo
g 2

)

Non Error Preventive Error Preventive

FIGURE 3.30 MPE comparison of non-error preventive and error preventive ES

D1 D2 D3 D4 D5

0.5

1

1.5
·104

NEP
EP

(a) PWS = 10 min

D1 D2 D3 D4 D5

2000
4000
6000
8000 NEP

EP

(b) PWS = 20 min

D1 D2 D3 D4 D5

2000

4000

6000
NEP
EP

(c) PWS = 30 min

D1 D2 D3 D4 D5

1000

2000
NEP
EP

(d) PWS = 60 min

FIGURE 3.31 Positive magnitude comparison of non-error preventive and error pre-
ventive ES

prediction intervals of duration 10, 20, 30, and 60 minutes fall in PERr1 as oppose to its
non-error preventive counterpart model which could generate 8.34%, 10.58%, 13.06%,
and 21.77% forecasts in PERr1 . Similarly, it was found that WPEPARIMA generates
42.36% of forecasts in PERr1 as opposed to the non-error preventive ARIMA model

Error Preventive Time Series Models � 53

D1 D2 D3 D4 D5

0.5

1

1.5

·104

NEP
EP

(a) PWS = 10 min

D1 D2 D3 D4 D5

2000
4000
6000
8000 NEP

EP

(b) PWS = 20 min

D1 D2 D3 D4 D5

2000

4000
NEP
EP

(c) PWS = 30 min

D1 D2 D3 D4 D5

1000

2000
NEP
EP

(d) PWS = 60 min

FIGURE 3.32 Negative magnitude comparison of non-error preventive and error
preventive ES

that generates 19.25% of forecasts. The exponential smoothing also observed a similar
trend where 76.85% and 27.09% forecasts of error preventive and non-error preventive
models belong to PERr1 . It shows a substantial improvement in terms of learning the
pattern of actual workloads. However, the comparison of two different approaches
based on a set of experiments does not signify the superiority or inferiority of one
over the other. The statistical analysis helps in establishing the significance in the
performance of two or more models.

3.5.2 Statistical Analysis

This study uses the Wilcoxon test [130] to find the answer to the question of perfor-
mance superiority of the error preventive model over the non-error preventive model.
The test follows a null hypothesis (HWC

0) which assumes the equivalence between
the performance of two approaches. The HWC

0 is not accepted if the test finds any
significant difference between the performance of the approaches, otherwise, it accepts
the null hypothesis. The corresponding results are listed in Table 3.1 which shows
that the test does not accept the null hypothesis except in one case. The Wilcoxon
test establishes a relationship that the error preventive model significantly improves
the performance of their corresponding non-error preventive models.

The Wilcoxon test successfully reported the presence or absence of significant
differences in the performance of the two models. But it is unable to report the
model with best or worse performance. The Friedman test with Finner post-hoc
analysis is capable of doing the same. Thus, an analysis obtained from the Friedman

54 � Machine Learning for Cloud Management

0-25 (r1) 25-50 (r2) 50-75 (r3) 75-100 (r4) 100-∞ (r5)

0

50

100

PE
R

(D
1)

NEP (10 min) NEP (20 min) NEP (30 min) NEP (60 min)
EP (10 min) EP (20 min) EP (30 min) EP (60 min)

0-25 (r1) 25-50 (r2) 50-75 (r3) 75-100 (r4) 100-∞ (r5)

0

50

100

PE
R

(D
2)

0-25 (r1) 25-50 (r2) 50-75 (r3) 75-100 (r4) 100-∞ (r5)

0

50

100

PE
R

(D
3)

0-25 (r1) 25-50 (r2) 50-75 (r3) 75-100 (r4) 100-∞ (r5)

0

50

100

PE
R

(D
4)

0-25 (r1) 25-50 (r2) 50-75 (r3) 75-100 (r4) 100-∞ (r5)

0

50

100

PE
R

(D
5)

FIGURE 3.33 PER comparison of non-error preventive and error preventive ES

test with Finner post-hoc analysis is reported. First, the Friedman test compares
the performance of multiple models around a null hypothesis (HFR

0) which assumes

Error Preventive Time Series Models � 55

D1 D2 D3 D4 D5

0

20

40

60
Im

pr
ov

em
en

t%
ARMA ARIMA ES

(a) PWS = 10 min

D1 D2 D3 D4 D5

0
50

100
150

Im
pr

ov
em

en
t%

ARMA ARIMA ES

(b) PWS = 20 min

D1 D2 D3 D4 D5

0

50

100

150

Im
pr

ov
em

en
t%

ARMA ARIMA ES

(c) PWS = 30 min

D1 D2 D3 D4 D5

0
50

100
150

Im
pr

ov
em

en
t%

ARMA ARIMA ES

(d) PWS = 60 min

FIGURE 3.34 R-score performance relative improvement

D1 D2 D3 D4 D5

0

20

40

60

Im
pr

ov
em

en
t%

ARMA ARIMA ES

(a) PWS = 10 min

D1 D2 D3 D4 D5

0
20
40
60
80

Im
pr

ov
em

en
t%

ARMA ARIMA ES

(b) PWS = 20 min

D1 D2 D3 D4 D5

0
20
40
60
80

Im
pr

ov
em

en
t%

ARMA ARIMA ES

(c) PWS = 30 min

D1 D2 D3 D4 D5

0

50

100

Im
pr

ov
em

en
t%

ARMA ARIMA ES

(d) PWS = 60 min

FIGURE 3.35 SEI performance relative improvement

56 � Machine Learning for Cloud Management

D1 D2 D3 D4 D5

−100

−50

0

Im
pr

ov
em

en
t%

ARMA ARIMA ES

(a) PWS = 10 min

D1 D2 D3 D4 D5

−100

−50

0

Im
pr

ov
em

en
t%

ARMA ARIMA ES

(b) PWS = 20 min

D1 D2 D3 D4 D5

−100

−50

0

Im
pr

ov
em

en
t%

ARMA ARIMA ES

(c) PWS = 30 min

D1 D2 D3 D4 D5

−100

−50

0
Im

pr
ov

em
en

t%
ARMA ARIMA ES

(d) PWS = 60 min

FIGURE 3.36 MPE performance relative improvement

WPEPES WPEPARIMA WPEPARMA WPES WPARIMA WPARMA

2

4

6

Model

R
an

k

FIGURE 3.37 Friedman test ranks of non-error preventive and error preventive models

Error Preventive Time Series Models � 57

TABLE 3.1 Wilcoxon test statistics for error preventive and non-error preventive time
series forecasting model

Accuracy Metric p-value Result

WPARMA vs WPEPARMA R-Score 0.000089 HWC
0 .R

WPARIMA vs WPEPARIMA R-Score 0.000089 HWC
0 .R

WPES vs WPEPES R-Score 0.000088 HWC
0 .R

WPARMA vs WPEPARMA MPE 0.000089 HWC
0 .R

WPARIMA vs WPEPARIMA MPE 0.000089 HWC
0 .R

WPES vs WPEPES MPE 0.000088 HWC
0 .R

WPARMA vs WPEPARMA SEI 0.000088 HWC
0 .R

WPARIMA vs WPEPARIMA SEI 0.000089 HWC
0 .R

WPES vs WPEPES SEI 0.851925 HWC
0 .A

WPARMA vs WPEPARMA PER 0.000140 HWC
0 .R

WPARIMA vs WPEPARIMA PER 0.000089 HWC
0 .R

WPES vs WPEPES PER 0.000089 HWC
0 .R

TABLE 3.2 Finner test post-hoc analysis of error preventive and non-error preventive
time series forecasting models

WPEPES
vs

WPARMA

WPEPES
vs

WPARIMA

WPEPES
vs

WPEPES

WPEPES
vs

WPEPARMA

WPEPES
vs

WPEPARIMA

Statistics 8.11348 6.08511 4.39480 3.63416 1.09870
Adjusted p-value 0.00000 0.00000 0.00002 0.00035 0.27190
Result HFN

0 .R HFN
0 .R HFN

0 .R HFN
0 .R HFN

0 .A

the equivalence among the models’ performance. The test does not accept the null
hypothesis with 0.0 p-value and 212.70 statistic value. The detailed results are shown
in Fig. 3.37 and it can be seen that the models equipped with error prevention scheme
obtained better ranks. The error preventive ES model achieves the best rank among
all models. The Finner test results presented in Table 3.2 validate the claims of
the Wilcoxon test as it also does not find any significant difference between the
performance of error preventive and non-error preventive exponential smoothing
models. Thus, the experimental and statistical observations advocate the use of error
preventive methods over non-error preventive methods for better forecasts.

http://www.taylorandfrancis.com

C H A P T E R 4

Metaheuristic Optimization
Algorithms

T HE real-world problems such as routing, resource allocation, and engineering
designs are multimodal and depict a non-linear behavior. These problems are

generally modeled as a constraint optimization problem with one or more decision
problems and most of these problems belong to the NP-hard class [16, 86]. The
different optimization methods are being used and explored to solve such problems. In
general, trajectory-based algorithms and population-based algorithms are two different
categories of optimization algorithms. An algorithm that explores the solution space
using a single solution is referred to as a trajectory-based algorithm. Whereas an
algorithm that uses a set of solutions to find the optimal solution is called a population-
based algorithm. This chapter focuses on a variety of widely used population-based
algorithms (see Fig. 4.1) and their performance in predicting the workloads in cloud
environment [5,7−9,20,39,65,95,103].

Metaheuristic
Optimization Algorithms

Physics Inspired
Algorithms

Nature Inspired
Algorithms

Evolutionary
Algorithms

Swarm
Intelligence

Blackhole
Algorithm (BhOA)

Gravitational Search
Algorithm (GSA)

Harmony
Search (HS)

Teaching Learning
Based Optimization

(TBLO)

Genetic
Algorithm (GA)

Differential
Evolution (DE)

Firefly Search
Algorithm (FSA)

Particle Swarm
Optimization (PSO)

FIGURE 4.1 Population-based metaheuristic optimization algorithms’ taxonomy

4.1 SWARM INTELLIGENCE ALGORITHMS IN PREDICTIVE MODEL

A swarm algorithm follows the principles of cooperative behavior of a group of
homogeneous agents in nature such as birds, fish, antss etc. These algorithms are

DOI: 10.1201/9781003110101-4 59

https://doi.org/10.1201/9781003110101-4

60 � Machine Learning for Cloud Management

generic and can be applied to every optimization problem. In this category, particle
swarm optimization and firefly search algorithms are two widely used algorithms.
In subsequent subsections, these algorithms are discussed and their performance is
assessed in detail.

4.1.1 Particle Swarm Optimization

The particle swarm optimization commonly referred to as PSO was introduced by
J. Kennedy and R. Eberhart in 1995 [68]. The algorithm follows the principles of
the social behavior of birds i.e. each member of the group searches for a better food
source in the direction of its leader. In this study, the algorithm is used to find the
suitable combination of synaptic connection weights for the neural network-based
predictive framework. Let N be the number of particles in the search space, where
each particle denotes a neural network-based predictive model composed with different
combinations of weights. In PSO, each individual or particle has two components
viz. position and velocity corresponding to every dimension of search space. Our
experimental setup randomly initiates the positions and velocities as given in eqs. (4.1)
and (4.2), where upper and lower bounds are represented as ubj = +1 and lbj = −1
respectively, r represents a random real number in (0, 1). Similarly, si.pj and si.vj
correspond to the position and velocity of ith individual in jth dimension.

si.pj = (ubj − lbj)× r + lbj (4.1)
si.vj = (ubj − lbj)× r + lbj (4.2)

fcost = min
x̂t

(
2

√√√√ 1
m

m∑
t=1

(xt − x̂t)2

)
(4.3)

After initialization of the population, each particle is evaluated on the training
data and the corresponding fitness value is assigned which is measured using root mean
squared error. The objective of the algorithm is to estimate the accurate information
of upcoming workloads or close to actual workload i.e. minimizing the error in the
forecasts, a corresponding representation of the objective function is shown in eq. (4.3).
The particle swarm optimization helps the predictive model to learn the network
weights in an iterative fashion. In each iteration, the particles move in the search space
to look for a better fitness value by modifying their position and velocity. The local
and global best particles impacts the updates in the position and velocity of a particle.
The global best (gbest) particle has the best prediction accuracy among the swarm
while local best is defined as per the topology of the swarm. This study considers
that the personal best (pbest) of a particle is the local best. In some other cases, the
swarm may have small groups and the best among the members of a group can be
considered as the local best. The update procedures for the position and the velocity
are shown in eqs. (4.4) and (4.5) respectively. Once the updates have occurred across
the swarm, the gbest and pbest are updated accordingly. This process is repeated
until termination criteria are met i.e. fixed number of iterations (250) in this study.

Metaheuristic Optimization Algorithms � 61

si.v(t+ 1) = ω × si.v(t) + c1 × r × (si.ppbest − si.p(t)) + c2 × r × (s.pgbest − si.p(t))
(4.4)

si.p(t+ 1) = si.p(t) + si.v(t) (4.5)

4.1.2 Firefly Search Algorithm

The Firefly Search Algorithm (FSA) is another widely used swarm intelligent algorithm
that was introduced by Xin-She Yang [135,136]. It is inspired by the flashing pattern
and behavior of fireflies in a group that regularly produces the flash. A firefly is
attracted towards another firefly which generates the flash with more intensity. The
key components of the algorithm are flash intensity and attractiveness. The brightness
of a firefly for another firefly depends on the distance between two and commonly
brighter firefly attracts the other fireflies. The communication among the fireflies
happens with an assumption that the population members are unisex and a firefly can
attract any other member in the population. In this algorithm, the brightness intensity
of the firefly indicates its fitness i.e. value observed using an objective function.

Firefly in the population is attractive in accordance with the intensity of the
flash visible to its neighbors. Let β0 be the attractiveness of an individual population
member at d = 0, its attractiveness at distance d can be obtained from eq. (4.6). On
the other hand, the movement of fireflies can be obtained from eq. (4.7), where the
attraction is represented by the second term and the effect of randomization involved
in the process is represented by the third term in the model (αt is randomization
parameter, εti is a vector of random numbers).

β = β0 × e−γd
2 (4.6)

si(t+ 1) = si(t) + β0 × e−γd
2
i,j (sj(t)− si(t)) + αtε

t
i (4.7)

In this chapter, the performance of the predictive models is assessed on three
different values (5, 30, and 60 minutes) of the prediction window. The accuracy of
the forecasts is measured using root mean squared error, and mean absolute error and
results are depicted in Fig. 4.2. It can be seen that the FSA outperformed the PSO in
more number of experiments. To be more specific, according to the RMSE results,
FSA outperformed PSO in nine instances and achieves equal accuracy (measured up to
three decimal digits) in four instances. The particle swarm optimization algorithm was
able to get better results in two experiments only. Similar trends are observed in the
results based on MAE also. An initial analysis of the results supports the superiority
of FSA over PSO. These findings are assessed using Wilcoxon signed-rank test to find
the statistical significance of the results. It computes positive (R+

WC) and negative
(R−WC) ranks based on the difference between the results of the two approaches. If the
resultant value of accuracy obtained from FSA is lower, it would update the negative
rank of FSA (since the problem under consideration is a minimization problem,
the higher negative rank would be preferable); if the resultant value of accuracy

62 � Machine Learning for Cloud Management

D1 D2 D3 D4 D5

0

2

4

R
M

SE
(lo

g 1
0)

PSO (5 min) PSO (30 min) PSO (60 min)
FSA (5 min) FSA (30 min) FSA (60 min)

D1 D2 D3 D4 D5

0
1
2
3
4

M
A

E
(lo

g 1
0)

FIGURE 4.2 Forecast accuracy comparison of swarm intelligence based prediction
models

obtained from FSA is higher, the negative rank of FSA will be updated. When the
performance of both approaches is the same, both ranks R−WC and R+

WC get updated.
The corresponding results are shown in Fig. 4.3 and it can be seen that the FSA gets
a higher negative rank for three different data sets. Moreover, the test was failed in
rejecting the null hypothesis (HWC

0) for D1, D2, and D3 while it successfully rejected
the null hypothesis for the remaining two data traces i.e. D4 and D5 which indicates
the superiority of FSA based predictive model.

D1 D2 D3 D4 D5

0

50

100

R
an

k Negative
Positive

FIGURE 4.3 Wilcoxon test statistics of swarm intelligence based prediction models

4.2 EVOLUTIONARY ALGORITHMS IN PREDICTIVE MODEL

The algorithms that adapt the principles from evolution mechanisms such as evolution
in biology fall into this category. Two widely used algorithms are considered for the
purpose of studying their performance on cloud workload forecasting.

Metaheuristic Optimization Algorithms � 63

4.2.1 Genetic Algorithm

The genetic algorithm (GA) is one of the most popular and widely used algorithms in
this family. The algorithm opts the principles from Darwin’s evolution theory and uses
them in the computing world. The algorithm was proposed by J. Holland in 1960s [58].
The algorithm borrows the terminology from biological evolution. For instance, every
individual in the solution space is referred to as a chromosome, which is a collection
of genes. Similar to other population-based optimization algorithms, GA also assigns
the fitness to each of the population members after assessing their performance on
training data. An iterative process is executed after fitness assignment which generates
offsprings using crossover and mutation operators followed by survivor selection [50].

This study uses the Roulette wheel selection to select two parents (sk1 and sk2)
that who participate in the process of reproduction. The roulette wheel selection is
a fair selection method as it allows an individual to get selected as per their fitness
value which means a solution having better fitness value has more chances of selection.
Further, it applies the single-point crossover operator to generate two offsprings
from the parents. The parents are split into two parts from a randomly selected
point and their tails get exchanged with the probability of CR (see eq. (4.8)). After
crossover is performed, the newly generated solutions or offsprings go through another
reproduction operation called a mutation. The mutation operator reinitialize randomly
selected one of the values in the solution space as given in eq. (4.9), where R denotes
the randomly selected dimension or position and r represents the reinitialized number
in the solution space. The mutation operation explores the search space and avoids
getting stuck in local optima very easily. Also, it helps in keeping up the population
diversity, and, thus premature convergence is prevented. Afterward, the new solutions
generated from the process of reproduction are assessed on the objective function
and a fitness value is assigned to each of them. The algorithm selects N solutions
among the old and new populations on the basis of individual’s fitness. The study
employs the survival of the best mechanism to select N solutions to participate in
the next iteration. The entire process is repeated until the termination criteria are
met or approximated solution is achieved, whichever is earlier.

uk1,j =
{
sk1,j , if CR ≤ r

sk2,j , otherwise
(4.8)

vi,j =
{
r, if j == R

ui2,j , otherwise
(4.9)

4.2.2 Differential Evolution

Differential evolution (DE) is a numerical optimizer developed by R. Storn and K.
V. Price [105, 126]. This algorithm uses the concepts of vector manipulation and
explores the search space to find the optimal solution. A population of randomly
generated solutions is initialized followed by the assessment of each member on the
objective function and corresponding fitness assignment. This algorithm varies with

64 � Machine Learning for Cloud Management

the other algorithms on the usage of reproduction operators. For instance, first it
selects the base solution or vector si and three distinct random solutions (sr1 , sr2 , sr3)
such that i 6= r1 6= r2 6= r3. The difference between the two randomly selected
vectors is weighted by the factor of F and added to the third vector. This process is
referred to as mutation and the newly generated solution is the mutant solution. To be
specific, the above-mentioned operator is named as DE/rand/1 (refer eq. (4.10)) [64].
Afterward, the base and mutant solutions participate in the crossover operation to
generate an offspring solution (ui). The crossover operator selects the gene either
from base or mutant solution with the probability of CR, at least one of the genes
is selected from the mutant solution to ensure the information exchange from the
mutant vector as shown in eq. (4.11), where r and R are random numbers in (0, 1)
and [1, D] respectively. The offspring solutions are assessed on the objective function
and their fitness value is computed. Similar to the other algorithms, the population
for the next iteration is selected using survival of the fittest.

vi = sr1 + F × (sr2 − sr3) (4.10)

ui,j =
{
vi,j , if (r ≤ CR ∨ j == R)
si,j , otherwise

(4.11)

A set of experiments were conducted to evaluate the performance of both algo-
rithms. The same experimental settings are used. Figure 4.4 shows the performance of
the algorithms on different combinations of parameters including prediction windows
size and data traces. A trend of similarity is observed in the performance. However,
the performance of the GA was slightly better over DE in half of the experiments as
per the MAE. As opposed to the MAE-based performance, the DE generates forecasts
with lower RMSE. Thus, it is very difficult to say which algorithm is better. The
statistical test also accepts the null hypothesis HWC

0 with significance levels ℵ = 0.05
and 0.1 for all data traces, thus, none of the algorithms can be said better. The
Wilcoxon signed-ranks (depicted in Fig. 4.5) also support the statement that the both
algorithms performed with similar accuracy except the fact that the GA was better
in forecasting Saskatchewan Trace.

4.3 NATURE INSPIRED ALGORITHMS IN PREDICTIVE MODEL

In this section, we will discuss two widely used population-based search algorithms
that follow the principles from nature. The algorithms are namely Harmony Search
(HS) and Teaching Learning Based Optimization (TLBO) that use the concepts from
human behavior.

4.3.1 Harmony Search

The harmony search algorithm is inspired by the Jazz musicians’ improvisation in
their music. It was first developed and proposed by Z. W. Geem et al. in 2001 [45]
and has a range of applications. It follows the principle of improving the variations
of individual musicians and coming up with a masterpiece of music. The algorithm

Metaheuristic Optimization Algorithms � 65

D1 D2 D3 D4 D5

0
1
2
3
4

R
M

SE
(lo

g 1
0)

GA (5 min) GA (30 min) GA (60 min)
DE (5 min) DE (30 min) DE (60 min)

D1 D2 D3 D4 D5

0
1
2
3
4

M
A

E
(lo

g 1
0)

FIGURE 4.4 Forecast accuracy comparison of evolutionary algorithms based prediction
models

D1 D2 D3 D4 D5

0
20
40
60
80

R
an

k Negative
Positive

FIGURE 4.5 Wilcoxon test statistics of evolutionary algorithms based prediction
models

encodes a solution in the search space as harmony among the musicians. The strength
of the band i.e. the number of musicians in the band is used to encode the dimensions
of the search problem, thus, each component of the solution represents the music
composed by one distinct musician. The bounds on the decision variables are encoded
as the pitch and range of an instrument being played by the respective musician.
Similar to other algorithms, the population members are assessed and a corresponding
fitness value is assigned to each member which is the appreciation received from the
audience against the composition of the music. In order to get better appreciation,
each musician tries to improve the music, thus, the quality of the overall solution
improves. Each musician keeps the old music for the next round with the probability
of H and regenerates the music with the probability of 1-H as shown in eq. (4.12).
The pitch of newly generated harmony is adjusted as depicted in eq. (4.13). The

66 � Machine Learning for Cloud Management

change in the music is observed by δ which is computed as δ = FW × randn(), where
FW indicates the maximum width of the allowed changes and randn() is a function
that generates a random number in (0, 1). The newly generated solutions are assessed
on the objective functions and the better solutions are kept for the next iteration.

ui,j =
{
si,j , if r ≤ H
rand(lb, ub), otherwise

(4.12)

ui,j =
{
ui,j + δ, if r ≤ P
ui,j , otherwise

(4.13)

4.3.2 Teaching Learning Based Optimization

The teaching learning-based optimization algorithm opts the principles of the learning
mechanism. It tries to model the effect of teaching quality on the learning process of
a set of students [110]. It is a common understanding that the learning of a student is
directly affected by the quality of the teacher’s knowledge i.e. the students taught by
a good teacher have higher chances of producing a good outcome as opposed to the set
of students being taught by a teacher having less knowledge. The algorithm applies
that concept in optimization as it designates the best solution in the population as
the teacher and every other population member is treated as a student.

In human life, the common agenda of a teacher is to improve the knowledge of each
student. Considering the fact that each individual has a different level of knowledge,
the mean of the group appears to be a good representation of the knowledge of the
population. Let µi and τi be the knowledge levels of the population and the teacher
during ith iteration respectively. As per the concept from the teaching-learning process
in human life, the algorithm assigns a task to the teacher which is to bring the
knowledge level of the population as close as possible to his own level of knowledge.
In other words, each student in the population is allowed to use the knowledge of the
teacher and other members of the population to improve their own knowledge. In the
first phase of the learning i.e. teaching phase, the knowledge of a student is updated
as shown in eq. (4.14), where ui represents the student with updated knowledge. The
∆µi is computed as r(sbest − TF × µi), where sbest is the student with best learning,
TF is the teaching factor, r is a random number in (0, 1).

ui = si + ∆µi (4.14)

In the second phase of learning the student is allowed to learn by the means
of interaction with other students. Let ui and uj be the randomly selected distinct
students and they interact with each other. The knowledge of them is updated as
depicted in eq. (4.15). It can be seen that in either of the mentioned cases, only weaker
student learns, where fui and fuj are the knowledge levels or fitness of respective
students or solutions. If the knowledge of ui is better than the knowledge of si, the
change in the knowledge is accepted i.e. the updated solution is accepted for the next
iteration otherwise si is continued in the process.

Metaheuristic Optimization Algorithms � 67

ui =ui + r × (ui − uj) if fui ≤ fuj

uj =uj + r × (uj − ui) if fuj ≤ fui (4.15)

The performance of HS and TLBO is assessed on the same set of experiments
within the same experimental setup. Figure 4.6 shows the performance measure using
RMSE and MAE. It can be noticed that the performance of TLBO is better than HS
for 5 minutes forecast. Whereas for two other prediction intervals, both algorithms
generate the forecasts with similar accuracy. It is observed that the TLBO outperforms
HS in 33.33%, 33.33%, 40%, and 20% experimental instances based on RMSE and
MAE values during network training while HS produced better results in 26.66%,
20%, 20%, and 0% experiments based on respective error metrics. Also, the Wilcoxon
test accepted the null hypothesis for different values of significance level i.e. 0.05 and
0.1 both (Fig. 4.7). Thus, we did not find any significant difference in the performance
of both algorithms.

D1 D2 D3 D4 D5

0
1
2
3
4

R
M

SE
(lo

g 1
0)

HS (5 min) HS (30 min) HS (60 min)
TLBO (5 min) TLBO (30 min) TLBO (60 min)

D1 D2 D3 D4 D5

0
1
2
3
4

M
A

E
(lo

g 1
0)

FIGURE 4.6 Forecast accuracy comparison of nature-inspired algorithms based pre-
diction models

4.4 PHYSICS INSPIRED ALGORITHMS IN PREDICTIVE MODEL

The laws from physics have also been borrowed to develop population-based optimiza-
tion algorithms. This study considers two of them which are widely used in different
applications. The selected algorithms are gravitational search algorithm (GSA) and
blackhole algorithm (BhOA).

68 � Machine Learning for Cloud Management

D1 D2 D3 D4 D5

0
20
40
60
80

R
an

k Negative
Positive

FIGURE 4.7 Wilcoxon test statistics of nature-inspired algorithms based prediction
models

4.4.1 Gravitational Search Algorithm

Rashedi et al. proposed an optimization algorithm in 2009 which uses the concepts
derived from the law of gravity and interaction between masses [111]. Based on the
principle idea of the search process, the inventors named the algorithm as gravitational
search algorithm. Similar to other population-based search algorithms, it also begins
with a set of randomly initialized solutions in the search space. Each population
member is assumed to be a mass in the environment which is governed by the laws of
gravity and motion. According to gravity law, every mass in the environment attracts
every other mass towards itself by applying a force which is called gravitational force.
Whereas the law of motion governs the velocity of a mass which can be computed by
taking change in the velocity and its fractional past velocity into consideration.

GFkij(t) = GC(t)×
MSpi (t)×MSaj (t)
||si(t), sj(t)||2+ε × (skj (t)− ski (t)) (4.16)

GFki (t) =
N∑

j=1,j 6=i
r × GFkij(t) (4.17)

αki (t) = GFki (t)
MSii(t)

(4.18)

si.pk(t+ 1) = si.pk(t) + si.vk(t+ 1) (4.19)
si.vk(t+ 1) = r × si.vk(t) + αki (t) (4.20)

mi(t) =
fsi(t)−max(fsj (t))

min(fsj (t))−max(fsj (t)) ∀j (4.21)

MSi(t) = mi(t)∑N
j=1 mj(t)

(4.22)

Let si.pk and si.vk be the position and velocity in kth dimension of ith solution.
The force applicable on ith mass from jth mass in kth dimension at time instance t
can be modeled using eq. (4.16), where MSpi and MSaj represent the passive and
active gravitational mass corresponding to the solution i and j respectively, GC(t)
represents gravitational constant at time t which is a function of its initial value and

Metaheuristic Optimization Algorithms � 69

time step t i.e. GC(t) = G(GC(0), t), ||si(t), sj(t)||2 represents the Euclidean distance
between si and sj at time t, and ε represents the small constant value. The total force
applied on si in kth dimension is obtained by summing up the randomly weighted
forces applied by every other mass in the environment as shown in eq. (4.17), where
r is a random number in (0, 1). Thus, the acceleration of si in the direction k and at
time t can be obtained from eq. (4.18), where MSii represents the inertia mass of si.
Furthermore, the position and velocity of si get updated using eqs. (4.19) and 4.20
respectively, where r is a uniform random number in [0, 1]. In order to get the updated
velocity, the fractional velocity of a solution is added to its acceleration. Whereas
the updated position of a solution is observed by adding the updated velocity and
its current position. The calculation of masses (gravitational and inertia) involves
the fitness assessment as shown in eqs. (4.21) and (4.22), where fsi(t) represents the
fitness value of si at time t. This process gets repeated until termination criteria are
met or the desired solution is achieved, whichever is earlier.

4.4.2 Blackhole Algorithm

The next algorithm that uses the principles derived from physics is the blackhole
algorithm. It was developed and proposed by A. Hatamlou in 2013 [57] which is
relatively new but has received good attention from the research community. As its
name suggests, the algorithm derives the optimization process from the concepts of
a blackhole, and being a population-based search algorithm, it uses a set of random
solutions to explore the search space for an optimal solution. Every solution (si) in the
search space is referred to as a star and the solution with the best fitness is referred to
as a blackhole (B). The search process is governed by the laws proposed in blackhole
theory i.e. every star other than blackhole moves towards the blackhole due to the
force applied on them. Thus, the updated position of a star can be modeled by adding
its current position to the randomly weighted difference of B and the solution itself as
shown in eq. (4.23), where r is a random number in [0, 1] which is added to introduce
the randomized behavior in the search process. Thus, every solution explores the
search space to find a better solution with the guidance of the best solution achieved
so far.

si(t+ 1) = si(t) + r × (B − si(t)) (4.23)

The blackhole has a parameter associated with itself which is referred to as event
horizon radius (ρ) and it is measured using eq. (4.24). If any star crosses this radius
then the star enters into the blackhole and never comes back. Thus the star reaching
into the event horizon radius of a blackhole gets collapsed and a new random star
is generated to keep the population size uniform across the simulations. In order
to check, if the star enters into the blackhole or not, its distance (di) from the
blackhole is computed using eq. (4.25), where fB is the fitness of blackhole and fsi

is the fitness of star i. If the distance of a star from the blackhole is less than the
radius of the blackhole, the star enters into the event horizon area of the blackhole.
Furthermore, if a star finds a better solution in the search space than the existing
blackhole, the blackhole is replaced with the newly discovered solution. The advantage

70 � Machine Learning for Cloud Management

of the BhOA over other population-based approaches are that it does not have any
parameter to tune such as crossover rate, mutation rate, and others.

ρ = fB∑N
i=1 fsi

(4.24)

di = fB − fsi (4.25)

The performance of GSA and BhOA is compared on the same set of experiments
used in previous comparisons. Figure 4.8 shows the observed forecast accuracy of both
algorithms on different data traces. It was observed that the predictive framework
equipped with BhOA generates a better forecast in most of the cases. For instance,
the D3, D4, and D5 are better modeled by the BhOA. Whereas on other traces the
GSA’s performance was better in some of the experiments while BhOA’s performance
was better in some other cases. As per the experimental setup, the performance
results are assessed using a statistical evaluation and the corresponding rankings
are given in Fig. 4.9. As per the rankings, the performance of BhOA is better. The
observations revealed by the rankings are also supported by the test as it rejected
the null hypothesis with ℵ = 0.05 for D2 and D3, and accepts the HWC

0 in the rest
of the cases. Thus, the BhOA can be said better as it significantly improves the
performance at least on some data traces.

D1 D2 D3 D4 D5

0
1
2
3
4

R
M

SE
(lo

g 1
0)

GSA (5 min) GSA (30 min) GSA (60 min)
BhOA(5 min) BhOA(30 min) BhOA(60 min)

D1 D2 D3 D4 D5

0
1
2
3
4

M
A

E
(lo

g 1
0)

FIGURE 4.8 Forecast accuracy comparison of physics-inspired algorithms based
prediction models

Metaheuristic Optimization Algorithms � 71

D1 D2 D3 D4 D5

0

50

100

R
an

k Negative
Positive

FIGURE 4.9 Wilcoxon test statistics of physics-inspired algorithms based prediction
models

TABLE 4.1 Friedman test statistics of metaheuristic algorithms based prediction
models

D1 D2 D3 D4 D5

χ2 7.93333 23.54137 29.69355 34.47149 24.68835
p-value 0.33851 0.00137 0.00011 0.00001 0.00086
ℵ = 0.05 HFR

0 .A HFR
0 .R HFR

0 .R HFR
0 .R HFR

0 .R
ℵ = 0.1 HFR

0 .A HFR
0 .R HFR

0 .R HFR
0 .R HFR

0 .R
CI 95% 95% 95% 95% 95%

PS
O

FS
A

GA DE HS

TL
BO

GS
A

Bh
OAD1

D2
D3

D4
D5

4

6

Algorithm

Data Trace

Fr
ie

dm
an

R
an

k

FIGURE 4.10 Friedman test ranks of metaheuristic algorithms based prediction models

4.5 STATISTICAL PERFORMANCE ASSESSMENT

Based on the experimental findings as presented in the above sections, it is very
difficult to observe any conclusive remarks about the performance of the algorithms.
The statistical analysis helps to find the presence of significant differences in the
performance if there is any. Therefore, an in-depth analysis is conducted using
the Friedman test with Finner post-hoc analysis. This test compares the pairwise

72 � Machine Learning for Cloud Management

performance of the algorithms. The Friedman test works around a null hypothesis
(HFR

0) which believes that the mean results of every candidate under test are the same.
Table 4.1 and Fig. 4.10 show the analytical results which clearly depict the presence
of a significant difference in the performance of the algorithms on the forecasts of all
data traces except D1 as the test successfully rejects the null hypothesis. It can be
observed from mean ranks that PSO performs better on D1 and D3; DE produced
better forecasts on D2 while BhOA and FSA outperformed others on D4 and D5.
Therefore, it can be stated that PSO and DE achieved better forecast accuracy on
web server workloads while BhOA and FSA produced more accurate forecasts for
cloud server workloads.

The pairwise comparisons conducted using Finner post-hoc method are listed in
Tables 4.2 and 4.3, where acceptance and rejection of HFN

0 are represented by 3 and
7 respectively, ‘-’ (hyphen) represents two possible cases, first, the comparison of
an algorithm is not possible with itself, second, the result is already shown in the
upper triangular matrix positions of the table. The test considers that the mean of
the results of both algorithms is equal for each pair. The test results observed no
difference among forecasts on D1 and HFN

0 was accepted. However, we observed that
the HFN

0 was accepted for ℵ = 0.05 but many pairs rejected HFN
0 for ℵ = 0.1. Based

on these findings, the presence of a significant difference between the results can be
stated with 10% risk and 90% confidence interval. In the case of D3; BhOA, FSA, and
PSO produced different results. The BhOA and FSA were able to produce different
and better predictions for D4 and D5.

M
etaheuristic

O
ptim

ization
A

lgorithm
s
�

73

TABLE 4.2 Finner test post-hoc analysis statistics of metaheuristic algorithms based prediction models (ℵ = 0.05)

A1 vs A2
D1 D2 D3 D4 D5

Statistic p-value Statistic p-value Statistic p-value Statistic p-value Statistic p-value
PSO vs FSA 0.4100 0.7520 0.1863 0.8724 0.7454 0.6555 4.8076 0.0000 2.6460 0.0421
PSO vs DE 1.5653 0.5832 3.0560 0.0610 2.9069 0.0253 3.2050 0.0125 0.2236 0.8786
PSO vs GA 0.8944 0.6317 2.8324 0.0610 3.4286 0.0128 2.8324 0.0256 0.5218 0.7613
PSO vs HS 1.4162 0.6150 2.2361 0.0694 2.9069 0.0253 2.2361 0.0694 0.3727 0.8227
PSO vs TLBO 2.3106 0.4457 1.7143 0.1770 3.3541 0.0128 2.0125 0.1086 0.0745 0.9465
PSO vs GSA 1.0435 0.6312 2.6088 0.0610 3.5032 0.0128 3.0560 0.0156 0.9690 0.4862
PSO vs BhOA 0.4100 0.7520 0.1863 0.8724 0.7454 0.6555 4.8076 0.0000 2.6460 0.0421
FSA vs DE 1.1553 0.6312 2.8696 0.0610 2.1615 0.0701 1.6025 0.1830 2.8696 0.0421
FSA vs GA 0.4845 0.7426 2.6460 0.0610 2.6833 0.0269 1.9752 0.1090 3.1678 0.0421
FSA vs HS 1.0062 0.6312 2.0497 0.0996 2.1615 0.0701 2.5715 0.0350 3.0187 0.0421
FSA vs TLBO 1.9007 0.5626 1.5280 0.2370 2.6088 0.0269 2.7951 0.0256 2.7206 0.0421
FSA vs GSA 0.6336 0.7080 2.4224 0.0610 2.7578 0.0269 1.7516 0.1533 1.6771 0.2212
FSA vs BhOA 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
DE vs GA 0.6708 0.7051 0.2236 0.8674 0.5218 0.7245 0.3727 0.7635 0.2981 0.8555
DE vs HS 0.1491 0.8994 0.8199 0.5431 0.0000 1.0000 0.9690 0.4322 0.1491 0.9170
DE vs TLBO 0.7454 0.6791 1.3416 0.2930 0.4472 0.7417 1.1926 0.3382 0.1491 0.9170
DE vs GSA 0.5218 0.7426 0.4472 0.7417 0.5963 0.7122 0.1491 0.8905 1.1926 0.3906
DE vs BhOA 1.1553 0.6312 2.8696 0.0610 2.1615 0.0701 1.6025 0.1830 2.8696 0.0421
GA vs HS 0.5218 0.7426 0.5963 0.6740 0.5218 0.7245 0.5963 0.6227 0.1491 0.9170
GA vs TLBO 1.4162 0.6150 1.1180 0.3958 0.0745 0.9577 0.8199 0.5077 0.4472 0.7914
GA vs GSA 0.1491 0.8994 0.2236 0.8674 0.0745 0.9577 0.2236 0.8563 1.4907 0.2702
GA vs BhOA 0.4845 0.7426 2.6460 0.0610 2.6833 0.0269 1.9752 0.1090 3.1678 0.0421
HS vs TLBO 0.8944 0.6317 0.5218 0.7071 0.4472 0.7417 0.2236 0.8563 0.2981 0.8555
HS vs GSA 0.3727 0.7520 0.3727 0.7779 0.5963 0.7122 0.8199 0.5077 1.3416 0.3271
HS vs BhOA 1.0062 0.6312 2.0497 0.0996 2.1615 0.0701 2.5715 0.0350 3.0187 0.0421
TLBO vs GSA 1.2671 0.6150 0.8944 0.5139 0.1491 0.9170 1.0435 0.4047 1.0435 0.4599
TLBO vs BhOA 1.9007 0.5626 1.5280 0.2370 2.6088 0.0269 2.7951 0.0256 2.7206 0.0421
GSA vs BhOA 0.6336 0.7080 2.4224 0.0610 2.7578 0.0269 1.7516 0.1533 1.6771 0.2212

74 � Machine Learning for Cloud Management

TABLE 4.3 Finner test post-hoc analysis results on the null hypothesis of metaheuristic
algorithms based prediction model

Data ℵ = 0.05 ℵ = 0.01
PSO FSA DE GA HS TLBO GSA BhOA PSO FSA DE GA HS TLBO GSA BhOA

PSO

D1 - 3 3 3 3 3 3 3 - 3 3 3 3 3 3 3

D2 - 3 3 3 3 3 3 3 - 3 7 7 7 3 7 3

D3 - 3 7 7 7 7 7 3 - 3 7 7 7 7 7 3

D4 - 7 7 7 3 3 7 7 - 3 7 7 7 3 7 7

D5 - 7 3 3 3 3 3 7 - 3 3 3 3 3 3 7

FSA

D1 - - 3 3 3 3 3 3 - - 3 3 3 3 3 3

D2 - - 3 3 3 3 3 3 - - 7 7 7 3 7 3

D3 - - 3 7 3 7 7 3 - - 7 7 7 7 7 3

D4 - - 3 3 7 7 3 3 - - 3 3 7 7 3 3

D5 - - 7 7 7 7 3 3 - - 7 7 7 7 3 3

DE

D1 - - - 3 3 3 3 3 - - - 3 3 3 3 3

D2 - - - 3 3 3 3 3 - - - 3 3 3 3 7

D3 - - - 3 3 3 3 3 - - - 3 3 3 3 7

D4 - - - 3 3 3 3 3 - - - 3 3 3 3 3

D5 - - - 3 3 3 3 7 - - - 3 3 3 3 7

GA

D1 - - - - 3 3 3 3 - - - - 3 3 3 3

D2 - - - - 3 3 3 3 - - - - 3 3 3 7

D3 - - - - 3 3 3 7 - - - - 3 3 3 7

D4 - - - - 3 3 3 3 - - - - 3 3 3 3

D5 - - - - 3 3 3 7 - - - - 3 3 3 7

HS

D1 - - - - - 3 3 3 - - - - - 3 3 3

D2 - - - - - 3 3 3 - - - - - 3 3 7

D3 - - - - - 3 3 3 - - - - - 3 3 7

D4 - - - - - 3 3 7 - - - - - 3 3 7

D5 - - - - - 3 3 7 - - - - - 3 3 7

TLBO

D1 - - - - - - 3 3 - - - - - - 3 3

D2 - - - - - - 3 3 - - - - - - 3 3

D3 - - - - - - 3 7 - - - - - - 3 7

D4 - - - - - - 3 7 - - - - - - 3 7

D5 - - - - - - - 7 - - - - - - - 7

GSA

D1 - - - - - - - 3 - - - - - - - 3

D2 - - - - - - - 3 - - - - - - - 7

D3 - - - - - - - 7 - - - - - - - 7

D4 - - - - - - - 3 - - - - - - - 3

D5 - - - - - - - 3 - - - - - - - 3

BhOA

D1 - - - - - - - - - - - - - - - -
D2 - - - - - - - - - - - - - - - -
D3 - - - - - - - - - - - - - - - -
D4 - - - - - - - - - - - - - - - -
D5 - - - - - - - - - - - - - - - -

C H A P T E R 5

Evolutionary Neural Networks

D IFFERENTIAL EVOLUTION is one of the most reliable numerical function
optimization approach introduced by Price and Storn in 1995 [105]. It uses

evolutionary operators including mutation, crossover, and selection to explore the
solution space for an optimal solution. The approach has proved its optimization
ability among evolutionary algorithms in competitions such as IEEE evolutionary
computation [106]. This chapter discusses the predictive models that use the neural
networks trained using differential evolution as the underlying architecture.

5.1 NEURAL NETWORK PREDICTION FRAMEWORK DESIGN

The artificial neural networks can be effectively used to model a predictive framework.
The common workflow of learning the model involves various intermediate steps
such as data preprocessing, data preparation, training, testing, etc. A generic flow
of learning is shown in Fig. 5.1. First, it preprocesses and prepares the data as per
the model requirement. Preprocessing is a combination of aggregation and scaling.
The workloads may arrive at any time in the server but any forecasting model needs
the workload information at fixed time intervals due to the fact that the workload
history is commonly used as time-indexed data. Therefore, the predictive model first
aggregates the workload data at a fixed time interval. The aggregated workload
information is scaled in [0, 1] using min-max scaling. Once the data is scaled in the
desired range, the data is prepared to feed in the network. Let X = {x1, x2, . . . , xt}
be the aggregated and scaled actual workload arriving to the cloud servers at a fixed
time interval. Given that the predictive model uses a neural network composed of n
neurons in the input layer, the data is organized as shown in eq. (5.1). The workload
data is arranged such that the network will have previous n consecutive workload
information to predict the workload at next time step (refer to κ in eq. (5.1)) and
the actual workload information at next time step is used as ground truth for the
corresponding input pattern (refer to ς in eq. (5.1)).

κ =

x1 x2 · · · xn
x2 x3 · · · xn+1
...

...
xk xk+1 · · · xn+k−1

 , ς =

xn+1
xn+2

...
xn+k

 (5.1)

DOI: 10.1201/9781003110101-5 75

https://doi.org/10.1201/9781003110101-5

76 � Machine Learning for Cloud Management

Cloud
Data Center Workload

Repository

Data Preprocessing
and Preparation

Learning
Algorithm

Prediction
Model

ForecastCloud Resource
Manager

FIGURE 5.1 Neural network-based workload prediction model

Let XR be a set of randomly generated workload values measured over a fixed
interval of unit time t. Given that the network needs the workload information at
unit time t only, the aggregation operation may be skipped. The next operation to be
performed is the scaling of the workloads. Let X ′R be the scaled workload values and
given that n = 5, the X ′R can be organized as κR and ςR as shown in eq. (5.2).

XR = {39, 29, 88, 51, 5, 88, 68, 94, 85, 68, 3, 4, 11, 91, 51, 18, 70, 55, 47, 2, 7, 17, 33, 96, 78}
X
′

R = {0.39, 0.29, 0.91, 0.52, 0.03, 0.91, 0.70, 0.98, 0.88, 0.70, 0.01, 0.02, 0.10, 0.95, 0.52,
0.17, 0.72, 0.56, 0.48, 0.00, 0.05, 0.16, 0.33, 1.00, 0.81, }

κR =

0.39 0.29 0.91 0.52 0.03
0.29 0.91 0.52 0.03 0.91
0.91 0.52 0.03 0.91 0.70
0.52 0.03 0.91 0.70 0.98
0.03 0.91 0.70 0.98 0.88

...
...

...
...

...

, ςR =

0.91
0.70
0.98
0.88
0.70

...

(5.2)

The predictive models discussed in this chapter use the feed-forward neural network
as an underlying architecture which is composed of n− p− q neurons in such a way
that it has n input neurons, p hidden neurons, and q output neurons. Since the
network has to predict a real-valued output, the output layer will have only one
neuron. The network is composed of ten input neurons and seven hidden neurons.
The learning periods for mutation and crossover operators are ten iterations. The
maximum iterations to execute the learning algorithm is 250 and 60% of training
data is used to learn the network weights. Another important design parameter for a
neural network-based model is the choice of activation function across the network.
In this chapter, the models are using a combination of linear and sigmoid activation
functions at different layers. The rule for the choice of the activation function is given
in eq. (5.3), where z is a weighted sum of the inputs a neuron receives from a number
of neurons of its previous layer.

Evolutionary Neural Networks � 77

f(z) =
{
z if input layer

1
1+e−z otherwise

(5.3)

The predictive models use a ratio of 60:40 between the training and testing data.
We know that the training data is given to the network with corresponding ground
truth i.e. actual workload values at the next time step and the network learns the
synaptic connection weights using that data. Once the learning of the network is
over, it uses the test data to assess its learning performance. The difference between
training and testing data is that test data is given to the network without ground
truth whereas the training data carries the corresponding desired outcome with itself.
Moreover, the performance of the networks used in this chapter is assessed using root
mean squared error.

5.2 NETWORK LEARNING

Artificial neural networks have revolutionized the way of learning across various
applications including pattern recognition, speech recognition, computer vision, data
analysis, and many others [2, 22,42,131]. The usage of neural networks allows us to
mimic the learning behavior of human beings. In the modern world of full of smart
applications, neural networks are looked at as an expert machines (at least in the
domain of their expertise) but each expert needs to learn at least once. The neural
networks are not exceptions to this and they get the training to become experts at
any given task.

It is a very difficult and challenging task to learn the mapping between history
and future. The gradient-based solutions are not always the first choice to train the
network if the problem is very complex such as NP-Hard. Given that the search
space is multi-modal, the population-based search techniques are one of the possible
solutions to address the issues of gradient-based solutions. Among population-based
search methods, differential evolution is a very simple and reliable search technique.
Similar to any population-based search techniques the differential evolution also works
around a set of solutions. Here, a solution is composed of a set of real-valued numbers
that represent the network synaptic connection weights. A set of N solutions are
generated randomly using si,j = lbj + r × (ubj − lbj). The length of the solutions can
be computed as p(n+ 2) (including bias weights).

The optimizer explores the search space by generating new solutions by the means
of recombination and selection from the initially generated random solutions. First, it
selects three distinct solutions and adds one to the weighted difference of the other
two solutions. This process is referred to as mutation and it ensures diversity and
prevents premature convergence. Moreover, it also prevents the network to stuck in
local optima. The mutant solution (generated from mutation) performs the crossover
with the base solution and offsprings are generated. These offspring solutions are
evaluated on the same objective function and their fitness is compared with the
existing pool of solutions. If any fitter solution is observed in the pool of offspring, it
replaces the less fit solution in the population i.e. the rule of survival of the fittest is
followed. This chapter explores the predictive models which are trained using two

78 � Machine Learning for Cloud Management

modified versions of the differential evolution. The modified algorithms extend the
self-adaptive differential evolution [107] to develop more robust algorithms.

5.3 RECOMBINATION OPERATOR STRATEGY LEARNING

The recombination operators play a critical role in the process of searching for an
optimal solution in a very complex search space. The quality of approximated solution
highly depends on the solutions generated using recombination operators. A wide
number of operations have been proposed to generate offsprings. Moreover, it has been
observed that these operators perform differently across the applications. Thus, it is
very important to select the best suitable operator to achieve a good approximation.

5.3.1 Mutation Operator

The differential evolution first applies the mutation operation to generate offspring
solutions. The mutation operator ensures the diversity, prevents premature conver-
gence, and also avoids the local optima. A number of different operators are available
for the mutation. The first discussed approach learns the suitable mutation operator
among DE/current to best/1, DE/best/1, and DE/rand/1 [74].

5.3.1.1 DE/current to best/1

Let si be the base or current solution, the DE/current to best/1 mutation selects two
distinct solutions randomly such that i 6= r1 6= r2. The weighted differences between
best (sbest) and current solutions (si), and between both randomly selected solutions
(sr1 and sr2) are added to the current solution as shown in eq. (5.4). This operator
focuses on faster convergence.

vi = si + F × (sbest − si) + F × (sr1 − sr2) (5.4)

5.3.1.2 DE/best/1

The DE/best/1 is a good choice to use in solving optimization problems [93]. It
computes the weighted difference of two distinct and randomly selected solutions and
adds it to the best solution achieved so far as shown in eq. (5.5).

vi = sbest + F × (sr1 − sr2) (5.5)

5.3.1.3 DE/rand/1

It is one of the most used mutation operators across applications. It selects three
distinct random solutions such that r1 6= r2 6= r3 from the pool of the current
population. The weighted difference between two random solutions is added to the
third solution as shown in eq. (5.6). It has been observed that the operator DE/rand/1
is good at diversity maintenance of the population [107].

vi = sr3 + Fi × (sr1 − sr2) (5.6)

Evolutionary Neural Networks � 79

5.3.2 Crossover Operator

Crossover is another recombination operator that allows generating offspring using
two randomly selected solutions from the pool of existing solutions. The crossover
operator is adapted from theory of evolution where two individual participates to
generate new individuals. In differential evolution, the parents are selected from the
pool of population members and mutants. Again the choice of the crossover operator
highly impacts the quality of solutions. Biphase adaptive differential evolution (BaDE)
also learns the best suitable crossover operator along with the mutation operator [72].

5.3.2.1 Ring Crossover

In this operator, both parents are connected and organized in such a way that they
form a ring structure as shown in Fig. 5.2. A random number in [1, D] is generated
to mark a cut point. This cut point is treated as an origin point to generate both
offsprings. The first offspring is generated by selecting D values clockwise from the
origin point and the second offspring selects D values anticlockwise. The ring crossover
uses the swap and reverses effect which helps in maintaining the diversity of the
population [56]. Also, the ring crossover operator better explores the search space and
avoids premature convergence [67].

si1 si2 · · · · · · · · · · · · · · · siD

sj1 sj2 · · · · · · · · · · · · · · · sjD

· · · · · ·

· · ·
s j

D

s
iD

· · ·

s
i6

si5· · ·
· · ·

s i
2

s i
1

s
j
1

s
j2

s
j3

sj4

First Parent (si)

Second Parent (sj)

Offspring 2

Offspring 1

cut-point (k, k)

si5 · · · · · · si2 si1 sj1 sj2 sj3

si6 · · · siD sjD · · · · · · sj5 sj4

Offspring 1

Offspring 2

FIGURE 5.2 Ring crossover

Let si = {si1, si2, si3, . . . , siD} and sj = {sj1, sj2, sj3, . . . , sjD} be two individuals
selected to participate in the crossover. Both individuals are connected by their
endpoints and form the ring. A random number < ∈ [1, D] is generated to mark the
cut point and two offsprings ui and uj are generated.

5.3.2.2 Heuristic Crossover

Heuristic crossover operator takes the fitness values into consideration for guiding the
search towards the desired region. This operator generates the offspring such that the
newly generated solution is closer to the individual with better fitness which helps
in improving the average health of the offspring [132]. Moreover, it is observed that
the heuristic crossover helps to choose better weights of the network than various

80 � Machine Learning for Cloud Management

other operators such as arithmetic crossover [3]. The graphical representation of the
heuristic crossover is shown in Fig. 5.3, where star (*) indicates the parent with better
fitness.

si1 si2 · · · · · · · · · · · · siD

First Parent*

sj1 sj2 · · · · · · · · · · · · sjD

Second Parent

so = ξ ∗ (si − sj) + si so1 so2 · · · · · · soD

Offspring

FIGURE 5.3 Heuristic crossover

Let si and vi be two parents such that si = {si1, si2, si3, . . . , siD} and vi =
{vi1, vi2, vi3, . . . , viD}. Assuming that si has better fitness (si∗) value than vi i.e.
fsi ≤ fvi (for minimization problem). Then the offspring solution (ui) is generated
using eq. (5.7), where ξ is a randomly generated number in the range [0, 1].

ui = ξ × (si − vi) + si (5.7)

5.3.2.3 Uniform Crossover

The next crossover operator is the uniform crossover operator which exchanges the
genetic information at the gene level as opposed to other common crossover operators
that work on segment level [101]. In this operation, each gene exchanges the values
with the probability of CR as shown in Fig. 5.4.

5.3.3 Operator Learning Process

The adaptation process in two different variants of modified differential evolution
is applied. First variant, self-adaptive differential evolution (SaDE) which selects
the best suitable mutation operator whereas the second variant, biphase adaptive
differential evolution (BaDE) selects the best suitable mutation and crossover also. The
experiments are conducted using DE/current to best/1, DE/rand/1, and DE/best/1
mutation operators on the basis of their functionalities [93,107]. Similarly, heuristic
crossover, ring crossover, and uniform crossover are selected for the experimentation.

Let PZ1 , PZ2 , and PZ3 be the probabilities to apply DE/rand/1, DE/current to
best/1, and DE/best/1 respectively. Similarly, PQ1 , PQ2 , and PQ3 are the probabilities
to apply ring crossover, heuristic crossover, and uniform crossover respectively. In

Evolutionary Neural Networks � 81

si1 si2 si3 si4 si5 siD

sj1 sj2 sj3 sj4 sj5 sjD
C
R
>
r

C
R
>
r

C
R
>
r

C
R
>
r

sj1 si2 sj3 si4 sj5 siD

si1 sj2 si3 si4 sj5 sjD

Parent 1

Parent 2

Offspring 1

Offspring 2

FIGURE 5.4 Uniform crossover

beginning, each operator is selected with equal chances i.e. PZ1 = 0.33, PZ2 = 0.33,
and PZ3 = 0.34. Similarly, the probabilities for the crossover operators are selected
as PQ1 = 0.33, PQ2 = 0.33, and PQ3 = 0.34 to provide equal chances to each of the
operators. Every individual carries two selection probabilities to select mutation
and crossover strategy. In the beginning, the selection probabilities are randomly
generated in (0, 1) and stored in two vectors named ZP and QP which store the
selection probabilities associated with mutation and crossover operators. Since each
solution has one value for mutation and crossover, the length of ZP and QP is N .
For a base solution si, the mutation and crossover operators are selected as shown in
eqs. (5.8) and (5.9) respectively, where MSi and CSi are the mutation and crossover
operators which will be applied to generate ui.

MSi =

DE/rand/1 0 < ZP (i) ≤ PZ1
DE/current to best/1 PZ1 < ZP (i) ≤ (PZ1 + PZ2)
DE/best/1 otherwise

(5.8)

82 � Machine Learning for Cloud Management

CSi =

Ring Crossover 0 < QP (i) ≤ PQ1
Heuristic Crossover PQ1 < QP (i) ≤ (PQ1 + PQ2)
Uniform Crossover otherwise

(5.9)

At every iteration, the optimization process keeps the records of the offspring
solutions both entering into the next iteration and failing in reaching to next iteration.
The count of successful offspring candidates generated by each of the mutation
operators is recorded in SZ1 , SZ2 , and SZ3 respectively. Similarly, the count of failed
offspring solutions generated by each of the crossover operators is recorded in FZ1 ,
FZ2 , and FZ3 respectively. The number of successful and failed offspring solutions
generated by each crossover operator is stored in SQ1 , SQ2 , SQ3 , FQ1 , FQ2 , and FQ3
respectively. After a certain number of iteration i.e. learning period, the probabilities
of mutation and crossover operators are updated using eqs. (5.10) to (5.15). After
updating the operator selection probabilities associated with each variant, the count
of successful and unsuccessful offsprings in reaching into next iteration is reset i.e.
the values of SZi , FZi , SQi , and FQi are assigned to zero. The effect of the different
values of both learning periods is modeled and results are shown in Fig. 5.5 which
shows that different learning rates suit different prediction interval-based forecasting.

PZ1 = SZ1 (SZ2 + FZ2 + SZ3 + FZ3)
2(SZ2 SZ3 + SZ1 S

Z
3 + SZ1 S

Z
2) + FZ1 (SZ2 + SZ3) + FZ2 (SZ1 + SZ3) + FZ3 (SZ1 + SZ2)

(5.10)

PZ2 = SZ2 (SZ1 + FZ1 + SZ3 + FZ3)
2(SZ2 SZ3 + SZ1 S

Z
3 + SZ1 S

Z
2) + FZ1 (SZ2 + SZ3) + FZ2 (SZ1 + SZ3) + FZ3 (SZ1 + SZ2)

(5.11)

PZ3 = 1− (PZ1 + PZ2) (5.12)

PQ1 = SQ1 (SQ2 + FQ2 + SQ3 + FQ3)
2(SQ2 SQ3 + SQ1 S

Q
3 + SQ1 S

Q
2) + FQ1 (SQ2 + SQ3) + FQ2 (SQ1 + SQ3) + FQ3 (SQ1 + SQ2)

(5.13)

PQ2 = SQ2 (SQ1 + FQ1 + SQ3 + FQ3)
2(SQ2 SQ3 + SQ1 S

Q
3 + SQ1 S

Q
2) + FQ1 (SQ2 + SQ3) + FQ2 (SQ1 + SQ3) + FQ3 (SQ1 + SQ2)

(5.14)

PQ3 = 1− (PQ1 + PQ2) (5.15)

In differential evolution, there are another two critical parameters i.e. crossover
and mutation rates. The separate crossover rate is initialized for every individual.

Evolutionary Neural Networks � 83

The initial values of crossover rates are normally distributed such that the range of
values is (0, 1], the mean value is (CRµ) 0.5, and the standard deviation (CRσ) is 0.1.
Similarly, the mutation rate (F) values are initialized with the standard deviation
(Fσ) is 0.3.

5.4 ALGORITHMS AND ANALYSIS

Both variants of the differential evolution optimization algorithm optimally learn the
best suitable version of the recombination operators. The first variant i.e. SaDE (Al-
gorithm 5.1) finds the best suitable mutation operator. Whereas the second variant
of the algorithm i.e. BaDE (5.2) applies the adaption at two levels meaning that
the algorithm finds the best suitable mutation and crossover operators. Let O(1) be
the complexity of one random number generation, the O(ND) is the time complex-
ity of population initialization as it involves generating N vectors, each of length
D. Since the value of D is obtained by p(n + 2), the effective time complexity of
population initialization becomes O(Npn). Furthermore, the p < n (at least for a
high dimensional data) and thus the time complexity may be represented as O(n2N).
The next step of the algorithm is to generate three vectors (Qv, Zv, ZP) of random
numbers, each of size N and it adds O(N) complexity. In any population-based
search optimization algorithm, the fitness assessment is one of the great sources of
complexity. Similarly, the fitness assessment in SaDE accounts for a large amount
of complexity. Let forecasting a single data point which takes O(n2) be the unit
operation in the fitness assessment. Since one network is assessed on the forecasts of
m data points and the population consists of N networks, the complexity of fitness
assessment operation becomes O(n2mN). The generation of an offspring solution
using recombination operators consumes O(n2), thus, the generation of N offspring
solutions needs O(n2N). Another key operation in the algorithm is the selection which
consumes O(N). The total complexity of the algorithm becomes O(Gmn2N) as the
recombination operators, offspring fitness assessment, and selection are repeated for
G times. The detailed analysis can be found in [74].

The second variant of the algorithm (Algorithm 5.2) uses some additional in-
structions to incorporate the additional feature of learning the best suitable crossover
operator. The additional computations are executed for a vector (QP) generation of
N random numbers and some additional checkpoints in learning the best suitable
operator. However, the additional computations do not affect the total complexity
of the algorithm. The readers should refer to [72] for a detailed discussion on the
complexity and algorithm.

84 � Machine Learning for Cloud Management

Algorithm 5.1 Self-adaptive differential evolution based forecasting framework
pseudocode [74]

1: Initialize CRµ = Fµ = 0.5, CRσ = 0.1, Fσ = 0.3, PZ1 = PZ2 = 0.33, PZ3 = 0.34
2: Randomly initialize N networks of length D (population) /* Here D is number

of connections in network */
3: Generate crossover CRv and mutation Fv vectors (length N) CRv, Fv ∈ (0, 1]
4: Evaluate each network on training data using objective function
5: repeat
6: for each generation g do
7: Generate a vector ZP of N random numbers ∈ (0, 1]
8: for each solution i do
9: Generate r1 6= r2 6= r3 6= i ∈ [1, N] and jrand ∈ [1, D]

10: if 0 < ZP (i) ≤ PZ1 then
11: Apply DE/rand/1 mutation strategy and crossover
12: else
13: if PZ1 < ZP (i) ≤ (PZ1 + PZ2) then
14: Apply DE/current to best/1 mutation strategy and crossover
15: else
16: Apply DE/best/1 mutation strategy and crossover
17: end if
18: end if
19: end for
20: Evaluate offspring vectors using objective function
21: Select participants for next generation from offspring vectors and population
22: Update values of SZ1 , SZ2 , SZ3 , FZ1 , FZ2 , and FZ3
23: Update PZ1 , PZ2 , and PZ3 /* (After every lpF generations) */
24: Regenerate CRv /* (After every lpCR generations) */
25: Recalculate CRµ /* (After every gCRlp generations) */
26: end for
27: until termination criteria is not met

Evolutionary Neural Networks � 85

Algorithm 5.2 Biphase adaptive differential evolution based forecasting framework
pseudocode [72]

1: Initialize CRµ = Fµ = 0.5, CRσ = 0.1, Fσ = 0.3, PZ1 = PZ2 = 0.33, PZ3 = 0.34,
PQ1 = PQ2 = 0.33, PQ3 = 0.34

2: Randomly initialize N networks of length D (population) /* Here D is number
of connections in network */

3: Generate crossover CRv and mutation Fv vectors (length N) CRv, Fv ∈ (0, 1]
4: Evaluate each network on training data using objective function
5: repeat
6: for each generation g do
7: Generate vectors ZP and QP of N random numbers ∈ (0, 1]
8: for each solution i do
9: Generate r1 6= r2 6= r3 6= i ∈ [1, N]

10: if 0 < ZP (i) ≤ PZ1 then
11: vgi = sgr3 + Fi × (sgr1 − s

g
r2)

12: else
13: if PZ1 < QP (i) ≤ (PZ1 + PZ2) then
14: vgi = sgi + Fi × (sgbest − s

g
i) + Fi × (sgr1 − s

g
r2)

15: else
16: vgi = sgbest + Fi × (sgr1 − s

g
r2)

17: end if
18: end if
19: end for
20: for each solution i do
21: Generate jrand ∈ [1, D]
22: if 0 < QP (i) ≤ PQ1 then
23: Apply ring crossover
24: else
25: if PQ1 < QP (i) ≤ (PQ1 + PQ2) then
26: Apply heuristic crossover
27: else
28: Apply uniform crossover
29: end if
30: end if
31: end for
32: Evaluate offspring vectors using objective function
33: Select participants for next generation from offspring vectors and population
34: Update values of SZ1 , SZ2 , SZ3 , FZ1 , FZ2 , FZ3 , SQ1 , SQ2 , SQ3 , FQ1 , FQ2 , and FQ3
35: Update PZ1 , PZ2 and PZ3 /* (After every lpF generations) */
36: Update PQ1 , PQ2 and PQ3 /* (After every lpCR generations) */
37: Regenerate CRv /* (After every lpCR generations) */
38: Recalculate CRµ /* (After every glpCR generations) */
39: end for
40: until termination criteria is not met

86 � Machine Learning for Cloud Management

5.5 FORECAST ASSESSMENT

The performance of the predictive frameworks that use SaDE and BaDE learning
algorithms to optimize the network weights are assessed on a variety of experiments.
First, the network structure i.e. the number of neurons in the input and hidden layers
are selected. In order to select the number of input neurons, the networks with 5
to 20 input neurons are created and their performance is assessed on a subset of
data-trace. The network with 10 input neurons performed better than other networks.
Thus, the network will have 10 input neurons. Furthermore, the network will have the
hidden neurons equal to the d2/3e input neurons. The two other parameters i.e. the
population size and the maximum number of iterations or generation are fixed prior
to the experiments. The experiments are conducted with a 20 member population and
each experiment was executed for 250 iterations. The learning periods for updating the
mutation and crossover probabilities are 10 iterations meaning that every 10 iterations
the respective probabilities of the recombination operators will be updated [74].

Prediction Interval (Seconds)
60 300 600 1200 1800 3600

P
re

d
ic

ti
o

n
 E

rr
o

r
(l

o
g

)

-5.5

-5.4

-5.3

-5.2

-5.1

-5

-4.9

-4.8

-4.7

-4.6

-4.5

lpF=1

lpF=2

lpF=4

lpF=6

lpF=8

lpF=10

lpF=12

(a) NASA Trace

Prediction Interval (Seconds)
60 300 600 1200 1800 3600

P
re

d
ic

ti
o

n
 E

rr
o

r
(l

o
g

)

-6.8

-6.6

-6.4

-6.2

-6

-5.8

-5.6

-5.4

lpF=1

lpF=2

lpF=4

lpF=6

lpF=8

lpF=10

lpF=12

(b) Saskatchewan Trace

FIGURE 5.5 Learning period effect on forecast accuracy of self-adaptive differential
evolution algorithm based workload prediction model [74]

Evolutionary Neural Networks � 87

5.5.1 Short Term Forecast

The performance of both predictive frameworks is accessed on data traces of NASA
Trace and Saskatchewan Trace. First, the forecast results obtained on a 1-minute
prediction interval by SaDE based predictive framework are shown in Fig. 5.6 which
includes the results depicting the actual and predictive workload values on an entire
and a small subset of both data traces. One might easily notice the closeness of
actual and predicted workload values by observing the visual results. The predictive
framework is able to model the patterns of actual workloads and forecasts the workloads
reasonably closer to the actual workload. Furthermore, the forecast residuals are
depicted in Fig. 5.7 corresponding to the predicted workloads shown in Figs. 5.6c
and 5.6d respectively. The residuals are very low and random in nature which means
the predictive framework was able to model the workload patterns significantly.

(a) NASA Trace (b) Saskatchewan Trace

(c) NASA Trace (Zoomed In) (d) Saskatchewan Trace (Zoomed In)

FIGURE 5.6 Short term forecast assessment of self-adaptive differential evolution
algorithm based prediction model on 1-minute prediction interval [74]

88 � Machine Learning for Cloud Management

(a) NASA Trace (b) Saskatchewan Trace

FIGURE 5.7 Short term forecast residuals of self-adaptive differential evolution algo-
rithm based prediction model on 1-minute prediction interval [74]

The same experiments are conducted with the predictive framework based on
BaDE algorithm. The forecast results of both data traces for a prediction interval
of 1 minute are shown in Fig. 5.8. Here also, the results include the actual and
predicted workloads on entire and subsets of both data traces. The close observations
reveal that the forecast accuracy of the later framework is better, thus, the crossover
operator learning has improved the learning ability of the algorithm significantly. The
corresponding residuals are shown in Fig. 5.9 for both data traces. Furthermore, the
forecast accuracy of both predictive frameworks on short-term forecasts i.e. the forecast
on prediction intervals of 1, 5, 10, and 20 minutes are compared (Fig. 5.10), where
the forecast accuracy is measured using RMSE. Thus, the lower values are preferred
over higher values and BaDE learning algorithm-based solution produced lower errors
in forecasts except for the prediction interval of 1 minute. The performance of both
approaches is also compared on other parameters such as the number of iterations
elapsed in the convergence (no change in the solution across successive iterations)
and the time elapsed in training as shown in Table 5.1. The later approach converged
faster but it took relatively larger time due to the fact that it involves additional
computations in optimizing the crossover operator. Thus, it is found that the second
approach performed better than the first approach on short-term forecasts.

5.5.2 Long Term Forecast

Apart from the short-term forecasts, the forecast accuracy of both approaches is
assessed on long-term forecasts also. Here, if the forecast interval is 30 minutes or
more then it is a long-term forecast. For the experimentation purpose, the forecasts
are assessed on 30 and 60 minutes forecasts. The actual and predicted workloads
obtained from SaDE based framework are shown in Fig. 5.11 including the entire and
subsets of data traces. As opposed to the short-term forecasts, the approach detects
and models the workload patterns more accurately as shown in Fig. 5.12. Similarly,
the forecast results obtained using BaDE based model are shown in Fig. 5.13 and

Evolutionary Neural Networks � 89

(a) NASA Trace (b) Saskatchewan Trace

(c) NASA Trace (Zoomed In) (d) Saskatchewan Trace (Zoomed In)

FIGURE 5.8 Short term forecast assessment of biphase adaptive differential evolution
algorithm based prediction model on 1-minute prediction interval [74]

(a) NASA Trace (b) Saskatchewan Trace

FIGURE 5.9 Short term forecast residual of biphase adaptive differential evolution
algorithm based prediction model on 1-minute prediction interval [74]

corresponding residuals can be seen in Fig. 5.14. Furthermore, the performance of
both models is compared on long-term forecasts and the comparison can be seen
in Fig. 5.15. The BaDE model generates the forecasts with better accuracy (lower

90 � Machine Learning for Cloud Management

1 5 10 20
0

0.1

0.2

PWS (min)

R
M

SE
WPSaDE
WPBaDE

(a) NASA Trace

1 5 10 20
0

0.1

0.2

0.3

PWS (min)

R
M

SE

WPSaDE
WPBaDE

(b) Saskatchewan Trace

FIGURE 5.10 Comparing short term forecast errors of SaDE and BaDE based predic-
tive frameworks

TABLE 5.1 Number of iterations and time elapsed in the training of differential
evolution based predictive models for short term forecasts

PWS
(min)

#Iterations Training Time (sec)
NASA Trace Saskatchewan Trace NASA Trace Saskatchewan Trace
SaDE BaDE SaDE BaDE SaDE BaDE SaDE BaDE

1 47 21 61 27 121.368 771.250 661.690 14506.710
5 39 23 77 23 24.112 237.210 132.666 1566.094
10 51 23 51 23 12.144 145.464 64.807 718.919
20 47 24 51 22 6.354 69.989 33.376 339.443

values of RMSE are preferred over higher values). Similar to the short-term forecast
observations, both models show a similar pattern in the number of iterations elapsed
in the convergence and the time required for training (see Table 5.2). Thus, based on
the observations, the BaDE learning algorithm-based framework reduces the forecast
errors significantly over the SaDE learning algorithm-based framework.

TABLE 5.2 Number of iterations and time elapsed in the training of differential
evolution based predictive models for long term forecasts

PWS
(min)

#Iterations Training Time (sec)
NASA Trace Saskatchewan Trace NASA Trace Saskatchewan Trace
SaDE BaDE SaDE BaDE SaDE BaDE SaDE BaDE

30 26 24 42 23 4.274 46.285 21.429 245.060
60 26 23 21 22 2.908 23.183 10.733 236.655

Evolutionary Neural Networks � 91

(a) NASA Trace (b) Saskatchewan Trace

(c) NASA Trace (Zoomed In) (d) Saskatchewan Trace (Zoomed In)

FIGURE 5.11 Long term forecast assessment of self-adaptive differential evolution
algorithm based prediction model on 60-minute prediction interval

(a) NASA Trace (b) Saskatchewan Trace

FIGURE 5.12 Long term forecast residuals of self-adaptive differential evolution
algorithm based prediction model on 60-minute prediction interval

92 � Machine Learning for Cloud Management

(a) NASA Trace (b) Saskatchewan Trace

(c) NASA Trace (Zoomed In) (d) Saskatchewan Trace (Zoomed In)

FIGURE 5.13 Long term forecast assessment of biphase adaptive differential evolution
algorithm based prediction model on 60-minute prediction interval

(a) NASA Trace (b) Saskatchewan Trace

FIGURE 5.14 Long term forecast residuals of biphase adaptive differential evolution
algorithm based prediction model on 60-minute prediction interval

5.6 COMPARATIVE ANALYSIS

This section compares the performance of both approaches with state-of-art methods
predictive frameworks. Three different parameters are used to compare the performance

Evolutionary Neural Networks � 93

30 Min 60 Min
0

5 · 10−2

0.1

0.15

PWS (min)

R
M

SE
WPSaDE WPBaDE

(a) NASA Trace

30 Min 60 Min
0

0.1

0.2

PWS (min)

R
M

SE

WPSaDE WPBaDE

(b) Saskatchewan Trace

FIGURE 5.15 Comparing long term forecast errors of SaDE and BaDE based predictive
frameworks

which are forecast accuracy, the time elapsed in training, and the number of iterations
elapsed in reaching convergence. The state-of-art methods are based on the average,
maximum, and backpropagation algorithms [104]. The first two approaches are very
simple as they forecast the workload the same as the average and maximum workload
received so far. Whereas the third approach uses a neural network that learns the
network weights using a backpropagation algorithm.

Figure 5.16 compares the forecast accuracy (measured using RMSE) on NASA
Trace. The SaDE and BaDE based predictive frameworks are better than other models.
For instance, the SaDE based model successfully reduced the RMSE up to 96.06%,
98.38%, and 94.92% (relative) over maximum, average, and backpropagation-based
models. Similarly, the BaDE based model relatively reduced forecast errors up to
97.19%, 98.42%, and 97.11% over maximum, average, and backpropagation-based
models. Moreover, the BaDE based predictive framework improves the forecast
accuracy by reducing the RMSE up to 91.00% over SaDE based model.

1 5 10 20 30 60
0.0

0.5

1.0

PWS (min)

R
M

SE

Maximum Average BPNN SaDE BaDE

FIGURE 5.16 Comparing forecast accuracy of Maximum, Average, BPNN, SaDE,
BaDE based predictive frameworks on NASA Trace

94 � Machine Learning for Cloud Management

A similar comparison is performed on the forecast accuracy of Saskatchewan
Trace. The relative improvements achieved by SaDE and BaDE based models are
99.53%, 99.85%, 99.40%, 90.06%, 95.34%, and 89.29% over maximum, average, and
backpropagation methods as shown in Fig. 5.17. Furthermore, the BaDE based model
improves the forecast accuracy over SaDE based model by reducing the RMSE up to
55.06%. Thus, adaptive learning has helped in improving forecast accuracy.

1 5 10 20 30 60
0.0

0.5

1.0

PWS (min)

R
M

SE

Maximum Average BPNN SaDE BaDE

FIGURE 5.17 Comparing forecast accuracy of Maximum, Average, BPNN, SaDE,
BaDE based predictive frameworks on Saskatchewan Trace

TABLE 5.3 Iterations elapsed for the training of predictive models using backpropaga-
tion, self-adaptive differential evolution, and biphase adaptive differential evolution

PWS
(min)

NASA Trace Saskatchewan Trace
WPBPNN WPSaDE WPBaDE WPBPNN WPSaDE WPBaDE

1 250 47 21 250 61 27
5 250 39 23 250 77 23
10 250 51 23 250 51 23
20 250 47 24 250 51 22
30 250 26 24 250 42 23
60 250 26 23 250 21 22

Further, the performance is compared on two other parameters i.e. the number
of iterations elapsed in the training of the network and elapsed time in training.
Table 5.3 shows the comparison of the number of iterations elapsed in convergence.
The backpropagation algorithm-based framework consumed 250 iterations which is
the maximum number of iterations, on the other hand, the frameworks based on
SaDE and BaDE algorithms took a very less number of iterations. The convergence
was achieved by the adaptive learning algorithms very quickly in terms of iterations.
However, these algorithms took a longer time in the training due to the fact that these
algorithms work around a set of solutions whereas the backpropagation algorithm
works with a single solution as shown in Table 5.4. The results obtained by the
adaptive learning algorithms are very promising and can be used for better data
center management.

Evolutionary Neural Networks � 95

TABLE 5.4 Training time (sec) elapsed in the training of predictive models using
backpropagation, self-adaptive differential evolution, and biphase adaptive differential
evolution

PWS
(min)

NASA Trace Saskatchewan Trace
WPBPNN WPSaDE WPBaDE WPBPNN WPSaDE WPBaDE

1 121.368 290.823 771.250 661.690 1949.648 14506.710
5 24.112 48.539 237.210 132.666 498.452 1566.094
10 12.144 31.700 145.464 64.807 168.668 718.919
20 6.354 14.759 69.989 33.376 85.497 339.443
30 4.274 5.507 46.285 21.429 46.741 245.060
60 2.908 3.502 23.183 10.733 12.238 236.655

This chapter discussed two learning algorithms by extending one of the differential
evolution variants. The learning algorithms (SaDE and BaDE) are used to train a
neural network for workload forecasting. These methods are compared with state-of-art
prediction models over two real-world benchmark data traces. It was observed that the
model trained by the SaDE learning algorithm produced better forecasts in comparison
to the state-of-art methods. The forecast accuracy of SaDE based prediction model
was further enhanced by a model trained by BaDE algorithm. Thus, adaption at
different levels helps in achieving better accuracy or improving the learning process.

http://www.taylorandfrancis.com

C H A P T E R 6

Self Directed Learning

N eural networks are the computational machines that try to mimic the
learning behavior of a biological brain. Learning by the experience is one of the

most common and widely used learning approaches in which a network learns by
the means of feedback on its previous learning attempts. In this approach of learning,
the network is unable to learn the changes in the data patterns that appear regularly
in dynamic data sets such as cloud workloads. The cloud workloads are dynamic and
may notice frequent changes in the data patterns. In such scenarios, a predictive
framework requires frequent training over a period of time and thus, the model may
become unreliable over a long period. In this chapter, we will discuss an alternative
approach that avoids the need of frequent training.

The alternative learning approach allows a system to receive the feedback consis-
tently so that it can capture the changes in the workload patterns which appear over
time. The alternative approach is referred to as self-directed learning and the blackhole
optimization algorithm is selected to demonstrate the impact of self-directed learning
over a typical learning algorithm. The model analyses the most recent workload
patterns to anticipate the load on the server in the next instance. It computes the
average deviation in previous l predictions and leverages it in computing the next
forecast which can be further utilized by the data center resource manager.

6.1 NON-DIRECTED LEARNING-BASED FRAMEWORK

The non-directed predictive framework (WPBhNN) is composed of a multi-layer neural
network that analyzes the recent n workload instances to anticipate the next value. The
framework design is depicted in Fig. 6.1, where the network employs the BhOA to
learn its synaptic connection weights. The blackhole optimization algorithm is a
population-based search optimization algorithm that follows the principles of the
blackhole phenomenon. The next section discusses the algorithm in brief and interested
readers are suggested to follow [57] for more details.

DOI: 10.1201/9781003110101-6 97

https://doi.org/10.1201/9781003110101-6

98 � Machine Learning for Cloud Management

Historical
Data

Live Data

Data Pre-
processing

Training
Data

Test
Data

Network Training Block

yt

. . .

yt−n−1

yt−n

Training
Finished

Accuracy
Evaluation

60%

40%

F
or
ec
as
t

Yes

S
el
ec
te
d
M
o
d
el

In
ac
cu

ra
te

Model

F
o
re
ca
st

FIGURE 6.1 Non-directed predictive framework

6.1.1 Non-Directed Learning

A multi-layered neural network that consists of three layers i.e. input, hidden, and
output layers is employed as the underlying architecture of the model. The neural
network is composed of n, p, and q neurons in input, hidden, and output layers
respectively. Let X = {x1, x2, . . . , xn} be the n workload instances that act as an
input to the forecaster. The input and output layer neurons use a linear function
to process the information which they receive as input while hidden layer neurons
process the information using a sigmoid function as shown in eq. (6.1).

f(z) =
{
z if input layer

1
1+e−z otherwise

(6.1)

Similar to any population-based search algorithm, the blackhole algorithm also
begins with a pool of randomly generated solutions in the search space using eq. (6.2).
The search space is defined by the combination of synaptic network connections in
(-1, 1). These solutions are further evaluated on training data samples and forecast
error is measured using mean squared error. Since the optimal forecasting model must
produce no error in the estimations, the aim of the network is to learn the synaptic
weights that produce the minimum error in forecasts as given in eq. (6.3).

s(i,j) = lbj + r × (ubj − lbj) (6.2)

fcost = min(1
m

m∑
i=1

(x̂i − xi)2) (6.3)

Every individual solution (commonly referred to as a star) is assigned with its
fitness value (root mean squared error). The stars are scattered all around the search
space and the best star (one with the lowest root mean squared error) is called as
blackhole (B). Non-blackhole stars move towards the blackhole and their position gets
updated as shown in eq. (6.4), where si depicts the position of ith star, r represents
the random number in [0, 1], and B depicts the position of the blackhole.

Self Directed Learning � 99

si(t+ 1) = si(t) + r × (B(t)− si(t)) (6.4)

ρ = fB∑N
i=1 fsi

(6.5)

di = fB − fsi (6.6)

During the search process, a star (si, i = 1, 2, . . . , N) may find the better solution
than B. In such cases, the blackhole solution gets updated by exchanging the positions
of si and B. A star may reach into the event horizon radius (ρ) of the blackhole
solution. The event horizon is defined by the radius computed using eq. 6.5, where
the fitness values of B and si are defined by fB and fsi . In order to check if a star has
reached the event horizon, the distance between the star and blackhole is calculated
as given in eq. 6.6. If the distance between si and B is less than or equal to ρ, the si
is collapsed and a new star is generated randomly to maintain the size of the pool of
stars.

6.2 SELF-DIRECTED LEARNING-BASED FRAMEWORK

As discussed in the previous section, a typical learning algorithm that only learns in
the training phase is referred to as a non-directed learning algorithm. As opposed
to these algorithms, if an algorithm also learns during the testing and deployment
phases of the algorithm then it is referred to as a self-directed learning algorithm. This
section discusses a predictive framework that uses a modified (self-directed) learning
algorithm. The modified algorithm incorporates the principles of error preventive
scheme i.e. it keeps track of the error in the recent forecasts and fines tune the
predictions accordingly. Figure 6.2 depicts the complete process flow of the predictive
framework equipped with a self-directed learning algorithm, where the feedback of
the forecast errors is propagated back and an average of deviations is observed and
incorporated in the next predictions. In the subsequent sections, the framework is
discussed in the detail.

Historical
Data

Live Data

Data Pre-
processing

Training
Data

Test
Data

Network Training Block

yt

. . .

yt−n−1

yt−n

Training
Finished

Error
Computing

Self Directed
Learning

Accuracy
Evaluation

60%

40% Forecast

No

Actual Workload

Yes

S
el
ec
te
d
M
o
d
el

Inaccurate
Model

Error
Computing

Self Directed
Learning

Actual Workload

Forecast

FIGURE 6.2 Self-directed predictive framework [82]

100 � Machine Learning for Cloud Management

x1 x2 . . . xt

Learning Window

f

Simple Forecaster

x̂t+1 x̂t+2 . . . x̂t+l x̂SDt+l+1

Forecasts
Self Directed

Forecast

∆t+1 ∆t+2 . . . ∆t+l

ξt+1 ξt+2 . . . ξt+l
Forecast

Error

Ψ

∑
f

Self Directed Forecaster

xl+1 xl+2 . . . xt+l

Learning Window

µe

FIGURE 6.3 Self-directed learning process [82]

6.2.1 Self-Directed Learning

The self-directed learning algorithm learns the trend in the most recent forecasts i.e.
a value is calculated which indicates the error in the forecast. This value is used to
fine-tune the upcoming forecasts. The algorithm applies the ∆ operator (eq. 6.7) to
learn the forecast errors and uses Ψ operator over l recent prediction errors as shown
in eq. 6.8. The basic functioning of both non-directed and self-directed learning is
shown in Fig. 6.3.

ξt+1 = ∆t+1(xt+1, x̂t+1) (6.7)
= xt+1 − x̂t+1

µe = Ψ(∆1,∆2, . . . ,∆l) (6.8)

= 1
l

i=l∑
i=1

∆i(xi, x̂i)

For workload instances X={0.15, 0.97, 0.95, 0.48, 0.80, 0.14, 0.42, 0.91, 0.79, 0.95}
an arbitrary forecaster predicts X̂ = {0.0, 1.17, 1.17, 0.83, 1.06, 0.59, 0.79, 1.14, 1.05,
1.17} and its corresponding self directed forecaster predicts X̂SD = {0.0, 1.17, 1.17,
0.75, 0.83, 0.42, 0.60, 0.97, 0.87, 1.06} by incorporating the error in previous three
forecasts. The mean squared error for both directed and non-directed forecasts are
0.03 and 0.08 respectively. Thus, the incorporation of feedback from recent forecasts
helps in improving the quality of model.

6.2.2 Cluster-Based Learning

The blackhole optimization algorithm is one of the simplest population-based search
algorithms as it is parameter less i.e. the algorithm does not use any control parameters

Self Directed Learning � 101

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

current position

updated position using
local and global blackholes

updated position using
global blackhole only

ski (t)

Bkl (
t)s

k
i
(t+

1)
B g

(t)

FIGURE 6.4 Position update procedures in blackhole algorithm (standard vs. modified)

such as mutation rate and crossover rate. The simplified search process guided by
the best solution only may often lead towards the worst solution. For instance, if
the best solution in the initial period of search gets stuck in local optima, the other
solutions would also start moving towards the current best solution i.e. B. Thus, there
is a high probability of getting the algorithm trapped into local optima. A modified
blackhole algorithm is discussed in [82], where the population is organized into a group
of clusters. The algorithm avoids premature convergence by the means of dividing
the populations into multiple subgroups and each subgroup explores the search space
with their respective blackhole solutions. Let S = {s1, s2, . . . , sN} be the pool of
randomly initialized solutions (eq. (6.2)) arranged into k = {1, 2, . . . , c} different
clusters (commonly referred to as subpopulations). Every sub-population contains
N/c members and every member gets assigned the fitness value. Later, every cluster
marks its respective blackhole (Bkl) and the best solution across the clusters becomes
the global best (blackhole) solution (Bg). In order to update the position of a solution
ski , it gets attracted by the Bkl and Bg as shown in eq. (6.9), where ski (t) and ski (t+ 1)
indicate the positions of an individual at time t and t+ 1, r1 and r2 represent two
distinct random numbers in (0, 1), and αkl and αg represent the forces applied by local
and global blackhole solutions respectively. The division of the population members
into multiple subpopulations and inclusion of local and global best information in
the star movements slows down the movement of a solution towards the global best
solution as shown in Fig. 6.4. Thus, the probability of premature convergence is
reduced significantly.

ski (t+ 1) = ski (t) + αkl × r1 × (Bkl (t)− ski (t)) + αg × r2 × (Bg(t)− ski (t)) (6.9)

102 � Machine Learning for Cloud Management

rh(Bkl) = fBk
l/

N/c∑
i=1

fsk
i

(6.10)

rh(Bg) = fBg/
c∑

k=1

N/c∑
i=1

fsk
i

(6.11)

dBl
(ski) = fBk

l
− fsk

i
(6.12)

dBg (ski) = fBg − fsk
i

(6.13)

During the search process, if any sub-population member finds a better solution
than its blackhole solution then it becomes the updated blackhole. Moreover, if its
fitness value is better than the global blackhole then the global blackhole is also
updated. Further, any star gets collapsed if it enters into the event horizon of a
blackhole solution and a blackhole computes its radius using eqs. (6.10) and (6.11)
(local and global) to mark the area for event horizon. A star enters into the event
horizon of a blackhole if the distance (see eqs. (6.12) and (6.13)) between blackhole is
less than or equal to the radius (rh(Bkl) or rh(Bg)) of the event horizon area. The rest
of the search process is the same as the standard blackhole algorithm.

6.2.3 Complexity analysis

The non-directed and self-direct learning algorithms are analyzed on time complexity.
Algorithm 6.1 presents the sequence of pseudo steps to be followed in a non-directed
learning-based predictive framework. Similar to any population-based algorithms, the
initialization step consumes O(n2N) to generate N solutions of length D. Similarly
the fitness assessment step consumes O(mn2N) as discussed in the previous chapters.
Further, line 3 selects the best solution with the lowest forecast error and designates it
to be the blackhole of the population. It may consume N − 1 comparisons to find out
the best element therefore it becomes O(N). Next, an iterative process is repeated to
find out the best possible network to forecast the future workload. For instance, line 6
updates the position of each solution except the B that needs O(D) to update the
single solution position. Line 7 evaluates the updated solutions on fcost and requires
O(mn2) for each network. Then B is updated if any of the newly generated solutions
found better weights (line 8- 10) that requires O(D) to compare and update the
blackhole with one solution. The total complexity of lines 5-11 becomes O(Nmn2).
Line 12 computes the radius of blackhole solution that needs O(N) as it computes
the sum of the fitness values of each solution. Lines 13-18 compute the distance
of each si from BhNN and si gets collapsed and regenerated if crosses the radius
horizon of the blackhole that requires O(Nn2). The total complexity of lines 4-19
becomes O(GNmn2) as the process is repeated for G times. After summing up all the
complexities, the time complexity of the approach was observed to be O(GNmn2).

Self Directed Learning � 103

Algorithm 6.1 Pseudocode of WPBhNN predictive model [73]
1: Randomly initialize a set (S) of N networks
2: Evaluate each network on objective function fcost
3: Select the best solution to be black hole (B) of population
4: while Termination criteria is not met do
5: for each network si(i 6= B.Idx) do
6: Update positions using eq. (6.4)
7: Evaluate updated network using fcost
8: if fsi < fB then
9: Interchange position of B and si

10: end if
11: end for
12: Calculate horizon radius ρ
13: for each si(i 6= B.Idx) do
14: Calculate distance di
15: if di ≤ ρ then
16: Collapse si and generate a new network
17: end if
18: end for
19: end while

The self-directed learning algorithm (Algorithm 6.2) organizes the population into
c clusters and finds a blackhole for each cluster. The major updates in the algorithm
are in the process of position updates. The additional costs in the algorithm are O(N)
to determine c local blackholes, O(c) to determine global blackhole, and a constant
time in maintaining c best solutions. Furthermore, the position update procedure also
adds a constant amount of data. Thus, the modified algorithm consumes time in a
similar order as a non-directed learning algorithm consumes [82].

6.3 FORECAST ASSESSMENT

An experimental analysis on D1, D2, D3, D4, D5, and D6 is conducted to assess
the performance of both frameworks. The experimental environment is set using
n = 10, p = 7, G = 250, N = 100, c = 4, αkl = 0.3 and αg = 0.8 [82]. The model
uses 60% of data traces to estimate the model parameters i.e. synaptic connection
weights.

6.3.1 Short Term Forecast

The data traces belong to the different categories of workload i.e. the number of web
requests on web servers, computing resource demands on cloud servers, and resource
utilization on cloud servers. Therefore, the performance assessment is categorized into
two different categories i.e. web server workloads and cloud server workloads.

104 � Machine Learning for Cloud Management

Algorithm 6.2 Operational Summary of WPSDL
BhNN Method [82]

1: randomly initialize S={si, s2, . . . , sN}
2: organize S into c clusters and evaluate each ski on training data
3: for k = 1, 2, . . . , c do
4: Bkl = Best(sk1, sk2, . . . , skN/c)
5: end for
6: Bg = Best(B1

l ,B2
l , . . . ,Bcl)

7: while Termination criteria is not met do
8: update position of each ski using (6.9)
9: evaluate updated stars S(t+ 1) on training data

10: for k = 1, 2, . . . , c do
11: Bkl (t+ 1) = Best(Bkl (t), sk1, sk2, . . . , skN/c)
12: end for
13: Bg(t+ 1) = Best(Bg(t),B1

l ,B2
l , . . . ,Bcl)

14: compute the radius and distances using (6.10) to (6.13)
15: for i = 1, 2, . . . , N do
16: if (dBl

(ski) ≤ Bkl) ‖ (dBg (ski) ≤ Bg) then
17: collapse ski and regenerate using (6.2)
18: end if
19: end for
20: end while

6.3.1.1 Web Server Workloads

The forecast results obtained on D1, D2, and D3 using a self-directed learning algorithm
are depicted in Fig. 6.5. The model captured the workload pattern and it predicts the
next forecast with reasonable accuracy. The auto-correlation of corresponding forecast
errors is shown in Fig. 6.6, which shows that the forecast errors are random and it is
very difficult to capture the random noise in the data traces. The mean squared error
of both predictive frameworks is compared and the corresponding results are shown
in Fig. 6.7 and it shows that the incorporation of self-directed learning improves the
prediction ability of a model.

A relative improvement up to 96.33%, 105.10%, 183.02%, and 65.18% was observed
corresponding to 1, 5, 10, and 20-minute window size on D1. Similarly, 123.33%,
30.22%, 148.32%, and 69.38% on D2 while 78.10% , 76.76%, 130.29%, and 258.54%
on D3 for 1, 5, 10, and 20-minute window size respectively. The forecast accuracy
drops down as the length of the prediction window increases. The time elapsed in
network training was also compared and found that WPBhNN consumes less time as
shown in Table 6.8 due to the fact that it has to maintain the global best only.

6.3.1.2 Cloud Workloads

Similar to the web server workloads, the performance of forecasting approaches on
cloud resource workloads was analyzed. Figure 6.9 depicts the actual and estimated
workload information for a 5-minute prediction window. Figures 6.9a, 6.9b, and 6.9c
corresponds to the forecast results of CPU Trace, Memory Trace, and PlanetLab

Self Directed Learning � 105

Samples

2000 4000 6000 8000 10000

W
o
rk

lo
a
d

0

100

200

300

400

500

600

700

800
Actual Workload

Forecasts

(a) NASA Trace
Samples ×10

4

0.5 1 1.5 2

W
o
rk

lo
a
d

0

50

100

150

200

250
Actual Workload

Forecasts

(b) Calgary Trace

Samples ×10
4

1 2 3 4 5 6

W
o
rk

lo
a
d

0

50

100

150

200

250

300

350
Actual Workload

Forecasts

(c) Saskatchewan Trace

FIGURE 6.5 Web server workload prediction results of self-directed learning predictive
framework on 5-minute prediction interval [82]

Trace respectively. It can be observed that the forecasting model captures the trend
and forecasts the future workload accordingly that can be verified from Fig. 6.10. It
shows the auto-correlation in forecast residuals for each data-trace. The significant
autocorrelation is not present in the forecast error except for few lags which validates
that the forecast model captures historical data and extracts the meaningful pattern
from it effectively.

The forecast accuracy measured using mean squared error is listed in Table 6.1
for both prediction schemes. A relative improvement was observed up to 80.16%,
84.03%, 99.44%, and 63.54% corresponding to 1, 5, 10, and 20-minute window size
on D4. Similarly, 13.24% , 104.58%, 151.03%, and 96.82% on D5 for 1, 5, 10, and
20-minute window size respectively. The forecast accuracy drops down as the length
of the prediction interval increases due to the fact that the number of training samples
is reduced. The time elapsed in network training is also compared and it is found that
WPBhNN consumes less time as shown in Table 6.2.

106 � Machine Learning for Cloud Management

Lags

0 5 10 15 20

A
u
to

c
o
rr

e
la

ti
o
n

-0.2

0

0.2

0.4

0.6

0.8

1

(a) NASA Trace
Lags

0 5 10 15 20

A
u
to

c
o
rr

e
la

ti
o
n

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Calgary Trace

Lags

0 5 10 15 20

A
u
to

c
o
rr

e
la

ti
o
n

-0.2

0

0.2

0.4

0.6

0.8

1

(c) Saskatchewan Trace

FIGURE 6.6 Web server workload prediction residuals auto-correlation of self-directed
learning predictive framework on 5-minute prediction interval [82]

6.4 LONG TERM FORECAST

In this section, the forecast accuracy of designed prediction approaches is evaluated
on a long-term window. The respective experiments are carried out on the workload
forecasting over different data traces (D1, D2, D3, D4, D5, and D6). The experiment
setting involves the same parameters as of short-term forecast evaluation.

6.4.0.1 Web Server Workloads

Figure 6.11 depicts the forecasts and their corresponding actual values for 60-minute
window. It was observed that the model is capable of detecting the trend of incoming
workload on the server i.e. number of HTTP requests per time unit. The model
gives an estimation of future load information on the servers as per the extracted
pattern from the training data. Figure 6.12 shows the correlation in forecast error for
respective traces and it can be observed that the forecast errors have some correlation
due to the presence of spikes in the workloads.

Self Directed Learning � 107

1 5 10 20
0

1

2

·10−2

PWS (min)

M
SE

WPBhNN WPSDL
BhNN

(a) NASA Trace

1 5 10 20
0

0.5

1

1.5

2 ·10−2

PWS (min)

M
SE

WPBhNN WPSDL
BhNN

(b) Calgary Trace

1 5 10 20
0

0.5

1

·10−2

PWS (min)

M
SE

WPBhNN WPSDL
BhNN

(c) Saskatchewan Trace

FIGURE 6.7 Mean squared error of non-directed and self-directed predictive frame-
works on short term forecasts of web server workloads

The forecast accuracy of the models is given in Fig 6.13 that again validates the
improvement in the modified approach of learning. A relative improvement of 79.05%
and 169.54% corresponding to 30 and 60-minute window size on D1 was observed.
Similarly, 72.82% and 74.34% on D2 while 225.10% and 104.40% on D3 for 30 and
60-minute window size respectively. It is noticed that the forecast accuracy is usually
decreasing as the length of the prediction window increases because the number of
training samples is reduced accordingly. The time elapsed in network training was
also compared and found that WPBhNN consumes less time as shown in Fig. 6.14.

6.4.0.2 Cloud Workloads

The forecast accuracy of the proposed schemes on traces of cloud servers traces
for a prediction window length of 30 minutes and above was also analyzed. The
forecast results of D4, D5, and D6 are depicted in Figs. 6.15a, 6.15b, and 6.15c
respectively. The results show that the forecast model learns the pattern from data

108 � Machine Learning for Cloud Management

1 5 10 20
0

20

40

60

80

PWS (min)

T
im

e
(m

in
)

WPBhNN WPSDL
BhNN

(a) NASA Trace

1 5 10 20
0

50

100

150

PWS (min)

T
im

e
(m

in
)

WPBhNN WPSDL
BhNN

(b) Calgary Trace

1 5 10 20
0

200

400

PWS (min)

T
im

e
(m

in
)

WPBhNN WPSDL
BhNN

(c) Saskatchewan Trace

FIGURE 6.8 Training time (min) of non-directed and self-directed predictive frame-
works on short term forecasts of web server workloads

and provides estimations close to actual workload information. The presence of noise
in the forecasts is modeled using the autocorrelation in forecast residuals and it is
evident from Fig. 6.16 that the forecasts are noisy due to the fact of the presence of
spikes in the workload information. The forecast accuracy of the proposed approaches
is listed in Table 6.3.

The study observed a relative improvement of 107.34% and 33.64% corresponding
to 30 and 60-minute window size on D4. Similarly, 62.43% and 0.93% on D5 for 30
and 60-minute window size respectively. It was noticed that the forecast accuracy
decreases as the length of the prediction window increases. The network training time
is also compared and WPBhNN consumes less time as compare to WPSDL

BhNN as shown
in Table 6.4.

6.5 COMPARATIVE & STATISTICAL ANALYSIS

This section compares the performance of both predictive frameworks with state-of-
the-art approaches followed by statistical analysis on comparisons. Deep learning,

Self Directed Learning � 109

Samples

1000 2000 3000 4000 5000 6000 7000 8000

W
o
rk

lo
a
d

×10
4

0

0.5

1

1.5

2
Actual Workload

Forecasts

(a) CPU Trace
Samples

1000 2000 3000 4000 5000 6000 7000 8000

W
o
rk

lo
a
d

-2000

0

2000

4000

6000

8000

10000
Actual Workload

Forecasts

(b) Memory Trace

Samples

500 1000 1500 2000 2500

W
o
rk

lo
a
d

0

10

20

30

40

50

60

70

80
Actual Workload

Forecasts

(c) PlanetLab Trace

FIGURE 6.9 Cloud server workload prediction results of self-directed learning predic-
tive framework on 5-minute prediction interval [82]

differential evolution, and backpropagation-based prediction models are used to
conduct the comparative study. In general, deep learning can be thought of as
an extension of machine learning. The term deep refers to the usage of multiple
hidden layers in the network. A number of predictive frameworks are developed using
different architectures of deep neural networks such as recurrent neural networks. The
performance of the self-directed learning-based algorithm is compared with [71,137].
Differential Evolution is a numerical optimizer developed by Storn and Price [105].
It encodes the solutions in the form of vectors and manipulates them to explore the
search space for a better solution. A large number of variants of the algorithms are
available and one such popular variant is used for the purpose of the comparison [74].
As opposed to the differential evolution which is a population-based search algorithm,
the backpropagation uses a single solution in the search and finds a better solution by
propagating the error feedback which is computed using the concept of gradient [104].

Tables 6.5-6.10 list out the forecast accuracy and compare them for every data-
trace. The results observed the superiority in the performance of self-directed learning-

110 � Machine Learning for Cloud Management

Lags

0 5 10 15 20

A
u
to

c
o
rr

e
la

ti
o
n

-0.2

0

0.2

0.4

0.6

0.8

1

(a) CPU Trace
Lags

0 5 10 15 20

A
u
to

c
o
rr

e
la

ti
o
n

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Memory Trace

Lags

0 5 10 15 20

A
u
to

c
o
rr

e
la

ti
o
n

-0.2

0

0.2

0.4

0.6

0.8

1

(c) PlanetLab Trace

FIGURE 6.10 Cloud server workload prediction residuals auto-correlation of self-
directed learning predictive framework on 5-minute prediction interval [82]

TABLE 6.1 Mean squared error of non-directed and self-directed predictive frameworks
on short term forecasts of cloud server workloads

PWS WPBhNN WPSDL
BhNN

(min) D4 D5 D4 D5 D6

1 9.260E-04 2.480E-04 5.140E-04 2.190E-04 -
5 2.190E-03 4.910E-03 1.190E-03 2.400E-03 1.040E-02
10 3.590E-03 8.560E-03 1.800E-03 3.410E-03 1.210E-02
20 6.280E-03 1.360E-02 3.840E-03 6.910E-03 1.310E-02

based algorithms. For better understanding, the error reduction ratio is computed
using MSERED = MSEOLD −MSENEW/MSEOLD ∗ 100, where MSERED, MSENEW, and
MSEOLD indicate the percentage reduction between the MSE of new and old (state
of art) approaches. For instance, on NASA trace the maximum relative reduction

Self Directed Learning � 111

TABLE 6.2 Training time (min) of non-directed and self-directed predictive frameworks
on short term forecasts of cloud server workloads

PWS WPBhNN WPSDL
BhNN

(min) D4 D5 D4 D5 D6

1 41.86 40.84 60.61 60.3 NA
5 1.10 8.11 11.86 12.1 4.11
10 0.55 3.94 6.03 5.87 2.1
20 2.10 0.22 2.99 2.96 1.05

is up to 36.340%, 64.670%, 83.040%, and 98.640% over deep learning, non-directed
blackhole learning, self-adaptive differential evolution, and backpropagation based
models. Similarly, the Calgary trace forecasts notice the relative reduction up to
21.050%, 59.730%, 9.450%, and 99.090%, and the Saskatchewan trace notice reduction

Samples

200 400 600 800

W
o
rk

lo
a
d

0

1000

2000

3000

4000

5000

6000
Actual Workload

Forecasts

(a) NASA Trace
Samples

500 1000 1500

W
o
rk

lo
a
d

0

200

400

600

800

1000
Actual Workload

Forecasts

(b) Calgary Trace

Samples

1000 2000 3000 4000 5000

W
o
rk

lo
a
d

0

500

1000

1500

2000
Actual Workload

Forecasts

(c) Saskatchewan Trace

FIGURE 6.11 Web server workload prediction results of self-directed learning predictive
framework on 60-minute prediction interval [82]

112 � Machine Learning for Cloud Management

Lags

0 5 10 15 20

A
u
to

c
o
rr

e
la

ti
o
n

-0.2

0

0.2

0.4

0.6

0.8

1

(a) NASA Trace
Lags

0 5 10 15 20

A
u
to

c
o
rr

e
la

ti
o
n

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Calgary Trace

Lags

0 5 10 15 20

A
u
to

c
o
rr

e
la

ti
o
n

-0.2

0

0.2

0.4

0.6

0.8

1

(c) Saskatchewan Trace

FIGURE 6.12 Web server workload prediction residuals auto-correlation of self-directed
learning predictive framework on 60-minute prediction interval [82]

up to 81.920%, 72.110%, 94.350%, and 99.580% over state of art models. On cloud
workloads, the maximum reduction in the error is noticed up to 51.770%, 39.390%,
and 89.610% for CPU trace while 60.160%, 25.550%, and 88.880% for a Memory
trace. Furthermore, the error reduction up to 99.990% is observed on PlanetLab cpu
utilization trace forecasts. These results are further statistically analyzed to ensure
the correctness of the results.

The statistical test is conducted using the Friedman test [41] which conducts
multiple test comparisons to find out the significant difference in the results. It
computes a rank for each result to compare the forecast quality and corresponding
results are shown in Table 6.11. The self-directed learning-based predictive model
gets the better rank among these models. However, the deep learning-based model
gets a better rank on the forecast of Calgary trace. Moreover, the Friedman test
statistics (χ2 and p-value) are shown in Table 6.12, where it can be seen that the null
hypothesis of the test is rejected for ℵ = 0.05 meaning that the results are statistically
different.

Self Directed Learning � 113

30 40 50 60
0

1

2

3 ·10−2

PWS (min)

M
SE

WPBhNN WPSDL
BhNN

(a) NASA Trace

30 40 50 60
0

1

2

3 ·10−2

PWS (min)

M
SE

WPBhNN WPSDL
BhNN

(b) Calgary Trace

30 40 50 60
0

0.5

1

·10−2

PWS (min)

M
SE

WPBhNN WPSDL
BhNN

(c) Saskatchewan Trace

FIGURE 6.13 Mean squared error of non-directed and self-directed predictive frame-
works on long term forecasts of web server workloads

Unfortunately, the Friedman test is unable to identify the significant difference
between the two results. The Wilcoxon signed-rank test helps in checking if the two
results are significantly different or not. This test performs a series of pairwise tests
and calculates the positive and negative mean rankings which are denoted as R+

WC and
R−WC respectively. The corresponding results are listed in Table 6.13, where - (hyphen)
indicates that either value is not computed or is not available. The self-directed
learning-based predictive framework achieves better results over its competitors since
the test rejects the null hypothesis on a significance level of 0.05.

In this chapter, we have discussed the self-directed learning-based predictive
model which learns from its previous mistakes. The underlying learning algorithm is
blackhole optimization. The advantage of the learning algorithm is that its performance
is independent of any internal parameter optimization such as crossover rate and
mutation rate as opposed to other population-based optimization algorithms. A
modified learning algorithm is also discussed which organizes the population into

114 � Machine Learning for Cloud Management

30 40 50 60
0

1

2

3

4

PWS (min)

T
im

e
(m

in
)

WPBhNN WPSDL
BhNN

(a) NASA Trace

30 40 50 60
0

2

4

6

PWS (min)

T
im

e
(m

in
)

WPBhNN WPSDL
BhNN

(b) Calgary Trace

30 40 50 60
0

5

10

15

PWS (min)

T
im

e
(m

in
)

WPBhNN WPSDL
BhNN

(c) Saskatchewan Trace

FIGURE 6.14 Training time (min) of non-directed and self-directed predictive frame-
works on long term forecasts of web server workloads

a set of clusters and allows to incorporate the local and global best information to
generate new solutions. Thus, the reorganization of the population and incorporation
of self-directed learning improved the forecast quality significantly.

Self Directed Learning � 115

Samples

100 200 300 400 500 600

W
o
rk

lo
a
d

×10
4

0

1

2

3

4

5

6

7

8
Actual Workload

Forecasts

(a) CPU Trace
Samples

200 400 600 800 1000 1200

W
o
rk

lo
a
d

×10
4

-1

0

1

2

3

4
Actual Workload

Forecasts

(b) Memory Trace

Samples

50 100 150 200

W
o
rk

lo
a
d

0

50

100

150

200

250

300

350

400
Actual Workload

Forecasts

(c) PlanetLab Trace

FIGURE 6.15 Cloud server workload prediction results of self-directed learning predic-
tive framework on 60-minute prediction interval [82]

116 � Machine Learning for Cloud Management

Lags

0 5 10 15 20

A
u
to

c
o
rr

e
la

ti
o
n

-0.2

0

0.2

0.4

0.6

0.8

1

(a) CPU Trace
Lags

0 5 10 15 20

A
u
to

c
o
rr

e
la

ti
o
n

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Memory Trace

Lags

0 5 10 15 20

A
u
to

c
o
rr

e
la

ti
o
n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c) PlanetLab Trace

FIGURE 6.16 Cloud server workload prediction residuals auto-correlation of self-
directed learning predictive framework on 60-minute prediction interval [82]

Self Directed Learning � 117

TABLE 6.3 Mean squared error of non directed and self-directed predictive frameworks
on long term forecasts of cloud server workloads

PWS WPBhNN WPSDL
BhNN

(min) D4 D5 D4 D5 D6

30 1.130E-02 1.150E-02 5.450E-03 7.080E-03 1.430E-02
40 7.640E-03 1.460E-02 8.420E-03 8.760E-03 1.460E-02
50 1.210E-02 1.120E-02 8.480E-03 1.170E-02 1.640E-02
60 1.430E-02 1.090E-02 1.070E-02 1.080E-02 1.640E-02

TABLE 6.4 Training time (min) of non-directed and self-directed predictive frameworks
on long term forecasts of cloud server workloads

PWS WPBhNN WPSDL
BhNN

(min) D4 D5 D4 D5 D6

30 1.41 1.30 1.99 1.97 0.68
40 0.17 0.98 1.48 1.49 0.52
50 0.10 0.79 1.19 1.19 0.41
60 0.70 0.65 0.98 1.00 0.33

TABLE 6.5 Mean squared error comparison of non-directed and self-directed learning
based models’ NASA Trace forecasts with state-of-art models [82]

PWS (min) WPSDL
BhNN LSTM WPBhNN SaDE BPNN

1 1.090E-02 1.310E-02 2.140E-02 1.690E-04 2.430E-01
5 4.120E-03 4.790E-03 8.450E-03 1.000E-02 3.020E-01
10 4.240E-03 6.660E-03 1.200E-02 2.500E-02 2.820E-01
20 4.710E-03 7.010E-03 7.780E-03 2.500E-02 3.380E-01
30 5.060E-03 6.430E-03 9.060E-03 2.020E-02 2.780E-01
60 8.570E-03 5.590E-03 2.310E-02 2.020E-02 3.340E-01

TABLE 6.6 Mean squared error comparison of non-directed and self-directed learning
based models’ Calgary Trace forecasts with state-of-art models [82]

PWS (min) WPSDL
BhNN LSTM WPBhNN SaDE BPNN

1 2.700E-03 3.420E-03 6.030E-03 2.790E-03 2.970E-01
5 4.600E-03 4.100E-03 5.990E-03 5.080E-03 2.900E-01
10 5.960E-03 6.110E-03 1.480E-02 6.060E-03 2.870E-01
20 7.380E-03 5.990E-03 1.250E-02 7.790E-03 2.780E-01
30 1.030E-02 7.120E-03 1.780E-02 1.020E-02 5.000E-01
60 1.130E-02 8.030E-03 1.970E-02 1.170E-02 2.970E-01

118 � Machine Learning for Cloud Management

TABLE 6.7 Mean squared error comparison of non-directed and self-directed learning
based models’ Saskatchewan Trace forecasts with state-of-art models [82]

PWS (min) WPSDL
BhNN LSTM WPBhNN SaDE BPNN

1 9.040E-04 5.000E-03 1.610E-03 1.000E-06 4.020E-02
5 1.420E-03 3.170E-03 2.510E-03 4.000E-06 3.370E-01
10 2.410E-03 5.260E-03 5.550E-03 2.500E-02 2.900E-01
20 2.460E-03 5.560E-03 8.820E-03 3.840E-02 3.180E-01
30 2.470E-03 4.790E-03 8.030E-03 4.370E-02 5.070E-01
60 4.550E-03 4.500E-03 9.300E-03 2.890E-02 2.860E-01

TABLE 6.8 Mean squared error comparison of non-directed and self-directed learning
based models’ CPU Trace forecasts with state-of-art models [82]

PWS (min) WPSDL
BhNN WPBhNN SaDE BPNN

1 5.140E-04 9.260E-04 8.480E-04 4.410E-03
5 1.190E-03 2.190E-03 1.680E-03 8.750E-03
10 1.800E-03 3.590E-03 2.470E-03 1.420E-02
20 3.840E-03 6.280E-03 4.020E-03 2.600E-02
30 5.450E-03 1.130E-02 5.490E-03 4.370E-02
60 1.070E-02 1.430E-02 1.030E-02 1.030E-01

TABLE 6.9 Mean squared error comparison of non-directed and self-directed learning
based models’ Memory Trace forecasts with state-of-art models [82]

PWS (min) WPSDL
BhNN WPBhNN SaDE BPNN

1 2.190E-04 2.480E-04 2.350E-04 1.970E-03
5 2.400E-03 4.910E-03 2.230E-03 1.910E-02
10 3.410E-03 8.560E-03 4.080E-03 2.480E-02
20 6.910E-03 1.360E-02 5.540E-03 4.800E-02
30 7.080E-03 1.150E-02 9.510E-03 5.160E-02
60 1.080E-02 1.090E-02 1.180E-02 8.770E-02

TABLE 6.10 Mean squared error comparison of self-directed learning-based model’s
PlanetLab Trace forecasts with deep learning model [82]

PWS (min) WPSDL
BhNN Deep Learning

5 1.040E-02 8.410E+01
15 1.330E-02 9.290E+01
30 1.430E-02 1.060E+02
60 1.640E-02 9.940E+01

Self Directed Learning � 119

TABLE 6.11 Friedman test ranks of non-directed, self-directed, LSTM, SaDE, and
backpropagation based predictive models [82]

Prediction Model D1 D2 D3 D4 D5

WPSDL
BhNN 1.33 1.83 1.50 1.17 1.33

LSTM 2.00 1.67 2.50 - -
WPBhNN 3.33 4.00 3.00 3.00 2.83
SaDE 3.33 2.50 3.00 1.83 1.83
BPNN 5.00 5.00 5.00 4.00 4.00

TABLE 6.12 Friedman test statistics of non-directed and self-directed learning predic-
tive frameworks [82]

D1 D2 D3 D4 D5

χ2 19.200 20.133 15.600 17.000 15.000
p 0.001 0.000 0.004 0.001 0.002

TABLE 6.13 Wilcoxon signed test ranks for self-directed learning predictive frame-
work [82]

WPSDL
BhNN D1 D2 D3 D4 D5

LSTM
R−WC 6.00 17.00 1.00 - -
R+

WC 15.00 4.00 20.00 - -
p-value 0.345 0.173 0.046 - -

WPBhNN

R−WC 0.00 0.00 0.00 0.00 0.00
R+

WC 21.00 21.00 21.00 21.00 21.00
p-value 0.028 0.028 0.028 0.028 0.028

SaDE
R−WC 2.00 2.50 3.00 4.00 7.00
R+

WC 19.00 18.50 18.00 17.00 14.00
p-value 0.075 0.093 0.116 0.173 0.463

BPNN
R−WC 0.00 0.00 0.00 0.00 0.00
R+

WC 21.00 21.00 21.00 21.00 21.00
p-value 0.028 0.028 0.028 0.028 0.028

http://www.taylorandfrancis.com

C H A P T E R 7

Ensemble Learning

Ensemble learning considers the opinion of many-fold models while making
a decision in solving computationally intelligent problems. This chapter dis-

cusses two forecasting approaches developed using Extreme Learning Machine (ELM)
algorithm which was introduced by Guang-Bin Huang [51].

7.1 EXTREME LEARNING MACHINE

An ELM is a network learning algorithm that learns the synaptic connection weights
in a single step. The weights corresponding to the input-hidden layer are randomly
initialized and hidden-output layer weights are obtained by computing the Moore-
Penrose inverse. Whereas, an ELM network is a feed-forward neural network trained
by an ELM algorithm for different tasks such as prediction, detection, classification,
clustering, and many others. The term ELM is interchangeably used for the learning
algorithm and network trained by an ELM. The extreme learning machine networks
of large scale are claimed to be several hundred times faster than iterative learn-
ing schemes such as backpropagation due to the fact that they learn the network
parameters in a single step as opposed to iterative learning processes.

Let ω and ω̃ be the weight matrices corresponding to the input-hidden layer
connections and hidden-output layer connections respectively. If m paired data
samples (κj , ςj) are used for training given κj ∈ Rn and ςj ∈ R, mathematically
ELM can be formulated as given in eq. (7.1), where ωi ∈ Rp represents the weights
corresponding to the connections from input neurons to ith hidden neuron, bi ∈ R
represents the weight corresponding to the connection from bias neuron to ith hidden
neuron, ω̃ik ∈ R represents the connection weight between ith hidden neurons and
kth output neuron, dot (·) operator represents the inner product, ζ represents the
activation function (commonly sigmoid function), and ςj ∈ R represents the output
value of the network.

q∑
k=1

p∑
i=1

ω̃ik × ζ (ωi · κj + bi) = ςj , j = 1, · · ·,m (7.1)

DOI: 10.1201/9781003110101-7 121

https://doi.org/10.1201/9781003110101-7

122 � Machine Learning for Cloud Management

7.2 WORKLOAD DECOMPOSITION PREDICTIVE FRAMEWORK

The prediction approach extracts the resource demand traces from raw data and
aggregates them in per unit time interval. The difference operation is performed over
the aggregated traces to reduce the non-linearity. The order of difference operation is
determined using the ARIMA [60] process followed by rescaling of the traces. The
preprocessed workload trace is decomposed into different components and distinct
networks are trained for each component as shown in Fig. 7.1. The estimations of
each network are combined to anticipate the future workload information.

Workload

Forecast

Workload
Trace

Remainder

Seasonal

Trend

Preprocesssing

ELM

ELM

ELM

Forecast
Aggregation

Decompose

FIGURE 7.1 Decomposition based predictive framework

7.2.1 Framework Design

The workload trace is decomposed into three distinct components i.e. seasonal, trend,
and remainder using seasonal decomposition [27], and seasonality is detected using
Fourier transforms. Let xst , xtt, and xrt be the seasonal, trend, and remainder compo-
nents respectively corresponding to xt. The sum of all these components define the
actual workload i.e. xt = xst + xtt + xrt . Figure 7.2 renders the decomposition of CPU
trace. Before decomposition, the trace is preprocessed using difference and min-max
rescaling. The differential transformation can be explained as the difference between
resource demand at time t and t − 1. The value of difference order (d) is obtained
by analyzing the workload trace using the ARIMA process. The workload trace is
rescaled using eq. 7.2, where Xnorm, Xmax, and Xmin are normalized, maximum and
minimum values of workload trace respectively.

Xnorm = X −Xmin

Xmax −Xmin
(7.2)

Input to the predictor model is a sequence of n past and lagged resource demands.
Each network of the prediction model is composed of a three-layered extreme learning
machine. The single output node neural network can be interpreted as a non-linear
function of input values. The accuracy of predictions made by extreme learning
machines can be affected by numerous parameters such as the number of input
nodes, hidden neurons, and the size of training data. The number of input nodes is

Ensemble Learning � 123

FIGURE 7.2 Decomposition of CPU requests trace [79]

approximated using auto ARIMA process. Table 7.1 lists the obtained parameters on
original and differenced traces. Since the transformation order in each case is not more
than 5, the input nodes must be close to 5. Thus, three different values 2, 5, and 10 are
chosen for the number of input neurons. The selection of the number of hidden nodes
is another critical issue in neural networks. Three different values for a number of
hidden neurons are selected randomly. The details of opted values for all parameters
are shown in Table 7.2. An experiment list is designed using these parameters’ values
through the D-Optimal Design method [32]. The prediction model is trained for each
of the experiments listed in Table 7.3. After training, the machine is examined over
unseen patterns. The mean prediction error (MPE) metric is used to evaluate the
performance of the prediction model. Further predicted amounts of resources can
be fed into the resource manager of the data center. These inputs can be utilized in
the decision-making process regarding resource scaling. Thus SLA violations can be
reduced by scaling resources in advance before actual demand arrives. An operational
summary of the framework is given in Algorithm 7.1.

124 � Machine Learning for Cloud Management

TABLE 7.1 ARIMA analysis orders for cloud resource demand traces [79]

Moving
Trace Autoregression Integration average
CPU Trace 3 1 5
CPU Trace (after first order difference) 3 0 5
Memory Trace 1 1 2
Memory Trace (after first order difference) 1 0 2

TABLE 7.2 Network configuration parameter choices for decomposition predictive
framework [79]

Input Nodes Hidden Nodes Training Sample Size (%)
2 5 50
5 7 65
10 10 80

TABLE 7.3 List of experiments selected by D-Optimal Design [79]

Exp No Input Node Hidden Node Training Data Size (%)
EXP-1 2 10 50
EXP-2 5 5 50
EXP-3 10 10 50
EXP-4 2 5 80
EXP-5 5 10 65
EXP-6 10 7 65
EXP-7 2 10 80
EXP-8 5 7 80
EXP-9 10 5 80
EXP-10 10 10 80

Ensemble Learning � 125

Algorithm 7.1 Pseudocode for WPELMNN predictive framework
1: Read workload trace (x)
2: Apply decomposition [xs, xt, xr] = Decomposition(x)
3: Prepare input data according to n for all components
4: for each workload component k = {xs, xt, xr} do
5: ωεk = rand(n+ 1, p)
6: ω̃εk = h̄ε

†
kτ

7: end for
8: /* Forecast evaluation on test data */
9: for each workload component k = {xs, xt, xr} do

10: for each data sample t = {1, 2, . . . ,m} do
11: x̂st = εxs(xst−1, x

s
t−2, . . . , x

s
t−n)

12: x̂tt = εxt(xtt−1, x
t
t−2, . . . , x

t
t−n)

13: x̂rt = εxr (xrt−1, x
r
t−2, . . . , x

r
t−n)

14: x̂t = x̂st + x̂tt + x̂rt
15: ξt = xt − x̂t
16: end for
17: end for

7.3 ELM ENSEMBLE PREDICTIVE FRAMEWORK

The single predictor is not always suitable for different types of workloads i.e. different
predictors suit different workloads. The ensemble learning approach uses a combination
of prediction models to calculate the final outcome. The ensemble model combines the
forecast of the individual prediction model using a voting engine. Figure 7.3 shows
the conceptual framework of a prediction model based on ensemble learning.

ε1

ε2

...

εk−1

εk

Models

Le
ar

ni
ng

D
at

a

Live Data

x̂ε1

x̂ε2

...

x̂εk−1

x̂εk

Forecast

V
ot

in
g

En
gi

ne

x̂

Final Decision

FIGURE 7.3 A conceptual view of ensemble stacking [81]

126 � Machine Learning for Cloud Management

7.3.1 Ensemble Learning

The ensemble framework is composed of k multilayered neural networks or base
experts. Every network consists of n, p, and q neurons arranged in input, hidden,
and output layers respectively. The networks use ζ(•) as an activation function at
the hidden layer. Every base expert learns the synaptic connection weights using
an extreme learning machine algorithm. An ELM selects the input to hidden layer
connection weights randomly and hidden to output layer connection weights are
calculated analytically [59]. The algorithm finds these connection weights by solving
a general linear system. Moreover, the ELM algorithm is very popular for its speed
and the ability of universal approximation [51].

Let κ = {(κj , ςj)|κj ∈ Rn, ςj ∈ R} be a set of workload patterns, every workload
pattern is a combination of workload values of length of learning window. For
instance, κj is a combination of [xj−1, xj−2, . . . , xj−n] provided that the length of
learning window in n. The data creation process is shown in eq. (7.3). Further, let
ωεk
i = [ωεk

1i , ω
εk
2i , . . . , ω

εk
ni] be the synaptic connection weights between input neurons

and ith hidden neuron of εk and bεk
i be the connection weight of bias to hεk

i (ith hidden
neuron of εk). The input to the output neurons i.e. the activation of hidden neurons
can be computed as h̄εk

i (κj) = ζ(ωεk
i · κj + bεk

i), which is the output of hεk
i on κj . Let

ω̃εk
i = [ω̃εk

i1 , ω̃
εk
i2 , . . . , ω̃

εk
iq]T be the set of synaptic connection weights between hεk

i and
output neurons. Given the above-mentioned definitions, the forecast corresponding to
jth workload pattern can be obtained as shown in eq. (7.4).

κ =

x1 x2 · · · xn
x2 x3 · · · xn+1
...

...
xm xm+1 · · · xn+m−1

xn+1
xn+2

...
xn+m

 (7.3)

ς̂j
εk =

p∑
i=1

ω̃εk
i × ζ(ω

εk
i · κj + bεk

i); ∀j ∈ {1, 2, . . . ,m} (7.4)

Let ς̂εk be the set of forecast values generated by an expert εk which can be
obtained using eq. (7.4), where

∑p
i=1 ω̃

εk
i × h̄

εk
i (κj) can be written as ω̃εk × h̄εk . Here,

h̄εk represents the hidden layer output and can be calculated using eq. (7.5). If a
system can observe the values of ωεk , ω̃εk , and bεk such that ς̂jεk = ςj for all m data
patterns then the observed forecasts are generated with no error. Thus, the minimum
squared prediction error can be calculated using min

ω̃εk
‖ω̃εkh̄εk − ς‖2.

h̄εk =

h̄εk(κ1)
h̄εk(κ2)

...
h̄εk(κm)

 =

h̄εk

1 (κ1) h̄εk
2 (κ1) · · · h̄εk

p (κ1)
h̄εk

1 (κ2) h̄εk
2 (κ2) · · · h̄εk

p (κ2)
...

...
h̄εk

1 (κm) h̄εk
2 (κm) · · · h̄εk

p (κm)

 (7.5)

An ELM algorithm solves a general linear system to learn the weights (ω̃εk)
corresponding to the synaptic connections from hidden and output neurons of εk.
The algorithm approximates ω̃εk by randomly generating the weights from input

Ensemble Learning � 127

and bias neurons to hidden neurons and then finds least-square solution for general
linear system h̄εk · ω̃εk = ς as shown in eq. (7.6), where Ω̃εk and h̄ε

†
k are the least

square solutions with minimum norm and uniqueness, and Moore-Penrose generalized
inverse of a matrix h̄εk respectively [81]. Every expert generates the forecasts after
approximating the connection weights which are further weighted using a voting
engine, where a heuristic-based approach assigns the weights (αεk) for every expert
forecast.

Ω̃εk = h̄ε
†
kς (7.6)

7.3.2 Expert Architecture Learning

The performance of a neural network highly depends on various parameters such as
number of layers, number of neurons in each layer, connections between neurons,
learning algorithm, etc. The ensemble-based predictive framework uses k neural
networks which are composed of n, p, and q neurons arranged in input, hidden, and
output layers as depicted in Fig. 7.4. The framework uses the networks having a fixed
number of layers and the number of neurons in the output layer. Furthermore, the
framework learns the number of neurons in input and hidden layers.

x1 x2 . . . xn

Learning Window

i11 i12 . . . i1n

h11 h12 . . . h1p

o1

ω
ε1
11 ω

ε
112

ω
ε
1

21

ω ε
12

p

ω
ε 1

n
2

ω
ε1
np

ω̃ ε111

ω̃
ε

121

ω̃
ε 1

p
1

x̂
ε1t+

1

i21 i22 . . . i2n

h21 h22 . . . h2p

o1

ω
ε2
11 ω

ε
212

ω
ε
2

21

ω ε
22

p

ω
ε 2

n
2

ω
ε2
np

ω̃ ε211

ω̃
ε

221

ω̃
ε 2

p
1

x̂
ε2t+

1

. . .

. . .

. . .

ik1 ik2 . . . ikn

hk1 hk2 . . . hkp

o1

ω
εk
11 ω

ε
k12

ω
ε k

21

ω ε
k2

p

ω
ε k

n
2

ω
ε2
np

ω̃ ε
k11

ω̃
ε

k21

ω̃
ε k

p
1

x̂
ε

k
t+

1

FIGURE 7.4 An ensemble of ELMs in workload prediction [81]

128 � Machine Learning for Cloud Management

The number of input neurons is selected as per the data characteristics which
means for data traces having different properties the framework may use a different
number of input neurons. The framework obtains a suitable number of input neurons
by modeling the auto-correlation of data-trace. The auto-correlation helps in finding
the number of historical values that could be helpful in forecasting as it explains the
internal association across the observations of a time series indexed data-trace. Let
RX be the auto-correlation of a data-trace, say X. First, the framework finds the
auto-correlation for the first 40 time lags (L) as shown in eq. (7.7), where the term
autocorr represents a function named autocorr which returns the auto-correlation
for first L time lags. The term L is generic and any value can be chosen. Later, Υ is
applied to the observed auto-correlation which returns the first lag with insignificant
auto-correlation (eq. (7.8)), where T% defines the threshold to determine the significant
auto-correlation. If there is no time lag obtained with insignificant threshold, the
data trace is differentiated and the same process is repeated up to d (difference order)
times. Otherwise, the obtained lag with insignificant threshold represents the number
of input neurons in the network as shown in Fig. 7.5.

RX = autocorr(X,L) (7.7)

sl = Υ ((|RX |≤ T%), 1) (7.8)

Workload Trace (Y)

Compute
Autocorrelation

SigL = Gamma((|Ry|
<Te),1) SigL == 0 n=SigL

Compute Difference
(Y,1)

Difference? n=L

No

Yes

Yes

No

FIGURE 7.5 Input node selection

The framework also learns the suitable number of hidden neurons using three
different heuristics (fix, linear, and random) as shown in eq. (7.9), where pmax and
pmin are the maximum and minimum number of neurons in the hidden layer. The
fix scheme suggests keeping a fixed number of neurons same as the mean of pmax
and pmin. The linear scheme suggests keeping the minimum number of neurons in
the first expert and then increase the number of hidden neurons of εk by k. Whereas,
the random scheme advocates randomly select the number of hidden neurons in
[pmin, pmax]. An experimental analysis advocates selecting the hidden neurons using
a linear scheme.

Ensemble Learning � 129

pεk =

pmin + k, Linear
randi[pmin, pmax], Random
b(pmin + pmax)/2c, Fix

(7.9)

7.3.3 Expert Weight Allocation

In an ensemble-based predictive framework, the choice of weights associated with
the individual expert systems significantly impacts the performance. Therefore, an
intelligent model should choose the weights carefully. The ELM-based ensemble model
finds out the set of suitable weights using one of the nature-inspired algorithms
i.e. blackhole optimization algorithm. The population-based optimization algorithm
reduces the chances of getting it stuck in local optima as in the case of gradient-based
approaches. Moreover, it becomes a better choice if the optimization algorithm is
simple and does not use a lot of parameters. Surprisingly, the blackhole optimization
algorithm lives up to these factors.

Let si = [αε1
i , α

ε2
i , . . . , α

εk
i] be the ith candidate solution of the pool S which is

composed of N such solutions. The term αεk
i represents the weight corresponding to

the εk. Any solution is randomly generated such that αεj

i ∈ [0, 1],∀j = {1, 2, . . . , k}
and

∑k
j=1 α

εj

i = 1. Let x̂si
t =

∑k
j=1 α

εj

i × x̂
εj

t be the weighted forecast value of an
ensemble of k networks. The fitness value of si can be computed by observing the
mean squared error i.e. fsi = 1

m

∑m
t=1(x̂si

t − xt)2. As already discussed in previous
chapters, the blackhole algorithm selects a solution with least fitness value (because
the objective is to minimize the forecast error) i.e. B = min

i=1,2,...,N
fsi and marks it as a

blackhole star which guides the search process further. Further, the algorithm updates
the positions of the stars and if any solution enters into the event horizon radius of
the blackhole then it gets collapsed and a new solution is generated. The operational
summary of the framework is given in Algorithm 7.2.

130 � Machine Learning for Cloud Management

Algorithm 7.2 Pseudocode of WPeELMNN predictive framework [81]
Input: X,L,N, T%, TΞtr , TΞts , d, PWS, pmin, pmax
Output: X̂

1: Select input nodes through autocorrelation analysis
2: Prepare input data according to n
3: for each expert (εk) do
4: ωεk = rand(n, p+ 1)
5: Ω̃εk = h̄ε

†
kς

6: end for
7: S = rand(N, k)
8: fsi = 1

m

∑m
t=1(x̂si

t − xt)2

9: B = min
i=1,2,...,N

fsi

10: for each iteration do
11: for each star (si) do
12: s

′

i = si + ri × (B − si)
13: fsi

i
= 1

m

∑m
t=1(x̂si

t − xt)2

14: end for
15: Update Blackhole B
16: Compute radius of blackhole horizon ρ = fB∑N

i=1 fsi

17: for each star (si) do
18: dsi = fB − fsi

19: si =
{
Ψ if dsi <= ρ and si 6= B,
si otherwise

20: end for
21: end for
22: Compute Ξtr
23: if Ξtr > TΞtr then
24: Goto Step 3
25: end if
26: Forecast the future workload xt+1 and Compute Ξts
27: if Ξts > TΞts then
28: Goto Step 7
29: end if

7.4 SHORT TERM FORECAST EVALUATION

The behavior of forecasting approaches on short-term forecasts by measuring the
forecast accuracy of the models is evaluated and discussed in this section. The
WPELMNN conducts an experimental analysis to decide the network architecture. The
experiments are designed using the D-optimal experiment design method [32]. On
the other hand, WPeELMNN creates a simulation environment using k ∈ [10, 100], n ∈
[10, 40], p ∈ [5, 50], N = 20, G = 100, TΞtr = TΞts = 0.007, T% = 0.1 parameter settings

Ensemble Learning � 131

1 2 3 4 5 6 7 8 9 10
0

1

2

3

·10−3

Experiment Number

A
cc

ur
ac

y
PWS = 1 min PWS = 10 min PWS = 20 min

(a) CPU Trace

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

·10−3

Experiment Number

A
cc

ur
ac

y

PWS = 1 min PWS = 10 min PWS = 20 min

(b) Memory Trace

FIGURE 7.6 Network architecture analysis for short term forecast of decomposition
predictive framework

and splits the data into 70:30 ratio of training and testing data. It also learns the
network architecture through analytical observations.

First, the observations of network architecture optimization are reported. Since
WPELMNN uses 10 different network settings as listed in Table 7.3, the forecast
accuracy for all network architectures is observed and analyzed.

The ensemble learning-based predictive framework (WPeELMNN) also learns the
network architecture. The number of input neurons is decided based on the data
characteristics. If a trace has a higher number of lags with significant autocorrelation,

132 � Machine Learning for Cloud Management

-0.2

0

0.2

0.4

0.6

0.8

1

A
u

to
c
o

rr
e

la
ti
o

n

0 5 10 15 20 25 30 35 40

Lag

(a) CPU Actual (Non Differentiated)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
u

to
c
o

rr
e

la
ti
o

n

0 5 10 15 20

Lag

(b) CPU First Order Differenced

-0.2

0

0.2

0.4

0.6

0.8

1

A
u

to
c
o

rr
e

la
ti
o

n

0 5 10 15 20 25 30 35 40

Lag

(c) Memory Actual (Non Differentiated)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
u

to
c
o

rr
e

la
ti
o

n

0 5 10 15 20

Lag

(d) Memory First Order Differenced

FIGURE 7.7 CPU and Memory data-trace auto-correlation for five minutes prediction
interval [81]

the difference operator is applied to reduce the non-linearity from the data. The
maximum number of lags to be observed in these experiments is 40. Figure 7.7
shows the autocorrelation in CPU and memory demand traces and their first-order
differentiated traces. It can be observed that the autocorrelation in non-differentiated
data is present significantly up to 40 lags which is maximum for experiments whereas
in differentiated data traces the significant presence of autocorrelation is only for few
lags. Since the number of lags with significant autocorrelation defines the number of
terms that contribute more in future estimation, the value of n can be decided and
set to be the last lag with significant autocorrelation in the data trace.

As discussed in section 7.3.2, the predictive framework also learns the best suitable
hidden neuron selection scheme among three heuristics i.e. linear, random, and fixed as
shown in eq. (7.9). Figure 7.8 shows the forecast accuracy obtained by applying each
hidden node selection scheme on CPU trace. It can be observed that the fix approach
produces forecasts with similar errors, and the random selection method generates
better forecasts compared to fix. The linear scheme outperforms the other two selection

Ensemble Learning � 133

10 20 30 40 50 60 70 80 90 100

·10−3

0.
00

50
2

0.
00

49
1

0.
00

48
4

0.
00

47
6

0.
00

47
2

0.
00

46
7

0.
00

46
4

0.
00

46

0.
00

45
6

0.
00

45
3

0.
00

47
7

0.
00

47
2

0.
00

47
3

0.
00

47
2

0.
00

47
4

0.
00

47
4

0.
00

47
4

0.
00

47
6

0.
00

47
5

0.
00

47
9

0.
00

48

0.
00

47
9

0.
00

48

0.
00

48

0.
00

47
9

0.
00

47
9

0.
00

47
9

0.
00

47
9

0.
00

47
9

0.
00

48

Number of ELMs

M
SE

Linear
Random
Fix

FIGURE 7.8 Short term forecast accuracy of ensemble prediction framework on CPU
Trace

strategies when 50 or more expert machines are used to analyze the data due to the fact
that the number of hidden neurons gets increases as the number of networks increases.
For instance, when pmin = 5, pmax = 50, and k = 50 the 50th machine would have
p = 27, p = 30, and p = 55 for fix, random, and linear approaches respectively. Thus,
the performance of the approach improves as the number of hidden neurons increases.
A similar analysis is conducted for memory trace also and corresponding results are
shown in Fig. 7.9. Again, a similar trend is observed and the linear approach gives
better estimation after having enough number of experts in the ensemble.

Further, the forecast accuracy of both frameworks on different time intervals is
reported in Table 7.4. It can be seen that WPELMNN predicts the CPU Trace with
low forecast errors as compared to WPeELMNN. On the other hand, Memory Trace is
better modeled by WPeELMNN as it produced forecasts with lower residuals.

7.5 LONG TERM FORECAST EVALUATION

The network structure optimization results for long-term forecasts are also analyzed
for all selected network structures as listed in Table 7.3. Figure 7.10 lists out the
forecast accuracy measured in MSE for CPU Trace for all different experiments. It
can be observed that a network with n = 2, p = 10, and q = 1 and 80% training data
produces the lowest forecast error for CPU Trace. A trend of increasing the forecast
error as the number of input neurons increases on the same size of training data is
also detected. The trend is independent to number of neurons in the hidden layer.
The forecast accuracy gets improved further if the size of training data is increased.
Similarly, a network with n = 5, p = 10, and q = 1 and 65% training data produces

134 � Machine Learning for Cloud Management

10 20 30 40 50 60 70 80 90 100

·10−3

0.
00

07
1

0.
00

07
1

0.
00

07

0.
00

06
9

0.
00

06
8

0.
00

06
7

0.
00

06
6

0.
00

06
6

0.
00

06
5

0.
00

06
5

0.
00

06
7

0.
00

06
7

0.
00

06
8

0.
00

06
8

0.
00

06
8

0.
00

06
9

0.
00

06
9

0.
00

06
9

0.
00

06
8

0.
00

06
9

0.
00

06
9

0.
00

06
9

0.
00

06
9

0.
00

06
9

0.
00

06
9

0.
00

06
9

0.
00

06
9

0.
00

06
9

0.
00

06
9

0.
00

06
9

Number of ELMs

M
SE

Linear
Random
Fix

FIGURE 7.9 Short term forecast accuracy of ensemble prediction framework on
Memory Trace

the lowest forecast error for Memory Trace. However, the results do not show any
trend as opposed to forecasting error on CPU Trace.

TABLE 7.4 Mean squared error of short term forecast of ELM based predictive
framework

PWS WPELMNN WPeELMNN
(min) CPU Trace Memory Trace CPU Trace Memory Trace

1 2.175E-03 6.971E-03 0.886E-03 4.640E-04
5 - - 4.530E-03 6.460E-03
10 2.204E-03 6.957E-03 2.434E-03 1.736E-03
20 2.170E-03 6.983E-03 3.852E-03 2.102E-03

The number of input neurons in WPeELMNN is selected by analyzing the number
of lags with significant autocorrelation. It is observed from autocorrelation analysis of
workload traces that autocorrelation is present significantly up to 40 lags which is
maximum for experiments whereas in differentiated data traces the significant presence
of autocorrelation is only for few lags. Since the number of lags with significant
autocorrelation defines the number of terms that contribute more in future estimation,
the value of n can be decided and set to be the last lag with significant autocorrelation
in the data trace.

Similarly, network structure optimization results for WPeELMNN on long-term
forecasts are presented. Figure 7.11 shows the forecast accuracy obtained by applying
each hidden node selection scheme on CPU trace. It can be observed that the
fix approach produces forecasts with similar errors and the random selection method
generates better forecasts compared to fix scheme. The linear scheme outperforms the

Ensemble Learning � 135

1 2 3 4 5 6 7 8 9 10
0

1

2

3

·10−3

Experiment Number

A
cc

ur
ac

y
PWS = 30 min PWS = 60 min PWS = 1 day

(a) CPU Trace

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

·10−3

Experiment Number

A
cc

ur
ac

y

PWS = 30 min PWS = 60 min PWS = 1 day

(b) Memory Trace

FIGURE 7.10 Network architecture analysis for long term forecast of decomposition
predictive framework

other two selection strategies when 50 or more expert machines are used to analyze
the data due to the fact that the number of hidden neurons get increases as the
number of networks increases. A similar analysis is conducted for memory trace also
and corresponding results are shown in Fig. 7.12. Again, a similar trend is observed
and the linear approach gives better estimation after having enough number of experts
in the ensemble.

136 � Machine Learning for Cloud Management

10 20 30 40 50 60 70 80 90 100

·10−3

0.
01

08

0.
01

03

0.
00

99
7

0.
00

96
3

0.
00

93
6

0.
00

90
4

0.
00

88
4

0.
00

86

0.
00

83
2

0.
00

81
7

0.
00

94
1

0.
00

94
5

0.
00

95
8

0.
00

94
1

0.
00

94
9

0.
00

95
8

0.
00

95
6

0.
00

96
1

0.
00

94
8

0.
00

95
7

0.
00

97
5

0.
00

96
7

0.
00

97
1

0.
00

97
2

0.
00

98

0.
00

96
8

0.
00

97
2

0.
00

97
8

0.
00

97
6

0.
00

97
6

Number of ELMs

M
SE

Linear
Random
Fix

FIGURE 7.11 Long term forecast accuracy of ensemble prediction framework on CPU
Trace

10 20 30 40 50 60 70 80 90 100

·10−3

0.
00

89
8

0.
00

81
9

0.
00

77
5

0.
00

73

0.
00

71
2

0.
00

68
4

0.
00

66
4

0.
00

64
6

0.
00

62
1

0.
00

6

0.
00

76
7

0.
00

75
3

0.
00

72
7

0.
00

73
3

0.
00

73
4

0.
00

73
6

0.
00

70
5

0.
00

72
3

0.
00

73

0.
00

73
4

0.
00

74
9

0.
00

74
7

0.
00

73
8

0.
00

73
9

0.
00

74
6

0.
00

74
6

0.
00

74
6

0.
00

74
3

0.
00

74
3

0.
00

74
2

Number of ELMs

M
SE

Linear
Random
Fix

FIGURE 7.12 Long term forecast accuracy of ensemble prediction framework on
Memory Trace

Further, the forecast accuracy of both frameworks on different long-term intervals
is reported in Table 7.5. It can be seen that WPELMNN predicts the CPU Trace with
low forecast errors as compared to WPeELMNN. On the other hand, Memory Trace is
better modeled by WPELMNN and WPeELMNN as lower residual forecasts are produced
by both models for 30 and 60-minute intervals respectively.

Ensemble Learning � 137

TABLE 7.5 Mean squared error of long term forecast of ELM based predictive frame-
work

PWS WPELMNN WPeELMNN
(min) CPU Trace Memory Trace CPU Trace Memory Trace

30 2.162E-03 6.987E-03 8.930E-03 7.070E-03
60 2.162E-03 6.959E-03 8.170E-03 6.000E-03

7.6 COMPARATIVE ANALYSIS

The performance of both predictive frameworks is compared with the state-of-the-art
approaches. Differential evolution, blackhole optimization, support vector regression,
ARIMA, linear regression, and backpropagation-based predictive models from the
state of art are used for comparison.

Differential Evolution is a numerical optimizer developed by Storn and Price [105].
It encodes the solutions in the form of vectors and manipulates them to explore
the search space for a better solution. A large number of variants of the algorithms
are available and one such popular variant is used for the purpose of the compari-
son [74]. The forecast accuracy of the frameworks is also compared with the predictive
frameworks that are trained with blackhole neural networks and its variants. Support
Vector Regression (SVR) is a supervised learning algorithm that uses an estimation
function for training. It creates flexible symmetrical boundaries with a minimum radius
around the function and equally penalizes the incorrect estimations. The forecast
accuracy of the proposed frameworks is compared with SVR having a parameter grid
of cost=100 and gamma=0.0001. In addition, the forecast accuracy on CPU utilization
of Google cluster trace is also compared with SVR based prediction model [10]. Linear
regression models the relationship among variables using linear prediction models. It
has explanatory and dependent variables. A simple linear regression approach is used
to compare the forecast accuracy of the predictive frameworks. As opposed to the
population-based search algorithm, the backpropagation uses a single solution in the
search and finds the better solution by propagating the error feedback which is com-
puted using the concept of gradient [104]. ARIMA is composed of three components
viz. Autoregression (AR), Integration (I), and Moving Average (MA). The ARIMA
process is a good choice to model non-stationary time series. The ARIMA process
integrates the non-stationary data to transform into stationary data by applying the
difference operator.

The forecast accuracy on CPU trace is compared using mean squared error and
results are listed in Table 7.6. It can be seen that WPeELMNN significantly improves
the forecast accuracy over WPBhNN,WPBPNN, ARIMA, SVR, and LR-based forecasts.
It also achieves better forecasts as compared to WPSaDE except 1 and 30-minute
prediction intervals. However, it is unable to produce better forecasts than WPSDL

BhNN
except 60-minute interval forecast. On the other hand, WPELMNN improves the forecast
quality as compare to other prediction methods and produces the best forecasts. For

138 � Machine Learning for Cloud Management

instance, it observes a relative reduction in forecast error up to 313.43% and 395.37%
against WPeELMNN and WPSDL

BhNN respectively.

TABLE 7.6 Forecast accuracy comparison of ELM based predictive models on CPU
trace with state-of-art models

PWS
(min) WPELMNN WPeELMNN WPSDL

BhNN WPBhNN SaDE BPNN ARIMA SVR LR

1 2.17E-3 8.86E-4 5.14E-4 9.26E-4 8.48E-4 4.41E-3 5.94E-1 1.05E0 1.03E0
10 2.20E-3 2.43E-3 1.80E-3 3.59E-3 2.47E-3 1.42E-2 9.98E-1 7.16E-1 7.18E-1
20 2.17E-3 3.85E-3 3.84E-3 6.28E-3 4.02E-3 2.60E-2 9.96E-1 6.04E-1 6.29E-1
30 2.16E-3 8.17E-3 5.45E-3 1.13E-2 5.49E-3 4.37E-2 8.27E-1 5.34E-1 5.66E-1
60 2.16E-3 8.93E-3 1.07E-2 1.43E-2 1.03E-2 1.03E-1 8.67E-1 6.91E-1 6.89E-1

Similarly, the forecast accuracy of the proposed predictive frameworks is compared
on Memory trace and corresponding results are tabulated in Table 7.7. From the
results, it can be noticed that both predictive frameworks outperform the prediction
schemes based on WPBhNN,WPBPNN, ARIMA, SVR, and LR approaches. It is to
note that WPELMNN outperformed the WPSaDE and WPSDL

BhNN on CPU trace but for
memory trace, it is unable to outperform these models completely. The short-term
forecasts of WPSaDE and WPSDL

BhNN on memory trace are observed to be better than
WPELMNN with relatively reduced error up to 96.86%. However, WPELMNN improves
the accuracy of long-term forecasts with a significant margin and relatively reduces
the forecast errors up to 69.59%. It should be noted that the memory trace is better
modeled by WPeELMNN framework and outperforms the other approaches except few
exceptions. These results indicate that the decomposition-based predictive framework
is unable to reduce the non-linearities from memory trace as accurately as it reduces
from CPU trace. Therefore, it could not outperform the WPeELMNN.

TABLE 7.7 Forecast accuracy comparison of ELM based predictive models on Memory
trace with state-of-art models

PWS
(min) WPELMNN WPeELMNN WPSDL

BhNN WPBhNN SaDE BPNN ARIMA SVR LR

1 6.971E-3 4.640E-4 2.19E-4 2.48E-4 2.35E-4 1.97E-3 5.06E-1 1.36E0 1.23E0
10 6.957E-3 1.736E-3 3.41E-3 8.56E-3 4.08E-3 2.48E-2 8.89E-1 9.72E-1 9.94E-1
20 6.983E-3 2.102E-3 6.91E-3 1.36E-2 5.54E-3 4.80E-2 5.81E-1 5.18E-1 5.23E-1
30 6.987E-3 7.070E-3 7.08E-3 1.15E-2 9.51E-3 5.16E-2 5.91E-1 5.27E-1 5.30E-1
60 6.959E-3 6.000E-3 1.08E-2 1.09E-2 1.18E-2 8.77E-2 6.10E-1 7.57E-1 7.55E-1

In addition, the forecast accuracy of WPeELMNN is also compared on CPU uti-
lization of Google cluster and Planet Lab traces, and results are listed in Table 7.8,
where hyphen (-) indicates that the values are not reported in respective publications.
It compares the forecast accuracy with ARIMA and SVR-based prediction schemes
using relative mean absolute error on CPU utilization of Google cluster trace and
it can be observed that WPeELMNN produces forecasts with better accuracy. The
proposed framework observes the reduction in RelMAE up to 19.44% and 19.20%

Ensemble Learning � 139

over ARIMA and SVR-based models. Similarly, a relative reduction up to 99.20%
in RMSE is noticed. These promising results convey that the proposed approach
produces forecasts with higher accuracy.

TABLE 7.8 Forecast accuracy comparison of ELM based predictive models on Google
cluster trace and PlanetLab Trace with state-of-art models

PWS
(min)

Google cluster trace(RelMAE) PlanetLab trace (RMSE)
ARIMA [10] SVR [10] WPeELMNN Deep Learning [137] WPeELMNN

5 9.72E-01 9.69E-01 7.83E-01 9.17E+00 7.31E-02
30 - - 8.36E-01 1.03E+01 9.56E-02
60 9.75E-01 - 9.21E-01 9.97E+00 1.03E-01

This chapter discusses two predictive frameworks using extreme learning machines.
The WPELMNN decomposes the traces and trains an ELM for each component. The
obtained results achieved an improvement in mean prediction error over state-of-art
approaches. The WPeELMNN is composed of multiple base experts i.e. neural networks
of different structures trained using the ELM algorithm. Each model analyzes the
historical workload information and anticipates the future workload that is further
weighted to compute the final forecast. The weights are optimized using a population-
based optimization algorithm. The improved forecast quality can be utilized for the low
operational cost of the cloud data center by ensuring effective resource management.

http://www.taylorandfrancis.com

C H A P T E R 8

Load Balancing

Load balancing is one of the critical concerns in modern cloud systems. The
inefficient resource sharing affects the system performance and introduces vari-

ous challenges including resource wastage and power consumption in a distributed
computing environment. The efficient virtual machine (VM) consolidation is capable
of improving cloud performance [12,24,26]. The task of a load balancer is to schedule
the computing tasks on the servers such that various parameters including response
time, power consumption, resource usage, quality of service are optimized. A load
balancing module may optimize one of the various parameters but in practice, it is not
always true which means the load balancer tries to optimize multiple parameters. In
cloud computing also, a load balancing scheme that can optimize multiple parameters
because task scheduling may affect various parameters of the cloud system. In this
chapter, we discuss two true multi-objective load balancing models.

8.1 MULTI-OBJECTIVE OPTIMIZATION

A problem which involves multiple criteria to address or optimize can be considered as a
multi-objective optimization. It can be denoted as min

(
f1
cost(v), f2

cost(v), . . . , fkcost(v)
)
,

s.t. v ∈ V , where k > 1 and depicts the number of objective functions, and V denotes
the set of feasible constraint functions or decision vectors. In general, a single solution
can not simultaneously optimize each objective of a multi-objective problem. Such
problems have a number of solutions commonly referred as nondominated or Pareto
optimal solutions. If a solution can not improve any of the objectives without degrading
other objective(s), the solution is considered to be nondominated or Pareto optimal.

VM placement is one such problem that has to optimize multiple objectives such
as power consumption, SLA violations, resource utilization, etc. Finding an optimal
solution to allocate n virtual machines on m servers is an NP-Complete class of
problems [36,88]. Figure 8.1 depicts the importance of optimal VM placement. Let
a data center contains six servers and it hosts six virtual machines. Let 32%, 58%,
78%, 62%, 14%, and 27% be the resource utilization of each server (Fig. 8.1a). It is
to note that the average resource utilization of the data center, in this case, would
be 45.16% as all servers are active. Two other possible allocations of these virtual
machines are given in Figs. 8.1b and 8.1c and their average resource utilization is
67.75% and 90.33% respectively. More interestingly, these allocations help in saving

DOI: 10.1201/9781003110101-8 141

https://doi.org/10.1201/9781003110101-8

142 � Machine Learning for Cloud Management

the electricity consumption as a lower number of servers is active as opposed to the
first allocation shown in Fig. 8.1.

Hardware Resources

Hypervisor

Operating System

Application

VM1

Hardware Resources

Hypervisor

Operating System

Application

VM2

Hardware Resources

Hypervisor

Operating System

Application

VM3

Hardware Resources

Hypervisor

Operating System

Application

VM4

Hardware Resources

Hypervisor

Operating System

Application

VM5

32% 58% 78% 62% 14%

Server-1 Server-2 Server-3 Server-4 Server-5

Hardware Resources

Hypervisor

Operating System

Application

VM6

27%

Server-6

(a) Random placement

Hardware Resources

Hypervisor

Hardware Resources

Hypervisor

Operating System

Application

VM2

Hardware Resources

Hypervisor

Operating System

Application

VM3

Hardware Resources

Hypervisor

Operating System

Application

VM4

73% 58% 78% 62%

Server-1 Server-2 Server-3 Server-4

Hardware Resources

Hypervisor

OFF

Server-5

Hardware Resources

Hypervisor

OFF

Server-6

Op
Sys

Appli
cation

VM6
Appli
cation

VM1
Appli
cation

VM5

Op
Sys

Op
Sys

(b) Alternate placement

Hardware Resources

Hypervisor

Hardware Resources

Hypervisor

Hardware Resources

Hypervisor

Hardware Resources

Hypervisor

Hardware Resources

Hypervisor

90%OFF 92% 89% OFF

Server-1 Server-2 Server-3 Server-4 Server-5

Operating
System

Application

VM4

Operating
System

Application

VM6

Operating
System

Application

VM3

Operating
System

Application

VM5

Operating
System

Application

VM1

Operating
System

Application

VM2

Hardware Resources

Hypervisor

OFF

Server-6

(c) Alternate placement

FIGURE 8.1 An illustration of virtual machine placement scenarios

8.2 RESOURCE-EFFICIENT LOAD BALANCING FRAMEWORK

The priorities of cloud users and service providers are always different. For instance,
the users will always expect uninterrupted services at a reasonable cost whereas a
service provider will always look for maximizing the number of users and his financial
gains. A service provider can increase the number of users only if it can provide the
service in accordance with the promised quality of services (QoS) and service level
agreements (SLAs). In order to match the user expectations, the service provider
has to deploy a large amount of resources. Moreover, it has to ensure the lower
operational cost to gain some financial profits. In this section, we will discuss one
such framework (RELB) that optimally places the workloads on cloud servers. The

Load Balancing � 143

framework emphasizes on higher resource utilization and lower power consumption
and finds an optimal allocation using a genetic algorithm-based allocation scheme as
depicted in Fig. 8.2.

Cloud
Data Center

Cloud Resource
Manager

VM MigrationMultiobjective
Genetic Algorithm

Load Balancing

U
se

r
R

eq
ue

st

VM Allocation

FIGURE 8.2 Resource-efficient load balancing framework design

Let v1,v2, . . . ,vn be the n virtual machines and u1,u2, . . . ,up be the p cloud
users. Considering that a data center dc contains m servers (s1, s2, . . . , sm) and hosts
these n VMs which are owned by p users. If a server (sj) hosts one or more virtual
machines then the server is an active machine i.e. βj = 1. Similarly, if a server (sj)
does not host any virtual machine then the server is in the ideal state i.e. βj = 0. Let α
be the mapping of virtual machine placement such that αij represents the placement
of virtual machine vi on server sj i.e. αij = 1 if vi is hosted on sj , otherwise αij = 0.

Let sc
j and sm

j be the CPU and Memory capacity of sj . Let vc
i and vm

i be the CPU
and Memory usage of vi. The usage of each resource is monitored independently i.e.
the CPU and Memory usage is monitored using eqs. (8.1) and (8.2) respectively.

Ωc
j =

∑n
i=1 αij × vc

i

sc
j

(8.1)

Ωm
j =

∑n
i=1 αij × vm

i

sm
j

(8.2)

This framework monitors resource usage using CPU and Memory utilization.
However, the framework is general and resource usage can be monitored using any
number of resources. The framework aims to maximize the resource usage of the data
center (Ωdc) which is calculated using eq. (8.3), where |n| is the resource count being
monitored that is two in this framework.

Ωdc =
∑m
j=1 Ωc

j +
∑m
j=1 Ωm

j

|n|×
∑m
j=1 βj

(8.3)

144 � Machine Learning for Cloud Management

Furthermore, an ample amount of heat gets generated in the operation of data
center of a large scale. Thus, the data center has to maintain the operational tem-
perature for the smooth operation of the data center and it uses a major part of
its total consumed electricity for this. After the infrastructure cooling, electricity is
consumed by the CPU most [108]. In general, the energy-saving approaches follow
the CPU states i.e. they check whether the CPU is busy or ideal. The amount of
energy consumption by a busy processor depends on several variables such as the
rate of utilization. The resource manager switches off few components of an ideal
processor and its operating frequency is reduced. Thus, an ideal processor helps in
saving electricity consumption. This framework uses the power consumption modeling
that measures the power consumption based on processor utilization [94, 120]. Let
pmaxj and pminj be the maximum and minimum power consumption of sj respectively.
Similarly, let pidlej be the amount of power consumed by sj in its ideal state. Thus,
the amount of power consumption of a server sj can be calculated using eq. (8.4).
Furthermore, the total power consumed by a data center equipped with m servers
can be modeled using eq. (8.5) and this framework aims to minimize the consumption
of the power of data center (pdc).

u1 u2 • • • up

V1 V2 • • • Vn

S3 Sm • • • S1

FIGURE 8.3 Chromosome encoding for VM placement

pj = (pmaxj − pminj)× Ωj + pidlej (8.4)

pdc =
∑

pj ; ∀j = {1, 2, . . . ,m} (8.5)

n∑
i=1

vc
i × αij ≤ sc

j ; ∀j ∈ {1, 2, . . . ,m} (8.6)

n∑
i=1

vm
i × αij ≤ sm

j ; ∀j ∈ {1, 2, . . . ,m} (8.7)

The model initialized a set of N random solutions, where each solution places ith
virtual machine to randomly selected jth physical machine that satisfies the constraints
listed in eqs. (8.6) and (8.7) and turns the server status to active. Figure 8.3 shows

Load Balancing � 145

v2 v1,v5 . . . vn v6 v3,v4 si

v5,v2 v1 . . . v6 v4 v3,vn sj

v2 v1,v5 . . . v6 v4 v3,vn oc1

v5,v2 v1 . . . vn v6 v3,v4 oc2

FIGURE 8.4 Single point crossover operator for VM placement

v4,v3 v1 . . . v2,v5,vn . . . s

v2,v5,vn v1 . . . v4,v3 . . . om

FIGURE 8.5 Swapping based mutation operator for VM placement

the chromosome encoding that allocates each VM on one of the available servers.
Each solution (si) is evaluated using a cost function (Ψ) that computes the fitness
values (fΩ

si
and fp

si
) associated with both objectives. An iterative process that includes

the recombination operators such as crossover and mutation are implemented to
optimally place the virtual machines on the servers of the data centers.

This framework implements the single-point crossover that switches the tails
of both parents as shown in Fig. 8.4. Furthermore, the framework implements the
swapping-based mutation operator (Z) that exchanges the two distinct randomly
selected VMs allocation as shown in Fig. 8.5. During the course of reproduction,
the approach may generate a number of infeasible allocations. Such allocations are
migrated as per the availability of the resources to turn the infeasible solutions
into feasible solutions by implementing feasibleAllocation operation as highlighted in
Algorithm 8.1 (line 17). The newly generated offspring solutions (O) are evaluated on
the cost function and respective fitness values are observed. The genetic algorithm
applies a selection operator to choose N solutions among the current population
and offspring solutions. Since each solution has two fitness values, a simple selection
scheme becomes infeasible. Therefore, the non-dominated sorting is applied to rank
the solutions [33]. The selection operator utilizes the concept of dominance to sort
the solutions and rank them based on their non-dominance level as illustrated in
Algorithm 8.2. The sorted solutions are arranged in multiple Pareto fronts according
to their ranks and the first N solutions are selected to participate in the next iterations.
The pseudocode of the proposed framework is shown in Algorithm 8.1.

146 � Machine Learning for Cloud Management

Algorithm 8.1 Resource efficient load balancing framework operational summary [83]
1: Initialize g = 0, gmax, N
2: Randomly generate N feasible solutions i.e. Sg = {s1, s2, . . . , sN}
3: for each i = (1, 2, . . . , N) do
4: [fΩ

si
, fp
si

] = fcost(si,dcκ)
5: end for
6: for g = {1, 2, . . . , gmax} do
7: O = []
8: for each i = (1, 2, . . . , N) do
9: idx = rand(1, N) s.t. i 6= idx

10: cp = rand(1, D)
11: o1 = [si(1 : cp), sidx(cp+ 1 : D)]
12: o2 = [sidx(1 : cp), si(cp+ 1 : D)]
13: O = [O,Z(o1),Z(o2)]
14: end for
15: for each i = (1, 2, . . . , 2N) do
16: if oi is infeasible allocation then
17: [oi,dcκ] = feasibleAllocation(oi,dcκ)
18: end if
19: [fΩ

oi
, fp
oi

] = fcost(oi,dcκ)
20: end for
21: Sg = [Sg, O]
22: [Sg+1] = S(Sg)
23: end for

8.3 SECURE AND ENERGY-AWARE LOAD BALANCING FRAMEWORK

One of the ideas behind the success of the cloud paradigm is resource sharing among
multiple users for better usability of the resources over time. However, the sharing
of resources can be exploited for security breaches through several kinds of attacks.
The side-channel attack (SCA) is one of such security threat for cloud users. In this
attack, the VMs hosted on a server can be victimized and their sensitive information
can be stolen through side-channel events if it also hosts the attacker VM [55]. The
users may lose trust in cloud infrastructure and service providers if a series of such
attacks occur. Thus, it becomes important to minimize the possibility of such attacks,
if not completely avoided. In this section, we will discuss about one such mechanism
(SEA-LB) which minimizes the SCA possibility. This approach encourages to host the
VMs of a user on the same server as much as possible. But this does not mean that
the approach is not allowing resource sharing. The SEALB is capable of reducing the
attack possibility on the cost of overhead in terms of resource utilization and power
consumption. The conflicting optimization functions (maximum resource utilization,
minimum power consumption, and minimum number of shared servers) are optimized
using a multi-objective algorithm-based scheme.

Load Balancing � 147

Algorithm 8.2 Non-dominated sorting based selection operator [83]
1: for each sgi do
2: Si = ∅
3: ni = 0
4: for each sgj do
5: if sgi ≺ sgj then
6: Si = Si ∪ {sgj}
7: else if sgj ≺ sgi then
8: ni = ni + 1
9: end if

10: if ni == 0 then
11: sgi .r = 1
12: F1 = F1 ∪ {sgi }
13: end if
14: end for
15: end for
16: k = 1
17: while Fk 6= ∅ do
18: Q = ∅
19: for each sgi ∈ Fk do
20: for each sgj ∈ Si do
21: nj = nj − 1
22: if nj == 0 then
23: sgj .r = i+ 1
24: Q = Q ∪ {sgj}
25: end if
26: end for
27: end for
28: k = k + 1
29: Fk = Q
30: end while
31: Sg+1 = Select first N solutions from Fi ∀i = {1, 2, . . . , k}
32: return Sg+1

8.3.1 Side-Channel Attacks

Paul Kocher coined the term ‘side-channel attack’ when he observed the possibility
of accessing the security credentials by applying reverse engineering on power con-
sumption and electromagnetic emission data of a computer system [69]. The SCA
primarily collects the information during the target machine performs cryptographic
operations. The collected information is reverse engineered to get the sensitive in-
formation and then the target machine is attacked. A number of researches are
conducted to explore the SCA in shared caches and the side channel behaviors in-
cluding electromagnetic radiation, time, and power are used to attach the encryption

148 � Machine Learning for Cloud Management

approaches [23, 31, 49, 87, 127, 133]. Since a number of users share the computing
resources of the same server, the shared distributed architectures are ideal candidates
for SCA.

Let S = {s1, s2, s3, s4} be the four servers in a data center, and the resource
(CPU and Memory) capacity of each server is sRj = 1.0 unit ∀j. Let Pmax

j = 100W ,
Pmin
j = P idle

j = 20W be the maximum, minimum, and idle state power consumption
of each server. Furthermore, let this data center hosts v1,v2,v3,v4,v6,v7, and v8
virtual machines which are owned by four users (u1,u2,u3, and u4). Table 8.1 lists
the details of VMs including the owner, resource demands, and the server which hosts
the VM, where vki represents the ith VM of user k.

TABLE 8.1 Virtual machine details for illustration

VM Owner Virtual Machine Id CPU Demand Memory Demand Host Server
u1 v1 → v1

1 0.15 0.20 s1
u1 v2 → v1

2 0.25 0.50 s4
u1 v3 → v1

3 0.35 0.40 s2
u1 v4 → v1

4 0.20 0.20 s2
u2 v5 → v2

1 0.25 0.75 s1
u2 v6 → v2

2 0.30 0.60 s3
u3 v7 → v3

1 0.50 0.45 s4
u4 v8 → v4

1 0.25 0.25 s2

The data center uses 70% of the resources, consumes 296W of electricity, and
75% of servers host the machines of multiple users. In this framework, a machine
is referred to as a conflicting server if it hosts the virtual machines of multiple
users. The above-mentioned workloads can be placed differently and this framework
suggests placing virtual machines as v1

11,v1
21,v1

33,v1
41,v2

52,v2
64,v3

73,v4
84. The data

center observes the 69.38% resource utilization, 302W power consumption, and 50%
of servers are conflicting machines. It is interesting to note that the framework reduces
the conflicting servers on the cost of a little overhead in terms of power consumption
and resource utilization. For instance, the above placement reduces the conflicting
servers by 33.33% on the cost of 2.03% higher power consumption and 0.89% lower
resource utilization. The above-mentioned illustration is visually depicted in Fig. 8.6,
where servers with thicker boundary are the conflicting servers, and shaded servers,
are overloaded.

8.3.2 Ternary Objective VM Placement

A conflicting server (s̄j) is an ideal prospect for the occurrence of SCA because it
hosts the virtual machines owned by multiple users. From the attacker’s perspective
also, a machine hosting the virtual machines of a large number of users becomes an
ideal machine to target due to the fact that compromising such machines would lead
to stealing more information. Theoretically, the SCAs can be avoided if machines do
not share the resources with different virtual machines which is against the key idea

Load Balancing � 149

FIGURE 8.6 Three cases of VM allocation

behind cloud technology. Therefore, a balanced approach is required to deal with the
attack threats and resource sharing among the users. The SEA-LB targets to minimize
the number of conflicting servers while ensuring reasonable resource utilization which
means that the framework improves the security without compromising the other
aspects much.

Let γ be a matrix that shows the assignment mapping of virtual machines to the
servers, i.e. γkj = 1 indicates that at least one of the VMs owned by uk is hosted on
sj and γkj = 0 indicates the otherwise case. Using the above representation,

∑p
k=1 γkj

would be the number of distinct users whose virtual machines are hosted on sj . Thus,
the presence (%) of conflicting servers can be calculated using eq. (8.8).

ζdc =
∑m
j=1

∑p
k=1 γkj

|s| × 100 ∀
p∑

k=1
γkj > 1 (8.8)

In a large-scale data center, if you want to lower down the number of conflicting
servers, the number of active servers will increase. It is to note that the resource
utilization and power consumption parameters will be worsen as the number of active
servers will increase. Thus, the objectives under consideration are conflicting in nature
which means if you improve one objective other will get worse and vice-versa. This
framework finds an approximated solution where the virtual machines are placed
such that the allocation is secure, energy-aware, and balanced. In order to find such
solution, the framework uses one of the most popular and widely used multi-objective
algorithms i.e. NSGA-II (Nondominated Sorting Genetic Algorithm-II). Algorithm 8.3
shows detailed pseudocode of the designed framework.

150 � Machine Learning for Cloud Management

•
•
•

End Users

v1

v2

•
•
•

vn

Virtual
Machines

Secure Load Balancing Unit

s1

s2

•
•
•

sN

Initialization

f1 f2 • • • fN

Evaluation

s1 sN s2 s1 • • • sN sk

Recombine

O1 s2 • • • ON

Selection

v12X

v2mX

•
•
•

vn1X

Optimized
Allocation

Secure

Energy
Efficient

Resource
Utilization

FIGURE 8.7 Secure and energy-aware load balancing framework design [122]

Algorithm 8.3 Secure and energy-aware load balancing framework operational
summary [122]

1: Initialize random allocations (s1, s2, . . . , sN)
2: for each si do
3: [fΩ

si
, fp
si
, f ζsi

] = fcost(si,dcκ)
4: end for
5: for each si and sj ; ∀j ∈ {1, 2, . . . , N} and i 6= j do
6: Si = ∅;ni = 0;Si = Si ∪ {sj} ∀si ≺ sj
7: si.r = 1;F1 = F1 ∪ {si} if(ni == 0)
8: end for
9: while Fi 6= ∅ do

10: for si ∈ Fi and sj ∈ Si do
11: nj = nj − 1; sj .r = i+ 1; Q = Q ∪ {sj} if (nj == 0)
12: end for
13: end while
14: while Termination criteria do
15: Oc = Q(s,dcκ); Om = Z(s,dcκ)
16: Oc = feasibleAllocation(Oc);Om = feasibleAllocation(Om)
17: [fΩ

oi
, fp
oi
, f ζoi

] = fcost(oi,dcκ) i ∈ {1, 2, . . . , l(Oc)}
18: [fΩ

oj
, fp
oj
, f ζoj

] = fcost(oj ,dcκ) j ∈ {1, 2, . . . , l(Om)}
19: s = S(s,Oc, Om);F1 = NDS(s)
20: end while

Figure 8.7 shows the system’s load balancing unit which shows four major oper-
ations involved in the optimization. First, it generates N random solutions which
consist of the random allocation of the virtual machines after satisfying the constraints
given in eqs. (8.6) and (8.7) corresponding to CPU and Memory resource availability.
A feasible VM allocation is represented using si s.t. i = (1, 2, . . . , N) and each cell or
gene represents the placement of a virtual machine on a specific machine (s). Then,
every solution is assessed on different objective functions i.e. the cost values associated

Load Balancing � 151

with every objective function are calculated, where fΩ
si
, fp
si
, and f ζsi

represent the cost
values for resource utilization, power consumption, and security respectively. Further,
a dominance level is computed for each solution and they are sorted according to their
dominance level. The non dominated solutions are further added into a Pareto front
(F1). The solution sj is dominated by si if si is better than sj on at least one of the
objective values and the same or better on other objective functions. The framework
applies the recombination operators including crossover (Q) and mutation (Z) to
explore the search space for finding a better allocation. The framework employs the
single-point crossover operation, whereas the mutation operation randomly swaps
two distinct allocations (vi and vj , i 6= j) as shown in Figs. 8.4 and 8.5 respectively.
The solutions obtained after recombination may violate the constraints, therefore,
the migration operation is employed to convert an infeasible solution into a feasible
solution by migrating the infeasible assignments to the feasible locations. The newly
generated solutions are evaluated on the objective functions and the better solutions
replace their counterparts in the original set of solutions. Thus, the framework executes
a series of iterations and reports a set of approximated solutions and user may select
any one of them.

8.4 SIMULATION SETUP

The experimental study on the performance of virtual machine placement approaches
was conducted using three types of physical machines in a data center. The CPU
capacity is measured in number of processing elements (PE) and million instructions
per second (MIPS), whereas the memory is measured in mega bytes (MBs). A physical
machine is defined as a tuple (PE, MIPS, Memory (MB), pmax, pmin, pidle). The
three different machines are sT1(2, 2660, 4096, 135, 93.7, 93.7), sT2(4, 3067, 8172, 113,
42.3, 42.3), and sT3(12, 3067, 16384, 222, 58.4, 58.4) [11]. The data center hosts four
different types of virtual machines which demand computing resources and each VM is
a tuple (PE, MIPS, Memory (MB)). The different configurations of the machines are
vT1(1, 500, 512), vT2(2, 1000, 1024), vT3(3, 1500, 2048), and vT4(4, 2000, 3072), where
Ti represents ith type or configuration. Hypothetically, the virtual machines running
on a data center may belong to either same category or different categories. If every
virtual machine hosted on the data center requests the same amount of resources, it
is a homogeneous environment. Similarly, if a virtual machine hosted on the data
center requests different amounts of resources, it is a heterogeneous environment.

8.5 HOMOGENEOUS VM PLACEMENT ANALYSIS

In this section, we will discuss the performance of the frameworks in a homogeneous
workload environment and it also compares the performance with other existing stan-
dard approaches of VM placement. Figure 8.9 depicts the resource utilization results
for different numbers of VMs in a data center. The SEA-LB significantly improves the
performance as it relatively improves the resource utilization up to 46.64%, 46.64%,
and 50.99% over the first fit, best fit, and random heuristics respectively. It is inter-
esting to note that the framework could not improve the performance over the first fit

152 � Machine Learning for Cloud Management

for 300 and 500 virtual machines because SEA-LB sorts the servers according to the
resource availability and selects the nearest one to host a virtual machine, whereas
the first fit approach selects a server to host according to the resource availability
and the index of servers. The first fit scheme improves the resource utilization up
to ≈ 13%. Figure 8.8 shows the amount of power consumption. Similarly, Fig. 8.10
shows the presence of conflicting servers in a data center for a different number of
virtual machines. In a homogeneous environment, the framework could not reduce
the presence of a number of conflicting servers.

20 60 100 300 500
0

0.5

1

·106

#VM

Po
w

er
C

on
su

m
pt

io
n

(W
)

RELB SEALB First Fit Best Fit Random

FIGURE 8.8 Power consumption (W) for homogeneous VM requests

20 60 100 300 500
0

20
40
60
80

100

#VM

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

RELB SEALB First Fit Best Fit Random

FIGURE 8.9 Resource utilization for homogeneous VM requests

8.6 HETEROGENEOUS VM PLACEMENT ANALYSIS

Similarly, the performance of the approaches is assessed in a heterogeneous environ-
ment. The data center is capable of hosting any number of virtual machines up to
500. The resource usage details are shown in Fig. 8.12. The SEA-LB improves the
resource utilization up to 119.93%, 84.49%, and 113.96% over first fit, best fit, and
random heuristic. It is interesting to note that the RELB outperforms the SEA-LB in
terms of resource utilization which indicates the overhead involves in placing the

Load Balancing � 153

20 60 100 300 500
0

20

40

#VM

C
on

fli
ct

in
g

se
rv

er
s

(%
)

RELB SEALB First Fit Best Fit Random

FIGURE 8.10 Presence of conflicting servers (%) for homogeneous VM requests

workloads securely. The SEA-LB is general enough and can handle the situation
where the workloads need not be placed securely. In practice, every workload might
not need to be placed securely due to several reasons including insensitive data, cost
overhead, and various others. Figure 8.11 shows the power consumption of every
approach. In this case, the power consumption of the SEA-LB is better than random
and best fit placement schemes. Similarly, Fig. 8.13 shows the details of the presence
of conflicting servers and it can be noticed that the SEA-LB reduces the chances of
SCA by minimizing the number of conflicting servers.

20 60 100 300 500
0

0.5

1

1.5
·106

#VM

Po
w

er
C

on
su

m
pt

io
n

(W
)

RELB SEALB First Fit Best Fit Random

FIGURE 8.11 Power consumption (W) for heterogeneous VM requests

In a cloud environment, the private information of the users is always at risk
due to the fact that the resources are shared among other users. In such scenario, a
malicious user may initiate the SCA to steal sensitive information. Thus, the cloud
service providers have to ensure the security of their user’s data. The framework
discussed in this chapter is capable of improving security as well as maintaining
resource usage and power consumption.

154 � Machine Learning for Cloud Management

20 60 100 300 500
0

20
40
60
80

100

#VM

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

RELB SEALB First Fit Best Fit Random

FIGURE 8.12 Resource utilization for heterogeneous VM requests

20 60 100 300 500
0

20

40

#VM

C
on

fli
ct

in
g

se
rv

er
s

(%
)

RELB SEALB First Fit Best Fit Random

FIGURE 8.13 Presence of conflicting servers (%) for heterogeneous VM requests

C H A P T E R 9

Summary

C loud computing is emerged as a solution to various challenges in the comput-
ing world including big data management, computing resources availability from

anywhere at anytime, upfront cost management, etc. However, cloud resource man-
agement is critical in order to leverage the benefits of cloud paradigm. This book talks
about various recent mechanisms involved in cloud resource management including
workload prediction and load balancing. The time series and neural network-based
forecasting models are explored and their performance on workload prediction is mon-
itored through comparative experimental studies. The forecast accuracy is measured
and compared using statistical tests. Furthermore, the load balancing approaches
developed using multi-objective genetic algorithms are discussed.

It starts with the introduction of cloud computing, followed by the importance
of cloud management. Further, two important aspects involved in cloud resource
management are defined and discussed. The machine learning approaches used to
address the workload prediction and load balancing issues are discussed, followed
by the experimental settings and analysis environments. Time series analysis models
are first discussed and their performance is evaluated on various parameters in
different evaluation environments. The time series analysis has wide applicability and
includes the models that analyze the data in a time domain and extract important
characteristics and meaningful statistics. The models use the extracted information
to estimate the future values based on historic actual values. Afterwards, an error
prevention scheme enabled time series models are discussed and detailed performance
analysis is shown, which shows that the inclusion of error prevention scheme improves
the forecasting ability of the time series analysis model. The error prevention scheme
(EPS) learns the error trend from recent forecasts. The approach analyzes recent
forecasts to measure the average residuals. The observed error trend is referred to as
error preventive score that is leveraged to improve the next forecast. An experimental
study is carried out to analyze the forecast efficacy of error preventive and non-error
preventive time series forecasting models. The autoregressive moving average (ARMA),
autoregressive integrated moving average (ARIMA), and exponential smoothing (ES)
are used to study the effect of the error prevention scheme. The models are examined
for 10, 20, 30, and 60-minute interval forecasts and forecast accuracy is measured
using three error functions i.e. R-Score, sum of elasticity index (SEI), and mean

DOI: 10.1201/9781003110101-9 155

https://doi.org/10.1201/9781003110101-9

156 � Machine Learning for Cloud Management

squared prediction error (MPE). The error preventive models achieved a significant
improvement up to 183.9%, 95.4%, 100.0% over R-Score, SEI, and MPE, respectively.
In addition, two forecast accuracy metrics, namely predictions in error range (PER)
and magnitude of predictions (MoP), are discussed that measure the accuracy of a
forecasting model from different dimensions. PER divides the error scale into number
of segments and computes the share of forecasts in each segment. The model that
produces most of the forecasts with smallest errors is preferred. On the other hand,
MoP considers the magnitude of forecasts because it plays a significant role for
several applications. For instance, response time is one of the key factors of a cloud
system, and a cloud system may prefer higher forecast values to achieve greater user
satisfaction. Similarly, a cloud system that prioritizes resource utilization most will
not prefer a high forecast. Therefore, the MoP can help in evaluating and selecting
the forecasting module as per the application requirements. Further, a statistical
analysis using Wilcoxon and Friedman tests is also conducted to validate the observed
experimental results.

After discussing the time series models, the metaheuristic algorithms are explored
and discussed. The eight different algorithms are discussed that follow the principles
from different domains such as swarm behaviour, physics environment etc. These
algorithms are being widely used in different applications of optimization. In this book,
these algorithms are used to learn the synaptic connection weights of neural networks
which form a predictive model for cloud workloads. Their performance is compared
at two different levels. First, the performance is compared with the algorithm which
belongs to the same category i.e. the algorithm that borrows the principles from the
same domain as of the first algorithm. Afterwards, the performance of every algorithm
is compared and statistically analyzed with every other algorithm.

The neural networks have been used in various applications such as classification,
clustering, prediction and others. A neural network trained with an evolutionary
algorithm is also called as evolutionary neural network. Further, the book discusses the
predictive models based on evolutionary neural networks. The differential evolution
is a simple, reliable and widely used optimization algorithm. First, it extends the
self-adaptive differential evolution algorithm that optimizes the mutation strategy
from three mutation operators. The optimization process probabilistically selects one
of three operators to generate mutant vectors. It records the number of offspring
solutions that are successful and unsuccessful in entering into the next iteration
generated by each mutation operator. Based on these numbers, the probability of
each mutation operator is updated. The approach has used DE/rand/1, DE/current
to best/1, and DE/best/1 operators due to the fact that these operators are good for
maintaining diversity, convergence property, and optimization problems respectively.
Similarly, a second learning algorithm called BiPhase adaptive learning is, discussed
that selects the best suitable crossover operator along with mutation operator. Again,
three different crossover operators, namely uniform crossover, heursitic crossover, and
ring crossover are used to find the most favourable operator. Both learning algorithms
also optimize the mutation and crossover rate. Both algorithms are tested on two
benchmark data traces and compared with maximum, average, and backpropagation
based network forecasting models. The experiments are conducted for 1, 5, 10, 20, 30,

Summary � 157

and 60-minute forecast intervals and accuracy is measured using root mean squared
error. It was observed that the self-adaptive differential evolution algorithm outper-
formed the maximum, average, and backpropagation based forecasting approaches
and observed the maximum reduction up to 99.85%, whereas the BiPhase adaptive
learning algorithm outperformed the self-adaptive algorithm with maximum error
reduction up to 80.36% along with other approaches as well.

Furthermore, the predictive models that use a neural network trained using
blackhole algorithm are discussed. It also discusses the concept of self-directed learning
and its effect on the ability of neural network learning. The model equipped with
self-directed learning is referred to as a self-directed forecasting model, whereas a
model which learns the network weights without self-directed learning is referred to as
a non-directed forecasting model. The non-directed prediction model uses a multilayer
perceptron that learns its synaptic connection weights through a population-based
optimization algorithm inspired by blackhole phenomenon. Whereas the self-directed
learning model uses an improved blackhole algorithm that organizes the population
of stars into multiple clusters or subpopulation. The position update procedure of the
standard algorithm is also modified by incorporating the local best information to
maintain the diversity of the population. The diverse population explores the search
space more effectively to find out an approximated global optima. The self-directed
learning model also uses the error prevention scheme to improve its forecast accuracy
as it enables a model to learn from its past forecasting pattern. Both approaches
are tested on six real-world data traces using mean squared error. The forecasts are
conducted for 1, 5, 10, 20, 30, and 60-minute forecast intervals. The efficacy of the
schemes is validated using a comparative and statistical evaluation. The performance
is compared with self-adaptive differential evolution, backpropagation, and deep
learning-based prediction schemes and observed a relative improvement of up to
99.99% over respective models.

In decision making, the opinion of multiple experts is always helpful, and ensemble
learning is one perfect example of this. This book also discussed two predictive
models that learn the network weights using ensemble learning. These models use
the extreme learning machines algorithm to learn the network weights. The extreme
learning machine commonly referred to as ELM are feed-forward neural networks that
learn the synaptic connection weights in a single step. The first model decomposes
the workload traces into three components, namely seasonal, trend, and remainder
where sum of all three components is the actual workload. All three components are
considered as independent trace, and one ELM network is trained for each component.
In order to get final forecast, the outcome of each network is aggregated. Next, an
ensemble of ELMs is created to achieve better forecast accuracy. The ensemble learning
is widely used to improve accuracy. In the proposed model, each expert i.e. ELM
network is having different optimized network size i.e. the number of hidden neurons.
Each expert learns the network weights and predicts the anticipated workload on the
servers. The output of each expert is aggregated using a voting engine that weights
the outcome of each network and sums it. The weights for each expert outcome are
optimized using a population-based learning algorithm i.e. blackhole algorithm. Both
models are evaluated on CPU and memory request traces of Google cluster trace. The

158 � Machine Learning for Cloud Management

proposed models are compared with ARIMA and support vector regression-based
forecasting methods. Both proposed approaches find better forecasts than the models
based on ARIMA and SVR.

The load balancing is another important view of cloud resource management. In
a cloud environment, the load balancing can be applied at different levels including
task level, workloads or virtual machine levels, servers level etc. In this book, the
two methods dealing with workload balancing by means of optimal placement of
workload are discussed. The VM placement is one of the most challenging and complex
tasks in the distributed computing networks. Two multi-objective load balancing
frameworks for effective cloud resource management are discussed in detail. The
first framework emphasizes on efficient and maximum utilization of resources with
low power consumption. The model proposes a genetic algorithm-based solution to
find an optimal mapping of VMs to physical machines. Since each individual has
multiple fitness values, each associated with one objective, the approach ranks the
solutions using non-dominated sorting employed in NSGA-II. The framework creates
a data centre with multiple servers with different configurations and simulates the
approach with homogeneous and heterogeneous virtual machine requests. Next, a
multi-objective framework that also addresses the security issue of side channel attacks
is discussed. The side channel attack occurs within the virtual machines sharing the
same physical resources. Therefore, the framework models the VM placement in such
a way that the sharing of physical machines between the number of users is reduced
while maintaining resource utilization. It also attempts to lower down the power
consumption of the data centre by minimizing the number of active physical machines.
The approach is tested with heterogeneous VM requests and found to be better than
resource-efficient load balancing framework and other heuristics based load balancing
frameworks.

The process automation is one of the key factors in cloud management. The resource
provisioning and workload assignment play an important role in the performance
of a cloud system. The performance of both processes directly impacts the overall
performance of a cloud system. In this book, we have discussed various machine
learning approaches to automate both processes with the aim of reasonable accuracy
and performance. In the current scenario of the cloud paradigm, where systems are
becoming more complex and dynamic, further investigations and developments of the
methods are required to address the modern challenges including availability, security,
privacy, and integration of cloud systems with other computing paradigms such as
fog computing and edge computing.

Bibliography

[1] Traces available in the internet traffic archive. ftp://ita.ee.lbl.gov/html/.
[Online: accessed on 01-05-2019].

[2] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria
Dada, Abubakar Malah Umar, Okafor Uchenwa Linus, Humaira Arshad, Abdul-
lahi Aminu Kazaure, Usman Gana, and Muhammad Ubale Kiru. Comprehensive
review of artificial neural network applications to pattern recognition. IEEE
Access, 7:158820−158846, 2019.

[3] Joseph Ackora-Prah, Samuel Asante Gyamerah, and Perpetual Saah Andam.
A heuristic crossover for portfolio selection. 8(65):3215−3227, 2014.

[4] Fares Alharbi, Yu-Chu Tian, Maolin Tang, Wei-Zhe Zhang, Chen Peng, and
Minrui Fei. An ant colony system for energy-efficient dynamic virtual machine
placement in data centers. Expert Systems with Applications, 120:228−238,
2019.

[5] Osama Moh’d Alia and Rajeswari Mandava. The variants of the harmony
search algorithm: an overview. Artificial Intelligence Review, 36(1):49−68, Jun
2011.

[6] Maryam Amiri and Leyli Mohammad-Khanli. Survey on prediction models
of applications for resources provisioning in cloud. Journal of Network and
Computer Applications, 82:93−113, 2017.

[7] E. Assareh, M.A. Behrang, M.R. Assari, and A. Ghanbarzadeh. Application of
PSO (particle swarm optimization) and GA (genetic algorithm) techniques on
demand estimation of oil in iran. Energy, 35(12):5223−5229, 2010.

[8] Rasoul Azizipanah-Abarghooee, Taher Niknam, Farhad Bavafa, and Mohsen
Zare. Short-term scheduling of thermal power systems using hybrid gradient
based modified teaching-learning optimizer with black hole algorithm. Electric
Power Systems Research, 108:16−34, 2014.

[9] Indu Bala and Anupam Yadav. Gravitational search algorithm: A state-of-the-
art review. In Neha Yadav, Anupam Yadav, Jagdish Chand Bansal, Kusum
Deep, and Joong Hoon Kim, editors, Harmony Search and Nature Inspired
Optimization Algorithms, pages 27−37, Singapore, 2019. Springer Singapore.

159

ftp://ita.ee.lbl.gov

160 � Bibliography

[10] F. Baldan, S. Ramirez-Gallego, C. Bergmeir, F. Herrera, and J. M. Benitez.
A forecasting methodology for workload forecasting in cloud systems. IEEE
Transactions on Cloud Computing, 6(04):929−941, oct 2018.

[11] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic algo-
rithms and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers. Concurrency Computing
: Pract. Exper., 24(13):1397−1420, Sep 2012.

[12] P. D. Bharathi, P. Prakash, and M. V. K. Kiran. Virtual machine placement
strategies in cloud computing. In 2017 Innovations in Power and Advanced
Computing Technologies (i-PACT), pages 1−7, April 2017.

[13] Mamun Bin Ibne REAZ and Mohd Marufuzzaman. Pattern matching and
reinforcement learning to predict the user next action of smart home device
usage. Acta Technica Corviniesis - Bulletin of Engineering, 6(3):37−40, 2013.

[14] Ilhem Boussäıd, Julien Lepagnot, and Patrick Siarry. A survey on optimization
metaheuristics. Information Sciences, 237:82−117, 2013.

[15] George E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time Series
Analysis. John Wiley & Sons, Inc., 2008.

[16] Wayne F. Boyer and Gurdeep S. Hura. Non-evolutionary algorithm for schedul-
ing dependent tasks in distributed heterogeneous computing environments.
Journal of Parallel and Distributed Computing, 65(9):1035−1046, Sep 2005.

[17] Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski. Cloud Computing
Principles and Paradigms. Wiley Publishing, 2011.

[18] Rajkumar Buyya, Satish Narayana Srirama, Giuliano Casale, Rodrigo Calheiros,
and et al. A manifesto for future generation cloud computing: Research directions
for the next decade. ACM Comput. Surv., 51(5):105:1−105:38, Nov 2018.

[19] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and
Ivona Brandic. Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future Generation Computer
Systems, 25:599−616, 6 2009.

[20] H. R. Cai, C. Y. Chung, and K. P. Wong. Application of differential evolu-
tion algorithm for transient stability constrained optimal power flow. IEEE
Transactions on Power Systems, 23(2):719−728, May 2008.

[21] K. Chandrasekaran. Essentials of Cloud Computing. Chapman and Hall/CRC,
1 edition, 2014.

[22] Mingzhe Chen, Ursula Challita, Walid Saad, Changchuan Yin, and Mérouane
Debbah. Artificial neural networks-based machine learning for wireless networks:
A tutorial. IEEE Communications Surveys Tutorials, 21(4):3039−3071, 2019.

Bibliography � 161

[23] Z. Chen, A. Sinha, and P. Schaumont. Using virtual secure circuit to protect
embedded software from side-channel attacks. IEEE Transactions on Computers,
62(1):124−136, Jan 2013.

[24] Sakshi Chhabra and Ashutosh Kumar Singh. Dynamic data leakage detection
model based approach for mapreduce computational security in cloud. In
Proceedings on 5th International Conference on Eco-Friendly Computing and
Communication Systems, ICECCS 2016, pages 13−19, 4 2017.

[25] Sakshi Chhabra and Ashutosh Kumar Singh. Optimal VM placement model for
load balancing in cloud data centers. In 2019 7th International Conference on
Smart Computing and Communications, ICSCC 2019, 6 2019.

[26] Sakshi Chhabra and Ashutosh Kumar Singh. A secure VM allocation scheme to
preserve against co-resident threat. International Journal of Web Engineering
and Technology, 15:96−115, 2020.

[27] R. B. Cleveland, W. S. Cleveland, J.E. McRae, and I. Terpenning. STL: A
seasonal-trend decomposition procedure based on loess. Journal of Official
Statistics, 6:3−73, 1990.

[28] William Jay Conover and William Jay Conover. Practical nonparametric
statistics. Wiley New York, 1980.

[29] Credit Suisse. 2018 Data Center Market Drivers: Enablers Boosting Enterprise
Cloud Growth. https://cloudscene.com/news/2017/12/2018-data-center-
predictions/, 2017. [Online; accessed 19-05-2019].

[30] M. E. Crovella and A. Bestavros. Self-similarity in world wide web traffic:
evidence and possible causes. IEEE/ACM Transactions on Networking, 5(6):
835−846, Dec 1997.

[31] A. Cui, Y. Luo, and C. Chang. Static and dynamic obfuscations of scan data
against scan-based side-channel attacks. IEEE Transactions on Information
Forensics and Security, 12(2):363−376, Feb 2017.

[32] P.F. de Aguiar, B. Bourguignon, M.S. Khots, D.L. Massart, and R. Phan-Than-
Luu. D-optimal designs. Chemometrics and Intelligent Laboratory Systems,
30(2):199−210, 1995.

[33] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182−197, April 2002.

[34] Joaqúın Derrac, Salvador Garćıa, Daniel Molina, and Francisco Herrera. A
practical tutorial on the use of nonparametric statistical tests as a methodology
for comparing evolutionary and swarm intelligence algorithms. Swarm and
Evolutionary Computation, 1(1):3−18, 2011.

https://cloudscene.com
https://cloudscene.com

162 � Bibliography

[35] Saber M. Elsayed, Ruhul A. Sarker, and Daryl L. Essam. An improved self-
adaptive differential evolution algorithm for optimization problems. IEEE
Transactions on Industrial Informatics, 9:89−99, 2013.

[36] F. Farahnakian, A. Ashraf, T. Pahikkala, P. Liljeberg, J. Plosila, I. Porres,
and H. Tenhunen. Using ant colony system to consolidate vms for green cloud
computing. IEEE Transactions on Services Computing, 8(2):187−198, March
2015.

[37] Araf Farayez, Mamun Bin Ibne Reaz, and Norhana Arsad. SPADE: Activity
Prediction in Smart Homes Using Prefix Tree Based Context Generation. IEEE
Access, 7:5492−5501, 2019.

[38] H. Finner. On a monotonicity problem in step-down multiple test procedures.
Journal of the American Statistical Association, 88(423):920−923, 1993.

[39] Iztok Fister, Iztok Fister, Xin-She Yang, and Janez Brest. A comprehensive
review of firefly algorithms. Swarm and Evolutionary Computation, 13:34−46,
2013.

[40] Milton Friedman. The use of ranks to avoid the assumption of normality implicit
in the analysis of variance. Journal of the American Statistical Association,
32(200):675−701, 1937.

[41] Milton Friedman. A comparison of alternative tests of significance for the
problem of m rankings. The Annals of Mathematical Statistics, 11(1):86−92,
1940.

[42] Alexander A. Frolov, Dusan Husek, and Pavel Yu. Polyakov. Recurrent-neural-
network-based boolean factor analysis and its application to word clustering.
IEEE Transactions on Neural Networks, 20(7):1073−1086, 2009.

[43] Smrithy G S, Alfredo Cuzzocrea, and Ramadoss Balakrishnan. Detecting Insider
Malicious Activities in Cloud Collaboration Systems. Fundamenta Informaticae,
161(3):299−316, Jul 2018.

[44] Salvador Garćıa, Daniel Molina, Manuel Lozano, and Francisco Herrera. A study
on the use of non-parametric tests for analyzing the evolutionary algorithms’
behaviour: a case study on the CEC’2005 special session on real parameter
optimization. Journal of Heuristics, 15(6):617, May 2008.

[45] Zong Woo Geem, Joong Hoon Kim, and G.V. Loganathan. A new heuristic
optimization algorithm: Harmony search. SIMULATION, 76(2):60−68, 2001.

[46] Salyean Giri, Abeer Alsadoon, Chandana Withana, Salih Ali, and A. Elchouemic.
Prediction of dementia by increasing subspace size in rank forest. In 2018 IEEE
8th Annual Computing and Communication Workshop and Conference (CCWC),
pages 255−260. IEEE, Jan 2018.

Bibliography � 163

[47] Fred Glover. Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research, 13(5):533−549, Jan 1986.

[48] Fred. Glover and Manuel. Laguna. Tabu search. Kluwer Academic Publishers,
1997.

[49] M. Godfrey and M. Zulkernine. Preventing cache-based side-channel attacks in
a cloud environment. IEEE Transactions on Cloud Computing, 2(4):395−408,
Oct 2014.

[50] David Goldberg. Genetic algorithms in search, optimization and machine
learning. MA: Addison-Wesley Professional, ISBN 978-0201157673.

[51] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning
machine: a new learning scheme of feedforward neural networks. In 2004 IEEE
International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541),
volume 2, pages 985−990. IEEE.

[52] Ishu Gupta, Rishabh Gupta, Ashutosh Kumar Singh, and Rajkumar Buyya.
MLPAM: A machine learning and probabilistic analysis based model for pre-
serving security and privacy in cloud environment. IEEE Systems Journal,
2020.

[53] Ishu Gupta and Ashutosh Kumar Singh. A confidentiality preserving data leaker
detection model for secure sharing of cloud data using integrated techniques. In
2019 7th International Conference on Smart Computing and Communications,
ICSCC 2019. Institute of Electrical and Electronics Engineers Inc., 6 2019.

[54] Ishu Gupta, Niharika Singh, and Ashutosh Kumar Singh. Layer-based privacy
and security architecture for cloud data sharing. Journal of Communications
Software and Systems, 15:173−185, 6 2019.

[55] Y. Han, J. Chan, T. Alpcan, and C. Leckie. Using virtual machine alloca-
tion policies to defend against co-resident attacks in cloud computing. IEEE
Transactions on Dependable and Secure Computing, 14(1):95−108, Jan 2017.

[56] Ahmad Hassanat and Esra’ Alkafaween. On enhancing genetic algorithms using
new crossovers. arXiv preprint arXiv:1801.02335, 2018.

[57] Abdolreza Hatamlou. Black hole: A new heuristic optimization approach for
data clustering. Information Sciences, 222:175−184, 2013.

[58] John H Holland. Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control, and artificial intelligence. U
Michigan Press, Oxford, England, 1975.

[59] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning
machine: Theory and applications. Neurocomputing, 70:489−501, 2006.

164 � Bibliography

[60] Rob J Hyndman and Yeasmin Khandakar. Automatic time series forecasting:
the forecast package for R. Journal of Statistical Software, 26(3):1−22, 2008.

[61] Rob J. Hyndman and Anne B. Koehler. Another look at measures of forecast
accuracy. International Journal of Forecasting, 22(4):679−688, 2006.

[62] IDC. Cloud IT Infrastructure Revenues Surpassed Traditional IT Infrastruc-
ture Revenues for the First Time in the Third Quarter of 2018, According
to IDC. https://www.idc.com/getdoc.jsp?containerId=prUS44670519, 2019.
[Online; accessed 19-05-2019].

[63] Gartner Inc. Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17.3
Percent in 2019. https://www.gartner.com/en/newsroom/press-releases/
2018-09-12-gartner-forecasts-worldwide-public-cloud-revenue-to-
grow-17-percent-in-2019, 2018. [Online; accessed 19-05-2019].

[64] S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan. An adaptive
differential evolution algorithm with novel mutation and crossover strategies
for global numerical optimization. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 42(2):482−500, April 2012.

[65] Luke Jebaraj, Chakkaravarthy Venkatesan, Irisappane Soubache, and Charles
Christober Asir Rajan. Application of differential evolution algorithm in static
and dynamic economic or emission dispatch problem: A review. Renewable and
Sustainable Energy Reviews, 77:1206−1220, 2017.

[66] Brendan Jennings and Rolf Stadler. Resource management in clouds: Survey
and research challenges. Journal of Network and Systems Management, 23(3):
567−619, Jul 2015.

[67] Yılmaz KAYA, Murat UYAR, Ramazan TEKDN. A novel crossover operator for
genetic algorithms: Ring crossover. 2011. https://arxiv.org/abs/1105.0355.

[68] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings
of ICNN’95 - International Conference on Neural Networks, volume 4, pages
1942−1948, Nov 1995.

[69] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Neal Koblitz, editor, Advances in Cryptology−
CRYPTO ’96, pages 104−113, Berlin, Heidelberg, 1996. Springer Berlin Heidel-
berg.

[70] Shiann-Rong Kuang, Kun-Yi Wu, Bao-Chen Ke, Jia-Huei Yeh, and Hao-Yi
Jheng. Efficient architecture and hardware implementation of hybrid fuzzy-
kalman filter for workload prediction. Integration, the VLSI Journal, 47(4):
408−416, 2014.

[71] Jitendra Kumar, Rimsha Goomer, and Ashutosh Kumar Singh. Long short term
memory recurrent neural network (LSTM-RNN) based workload forecasting

https://www.idc.com/
https://www.gartner.com/
https://www.gartner.com/
https://www.gartner.com/
https://arxiv.org

Bibliography � 165

model for cloud datacenters. In Procedia Computer Science, volume 125, pages
676−682. Elsevier B.V., 2018.

[72] Jitendra Kumar, Deepika Saxena, Ashutosh Kumar Singh, and Anand Mohan.
Biphase adaptive learning-based neural network model for cloud datacenter
workload forecasting. Soft Computing, 24:14593−14610, 10 2020.

[73] Jitendra Kumar and Ashutosh Kumar Singh. Dynamic resource scaling in
cloud using neural network and black hole algorithm. In Proceedings on 5th
International Conference on Eco-Friendly Computing and Communication
Systems, ICECCS 2016, pages 63−67. Institute of Electrical and Electronics
Engineers Inc., 4 2017.

[74] Jitendra Kumar and Ashutosh Kumar Singh. Workload prediction in cloud using
artificial neural network and adaptive differential evolution. Future Generation
Computer Systems, 81:41−52, 4 2018.

[75] Jitendra Kumar and Ashutosh Kumar Singh. Cloud resource demand prediction
using differential evolution based learning. In 2019 7th International Conference
on Smart Computing and Communications, ICSCC 2019. Institute of Electrical
and Electronics Engineers Inc., 6 2019.

[76] Jitendra Kumar and Ashutosh Kumar Singh. An efficient machine learning
approach for virtual ma-chine resource demand prediction. International Journal
of Advanced Science Technology, 123:21−30, 2019.

[77] Jitendra Kumar and Ashutosh Kumar Singh. Adaptive learning based prediction
framework for cloud datacenter networks’ workload anticipation. Journal of
Information Science and Engineering, 36:981−992, 2020.

[78] Jitendra Kumar and Ashutosh Kumar Singh. Cloud datacenter workload esti-
mation using error preventive time series forecasting models. Cluster Computing,
23:1363−1379, 6 2020.

[79] Jitendra Kumar and Ashutosh Kumar Singh. Decomposition based cloud
resource demand prediction using extreme learning machines. Journal of Network
and Systems Management, 28:1775−1793, 10 2020.

[80] Jitendra Kumar and Ashutosh Kumar Singh. Performance assessment of time
series forecasting models for cloud datacenter networks’ workload prediction.
Wireless Personal Communications, 116:1949−1969, 2 2021.

[81] Jitendra Kumar, Ashutosh Kumar Singh, and Rajkumar Buyya. Ensemble learn-
ing based predictive framework for virtual machine resource request prediction.
Neurocomputing, 397:20−30, 7 2020.

[82] Jitendra Kumar, Ashutosh Kumar Singh, and Rajkumar Buyya. Self directed
learning based workload forecasting model for cloud resource management.
Information Sciences, 543:345−366, 1 2021.

166 � Bibliography

[83] Jitendra Kumar, Ashutosh Kumar Singh, and Anand Mohan. Resource-efficient
load-balancing framework for cloud data center networks. ETRI Journal, 43:
53−63, 2 2021.

[84] Mohit Kumar and S. C. Sharma. Dynamic load balancing algorithm to minimize
the makespan time and utilize the resources effectively in cloud environment.
International Journal of Computers and Applications, pages 1−10, Nov 2017.

[85] P. Ravi Kumar, P. Herbert Raj, and P. Jelciana. Exploring Data Security Issues
and Solutions in Cloud Computing. Procedia Computer Science, 125:691−697,
Jan 2018.

[86] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of vehicle routing and
scheduling problems. Networks, 11(2):221−227, 2006.

[87] L. Lerman and O. Markowitch. Efficient profiled attacks on masking schemes.
IEEE Transactions on Information Forensics and Security, 14(6):1445−1454,
June 2019.

[88] Xin Li, Zhuzhong Qian, Sanglu Lu, and Jie Wu. Energy efficient virtual machine
placement algorithm with balanced and improved resource utilization in a data
center. Mathematical and Computer Modelling, 58(5):1222−1235, 2013.

[89] Lingyun Yang, I. Foster, and J. M. Schopf. Homeostatic and tendency-based
CPU load predictions. In Proceedings International Parallel and Distributed
Processing Symposium, pages 1−9. IEEE Comput. Soc, Apr 2003.

[90] Ang Ee Mae, Wee Kuok Kwee, Pang Ying Han, and Lau Siong Hoe. Resource
Allocation for Real-time Multimedia Applications in LTE’s Two-level Scheduling
Framework. International Journal of Computer Science, 43(4):1−11, 2016.

[91] Spyros Makridakis, Steven C. Wheelwright, and Rob J. Hyndman. Forecasting:
Methods and Applications. Wiley, 3 edition, 1 1998.

[92] Valter Rogério Messias, Julio Cezar Estrella, Ricardo Ehlers, Marcos José San-
tana, Regina Carlucci Santana, and Stephan Reiff-Marganiec. Combining time
series prediction models using genetic algorithm to autoscaling web applica-
tions hosted in the cloud infrastructure. Neural Computing and Applications,
27(8):2383−2406, Nov 2016.

[93] E. Mezura-Montes and Carlos A. Coello Coello. An empirical study about the
usefulness of evolution strategies to solve constrained optimization problems.
International Journal of General Systems, 37(4):443−473, 2008.

[94] L. Minas and B. Ellison. Energy Efficiency for Information Technology: How
to Reduce Power Consumption in Servers and Data Centers. Intel Press, 2009.

[95] Banaja Mohanty and Sasmita Tripathy. A teaching learning based optimization
technique for optimal location and size of DG in distribution network. Journal
of Electrical Systems and Information Technology, 3(1):33−44, 2016.

Bibliography � 167

[96] Sathyan Munirathinam and B. Ramadoss. Big data predictive analtyics for
proactive semiconductor equipment maintenance. In 2014 IEEE International
Conference on Big Data (Big Data), pages 893−902. IEEE, Oct 2014.

[97] Sathyan Munirathinam and Balakrishnan Ramadoss. Predictive Models for
Equipment Fault Detection in the Semiconductor Manufacturing Process. In-
ternational Journal of Engineering and Technology, 8(4):273−285, Apr 2016.

[98] San Murugesan. Cloud computing: A new paradigm in IT that has the power
to transform emerging markets. International Journal on Advances in ICT for
Emerging Regions, 4(2):4−11, Oct 2008.

[99] Nong Nurnie, Mohd Nistah, King Hann Lim, Lenin Gopal, Firas Basim, and
Ismail Alnaimi. Coal-Fired Boiler Fault Prediction using Artificial Neural Net-
works. International Journal of Electrical and Computer Engineering (IJECE),
8(4):2486−2493, 2018.

[100] Eva Patel and Dharmender Singh Kushwaha. Analysis of workloads for cloud
infrastructure capacity planning. In Lakhmi C. Jain, Valentina E. Balas, and
Prashant Johri, editors, Data and Communication Networks, pages 29−42.
Springer Singapore, Singapore, 2019.

[101] G Pavai and TV Geetha. A survey on crossover operators. ACM Computing
Surveys (CSUR), 49(4):72, 2017.

[102] Satish Penmatsa, Gurdeep S Hura, and Princess Anne. Adaptive Cost Opti-
mization and Fair Resource Allocation in Computational Grid Systems. In 29th
International Conference on Computer Applications in Industry and Engineering
(CAINE 2016), pages 1−6, Denver, Colorado, USA, 2016.

[103] V. P. Plagianakos, D. K. Tasoulis, and M. N. Vrahatis. A Review of Major
Application Areas of Differential Evolution, pages 197−238. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[104] J. J. Prevost, K. Nagothu, B. Kelley, and M. Jamshidi. Prediction of cloud
data center networks loads using stochastic and neural models. In 2011 6th
International Conference on System of Systems Engineering, pages 276−281,
June 2011.

[105] Kenneth V Price. Differential evolution: a fast and simple numerical opti-
mizer. In Fuzzy Information Processing Society, 1996. NAFIPS., 1996 Biennial
Conference of the North American, pages 524−527. IEEE, June 1996.

[106] K.V. Price, R.M. Storn, and J.A. Lampinen. Differential Evolution: A Practi-
cal Approach to Global Optimization. Natural Computing. Springer London,
Limited, 2005.

[107] A. K. Qin and P. N. Suganthan. Self-adaptive differential evolution algorithm for
numerical optimization. In 2005 IEEE Congress on Evolutionary Computation,
volume 2, pages 1785−1791, Sep. 2005.

168 � Bibliography

[108] Dang Minh Quan, Federico Mezza, Domenico Sannenli, and Raffaele Giafreda.
T-alloc: A practical energy efficient resource allocation algorithm for traditional
data centers. Future Generation Computer Systems, 28(5):791−800, 2012.
Special Section: Energy efficiency in large-scale distributed systems.

[109] P Herbert Raj, P Ravi Kumar, and P Jelciana. Mobile Cloud Computing: A
survey on Challenges and Issues. International Journal of Computer Science
and Information Security, 14(12):165−170, 2016.

[110] R.V. Rao, V.J. Savsani, and D.P. Vakharia. Teaching-learning based optimiza-
tion: A novel method for constrained mechanical design optimization problems.
Computer-Aided Design, 43(3):303−315, 2011.

[111] Esmat Rashedi, Hossein Nezamabadi-pour, and Saeid Saryazdi. GSA: A gravi-
tational search algorithm. Information Sciences, 179(13):2232−2248, 2009.

[112] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Google cluster-usage
traces: format + schema. Technical report, Google Inc., Mountain View, CA,
USA, November 2011.

[113] I. Rodŕıguez-Fdez, A. Canosa, M. Mucientes, and A. Bugaŕın. STAC: A web
platform for the comparison of algorithms using statistical tests. In 2015
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1−8,
Aug 2015.

[114] Deepika Saxena and Ashutosh Kumar Singh. Auto-adaptive learning-based
workload forecasting in dynamic cloud environment. International Journal of
Computers and Applications, 2020.

[115] Deepika Saxena and Ashutosh Kumar Singh. Security embedded dynamic
resource allocation model for cloud data centre. Electronics Letters, 56:1062−
1065, 9 2020.

[116] Deepika Saxena and Ashutosh Kumar Singh. Energy aware resource efficient-
(EARE) server consolidation framework for cloud datacenter. In Lecture Notes
in Electrical Engineering, volume 668, pages 1455−1464. Springer, 2021.

[117] Deepika Saxena and Ashutosh Kumar Singh. A proactive autoscaling and
energy-efficient VM allocation framework using online multi-resource neural
network for cloud data center. Neurocomputing, 426:248−264, 2 2021.

[118] Deepika Saxena, Ashutosh Kumar Singh, and Rajkumar Buyya. OP-MLB:
An online VM prediction based multi-objective load balancing framework for
resource management at cloud datacenter. IEEE Transactions on Cloud Com-
puting, 2021.

[119] Stefano Secci and San Murugesan. Cloud Networks: Enhancing Performance
and Resiliency. Computer, 47(10):82−85, Oct 2014.

Bibliography � 169

[120] N. K. Sharma and G. R. M. Reddy. Multi-objective energy efficient virtual
machines allocation at the cloud data center. IEEE Transactions on Services
Computing, 12(1):158−171, Jan 2019.

[121] Vartika Sharma, Sizman Kaur, Jitendra Kumar, and Ashutosh Kumar Singh.
A fast parkinson’s disease prediction technique using PCA and artificial neural
network. In 2019 International Conference on Intelligent Computing and Control
Systems, ICCS 2019, pages 1491−1496. Institute of Electrical and Electronics
Engineers Inc., 5 2019.

[122] Ashutosh Kumar Singh and Jitendra Kumar. Secure and energy aware load
balancing framework for cloud data centre networks. Electronics Letters, 55:
540−541, 2019.

[123] Ashutosh Kumar Singh and Deepika Saxena. A cryptography and machine
learning based authentication for secure data-sharing in federated cloud services
environment. Journal of Applied Security Research, 2021.

[124] Ashutosh Kumar Singh, Deepika Saxena, Jitendra Kumar, and Vrinda Gupta.
A quantum approach towards the adaptive prediction of cloud workloads. IEEE
Transactions on Parallel and Distributed Systems, pages 1−1, 2021.

[125] Niharika Singh and Ashutosh Kumar Singh. Data privacy protection mechanisms
in cloud. Data Science and Engineering, 3:24−39, 3 2018.

[126] Rainer Storn and Kenneth Price. Differential evolution: A simple and effi-
cient heuristic for global optimization over continuous spaces. J. of Global
Optimization, 11(4):341−359, December 1997.

[127] M. Tang, M. Luo, J. Zhou, Z. Yang, Z. Guo, F. Yan, and L. Liu. Side-channel
attacks in a real scenario. Tsinghua Science and Technology, 23(5):586−598,
Oct 2018.

[128] Ruey S. Tsay. Time series and forecasting: Brief history and future research.
Journal of the American Statistical Association, 95(450):638−643, 2000.

[129] Manu Vardhan, Shrabani Mallick, Shakti Mishra, and D. S. Kushwaha. A
Demand Based Load Balanced Service Replication Model. Journal on Computing,
2(4):5−10, 2018.

[130] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1(6):80−83, 1945.

[131] Bo K Wong, Thomas A Bodnovich, and Yakup Selvi. Neural network applica-
tions in business: A review and analysis of the literature (1988–1995). Decision
Support Systems, 19(4):301−320, 1997.

[132] Alden H Wright. Genetic algorithms for real parameter optimization. In
Foundations of genetic algorithms, volume 1, pages 205−218. Elsevier, 1991.

170 � Bibliography

[133] R. Xu, L. Zhu, A. Wang, X. Du, K. R. Choo, G. Zhang, and K. Gai. Side-channel
attack on a protected RFID card. IEEE Access, 6:58395−58404, 2018.

[134] Preetesh K. Yadav, Sourav Pareek, Saif Shakeel, Jitendra Kumar, and
Ashutosh Kumar Singh. Advancements and security issues of IoT cyber physical
systems. In 2019 International Conference on Intelligent Computing and Con-
trol Systems, ICCS 2019, pages 940−945. Institute of Electrical and Electronics
Engineers Inc., 5 2019.

[135] Xin-She Yang. Nature-Inspired Metaheuristic Algorithms. Luniver Press, 2008.

[136] Xin She Yang and Xingshi He. Firefly algorithm: recent advances and applica-
tions. International Journal of Swarm Intelligence, 1(1):36−50, 2013.

[137] Q. Zhang, L. T. Yang, Z. Yan, Z. Chen, and P. Li. An efficient deep learning
model to predict cloud workload for industry informatics. IEEE Transactions
on Industrial Informatics, 14(7):3170−3178, 2018.

[138] Xinqian Zhang, Tingming Wu, Mingsong Chen, Tongquan Wei, Junlong Zhou,
Shiyan Hu, and Rajkumar Buyya. Energy-aware virtual machine allocation for
cloud with resource reservation. Journal of Systems and Software, 147:147−161,
2019.

Index

artificial neural network, 5
autoregression, 14
autoregressive integrated moving

average, 15
autoregressive moving average, 15

biphase adaptive differential evolution,
80

blackhole algorithm, 69

cloud computing, 1
cluster based learning, 100
correlation coefficient, 9
crossover operator, 79

DE/best/1, 78
DE/current to best/1, 78
DE/rand/1, 78
differential evolution, 63

ensemble learning, 126
ensemble predictive framework, 125
error prevention scheme, 25
error prevention score (EPS), 25
error preventive autoregressive

integrated moving average, 38
error preventive autoregressive moving

average, 29
error preventive exponential

smoothing, 43
evolutionary algorithm, 62
expert architecture learning, 127
expert weight allocation, 129
exponential smoothing, 17
extreme learning machine, 121

finner test, 10
firefly search algorithm, 61

friedman test, 10

genetic algorithm, 63
gravitational search algorithm, 68

harmony search, 64
heuristic crossover, 79

infrastructure as a service (IaaS), 1

load balancing, 4

magnitude of forecasts, 29
mean absolute error, 8
mean absolute scaled error, 9
mean squared error, 8
metaheuristic algorithm, 6
moving average, 14
multi objective optimization, 141
mutation operator, 78

nature inspired optimization
algorithm, 64

network learning, 77
noise, 13
non directed learning, 98
non directed predictive framework, 97

outliers, 13

particle swarm optimization, 60
physic inspired optimization algorithm,

67
platform as a service (PaaS), 1
predictions in error range, 27

relative mean absolute error, 9
resource-efficient load balancing

framework, 142
ring crossover, 79

171

172 � INDEX

seasonality, 13
secure and energy-aware load

balancing, 146
self adaptive differential evolution, 80
self directed learning, 100
self directed predictive framework, 99
side-channel attack, 147
software as a service (SaaS), 1
statistical test, 9
sum of elasticity index, 9
swarm intelligence, 59

teaching learning based optimization,
66

time series, 7
time series analysis, 7
trend, 13

uniform crossover, 80

vm placement, 141

wilcoxon signed-rank test, 10
workload prediction, 3

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	List of Figures
	List of Tables
	Preface
	Author
	Abbreviations
	Chapter 1: Introduction
	1.1. CLOUD COMPUTING
	1.2. CLOUD MANAGEMENT
	1.2.1. Workload Forecasting
	1.2.2. Load Balancing

	1.3. MACHINE LEARNING
	1.3.1. Artificial Neural Network
	1.3.2. Metaheuristic Optimization Algorithms
	1.3.3. Time Series Analysis

	1.4. WORKLOAD TRACES
	1.5. EXPERIMENTAL SETUP & EVALUATION METRICS
	1.6. STATISTICAL TESTS
	1.6.1. Wilcoxon Signed-Rank Test
	1.6.2. Friedman Test
	1.6.3. Finner Test

	Chapter 2: Time Series Models
	2.1. AUTOREGRESSION
	2.2. MOVING AVERAGE
	2.3. AUTOREGRESSIVE MOVING AVERAGE
	2.4. AUTOREGRESSIVE INTEGRATED MOVING AVERAGE
	2.5. EXPONENTIAL SMOOTHING
	2.6. EXPERIMENTAL ANALYSIS
	2.6.1. Forecast Evaluation
	2.6.2. Statistical Analysis

	Chapter 3: Error Preventive Time Series Models
	3.1. ERROR PREVENTION SCHEME
	3.2. PREDICTIONS IN ERROR RANGE
	3.3. MAGNITUDE OF PREDICTIONS
	3.4. ERROR PREVENTIVE TIME SERIES MODELS
	3.4.1. Error Preventive Autoregressive Moving Average
	3.4.2. Error Preventive Autoregressive Integrated Moving Average
	3.4.3. Error Preventive Exponential Smoothing

	3.5. PERFORMANCE EVALUATION
	3.5.1. Comparative Analysis
	3.5.2. Statistical Analysis

	Chapter 4: Metaheuristic Optimization Algorithms
	4.1. SWARM INTELLIGENCE ALGORITHMS IN PREDICTIVE MODEL
	4.1.1. Particle Swarm Optimization
	4.1.2. Firefly Search Algorithm

	4.2. EVOLUTIONARY ALGORITHMS IN PREDICTIVE MODEL
	4.2.1. Genetic Algorithm
	4.2.2. Differential Evolution

	4.3. NATURE INSPIRED ALGORITHMS IN PREDICTIVE MODEL
	4.3.1. Harmony Search
	4.3.2. Teaching Learning Based Optimization

	4.4. PHYSICS INSPIRED ALGORITHMS IN PREDICTIVE MODEL
	4.4.1. Gravitational Search Algorithm
	4.4.2. Blackhole Algorithm

	4.5. STATISTICAL PERFORMANCE ASSESSMENT

	Chapter 5: Evolutionary Neural Networks
	5.1. NEURAL NETWORK PREDICTION FRAMEWORK DESIGN
	5.2. NETWORK LEARNING
	5.3. RECOMBINATION OPERATOR STRATEGY LEARNING
	5.3.1. Mutation Operator
	5.3.1.1. DE/current to best/1
	5.3.1.2. DE/best/1
	5.3.1.3. DE/rand/1

	5.3.2. Crossover Operator
	5.3.2.1. Ring Crossover
	5.3.2.2. Heuristic Crossover
	5.3.2.3. Uniform Crossover

	5.3.3. Operator Learning Process

	5.4. ALGORITHMS AND ANALYSIS
	5.5. FORECAST ASSESSMENT
	5.5.1. Short Term Forecast
	5.5.2. Long Term Forecast

	5.6. COMPARATIVE ANALYSIS

	Chapter 6: Self Directed Learning
	6.1. NON-DIRECTED LEARNING-BASED FRAMEWORK
	6.1.1. Non-Directed Learning

	6.2. SELF-DIRECTED LEARNING-BASED FRAMEWORK
	6.2.1. Self-Directed Learning
	6.2.2. Cluster-Based Learning
	6.2.3. Complexity analysis

	6.3. FORECAST ASSESSMENT
	6.3.1. Short Term Forecast
	6.3.1.1. Web Server Workloads
	6.3.1.2. Cloud Workloads

	6.4. LONG TERM FORECAST
	6.4.0.1. Web Server Workloads
	6.4.0.2. Cloud Workloads

	6.5. COMPARATIVE & STATISTICAL ANALYSIS

	Chapter 7: Ensemble Learning
	7.1. EXTREME LEARNING MACHINE
	7.2. WORKLOAD DECOMPOSITION PREDICTIVE FRAMEWORK
	7.2.1. Framework Design

	7.3. ELM ENSEMBLE PREDICTIVE FRAMEWORK
	7.3.1. Ensemble Learning
	7.3.2. Expert Architecture Learning
	7.3.3. Expert Weight Allocation

	7.4. SHORT TERM FORECAST EVALUATION
	7.5. LONG TERM FORECAST EVALUATION
	7.6. COMPARATIVE ANALYSIS

	Chapter 8: Load Balancing
	8.1. MULTI-OBJECTIVE OPTIMIZATION
	8.2. RESOURCE-EFFICIENT LOAD BALANCING FRAMEWORK
	8.3. SECURE AND ENERGY-AWARE LOAD BALANCING FRAMEWORK
	8.3.1. Side-Channel Attacks
	8.3.2. Ternary Objective VM Placement

	8.4. SIMULATION SETUP
	8.5. HOMOGENEOUS VM PLACEMENT ANALYSIS
	8.6. HETEROGENEOUS VM PLACEMENT ANALYSIS

	Chapter 9: Summary
	Bibliography
	Index

