

Optimal and Robust
Control

http://www.taylorandfrancis.com

Optimal and Robust
Control

Advanced Topics with MATLAB®
Second Edition

Luigi Fortuna
Mattia Frasca

Arturo Buscarino

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks
does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of
MATLAB® software or related products does not constitute endorsement or sponsorship by The
MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

Second edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2022 Taylor & Francis Group, LLC

First edition published by CRC Press 2012

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and pub-
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis-
sions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

ISBN: 978-1-032-05300-4 (hbk)
ISBN: 978-1-032-05301-1 (pbk)
ISBN: 978-1-003-19692-1 (ebk)
ISBN: 978-1-032-15155-7 (ebk+)

DOI: 10.1201/9781003196921

Publisher’s note: This book has been prepared from camera-ready copy provided by the authors.

Access the Support Material: https://www.routledge.com/Optimal-and-Robust-Control-Advanced-
Topics-with-MATLAB/Fortuna-Frasca/p/book/9781032053004

eResources are available for this title at: https://www.crcpress.com/9781032053004

http://www.copyright.com
https://www.routledge.com/Optimal-and-Robust-Control-Advanced-Topics-with-MATLAB/Fortuna-Frasca/p/book/9781032053004
https://www.crcpress.com/9781032053004
http://www.copyright.com
https://www.routledge.com/Optimal-and-Robust-Control-Advanced-Topics-with-MATLAB/Fortuna-Frasca/p/book/9781032053004
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003196921

Dedicated to our wives

http://www.taylorandfrancis.com

Contents

Preface xiii

Symbol List xv

1 Modelling of Uncertain Systems and the Robust Control
Problem 1

1.1 Uncertainty and Robust Control 1
1.2 The Essential Chronology of Major Findings in Robust Con-

trol . 9

2 Fundamentals of Stability 11

2.1 Lyapunov Criteria . 11
2.2 Positive Definite Matrices 13
2.3 Lyapunov Theory for Linear Time-Invariant Systems 16
2.4 Lyapunov Equations . 20
2.5 Stability with Uncertainty 23
2.6 Further Results on the Lyapunov Theory 26

2.6.1 Hystorical Notes . 26
2.6.2 Lyapunov Stability 27

2.7 Exercises . 33

3 Kalman Canonical Decomposition 35

3.1 Introduction . 35
3.2 Controllability Canonical Partition 37
3.3 Observability Canonical Partition 39
3.4 General Partition . 40
3.5 Remarks on Kalman Decomposition 47
3.6 Exercises . 48

4 Singular Value Decomposition 51

4.1 Singular Values of a Matrix 51
4.2 Spectral Norm and Condition Number of a Matrix 53
4.3 Exercises . 58

vii

viii Contents

5 Open-loop Balanced Realization 59

5.1 Controllability and Observability Gramians 59
5.2 Principal Component Analysis 63
5.3 Principal Component Analysis Applied to Linear Systems . 64
5.4 State Transformations of Gramians 66
5.5 Singular Values of Linear Time-invariant Systems 68
5.6 Computing the Open-loop Balanced Realization 69
5.7 Balanced Realization for Discrete-time Linear Systems . . . 73
5.8 Exercises . 75

6 Reduced Order Models and Symmetric Systems 77

6.1 Reduced Order Models Based on the Open-loop Balanced Re-
alization . 78
6.1.1 Direct Truncation Method 79
6.1.2 Singular Perturbation Method 81

6.2 Reduced Order Model Exercises 82
6.3 Symmetric Systems . 86

6.3.1 Reduced Order Models for SISO Systems 86
6.3.2 Properties of Symmetric Systems 88
6.3.3 The Cross-gramian Matrix 90
6.3.4 Relations Between W2

c , W2
o and Wco 90

6.3.5 Open-loop Parameterization 96
6.3.6 Relation Between the Cauchy Index and the Hankel

Matrix . 98
6.3.7 Singular Values for a FIR Filter 99
6.3.8 Singular Values of All-pass Systems 102

6.4 Exercises . 103

7 Variational Calculus and Linear Quadratic Optimal Control 107

7.1 Variational Calculus: An Introduction 108
7.2 The Lagrange Method . 110
7.3 Towards Optimal Control 112
7.4 LQR Optimal Control . 117
7.5 Hamiltonian Matrices . 124
7.6 Solving the Riccati Equation via the Hamiltonian Matrix . 127
7.7 The Control Algebraic Riccati Equation 127
7.8 Optimal Control for SISO Systems 129
7.9 Linear Quadratic Regulator with Cross-weighted Cost . . . 134
7.10 Finite-horizon Linear Quadratic Regulator 135
7.11 Optimal Control for Discrete-time Linear Systems 136
7.12 Exercises . 137

Contents ix

8 Closed-loop Balanced Realization 139

8.1 Synthesis of a Compensator for High-Order Systems 139
8.2 Filtering Algebraic Riccati Equation 140
8.3 Computing the Closed-loop Balanced Realization 142
8.4 Procedure for Closed-loop Balanced Realization 144
8.5 Reduced Order Models Based on Closed-loop Balanced Real-

ization . 145
8.6 Closed-loop Balanced Realization for Symmetric Systems . 149
8.7 Exercises . 150

9 Positive-real, Bounded-real and Negative-imaginary Systems 153

9.1 Passive Systems . 154
9.1.1 Passivity in the Frequency Domain 154
9.1.2 Passivity in the Time Domain 159
9.1.3 Factorizing Positive-real Functions 160
9.1.4 Passive Reduced Order Models 161
9.1.5 Energy Considerations Connected to the Positive-real

Lemma . 161
9.1.6 Closed-loop Stability and Positive-real Systems . . . 162
9.1.7 Optimal Gain for Loss-less Systems 163

9.2 Circuit Implementation of Positive-real Systems 165
9.3 Bounded-real Systems . 166

9.3.1 Properties of Bounded-real Systems 169
9.3.2 Bounded-real Reduced Order Models 170

9.4 Relationship Between Passive and Bounded-real Systems . . 170
9.5 Negative-imaginary Systems 171

9.5.1 Characterization of Negative-imaginary Systems in the
Frequency Domain 171

9.5.2 Characterization of Negative-imaginary Systems in the
Time Domain . 175

9.5.3 Closed-loop Stability and Negative-imaginary Systems 176
9.6 Exercises . 178

10 Enforcing the Positive-real or the Negative-imaginary
Property in a Linear Model 181

10.1 Why to Enforce the Positive-real and Negative-Imaginary
Property in a Linear Model 181

10.2 Passification . 182
10.3 Forward Action to make a System Negative-Imaginary . . . 187

10.3.1 The SISO Case . 187
10.3.2 The MIMO Case . 191

10.4 Exercises . 193

x Contents

11 H∞ Linear Control 195

11.1 Introduction . 195
11.2 Solution of the H∞ Linear Control Problem 197
11.3 The H∞ Linear Control and the Uncertainty Problem . . . 205
11.4 Exercises . 208

12 Linear Matrix Inequalities for Optimal and Robust Control 209

12.1 Definition and Properties of LMI 210
12.2 LMI Problems . 211

12.2.1 Feasibility Problem 211
12.2.2 Linear Objective Minimization Problem 212
12.2.3 Generalized Eigenvalue Minimization Problem 212

12.3 Formulation of Control Problems in LMI Terms 213
12.3.1 Stability . 213
12.3.2 Closed-loop Stability 213
12.3.3 Simultaneous Stabilizability 214
12.3.4 Positive-real Lemma 214
12.3.5 Bounded-real Lemma 214
12.3.6 Calculating the H∞ Norm Through LMI 215

12.4 Solving a LMI Problem . 215
12.5 LMI Problem for Simultaneous Stabilizability 218
12.6 Solving Algebraic Riccati Equations Through LMI 221
12.7 Computation of Gramians Through LMI 223
12.8 Computation of the Hankel Norm Through LMI 224
12.9 H∞ Control . 226
12.10 Multiobjective Control . 228
12.11 Exercises . 235

13 The Class of Stabilizing Controllers 237

13.1 Parameterization of Stabilizing Controllers for Stable
Processes . 237

13.2 Parameterization of Stabilizing Controllers for Unstable
Processes . 239

13.3 Parameterization of Stable Controllers 242
13.4 Simultaneous Stabilizability of Two Systems 245
13.5 Coprime Factorizations for MIMO Systems and Unitary

Factorization . 245
13.6 Parameterization in Presence of Uncertainty 247
13.7 Exercises . 250

Contents xi

14 Formulation and Solution of Matrix Algebraic Problems
through Optimization Problems 253

14.1 Solutions of Matrix Algebra Problems Using Dynamical Sys-
tems . 253
14.1.1 Problem 1: Inverse of a Matrix 254
14.1.2 Problem 2: Eigenvalues of a Matrix 256
14.1.3 Problem 3: Eigenvectors of a Symmetric Positive Def-

inite Matrix . 258
14.1.4 Problem 4: Observability and Controllability Gramian 259

14.2 Computation of the Open-loop Balanced Representation via
the Dynamical System Approach 260

14.3 Concluding Remarks . 263
14.4 Exercises . 264

15 Time-delay Systems 265

15.1 Modeling Systems with Time-delays 265
15.2 Basic Principles of Time-delay Systems 266
15.3 Stability of Time-delay Systems 269
15.4 Stability of Time-delay Systems with q = 1 270
15.5 Direct Method . 275
15.6 Exercises . 281

Recommended Essential References 283

Appendix A. Norms 291

Appendix B. Algebraic Riccati Equations 295

Appendix C. Invariance Under Frequency Transformations 299

Index 303

http://www.taylorandfrancis.com

Preface

The main aim of this book is to provide for undergraduate and graduate
students, as well as researchers, who already possess the main concepts of
automatic control and system analysis, a self-contained resource collecting
advanced techniques for linear system theory and control design. Selected
theoretical backgrounds are also presented in the book, together with many
numerical exercises and MATLABr examples.

We intend to offer a complete and easy-to-read handbook of advanced
topics in automatic control, including techniques such as the Linear Quadratic
Regulator (LQR) and H∞ control. Large emphasis is also given to Linear
Matrix Inequalities (LMIs) with the purpose of demonstrating their use as a
unifying tool for system analysis and control design.

In presenting the different approaches to control design, the books explic-
itly takes into account the problem of the robustness of the obtained closed-
loop control. Robustness, in fact, represents the capability of a control system
to guarantee the stability in the presence of uncertainty, due to the model itself
or to the use of approximated models, and as such is deemed as particularly
important in view of the practical implementation of the control techniques.

Many books on LQR control and H∞ control have been proposed since
1980. The LMI technique has become well-known in the control community,
and MATLABr toolboxes to solve advanced control problems have been de-
veloped. However, these subjects are often presented for a specialist audience
in materials that are excellent resources for researchers and PhD students.
This book, on the contrary, is oriented to illustrate these topics in an easy
and concise way, using a language suitable for students, yet maintaining the
necessary mathematical rigor.

This book is, therefore, a compendium of many ordered subjects. For spe-
cific proofs, the reader is often referred to the proposed literature. Many ex-
amples and MATLABr based exercises are included here to assist the reader
in understanding the proposed methods. The book can be considered as a
palimpsest of advanced modern topics in automatic control, including an ad-
vanced set of analytical examples and MATLABr exercises. The topics in-
cluded in the book are mainly illustrated with reference to continuous-time
linear systems, even if some results for discrete-time systems are briefly re-
called.

The book is organized into chapters structured as follows. The first chapter
is an introduction to advanced control, the second discusses some fundamental
concepts on stability and provides the tools for studying uncertain systems.

xiii

xiv Preface

The third presents the Kalman decomposition. The fourth chapter is on sin-
gular value decomposition of a matrix, given the importance of numerical
techniques for systems analysis. The fifth and sixth chapters are on open-loop
balanced realization and reduced order models. The seventh chapter presents
the essential aspects of variational calculus and optimal control and the eighth
illustrates closed-loop balancing. The properties of positive-real, bounded-real
and negative-imaginary systems are the subject of the ninth and tenth chap-
ter. In the eleventh and twelfth chapter, the essential aspects of H∞ control
and LMI techniques commonly used in control systems design are dealt with.
The thirteenth chapter is devoted to discuss the class of stabilizing controllers.
The fourteenth chapter reviews some of the problems already discussed in the
book by introducing an approach based on the steady-state solution of a non-
linear dynamical system. Finally, the fifteenth chapter briefly discusses some
fundamental aspects of time-delay systems. The book also includes numerous
examples and exercises, considered indispensable for learning the methodology
of the topics dealt with, and a list of essential references.

This book is targeted at electrical, electronic, computer science, space and
automation engineers interested in advanced topics on automatic control. Me-
chanical engineers as well as engineers from other fields may also be inter-
ested in the topics of the book. The contents of the book can be learned
autonomously by the reader in less than a semester.

For MATLABr and Simulinkr product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
Email: info@mathworks.com
Web: www.mathworks.com

mailto:info@mathworks.com
http://www.mathworks.com

Symbol List

Symbol Description

R the set of real numbers
C the set of complex num-

bers
Rn real vectors of n compo-

nents
Cn complex vectors of n

components
Rm×n real matrices of dimen-

sions m× n
Cm×n complex matrices of di-

mensions m× n
<e (x) real part a of a complex

number x = a+ jb
=m (x) imaginary part b of a

complex number x =
a+ jb

|x| absolute value of a real
number or the modulus
of a complex number

‖x‖ norm of vector x
aij coefficient of line i and

column j of matrix A
sup superior extreme of a

set
inf inferior extreme of a set
I identity matrix of op-

portune dimensions
AT transpose of a matrix
A∗ conjugate transpose of

A ∈ Cn×n
A⊗ B Kronecker product
A ∗ B Hadamard product

(component by com-
ponent product of two

square matrices, i.e.,
A ∗ B = {aijbij})

det (A) determinant of matrix
A

trace(A) trace of matrix A
P > 0 (semi-defined) defined

positive matrix
P ≥ 0 semi-defined positive

matrix
P < 0 (semi-defined) defined

negative matrix
P ≤ 0 semi-defined negative

matrix
λi(A) i-th eigenvalue of ma-

trix A
σi(A) i-th singular value of

matrix A
ρ(A) spectral radius (maxi-

mum eigenvalue) of ma-
trix A

S(A,B,C,D) linear dynamical sys-
tem ẋ = Ax + Bu, y =
Cx + Du

Mc controllability matrix of
a system

Mo observability matrix of
a system

σi i-th singular value of a
system

µi i-th characteristic value
of a system

RIC(H) Riccati equation solu-
tion associated with
Hamiltonian matrix H

xv

xvi Symbol List

SISO single input single
output system

MIMO multi input multi
output system

1

Modelling of Uncertain Systems and the
Robust Control Problem

CONTENTS

1.1 Uncertainty and Robust Control . 1
1.2 The Essential Chronology of Major Findings in Robust Control 9

In this chapter the main concepts related to robust control are introduced.
In particular, the key notions of robustness and uncertainty are presented. In
the formalization of uncertainty, both the structured and unstructured cases
are dealt with. In this preliminary part, the representation of a linear time
invariant system in term of the realization matrix is also given. Some examples
of uncertainty generated with MATLAB examples are reported. The essential
chronology of the recent history of robust control is also outlined.

1.1 Uncertainty and Robust Control

In control system design, the primary requirement is the asymptotic stability
of controlled systems. In automatic control, this is guaranteed through the de-
sign of an appropriate controller based on the nominal model of the process.
However, in reality there may be several sources of uncertainty which make the
nominal model inaccurate. Robust control deals explicitly with system uncer-
tainties which account for the differences between the real model and nominal
model. Robust control guarantees controlled system performance (primarily,
asymptotic stability) when there are uncertainties.

The robust control issue can be summarized as: given a nominal process
with acceptable interval values for perturbances, a controller should provide
satisfactory performance in a closed-loop system for all the processes with the
“acceptable” perturbances.

As regards stability, the requisites of a robust control system should ensure:

1. Closed-loop stability under nominal conditions;

2. Closed-loop stability although there are uncertainties in the model.

DOI: 10.1201/9781003196921-1 1

https://doi.org/10.1201/9781003196921-1

2 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 1.1
Unitary feedback control scheme.

As clarified below, uncertainties come in various forms, but, notwithstand-
ing, an acceptable value range for possible uncertainties must be hypothesized
within which interval control system performance is guaranteed. This can also
provide a way to establish if one controller is more robust than another: the
greater the range of acceptable values for uncertainties, the more the controller
can be considered robust.

The automatic control theory refers to the feedback control model repre-
sented in Figure 1.1 (unitary feedback) or in Figure 1.2 (non-unitary feedback).
P represents the process and generally no assumptions are made about its lin-
earity, assuming only it is a time-invariant system. C indicates the controller
to be designed. The main issue is to design C, so the closed-loop system is
asymptotically stable. Furthermore, in addition to this basic specification, the
control system can be required to respond to other criteria. In the case of
robust control, another important factor must be accounted for: the process
model may have uncertainties.

For example, consider a linear process, described by transfer function
P (s) = 1

s2(s+1) . Who can say for sure that the pole of this system is ex-

actly −1? And, in the same way, on what basis could the system gain be
considered perfectly unitary? For this reason, in the theory of robust control,
the system is indicated by P (s) = g1

s2(s+p1)
, inputting parameters which ac-

count for system uncertainties. g1 = 1 and p1 = 1 should be considered the
nominal values of the parameters that, however, in practice may eventually
have different values, with a variation range that is usually known. This type
of uncertainty concerns parameter values which characterize the system and
so is defined parametric uncertainty or structured uncertainty . Examples of
parametric uncertainty can be seen in daily life. Think of any size measure-
ment (e.g., the length of a table): the measurement depends on the accuracy
of the measuring instrument.

There are also other causes of parametric uncertainty. Parameter values
may also vary depending on the operating conditions of the system. Think of
a resistor heated by the Joule effect: electrical resistivity increases, modifying
the value of that resistance. Or think of an airplane, as the fuel is consumed,
the plane total mass decreases.

Obviously, if parameter values change (even if in a predictable range),
control system performance drops off compared to a nominal one (in fact,

Modelling of Uncertain Systems and the Robust Control Problem 3

FIGURE 1.2
Feedback control scheme.

the design was related to nominal parameter values). The first goal of robust
control is to ensure that, even with changing parameter values, the system
asymptotic stability is guaranteed.

Above, there was an example of parametric uncertainty about the coeffi-
cients of the transfer function of a linear time-invariant system. Now consider
a nonlinear time-invariant system (with one input and output, for example),
described by the equations:

ẋ = f(x) + g(x)u
y = h(x)u

(1.1)

with x ∈ Rn (state variables), u ∈ R (system input) and y ∈ R (system
output), g : Rn → Rn, f : Rn → Rn and h : Rn → Rn. With robust control,
parametric uncertainty in the model is highlighted by using the parameters
α, β and γ:

ẋ = f(x, α) + g(x, β)u
y = h(x, γ)u

(1.2)

In this case, ᾱ, β̄ and γ̄ indicate the nominal values of the parameters
α, β and γ. Robust control for system (1.2) means designing C to guarantee
closed-loop asymptotic stability, given the variation spans of parameters α, β
and γ (generally, vectors of arbitrary size).

Similarly, one can consider linear systems in state-space form or other
nonlinear models. Especially, for a linear time-invariant system in state-space
form:

ẋ = Ax + Bu
y = Cx + Du

(1.3)

with x ∈ Rn, u ∈ Rm, y ∈ Rp, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m,
coefficients of A, B, C and D vary in certain intervals. What is required for
robust control, once the controller is designed for nominal parameter values,
is that asymptotic stability is guaranteed even when the parameters are not
nominal.

4 Optimal and Robust Control: Advanced Topics with MATLAB r

The linear time-invariant systems can also be described in a more compact
form with the realization matrix :

R =

[
A B
C D

]
(1.4)

If the number of inputs equals the number of system outputs (p = m)
then matrix R is square (R ∈ R(n+m)×(n+m)). The eigenvalues of this matrix
can easily be shown not to depend on the reference system. In fact, a state
transformation leads to:

R̃ = T−1RT (1.5)

which is clearly a similarity relation.
To verify if a system is minimal, it is possible to calculate the eigenvalues of

matrix R which are represented by λ̄1, λ̄2, . . . , λ̄n+m, whereas the eigenvalues
of A by λ1, λ2, . . . , λn. These quantities are system invariants, that is, they do
not depend on the state-space representation. The system is minimal if none
of eigenvalues of A coincide with those of R.

There is another type of uncertainty which is more difficult to deal with
than parametric uncertainty. Called structural uncertainty or unstructured un-
certainty , it concerns the model structure. Consider again the example of the
process described by P = 1

s2(s+1) , structural uncertainty takes into account

the possibility that the modelling did not account perhaps for an additional
pole and an additional zero in the process transfer function:

P =
(s
α0

+ 1)

s2(s+ 1)(sα + 1)

So, structural uncertainty derives from incorrect modelling, which possibly
overlooked some dynamics of the real process. Neglecting some dynamics in
modelling is actually very common and can have consequences for closed-loop
stability.

Example 1.1
Consider system P (s) = 1

(s+1)2
. The transfer function of the closed-loop system

(Fig. 1.1) is given by M(s) =
Y (s)
R(s)

=
C(s)P (s)

1+C(s)P (s)
. Using a simple proportional controller

C(s) = k, you obtain M(s) = k
(s+1)2+k

and the closed-loop system is asymptotically

stable ∀k > 0.
For example, if C(s) = 100, notice that this controller is robust to parametric variations
of position of the pole of P (s) with double multiplicity. In fact, if instead of p = −1,
it was p = −α, the controller C(s) = 100 would continue to guarantee closed-loop
asymptotic stability to a large value of the parameter (α > 0).
In the case of structural uncertainty, the scenario is different. Suppose that there is an
uncertainty, say on system order, so that P (s) = 1

(s+1)3
. The characteristic closed-loop

equation is given by (s+1)3 +k = 0, i.e., s3 +3s2 +3s+1+k = 0. Applying the Routh
criterion, we note that in this case the system is asymptotically stable if 0 < k < 8.
Controller C(s) = 100, designed for the nominal system P (s) = 1

(s+1)2
, no longer guar-

antees asymptotic stability because of the structural uncertainty of an additional pole

Modelling of Uncertain Systems and the Robust Control Problem 5

at −1. The conclusion is that the consequences of uncertainty on system order, having
overlooked some dynamics (which could also be a parasite dynamic which triggers in
certain conditions), can be very important.

Defining parametric uncertainty is done by expressing a parameter varia-
tion range. For example, given a linear time-invariant system described by its
transfer function

P (s) =
N(s)

D(s)
=
b0s

m + b1s
m−1 + . . .+ bm−1s+ bm

sn + a1sn−1 + . . .+ an−1s+ an

once the minimum and maximum values of the various coefficients are as-
signed, parametric uncertainty is completely characterized:

am1 ≤ a1 ≤ aM1
. . .

amn ≤ an ≤ aMn
bm0 ≤ b0 ≤ bM0

. . .
bmm ≤ bm ≤ bMm

(1.6)

If there is structural uncertainty we assume P (s) = P0(s) + ∆P (s), where
P0(s) represents the nominal model and ∆P (s) represents uncertainty. This
structural uncertainty is additive. Structural uncertainty can also be multi-
plicative: P (s) = P0(s)∆P (s). Structural uncertainty is measured by a norm
of the transfer function or of the transfer matrix. We will see how to define
such a norm in Chapter 9.

The greater the required robustness, the greater the precision required to
model the process. A particularly important role in robust control is test-
ing. The popularity of personal computers now makes it possible to perform
tests through numerical simulations even when the robust control problem
has no analytical solutions. Numerical simulations help verify operation and
controller performance in the variation interval indicated by the uncertainty.

The most critical issue is structural uncertainty. Suppose we consider a
horizontal beam fixed at one end and subject to a stimulus at the other. This
system has distributed parameters and could be modelled by an infinite series
of mass-spring systems. The free-end deflection has infinite modes which can
be described with a transfer function of type G(s) =

∑∞
i=0Gi(s), where Gi(s)

is the transfer function describing the mode associated with the n-th section.
However, this approach is not so easy to carry out and so an approximation
G(s) = G0(s) + ∆G(s) is used which takes into account the most important
modes (modelled by G0(s)). Approximation is necessary for the design of a
non-distributed controller (note too that additive uncertainty helps model
the high frequency dynamic neglected by the approximation). In these cases
only the dominant part is considered, but it is essential that the controller is
robust enough for any uncertainty in the dynamics not described in the model.
This introduces another very important issue treated below: how to figure out

6 Optimal and Robust Control: Advanced Topics with MATLAB r

reduced order models which can allow to deal with the control problem in a
simpler way. It seems clear that this operation introduces an error which can
be evaluated and taken into account in the robust controller design.

Now, let us turn to the case of the linear time-invariant systems described
by equations (1.3). In the next example, we will discuss parametric and struc-
tural uncertainty in the state matrix A and illustrate how the position of the
eigenvalues of this matrix is affected by this uncertainty.

MATLABr Exercise 1.1
Let us consider a linear time-invariant system with state matrix

A =

 0 1 0
0 0 1

−1 + k1 −3 + k2 −3

 (1.7)

It contains two parameters k1 and k2 which are uncertain. This system is therefore an
example of a system subject to parametric uncertainty. Note that for k1 = k2 = 0 the
system is asymptotically stable, being all eigenvalues of A equal and negative, namely,
λ1 = λ2 = λ3 = −1.
Now consider the case that k1 and k2 are random numbers drawn from a normal distri-
bution and calculate the eigenvalues repeating the computation for different instances
of the random process. To this aim, let us the following MATLAB commands:
for i=1:1000

k1=randn;

k2=randn;

A=[0 1 0;0 0 1;-1+k1 -3+k2 -3];

figure(1); plot(k1,k2,’k.’); hold on;

figure(2); plot(real(eig(A)),imag(eig(A)),’k.’); hold on;

end

The result is illustrated in Figure 1.3, which shows that in most of the cases the stability
is preserved, but in some cases eigenvalues with positive real part appear, yielding an
unstable system.
The exercise can be repeated considering a smaller uncertainty, for instance, using
k1=0.1*randn; and k2=0.1*randn; to obtain a system that with high probability re-
mains stable.
The effect of other distributions for k1 and k2 can also be studied. For instance, con-
sidering an uniform distribution in [−0.5, 0.5] with the commands k1=rand-0.5 and
k2=rand-0.5, we obtain the result shown in Figure 1.4. In this case, the system is
always stable.
The characteristic polynomial of A is given by p(λ) = λ3 + 3λ2 + (3− k2)λ+ 1− k1 as
one can also verify using symbolic calculus in MATLAB:
>> syms k1 k2 real positive

>> A=[0 1 0;0 0 1;-1+k1 -3+k2 -3];

>> p=charpoly(A)

Applying the Routh criterion for stability, one derives that the following conditions
need to be satisfied: k1 < 1, k2 < 3 and 8 − 3k2 + k1 > 0. This explains why, when
k1 and k2 are drawn from an uniform distribution in [−0.5, 0.5], one always obtains a
stable polynomial.
Let us now discuss an example of unstructured uncertainty, where the uncertainty is
no more located on some specific parameters of the state matrix A. In particular, let
us consider the following matrix:

A =

 0 1 0
0 0 1
−1 −3 −3

+ ∆A (1.8)

Modelling of Uncertain Systems and the Robust Control Problem 7

(a) (b)

FIGURE 1.3
Stability of linear systems in presence of parametric uncertainty: (a) distribu-
tion of the parameters k1 and k2; (b) eigenvalues of the state matrix A (1.7)
when k1 and k2 are drawn from a normal distribution.

where ∆A is the uncertainty. Note that, in absence of perturbation, i.e., ∆A = 0, the
same state matrix previously considered is recovered.
Suppose now that the coefficients of ∆A assume random values drawn from a normal
distribution with zero mean and unitary variance. The following MATLAB command
can be used to numerically study the problem:
A=[0 1 0; 0 0 1;-1 -3 -3]

for i=1:1000

DeltaA=1*randn(3);

A=A+DeltaA;

plot(real(eig(A)),imag(eig(A)),’.k’)

hold on

end

Figure 1.5 shows an example of the location of the eigenvalues of A.

For linear time-invariant systems described by equations (1.3), under
opportune hypotheses, a controller can be designed using a control law which
operates on state variables (the linear state regulator u = −kx). Remem-
ber, should not all the state variables be accessible, they would have to be
reconstructed through an asymptotic state observer. This common technique
usually includes the design of a linear regulator and an asymptotic observer
which together constitute the compensator.

When designing a linear state regulator, the system must be completely
controllable (i.e., matrix Mc =

[
B AB A2B . . . An−1B

]
has maximum

rank), whereas designing an asymptotic observer needs the system to be com-

pletely observable (i.e., matrix Mo =
[

C CA CA2 . . . CAn−1]T has
maximum rank).

Furthermore, note that, since the observer is a dynamical system (linear
and time-invariant) of order n, then the compensator obtained is a dynam-
ical system of order n. High-order systems require the design of high-order

8 Optimal and Robust Control: Advanced Topics with MATLAB r

(a) (b)

FIGURE 1.4
Stability of linear systems in presence of parametric uncertainty: (a) distribu-
tion of the parameters k1 and k2; (b) eigenvalues of the state matrix A (1.7)
when k1 and k2 are drawn from an uniform distribution in [−0.5, 0.5].

compensators. So, now, the problem of formulating a lower-order model also
includes the design of a compensator. To do this, there are two different tech-
niques. The first is to design a compensator and then build the lower-order
model. The second is to design the compensator directly on the lower-order
model (e.g., considering P0(s) and neglecting ∆P (s)).

It is important to remark that the uncertainties regard the process P and
not the controller C. This is so, as it is supposed that the controller is the re-
sult of a design, so any uncertainties about its parameters are minimal. More
recently, it has been discovered that compensators designed with the theory of
robust control are fragile, that is, that compared to the compensator param-
eters, robustness is poor, so even minimal uncertainties about compensator
coefficients can lead to system de-stabilization. At the heart of the compen-
sator issue is that when it is designed to be robust against the uncertainties
in the model of process P , it remains fragile with respect to the uncertainties
in the model of controller C. Fragility means that a small perturbation in the
controller parameters can even destabilize the closed-loop system.

This chapter has briefly described the main robust control issues to be dealt
with in subsequent chapters. Before that, certain subjects will be briefly pre-
sented which are the pillars of systems theory (e.g., stability). This approach
was decided on for two reasons: first, is the importance of these subjects to
robust control, and, second, is that undergraduate courses are organized on
two levels. The course which this book is part of is a Master course for stu-
dents who have likely dealt with automation previously. So, this makes a brief
discourse on systems theory necessary.

Modelling of Uncertain Systems and the Robust Control Problem 9

FIGURE 1.5
Stability of linear systems in presence of unstructured uncertainty as in equa-
tion (1.8): eigenvalues of the state matrix A.

1.2 The Essential Chronology of Major Findings in Ro-
bust Control

Parameterization of stabilizing controllers (Youla, 1976).
Poor robustness of LQG controllers (Doyle, 1978).
Formulating H∞ problems for SISO systems (Zames, 1981).
Balanced realizations (Moore, 1981).
Definition of µ (Doyle, 1982).
Definition of multivariable stability margins (Safonov, 1982).
H∞ synthesis algorithms for systems in state-space form: high order control
(Doyle, 1984).
First book on robust control (Francis, 1987).
H∞ synthesis algorithms for systems in state-space form: low order control
(Doyle, Glover, Khargonekar, Francis, 1988).

http://www.taylorandfrancis.com

2

Fundamentals of Stability

CONTENTS

2.1 Lyapunov Criteria . 11
2.2 Positive Definite Matrices . 13
2.3 Lyapunov Theory for Linear Time-Invariant Systems 16
2.4 Lyapunov Equations . 20
2.5 Stability with Uncertainty . 23
2.6 Further Results on the Lyapunov Theory . 26

2.6.1 Hystorical Notes . 26
2.6.2 Lyapunov Stability . 27

2.7 Exercises . 33

This chapter deals with the problem of stability, the main requirement of a
control system. In going over some basics in system analysis, the emphasis
is on some advanced mathematical tools (e.g., Lyapunov equations), which
will be useful below. Particular attention is given to Lyapunov theory for the
case of linear time-invariant systems. The Lyapunov linear matrix equation
is introduced in detail and the concept of positive definite matrix is also dis-
cussed. Some criteria to verify this property are reported and the solution
of Lyapunov equations via vectorization is presented with numerical exam-
ples. The Kharitonov criterion to test the stability of uncertain system is also
introduced. At the end of the chapter, several worked examples are included.

2.1 Lyapunov Criteria

The equilibrium points of an autonomous dynamical system ẋ = f(x) with

x =
[
x1 x2 . . . xn

]T
and f(x) =

[
f1(x) f2(x) . . . fn(x)

]T
can

be calculated by ẋ = 0 (i.e., solving the systems of equations f(x) = 0). Gener-
ally, the equations are nonlinear and may have one or more solutions, whereas
for autonomous linear systems, the equilibrium points can be calculated by
Ax = 0, which has only one solution (x = 0) if det(A) 6= 0.

DOI: 10.1201/9781003196921-2 11

https://doi.org/10.1201/9781003196921-2

12 Optimal and Robust Control: Advanced Topics with MATLAB r

So, nonlinear systems may have more than one equilibrium point. In
addition, each of these equilibrium points has its own stability characteristics.
For example, think of a pendulum. It has two equilibrium points as shown in
Figure 2.1. Only the second of the two equilibrium points is stable. If the pen-
dulum were to start from a position near equilibrium point (a), it would not
return to its equilibrium position, differently from what happens at point (b).
For this reason, in nonlinear systems, stability is a property of equilibrium
points, and not of the whole system. The stability of an equilibrium point
can be studied through the criteria introduced by the Russian mathematician
Aleksandr Mikhailovich Lyapunov (1857–1918).

FIGURE 2.1
Equilibrium points of a pendulum.

The first of Lyapunov’s criteria defines stability of an equilibrium point.
It says that if a system starts from initial conditions very close to a stable
equilibrium point, the state evolution is confined to the neighborhood of that
equilibrium point. If the initial conditions x(0) = x0 are close to equilibrium,
the response obtained by x0, i.e., the perturbed response, is sufficiently close to
equilibrium point x̄ (the nominal response, i.e., the motion obtained starting
exactly from x̄, is in fact constant over time and equal to the equilibrium
point). To measure the distance between perturbed and nominal motion in
finite space, any vector norm can be used. The criterion is formally expressed
by:

Definition 1 (Lyapunov I criterion) The equilibrium point x̄ of the dy-
namical system ẋ = f(x) (f(x̄) = 0) is defined as stable when:

∀ε > 0, ∃δ > 0 such that ∀x0 with ‖ x0 − x̄ ‖< δ one has
‖ x(t)− x̄ ‖< ε for ∀t > 0

Stability is said to be asymptotic, if this additional condition applies:

lim
t→+∞

x(t) = x̄ (2.1)

In this case, the perturbed motion not only stays in the neighborhood of
the equilibrium point, but asymptotically tends to it.

Fundamentals of Stability 13

Definition 2 (Asymptotically stable equilibrium point) The equilibrium
point x̄ of the dynamical system ẋ = f(x) (f(x̄) = 0) is defined as asymptot-
ically stable if it is stable and furthermore condition (2.1) holds.

Before discussing Lyapunov’s second criterion, some preliminary notions
need to be discussed.

Note first that, without loss of generality, it is possible to consider x̄ = 0,
since it is always possible to shift the generic equilibrium point x̄ back to 0
by variable translation.

Now, the concept of positive definite functions needs to be introduced. Let
us consider a neighborhood Ω ⊆ Rn of point x̄ = 0.

Definition 3 (Positive definite function) Function V (x) : Rn → R is
positive definite in x̄ = 0 if the following hold:

1. V (0) = 0

2. V (x) > 0 ∀x ∈ Ω, x 6= 0

A function is positive semi-definite if V (0) = 0 and if V (x) ≥ 0 ∀x ∈ Ω,
x 6= 0. A function is negative definite if V (0) = 0 and if V (x) < 0 ∀x ∈ Ω,
x 6= 0. Finally, a function is negative semi-definite if V (0) = 0 and if V (x) ≤ 0
∀x ∈ Ω, x 6= 0.

Theorem 1 (Lyapunov II criterion) The equilibrium x̄ = 0 of the dy-
namical system ẋ = f(x) is stable if there is a scalar function of the state, the
so-called Lyapunov function, which has the following properties:

1. V (x) is positive definite for x̄ = 0

2. V̇ (x) = dV (x)
dt is negative semi-definite for x̄ = 0

The stability is asymptotic if V̇ (x) is negative definite.

From a physical point of view, the Lyapunov function represents system
energy. If the energy grows over time, it means that the state variables grow
(thus diverge). Conversely, if the energy tends to zero, the system is dissipating
energy.

Note that many Lyapunov functions satisfy the first condition of Lyapunov
II criterion; the difficulty lies in verifying the second condition.

2.2 Positive Definite Matrices

For linear systems, a Lyapunov function allowing to assess system stability is
easily found. In fact, for nonlinear systems, there is no general procedure for

14 Optimal and Robust Control: Advanced Topics with MATLAB r

finding Lyapunov functions, while for linear systems there is. Effectively, Lya-
punov second criterion for linear systems can be simplified. Before introducing
the criterion, firstly, positive definite matrices are defined.

Given matrix P ∈ Rn×n, a quadratic form can be associated to it: V (x) =
xTPx, which is clearly a scalar function of vector x ∈ Rn.

Definition 4 A matrix P is positive definite if the quadratic form associated
to it is positive definite.

Likewise, it is possible to define negative definite, positive semi-definite
and negative semi-definite matrices.

Now, we discuss how to determine if a matrix is positive definite. It turns
out that this depends only on the so-called symmetric part of the matrix.
In fact, matrix P can always be written as the sum of two matrices, one
symmetric and one asymmetric, named symmetric part Ps and antisymmetric
part Pas of matrix:

P = Ps + Pas

where the symmetric part is

Ps =
1

2
(P + PT)

and the antisymmetric part is

Pas =
1

2
(P− PT).

Clearly, only the symmetric part of a matrix determines if a matrix is
positive definite as:

V (x) = xTPx = xTPsx

In fact, the asymmetric part does not contribute. This can be seen consid-
ering that:

V (x) = xTPx = p11x
2
1 + . . .+ pnnx

2
n + (p12 + p21)x1x2 + (p13 + p31)x1x3 + . . .

. . .+ (pn−1,n + pn,n−1)xn−1xn

On the other hand, from the definition of Ps one has:

Ps =


p11

p21+p12
2 . . . pn1+p1n

2
p21+p12

2 p22 . . . pn2+p2n
2

...
...

...
p1n+pn1

2
pn2+p2n

2 . . . pnn


from which it follows that V (x) = xTPsx.

Let us recall some properties of symmetric matrices that will be useful
below.

Fundamentals of Stability 15

• The eigenvalues of a symmetric matrix are real.

• A symmetric matrix is always diagonalizable. This means that there is al-
ways a set of linear independent and orthogonal eigenvectors, such that
V Tj Vi = 0 if i 6= j. For symmetric matrices it is always possible to find a set
of orthonormal eigenvectors such that if

V =
[
V1 V2 . . . Vn

]
then:

VTV = I

VT = V−1

and

P = VΛVT

From this, we obtain a significant finding for positive definite matrices.
Consider the quadratic form V (x) of P, which equals:

V (x) = xTPsx = xTVΛVTx

Consider the state transformation x̃ = VTx, then:

V (x̃) = x̃TΛx̃ (2.2)

Clearly, V (x) and V (x̃) have the same properties, but understanding if
V (x̃) is positive definite is much simpler. In fact, if all the eigenvalues of Ps
are positive, then V (x̃) is positive definite. This result can be summarized in
the theorem below.

Theorem 2 A symmetric matrix P is positive definite if all its eigenvalues
are positive.

The matrix is positive semi-definite if all its eigenvalues are non-negative
and there is at least one null eigenvalue. Moreover, P is negative definite if all
its eigenvalues are negative and negative semi-definite if all its eigenvalues are
non-positive and at least one of them is null. If the matrix is not symmetric, the
same conditions apply except that the eigenvalues are those of the symmetric
part of the matrix.

The following theorem is useful for determining if a symmetric matrix is
positive or not without calculating the eigenvalues.

Theorem 3 (Sylvester test) A symmetric matrix P is positive definite if
and only if all of its n principal minors D1,D2, . . . ,Dn are positive, i.e.:

D1 = p11 > 0; D2 = det

[
p11 p12
p21 p22

]
> 0; . . . ; Dn = det P > 0 (2.3)

16 Optimal and Robust Control: Advanced Topics with MATLAB r

MATLABr Exercise 2.1

Consider P =

 1 2 5
2 5 −1
5 −1 0

. Since the matrix is symmetric, the Sylvester test can

be applied to determine if it is positive definite or not.
Let us first define matrix P in MATLAB with the command:
>> P=[1 2 5; 2 5 -1; 5 -1 0]

and then compute D1, D2 and D3 as follows:
>> D1=det(P(1,1))

>> D2=det(P(1:2,1:2))

>> D3=det(P)

One obtains: D1 = 1, D2 = 1 and D3 = −146. Since D3 < 0, P is not positive definite.

2.3 Lyapunov Theory for Linear Time-Invariant Systems

The Lyapunov second criterion for linear time-invariant systems concerns the
system stability. In fact, in linear systems, since all the equilibrium points
have the same stability properties, it is possible to refer to the stability of the
system. The criterion is expressed by the following theorem.

Theorem 4 (Lyapunov II criterion for linear time-invariant sys-
tems) A linear time-invariant system ẋ = Ax is asymptotically stable if and
only if for any positive definite matrix Q there exists a unique positive defi-
nite matrix P, which satisfies the following equation (the so-called Lyapunov
equation):

ATP + PA = −Q (2.4)

Equation (2.4) is a linear matrix equation, because the unknown P appears
with a maximum degree equal to 1.

For simplicity, usually symmetric Q is chosen. Here also P is symmetric:

(ATP + PA)T = −QT ⇒ PTA + ATPT = −QT

⇒ PTA + ATPT = −Q⇒ PT = P

One way of solving a Lyapunov equation is by vectorization.

Example 2.1
Consider an example with n = 2:

A =

[
−2 0
0 −5

]
Since the Lyapunov criterion states that equation (2.4) should hold for any positive
definite Q, then let us choose Q = I (indeed, it suffices to prove it for one Q matrix, to
show that it holds for any).
Consider matrix P made up of three unknowns p11, p12 and p22:

Fundamentals of Stability 17

P =

[
p11 p12

p12 p22

]
.

Solving the Lyapunov equation means solving a system of three equations with three
unknowns. By substituting in equation (2.4), we get:[

−2 0
0 −5

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
−2 0
0 −5

]
=

[
−1 0
0 −1

]

⇒

 4p11 = 1
7p12 = 0
10p22 = 1

The three equations with three unknowns can be rewritten in matrix form: 4 0 0
0 7 0
0 0 10

 p11

p12

p22

 =

 1
0
1


This leads to: P =

[1
4

0

0 1
10

]
. Matrix P is positive definite, so the system is asymp-

totically stable.

Notice that, since in Example 2.1 matrix A is diagonal, concluding that
the system is stable is immediate from the inspection of the eigenvalues of A
which are all in the open left half plane. Generally, testing system stability via
the Lyapunov second criterion is not numerically very efficient, since the first
Lyapunov equation has to be solved and then the positive definiteness of the
solution has to be verified. Tests on the eigenvalues of A or criteria such as
the Routh criterion are more direct and efficient. If A is known, the Lyapunov
second criterion is not the most efficient method to test the stability of the
linear system. However, it turns out that the Lyapunov second criterion is a
powerful theoretical tool for proving system stability.

Generally, if Q is not symmetric the vectorization is:

M


p11
p21
p31
...
pnn

 = −


q11
q21
q31
...
qnn


where M ∈ Rn2×n2

.

Proof (Proof of sufficiency of the second criterion of Lyapunov for linear
time-invariant systems). This proves the sufficient part of the Lyapunov cri-
terion for linear time-invariant systems, so if ∀ Q that is positive definite,
there exists a matrix P satisfying Lyapunov equation (2.4), then the system is
asymptotically stable.

Consider the Lyapunov quadratic function V (x) = xTPx. Since P is a
positive definite matrix, V (x) is a positive definite function. The derivative
against time of this function is:

18 Optimal and Robust Control: Advanced Topics with MATLAB r

V̇ (x) = ẋTPx + xTPẋ

Since ẋ = Ax, then:

V̇ (x) = xTATPx + xTPAx =

= xT (ATP + PA)x = −xTQx

Since Q is a positive definite matrix, V̇ (x) is a negative definite func-
tion. Function V (x) = xTPx satisfies the hypotheses of Lyapunov II criterion
for dynamical systems and thus the equilibrium point (and so the system) is
asymptotically stable.

Before proving the necessary part of the theorem, an important property
of positive definite matrices should be highlighted.

Theorem 5 If Q ∈ Rn×n is a positive definite matrix and M ∈ Rn×n is a
full rank matrix, then also MTQM is a positive definite matrix.

Proof The quadratic form associated to MTQM is

V (x) = xTMTQMx = xTMTVΛVTMx

where V is the orthonormal vector matrix which diagonalizes matrix Q, i.e.,
Q = VΛVT .

Given the state transformation x̃ = VTMx, then

V (x̃) = x̃TΛx̃

which shows that MTQM is positive definite.

Generalizations of Theorem 5. Notice that with a similar procedure,
if instead matrix M is not a full rank, matrix MTQM is positive semi-definite.
Finally, if matrix M is not square (M ∈ Rn×m) it can be shown that matrix
MTQM is positive semi-definite. In both cases, in fact, the transformation
x̃ = VTMx is no longer an invertible transformation (also if M ∈ Rn×m, then
x ∈ Rm), so it can only be concluded that the product matrix is positive
semi-definite.

Proof (Proof of the necessary part of Lyapunov’s II criterion for linear sys-
tems). The proof of the necessary part of the theorem, that is if the system is
asymptotically stable, then for every positive definite matrix Q there is a posi-
tive definite matrix P which is the solution of the Lyapunov equation (2.4), is
a constructive demonstration introducing the integral solution of the Lyapunov
equation.

Fundamentals of Stability 19

Remember that, if a linear time-invariant system is asymptotically stable,
then the zero-input response tends to zero for any initial condition

lim
t→+∞

x(t) = 0 ∀x0

and, since x(t) = eAtx(0), also matrix eAt tends to zero:

lim
t→+∞

eAt = 0

Remember also that
[eAt]T = eA

T t

This property can be easily proved by considering the definition of an ex-
ponential matrix:

eAt = I + At+
A2t2

2!
+

A3t3

3!
+ · · · ⇒

(eAt)T = I + AT t+
(A2)T t2

2!
+

(A3)T t3

3!
+ · · · =

= I + AT t+
(AT)2t2

2!
+

(AT)3t3

3!
+ · · · = eA

T t

The improper integral P =
∫∞
0
eA

T tQeAtdt is finite, since each term tends
to zero. Matrix P, because of the properties of Theorem 5, is the integral of a
positive definite matrix for each t and therefore is positive definite. Note that
matrix P is also symmetric (if Q is symmetric).

Given that P =
∫∞
0
eA

T tQeAtdt is a positive definite symmetric matrix,
the solution of Lyapunov equation (2.4) can be verified.

By substituting P into the Lyapunov equation we obtain:

AT

∫ ∞
0

eA
T tQeAtdt+

∫ ∞
0

eA
T tQeAtdtA =

=

∫ ∞
0

(AT eA
T tQeAt + eA

T tQeAtA)dt =

=

∫ ∞
0

d

dt
(eA

T tQeAt)dt =
[
eA

T tQeAt
]∞
0

= −Q

where we used the fact that

lim
t→+∞

eAt = 0

and that eA0 = I.

20 Optimal and Robust Control: Advanced Topics with MATLAB r

Note 1. The solution to Lyapunov equation AP + PAT = −Q is P =∫∞
0
eAtQeA

T tdt.
Note 2. To study the asymptotic stability of a linear time-invariant system

from its characteristic polynomial, besides the well-known Routh criterion, the
Hurwitz criterion can be used. It facilitates knowing when a given polynomial
is a Hurwitz polynomial (i.e., when it has only roots with negative real part).

Theorem 6 (Hurwitz criterion) Polynomial

a(λ) = anλ
n + an−1λ

n−1 + . . .+ a1λ+ a0

with an > 0 is Hurwitz if all the principal minors of the so-called Hurwitz
matrix are greater than zero:

H =



an−1 an−3 an−5 . . . 0 0
an an−2 an−4 . . . 0 0
0 an−1 an−3 . . . 0 0
0 an an−2 . . . 0 0
...

...
...

...
...

...
0 0 a1 0
0 0 a2 a0


MATLABr Exercise 2.2

Consider the following polynomial which is obviously not a Hurwitz polynomial:

a(λ) = λ4 + 2λ3 + 5λ2 − 10λ+ 0.7

The Hurwitz matrix is given by:

H =


2 −10 0 0
1 5 0.7 0
0 2 −10 0
0 1 5 0.7


Calculating the principal minors produces: H1 = 2; H2 = 20; H3 = −202.8 and H4 =
−141.96. As expected at least one of the minors is not positive (H3 < 0 and H4 < 0).

2.4 Lyapunov Equations

In the previous section, we saw that, if the linear time-invariant system is
asymptotically stable, the Lyapunov equation (2.4) has only one solution.

Let us consider now a generic Lyapunov equation:

AX + XB = −C (2.5)

Fundamentals of Stability 21

where A, B and C are matrices of Rn×n (in the most general case, they are
non-symmetric), and X is a n× n unknown matrix.

Even here, the equation can be vectorized:

M


x11
x21
x31

...
xnn

 = −


c11
c21
c31
...
cnn


where M is a suitable matrix in Rn2×n2

(if B = AT and C is a symmetric

matrix, the number of variables reduces to k = n(n+1)
2 and M ∈ Rk×k).

The existence of a solution is related to the invertibility of matrix M. This
matrix can be obtained with Kronecker algebra. Let us recall therefore some
of the definitions and properties of Kronecker algebra.

The Kronecker product of two matrices A and B of Rn×n is a matrix of
Rn2×n2

defined by:

A⊗ B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
an1B an2B . . . annB


The matrix eigenvalues can be calculated from those of matrix A and B.

Let us indicate with λ1, λ2, . . . , λn the eigenvalues of A and with µ1, µ2, . . . , µn
the eigenvalues of B. Then, the n2 eigenvalues of A⊗ B are:

λ1µ1, λ1µ2, . . . , λ1µn, λ2µ1, . . . , λnµn

It can be shown that the vectorization matrix is given by:

M = I⊗A + BT ⊗ I

with I ∈ Rn×n.
Also the eigenvalues of matrix M are simply linked to those of matrices A

and B. The eigenvalues of M = I ⊗ A + BT ⊗ I are indeed given by all the
possible n2 combinations of sums between an eigenvalue from A and one from
B:

λ1 + µ1, λ1 + µ2, . . . , λ1 + µn, λ2 + µ1, . . . , λn + µn

M is invertible when there are no null eigenvalues:

λi + µj 6= 0, ∀i, j
This leads to answer the question whether a Lyapunov equation has a solu-

tion or not. Formally, the condition above can be expressed with the following
theorem.

22 Optimal and Robust Control: Advanced Topics with MATLAB r

Theorem 7 The Lyapunov equation

AX + XB = −C

with A ∈ Rn×n, B ∈ Rn×n and C ∈ Rn×n has only one solution if and only if

λi + µj 6= 0, ∀i, j
where λ1, . . . , λn are the eigenvalues of A and µ1, . . . , µn are those of B.

An immediate consequence of this theorem is that the Lyapunov equation
ATP + PA = −Q has only one solution if A has no eigenvalues on the imagi-
nary axis and if there are no pairs of real eigenvalues with equal module and
opposite sign (for example, λ1 = −1 and λ2 = +1), all of which conditions
are verified by the hypothesis of asymptotic stability.

We have seen that vectorizing the Lyapunov equation requires inverting a

matrix of size n2×n2 (or a matrix of size n(n+1)
2 × n(n+1)

2). Even for a system
of order n = 10 this yields a matrix of ten thousand coefficients. This method
is more laborious to calculate than other iterative methods used routinely for
solving Lyapunov equations. Below is the sketch of an algorithm based on a
Schur decomposition for solving Lyapunov equations of type ATP+PA = −Q.
A Schur decomposition able to obtain A = UĀUT with UTU = I and higher
triangular matrix Ā is considered. At this point, all the Lyapunov equation
terms are multiplied by UT left and U right. Thus, ĀT P̄ + P̄Ā = −Q̄ is
obtained with Q̄ = UTQU and P̄ = UTPU. Here, triangular matrix A can
be used to iteratively solve the equation and then to find the solution P from
P = UP̄UT .

MATLABr Exercise 2.3
The aim of this MATLAB exercise is to familiarize with some MATLAB commands for
resolving control issues. It is always advisable to refer to the “help” command to learn
about how each function works.
Let us consider a linear time-invariant system with state matrix

A =


−1 0 1 0
2 0 3 5
1 10 0.5 0
−2 3 −5 −10


and then calculate matrix P of Lyapunov equation (2.4) with Q = I by vectorization.
To do this, matrix M = I⊗AT + AT ⊗ I with C = I is constructed.

1. Define matrix A:

>> A=[-1 0 1 0; 2 0 3 5; 1 10 0.5 0; -2 3 -5 -10];

and identity matrix:

>> MatriceI=eye(4);

2. Construct the vector


c11

c21

c31

...
cnn



Fundamentals of Stability 23

>> c=MatriceI(:)

3. Construct matrix M

>> M=kron(eye(4),A’)+kron(A’,eye(4))

4. Find the solution vector by inverting matrix M

>> Psol=-inv(M)*c;

and obtain matrix P with an appropriate size (4× 4)

>> P=reshape(Psol,4,4)

One obtains P =


0.4727 0.2383 −0.1661 0.1690
0.2383 1.7516 −0.3188 0.8961
−0.1661 −0.3188 −0.0466 −0.1292
0.1690 0.8961 −0.1292 0.4980

.

5. Verify that matrix P solves the problem

>> A’*P+P*A

MATLAB can solve Lyapunov equations more efficiently with the lyap command. In
this case one can use:
>> P=lyap(A’,eye(4))

In conclusion, using command eig(P) to calculate the eigenvalues of P, it can be verified
that P is not a positive definite matrix and that the system is not asymptotically stable
which is the case after calculating the eigenvalues of A (λ1 = −13.0222, λ2 = 4.7681,
λ3 = −1.1229 + 0.8902i, λ4 = −1.1229− 0.8902i).

2.5 Stability with Uncertainty

Here, we illustrate a brief digression on stability with uncertainty. We will
limit the discussion to presenting one key finding for the stability of systems
with parametric uncertainty.

Let D(s) be the characteristic polynomial of a linear time-invariant system.
Suppose the uncertainty of the system can be expressed in terms of variation
ranges of coefficients of polynomial D(s) = ans

n + an−1s
n−1 + . . .+ a1s+ a0:

am0 ≤ a0 ≤ aM0
. . .

amn ≤ an ≤ aMn
(2.6)

So, the hypothesis is that parametric uncertainty can be characterized by
assigning maximum and minimum values that the various coefficients of D(s)
might assume. Under this hypothesis, stability with uncertainty can be studied
very effectively via the Kharitonov criterion.

Theorem 8 (Kharitonov criterion) Let D(s) = ans
n + an−1s

n−1 +
an−2s

n−2 + an−3s
n−3 + . . . be the characteristic polynomial of a linear time-

invariant system with coefficients such that ami ≤ ai ≤ aMi for i = 0, 1, . . . , n,
if and only if the four polynomials

24 Optimal and Robust Control: Advanced Topics with MATLAB r

D1(s) = amn s
n + amn−1s

n−1 + aMn−2s
n−2 + aMn−3s

n−3 + . . .
D2(s) = aMn s

n + aMn−1s
n−1 + amn−2s

n−2 + amn−3s
n−3 + . . .

D3(s) = amn s
n + aMn−1s

n−1 + aMn−2s
n−2 + amn−3s

n−3 + . . .
D4(s) = aMn s

n + amn−1s
n−1 + amn−2s

n−2 + aMn−3s
n−3 + . . .

(2.7)

are stable, then the polynomial D(s) is stable for any parameter in the given
ranges.

The Kharitonov criterion facilitates the study of stability in a parametric
polynomial (aided for example by the Routh criterion). Quite independently
of the order of the system and therefore of the number of parameters, this
criterion can determine the stability of an infinite number of systems provided
they have bounded polynomial coefficients.

Example 2.2
Let us consider a third-order system having the following characteristic polynomial

D(s) = a3s
3 + a2s

2 + a1s+ a0 (2.8)

with uncertain parameters:

1 = am3 ≤ a3 ≤ aM3 = 3
2 = am2 ≤ a2 ≤ aM2 = 4
2 = am1 ≤ a1 ≤ aM1 = 5
1 = am0 ≤ a0 ≤ aM0 = 2

and let us study the stability by the Kharitonov criterion.
First of all, we recall that, for a third-order system, the direct application of the Routh
criterion yields the conclusion that stability requires two conditions: 1) all the coefficients
are positive, i.e., a0, a1, a2, a3 > 0; 2) a2a1 > a3a0. Therefore, to apply the Kharitonov
criterion we need to consider the following polynomials

D1(s) = am3 s
3 + am2 s

2 + aM1 s+ aM0
D2(s) = aM3 s3 + aM2 s2 + am1 s+ am0
D3(s) = am3 s

3 + aM2 s2 + aM1 s+ am0
D4(s) = aM3 s3 + am2 s

2 + am1 s+ aM0

(2.9)

and ultimately check the conditions

am2 a
M
1 > am3 a

M
0

aM2 am1 > aM3 am0
aM2 aM1 > am3 a

m
0

am2 a
m
1 > aM3 aM0

(2.10)

Since am2 a
m
1 < aM3 aM0 , we conclude that the system is not stable in the presence of the

considered parametric uncertainty.
Similarly, one can conclude that the system is stable for the following parametric un-
certainty

1 = am3 ≤ a3 ≤ aM3 = 3
2 = am2 ≤ a2 ≤ aM2 = 4
4 = am1 ≤ a1 ≤ aM1 = 5
1 = am0 ≤ a0 ≤ aM0 = 2

Fundamentals of Stability 25

MATLABr Exercise 2.4
Let us consider now a system with characteristic polynomial

D(s) = a5s
5 + a4s

4 + a3s
3 + a2s

2 + a1s+ a0 (2.11)

and uncertain parameters:

1 ≤ a5 ≤ 2
3 ≤ a4 ≤ 5
5 ≤ a3 ≤ 7
4
3
≤ a2 ≤ 5

2
1
2
≤ a1 ≤ 3

4
1 ≤ a0 ≤ 2

To apply the Kharitonov criterion the following characteristic polynomials have to be
considered:

D1(s) = s5 + 3s4 + 7s3 + 5
2
s2 + 1

2
s+ 1

D2(s) = 2s5 + 5s4 + 5s3 + 4
3
s2 + 3

4
s+ 2

D3(s) = s5 + 5s4 + 7s3 + 4
3
s2 + 3

4
s+ 2

D4(s) = 2s5 + 3s4 + 5s3 + 5
2
s2 + 3

4
s+ 1

(2.12)

These can be defined in MATLAB as follows
>> D1=[1 3 7 5/2 1/2 1]

>> D2=[2 5 5 4/3 3/4 2]

>> D3=[1 5 7 4/3 1/2 2]

>> D4=[2 3 5 5/2 3/4 1]

Their roots are then calculated:
>> roots(D1)

>> roots(D2)

>> roots(D3)

>> roots(D4)

obtaining the following solutions:

• D1(s): s1,2 = −1.3073± j2.0671; s3 = −0.7059; s4,5 = 0.1603± j0.4595;

• D2(s): s1,2 = −1.0224± j0.9384; s3 = −1.1541; s4,5 = 0.3494± j0.5726;

• D3(s): s1,2 = −2.3261± j0.4235; s3 = −0.9566; s4,5 = 0.3044± j0.5304;

• D4(s): s1,2 = −0.5107± j1.3009; s3 = −0.8031; s4,5 = 0.1623± j0.5408.

From the inspection of the roots of D1(s), D2(s), D3(s), and D4(s), it can be concluded
that the system with characteristic polynomial (2.11) is not stable in the whole range
of parameter variations.

MATLABr Exercise 2.5
Determine the locus of the closed-loop eigenvalues for k = 10, k = 30 and k = 120 for
the system P (s, q) = 1

s(s2+(8+q1)s+(20+q2))
with −2 ≤ q1 ≤ 2 and −4 ≤ q2 ≤ 4.

Solution
First, determine the characteristic closed-loop polynomial:

p(s, q, k) = s3 + (8 + q1)s2 + (20 + q2)s+ k

This is a parametric polynomial that can be rewritten as:

p(s, q, k) = s3 +As2 +Bs+ k

with A = 8 + q1 and B = 20 + q2. The two parameters in the characteristic polynomial
vary in [6, 10] and in [16, 24], respectively. At this point, apply the Kharithonov crite-
rion to know if, by fixing k, the asymptotic stability is guaranteed in the parametric

26 Optimal and Robust Control: Advanced Topics with MATLAB r

uncertainty interval. Indicating Amin = 6, Amax = 10, Bmin = 16 and Bmax = 24, we
need to study the roots of the four polynomials:

p(s, q, k) = s3 +Amins
2 +Bmaxs+ k

p(s, q, k) = s3 +Amaxs
2 +Bmins+ k

p(s, q, k) = s3 +Amins
2 +Bmins+ k

p(s, q, k) = s3 +Amaxs
2 +Bmaxs+ k

To do this, the following commands in MATLAB are used:
>> k=12;

>> Amin=6; Amax=10; Bmin=16; Bmax=24;

>> A=Amin; B=Bmax; roots([1 A B k])

>> A=Amax; B=Bmin; roots([1 A B k])

>> A=Amin; B=Bmin; roots([1 A B k])

>> A=Amax; B=Bmax; roots([1 A B k])

While, for k = 10 and k = 30, we obtain polynomials having roots with negative real
part, for k = 120 the third polynomial has two roots with positive real part. After this
preliminary analysis, the locus can be built with a Monte Carlo simulation, assigning
the parameter values one by one, calculating their roots and plotting them on a graph.
By fixing k, we can use the following commands in MATLAB:
>> plot(0,0,’m.’); hold on;

>> for A=[Amin:0.1:Amax]

>> for B=[Bmin:0.1:Bmax]

>> p=roots([1 A B k]);

>> plot(real(p), imag(p),’x’)

>> end

>> end

Figure 2.2 shows the plots for four different values of k. Notice that for k = 120 some
roots lie on the right half plane.

2.6 Further Results on the Lyapunov Theory

In this section, some further results on the Lyapunov theory are discussed.
They can be skipped in basic courses and dealt with in more advanced ones.

2.6.1 Hystorical Notes

The book that is considered a fundamental reference for the study of
the Lyapunov theory is “Nonlinear Dynamical Systems and Control: A
Lyapunov-Based Approach” written by Wassim M. Haddad and VijaySekhar
Chellaboina. The cover represents a poster that was printed for a meeting cel-
ebrating Archimedes and held in April 1961 in Siracusa. The original painting
entitled “Archimedes” was realized by Niccoló Barbarino in 1860 and is kept
in the Museum Revoltella in Trieste.

Fundamentals of Stability 27

−10 −8 −6 −4 −2 0 2
−5

−4

−3

−2

−1

0

1

2

3

4

5

σ

jω
k=10 k=30

k=120

FIGURE 2.2
Locus of the closed-loop eigenvalues for Exercise 2.5.

The book reports a list of intriguing sentences regarding dynamical systems
and here summarized:

• Anything that has a beginning and an end cannot at the same time be
infinite and everlasting (Anassimander);

• Everything is in a state of flux and nothing is stationary (Eraclito);

• Man cannot step into the same river twice, because neither the man nor the
river are the same (Eraclito);

• Give me a place to stand and I’ll move the Earth (Archimedes).

Alexandr M. Lyapunov was a Russian mathematician who carried out
research in different areas such as hydraulics-hydrostatics, ellipsoidal form of
rotating fluids, stability, astronomical applications. About Lyapunov, Smirnov
wrote the following observation: “Here at first, the research activity of Lya-
punov was cut short. It was necessary to work out courses and put together
notes for students, which took up much time”.

2.6.2 Lyapunov Stability

In order to present a comprehensive discussion on this subject, let us now
go back to a few considerations illustrated in Section 2.1 and extend the
definitions there presented.

28 Optimal and Robust Control: Advanced Topics with MATLAB r

Let us then consider a general nonlinear autonomous dynamical system
defined by

ẋ = f(x) (2.13)

for t ∈ R+ and with initial conditions x(0) = x0. Taking into account that

x =
[
x1 x2 . . . xn

]T
and f(x) =

[
f1(x) f2(x) . . . fn(x)

]T
, these

equations may be rewritten as:

ẋ1 = f1(x1, x2, . . . , xn)
ẋ2 = f2(x1, x2, . . . , xn)
. . .
ẋn = fn(x1, x2, . . . , xn)

(2.14)

Since in general the solutions x(t) cannot be obtained in closed form, here
our interest is to provide some important information about the time evolution
of the state variables.

The equilibrium states are obtained by solving the algebraic nonlinear
system f(x) = 0. Suppose to indicate one of such states as x̄. The Lyapunov
theory provides a characterization of the behavior of the solution when a small
perturbation to the equilibrium state is applied.

Let us, first, recall (see Definition 1) that such an equilibrium is said to
be Lyapunov stable if ∀ε > 0 there exists δ = δ(ε) > 0 such that ∀x0 with
‖ x0 − x̄ ‖< δ one has that ‖ x(t)− x̄ ‖< ε for ∀t > 0.

In addition, the stability is asymptotic if the equilibrium point is x̄ stable
and lim

t→+∞
x(t) = x̄.

Here it is important to remark that the previous definitions represent local
properties. Let us now consider the case in which the property of asymptotic
stability holds globally, that is, it holds for any initial condition x0, as formally
expressed by the following definition.

Definition 5 The equilibrium point x̄ is said to be globally asymptotically
stable if it is Lyapunov stable and if for any x0 ∈ Rn it holds that

lim
t→+∞

x(t) = x̄ (2.15)

Another important property of stability is expressed by the following def-
inition.

Definition 6 An asymptotically locally stable equilibrium point x̄ is said to
be exponentially stable if there exist two constants α > 0 and β > 0 such that,
if ‖ x0 − x̄ ‖< δ, then

‖ x(t)− x̄ ‖≤ α ‖ x0 − x̄ ‖ e−βt,∀t ≥ 0 (2.16)

Finally, globally exponentially stability can also be considered, as formally
expressed by the following definition.

Fundamentals of Stability 29

Definition 7 The equilibrium point x̄ is said to be globally exponentially sta-
ble if there exist two constants α > 0 and β > 0 such that

‖ x(t)− x̄ ‖≤ α ‖ x0 − x̄ ‖ e−βt,∀t ≥ 0,∀x0 ∈ Rn (2.17)

Although often control engineering aims at providing a theoretical and
general approach for the solution of the problems under consideration, the
application of numerical methods to study the characteristics of the solution
x(t) is also useful, especially when closed-form solutions cannot be obtained.

The easiest way to obtain a numerical solution of a system of nonlinear dif-
ferential equations as in (2.13), starting from initial conditions x0, is the Euler

method, which is based on the approximation ẋ ≈ x((k+1)T)−x(kT)
T , where T

represents the sampling interval/integration step size and k the discrete time
index. Using this approximation, the following recursive difference equation is
obtained:

x((k + 1)T) = x(kT) + Tf(x(kT)) (2.18)

Another method, which, when the same integration step size T is used, is,
in general, more accurate than the previous one is the fourth-order Runge-
Kutta method. Let us consider a nonlinear system defined by ẋ = f(t,x)
and use the index k for the samples of x(t) at time t = tk and so on, with
tk+1 = tk +T . Then, according to the fourth-order Runge-Kutta method, the
next sample of the solution x(t) (with initial condition, fixed as usual, in x0)
is calculated as:

x(k + 1) = x(k) +
1

6
(k1 + 2k2 + 2k3 + k4) (2.19)

where

k1 = Tf(tk,x(k))

k2 = Tf(tk + T
2 ,x(k) + k1

2)

k3 = Tf(tk + T
2 ,x(k) + k2

2)
k4 = Tf(tk + T,x(k) + k3)

(2.20)

This method can be extended to consider a recursive equation of the type:

x(k + 1) = x(k) +

m∑
i=1

biki (2.21)

where the terms ki with i = 1, . . . ,m generalize the terms k1,k2, . . . ,k4

appearing in (2.20).

30 Optimal and Robust Control: Advanced Topics with MATLAB r

MATLABr Exercise 2.6
Let us consider the following nonlinear system

ẋ1 = −x1 + x3
2

ẋ2 = −x1 − x2
(2.22)

with initial conditions x1(0) = 0.1 and x2(0) = 0.2. The numerical solution x(t) starting
from these initial conditions can be obtained by using the MATLAB command ode45

as follows:
>> [t,x]=ode45(’nonlinsys1’,[0 10],[0.1 0.2])

Here, the vector [0 10] contains the initial and final time of integration, whereas the
vector [0.1 0.2] the initial conditions for the two variables. The function nonlinsys1

has to be properly defined (in the directory of current use or in one of the MATLAB
path) to represent the dynamical equations of the system. For the example under study,
we have:
function xdot=nonlinsys1(t,x)

xdot=[-x(1)+x(2)^3; -x(1)-x(2)];

end

Example 2.3
Consider the following nonlinear dynamical system representing a rigid spacecraft:

ẋ1 = I23x2x3

ẋ2 = I31x1x3

ẋ3 = I12x1x2

(2.23)

with

I23 = I2−I3
I1

I31 = I3−I1
I2

I12 = I1−I2
I3

(2.24)

where I1 > I2 > I3 are the principal moments of inertia of the spacecraft. For the sake
of example we consider I1 = 3, I2 = 2 and I3 = 1, such that I12 = 1, I23 = 1/3,
I31 = −1.
Let us now analyse numerically the stability property of the equilibrium point x̄ = 0. In
particular, let us calculate the effect of a small perturbation of the equilibrium point.
To this aim, we use the command:
>> [t,x]=ode45(’nonlinsys2’,[0:0.01:100],[0.1 0.2 0.3])

where the function nonlinsys2 is defined as follows:
function xdot=nonlinsys2(t,x)

I23=1/3;

I31=-1;

I12=1;

xdot=[I23*x(2)*x(3);I31*x(3)*x(1);I12*x(1)*x(2)];

end

The solution shows an oscillatory behavior that yields the conclusion that the equilib-
rium state x̄ = 0 is stable, but not asymptotically. This can be appreciated by plotting
the obtained waveform:
>> figure, plot(t,x)

The result is shown in Figure 2.3.

Example 2.4
Consider the following nonlinear dynamical system:

ẋ1 = −6x1
(1+x21)2

+ 2x2

ẋ2 = − 2(x1+x2)

(1+x21)2

(2.25)

Fundamentals of Stability 31

0 50 100

t(s)

-0.5

0

0.5

x
(t
)

x
1

x
2

x
3

FIGURE 2.3
Time evolution of the state variables x(t) of system (2.24) in Example 2.3.

The system has an equilibrium state x̄ = 0. To numerically study its stability, we
integrate in MATLAB the system defined by:
function xdot=nonlinsys3(t,x)

xdot=[-6*x(1)/((1+x(1)^2)^2)+2*x(2);

-2*(x(1)+x(2))/((1+x(1)^2)*2)];

end

We find that trajectories starting from random arbitrary initial conditions converge the
equilibrium state x̄ = 0. However, it can be noticed that some initial conditions require
a long transitory before reaching the equilibrium state.

Example 2.5
Consider now again the nonlinear dynamical system in equation (2.22) discussed in the
MATLAB Exercise 2.6.
Repeating the procedure of the previous exampes, we can verify that in this case the
equilibrium state x̄ = 0 is globally asymptotically stable.

Example 2.6
Consider now the nonlinear dynamical system given by:

ẋ1 = x1(x2
1 + x2

2 − 1)− x2

ẋ2 = x1 + x2(x2
1 + x2

2 − 1)
(2.26)

The MATLAB function for its numerical study is given by:
function xdot=nonlinsys4(t,x)

xdot=[x(1)*(x(1)^2+x(2)^2-1)-x(2); x(1)+x(2)*(x(1)^2+x(2)^2-1)];

end

Integrating again the system for different initial conditions, we notice that, if the ini-
tial conditions are selected inside the unit circle, then the trajectory approaches the

32 Optimal and Robust Control: Advanced Topics with MATLAB r

equilibrium point x̄ = 0, otherwise it does not. This supports the conclusion that the
equilibrium point x̄ = 0 is locally asymptotically stable.

We have already seen that, to determine if an equilibrium point x̄ = 0
is asymptotically stable, we can use Theorem 1. Therefore, we can search
a function V (x) that is positive definite for x̄ = 0 and whose derivative is

negative definite in x̄ = 0, that is, V̇ (x) = dV (x)
dt =

(
∂V
∂x

)T
ẋ < 0. If, on the

contrary, V̇ (x) = dV (x)
dt =

(
∂V
∂x

)T
ẋ ≤ 0, then the stability is simple and not

asymptotic.
In addition, if there exist four constants α, β, γ and p such that

α ‖ x ‖p< V (x) < β ‖ x ‖p (2.27)

and (
∂V

∂x

)T
f < −εV (2.28)

then the equilibrium state x̄ = 0 is exponentially stable.

Example 2.7
Let us consider again system (2.23) and consider the function

V (x1, x2, x3) =
1

2
α1x

2
1 +

1

2
α2x

2
2 +

1

2
α3x

2
3 (2.29)

with α1, α2, α3 > 0.
In this case, one gets:

V̇ =
(
∂V
∂x

)T
f =

[
α1x1 α2x2 α3x3

]  I23x2x3

I31x1x3

I12x1x2

 =

= x1x2x3(α1I23 + α2I31 + α3I12)

(2.30)

Due to the fact that I31 is negative, we select: α1 = 1, α2 = −3/2 and α3 = 1, such that
V̇ = 0 ∀x. This shows that the equilibrium state x̄ = 0 is stable, as also the numerical
simulations performed were indicating.

Notice that the theoretical calculations require the proper choice of a Lya-
punov function, which is a non-trivial step. The simulations are an empirical
method that often provides an immediate picture of the system behavior, but
not a rigorous proof.

Example 2.8
Let us now consider again system (2.25) and study the following Lyapunov function:

V (x1, x2) =
x2

1

1 + x2
1

+ x2
2 (2.31)

In this case, one obtains:

V̇ =
(
∂V
∂x

)T
f =

[
2x1

(1+x21)2
2x2

] − 6x1
(1+x21)2

+ 2x2

− 2(x1+x2)

(1+x21)2

 =

= − 12x21
(1+x21)4

− 4x22
(1+x21)2

(2.32)

Fundamentals of Stability 33

Since V̇ < 0 ∀x, we conclude that the equilibrium point x̄ = 0 is globally asymptotically
stable.

2.7 Exercises

1. Apply the vectorization method to solve the Lyapunov equation:

ATP + PA = −I

with

A =

 0 1 −1
2 −5 −1
3 1 −2


2. Given the nonlinear system ẋ = x3 − 8x2 + 17x + u calculate the

equilibrium points for u = −10 and study their stability.

3. Given the nonlinear system{
ẋ1 = −x1 + 2x2
ẋ2 = −2x1 − x2 + x32

analyze numerically the stability of the equilibrium point x̄ = 0.

4. Study the stability of system with transfer function

G(s) =
s2 + 2s+ 2

s4 + a1s3 + a2s2 + a3s+ a4

with 1 ≤ a1 ≤ 3, 4 ≤ a2 ≤ 7, 1 ≤ a3 ≤ 2, 0.5 ≤ a4 ≤ 2.

5. Given the polynomial p(s, a) = s4 + 5s3 + 8s2 + 8s + 3 with a =[
3 8 8 5

]
, find p(s, b) with b =

[
(b−0 , b

+
0) . . . (b−3 , b

+
3)
]

so
that the polynomial class p(s, b) is Hurwitz.

6. Study the stability of the system G(s) = s2+3s+2
s4+q1s3+5s2+q2s+q3

with

parameters q1 ∈ [1, 3], q2 ∈ [5, 10], q3 ∈ [2, 18].

http://www.taylorandfrancis.com

3

Kalman Canonical Decomposition

CONTENTS

3.1 Introduction . 35
3.2 Controllability Canonical Partition . 37
3.3 Observability Canonical Partition . 39
3.4 General Partition . 40
3.5 Remarks on Kalman Decomposition . 47
3.6 Exercises . 48

This chapter describes Kalman canonical decomposition, which highlights the
state variables that do not affect the input/output properties of the system,
but which nevertheless may be very important. This is a classical subject of
system theory, but still fundamental to discuss in order to understand the
importance of non-minimal order systems in designing electrical circuits. In
addition, this topic is preliminary to the advanced concepts of weak and strong
controllability and observability that are faced in the book. Exhaustive exam-
ples in MATLAB are reported in order to clarify the key concepts reported in
the chapter. The discussion refers to continuous-time systems, so there is no
distinction between the controllability properties and the reachability of the
system.

3.1 Introduction

Given a continuous-time linear time-invariant system

ẋ = Ax + Bu
y = Cx

(3.1)

recall that the transfer function matrix of the system is given by G(s) =
C(sI−A)−1B, the controllability matrix Mc =

[
B AB . . . An−1B

]
, the

DOI: 10.1201/9781003196921-3 35

https://doi.org/10.1201/9781003196921-3

36 Optimal and Robust Control: Advanced Topics with MATLAB r

observability matrix Mo =


C

CA
...

CAn−1

 and the Hankel matrix

H = MoMc =


CB CAB . . . CAn−1B

CAB CA2B
...

...
...

...
CAn−1B

 .
Remember also that if the controllability matrix has full rank, that is

equal to n (i.e., the system order), then the system is completely controllable.
If the observability matrix has full rank, that is equal to n, then the system
is completely observable. If the Hankel matrix has rank n, then the system is
completely controllable and observable.

Now consider an invertible linear transformation x̃ = T−1x. The state
matrices of the new reference system are related to the original state matrices
through the relations:

Ã = T−1AT

B̃ = T−1B

C̃ = CT

(3.2)

and, as we know, the transfer function matrix is a system invariant: it does
not change even as the reference system changes: G̃(s) = C̃(sI − Ã)−1B̃ =
C(sI−A)−1B = G(s).

The controllability and observability matrices vary as the reference system
changes. In particular, they are given by:

M̃c = T−1Mc

M̃o = MoT
(3.3)

Since matrix T is invertible and therefore the rank of M̃c and M̃o cor-
respond to the rank of Mc and of Mo, from the relations (3.3) we deduce
the well-known property that controllability and observability are structural
properties of the system.

From relations (3.3), note that M̃oM̃c = MoMc, so the Hankel matrix is
also an invariant of the system. Remember also that a system is minimal
when it is completely controllable and observable, that is when the rank of
the Hankel matrix equals n.

The number of state variables which characterize a minimal system is the
minimum number of state variables needed to express all the input/output
relations of the system. A system is minimal when its minimal form has order
n, the system order.

For example, the system with transfer function G(s) = s+1
(s+1)(s+2) is not

minimal. However, we could say this is a “lucky” case, because the underlying

Kalman Canonical Decomposition 37

dynamics (i.e., the one which does not influence the input/output relations)
is stable. Generally, even hidden state variables are very significant, and it is
the stability associated to the hidden dynamics that is the most significant
property to be taken into consideration.

Consider also another example, represented by system G(s) = s+0.98
(s+1)(s+2) .

There is not an exact simplification between the pole and zero, but clearly the
pole and zero are very close and in the presence of uncertainty a simplification
can occur. Conversely, a seemingly exact simplification is less precise in cases
of uncertainty. The issue of determining a system minimal form is thus closely
related to structural uncertainty.

In this chapter, we will examine the Kalman decomposition which takes
into consideration when the simplifications between the poles and zeros of a
system are exact, but in the next chapters we will raise the issue of determining
a system approximation that takes into account the most significant dynamic
for the input/output relation and that is the most robust against structural
uncertainties.

3.2 Controllability Canonical Partition

Consider system (3.1) and suppose it is not completely controllable. This
means there are internal state variables whose value, starting from a given
initial condition and acting through the inputs, cannot be set to a value arbi-
trarily fixed in the system state-space. An example of an uncontrollable system
is shown in Figure 3.1. Let x1(t) and x2(t) indicate the voltage across capac-
itors C1 and C2, respectively. Suppose C1 6= C2, since the two capacitors are
connected in series, the charge held by them is equal, then C1

C2
= x1

x2
. There-

fore, the system is not controllable, and for example the state x1 = x2 = 5V
is not attainable by the system.

The canonical decomposition for controllability is a state representation
which highlights the division of state variables into controllable state vari-
ables and uncontrollable state variables. The canonical decomposition thus
emphasizes the existence of a controllable part and an uncontrollable part of
the system. z indicate the state variables of the new reference system. They
can be partitioned into two subsets: zr are controllable variables and znr the
uncontrollable variables. The system equations in Kalman canonical form for
controllability can be expressed as follows:

żr = A1zr + A12znr + B1u
żnr = A2znr

(3.4)

38 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 3.1
Example of a non-controllable system.

FIGURE 3.2
Canonical decomposition for controllability.

The state matrices are thus block-partitioned matrices: Ã =

[
A1 A12

0 A2

]
and B̃ =

[
B1

0

]
.

The diagram of this model is shown in Figure 3.2. Note that it is not
possible to act through the inputs on the variables znr directly given that
B2 = 0, nor indirectly through the other state variables zr given that A21 = 0.

Note also that, given the structure of matrix Ã, the system eigenvalues are
given by the union of those of A1 and those of A2. If A1 has unstable eigen-
values, those acting through a control law can be moved to the left half plane.
Instead, if A2 has unstable eigenvalues, it is impossible to act on them. This
second case is the most serious, because the system cannot be stabilized by
feedback, in which case the system is known as non-stabilizable. By contrast,
a system for which all unstable eigenvalues belong to the controllable part is
known as stabilizable.

Having explained the characteristics of canonical decomposition for con-
trollability, let us see how to calculate matrix T which allows us to switch
from the original form to the particular structure of canonical decomposition.

Kalman Canonical Decomposition 39

Consider the controllability matrix Mc. It is rank deficient. Note, however,
that the linearly independent columns of this matrix define the subspace of
controllability of the system. The subspace of uncontrollability can be defined
as orthogonal to that of controllability. Matrix T is constructed from the
linearly independent columns of Mc. In particular, T =

[
T1 T2

]
where T1

is the matrix formed by the linearly independent columns of Mc and T2 by
the column-vectors orthogonal to those linearly independent of Mc. Applying
this transformation matrix to the original system, we obtain:

Ã = T−1AT =

[
U1

U2

]
A
[

T1 T2

]
=

[
U1AT1 U1AT2

U2AT1 U2AT2

]
but, since the columns of U2 are orthogonal to the linearly independent
columns of A, then U2AT1 = 0 and

Ã =

[
U1AT1 U1AT2

0 U2AT2

]
In the same way we obtain that

B̃ = T−1B =

[
U1B1

0

]

3.3 Observability Canonical Partition

There is a dual decomposition for observability which can identify the observ-
able and unobservable parts of a system. The reference diagram is shown in
Figure 3.3, while the system model in this particular state-space representa-
tion is expressed by the following equations:

żo = A1zo + B1u
żno = A21zo + A2zno + B2u
y = C1zo

(3.5)

Again the state matrices are partitioned in blocks: Ã =

[
A1 0
A21 A2

]
,

B̃ =

[
B1

B2

]
and C̃ =

[
C1 0

]
.

The model can be derived analogously to the canonical decomposition for
controllability. The unobservable variables zno cannot be reconstructed from
input/output measurements so there cannot be any direct link between these
variables and the output. Because C2 = 0, the unobservable variables do
not directly affect system output. Similarly, since the unobservable variables
cannot be reconstructed from the output information, even indirectly, they
cannot influence the dynamics of the observable variables. So, A12 = 0.

40 Optimal and Robust Control: Advanced Topics with MATLAB r

The transformation matrix from the original reference system to the canon-
ical decomposition for observability can be found with a dual procedure of the
previous one.

This time, let us consider the linearly independent rows of observability
matrix Mo to construct matrix U1. Suppose there are no linearly independent
rows. Consider the subspace of size n − no orthogonal to the defined one
and determine a subspace basis to construct matrix U2. So, we have T−1 =[

U1

U2

]
. Applying this transformation matrix to the original system, we have

Ã =

[
U1AT1 U1AT2

U2AT1 U2AT2

]
=

[
U1AT1 0
U2AT1 U2AT2

]
and

C̃ =
[

CT1 CT2

]
=
[

CT1 0
]

Again the system eigenvalues are the union of the eigenvalues of A1 and
those of A2. If the system is unstable and controllable, but not observable, we
need to know to which part belong the unstable modes of the system. If they
are located in the unobservable part, these modes cannot be observed and so
they cannot be controlled. However, if they are located in the observable part
of the system, they can be reconstructed and then controlled.

FIGURE 3.3
Observability canonical decomposition.

3.4 General Partition

The two decompositions in the paragraphs above are elementary decomposi-
tions which can decouple a system into a controllable part and an uncontrol-
lable part or into an observable part and an unobservable part. There is a

Kalman Canonical Decomposition 41

more general decomposition which can split a system into four parts: a con-
trollable and unobservable part (part A); a controllable and observable part
(part B); an uncontrollable and unobservable part (part C); and an uncontrol-
lable and observable part (part D). Clearly, this decomposition can be applied
to the most general case in which the system is not completely controllable
nor observable.

The state variables corresponding to part A of the system are zr,no; part
B zr,o; part C znr,no; and to part D znr,o. The block diagram of the Kalman
decomposition is shown in Figure 3.4 and the corresponding state-space equa-
tions are characterized by the following matrices:

Ã =


AA AAB AAC AAD

0 AB 0 ABD

0 0 AC AAD

0 0 0 AD

; B̃ =


BA
BB
0
0

; C̃ =
[

0 CB 0 CD
]

Note that the matrix Ã is a triangular-block matrix. The zero blocks re-
flect no direct link between two parts of the system. For example, since the
controllable and the unobservable part of the system cannot influence the
controllable and observable part of the system (otherwise, it would lose its
property of being unobservable), block ABA is zero. Analogous considerations
apply to all the possible connections from any block in Figure 3.4 to any other
block below. Any of these links would violate one of the hypotheses underly-
ing the structural properties of the various parts of the system, so they are
impossible. Conversely, the upward links between blocks are permitted except
any link between the uncontrollable and unobservable part (part C) and the
controllable and observable part (part B). In fact, if there was such a link,
part C would no longer be unobservable. For this reason ABC = 0.

Now let us analyze how to find transition matrix T. Its construction re-
quires defining four eigenvector groups which form the columns of matrix T
and the bases of four subspaces which will be defined below, after having
recalled some preliminary notions.

A subspace is A-invariant if, when any subspace vector is multiplied by
matrix A, it still belongs to the subspace.

The reachability subspace and unobservability subspace are A-invariant
subspaces. The first subspace constructed to define matrix T is given by the
intersection of the reachability subspace Xr and the unobservability subspace
Xno:

XA = Xr

⋂
Xno (3.6)

This is an A-invariant subspace, since it is intersection of two A-invariant
subspaces.

From XA we then define XB , so that the direct sum between XA and XB

is the reachability subspace:

42 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 3.4
Canonical decomposition of a linear system.

Xr = XA ⊕XB (3.7)

Similarly, XC is defined so that the direct sum of XA and XC is the unob-
servability subspace:

Xno = XA ⊕XC (3.8)

Finally, we construct XD so as to obtain the entire state-space as a direct
sum of Xr and Xno and of XD.

X = (Xr + Xno)⊕XD (3.9)

Since

XA ⊕XB ⊕XC = (XA ⊕XB) + (XA ⊕XC) = Xr + Xno

then

X = XA ⊕XB ⊕XC ⊕XD

It follows that any state vector of the system can be represented uniquely
as the sum of four vectors which belong to the spaces defined above. So, the
state-space is decomposed into the direct sum of the four subspaces defined as
XA,XB ,XC and XD. From these subspaces the columns of matrix T can be
generated. However, these subspaces are defined quite arbitrarily which can

Kalman Canonical Decomposition 43

FIGURE 3.5
Example of electrical circuit illustrating Kalman decomposition.

be prevented by imposing additional restrictions to them. In particular, we
can make XB and XC orthogonal to XA and that XD is orthogonal to (Xr +
Xno), thus obtaining new subspaces X̄B , X̄C and X̄D. With these additional
restrictions, subspaces XA, X̄B , X̄C and X̄D can unequivocally be defined:

XA = Xr

⋂
Xno

X̄B = Xr

⋂
(Xnr + Xo)

X̄C = Xno

⋂
(Xnr + Xo)

X̄D == Xnr

⋂
Xo

(3.10)

Once these subspaces are defined, we can obtain the transition matrix
T. The columns of this matrix are provided by the bases of the generated
subspaces. The procedure for calculating matrix T is described in detail in
the following example.

Example 3.1
Consider the electrical circuit shown in Figure 3.5 and suppose that all the circuit
components have normalized values: L1 = 1, L2 = 1, C1 = 1, C2 = 1, R1 = 1 and
R2 = 1. The state variables of this system are the two voltages on the capacitors shown
in the figure, x1(t) and x2(t), and the two currents in the inductors, x3(t) and x4(t).
Given these state variables, the system is described by the following matrices:

A =


0 0 −1 0
0 0 0 1
1 0 −1 0
0 −1 0 −1

; B =


1
1
0
0

; C =
[

0 0 1 −1
]

Let us first calculate the observability and controllability matrices:

MT
o =


0 1 −1 0
0 1 −1 0
1 −1 0 1
−1 1 0 1

 (3.11)

44 Optimal and Robust Control: Advanced Topics with MATLAB r

Mc =


1 0 −1 1
1 0 −1 1
0 1 −1 0
0 −1 1 0

 (3.12)

Both matrices have rank equal to two. A basis for the observability subspace Xo can be
established from the observability matrix, taking for example the first and third columns
(linearly independent). The unobservability subspace Xno is constructed orthogonal to
the observability subspace Xo and is generated by the vectors:

V1 =


1
−1
0
0

;V2 =


0
0
1
1


The reachability subspace Xr is identified by the linearly independent columns of Mc.
Take for example the first two columns of Mc. The unreachability subspace is deter-
mined by considering the subspace orthogonal to that identified by the first two columns
of Mc.
Note that in this case Xo = Xr. So Xr = X⊥no and Xr⊥Xno.
As the reachability subspace is orthogonal to the unobservability subspace, their inter-
section is the empty set. The intersection of these subspaces (see formula (3.6)) is XA.
So XA = {∅}.
Moreover, since XD = Xnr

⋂
Xo, also XD = {∅}.

Finally, applying equation (3.10), X̄B and X̄C can be found:

X̄B = Xr
⋂

(Xnr + Xr) = Xr

X̄C = Xno
⋂

(Xnr + Xr) = Xno

From this, it follows that the transition matrix can be defined by taking the first two
columns of matrix Mc and the vectors that form the basis of Xno (V1 and V2):

T =


1 0 1 0
1 0 −1 0
0 1 0 1
0 −1 0 1

 (3.13)

At this point, the state matrices Ã, B̃ and C̃ in the state-space representation of the
Kalman decomposition can be calculated:

Ã = T−1AT =


0 −1 0 0
1 −1 0 0
0 0 0 −1
0 0 1 −1



B̃ = T−1B =


1
0
0
0


C̃ = CT =

[
0 2 0 0

]
As you can see, part B of the system (i.e., the controllable and observable part) is second
order and so also part C (the uncontrollable and unobservable part), whereas there is
no controllable and unobservable part nor is there an observable and uncontrollable
part. The transfer function of the system is therefore second order.

The next MATLABr exercise shows another example of Kalman decom-
position and how to obtain it by using MATLABr.

Kalman Canonical Decomposition 45

FIGURE 3.6
An all-pass electrical circuit.

MATLABr Exercise 3.1
Consider the circuit shown in Figure 3.6 (the reader is referred to the book of Wiener
for more deep discussion on this circuit). Given L1 = L2 = L, C1 = C2 = C and

R =
√

L
C

, it has the following transfer function:

Y (s)

U(s)
=

1− s
√
LC

1 + s
√
LC

(3.14)

and it is an all-pass system (these systems will be encountered again in Chapter 6
and in Chapter 7). These are systems characterized by a frequency response G(jω)
with |G(jω)| = 1 ∀ω, and a flat magnitude Bode diagram. This example is particularly
relevant as it shows the use of non-minimal form systems to obtain an all-pass system
with passive components.
We now derive the state-space equations and discuss the Kalman decomposition by
using MATLABr.
Taking into account the following state variables

x1 = iL1

x2 = vC2

x3 = iL2

x4 = vC1

(3.15)

the state-space representation of the circuit can be derived by applying Kirchhoff’s
circuit laws. The following equations are obtained:

ẋ1 = − x4
L1

+ u
L1

ẋ2 = − x2
C2R

+ x3
C2
− x4
C2R

+ u
R

ẋ3 = − x2
L2

+ u
L2

ẋ4 = x1
C1
− x2
C1R

− x4
C1R

+ u
R

(3.16)

and

y = x2 + x4 − u (3.17)

From equations (3.16) and (3.17), the state-space matrices are derived:

46 Optimal and Robust Control: Advanced Topics with MATLAB r

A =


0 0 0 − 1

L1

0 − 1
C2R

1
C2

− 1
C2R

0 − 1
L2

0 0
1
C1

− 1
C1R

0 − 1
C1R

; B =


1
L1
1

C2R
1
L2
1

C1R

; C =
[

0 1 0 1
]
; D = −1

(3.18)
Let us now consider C = 1, L = 1 and R = 1 (all expressed in dimensionless units), so
that we have

A =


0 0 0 −1
0 −1 1 −1
0 −1 0 0
1 −1 0 −1

; B =


1
1
1
1

; C =
[

0 1 0 1
]
; D = −1 (3.19)

and let us calculate the minimal realization and the Kalman decomposition through
MATLAB (it is in fact obvious that equations (3.19) are not a minimal realization of
the system with transfer function (3.14)).
First of all, let us define the system:
>> A=[0 0 0 -1; 0 -1 1 -1; 0 -1 0 0; 1 -1 0 -1]

>> B=[1 1 1 1]’

>> C=[0 1 0 1]

>> D=-1

>> system=ss(A,B,C,D)

Let us now calculate the reachability, the observability and the Hankel matrix:
>> Mc=ctrb(A,B)

>> Mo=obsv(A,C)

>> H= Mo*Mc

One obtains:

Mc =


1 −1 1 −1
1 −1 1 −1
1 −1 1 −1
1 −1 1 −1

; Mo =


0 1 0 1
1 −2 1 −2
−2 3 −2 3
3 −4 3 −4


and

H =


2 −2 2 −2
−2 2 −2 2
2 −2 2 −2
−2 2 −2 2


The ranks of these matrices are then computed:
>> rank(Mc)

>> rank(Mo)

>> rank(H)

Mc has rank one, Mo two and H one. It can be concluded that the minimal form
of the system is first order and that the unobservable part is second order and the
uncontrollable part is third order. The transfer function with the command tf(system)

or zpk(system) is also calculated, obtaining G(s) = 1−s
1+s

, as in equation (3.14).

Let us now calculate the minimal realization with the MATLAB command:
>> [msystem,U] = minreal(system)

This gives the system in minimal form (first order):

AB = −1 ; BB = 2 ; CB = 1 ; DB = −1 (3.20)

Matrix U is the inverse of the state transformation matrix from the original represen-
tation to the Kalman decomposition. To obtain this, we have thus to consider (since U
is orthogonal):
>> T=U’

Kalman Canonical Decomposition 47

and then to compute:
>> Atilde=T’*A*T

>> Btilde=T’*B

>> Ctilde=C*T

One obtains

Ã =


−1 −2 0 0
0 −1 0 0
0 0 0 1
0 0 −1 0

; B̃ =


2
0
0
0

; C̃ =
[

1 1 0 0
]
; D̃ = −1 (3.21)

It should be noted that the system is divided in three parts. They appear in Ã, B̃, C̃, D̃
in the following sequence: controllable and observable part (first order); uncontrollable
and observable part (first order); uncontrollable and unobservable part (second order).
In conclusion, in this example, a fourth-order non-minimal circuit realization of a first-
order all-pass system that uses only passive components is obtained.

3.5 Remarks on Kalman Decomposition

The example in Figure 3.5 is very different to the example in Figure 3.1. In
the first case, if we consider different values of the parameters (for example,
R1 = 0.8, C1 = 1.1 and L2 = 1.2), the rank of controllability matrix Mc and
observability matrix Mo change. The same structure with different parameters
(which may be due to perturbations) behaves very differently. In one case, the
transfer function is second order and in the other fourth order. This is be-
cause the system consists of two symmetric parts when the values of resistors,
capacitors and inductors are equal, but cease to be when those values change.

Instead, the circuit in Figure 3.1 is always an uncontrollable system,
notwithstanding the parameter values. Perturbations in the values cannot
make it controllable.

For this reason, we must also know how much a system is effectively con-
trollable and observable, not only by evaluating controllability and observ-
ability matrices ranks, but also their singular values. If there are very small
singular values compared to others, parametric uncertainties may change the
structural properties of controllability and observability of the system.

In addition to whether a system is controllable and/or observable or not,
we should also ask how much a system is controllable and observable.

In the next chapters, we will examine systems that while controllable and
observable can also be decomposed (and so approximated) in a part that
mostly influences the input/output properties of the system and in a less
important part.

An interesting exercise may be to construct, for example, an unobservable
and uncontrollable system of given order and with assigned properties of the
controllable and observable subsystem. It is easy to show that, once found, an
infinite number of such same order systems can be generated.

48 Optimal and Robust Control: Advanced Topics with MATLAB r

3.6 Exercises

1. Calculate the Kalman decomposition for the system with state-
space matrices:

A =


−2 3 0 0 0
1 0 0 0 0
1 −1 3 0 0
−2 1 −1 −1 0
−4 1 2 −1 −2

; B = CT =


1
1
1
1
1


2. Calculate the Kalman decomposition for the system with state-

space matrices:

A =


−2 0 0 0 0
1 0 0 0 0
1 −1 3 0 0
−2 1 −1 −1 0
−4 1 2 −1 −2

; B = CT =


1
1
1
1
1


3. Calculate the Kalman decomposition for the system with state-

space matrices:

A =


−1 0 0 0
0 −1 0 0
0 0 2 0
1 1 −3 2

; B =


0
0
1
0

; C =
[

0 1 1 0
]

4. Calculate the Kalman decomposition for the system with state-
space matrices:

A =


−1 0 0 0
0 −2 0 0
0 0 3 0
0 0 0 2

; B =


1
0
1
0

; C =
[

1 1 1 1
]

5. Calculate the Kalman decomposition for the system with state-
space matrices:

A =


−1 0 0 0
0 −2 0 0
0 0 3 0
0 0 0 2

; B =


1
1
1
1

; C =
[

0 1 0 1
]

Kalman Canonical Decomposition 49

6. Calculate the Kalman decomposition for the system with state-
space matrices:

A =


2 1 0 0
0 −1 0 0
0 0 1 1
1 0 −3 4

; B =


1
0
1
0

; C =
[

1 1 1 1
]

http://www.taylorandfrancis.com

4

Singular Value Decomposition

CONTENTS

4.1 Singular Values of a Matrix . 51
4.2 Spectral Norm and Condition Number of a Matrix 53
4.3 Exercises . 58

Some matrix numerical tools are developed in this part. The singular value
decomposition (SVD) represents one of the more robust algorithms used in
problems and procedures based on matrix numerical tools. The core of the
MATLAB platform derives from robust algorithms devoted to solve systems
of linear equations and find eigenvalues of matrices. The SVD allows us, in
the view of the robust control theory, to introduce some fundamental topics
like the spectral norm of a matrix and its condition number. The chapter is
considered of particular importance as the book is self-contained and each
argument is strictly related to each other. The effort made in the book is
to highlight the links among the various subjects. In this respect, the quite
transversal topic of the SVD is particularly important to remark.

4.1 Singular Values of a Matrix

Any matrix can be decomposed into three matrices with special properties.
This unique decomposition is called singular value decomposition.

Consider matrix A ∈ Rm×n and for clarity suppose m ≥ n, then there are
always three matrices U, Σ and VT such that matrix A can be written as

A = UΣVT

where U is a unitary matrix of dimensions m×m (i.e., UTU = I), V is also a
unitary matrix, but with dimensions n×n, and Σ matrix m×n is defined as:

Σ =

[
Σ̄
0

]
In this last expression matrix 0 is a matrix of (m− n)× n null elements,

DOI: 10.1201/9781003196921-4 51

https://doi.org/10.1201/9781003196921-4

52 Optimal and Robust Control: Advanced Topics with MATLAB r

while matrix Σ̄ is a n× n diagonal matrix. The elements of the diagonal of Σ̄
in descending order are the singular values of matrix A:

Σ̄ =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
...

0 0 . . . σn


Calculating the singular values of matrix A is simple. They are the square

roots of the eigenvalues of matrix ATA. Note that, since the eigenvalues of
ATA are always non-negative real values, it is always possible to calculate
their square root.

The eigenvalues of ATA are always real and non-negative because ATA
is a symmetric positive semi-definite matrix. The symmetry of this matrix is
immediately verifiable, in fact

(ATA)T = ATA.

Moreover, if we consider the associated quadratic form V (x) = xTATAx
and apply Theorem 5 of Chapter 2, we deduce that ATA is positive definite
if A has no null eigenvalues, otherwise it is positive semi-definite.

To prove that the eigenvalues of ATA are the squares of the singular values
of matrix A, consider the singular value decomposition of its transpose:

AT = VΣTUT

Now consider ATA, which is a symmetric matrix and therefore diagonal-
izable:

ATA = VΣTUTUΣVT

Since U is a unitary matrix, then:

ATA = VΣ̄2VT (4.1)

Expression (4.1) represents the diagonalization of matrix ATA. From this
we can draw two important conclusions:

• σ2
i = λi (where λi are the eigenvalues of ATA);

• V is the matrix of the orthonormal eigenvectors of ATA.

In the same way if we consider AAT (which is a symmetric m×m matrix,
with a maximum rank of n, since m ≥ n), we obtain m eigenvalues, of which
at most n are non-zero. These n eigenvalues are the squares of the singular
values of matrix A:

AAT = U

[
Σ̄2 0
0 0

]
UT (4.2)

Singular Value Decomposition 53

from which we deduce that U is the matrix of the orthonormal eigenvectors
of AAT . The columns of U and V are called left-singular and right-singular
vectors.

Singular value decomposition can also be applied when matrix A is com-
plex. In this case, instead of the transpose matrix, the conjugate transpose
has to be considered. Even here, the singular values are always real and non-
negative.

An example of a complex matrix is the transfer function matrix G(s) =
C(sI−A)−1B. The restriction of G(s) to s = jω, G(jω), is a complex matrix
as ω varies. Later on, the importance of singular values of matrix G(jω) will
be discussed.

MATLABr Exercise 4.1
Consider A ∈ C3×3:

A =

 j 1 1 + j
1− j 2 j
5 + j j 5


The singular values of matrix A can be computed in MATLAB by first calculating its
conjugate transpose with the command:
>> A’

One obtains:

A∗ =

 −j 1 1− j
1 + j 2 −j
5− j −j 5


Then, the matrix A∗A is calculated:
>> A’*A

One obtains an Hermitian matrix:

A∗A =

 29 3 + 6j 25− 5j
3− 6j 6 1− 2j
25 + 5j 1 + 2j 28


Finally, the square root of the eigenvalues of A∗A are calculated:
>> sqrt(eig(A’*A))

One gets: σ1 = 7.4044, σ2 = 2.7191 and σ3 = 0.8843.
The same result can be directly obtained by the command:
>> svd(A)

The svd command will be discussed in more details in the MATLAB exercise 4.2.

4.2 Spectral Norm and Condition Number of a Matrix

In this section we define what is meant by the spectral norm of a matrix.
The norm of a matrix (similar to vector norms) is defined as a non-negative
number with these properties:

54 Optimal and Robust Control: Advanced Topics with MATLAB r

• ‖A‖ ≥ 0 for any matrix;

• ‖A‖ = 0 if and only if A = 0;

• ‖A + B‖ ≤ ‖A‖+ ‖B‖ (triangular inequality).

All the matrix norms which also have (in addition to the listed properties)
the property that the norm of the product of two matrices is less than or equal
to the product of the norms of the matrices, i.e.:

‖A · B‖ ≤ ‖A‖ · ‖B‖

are defined as consistent norms.

Definition 8 (Spectral norm) The spectral norm of a matrix is the largest
singular value of the matrix:

‖A‖S = σ1

The spectral norm is a consistent norm.
In addition, the spectral norm is an induced norm (from the Euclidean

vectorial norm). This property allows us to clarify its meaning. Consider in
fact matrix A as a linear operator mapping vector x ∈ Rn into y ∈ Rn:
y = Ax. Consider all the vectors x with unitary norm, i.e., those for which
‖x‖ = 1 (Euclidean norm, i.e., ‖x‖ = (

∑n
i=1 x

2
i)

1
2), and calculate the norm of

the vectors obtained by the mapping associated with matrix A. The spectral
norm corresponds to the maximum of the resulting vector norm:

‖A‖S = max
‖x‖=1

‖Ax‖.

In the case of matrices A ∈ R2×2 the spectral norm can be interpreted ge-
ometrically. Figure 4.1 shows how a circumference with unitary radius defined
by ‖x‖ = 1 is mapped, using y = Ax, into an ellipse in the plane y1 − y2. σ1
represents the major semi-axis of this ellipse.

Example 4.1

If A is a 2× 2 diagonal matrix, e.g., A =

[
λ1 0
0 λ2

]
, then y1 = λ1x1 and y2 = λ2x2.

So:

y2
1

λ2
1

= x2
1

and

y2
2

λ2
2

= x2
2

Then summing and remembering that x2
1 + x2

2 = 1 the equations of an ellipse are
obtained:

y2
1

λ2
1

+
y2
2

λ2
2

= 1

Singular Value Decomposition 55

FIGURE 4.1
The unit circumference ‖x‖ = 1 is mapped into an ellipse in the plane y1− y2
by the linear operator A.

FIGURE 4.2
The unit circumference ‖x‖ = 1 is mapped into an ellipse in the plane y1− y2
by the linear operator A. Example with A = diag(λ1, λ2).

with semi-major axis σ1 = |λ1| and semi-minor axis σ2 = |λ2| as shown in Figure 4.2.
Note that the ratio between the maximum and minimum singular value σ1

σ2
accounts

for the eccentricity of the ellipse. The larger σ1, the thinner the ellipse. If σ2 = 0 (i.e.,
if matrix A is rank deficient), the ellipse tends to a straight line.

Generally, the invertibility of matrix A depends on the smallest singular
value. Since the determinant of a unitary matrix is 1, then

det A = det U det Σ det VT = det Σ = σ1 · σ2 · . . . · σn
so if the smallest singular value is σn 6= 0, then A is invertible, otherwise it is
not.

Moreover, if the matrix rank is rank(A) = k, then k is the number of
non-zero singular values.

The ratio between the maximum and minimum singular value of a matrix
is therefore a measure of matrix invertibility and is defined as the condition
number of a matrix.

Definition 9 (Condition number) The condition number of an invertible

56 Optimal and Robust Control: Advanced Topics with MATLAB r

matrix A ∈ Rn×n is defined as the ratio between the maximum singular value
and the minimum singular value of A:

h =
σ1
σn
.

If h is large, the matrix is ill-conditioned and it is difficult to calculate
its inverse. The condition number denotes the invertibility of a matrix, unlike
the determinant of a matrix which cannot be considered a measure of matrix
invertibility.

Example 4.2

Consider matrices A =

[
1 1
1 1

]
and Ã =

[
1.1 1
0.9 1.05

]
. A is not invertible since its

determinant equals zero, whereas Ã is invertible (det Ã = 0.255). However, matrix A
can be seen as a perturbation of matrix Ã, i.e.,

Ã + ∆A = A

with ∆A =

[
−0.1 0
0.1 −0.05

]
. So, perturbing an invertible matrix (Ã) you obtain a

matrix A which is no longer invertible.

Consider instead matrix Ā =

[
10−3 10−3

5 · 10−4 10−5

]
, whose determinant is very small

(det Ā = −9 · 10−8), yet the matrix is more robust than Ã to perturbations that may
make it non-invertible. In fact, hÃ ' 16 when hĀ ' 4.

The condition number of a matrix is also related to the issue of the uncer-
tainty of the solution of a system of linear equations. Consider the system of
linear equations

Ax = c

with A ∈ Rn×n, c ∈ Rn known and x ∈ Rn unknown. The solution depends
on the invertibility of matrix A. Clearly, any uncertainty about the constant c
will affect the solution. It can be proved that the condition number of matrix
A is the link between uncertainty of the known terms and the uncertainty of
the solution, i.e.,

‖δx‖
‖x‖

≤ σ1
σn

‖δc‖
‖c‖

where ‖δx‖ is the (Euclidean) norm of the error with solution x, caused by
uncertainty δc of the known term.

If the condition number of the matrix is large, a small uncertainty in the
constant term will cause a large perturbation in the solution.

The condition number of orthonormal matrices has one property easy to
verify.

Theorem 9 The condition number of a unitary matrix U is one.

Singular Value Decomposition 57

In fact, since UTU = I, matrix U has singular values σ1 = σ2 = . . . =
σn = 1 so the condition number is one.

The singular values of a matrix provide upper and lower bounds for the
eigenvalues of a matrix. In fact, if σ1 and σn are the maximum and minimum
singular values of a matrix A then:

σn ≤ min
i
|λi| ≤ max

i
|λi| ≤ σ1 (4.3)

To conclude this brief overview of the properties linked to singular values of
a matrix, note that, once the singular value decomposition has been calculated,
the inverse of a matrix can be immediately computed.

Consider A = UΣVT and suppose σ1 ≥ σ2 ≥ . . . ≥ σn 6= 0, the inverse
matrix is given by:

A−1 = VΣ−1UT = V


1
σ1

0 . . . 0

0 1
σ2

. . . 0
...

...
...

0 0 . . . 1
σn

UT (4.4)

Inversion only requires calculating the inverse of n real numbers.
Finally, singular value decomposition can also be applied to calculating

pseudo-inverse matrices. If A is not invertible, at least one singular value
is zero: in equation (4.4) only the inverses of non-zero singular values are
considered.

MATLABr Exercise 4.2
This exercise explains how to use MATLAB to calculate the singular value decomposi-
tion of a matrix.
The MATLAB command for the singular value decomposition is
[U,S,V] = svd(A)

MATLAB uses an algorithm called the singular value decomposition algorithm which
is similar to line elimination for calculating matrix rank. The algorithm is robust and
works well also with large matrices. Define matrix A as follows
>> A=[0.001 0.001; 0.0001 0.00001]

singular values are calculated with command
>> svd(A)

You get σ1 = 0.0014 and σ2 = 0.0001.
Left and right singular vectors A are calculated with command
>> [U,S,V]=svd(A)

To complete the exercise, verify the following properties:

1. Orthonormality of matrices U and V, using commands:

>> U’*U

>> V’*V

2. Matrix A is given by A = UΣVT . Use command:

>> U*S*V’

58 Optimal and Robust Control: Advanced Topics with MATLAB r

3. Calculate the inverse of A. Use command

>> V*inv(S)*U’

and compare the obtained result using command

>> inv(A)

Note. The numerical algorithm for obtaining singular value decomposi-
tion was proposed by Golub in 1975.

4.3 Exercises

1. Calculate the singular value decomposition of

A =


0 1 0 0.3 −3
−1 −7 3 −7 −2
1 0.5 2 1 1
2 1 0 0 1



2. Calculate the singular value decomposition of A =

 2− j j 1
−j 3j 1
7 1 6j

.

3. Calculate the condition number of matrix A =

 −1 0.5 3
0.1 7 1
3 −4 −5

.

4. Calculate the inverse of A =


2 0 2 2
2 5 −7 −11
0 −2 6 −7
0 2 −6 −7

.

5. Calculate the eigenvalues of

A =


2.5000 −1.0000 −3.6416 −1.6416
−21.9282 2.0359 13.7439 6.2080
13.4641 −1.7679 −8.1927 −2.9248
−13.4641 1.7679 11.3343 6.0664


and verify that they satisfy (4.3).

5

Open-loop Balanced Realization

CONTENTS

5.1 Controllability and Observability Gramians . 59
5.2 Principal Component Analysis . 63
5.3 Principal Component Analysis Applied to Linear Systems 64
5.4 State Transformations of Gramians . 66
5.5 Singular Values of Linear Time-invariant Systems 68
5.6 Computing the Open-loop Balanced Realization 69
5.7 Balanced Realization for Discrete-time Linear Systems 73
5.8 Exercises . 75

In Chapter 3 we analyzed the Kalman decomposition, which allows us to
determine the controllable and observable part of a system. In this chapter
we deal with determining how controllable and observable a system is. In
simplifying the poles and zeros of a system, the Kalman decomposition takes
into account the scenario where there is an exact simplification between pole
and zero, whereas the technique discussed in this chapter examines the case
in which poles and zeros are very close to each other. The role of both the
controllability and observability gramians is studied. The discussion leads to
remark the concept of system invariants, in particular the singular values of
a linear dynamical system are presented. The subject is considered one of the
most important in the book and therefore both the theoretical aspects and
the algorithms to derive the open-loop balanced representation are discussed.
The case of discrete-time systems is also reported. In this part, the principal
component analysis procedure is also discussed. The chapter includes several
worked examples.

5.1 Controllability and Observability Gramians

Consider a generic Lyapunov equation

ATX + XA = −Q

DOI: 10.1201/9781003196921-5 59

https://doi.org/10.1201/9781003196921-5

60 Optimal and Robust Control: Advanced Topics with MATLAB r

if A is the state matrix of an asymptotically stable system, then for Theorem
7 of Chapter 2 there is an integral solution

X =

∫ ∞
0

eA
T tQeAtdt.

Moreover if Q is positive definite, so is X.
Now let us consider two particular Lyapunov equations:

AX + XAT = −BBT (5.1)

ATX + XA = −CTC (5.2)

associated to the linear time-invariant system described by the state matrices
(A,B,C). If we assume that the system is asymptotically stable, then each
equation has a solution.

In particular, the solution to Lyapunov equation (5.1) is

W2
c =

∫ ∞
0

eAtBBT eA
T tdt

while the solution to Lyapunov equation (5.2) is

W2
o =

∫ ∞
0

eA
T tCTCeAtdt.

Note that, generally, for Theorem 5 the matrices BBT and CTC are positive
semi-definite matrices. Consider for example a single output system with C =[

1 0
]
, matrix

CTC =

[
1 0
0 0

]
has one null and one positive eigenvalue, so it is positive semi-definite.
Notwithstanding, it can be proved that if and only if the system is asymptot-
ically stable and controllable, matrix W2

c is positive definite. Likewise, if the
system is asymptotically stable and observable, matrix W2

o is positive defi-
nite. These two matrices are called controllability and observability gramians.
Formally, the two gramians are defined as follows:

Definition 10 (Controllability gramian) Given an asymptotically stable
system, the controllability gramian

W2
c =

∫ ∞
0

eAtBBT eA
T tdt

is the solution of the following Lyapunov equation:

AW2
c + W2

cA
T = −BBT (5.3)

Open-loop Balanced Realization 61

Definition 11 (Observability gramian) Given an asymptotically stable
system, the observability gramian

W2
o =

∫ ∞
0

eA
T tCTCeAtdt

is the solution of the following Lyapunov equation:

ATW2
o + W2

oA = −CTC (5.4)

The notation W2
c and W2

o (with the square) is adopted to highlight that
the matrices are positive definite if the system is asymptotically stable, con-
trollable and observable. In the following example we see the importance of
asymptotic stability in obtaining the solution.

Example 5.1
Given a linear first-order system with A = 0, B = 1 and C = 1, the Lyapunov equations
(5.3) and (5.4) have no solution. For the system under consideration, in fact, they
become 0 ·W2 = 1 which has no solution. Indeed, this system is only marginally stable.
Since there is an eigenvalue at λ = 0, the necessary conditions for solving a Lyapunov
equation of type (5.3) and (5.4), i.e., the requirement that there are no eigenvalues on
the imaginary axis, are not met.

Since the gramians are symmetric and positive definite, the singular values
coincide with the eigenvalues of the matrix. This can be proven by considering
a generic positive definite symmetric matrix W, and recalling that singular
values are calculated from the eigenvalues of matrix WTW. For symmetric
matrices WTW = W2. But since W2 has λ2i eigenvalues, where λi are the
eigenvalues of W, it follows that σi = λi. For this reason, the singular values
and eigenvalues of W2

c or W2
o are indistinguishable.

MATLABr Exercise 5.1
This exercise illustrates the commands for calculating the controllability and observ-
ability gramians and discusses their properties.
As a first example, consider the linear time-invariant system described by the following
state matrices:

A =

 0 1 0
0 0 1
−5 −4 −3

 ; B =

 0
0
1

 ; C =
[

0 1 0
]

Obviously, the system is in canonical control form, so completely controllable, and
furthermore asymptotically stable. For this reason the controllability gramian has to
be positive definite.
The state matrices are defined by these commands:
>> A=[0 1 0; 0 0 1; -5 -4 -3]

>> B=[0; 0; 1]

>> C=[0 1 0]

Let us study the observability of the system by calculating the rank of the system
observability matrix, with the command:
>> rank(obsv(A,C))

62 Optimal and Robust Control: Advanced Topics with MATLAB r

Since the rank is maximum and the system completely observable, the observability
gramian has to be positive definite.
Let us calculate the two gramians by solving the associated Lyapunov equations with
the commands:
>> Wc2=lyap(A,B*B’)

>> Wo2=lyap(A’,C’*C)

Note that they are two symmetric matrices. Let us verify that the two gramians are
solutions of the associated Lyapunov equations:
>> A*Wc2+Wc2*A’+B*B’

>> A’*Wo2+Wo2*A+C’*C

In both cases, as expected, we obtain a zero matrix.
Now let us verify that the two gramians are positive definite. To do this we can calculate
the eigenvalues of the matrices:
>> eig(Wc2)

>> eig(Wo2)

and note that they are all positive. The same result can be obtained from the Sylvester
test (a symmetric matrix is positive definite if all the leading principal minors are posi-
tive). For example, for the controllability gramian the test is applied by the commands:
>> det(Wc2(1,1))

>> det(Wc2(1:2,1:2))

>> det(Wc2)

Gramians can also be calculated with the command gram. In this case we have to define
an LTI model, for example using the command:
>> system1=ss(A,B,C,0)

At this point we can calculate the gramians with the commands:
>> Wc2=gram(system1,’c’)

>> Wo2=gram(system1,’o’)

As a second example, consider the linear time-invariant system described by the state
matrices:

A =

 −1 0 0
1/2 −1 0
1/2 0 −1

 ; B =

 1 0
0 −1
0 1


In this case the (asymptotically stable) system has two inputs, u1 and u2.
Note that the fact that the system is completely controllable is immediately verifiable
with the command:
>> rank(ctrb(A,B))

But if we consider only the input u1 (i.e., u2 = 0) then the system is no more completely
controllable. The instruction
>> rank(ctrb(A,B(:,1)))

gives that the rank is 2. In other words, both inputs are strictly necessary to reach any
state of R3.
Initially, let us suppose that both inputs are manipulable and calculate the controlla-
bility gramian with the command:
>> Wc2=lyap(A,B*B’)

>> eig(Wc2)

We find a positive definite gramian.
Instead, when only u1 can be used to act on the system (u2 = 0), with the commands
>> Wc2=lyap(A,B(:,1)*B(:,1)’)

>> eig(Wc2)

we find that the gramian has one zero eigenvalue. So it is positive semi-definite.

Open-loop Balanced Realization 63

5.2 Principal Component Analysis

In this paragraph, we will recall the most important properties of principal
component analysis.

Consider matrix W ∈ Rn×n defined as:

W =

∫ ∞
0

F(t)F(t)T dt

with F : R → Rn×m (time function matrix). The implicit assumption in
defining W is that the integral exists.

Consider the singular value decomposition of matrix W. This matrix is
certainly positive semi-definite (by definition). So, let us consider a set of
orthonormal vectors assigned to the non-negative eigenvalues to obtain the
singular value decomposition:

W = VΣVT

where Σ is the diagonal matrix containing the singular values of W (Σ =
diag{σ1, σ2, . . . , σn}) and v1,v2, . . . ,vn constitute the set of orthonormal vec-
tors of W. Since v1,v2, . . . ,vn are orthonormal vectors, they can be used as
the orthonormal base of Rn so that F(t) represents the sum of n components:

F(t) = v1f1
T (t) + v2f2

T (t) + . . .+ vnfn
T (t)

where f1(t), f2(t), . . . , fn(t) are vectors of m time-dependent elements,
and v1,v2, . . . ,vn are vectors of n constant time-independent elements.
f1(t), f2(t), . . . , fn(t) are called principal components of F(t) and are given
by:

fi
T (t) = vi

TF(t).

Principal components have certain properties:∫ ∞
0

fi
T (t)fj(t)dt = 0 for i 6= j∫ ∞

0

fi
T (t)fi(t)dt =

∫ ∞
0

‖fi‖2dt = σi

∫ ∞
0

‖F(t)‖2F dt =

n∑
i=1

σi

where the Frobenius norm is defined by

‖A‖F =

 n∑
i=1,j=1

a2ij

 1
2

64 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 5.1
Linear time-invariant system for defining F(t) of the controllability gramian.

So, F(t) can be decomposed into n time function components whose energy
can be calculated from the singular values of W.

5.3 Principal Component Analysis Applied to Linear
Systems

Let us apply principal component analysis to linear time-invariant systems
which is the same as fixing particular F(t) with a precise physical meaning in
systems theory.

In particular, given the system in Figure 5.1, imagine applying an input
consisting of m Dirac impulses and calculating the state evolution from zero
intial conditions. This would be the same as calculating the forced output
evolution with C = I. The state evolution is given by:

x(t) = eAtB.

By choosing this function as matrix F(t) in our principal component anal-
ysis, where F(t) = eAtB, we get the precise definition of the controllability
gramian:

W2
c =

∫ ∞
0

F(t)FT (t)dt =

∫ ∞
0

eAtBBT eA
T tdt.

In the integral which defines the controllability gramian, the matrix F(t)
represents the state evolution in response to a Dirac impulse at the input. The
controllability subspace Xc is the smallest subspace containing the image of
eAtB with T > 0.

In the same way, the physical meaning of F(t) which appears in the observ-
ability gramian can be derived. Examine the system in Figure 5.2 with u = 0,
apply a vector of n Dirac impulses at the summing node and consider the
system response with zero intial conditions. This is the same as considering

Open-loop Balanced Realization 65

FIGURE 5.2
Linear time-invariant system for defining F(t) of the observability gramian.

the impulse response of a system with B = I. The system response is given
by:

y(t) = CeAt

Note that FT (t) = CeAt is exactly the term which appears in the observ-
ability gramian. In fact the response y(t) plays a fundamental role in the
analysis of the observability properties of the system.

The principal component analysis of the function F(t) = eAtB in the con-
trollability gramian W2

c and of the function FT (t) = CeAt of the observability
gramian W2

o allows us to evaluate, based on the size of the singular values σi
relative to W2

c or to W2
o, which components are associated to greater or lesser

energy and, therefore, those terms which need more energy to be controlled
and those that need more energy to be observed.

In particular, taking into account the controllability analysis and so the
function F(t) = eAtB, the following result is particularly significant. Assuming
that the system is controllable, if x̄ is the state obtained by applying input
ū, the required energy is given by

∫∞
0
‖ū‖2dt. If instead we consider the state

x = x̄ + ∆x, the necessary input would be u = ū + ∆u. The relation between
the energy difference in the two cases and the associated energy at the input
ū is directly proportional to the ratio between ‖∆x‖ and ‖x‖ and the propor-
tionality constant is linked to the ratio between the maximum singular value
(denoted by σc1) and the minimum singular value (σcn) of matrix W2

c . So, the
following expression is valid:∫∞

0
‖ū− u‖2dt∫∞
0
‖ū‖2dt

∝
√
σ1c
σnc

‖∆x‖
‖x‖

(5.5)

where ‖ · ‖ is the Euclidean norm. If the ratio σ1c

σnc
is large, a lot of energy is

66 Optimal and Robust Control: Advanced Topics with MATLAB r

required to change the state even slightly. The value of the ratio σ1c

σnc
gives an

idea of the degree of controllability of the system.
Suppose now that the system is observable, an analogous result holds:∫∞

0
‖y − y∗‖2dt∫∞
0
‖y‖2dt

∝
√
σno
σ1o

‖∆x‖
‖x‖

(5.6)

where ‖·‖ is the Euclidean norm and σ1o, . . . , σno represent the singular values

of matrix W2
o =

∫∞
0
eA

T tCTCeAtdt.
Note that in this case the proportionality constant is given by the ratio

between the minimum singular value and the maximum singular value of ma-
trix W2

o. If the value of this ratio is small, i.e., if we have at least one singular
value of W2

o which is smaller than the others, reconstructing the state from
the output terms requires a lot of energy. In fact, ideally it would be good to
be able to discriminate a small difference ‖∆x‖ in the initial condition, so it
would be desirable that a small variation significantly affects the term in the
left hand side of (5.6). If the ratio σno

σ1o
is small, a small difference in the initial

condition is attenuated. In this case, the variables are poorly observable.

5.4 State Transformations of Gramians

In this paragraph we consider an invertible state transformation x̃ = T−1x
and see how the gramians change as the reference system changes. Recall
that, given a system (A,B,C) and applying state transformation x̃ = T−1x
we obtain an equivalent system (Ã, B̃, C̃) with

Ã = T−1AT

B̃ = T−1B

C̃ = CT

(5.7)

In the original reference system the gramians are solutions of the Lyapunov
equations:

AW2
c + W2

cA
T = −BBT

ATW2
o + W2

oA = −CTC
(5.8)

In the new reference system x̃ the gramians W̃2
c and W̃2

o are solutions of
equations:

ÃW̃2
c + W̃2

cÃ
T = −B̃B̃T

ÃT W̃2
o + W̃2

oÃ = −C̃T C̃
(5.9)

To find the relation between W̃2
c with W2

c and W̃2
o with W2

o, let us ap-
ply relations (5.7) to equations (5.9). First, let us consider the controllability
gramian:

Open-loop Balanced Realization 67

T−1ATW̃2
c + W̃2

cT
TAT (TT)−1 = −T−1BBT (TT)−1

Multiplying to the right both members by matrix TT , we get:

T−1ATW̃2
cT

T + W̃2
cT

TAT = −T−1BBT

Multiplying left with matrix T, we get:

ATW̃2
cT

T + TW̃2
cT

TAT = −BBT (5.10)

The expression obtained is equal to the first of the two Lyapunov equations
(5.8) if

W2
c = TW̃2

cT
T

from which we get:

W̃2
c = T−1W2

c(T
T)−1

Note that W̃2
c and W2

c , are both symmetric and positive semi-definite (or
definite) matrices not related by any similarity relation. So, the two gramians
do not have the same eigenvalues (nor the same singular values). Therefore,
we have reached a very important conclusion: the singular values of the con-
trollability gramian depend on the reference system.

An example in R2 may facilitate to gain some insight on the problem. In
presence of a high condition number, we have a very distorted ellipsoid which
reflects an interior unbalance of the system. In this case, strongly or weakly
controllable variables exist. Note that this depends however on the reference
system.

With regard to the transformation of the observability gramian, the same
reasoning for the controllability gramian can be repeated. Consider the second
Lyapunov equation (5.9), replacing relations (5.7), we obtain:

TTAT (TT)−1W̃2
o + W̃2

oT
−1AT = −TTCTCT

Multiplying all the terms in this case on the right by T−1 and left for
(TT)−1, we obtain:

AT (TT)−1W̃2
oT
−1 + (TT)−1W̃2

oT
−1A = −CTC

So, equalling the resulting relation with the second Lyapunov equation
(5.8) we obtain:

W2
o = (TT)−1W̃2

oT
−1

and therefore

W̃2
o = TTW2

oT

68 Optimal and Robust Control: Advanced Topics with MATLAB r

Even with regard to the observability gramian, the relation that links W̃2
o

with W2
o, is not a relation of similarity. The observability gramian eigenvalues

therefore depend on the reference system.
Summarizing, the relations linking the controllability and observability

gramians in two reference systems related by a state transformation x̃ = T−1x
are:

W̃2
c = T−1W2

c(T
T)−1

W̃2
o = TTW2

oT
(5.11)

Since the gramian eigenvalues depend on the reference system, also σ1c

σnc
and

σ1o

σno
depend on the reference system. So, supposing that the system is asymp-

totically stable and minimal, the choice of the reference system for solving
the controllability or observability issue is very significant as the degree of
observability or controllability depends on the reference system. Referring to
relations (5.5) and (5.6), there is a reference system in which all the variables
are controllable in the same way. This occurs when the controllability gramian
is equal to the identity matrix. In the same way there is a reference system
in which all the variables are equally observable, thus requiring the same
energy to reconstruct the initial condition. This occurs when the observabil-
ity gramian equals the identity matrix. So, controllability and observability
(as structural properties) in a system do not change as the reference system
changes. What may change is degree of controllability and observability.

At this point we should ask ourselves if there is a reference system in which
the two gramians are equal, that is, a reference system in which the degree of
controllability and observability are equal. We will see that the answer to this
question is positive, and that under proper hypotheses in this reference system
it is possible to split the system into a strongly controllable and observable
part and into a weakly controllable and observable part.

5.5 Singular Values of Linear Time-invariant Systems

We have seen that the controllability and observability gramian eigenvalues
depend on the reference system, so they are not system invariants.

As regards the product of the two gramians W2
cW

2
o, by applying a trans-

formation state, as the consequence of relations (5.11) we find that:

W̃2
cW̃

2
o = T−1W2

cW
2
oT (5.12)

Since W̃2
cW̃

2
o and W2

cW
2
o are linked by a relation of similarity, they have

the same eigenvalues. The same is true if we consider the observability and
controllability gramian product:

Open-loop Balanced Realization 69

W̃2
oW̃

2
c = TTW2

oW
2
c(T

T)−1 (5.13)

The eigenvalues of the gramian product do not change as the reference sys-
tem changes. Furthermore, since (W2

cW
2
o)
T = W2

oW
2
c , the two matrices (the

product matrix of the controllability and observability gramian and the prod-
uct matrix of the observability and controllability gramian) have the same
eigenvalues. Ultimately, these two matrices are positive definite (or semi-
definite), being the product of positive definite (or semi-definite) matrices.
More precisely, the hypothesis of asymptotic stability of the system implies
that the matrices are positive semi-definite; and if the system is also control-
lable and observable, the matrices are positive definite.

Notice that W2
cW

2
o and W2

oW
2
c are not symmetric, as the product of two

symmetric matrices generally is not a symmetric matrix. Effectively, in the
case of the gramian product, without considering particular states:

(W2
cW

2
o)
T = W2

oW
2
c 6= W2

cW
2
o

Since the gramian product matrix does not have negative eigenvalues their
roots may be found. As before, these roots are system invariants. They take
the name of singular values of the system.

Definition 12 (Singular values of the system) Given a linear asymptot-
ically stable system, the singular values of the system, σ1 ≥ σ2 ≥ . . . σn, are
the square roots of the eigenvalues of the product of the controllability and
observability gramians. Singular values are system invariants.

These quantities are also known as the Hankel singular values.

5.6 Computing the Open-loop Balanced Realization

Once all the required mathematical tools have been defined, we can deal with
the problem of determining a system in which the two gramians are equal
and so their controllability and observability are measured by the same pa-
rameters since the eigenvalues of W2

c coincide with those of W2
o. Given an

asymptotically stable system which is controllable and observable (as we will
consider in the rest of this chapter, unless otherwise specified), it is therefore
possible to distinguish a strongly controllable and observable part as well as a
weakly controllable and observable part. Once this system is broken down, we
will only consider the strongly controllable and observable part of the system
as a lower order model for the system. So, let us apply principal component
analysis to functions eAtB and (CeAt)T making sure to omit the fTi (t) terms
associated with (relatively) small singular values. Since singular values rep-
resent the energy associated with those components fTi (t) the aim is to be

70 Optimal and Robust Control: Advanced Topics with MATLAB r

able to identify the low-energy components and neglect them. When we apply
principal component analysis we have to be sure that the various contributions
are weighted only by components fTi (t) and do not depend on vi. This leads
to better specifying the characteristic conditions of this system: the gramians
must be equal and diagonal as the state variables associated with the strongly
controllable and observable part can be associated with the weakly control-
lable and observable part. Ultimately, since the eigenvalues of the gramian
product equal the squares of the system singular values, what characterizes it
is that the two gramians are diagonal matrices containing the system singular
values. This particular realization is called open-loop balanced.

Definition 13 (Open-loop balanced realization) Given a controllable
and observable, linear and asymptotically stable system, the open-loop bal-
anced realization is the realization in which the controllability and observ-
ability gramian are equal, diagonal and the diagonal contains the singu-
lar values of the system W2

c = W2
o = diag(σ1, σ2, . . . , σn). W2

c = W2
o =

diag(σ1, σ2, . . . , σn).

Now let us discuss how to construct such a realization, or, equivalently,
which transformation matrix T from the initial reference system to the new
balanced one is required.

Consider the Lyapunov solution to the controllability gramian equation

AW2
c + W2

cA
T = −BBT

Once the solution W2
c is found (we know it exists because the system is

asymptotically stable), let us consider its singular value decomposition:

W2
c = VcΣ

2
cV

T
c

where for convenience σ2
1c, σ

2
2c, . . . , σ

2
nc indicate the singular values of W2

c .
Note also that Uc = Vc given that the matrix is symmetric. Recall also that
if M is a symmetric matrix, then MTM = MMT = M2 and the eigenvectors
of MTM coincide with those of MMT .

Consider the transformation state defined by matrix T1 = VcΣc (Σc the
diagonal matrix which contains the roots of the singular values of W2

c).
Since T−11 = Σ−1c VT

c , taking into account equation (5.11), we obtain:

W̃2
c = Σ−1c VT

c W2
cVcΣ

−1
c = Σ−1c Σ2

cΣ
−1
c = I

With W̃2
c = I we obtain W̃2

o whose eigenvalues equal the square of the
singular values of the system, since W̃2

cW̃
2
o = W̃2

o (this intermediate represen-
tation is called input normal form).

In this state representation, the system singular values can be calculated
using the Lyapunov equation:

ÃT W̃2
o + W̃2

oÃ = −C̃T C̃

Open-loop Balanced Realization 71

At this point, considering the singular value decomposition of the observ-
ability gramian, we have:

W̃2
o = ṼoΣ

2ṼT
o

where Σ is exactly the diagonal matrix which contains the Hankel singular
values σ1, σ2, . . . , σn.

Consider a second state transformation T2 = ṼoΣ
− 1

2 . Since TT2 = Σ−
1
2 ṼT

o ,
in the new reference system (let x̄), we have:

W̄2
o = Σ−

1
2 ṼT

o ṼoΣ
2ṼT

o ṼoΣ
− 1

2 = Σ

and

W̄2
c = Σ

To balance the gramians, two different state transformations were applied.
The overall state transformation is given by x̄ = T−1x. Since x̄ = T−12 x̃ =
T−12 T−11 x, then T = T1T2.

So, applying the state transformation T = T1T2, a reference system can
be obtained in which:

W̄2
c = W̄2

o = Σ = diag(σ1, σ2, . . . , σn)
W̄2
cW̄

2
o = Σ2 (5.14)

MATLABr Exercise 5.2
Now let us find the open-loop balanced realization of an asymptotically stable con-
trollable and observable system. Here is an example of the procedure for the following
system in state-space form:

A =

 −1 0 0
1/2 −1 0
1/2 0 −1

 ; B =

 1 0
0 −1
0 1

 ; C =

[
0 0 1
1 1 0

]
Let us follow these steps:

1. Define the system:

>> A=[-1 0 0; 1/2 -1 0; 1/2 0 -1]

>> B=[1 0 0; 0 -1 1]’

>> C=[0 0 1; 1 1 0]

>> system=ss(A,B,C,0)

2. Verify the hypotheses so the open-loop balanced realization (asymptotic
stability, controllability, observability) can be calculated:

>> eig(A)

>> rank(ctrb(system))

>> rank(obsv(system))

3. Calculate the state transformation matrix P1

>> Wc2=lyap(A,B*B’)

(alternatively Wc2=gram(system,’c’))

>> [Uc,Sc2,Vc]=svd(Wc2)

>> P1=Vc*sqrt(Sc2)

72 Optimal and Robust Control: Advanced Topics with MATLAB r

4. Calculate the state-space representation (Ã, B̃, C̃) (input normal form)

>> Atilde=inv(P1)*A*P1

>> Btilde=inv(P1)*B

>> Ctilde=C*P1

To test it we can calculate W̃2
c and see if it equals the identity matrix

>> Wtildec2=lyap(Atilde,Btilde*Btilde’)

5. Calculate the transformation matrix T2

>> Wtildeo2=lyap(Atilde’,Ctilde’*Ctilde)

>> [Uo,So2,Vo]=svd(Wtildeo2)

>> T2=Vo*(So2)^(-1/4)

6. Calculate the open-loop balanced realization

>> Abal=inv(T2)*Atilde*T2

>> Bbal=inv(T2)*Btilde

>> Cbal=Ctilde*T2

>>systembal=ss(Abal,Bbal,Cbal,0)

To test it, note that the gramians are diagonal and equal to the singular
values of the system:

>> Wbalc2=gram(systembal,’c’)

>> Wbalo2=gram(systembal,’o’)

The singular values of the system can be found using these instructions:

>> Wc2=lyap(A,B*B’)

>> Wo2=lyap(A’,C’*C)

>> sqrt(eig(Wc2*Wo2))

Note that, instead of using this procedure, shown mainly for educational purposes, the
balanced form of the system can be found with the instruction:
>> [systemb,G,T,Ti]=balreal(system)

Note (typing help balreal) that in this case the transformation of command balreal

is xbil = Tx, i.e., the inverse of the one found in the discussed procedure.

Example 5.2
Consider the linear time-invariant system:

A =

[
−2 4α
− 4
α
−1

]
; B =

[
2α
1

]
; C =

[
2
α
−1

]
with α 6= 0. By calculating the transfer function of this system (G(s) = 3s+18

s2+3s+18
) we

can see that the system is controllable, observable and asymptotically stable for any
value of α (the transfer function does not depend on α). So it makes sense to calculate
the balanced form of this system.
Consider, for example, α = 10 and calculate the balanced form according to the proce-
dure in Exercise 5.2. For α = 10 the system becomes:

A =

[
−2 40
−0.4 −1

]
; B =

[
20
1

]
; C =

[
0.2 −1

]
The controllability and observability gramians (calculated by the MATLAB command
gram) are:

W2
c =

[
100 0
0 0.5

]
; W2

o =

[
0.01 0

0 0.5

]
The singular values of the system are the roots of the eigenvalues of the product between
the two gramians and can be calculated through the command sqrt(eig(Wc2*Wo2)). So,
we obtain σ1 = 1 and σ2 = 0.5.

Open-loop Balanced Realization 73

Note that in this case the two gramians are already diagonal matrices. Since they are
not equal the system is unbalanced. Applying the balancing procedure, since the con-
trollability gramian is already diagonal, we obtain Vc = I and so:

T1 = IΣc =
√

W2
c =

[
10 0

0
√

0.5

]
At this point consider system (Ã, B̃, C̃). In this reference system W̃2

c = I, while W̃2
o is

equal to:

W̃2
o =

[
1 0
0 0.25

]
Matrix T2 is given by:

T2 = VoΣ
− 1

2
o = IΣ

− 1
2

o = (W̃2
o)−1/4 =

[
1 0
0 1√

0.5

]

which yields T = T1T2 =

[
10 0
0 1

]
. The particular form of the transformation matrix

highlights the fact that in this case it is sufficient to change scale to obtain the open-loop
balanced form. Applying the transformation x̄ = T−1x we obtain the balanced form:

Ā =

[
−2 4
−4 −1

]
; B̄ =

[
2
1

]
; C̄ =

[
2 −1

]
In the most trivial case, the balanced form is obtained by appropriately scaling the
state variables (in this case, with x̄1 = 1

10
x1 and x̄2 = x2). In the general case, to

determine the balanced form, a reference system change is usually needed. In this case,
with diagonal gramians it is sufficient to scale the state variables.
Let us return to the more general case with α 6= 0. In this case the gramians are:

W2
c =

[
α2 0
0 0.5

]
; W2

o =

[
1
α2 0

0 0.5

]
Consider the case in which α is very small. The degree of controllability of the variable
which corresponds to the singular value of W2

c equalling σ2 = α is very small. But the
larger the degree of observability of this variable, the smaller its controllability.
This example confirms the importance of having balanced controllability and observabil-
ity which also helps understand at the same time which variables are less controllable
and observable.
In this system the parameter α represents the imbalance between observability and
controllability. The balanced form is equal to:

Ā =

[
−2 4
−4 −1

]
; B̄ =

[
2
1

]
; C̄ =

[
2 −1

]
So we have a form independent of α which obviously coincides with the case in which
α = 1, that is when the system variables are observable and controllable in the same
way.

5.7 Balanced Realization for Discrete-time Linear Sys-
tems

The results presented so far for linear continuous-time systems can be easily
extended to linear discrete-time systems:

74 Optimal and Robust Control: Advanced Topics with MATLAB r

{
x(k + 1) = Ãx(k) + B̃u(k)

y(k) = C̃x(k)
(5.15)

The Lyapunov equations of the gramians take a slightly different form:

ÃW̃2
cÃ

T − W̃2
c = −B̃B̃T (5.16)

ÃT W̃2
oÃ− W̃2

o = −C̃T C̃ (5.17)

We are still dealing with linear equations for which if a system is con-
trollable, B̃B̃T is positive semi-definite and W̃2

c is positive definite, then the
system is asymptotically stable.

Let us assume that the system is asymptotically stable, the expression
of W̃2

c and W̃2
o, which represent the dual with respect to the integral form

assumed in the continuous-time case, is the following:

W̃2
c =

∞∑
i=0

ÃiB̃B̃T (ÃT)i (5.18)

W̃2
o =

∞∑
i=0

(ÃT)iC̃T C̃Ãi (5.19)

The two series converge if the system is asymptotically stable. Defining
the balanced form for discrete-time systems is otherwise quite similar to the
continuous-time case.

There are some algorithms which can solve the Lyapunov equation for
discrete-time systems, but usually we use the bilinear transformation z = 1+s

1−s
to obtain from the discrete-time system a fictitious continuous-time system
which is analogous to the original one in terms of stability. By applying the
bilinear transformation to a discrete-time system in state-space form (Ã, B̃,
C̃, D̃) we obtain a continuous-time equivalent system (A, B, C, D) with:

A = (I + Ã)−1(Ã− I)

B =
√

2(I + Ã)−1B̃

C =
√

2C̃(I + Ã)−1

D = D̃− C̃(I + Ã)−1B̃

(5.20)

The singular values are also invariant according to this transformation.
Once the balanced representation of the equivalent continuous-time system

is calculated, we apply the inverse transformations of (5.20) as

Ã = (I− 1
2A)−1(1

2A + I)

B̃ = (I− 1
2A)−1B

C̃ = C(I− 1
2A)−1

D̃ = D + 1
2C(I− 1

2A)−1B

(5.21)

to obtain the discrete-time balanced realization.

Open-loop Balanced Realization 75

MATLABr Exercise 5.3
In this MATLABr exercise the open-loop balanced realization of a discrete-time linear
system is computed. Let the system be described by the following state-space matrices:

A =

 0.5 0 0
0 −0.7 0
0 0 0.3

 ; B =

 1
1
1

 ; C =
[

1 1 1
]

; D = 0 (5.22)

System (5.22) is stable (having all eigenvalues inside the unitary circle), controllable and
observable and therefore the open-loop balanced realization can be calculated.
Let us define the system with the MATLAB commands:
>> A=[0.5 0 0; 0 -0.7 0; 0 0 0.3]

>> B=[1; 1; 1]

>> C=[1 1 1]

>> D=0

>> system=ss(A,B,C,D,-1)

Notice that, since the sampling time is unspecified, in the MATLAB command Ts = −1
has been set. The open-loop balanced realization can be calculated with the balreal

command as follows:
>> [systembal,S]=balreal(system)

One obtains:

Ā =

 −0.04133 0.5468 −0.02004
0.5468 −0.2342 −0.1298
−0.02004 −0.1298 0.3755

 ; B̄ =

 −1.727
−0.122
−0.04216

 ;

C̄ =
[
−1.727 −0.122 −0.04216

]
; D̄ = 0

(5.23)

5.8 Exercises

1. Given the continuous-time LTI system with state matrices

A =

[
0 1
−3 −2

]
; B =

[
0
1

]
; C =

[
−1 1

]
calculate the gramians and study system controllability and observ-
ability.

2. Calculate analytically the singular values of the system with transfer
function G(s) = s+3

(s+1)(s+7) .

3. Calculate analytically the singular values of the system with transfer

function G(s) = s2+1
s2+s+1 .

4. Calculate the singular values of the system with transfer function
G(s) = −10 + 60s

s2+3s+2 .

5. Calculate the open-loop balanced realization of the system with
state-space matrices:

76 Optimal and Robust Control: Advanced Topics with MATLAB r

A =


−0.5 −1 0 0

1 −0.5 0 0
0 0 −3 0
0 0 0 −4

 ; B =


1
−1
−1
1

 ; C =
[

0 1 −1 1
]

6

Reduced Order Models and Symmetric
Systems

CONTENTS

6.1 Reduced Order Models Based on the Open-loop Balanced
Realization . 78
6.1.1 Direct Truncation Method . 79
6.1.2 Singular Perturbation Method . 81

6.2 Reduced Order Model Exercises . 82
6.3 Symmetric Systems . 86

6.3.1 Reduced Order Models for SISO Systems 86
6.3.2 Properties of Symmetric Systems . 88
6.3.3 The Cross-gramian Matrix . 90
6.3.4 Relations Between W2

c , W2
o and Wco 90

6.3.5 Open-loop Parameterization . 96
6.3.6 Relation Between the Cauchy Index and the Hankel

Matrix . 98
6.3.7 Singular Values for a FIR Filter . 99
6.3.8 Singular Values of All-pass Systems . 102

6.4 Exercises . 103

In this chapter we look at constructing a reduced order model from a dynami-
cal system. This represents the practical application of the open-loop balanced
representation studied in the previous chapter. In fact, there are various ways
of obtaining a reduced order model and in the chapter we discuss the method
based on the open-loop balanced realization. Here, we first calculate a system
representation where the state variables are ordered according to a particular
system characteristic (controllability or observability or by both properties as
in the open-loop balanced realization). The next step is to eliminate the less
important state variables from the original system so as to obtain a reduced
order model with a lower number of state variables. This can be done by direct
truncation or by singular perturbation approximation. Both techniques will be
examined. Another general aspect of the methods for constructing reduced
order models is the requirement to obtain a small error, the error being a
certain norm between the original model and the reduced order one (the cho-
sen norm helps classify the approximation methods). The two techniques for

DOI: 10.1201/9781003196921-6 77

https://doi.org/10.1201/9781003196921-6

78 Optimal and Robust Control: Advanced Topics with MATLAB r

constructing a reduced order model will be examined from the point of view
of the errors they produce (so cut the quality of the model). This chapter
deals with reduced order models with an open-loop balanced form, but other
chapters will deal with reduced order models based on other techniques.

Finally, this chapter also includes a few results regarding symmetric sys-
tems. The links between dynamical systems and electrical networks are pre-
sented. The dichotomy between circuits and systems is emphasized in several
aspects. The discussion regards both continuous and discrete time systems.
The various subjects of this chapter are complemented by several MATLAB
problems that are critically discussed.

6.1 Reduced Order Models Based on the Open-loop Bal-
anced Realization

The first step in building a reduced order model is to calculate a state-space
representation highlighting certain system characteristics. In Chapter 5 we
saw that an open-loop balanced form is a state representation in which con-
trollability and observability were measured by the same parameters. This
highlights that parts of the system are strongly controllable and observable
and other parts are weakly controllable and observable.

Let us then consider an asymptotically stable system constructed in a
state-space form: {

ẋ = Ax + Bu
y = Cx

(6.1)

such that the controllability and observability gramians, that is, the two so-
lutions of Lyapunov equations

AW2
c + W2

cA
T = −BBT

ATW2
o + W2

oA = −CTC
(6.2)

coincide and are diagonal W2
c = W2

o = diag(σ1, σ2, . . . , σn).
Let us suppose that

σ1 ≥ σ2 ≥ · · · ≥ σr � σr+1 ≥ · · · ≥ σn
In this case, the fact that σr � σr+1 reveals the presence of a group of

strongly controllable and observable variables associated with large singular
values compared to those remaining, and a group of weakly controllable and
observable variables associated with small singular values. This subdivision of
state variables suggests a partition of the system:

Reduced Order Models and Symmetric Systems 79

[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
B1

B2

]
u

y =
[

C1 C2

] [x1

x2

] (6.3)

where x1 =


x1
x2
...
xr

 are the strongly controllable and observable variables and

x2 =


xr+1

xr+2

...
xn

 are the weakly controllable and observable variables.

Given this partition, there are two methods to define the reduced order
model: by direct truncation or by singular perturbation approximation.

6.1.1 Direct Truncation Method

In this method, the weakly controllable and observable part is neglected, using
the strongly controllable and observable part as the reduced order model. This
model has an order r, and is obtained from equations (6.3) taking x2 = 0:{

ẋ1 = A11x1 + B1u
y = C1x1

(6.4)

Note that the reduced order model is asymptotically stable (the original
system is asymptotically stable). If we look at Lyapunov equation for the

subblock W2
c1 =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
...

0 0 · · · σr

, then we have

A11W2
c1 + W2

c1AT
11 = −B1BT1 (6.5)

From this, we deduce that matrix A11 satisfies a Lyapunov equation with
B1BT1 positive semi-definite positive and a solution W2

c1 positive definite. So,
according to the property of gramians discussed in Section 5.1, the reduced
order model is asymptotically stable. For the same reason, even the neglected
subsystem is asymptotically stable.

In terms of block diagram (see Figure 6.1), it may be noted that this
method neglects the coupling (given by matrices A21 and A12) between the
weakly controllable and observable parts and the strongly controllable and
observable parts, considering the reduced order model in terms only of the
strongly controllable and observable part which does not change the system

80 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 6.1
Block diagram for a partitioned system as in equation (6.3).

stability. So, one property of the direct truncation method is that the reduced
order model is asymptotically stable.

We saw that, to evaluate the quality of a reduced order model, the error
between the original and the reduced order model must be calculated. Let
G(s) = C(sI−A)−1B be the transfer matrix of the original system and G̃(s) =
C1(sI − A11)−1B1 be the transfer matrix of the approximated model and let
us consider the frequency response of the two models: G(jω) and G̃(jω). The
difference in the frequency response can be quantified by the matrix given by
the difference between G(jω) and G̃(jω). Since this matrix is a function of ω,
calculating the spectral norm will produce a result which depends on ω. Let us
then consider the maximum singular value (i.e., the maximum of the spectral
norm) with respect to ω: max

ω
‖G(jω)− G̃(jω)‖S . The following result holds:

max
ω
‖G(jω)− G̃(jω)‖S ≤ 2

n∑
i=r+1

σi (6.6)

The norm defined by the first member of equation (6.6) is also known as
the H∞ norm of a transfer matrix.

Definition 14 (H∞ norm of a system) The H∞ norm of a system is de-
fined as the maximum value of the spectral norm of matrix G(jω) with respect
to ω:

Reduced Order Models and Symmetric Systems 81

‖G(s)‖∞ = max
ω
‖G(jω)‖S

The error produced by the direct truncation method is less than twice
the sum of singular values associated with the variables not considered in
the reduced order model. The quality of the model is greater the smaller the
singular values σr+1 + · · ·+ σn of the neglected part.

6.1.2 Singular Perturbation Method

In the direct TR method the weakly controllable and observable state vari-
ables are totally discarded, their contribution assumed of no relevance. In
the singular perturbation method it is supposed that the weakly controllable
and observable part is faster than the strongly controllable and observable
part (furthermore, we known it is asymptotically stable). What is neglected
is the subsystem dynamic, supposing that the variables quickly reach the
steady-state. So, imagine that the weakly controllable and observable subsys-
tem evolves so rapidly as to make the state variables x2 at the steady-state.
This is the same as supposing ẋ2 = 0.

Considering ẋ2 = 0 in the second equation (6.3), then:

x2 = A−122 (−A21x1 − B2u) (6.7)

and by substituting in the first equation (6.3) we get

ẋ1 = A11x1 + A12A−122 (−A21x1 − B2u) + B1u (6.8)

and so

ẋ1 = (A11 −A12A−122 A21)x1 + (−A12A−122 B2 + B1)u (6.9)

Proceeding in the same way for the output y we get:

y = (C1 − C2A−122 A21)x1 − C2A−122 B2u (6.10)

The reduced order model obtained is thus not strictly proper:{
ẋ1 = Ā11x1 + B̄1u
y = C̄1x1 + D̄1u

(6.11)

with

Ā11 = A11 −A12A−122 A21

B̄1 = −A12A−122 B2 + B1

C̄1 = C1 − C2A−122 A21

D̄1 = −C2A−122 B2

(6.12)

82 Optimal and Robust Control: Advanced Topics with MATLAB r

(Ā11, B̄1, C̄1) is an open-loop balanced system as can be verified by cal-
culating the gramians from equations Ā11W2

c1 + W2
c1ĀT

11 = −B̄1B̄T1 and
ĀT

11W2
o1 + W2

o1Ā11 = −C̄T1 C̄1.
So, the system has the same singular values as the strongly controllable and

observable part except that it takes into account the asymptotic contribution
of the x2 state variables, which the direct truncation method does not.

Note that the singular perturbation method is a general method and valid
for linear and nonlinear systems. Let us consider a generic nonlinear system:

ẋ1 = f1(x1,x2)
εẋ2 = f2(x1,x2)

(6.13)

If ε is very small, we can suppose that εẋ2 ' 0 (i.e., variables evolve much
more rapidly than x1). So f2(x1,x2) = 0 from which we get x2 = g(x1) to
obtain x1 = f1(x1, g(x1)).

The singular perturbation method can also be applied to discrete-time
systems, but the system with state matrix Ā11 is not open-loop balanced.

The error encountered with the singular perturbation method is given by:

max
ω
‖G(jω)− G̃(jω)‖S ≤ 2

n∑
i=r+1

σi (6.14)

where G(s) is the transfer matrix of the original system, whereas G̃(s) is the
transfer matrix of the reduced order system.

The error takes the same expression in the two methods (direct truncation
and singular perturbation). There is, however, a significant difference. It can
be demonstrated that the direct truncation method does not preserve the
static gain whereas the singular perturbation method does. In the former,
G(jω) = G̃(jω) for ω → ∞, whereas in the latter G(0) = G̃(0). The two
methods differ because one better approximates the low frequency behavior
(the singular perturbation method) and the other the high frequency behavior
(the direct truncation method).

6.2 Reduced Order Model Exercises

In this section we discuss a series of exercises on reduced order models for
linear time-invariant systems that are stable and compare the results of the
different approximation methods.

Reduced Order Models and Symmetric Systems 83

MATLABr Exercise 6.1
In this MATLABr exercise the procedure for obtaining a reduced order model is illus-
trated through a fourth order system defined by its transfer function:

G(s) =
0.5s4 + 9s3 + 47.5s2 + 95s+ 62

(s+ 1)(s+ 2)(s+ 3)(s+ 4)

The first step is always to define the system:
>> n=4

>> s=tf(’s’)

>> G=(0.5*s^4+9*s^3+47.5*s^2+95*s+62)/((s+1)*(s+2)*(s+3)*(s+4))

Then, the balanced form of the system is calculated:
>> [system_bal,S]=balreal(G)

To verify it, the gramians can be calculated to see if they are diagonal and equal:
>> gram(system_bal,’o’)

>> gram(system_bal,’c’)

Now, let us calculate the reduced order model (6.4):
>> r=2

>> reducedordersystem=ss(system_bal.a(1:r,1:r),...

system_bal.b(1:r),system_bal.c(1:r),system_bal.d)

and its transfer function:
>> tf(reducedordersystem)

The approximation error is given by
>> DTerror=G-tf(reducedordersystem)

>> directtruncerror=normhinf(G-tf(reducedordersystem))

It can be verified that effectively expression (6.6) is valid, by calculating the sum of the
discarded singular values:
>> error=2*sum(S(r+1:n))

Table 6.1 shows the errors by using a reduced order model as r varies.

TABLE 6.1
Errors as order r varies for the reduced order model in Exercise 6.1.

r maxω ‖G(jω)− G̃(jω)‖S
1 0.1283
2 0.0037
3 4.2637 ·10−5

MATLABr Exercise 6.2
With reference to the system in Exercise 6.1, two reduced order models will be con-
structed using the two methods described and the results will be compared.
Having defined the system as in Exercise 6.1, a reduced order model will be constructed
where r = 2 given that σ2 = 0.0623 >> σ3 = 0.0018.
The direct truncation reduced order model is constructed using the following commands:
>> reducedordersystem=ss(system_bal.a(1:2,1:2),...

system_bal.b(1:2),system_bal.c(1:2),system_bal.d)

Now, the transfer function of the reduced order model can be calculated as well as the
approximation error:
>> tf(reducedordersystem)

>> DTerror=G-tf(reducedordersystem)

>> directtruncationerror=normhinf(G-tf(reducedordersystem))

84 Optimal and Robust Control: Advanced Topics with MATLAB r

0 1 2 3 4 5 6
0.5

1

1.5

2

2.5

3

t (s)

A
m

p
lit

u
d
e

G(s)

TD

PS

(a)

10
−2

10
−1

10
0

10
1

10
2

10
3

−110

−100

−90

−80

−70

−60

−50

−40

ω (rad/s)

M
o

d
u

lo
 (

d
B

)

PS

TD

(b)

FIGURE 6.2
(a) Unit step response of the original system G(s) and of the reduced order
models. (b) Magnitude Bode diagram for the error between the original model
and the reduced order model.

Instead, the singular perturbation reduced order model is constructed using the follow-
ing commands:
>> A11=system_bal.a(1:2,1:2);

>> A12=system_bal.a(1:2,3:4);

>> A21=system_bal.a(3:4,1:2);

>> A22=system_bal.a(3:4,3:4);

>> B1=system_bal.b(1:2);

>> B2=system_bal.b(3:4);

>> C1=system_bal.c(1:2);

>> C2=system_bal.c(3:4);

>> D=system_bal.d;

>> A11r=A11-A12*inv(A22)*A21;

>> B1r=-A12*inv(A22)*B2+B1;

>> C1r=C1-C2*inv(A22)*A21;

>> D1r=-C2*inv(A22)*B2+D;

>> SPreducedordersystem=ss(A11r,B1r,C1r,D1r);

Analogously, the transfer function of the singular perturbation approximate model can
be calculated as well as the error with the following method:
>> tf(SPreducedordersystem)

>> SPerror=G-tf(SPreducedordersystem)

>> singularperterror=normhinf(G-tf(SPreducedordersystem))

Finally, with command
>> ltiview

the two reduced order models can be compared. For example, Figure 6.2(a) shows the
unit-step response of the original system and the two reduced order models (the three
responses are almost indistinguishable).
From the magnitude Bode diagram of the error between the original model and the
reduced order model, shown in Figure 6.2(b), we observe that the error obtained in each
case is very small, but the approximation of the direct truncation method is better at
high frequencies, whereas the singular perturbation method is better at low frequencies.

Reduced Order Models and Symmetric Systems 85

MATLABr Exercise 6.3
In this further MATLABr exercise, the use of the command modred is described and the
properties of the truncated reduced model in the case of continuous-time and discrete-
time systems are briefly discussed.
Consider the continuous-time system with state-space matrices:

A =

 −1 0 0
0 −2 0
0 0 −3

 ; B =

 1
1
1

 ; C =
[

1 1 1
]

(6.15)

Define the system in MATLAB:
>> A=[-1 0 0 ; 0 -2 0; 0 0 -3]

>> B=[1; 1; 1]

>> C=[1 1 1]

>> D=0

>> system=ss(A,B,C,D)

and compute the open-loop balanced realization:
>> [systembal,S]=balreal(system)

Now, let us use the command modred. Given a system in balanced form and given a
vector indicating which state variables have to be eliminated, the command modred

gives the reduced order model. To use direct truncation, the option ‘Truncate’ is used.
To use singular perturbation approximation, the option ‘MatchDC’ (forcing equal DC
gains) is used.
Consider a second-order reduced model:
>> elim=(S<1e-2)

>> systemred=modred(systembal,elim,’Truncate’)

One gets:

Ā =

[
−1.617 0.7506
0.7506 −2.042

]
; B̄ =

[
−1.682
0.4087

]
; C̄ =

[
−1.682 0.4087

]
; D̄ = 0

(6.16)
Now, let us compute the two gramians
>> Wo2=gram(systemred,’o’)

>> Wc2=gram(systemred,’c’)

We get:

W̄2
c =

[
0.8751 0.0000
0.0000 0.0409

]
; W̄2

o =

[
0.8751 0.0000
0.0000 0.0409

]
(6.17)

The singular values of the reduced order system are exactly the same as the original
system, as can be observed by comparing the diagonal elements of the gramians with

the first two singular values listed in S =

 0.8751
0.0409
0.0006

.

We now consider a discrete-time example. Let us come back to system (5.22) and apply
the command modred:
>> A=[0.5 0 0; 0 -0.7 0; 0 0 0.3]

>> B=[1; 1; 1]

>> C=[1 1 1]

>> D=0

>> system=ss(A,B,C,D,-1)

>> [systembal,S]=balreal(system)

>> elim=(S<1e-1)

>> systemred=modred(systembal,elim,’Truncate’)

>> Wc2=gram(systemred,’c’)

>> Wo2=gram(systemred,’o’)

We get:

86 Optimal and Robust Control: Advanced Topics with MATLAB r

W̄2
c =

[
3.3064 0.0000
0.0000 1.0616

]
; W̄2

o =

[
3.3064 0.0000
0.0000 1.0616

]
(6.18)

In this case, the singular values of the reduced order system are not exactly the same
as the original system. In fact, the second singular value of the reduced order system
is σ2 = 1.0616, while the second singular value of the original system (listed in S = 3.3065

1.0621
0.0244

) is σ2 = 1.0621.

6.3 Symmetric Systems

There is a particular class of linear time-invariant systems characterized by
having a symmetric transfer function matrix G(s). They are called symmetric
systems. Obviously, the definition makes sense if the transfer matrix is square,
that is, the number of inputs equals the number of outputs.

Definition 15 (Symmetric system) A linear time-invariant system with
the number of inputs equalling the number of outputs (m = p) is symmetric if
its transfer matrix G(s) is such that G(s) = GT (s).

SISO systems are an example of symmetric systems for which m = p = 1
and the transfer matrix is such that G(s) = GT (s) as it is a scalar function.

6.3.1 Reduced Order Models for SISO Systems

The issue of reduced order models of symmetric systems can be faced by
reasoning in terms of the energy of impulse response. Given an asymptotically
stable symmetric SISO system{

ẋ = Ax + Bu
y = Cx

(6.19)

and considering the impulse response y(t) = CeAtB, the energy associated is
defined by E =

∫∞
0
y(t)T y(t)dt. This is a finite integral since the system is

asymptotically stable and so the impulse response tends to zero.
Furthermore, this energy is linked to the observability gramian:

E =

∫ ∞
0

BT eA
T tCTCeAtBdt = BT

∫ ∞
0

eA
T tCTCeAtdtB = BTW 2

oB

Since the impulse response does not vary as the reference system varies,
the energy does not depend on the reference system used. In particular, in the
case of an open-loop balanced form (Ā, B̄, C̄) the energy is given by:

Reduced Order Models and Symmetric Systems 87

E = B̄T W̄ 2
o B̄ =

n∑
i=1

σib̄
2
i (6.20)

Expression (6.20) suggests that to properly reduce the system order, it is
better to consider conditions on the various terms of the impulse response
energy E = σ1b̄

2
1 + σ2b̄

2
2 + · · · + σnb̄

2
n rather than the condition σr � σr+1,

neglecting terms with relations of the type σr b̄
2
r � σr+1b̄

2
r+1, or in other words

variables which contribute with less energy.

MATLABr Exercise 6.4

Let us consider two SISO systems: G1(s) =
s

0.9
+1

(s+1)(s
10

+1)
and G2(s) =

s
9

+1

(s+1)(s
10

+1)
.

Before looking at the open-loop balanced reduced order model, let us make some pre-
liminary considerations. The two systems are asymptotically stable and have a pole at
s = −1 and another at s = −10. For both systems, the impulse response is of the type:

G(s) =
A

s+ 1
+

B

s+ 10
⇒ y(t) = Ae−t +Be−10t (6.21)

Obtaining a reduced order model requires neglecting one of the two system modes. The
choice of which mode to neglect is based not only on the fastest eigenvalue, but also
on the associated residue, the A and B values. Besides, notice that system G1(s) has
a zero in z = −0.9 the effect of which is to cancel out nearly all the dynamics at pole
s = −1, whereas the zero of system G2(s) is very close to the pole s = −10 making
residue B small. Effectively, A = −0.1235 and B = 11.2346 for system G1(s), whereas
for G2(s) A = 0.9877 and B = 0.1235.
Now, let us consider the open-loop balanced system using MATLABr commands:
>> s=tf(’s’)

>> G1=(s/0.9+1)/(s+1)/(s/10+1)

>> G2=(s/9+1)/(s+1)/(s/10+1)

>> [system1b,S1]=balreal(G1)

>> [system2b,S2]=balreal(G2)

and consider the reduced order models obtained by direct truncation
>> reducedsystem1=ss(system1b.a(1,1),system1b.b(1),

system1b.c(1),0)

>> tf(reducedsystem1)

>> reducedsystem2=ss(system2b.a(1,1),system2b.b(1),

system2b.c(1),0)

>> tf(reducedsystem2)

The transfer functions of the approximated models are: G̃1(s) = 11.17
s+10.29

and G̃2(s) =
1.029
s+1.038

. Note that in the first case the reduced order model pole is very close to

s = −10, whereas in the second case the pole is very close to s = −1 in agreement with
the considerations above. Note also that, notwithstanding the two original systems had
the same static (unitary) gain, the reduced order models (obtained by direct truncation)
no longer have the same gain.
As regards the system singular values, they are σ1 = 0.5428, σ2 = 0.0428 in the
first case and σ1 = 0.4959, σ2 = 0.0041 in the second, may it be concluded that the
approximation is better in the second case? Let us look at the impulse response energy.
The various σib̄

2
i terms can be obtained from MATLABr commands:

>> S1(:).*(sistema1b.B(:).^2)

>> S2(:).*(sistema2b.B(:).^2)

We get σ1b̄21 = 6.0636, σ2b̄22 = 0.0026 for G1(s) and σ1b̄21 = 0.5103, σ2b̄22 = 0.0003
for G2(s). It may be concluded that, in terms of the impulse response energy, the two
approximations are equivalent.

88 Optimal and Robust Control: Advanced Topics with MATLAB r

6.3.2 Properties of Symmetric Systems

Given that G(s) = C(sI − A)−1B and GT (s) = BT ((sI − A)T)−1CT , it can
be verified that, for a system to be symmetric, it suffices that B = CT and
AT = A.

More generally, we will see that if a system is symmetric then matrices B
and C and matrices AT and A are linked by certain relations which involve an
invertible and symmetric matrix, T. To obtain these relations let us consider
GT (s):

GT (s) = BT ((sI−A)T)−1CT

If a matrix is invertible and symmetric (I = TT−1), then:

GT (s) = BT (sTT−1 −AT)−1CT = BTT(sI− T−1ATT)−1T−1CT

Equalling this expression with G(s) = C(sI−A)−1B we find that:

C = BTT
B = T−1CT

A = T−1ATT
(6.22)

The first two relations (6.22) are equivalent if T is symmetric. The trans-
pose of the first relation is:

CT = TTB⇒ B = (TT)−1CT ⇒ B = T−1CT

For symmetric controllable and observable systems there exists a matrix
T which links matrices B and C and which can easily be obtained from the
observability and controllability matrices. Assuming that the system is sym-
metric and in minimal form, in fact one gets:

MT
o =


C

CA
...

CAn−1


T

=
[

CT ATCT · · · (AT)n−1CT
]

=

=
[

TB TAB · · · T(AT)n−1B
]

= TMc

where we have used the fact that B = T−1CT and so C = TB.
Now, if the system is SISO, then

T = MT
o M−1c

If the system is MIMO, instead, we have:

T = MT
o MT

c (McM
T
c)−1

Reduced Order Models and Symmetric Systems 89

To show that T is symmetric, we can notice that from the previous con-
siderations we have obtained that MT

o = TMc. Now, if we consider again MT
o

and now plug C = BTT, we get:

MT
o =


C

CA
...

CAn−1


T

=
[

CT ATCT · · · (AT)n−1CT
]

=

=
[

TTB TTAB · · · TT (AT)n−1B
]

= TTMc

Hence, MT
o = TTMc. Comparing this result with the relationship previ-

ously found, i.e., MT
o = TMc, we derive that T = TT .

MATLABr Exercise 6.5
Consider the continuous-time LTI system:

A =

 −4 −1.5 −1.5
−5 −5.5 −0.5
−1 1.5 −3.5

 ; B =

 0.5 0.55
1.5 −1.35
−1.5 0.45

 ;

C =

[
3 0 −1

5.4 −1.8 −0.8

]
; D =

[
0 0
0 0

] (6.23)

>> A=[-4 -1.5 -1.5; -5 -5.5 -0.5; -1 1.5 -3.5]

>> B=[0.5 0.55; 1.5 -1.35; -1.5 0.45]

>> C=[3 0 -1; 5.4 -1.8 -0.8]

>> D=zeros(2)

>> system=ss(A,B,C,D)

By calculating the transfer matrix of the system with the command
>> tf(system)

one obtains

G(s) =

 3s2+26s+47
s3+13s2+47s+35

1.2s2+17.2s+64
s3+13s2+47s+35

1.2s2+17.2s+64
s3+13s2+47s+35

5.04s2+56.24s+147.2
s3+13s2+47s+35

 (6.24)

So, since G(s) = GT (s), the system is symmetric.
Let us now calculate the matrix T, using T = MT

o MT
c (McMT

c)−1. We first calculate Mc

and Mo

>> Mc=ctrb(A,B)

>> Mo=obsv(A,C)

and then
>> T=Mo’*Mc’*inv(Mc*Mc’)

90 Optimal and Robust Control: Advanced Topics with MATLAB r

One obtains a symmetric matrix:

T =

 9.0000 0 1.0000
0.0000 2.0000 2.0000
1.0000 2.0000 3.0000

 (6.25)

We can now verify that equations (6.22) hold:
>> B’*T

>> C

>> inv(T)*A’*T

>> A

Alternatively, we can extract from the controllability and observability matrices two
invertible 3 × 3 blocks taking the first three columns in Mc, or the first three rows in
Mo (which are linear independent):
>> Mcr=Mc(1:3,1:3)

>> Mor=Mo(1:3,1:3)

and then calculate T as
>> T=Mor’*inv(Mcr)

The same matrix T is found.

6.3.3 The Cross-gramian Matrix

For symmetric systems, the product of the matrices B and C, which is an n×n
matrix, can be defined. For symmetric systems, another Lyapunov equation,
called the cross-gramian equation, can be introduced:

AWco + WcoA = −BC (6.26)

In the most general case, BC is not a symmetric matrix, so the solution to
the Lyapunov equation (6.26) may not be symmetric. Furthermore, nothing
is known about whether it is defined positive or not.

If the system is asymptotically stable, the solution Wco to the Lyapunov
equation (6.26) can be expressed in integral form:

Wco =

∫ ∞
0

eAtBCeAtdt

6.3.4 Relations Between W2
c , W2

o and Wco

The cross-gramian is linked to the controllability and observability gramians
by the matrix T. To obtain these relations, let us consider the Lyapunov
equations for the gramians:

AW2
c + W2

cA
T = −BBT

ATW2
o + W2

oA = −CTC

and in the second equation let us substitute the relationships (6.22):

TAT−1W2
o + W2

oA = −TBC

Reduced Order Models and Symmetric Systems 91

Multiplying left by matrix T−1 we obtain

AT−1W2
o + T−1W2

oA = −BC

Comparing the result with the cross-gramian equation (6.26) we obtain:

Wco = T−1W2
o

Analogously, starting with the Lyapunov equation for the controllability
gramian, we find:

AW2
c + W2

cTAT−1 = −BCT−1

AW2
cT + W2

cTA = −BC

⇒Wco = W2
cT

At this point notice that, since Wco = T−1W2
o = W2

cT, we have:

W2
cW

2
o = W2

co

This relation produces an important result for the cross-gramian eigenval-
ues.

Theorem 10 The eigenvalues of Wco in modulus are equal to the system
singular values, i.e.,

|λi(Wco)| = σi

In fact, the relationship W2
cW

2
o = W2

co yields that the eigenvalues of the
square of Wco equal the square of the system singular values and therefore the
eigenvalues of Wco, which may be positive or negative, are in modulus equal
to the system singular values, that is λi(Wco) = ±σi.

Often this relation is expressed in a matrix form. If Σ =


σ1

σ2
. . .

σn


is the diagonal matrix formed by the system singular values, and Λ is the
matrix formed by the eigenvalues (in decreasing order of their modulus)

Λ =


λ1

λ2
. . .

λn

, then we can write:

Λ = SΣ

where S is an appropriate matrix (also diagonal), named the signature matrix,
whose diagonal components are either +1 o −1.

92 Optimal and Robust Control: Advanced Topics with MATLAB r

Since the eigenvalues of Wco are in modulus equal to the system singular
values, also the eigenvalues of Wco are invariants of the systems. The invari-
ance of the Wco eigenvalues can be also proved by seeing how the cross-gramian
varies as the reference system varies.

Consider the cross-gramian equation in the new reference system defined
by the state transformation x̃ = T̄−1x

ÃW̃co + W̃coÃ = −B̃C̃

and then apply relation (5.7):

T̄−1AT̄W̃co + W̃coT̄
−1AT̄ = −T̄−1BCT̄

⇒ AT̄W̃coT̄
−1 + T̄W̃coT̄

−1A = −BC

from which we obtain:

Wco = T̄W̃coT̄
−1 (6.27)

As opposed to what happens with controllability and observability grami-
ans, in this case we find a relation of similitude. So, the eigenvalues of Wco do
not depend on the reference system.

We have seen that for a symmetric system in whatever state representation
the matrices B and C are linked by relations which depend on the matrix T.

In the reference system where the system is open-loop balanced this is the
signature matrix. Let us now prove this important result. Preliminarily note
that S−1 = S.

Theorem 11 In a symmetric open-loop balanced SISO system, T = S in
(6.22), i.e.:

C = BTS
B = SCT

A = SATS

Proof The Lyapunov equations for controllability and observability gramians
in an open-loop balanced reference system (W2

c = W2
o = Σ) become:

AΣ + ΣAT = −BBT

ATΣ + ΣA = −CTC

Subtracting the second equation from the first we obtain:

(A−AT)Σ + Σ(AT −A) = −(BBT − CTC)

The terms on the diagonal in the first member are all zero, whereas for
those on the second, the i-th diagonal term is dii = −b2i + c2i . From this we
find that b2i = c2i and so bi = ±ci, a relation which in matrix form can be

Reduced Order Models and Symmetric Systems 93

expressed through the signature matrix B = SCT . It therefore follows, given
the uniqueness of T, that T = S, i.e., the theorem thesis.

The case is particularly interesting when the signature matrix equals the
identity matrix, S = I, or rather when all Wco eigenvalues are positive. In this
case, B = CT and A = AT . At the beginning of this chapter, we saw that this
was a sufficient condition (but not necessary) for a system to be symmetric.

Generally, the signature matrix S has a certain number of components
equal to +1 (indicated by n+) and a certain number equal to −1 (n−). Obvi-
ously the sum of the two equals the system order. It can be demonstrated that
the difference between these two numbers is related to an important index,
which will be now introduced.

Definition 16 (Cauchy index) The Cauchy index of a real rational func-
tion f(λ) defined in the interval [α, β] is:

Iβα = N1 −N2 (6.28)

where N1 is the number of jumps of the function from −∞ to +∞ in the
interval [α, β] and N2 is the number of jumps of the function from +∞ to
−∞ in the same interval.

The definition of the Cauchy index can be extended to SISO systems with
transfer function F (s) when s = σ, with σ ∈ R. When the interval (−∞,∞)
is considered, the Cauchy index IC is given by the number of positive eigen-
values of Wco minus the number of negative eigenvalues of Wco of a minimal
realization of F (s). Also the Cauchy index is a system invariant as follows
from its definition.

Example 6.1
Consider the system with transfer function F (s) = 1

s2+s+1
. Consider now s = σ with

σ ∈ R and F (σ) = 1
σ2+σ+1

. The plot of F (σ) vs. σ is shown in Figure 6.3, from which

it is immediate to derive that Ic = 0.
Moreover, a minimal realization of F (s) is:

A =

[
0 1
−1 −1

]
; B =

[
0
1

]
; C =

[
1 0

]
From this realization we calculate the cross-gramian Wco:

Wco =

[
0.5 0.5
0.5 0

]
Since its eigenvalues are λ1 = 0.8090 and λ2 = −0.3090, one gets IC = 0.

The Cauchy index of a symmetric system can be also calculated from the
signature matrix. It is given by the number of positive elements n+ minus
the negative elements n− in the diagonal of the signature matrix, that is,
IC = n+ − n−.

The Cauchy index is also linked to the difference between positive and

94 Optimal and Robust Control: Advanced Topics with MATLAB r

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

σ

F

FIGURE 6.3
Plot of F (σ) = 1

σ2+σ+1 vs. σ.

negative residues. In fact, if you consider a stable symmetric SISO sys-
tem in Jordan form with distinct and real eigenvalues, that is with A =
diag(λ1, λ2, . . . , λn), BT =

[
1 1 · · · 1

]
and C =

[
R1 R2 · · · Rn

]
,

then

G(s) =
R1

s− λ1
+

R2

s− λ2
+ · · ·+ Rn

s− λn
and the Cauchy index is actually equal to the difference between the number
of positive and negative residues.

When the Cauchy index equals the system order, that is, when S = I,
all the residues are positive. Systems with this property are called relaxation
systems, for the following reason. The impulse response y(t) = R1e

−λ1t +
R2e

−λ2t + · · · + Rne
−λnt of a relaxation system is given by the sum of all

positive terms which tend monotonically to zero, that is they relax toward
zero. These systems have an exact electrical analogue in circuits which are
series of elementary impedances, each formed by a resistor and a capacitor
in parallel as in Figure 6.4. The generic block formed by a resistor Ri and
a capacitor Ci in parallel has an impedance Zi(s) = Ri

sCiRi+1 , whereas the
impedance of the entire circuit is given by the sum of the impedances of the
single blocks: Z(s) = Z1(s) + Z2(s) + · · ·+ Zn(s).

From Theorem 11, it follows that relaxation systems have a balanced form
of type A = AT and B = CT .

Another property of the cross-gramian Wco is that it is a diagonal matrix
in the reference system where the system is balanced. If S = I (so A = AT

and B = CT), this follows from the fact that equation AWco + WcoA = −BC
equals AW2

c + W2
cA

T = −BBT and ATW2
o + W2

oA = −CTC, whereas in the
more general case of S 6= I this can be demonstrated by considering that in
balanced form W2

co = W2
cW

2
o = Σ2.

From such considerations, a simplified procedure to obtain the balanced
form for a symmetric system can be derived. Obviously, the procedure in

Reduced Order Models and Symmetric Systems 95

FIGURE 6.4
A relaxation circuit.

Chapter 5 can be applied, but for symmetric systems you can start by diag-
onalizing the cross-gramian Wco, and ordering the eigenvalues in decreasing
order with respect to their absolute value. Thus, a reference system is obtained
in which Wco is diagonal and in which the controllability and observability
gramians are diagonal but not equal. At this point, proceed exactly as for
Example 5.2, to obtain the balanced form by rescaling the state variables.

MATLABr Exercise 6.6
Consider system G(s) = s+2

s2+3s+5
.

First, let us define the system:
>> s=tf(’s’)

>> G=(s+2)/(s^2+3*s+5)

and consider the canonical controllability form of the system
>> A=[0 1; -5 -3];

>> B=[0; 1];

>> C=[2 1];

>> system=ss(A,B,C,0)

Let us calculate the cross-gramian from Lyapunov equation (6.26)
>> Wco=lyap(A,A,B*C)

and calculate the singular values of the system
>> eig(Wco)

the singular values of the system are σ1 = 0.2633 and σ2 = 0.0633.
It can be proven that the same result is obtained by calculating the singular values
from the product of controllability and observability gramians:
>> Wc2=gram(system,’c’)

>> Wo2=gram(system,’o’)

>> sqrt(eig(Wc2*Wo2))

To calculate the balanced form, let us diagonalize the cross-gramian:
>> [T,L]=eig(Wco)

Matrix T is such that inv(T)*Wco*T is diagonal. Let us consider the system obtained
applying the state transformation x̃ = T−1x:
>> Atilde=inv(T)*A*T

>> Btilde=inv(T)*B

>> Ctilde=C*T

In this reference system, the cross-gramian is diagonal:
>> Wcotilde=lyap(Atilde,Atilde,Btilde*Ctilde)

The gramians are also diagonal:
>> systemtilde=ss(Atilde,Btilde,Ctilde,0)

>> Wc2tilde=gram(systemtilde,’c’)

>> Wo2tilde=gram(systemtilde,’o’)

96 Optimal and Robust Control: Advanced Topics with MATLAB r

Note that this property derives from the fact that the matrix T is diagonal:
>> Tsim=obsv(systemtilde)’*inv(ctrb(systemtilde))

So, now we can proceed as in Example 5.2. However, it should be noted that since
MATLABr diagonalization procedure does not sequence the eigenvalues, the order of
the two state variables must first be inverted using the transformation x̄1 = x̃2 and
x̄2 = x̃1, or via the matrix:
>> Tbis=[0 1; 1 0];

>> Atilde=inv(Tbis)*Atilde*Tbis

>> Btilde=inv(Tbis)*Btilde

>> Ctilde=Ctilde*Tbis

6.3.5 Open-loop Parameterization

The main issue with the open-loop parameterization is determining which
systems admit a certain set of assigned singular values. In the particular case
of symmetric SISO systems the issue is finding a system with an assigned
signature matrix S = diag(s1, s2, . . . , sn), a certain set of assigned singular
values Σ = diag(σ1, σ2, . . . , σn) and assigned bi coefficients of matrix BT =[
b1 b2 · · · bn

]
. Below, we will always assume that assigning singular

values also means assigning a certain signature matrix.
Once the coefficients bi with i = 1, . . . , n and the signature matrix S are

known, the matrix C is obtained from C = BTS. As regards the matrix A, the
coefficients aij can be obtained from the following formula:

aij = −{σisisj − σj
σ2
i − σ2

j

} ∗ BBT (6.29)

where the symbol ∗ is the Hadamard product, i.e., the component by compo-
nent product of two square matrices, F ∗G = {fijgij}.

In particular, the diagonal terms of matrix A are given by the formula:

aii = − 1

2σi
b2i

Example 6.2

Construct a system with signature matrix S =

 1 0 0
0 1 0
0 0 −1

, singular values σ1, σ2

and σ3 and matrix B =

 b1
b2
b3

.

By applying the parameterization formula (6.29), we obtain: a11 = − 1
2σ1

b21, a12 =

− b1b2
σ1+σ2

, a13 = − b1b3
σ1−σ3

, a21 = − b1b2
σ1+σ2

, a22 = − 1
2σ2

b22, a23 = − b2b3
σ2−σ3

, a31 =

− b1b3
σ3−σ1

, a32 = − b2b3
σ3−σ2

, a33 = − 1
2σ3

b23.

Formula (6.29) can be obtained (to simplify, consider the SISO case) from
the equations of the gramians expressed in the open-loop balanced realization:
W2
o = W2

c = Σ = diag(σ1, σ2, . . . , σn):

Reduced Order Models and Symmetric Systems 97

ATΣ + ΣA = −CTC
AΣ + ΣAT = −BBT

(6.30)

Summing the two matrix equations (6.30), we obtain

(AT + A)Σ + Σ(A + AT) = −CTC− BBT

and so

(AT + A)Σ + Σ(A + AT) = −SBBTS− BBT (6.31)

The generic diagonal term of this expression is given by:

4aiiσi = −2b2i

from which we obtain the expression which is valid for the diagonal terms of
the parameterization (6.29).

Subtracting the second of (6.30) from the first:

(AT −A)Σ + Σ(A−AT) = −CTC + BBT

and so

(AT −A)Σ + Σ(A−AT) = −SBBTS + BBT (6.32)

The diagonal terms of this expression are zero. The general terms aij of
the parameterization (6.29) can be obtained from (6.31) and (6.32).

From equation (6.32), let us obtain the generic ij term:

(aji − aij)σj + σi(aij − aji) = −sibibjsj + bibj (6.33)

whereas, from (6.31), we obtain:

(aji + aij)σj + σi(aij + aji) = −sibibjsj − bibj (6.34)

Equations (6.33) and (6.34) represent a system with two equations and two
unknowns, aij and aji, which can be found by substitution obtaining aji from
the relation which is the sum of the two prior relations (that is considering
the generic term ji of the first equation (6.30)):

aji =
−sisjbibj − σiaij

σj
(6.35)

Substituting in (6.33), we get:

−sisjbibj−σiaij−σjaij+
σi
σj

(sisjbibj+σiaij)+σiaij = −sisjbibj+bibj (6.36)

from which we obtain aij = −{σisisj−σj
σ2
i−σ2

j
} ∗ BBT .

98 Optimal and Robust Control: Advanced Topics with MATLAB r

Note that specifying a SISO system of order n through its transfer function
G(s) requires 2n parameters. Even for the open-loop parameterization the
number of assigned parameters is 2n: n are singular values and n are the
coefficients of the matrix B.

If matrix B is not specified, there is an infinite number of systems with
matrix S and assigned singular values. To fix the system unequivocally, other
n parameters must be specified, but they cannot just be any parameters. For
example, it would not be possible to know a priori whether it is possible
to find a system with n singular values and n assigned eigenvalues: such a
problem could have a solution, several solutions or none at all. In fact, in the
equations which could provide a solution (the unknowns are b1, b2, ..., bn) we
find nonlinear terms. By contrast, the solution to a similar problem has the
advantage of being a system with known stability properties (including the
stability margins) and controllability and observability levels.

Instead, notice that finding a system with S = I and complex eigenvalues
has no solution, as A = AT is symmetric and has real eigenvalues.

6.3.6 Relation Between the Cauchy Index and the Hankel
Matrix

Cauchy index Ic correlates with the properties of the Hankel matrix H. Recall
that Hankel matrix is defined as H = MoMc and is symmetric by construction.

Suppose, we have a SISO system with distinct eigenvalues and with this
transfer function:

G(s) =
α1

s+ λ1
+

α2

s+ λ2
+ · · ·+ αn

s+ λn

In this case, the Cauchy index can be calculated by counting the number
of positive and negative residues: Ic = Npos.res. − Nneg.res.. By highlighting
the residue signs, each residue can be written as αi = si|αi|. Notice how this
system can be associated with a Jordan form of type:

A =


−λ1

−λ2
. . .

−λn

 ; B =


√
|α1|√
|α2|
...√
|αn|

 ; CT =


s1
√
|α1|

s2
√
|α2|
...

sn
√
|αn|


Since Hankel matrix H is:

H =


C

CA
...

CAn−1

 [B AB · · ·An−1B
]

=

Reduced Order Models and Symmetric Systems 99

=


BTS

BTSA
...

BTSAn−1

 [B AB · · ·An−1B
]

Given that A is diagonal then:

H =


BTS

BTATS
...

BT (AT)
n−1

S

 [B AB · · ·An−1B
]

= MT
c SMc

The Hankel matrix H is symmetric. Whether it is positive definite or not
depends exclusively on the signature matrix S. The signs of the eigenvalues
(which are real) of the Hankel matrix reflect the number of positive and neg-
ative elements in the signature matrix. Furthermore, the Cauchy index can
be calculated by counting the positive and negative eigenvalues in the Hankel
matrix:

Ic = Nλ+(H) −Nλ−(H)

The Hankel matrix then helps understand the residue signs and the struc-
ture of the open-loop balanced form.

As we have already seen, for symmetric systems W2
co = W2

cW
2
o can be

defined.
In this case, the hypothesis of asymptotic stability, usually needed for non-

symmetric systems to perform the open-loop balancing, can be removed. Here,
however, it is no longer guaranteed that the eigenvalues of W2

co are real and
positive. This condition in asymptotically stable minimal systems is assured by
the fact that W2

c and W2
o matrices are positive definite. For symmetric systems

without the hypothesis of asymptotic stability, W2
co can even have negative or

complex and conjugated eigenvalues. When, having calculated W2
co, real and

positive eigenvalues are found, then the singular values of the system can be
defined as σi =

√
λi(W2

co).
It can be demonstrated that if the Hankel matrix is positive definite (i.e.,

if Ic = n or S = I), then its eigenvalues λi(W
2
co) are real and positive. There-

fore, for non-asymptotically stable symmetric systems, with a Hankel matrix
positive definite, an open-loop balanced form can be defined. Clearly, the case
where matrix A has purely imaginary eigenvalues should a priori be excluded
since there is no solution to the Lyapunov equations and so a balanced form
cannot be written.

6.3.7 Singular Values for a FIR Filter

Let us consider now discrete-time SISO systems. The transfer function G(z) =
Y (z)
U(z) , as it is known, is the ratio of two polynomials in z. Two cases exist. If

100 Optimal and Robust Control: Advanced Topics with MATLAB r

G(z) can be written as G(z) = h1z
−1+h2z

−2+ · · ·+hnz−n, that is as the sum
of a finite number of terms of type hi

zi , then the system is said to be FIR (finite

impulse response). Otherwise, if G(z) = a1z
−1+a2z

−2+···+an−1z
−n+1

1+b1z−1+b2z−2+···+bnz−n , then the
system is IIR (infinite impulse response).

FIR filters are distinguished by having all their poles at the origin so their

transfer function is G(z) = p(z)
zn where p(z) is an n − 1 order polynomial.

Therefore, FIR systems are asymptotically stable.
Furthermore, their name derives from the fact that they have an impulse

response which cancels itself out after a finite number (n) of samples. In fact,
the output of a FIR system can be calculated from its transfer function:

Y (z) = G(z)U(z) = (h1z
−1 + h2z

−2 + · · ·+ hnz
−n)U(z)

which, by applying the inverse z-transform, gives

y(k) = h1u(k − 1) + h2u(k − 2) + · · ·+ hnu(k − n) (6.37)

As one can see from the formula (6.37), if an impulse input is applied
(U(z) = 1, i.e., u(0) = 1 and u(k) = 0 ∀k 6= 0), then the output will vanish at
sample k = n + 1, that is, after n steps. The formula (6.37) clarifies another
important property of this class of systems: FIR systems have finite memory.
In fact, the output depends entirely on input regression so it is unnecessary
to know the system state to calculate the output at time k. This does not
happen in IIR systems where the output can be expressed by a model which
includes regressions of the output itself:

y(k) = −b1y(k−1)−b2y(k−2)−· · ·−bny(k−n)+a1u(k−1)+ · · ·+anu(k−n)

Therefore, to calculate the value of the output at time k in IIR systems,
n prior samples of the output itself need to be memorized.

FIR filters do not bring about phase distortion. In continuous-time sys-
tems, as long as there is no phase distortion, the propagation time must be
the same for all frequencies, so the phase must linearly decrease with ω (so,
the phase Bode diagram has to be a straight line with negative slope). With
all their poles at the origin, FIR systems show in the discrete-time domain an
analogous behavior.

The fundamental parameters of a FIR filter are h1, h2, . . . , hn, which can be
found in the Hankel matrix which has a finite number of non-zero coefficients:

H =


h1 h2 · · · hn−1 hn
h2 h3 · · · hn 0
h3 h4 · · · 0 0
...

...
hn 0 · · · 0 0



Reduced Order Models and Symmetric Systems 101

Example 6.3
The FIR filter G(z) = z−1 + 5z−2 has Hankel matrix

H =

[
1 5
5 0

]
Example 6.4

The FIR filter G(z) = z−1 + 5z−2 + 3z−3 has Hankel matrix

H =

 1 5 3
5 3 0
3 0 0


To calculate the balanced form for a discrete-time system the bilinear

transformation z = 1+s
1−s is applied to obtain an equivalent continuous-time

system. The theory valid for continuous-time systems is then applied to the
equivalent system.

For FIR filters the procedure can be simplified. The following theorem can
give the singular values for a FIR filter without recourse to the equivalent
system.

Theorem 12 The singular values of a FIR filter are given by the eigenvalues
in absolute value of the Hankel matrix H.

Since the Hankel matrix H for a FIR filter is symmetric, its eigenvalues
are always real and their absolute value can be always computed.

Example 6.5
System G(z) = h2z−2 is a second order FIR filter whose Hankel matrix is

H =

[
0 h2

h2 0

]
The characteristic polynomial of matrix H is p(λ) = λ2 − h2

2, from which we obtain
σ1 = σ2 = |h2|.

Example 6.6
Now let us calculate the singular values of a FIR filter with transfer function G(z) =
h3z−3. The Hankel matrix of this system is:

H =

 0 0 h3

0 h3 0
h3 0 0


and singular values of the system are σ1 = σ2 = σ3 = |h3|.

After having shown several examples on singular values of a FIR filter, we
will now demonstrate Theorem 12, which requires using the property that,
given two matrices A and B, the eigenvalues of their product AB are equal to
those of matrix BA: λi(AB) = λi(BA). In fact:

det(λI−AB) = det(A(A−1λI− B)) = det(A) det(A−1λI− B) =

102 Optimal and Robust Control: Advanced Topics with MATLAB r

= det(A−1λI− B) det(A) = det((A−1λI− B)A) = det(λI− BA)

On this premise, let us consider the gramians of a FIR filter. The generic
expression of gramians in discrete-time systems, reported in equations (5.18)
and (5.19), for FIR filters becomes a finite sum:

W2
c =

n−1∑
i=0

AiBBT (AT)i (6.38)

W2
o =

n−1∑
i=0

(AT)iCTCAi (6.39)

and therefore,

W2
c = BBT + ABBTAT + · · ·+ An−1BBT (AT)n−1 = McM

T
c (6.40)

W2
o = CTC + ATCTCA + · · ·+ (AT)n−1CTCAn−1 = MT

o Mo (6.41)

which yields that

λi(W
2
cW

2
o) = λi(McM

T
c MT

o Mo)

But, for the eigenvalue property of the product matrix:

λi(W
2
cW

2
o) = λi(M

T
c MT

o MoMc)

and therefore, given that H = MoMc, then

λi(W
2
cW

2
o) = λi(H

TH)

from which it is clear that the singular values of a FIR filter are given by the
eigenvalues in absolute value of the Hankel matrix.

6.3.8 Singular Values of All-pass Systems

Let us consider a continuous-time system with transfer function G(s) =

k (5−s)3
(5+s)3 . The frequency response G(jω) of this system has a very particu-

lar behavior. In fact, ∀ω |G(jω)| = 1, and the magnitude Bode diagram of
this system is flat.

All systems of this type are all-pass systems because the only difference be-
tween the input and output signals is the phase, whereas the input amplitude
is neither attenuated nor amplified. Consider now inner systems, which are
all-pass systems that are stable. These systems are stable (all their poles are

Reduced Order Models and Symmetric Systems 103

in the closed left half plane), not-strictly proper (G(s) = D +G(s)), and not
minimum phase (each pole has a zero symmetric with respect to the imaginary
axis and so with positive real part).

The singular values for these systems can be easily calculated.

Theorem 13 The singular values for a stable all-pass system G(s) = k (a−s)n
(a+s)n

with k > 0 and a > 0 are σ1 = σ2 = · · · = σn = k.

This result derives from the fact that a bilinear transformation as well
as transformations of type s = s

a does not change the singular values of a
system. Bearing in mind these two considerations, and applying to G(z) =
kz−n (whose singular values are σ1 = · · · = σn = k) at first the bilinear
transformation and then a transformation of type s = s

a , the result expressed
by the theorem is obtained.

The importance of this result is that reduced order modeling cannot be
applied to an all-pass system since all its singular values are equal.

MATLABr Exercise 6.7
Consider the system with transfer function:

G(s) =
25s4 − 352.5s3 + 1830s2 − 4120s+ 3360

s4 + 14.1s3 + 73.2s2 + 164.8s+ 134.4
(6.42)

Let us define the system in MATLAB:
>> s=tf(’s’)

>> G=(25*s^4-352.5*s^3+1830*s^2-4120*s+3360)/...

...(s^4+14.1*s^3+73.2*s^2+164.8*s+134.4)

The transfer function can be factorized as follows
>> zpk(G)

to obtain:

G(s) = 25
(4− s)3(2.1− s)
(4 + s)3(2.1 + s)

(6.43)

which clearly shows that the system is all-pass (and stable) with static gain equal to
k = 25.
Calculating the singular values of the system with the command:
>> [systembal,S]=balreal(G)

one obtains: σ1 = σ2 = σ3 = σ4 = 25.

6.4 Exercises

1. Given the system with transfer function

G(s) = 1− 56s6 + 2676s4 + 8736s2 + 1600

(s+ 10)2(s+ 2)3(s+ 1)2

determine an open-loop balanced realization and a suitable reduced
order model.

104 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 6.5
Circuit for Exercise 8.

2. Calculate a reduced order model of the system G(s) =

200 (s+10)(s2+s+1)
(s+5)3(s+4)(s+2)2 .

3. Given the system G(s) = s+1
s4+4.3s3+7.92s2+7.24s+2.64 calculate the

reduced order models with direct truncation and singular perturba-
tion approximation and compare the models obtained.

4. Given the continuous-time system with state-space matrices:

A =


−2 1 1 0
−3 −5 6 1
0 −1 −5 0
−4 −5 −7 −1

 ; B =


0
1
0
1

 ; C =
[

1 2 1 2
]

calculate the reduced order models with direct truncation and sin-
gular perturbation approximation and the error and compare the
rise and settling time of the reduced order models and original sys-
tem.

5. Given system G(s) = s
s4+3s3+4.1s2+4.1s+0.2 , choose the order of the

reduced model to guarantee an error between nominal model and
approximation not larger than 0.02.

6. Determine, if possible, the system with eigenvalues λ1 = −1, λ2 =
−2 and with singular values σ1 = 5 and σ2 = 2.

7. Calculate analytically the Cauchy index of the system G(s) =
s+1

s(s2+s+1) .

8. Given the system in Figure 6.5 with R1 = R2 = 1, C1 = 1 and
C2 = 1

2 determine the transfer function and the Cauchy index.

9. Write down an example of a relaxation system and verify the value
of the Cauchy index.

Reduced Order Models and Symmetric Systems 105

10. Calculate the singular values of system G(z) = 3+2z+5z2+6z3

z4 .

11. Consider an open-loop balanced representation of a discrete-time
system. Derive a model of order r < n and verify that its singular
values do not coincide with the first r singular values of the original
system.

http://www.taylorandfrancis.com

7

Variational Calculus and Linear Quadratic
Optimal Control

CONTENTS

7.1 Variational Calculus: An Introduction . 108
7.2 The Lagrange Method . 110
7.3 Towards Optimal Control . 112
7.4 LQR Optimal Control . 117
7.5 Hamiltonian Matrices . 124
7.6 Solving the Riccati Equation via the Hamiltonian Matrix 127
7.7 The Control Algebraic Riccati Equation . 127
7.8 Optimal Control for SISO Systems . 129
7.9 Linear Quadratic Regulator with Cross-weighted Cost 134
7.10 Finite-horizon Linear Quadratic Regulator . 135
7.11 Optimal Control for Discrete-time Linear Systems 136
7.12 Exercises . 137

This chapter discusses the main concepts of variational theory and then opti-
mal control, a technique for synthesizing a linear quadratic regulator (LQR)
which is able to determine the closed-loop eigenvalues on the basis of an op-
timized criteria. Several problems regarding the variational calculus are first
presented with emphasis on the formulation of general optimization problems.
The second part of the chapter is devoted to optimal control, first presented in
the context of variational theory and then studied in relation to the practical
aspects related to the definition of suitable performance indices. The opti-
mal gains are defined and a classical procedure to obtain them is presented.
The nonlinear matrix algebraic Riccati equation is discussed. Several methods
to find its positive definite solution are discussed. The dual problem of the
optimal observer is also dealt with in the chapter. The LQR problem in the
frequency domain is also discussed. In order to approach the dual problems
of the optimal controller and the optimal observer, Hamiltonian matrices are
introduced.

DOI: 10.1201/9781003196921-7 107

https://doi.org/10.1201/9781003196921-7

108 Optimal and Robust Control: Advanced Topics with MATLAB r

7.1 Variational Calculus: An Introduction

The problem faced in optimal control is to find a control law that guarantees
optimal performance. To quantify the performance of a control law, one often
resorts to consider an integral performance index of this type:

PI =

tf∫
ti

L(x, u, t)dt (7.1)

where ti and tf define the time interval, namely [ti, tf], over which control is
evaluated. Solving an optimal control problem, therefore, means finding the
function u that minimizes PI. This can be viewed as a particular instance of
a more general problem which is the subject of variational calculus.

In its general formulation, variational calculus is concerned with the solu-
tion of the problem of determining the maximum or the minimum of a given
functional, that is a mathematical entity establishing a mapping between func-
tions of a certain class and real numbers. In particular, let us consider the
problem of finding the function x(t) which minimizes the following functional

V (x) =

b∫
a

L(x, ẋ, t)dt (7.2)

where the initial and final time for the integration have been indicated as a
and b, respectively, and the function x(t) takes the following values at the
extremes: x(a) = A and x(b) = B.

A very important result established by variational calculus is that, if a
continuous differentiable function x(t) minimizes a functional V (x) of the
form (7.2), then it satisfies the so-called Euler equation:

∂L(x, ẋ, t)

∂x
− d

dt

∂L(x, ẋ, t)

∂ẋ
= 0 (7.3)

Notice that the Euler equation is a necessary condition for the solution,
and, in general, not a sufficient one. However, when, for a specific engineering
problem, physical considerations indicate the existence of a unique solution,
then this can be obtained by the variational problem.

Consider now the case that x is a vector of n components, then the problem
of variational calculus can be generalized to minimizing the functional

V (x) =

b∫
a

L(x, ẋ, t)dt (7.4)

with x(a) = xa and x(b) = xb. Also in this more general case, if the function
minimizes the functional, then it satisfies the Euler equation, which now reads:

Variational Calculus and Linear Quadratic Optimal Control 109

FIGURE 7.1
A simple example of the application of variational calculus to find the curve,
with minimum length, joining the point (a,A) to (b, B).

∂L(x, ẋ, t)

∂xi
− d

dt

∂L(x, ẋ, t)

∂ẋi
= 0 (7.5)

with i = 1, . . . , n.

Example 7.1
Let us consider the following simple example. What is the function x(t) that minimizes
the path between the points A at time a and B at time b in Figure 7.1?
The answer is clearly a straight line going from (a,A) to (b, B), but now we prove this
using variational calculus.
The length of the curve can be calculated as follows:

V (x) =

∫
l

dl (7.6)

where, taking into account the coordinates considered, dl is given by:

dl =
√

(dt)2 + (dx)2 = dt
√

1 + ẋ2 (7.7)

with ẋ = dx
dt

.
Hence, one can consider the problem of minimizing the following functional:

V (x) =

b∫
a

√
1 + ẋ2dt (7.8)

that corresponds to the general form (7.2) if

L(x, ẋ, t) =
√

1 + ẋ2 (7.9)

Since
∂L(x,ẋ,t)

∂x
= 0, the Euler equation (7.10) becomes

d

dt

∂L(x, ẋ, t)

∂ẋ
= 0 (7.10)

and thus

∂L(x, ẋ, t)

∂ẋ
= const. (7.11)

110 Optimal and Robust Control: Advanced Topics with MATLAB r

It follows that:

∂
√

1 + ẋ2

∂ẋ
=

ẋ
√

1 + ẋ2
= const. (7.12)

The solution of the differential equation (7.12) is given by:

x(t) = k1t+ k2 (7.13)

where the values of k1 and k2 are determined by taking into account the boundary
conditions x(a) = A and x(b) = B.

Example 7.2
Consider now the problem of finding the function x(t) that minimizes the following
functional:

V (x) =

π
2∫

0

(
ẋ2

1 + ẋ2
2 + 2x1x2

)
dt (7.14)

with x1(0) = x2(0) = 0, x1(π
2

) = 1, and x1(π
2

) = −1.
To solve this problem, the vectorial form of the Euler equation (7.5) should be used.
Since ∂L

∂x1
= 2x2, ∂L

∂ẋ1
= 2ẋ1, ∂L

∂x2
= 2x1, and ∂L

∂ẋ2
= 2ẋ2, the vectorial Euler equation

becomes:

2x2 − 2ẍ1 = 0
2x1 − 2ẍ2 = 0

(7.15)

that can be rewritten as:

ẍ1 = x2

ẍ2 = x1
(7.16)

Solving (7.16) is equivalent to solve the following differential equation:

d(4)x1

dt4
= x1 (7.17)

whose solution is given by:

x1(t) = c1e
t + c2e

−t + c3 sin t+ c4 cos t (7.18)

The constants c1, c2, c3 and c4 are determined by considering the given boundary
conditions.

7.2 The Lagrange Method

The Lagrange method provides a systematic way to determine the differential
equations governing a system. It makes use of the Lagrangian state func-
tion that is defined starting from coordinates obtained generalizing the vari-
ables appearing in classical mechanics problems, i.e., position and velocity. For
this reason, these variables are called generalized coordinates. The Lagrange
method demonstrates to be very effective in many engineering problems as
the derivation of the system representation is directly linked to study of the

Variational Calculus and Linear Quadratic Optimal Control 111

FIGURE 7.2
A mass-spring-damper system.

energy terms involved in its dynamics. In fact, the generalized position vector
x is related to the potential energy, and its time derivative ẋ is linked to the
kinematic energy. In mechanical systems these variables effectively represent
the position and the velocity of a mass, in an electrical circuit they may rep-
resent charge and current associated to a capacitor or flux linkage and voltage
associated to an inductor.

To briefly illustrate the method, we begin with the definition of the
Lagrangian state function which combines the kynetic energy of the system,
I(x, ẋ), and the potential energy, V (x). In more detail, the Lagrangian state
function is the difference between kynetic and potential energy:

L(x, ẋ) = I(x, ẋ)− V (x) (7.19)

The Lagrangian state function can be used to derive the equations of
motion of a dynamical system, which are obtained as follows:

d

dt

∂L(x, ẋ)

∂ẋi
− ∂L(x, ẋ)

∂xi
+
∂D(ẋ)

∂ẋi
= Fi (7.20)

where D(ẋ) is the dissipation term and Fi is the generalized force.
For instance, in the case of a mechanical system, equation (7.20) corre-

spond to the Newton’s equations as shown in the following example.

Example 7.3
Consider the mass-spring-damper system shown in Figure 7.2. For this system the
Lagrangian function is

L(x, ẋ) =
1

2
Mẋ2 −

1

2
kx2 (7.21)

and the dissipation energy is:

D(ẋ) =
1

2
fẋ2 (7.22)

112 Optimal and Robust Control: Advanced Topics with MATLAB r

Using together these two expressions in equation (7.20) one obtains the Newton’s equa-
tion for the system:

Mẍ+ fẋ+ kx = F (7.23)

If the system is unforced and conservative, that is, the system does not
have dissipative elements, then the Lagrange’s equations (7.20) become:

d

dt

∂L(x, ẋ)

∂ẋi
− ∂L(x, ẋ)

∂xi
= 0 (7.24)

Note that, if we consider L(x, ẋ, t) = L(x, ẋ) in the Euler equations (7.5),
then we obtain exactly equation (7.24). This important property derives from
the Hamilton’s principle, which states that the path of motion of a system
from x(ti) to x(tf) is such to minimize the functional:

V (x) =

tf∫
ti

L(x, ẋ)dt (7.25)

7.3 Towards Optimal Control

Given a dynamical system described by

ẋ = f(x,u, t) (7.26)

and the following performance index

PI =

tf∫
ti

L(x,u, t)dt (7.27)

the optimal control problem consists of finding the optimal control u(t) or
the optimal control law u(t) = k(x(t), t) such that the performance index
is minimum, which, in turn, indicates that the system performance in the
interval [ti, tf] is optimal.

Notice that implementing the optimal control u(t) or the optimal control
law u(t) = k(x(t), t) requires two different control schemes. Having at disposal
the mathematical expression for the optimal control law u(t) = k(x(t), t)
makes possible the use of a feedback configuration as the dependence of the
control law on the state is explicit.

Variational Calculus and Linear Quadratic Optimal Control 113

Example 7.4
Consider the following functional:

PI =

t∫
0

(x2 + u2)dt (7.28)

with

ẋ = −x+ u (7.29)

Minimizing this functional with the constraint (7.29) can be viewed as a control problem
where we want to find u(t) = k(x(t), t) that optimizes the performance index (7.28).

In order to be able to apply variational calculus to the problem of op-
timal control, two issues need to be addressed. The first issue is related
to the fact that the performance index for optimal control is of the type

PI =
tf∫
ti

L(x,u, t)dt, while, so far, we have discussed functionals of the type

V (x) =
tf∫
ti

L(x, ẋ, t)dt. To deal with this issue, a new augmented vector can

be considered, i.e., x′ = [xT ,uT]T , and then the mathematical approach dis-
cussed in the previous sections can be applied taking into account this new
vector. However, for the sake of notation, to highlight the presence of the input
vector we will still refer to these two vectors in a separate way.

The second issue concerns how to account for the dynamics of the system.
The idea here is to rewrite equation (7.26) as:

g(x, ẋ,u, t) = f(x,u, t)− ẋ = 0 (7.30)

For this reason, we now discuss how to solve a problem of variational cal-
culus in presence of constraints. The main result is expressed in the following
theorem.

Theorem 14 Given a functional of the form

V (x) =

tf∫
ti

L(x, ẋ, t)dt (7.31)

with the constraints

gi(x, ẋ, t) = 0, i = 1, . . . ,m ≤ n (7.32)

and state vector x, then, if x(t) minimizes V (x), there exists a set of Lagrange
multipliers λ(t) = [λ1(t), λ2(t), . . . , λm(t)]T such that the state vector x(t)
minimizes the scalar function:

114 Optimal and Robust Control: Advanced Topics with MATLAB r

V ∗(x) =
tf∫
t0

[
L(x, ẋ, t) +

m∑
i=1

λi(t)gi(x, ẋ, t)

]
dt =

=
tf∫
t0

L∗(x, ẋ, t)dt

(7.33)

where L∗(x, ẋ, t) = L(x, ẋ, t)+
m∑
i=1

λi(t)gi(x, ẋ, t) satisfies the Euler equations:

∂L∗(x, ẋ, t)

∂xi
− d

dt

∂L∗(x, ẋ, t)

∂ẋi
= 0 (7.34)

for i = 1, . . . , n.

Let us then consider the performance index PI =
tf∫
ti

L(x,u, t)dt with the

constraints given by the state equations ẋ = f(x,u, t) and boundary condi-
tions xi = x(ti) and xf = x(tf).

We want to apply the approach of Theorem 14 by considering the following
functional:

V ∗(x,u) =

tf∫
ti

L∗(x, ẋ,u, u̇)dt (7.35)

where

L∗(x, ẋ,u, u̇) = L(x,u, t) +

n∑
j=1

λj(fj(x,u, t)− ẋj) (7.36)

Replacing (7.36) into the Euler equations:

∂L∗(x, ẋ,u, u̇)

∂xi
− d

dt

∂L∗(x, ẋ,u, u̇)

∂ẋi
= 0 (7.37)

we get:

∂
∂xi

{
L(x,u, t) +

n∑
j=1

λj [fj(x,u, t)− ẋj]

}

− d
dt

∂
∂ẋi

{
L(x,u, t) +

n∑
j=1

λj [fj(x,u, t)− ẋj]

}
= 0

(7.38)

with i = 1, . . . , n.
Taking into account that some of the derivatives appearing in (7.38) are

zero, we obtain:

Variational Calculus and Linear Quadratic Optimal Control 115

∂

∂xi

L(x,u, t) +

n∑
j=1

λjfj(x,u, t)

+
d

dt

∂

∂ẋi

n∑
j=1

λj ẋj = 0 (7.39)

Now, considering that ∂
∂ẋi

n∑
j=1

λj ẋj = λi, we get:

λ̇i = − ∂

∂xi

L(x,u, t) +

n∑
j=1

λjfj(x,u, t)

 (7.40)

for i = 1, . . . , n.
Similarly, if we start from the Euler equation with respect to the

variables u:

∂
∂uk

{
L(x,u, t) +

n∑
j=1

λj [fj(x,u, t)− ẋj]

}

− d
dt

∂
∂u̇k

{
L(x,u, t) +

n∑
j=1

λj [fj(x,u, t)− ẋj]

}
= 0

(7.41)

for k = 1, . . . ,m, with similar calculations, we get:

∂

∂uk

L(x,u, t) +

n∑
j=1

λjfj(x,u, t)

 = 0 (7.42)

for k = 1, . . . ,m.
Now, define the so-called state function of Pontryagin:

H(x,u, λ, t) = L(x,u, t) +

n∑
j=1

λjfj(x,u, t) (7.43)

or, equivalently, in matrix notation:

H(x,u, λ, t) = L(x,u, t) + λT f(x,u, t) (7.44)

where λ = [λ1, . . . , λn]T .
The state function of Pontryagin allows the Euler equations (7.40) and

(7.42) to be rewritten as follows:

λ̇i = −∂H(x,u, λ, t)

∂xi
(7.45)

for i = 1, . . . , n and

∂H(x,u, λ, t)

∂uk
= 0 (7.46)

116 Optimal and Robust Control: Advanced Topics with MATLAB r

for k = 1, . . . ,m.
Alternatively, they can also be rewritten in a particularly convenient com-

pact form:

λ̇ = −∂H(x,u, λ, t)

∂x
(7.47)

and

∂H(x,u, λ, t)

∂u
= 0 (7.48)

It can be checked by direct calculation that, using the state function of
Pontryagin, the plant equations can be written as:

ẋ =
∂H(x,u, λ, t)

∂λ
(7.49)

In summary, to solve the optimal control problem the following steps need
to be performed:

1. Given L, the performance index and the system dynamical equa-
tions ẋ = f(x,u, t), with the boundary conditions xi and xf , the
function H can be computed.

2. Solving the algebraic equation (7.48), one derives uoptimal =
uoptimal(x, λ, t) and, in correspondence,Hoptimal = H(x,uoptimal, λ, t).

3. At this point, equations (7.49) and (7.47) can be used to de-
rive x(t) and λ(t), which are then substituted into uoptimal =
uoptimal(x, λ, t).

Example 7.5
Consider the first-order system

ẋ = −2x+ u (7.50)

and the functional

PI =

1∫
0

(x2 + 5u2)dt (7.51)

In this case, the function H becomes:

H = λ(−2x+ u) + x2 + 5u2 (7.52)

Equation (7.48) yields:

∂H

∂u
= λ+ 10u = 0 (7.53)

and hence

uoptimal = −
λ

10
(7.54)

It follows that:

Variational Calculus and Linear Quadratic Optimal Control 117

Hoptimal = −
λ2

10
− 2λx+ x2 +

1

20
λ2 (7.55)

For the system dynamics, we have:

ẋ =
∂Hoptimal

∂λ
= −2x−

λ

10
(7.56)

which can be also obtained replacing (7.54) into (7.50). In addition, we have that:

λ̇ = −
∂Hoptimal

∂x
= 2λ− 2x (7.57)

In summary, we have: [
ẋ

λ̇

]
=

[
−2 − 1

10
−2 2

] [
x
λ

]
(7.58)

that must be solved taking into account that x(0) = 0 and x(1) = 1.

In the next section we discuss the optimal control problem for linear sys-
tems.

7.4 LQR Optimal Control

Let us consider a continuous-time system

ẋ = Ax + Bu
y = Cx

(7.59)

and let us suppose that it is completely controllable and observable (alter-
natively consider only the part of the system which is controllable and ob-
servable). Using the control law u = −Kx, the system dynamic is governed
by:

ẋ = (A− BK)x (7.60)

Usually, Ac = (A−BK) indicates the closed-loop matrix of the system. As
we know, the issue of linear state regulators is in selecting the proper gains K
so as to arbitrarily fix the eigenvalues of Ac. Under the hypothesis that the
system is observable and controllable, there is always a solution.

Clearly, there are infinite ways to choose these eigenvalues. One is on the
basis of criteria which include various specifications which a closed-loop system
must satisfy. Once the criterion is defined, the choice of the eigenvalues and
so the gains K must be done to optimize the adopted criteria.

In the case of L2 or H2 optimal control the index (to minimize) is defined
by the functional:

J =

∫ ∞
0

(xTQx + uTRu)dt (7.61)

118 Optimal and Robust Control: Advanced Topics with MATLAB r

where the matrices Q ∈ Rn×n and R ∈ Rm×m are fixed weight matrices which
define, as we will shortly see, the specifications for optimal control.

The optimal control issue lies in finding the gains Kopt so as to minimize
functional (7.61).

As regards weight matrices, Q and R are generally positive definite. Q can
eventually be selected as positive semi-definite, but R must always be positive
definite.

This problem is referred to as the linear quadratic regulator (LQR) optimal
control.

The physical meaning of optimal control can be clarified through an exam-
ple where the matrix Q is chosen in a particular way. Consider z(t) = C1x(t)
and the functional

J =

∫ ∞
0

(zT z + uTRu)dt

obtained from functional (7.61) making Q = CT1 C1. Variables z(t) are not sys-
tem output but other variables which we want to keep small. In other words,
the control objective is to enable the variables z(t) to be very close to sys-
tem equilibrium point (x = 0 and so z = 0). Supposing the system is initially
excited (this is reflected by an initial condition x0 which is an undesired devia-
tion from the equilibrium position x = 0), the objective of the optimal control
is finding the input so that the system reaches the equilibrium in the shortest
possible time. As soon as the system is supposed controllable, this objective
can always be obtained. Reaching the equilibrium in the shortest possible
time generally requires a considerable control signal which is unacceptable
from certain points of view. Firstly, such a control signal could saturate the
real system. Secondly, it could stimulate an unmodeled high frequency dy-
namic in the original system. Therefore, two different costs need balancing
zT (t)z(t) ≥ 0 and uT (t)Ru(t) > 0 ∀t.

The significance of matrices Q and R can be therefore clarified by consider-
ing that the functional J represents the energy to minimize (for this reason it
is often called the quadratic index). The functional takes into account the two
energy terms: the first, J1 =

∫∞
0

xTQxdt, deals with the energy associated
with the closed-loop state variables weighted by matrix Q, whereas the other
deals with the energy associated with input u and weighted by matrix R.

Obviously the choice of the closed-loop eigenvalues has to guarantee that
the system is always asymptotically stable so that the zero-input response
of the system tends to zero (x(t) → 0). From this consideration, minimizing
the functional J1 =

∫∞
0

xTQxdt means ensuring that the state variables tend
to zero as soon as possible. The smaller the energy associated with the state
variables the more rapidly they tend to zero.

Minimizing the energy means ensuring a fast transitory. This happens at
the cost of input energy as we will see in the next example.

Variational Calculus and Linear Quadratic Optimal Control 119

Example 7.6
Consider G(s) = 1

s+1
. The unit step response tends asymptotically to a value of one.

Suppose output y(t) = 1 in the shortest time possible. By applying a step input with
an amplitude of 10, the steady-state output value is exactly ten, and given the initial
null conditions, this means that y(t) = 1 is verified for a given t, less than for the
previous case (unitary step input). In the limit case, choosing as input a Dirac impulse
u(t) = δ(t), one obtains y(t) = e−t (impulse response) which is one for t = 0. So, at the
cost of growing input energy, it is possible to reduce the time required for the output
to reach a determined value.

Generally, the input energy required to obtain certain specifications for a
closed-loop system should always be evaluated. For this reason, the quadratic
index (7.61) also accounts for the input energy. Matrix R therefore assigns a
relative weight to the two energy terms dealt with by the quadratic index.
Matrix R weights the input therefore establishing if according to the control
objective, it is more important to minimize the first or second contribution.
Matrix Q establishes the weight of the state variables, taking also into account
for instance that it is not given that all the state variables have the same scale
factor in the measures.

Now, let us see how the gains Kopt are determined. They are calculated
from the following matrix equation:

PA + ATP− PBR−1BTP + Q = 0 (7.62)

with P ∈ Rn×n.
If P is the solution, the optimum gains are given by:

Kopt = R−1BTP (7.63)

Note that the inverse of R always exists, as it is a positive definite matrix.
The matrix equation (7.62), by contrast to the Lyapunov equations, is a

nonlinear equation in P. In fact, a quadratic term (PBR−1BTP) appears in
the equation.

This equation is called the algebraic Riccati equation from the name of
Jacopo Francesco, the Count of Riccati (1676–1754), who was the first to
study equations of this type. The equation is known as algebraic because
matrix P does not depend on time. There is a differential Riccati equation
which is a function of time and it comes into play when, rather than defining
the integral of the J index between zero and infinity, a finite horizon [t1, t2] is
considered in which to reach the control objective.

For systems with only one input (R is a scalar quantity) the quadratic
term has a weight which is inversely proportional to increasing R.

Generally, the Riccati equation does not have a single solution. For exam-
ple, if n = 1, it produces a second order equation with two solutions. Among
the possible solutions for Riccati equations however, there is only one positive
definite. It is this matrix P which will provide the optimal gains Kopt.

120 Optimal and Robust Control: Advanced Topics with MATLAB r

The optimal gains have another fundamental property: they can guarantee
closed-loop stability of the system, in other words Ac = A − BKopt has all
eigenvalues with negative real part.

To demonstrate that the gains Kopt guarantee closed-loop system stability,
let us consider the Riccati equation (7.62) with P = P and add and subtract
PBR−1BTP:

PA + ATP− PBR−1BTP + PBR−1BTP− PBR−1BTP + Q = 0

Rearranging, we obtain:

P(A− BR−1BTP) + (AT − PBR−1BT)P + PBR−1BTP + Q = 0

Considering Kopt = R−1BTP, then

P(A− BKopt) + (AT −KT
optB

T)P = −KT
optRKopt −Q

and so

PAc + AT
c P = −KT

optRKopt −Q

Since the right-hand term is a positive definite matrix because Q is positive
semi-definite (or definite) and KT

optRKopt is positive definite, then the closed-
loop system satisfies the Lyapunov equation for stability and, according to
Lyapunov second theorem, it is asymptotically stable.

At variance with the Lyapunov equation that can be solved in closed form,
calculating P requires an iterative method. The algorithm is based on the
Kleinman method, that relies on the property that the gains K are stabi-
lizing (so the corresponding closed-loop state matrix satisfies the Lyapunov
equation) and on the relation linking K and P (i.e., K = R−1BTP).

In the Kleinman method, at the first iteration K1 is fixed so that A−BK1

is stable (if the closed-loop system with state matrix A is already stable, then
K1 = 0). For generic iterations Ki is fixed by Ki = R−1BTPi−1.

Once Ki is fixed, Pi is obtained by solving the linear Lyapunov equation:

Pi(A− BKi) + (AT −KT
i BT)Pi = −KT

i RKi −Q (7.64)

Next, the gains Ki+1 are obtained by Ki+1 = R−1BTPi iterating the pro-
cedure. The algorithm converges when Ki+1 ' Ki.

Kleinman showed that starting from a matrix K which guarantees closed-
loop stability (matrix Ac) and iterating the procedure, the result is always a
stable matrix, so the various matrices Pi, obtained in this way, are all posi-
tive definite. The procedure converges to the positive definite solution of the
Riccati equation: Pi ' Pi+1 = P. Moreover, Kleinman showed that the con-
vergence of this method is monotonic, that is the error norm at each step de-
creases monotonically. If instead, at the first iteration K1 is not such that the

Variational Calculus and Linear Quadratic Optimal Control 121

FIGURE 7.3
Block scheme of the linear quadratic regulator.

closed-loop system with state matrix Ac is asymptotically stable, the method
does not converge or it does to a non-definite matrix.

The advantage of the method is solving Lyapunov equations iteratively,
that is, solving linear equations with closed solutions rather than nonlinear
ones.

It can be shown that the index J when u = −Koptx is J = 1
2xT (0)Px(0),

which is therefore the smallest value the index can have ∀ x(0).
Optimal control has however some drawbacks. First, it is based on feedback

of all the state variables x. This requires that the whole state is available for
feedback. Optimal control therefore requires a sensor for every state variable,
or it requires an observer to re-construct the variables which are not directly
measurable. Optimal control is difficult to apply to flexible systems which
require a high-order model (if not infinite).

Another drawback of optimal control is the gap with classical control spec-
ifications such as disturbance rejection, overshoot, stability margins, and so
on. This often leads to the need of trial and error to define the weight matrices
R and Q.

Figure 7.3 shows the block scheme of optimal control (also called linear
quadratic regulator). The transfer matrix is given by GLQ = K(sI − A)−1B.
It can be shown that this matrix has certain robustness margins with respect
to delays and gains in the direct chain.

The main features of optimal control are summarized in the following
theorem:

Theorem 15 Given the system ẋ = Ax + Bu with initial condition x0 and
given the index J =

∫∞
0

(xTQx + uTRu)dt, if the system is in minimal form
the entire state x can be fed back and matrices Q and R are symmetric and
positive semi-definite and definite, respectively, then:

1. There is only one linear quadratic regulator u = −Koptx (with
Kopt = R−1BT P̄) which minimizes the index J ;

2. P is the only symmetric positive definite solution of the Riccati
equation

PA + ATP− PBR−1BTP + Q = 0

3. The closed-loop system with state matrix (A−BKopt) is asymp-
totically stable;

122 Optimal and Robust Control: Advanced Topics with MATLAB r

4. The minimum value of index J is J = 1
2xT0 P̄x0.

MATLABr Exercise 7.1
Here, we discuss the use of the Kleinman algorithm to solve the Riccati equation.
Let us consider the system G(s) = s+2

s2−2s−3
which is stable and minimal. Consider the

functional (7.61) with Q = CTC and r = 1. Let us define the system in MATLABr

from its canonical controllability form:
>> A=[0 1; 3 2];

>> B=[0; 1];

>> C=[2 1];

>> D=0;

Define the weight matrices
>> R=1;

>> Q=C’*C;

Choose K0 such that Ac = A−BK0 is asymptotically stable, and in particular that its
eigenvalues are λ1 = −1 e λ2 = −0.5
>> K0=acker(A,B,[-1 -0.5]);

>> Ki=K0;

Apply the Kleinman method assuming that Ki+1 ' Ki, when ‖Ki+1 −Ki‖ < 0.0001:
>> for i=1:100

P=lyap((A-B*Ki)’,Ki’*R*Ki+Q);

Kii=inv(R)*B’*P;

if (norm(Kii-Ki)<0.0001), break; end

Ki=Kii;

end

After seven iterations the algorithm converges on Ki =
[

6.6056 6.2674
]

and

P =

[
7.3865 6.6056
6.6056 6.2674

]
. It is easy to verify that P is positive definite. The optimal

eigenvalues (eig(A-B*Ki)) are λ1,opt = −1.1605 and λ2,opt = −3.1070.
Note that from an unstable matrix Ac (e.g., by imposing eigenvalues λ1 = −1 and
λ2 = 2), the algorithm converges to a non-definite matrix P.
The linear quadratic regulator can be also calculated with the MATLAB command:
>> [K,P,E]=lqr(A,B,C’*C,1)

Finally, the transfer function GLQ is calculated with command:
>> system=ss(A,B,K,0)

To verify that the closed-loop system eigenvalues are effectively the optimal ones, the
closed-loop transfer function can be calculated with the command
>> tf(feedback(system,1))

Furthermore, the Nyquist diagram can be plotted to verify the robustness of the optimal
control in terms of gain and phase margins with the command
>> nyquist(system)

MATLABr Exercise 7.2
Consider now the system with transfer function G(s) = s+10

s2+s−2
. As in the previous ex-

ample, G(s) is unstable and in minimal form. We want to calculate the linear quadratic
regulator with Q = CTC for two cases: r = 0.1 and r = 10.
Define the system in MATLAB by considering its canonical control form:
>> A=[0 1; 2 -1];

>> B=[0; 1];

>> C=[10 1];

>> D=0;

Then define the weight matrices:
>> Q=C’*C;

Variational Calculus and Linear Quadratic Optimal Control 123

−0.5

0

0.5

1

1.5

x
1
(t

)

0 1 2 3 4 5
−3

−2

−1

0

1

t [s]

x
2
(t

)

R=0.1

R=10

R=0.1

R=10

FIGURE 7.4
Zero-input response of the LQR closed-loop system for r = 0.1 and r = 10.

>> r1=0.1;

>> r2=10;

The transfer function GLQR of the linear quadratic regulator for the two cases can be
calculated through the commands:
>> [K1,P1,E1]=lqr(A,B,Q,r1);

>> GLQR1=ss(A,B,K1,0);

>> [K2,P2,E2]=lqr(A,B,Q,r2);

>> GLQR2=ss(A,B,K2,0);

and the corresponding closed-loop transfer functions are:
>> CLsys1=tf(feedback(GLQR1,1));

>> CLsys2=tf(feedback(GLQR2,1));

In order to compare the behavior of the two closed-loop systems, we can calculate and
plot the zero-input response for both cases:
>> [Y1,T1,X1] = lsim(CLsys1,zeros(5001,1),[0:0.001:5],[1 1]);

>> [Y2,T2,X2] = lsim(CLsys2,zeros(5001,1),[0:0.001:5],[1 1]);

In Figure 7.4 the trends of the state variables x1(t) and x2(t) are reported for the two
cases. When r = 0.1 (continuous lines) the energy associated to the input is weighted
less than that associated to the states, hence the effect of the linear quadratic regulator,
which mostly minimizes the state energy, is a zero-input response with a small time
constant which rapidly decreases to zero; on the contrary, when r = 10 (dashed lines)
the closed-loop system has a larger time constant, as it can be easily observed from its
zero-input response.

124 Optimal and Robust Control: Advanced Topics with MATLAB r

7.5 Hamiltonian Matrices

We have seen how optimal control is solved by an algebraic Riccati equation
(7.62). To each equation of this type a matrix can be associated, a Hamiltonian
matrix, which has very particular properties. We can, for example, associate
to the Riccati equation (7.62), the Hamiltonian matrix:

H =

[
A −BR−1BT

−Q −AT

]
(7.65)

H is a 2n× 2n matrix. In the first line of this block matrix, there are the
coefficients (with their sign) of the term which is multiplied to the left by the
unknown matrix P (element H11) and the one by the quadratic (component
H12). The other two coefficients of the matrix (H21 and H22) are given by the
known term from the Riccati equation and by the term which is multiplied to
the right by P with reverse sign.

The Hamiltonian matrix H is such that, given

Y =

[
0 I
−I 0

]
with I the n× n identity matrix, then:

HTY = −YH (7.66)

or rather

Y−1HTY = −H (7.67)

This is the property which defines the Hamiltonian matrix. All matrices
with this property are called Hamiltonian.

The matrix associated with the Riccati equation for optimal control has a
further important property expressed by the following theorem:

Theorem 16 Given the optimal eigenvalues λ1, λ2, . . . , λn (i.e., the eigenval-

ues of A− BKopt), the eigenvalues of H =

[
A −BR−1BT

−Q −AT

]
are:

λ1, λ2, . . . , λn,−λ1,−λ2, . . . ,−λn

Proof Let us consider the matrix T =

[
I 0
P I

]
and calculate its inverse

T−1 =

[
T11 T12

T21 T22

]
(remembering that P is positive definite, so the inverse

of T exists).
Matrix T−1T is given by:

Variational Calculus and Linear Quadratic Optimal Control 125

T−1T =

[
T11 T12

T21 T22

] [
I 0
P I

]
=

[
T11 + T12P T12

T21 + T22P T22

]
Since T−1T = I, then:

T11 + T12P = I⇒ T11 = I
T12 = 0
T21 + T22P = 0⇒ T21 = −P
T22 = I

and so T−1 =

[
I 0
−P I

]
.

Now let us consider the matrix T−1HT which, as we know, has the same
eigenvalues of matrix H:

T−1HT =

[
I 0
−P I

] [
A −BR−1BT

−Q −AT

] [
I 0
P I

]
=

=

[
A −BR−1BT

−PA−Q PBR−1BT −AT

] [
I 0
P I

]
=

=

[
A− BR−1BTP −BR−1BT

−PA−Q + PBR−1BTP−ATP PBR−1BTP−AT

]
=

=

[
A− BKopt −BR−1BT

0 −(A− BKopt)
T

]
In finding the last expression, the algebraic Riccati equation was used (PA+

Q − PBR−1BTP + ATP = 0). Notice that the eigenvalues of H are given by
union of λ1, λ2, . . . , λn and of −λ1,−λ2, . . . ,−λn.

For SISO systems, Theorem 16 also provides an alternative method for
finding the optimal controller with respect to that based on the Riccati equa-
tion (7.62). First, the eigenvalues of H are found and those on the right-hand
half of the complex plane are discarded. Then, those eigenvalues with negative
real part are used to design a control law u = −Kx by eigenvalue placement
(a system of n equations with n unknowns). The method guarantees that
no eigenvalues are found on the imaginary axis: if there are eigenvalues of H
on the imaginary axis, then the system is uncontrollable. If this were to be
verified, the base hypothesis for solving optimal control would be violated.
Furthermore in the SISO case, the Lyapunov equation could be used to find
P: AT

c P + PAc = −KT
optRKopt −Q.

The property illustrated is characteristic of all Hamiltonian matrices: they
all have symmetric eigenvalues with respect to the imaginary axis, or rather
if λ is an eigenvalue, then so is −λ. However, the opposite is not true as the
following example shows.

126 Optimal and Robust Control: Advanced Topics with MATLAB r

MATLABr Exercise 7.3

Consider the matrix P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

. Despite its eigenvalues λ1,2 = ±1 and

λ3,4 = ±j, it is not a Hamiltonian matrix. In fact, if we calculate −Y−1PTY, we
obtain

−Y−1PTY =


0 0 0 1
−1 0 0 0
0 1 0 0
0 0 −1 0


i.e., −Y−1PTY 6= P, and P does not satisfy equation (7.67). This can be checked in
MATLAB with the following commands:
>> H=diag([1 1 1],1)

>> H(4,1)=1

>> eig(H)

>> Y=[zeros(2) eye(2); -eye(2) zeros(2)]

>> -inv(Y)*H’*Y

This example demonstrates that it is not true that, if a matrix has eigenvalues
λ1, λ2, . . . , λn,−λ1,−λ2, . . . ,−λn, it is Hamiltonian.

MATLABr Exercise 7.4
In this MATLABr exercise we show an example of the calculation of the optimal
eigenvalues from the Hamiltonian matrix. We then show how they can be assigned as
closed-loop eigenvalues with the command acker.
Consider the continuous-time LTI system given by

A =

 −1 0 0
0 2 0
0 0 3

 ; B =

 1
1
1

 ; C =
[

1 1 1
]

(7.68)

and the optimal control problem with

Q =

 2 0 0
0 1 0
0 0 1

 ; R = 15 (7.69)

Let us first define in MATLAB the state-space matrices:
>> A=diag([-1 2 3])

>> B=[1; 1; 1]

>> C=[1 1 1]

and matrices Q and R:
>> R=15

>> Q=[2 0 0; 0 1 0; 0 0 1]

We then calculate the Hamiltonian matrix H and its eigenvalues:
>> H=[A -B*inv(R)*B’; -Q -A’]

>> p=eig(H)

One gets: p1 = 3.0114, p2 = 2.0171, p3 = 1.0627, p4 = −1.0627, p5 = −2.0171 and
p6 = −3.0114.
The optimal closed-loop eigenvalues are those with negative real part, i.e., p4, p5 and
p6. The value of the gain that corresponds to such eigenvalues can be calculated with
the command acker as follows:
>> K=acker(A,B,p(4:6))

The result is a closed-loop system having as eigenvalues p4, p5 and p6 as it can be
verified with the following command:
>> eig(A-B*K)

Variational Calculus and Linear Quadratic Optimal Control 127

7.6 Solving the Riccati Equation via the Hamiltonian
Matrix

The Riccati equation (7.62) can be solved by a method which holds true for
all quadratic equations and is based on the associated Hamiltonian matrix.
Consider a diagonalization of matrix H, obtained by ordering the Hamiltonian
eigenvalues so that those at the top of the diagonal have negative real part:

H = T

[
−Λ 0
0 Λ

]
T−1 (7.70)

with T =

[
T11 T12

T21 T22

]
. At this point P can be calculated:

P = T21T−111 (7.71)

Note that the non-singularity of T11 is assured by the controllability of the
system.

The eigenvalue order within the sub-matrix Λ is irrelevant as regards this
calculation. Ordering in terms of eigenvalues with negative real part and those
with positive real part is possible only if matrix H has no imaginary eigenval-
ues, a hypothesis required for solving the Riccati equation.

This method based on the Jordan decomposition of matrix H can prove
to be computationally demanding. At the end of the 80s a method based on
another decomposition (Schur decomposition) proved more advantageous.

In Schur decomposition, matrix H is the product of three matrices:

H = USUT (7.72)

with S =

[
S11 S12

0 S22

]
and U an orthonormal matrix (UUT = I). So, S is

a higher triangular matrix or quasi-triangular. Furthermore, it is structured
such that S11 has eigenvalues with negative real part, whereas S22 has eigen-
values with positive real part. The solution to the Riccati equation is found

analogously. Since U =

[
U11 U12

U21 U22

]
, matrix P is given by:

P = U21U−111 (7.73)

7.7 The Control Algebraic Riccati Equation

Let us now consider a particular case of optimal control. Consider a linear
time-invariant linear system:

128 Optimal and Robust Control: Advanced Topics with MATLAB r

ẋ = Ax + Bu
y = Cx

(7.74)

and a LQR problem with the following index:

J =

∫ ∞
0

(yTy + uTu)dt (7.75)

The index defined by equation (7.75) is a special case of the more general
one defined by equation (7.61), with Q = CTC and R = I.

Note that, in this case, (7.75) has two terms: the term
∫∞
0

yTydt is the

energy associated to the system output, whereas
∫∞
0

uTudt is the energy as-
sociated to the system input.

The Riccati equation (7.62) associated with this problem is called the
Control Algebraic Riccati Equation (CARE):

ATP + PA− PBBTP + CTC = 0 (7.76)

The Hamiltonian matrix associated to the CARE is:

H =

[
A −BBT

−CTC −AT

]
(7.77)

If the system is not strictly proper

ẋ = Ax + Bu
y = Cx + Du

(7.78)

the CARE equation becomes:

ATP + PA− (PB + CTD)(I + DTD)−1(BTP + DTC) + CTC = 0 (7.79)

and the Hamiltonian becomes:

H =

[
A− B(I + DTD)−1DTC −B(I + DTD)−1BT

−CTC + CTD(I + DTD)−1DTC −AT + CTD(I + DTD)−1BT

]
(7.80)

MATLABr Exercise 7.5
Consider the continuous-time LTI system with state-space matrices:

A =

[
−1 0
0 3

]
; B =

[
1
−1

]
; C =

[
2 1

]
; D = 1 (7.81)

and let us compute the optimal control with index (7.75).
Once the system has been defined
>> A=[-1 0; 0 3]

>> B=[1; -1]

>> C=[2 1]

Variational Calculus and Linear Quadratic Optimal Control 129

>> D=1

let us compute the Hamiltonian
>> H=[A-B*inv(eye(1)+D’*D)*D’*C -B*inv(eye(1)+D’*D)*B’;

-C’*C+C’*D*inv(eye(1)+D’*D)*D’*C -A’+C’*D*inv(eye(1)+D’*D)*B’]

and its eigenvalues
>> eig(H)

We find the optimal eigenvalues: λ1 = −3.1794 and λ2 = −2.3220.
It is also possible to use the command lqr as follows:
>> Q=C’*C-C’*D*inv(eye(1)+D’*D)*D’*C

>> [K,P,E]=lqr(A-B*inv(eye(1)+D’*D)*D’*C,B,Q,(eye(1)+D’*D))

7.8 Optimal Control for SISO Systems

Let us now consider the case of linear time-invariant SISO systems. For this
class of systems there exist results of significant interest in simplifying optimal
control. In particular, let us consider a generalization of index (7.75) so as to
weight unequally the energy terms associated with the input and output:

J =

∫ ∞
0

(yTy + uT ru)dt =

∫ ∞
0

(y2 + ru2)dt (7.82)

This optimal control problem is the same as that associated with (7.61) on
condition that Q = CTC and R = r (note that because it is a SISO system,
R ∈ R1×1 is a scalar quantity).

Let us suppose that the system has transfer function G(s) = b(s)
a(s) and it is

in minimal form.
To resolve optimal control a realization (A,B,C) of the system could be

adopted and its optimal eigenvalues be found from the Hamiltonian:

H =

[
A −Br−1BT

−CTC −AT

]
(7.83)

Let us recall that generally, given the weight matrices Q and R (in the
SISO case, r), the optimal eigenvalues do not depend on the chosen reference
system. In this case, therefore, the optimal eigenvalues do not depend on the
adopted system realization (A,B,C) but only on the transfer function G(s).

For SISO systems there is another method for finding optimal eigenvalues
which is simpler. They are given by the Letov theorem.

Theorem 17 (Letov theorem) For a minimal linear time-invariant SISO

system with transfer function G(s) = b(s)
a(s) , the optimal eigenvalues according

to index (7.82) are given by the roots with negative real part of the following
equation:

a(s)a(−s) + r−1b(s)b(−s) = 0 (7.84)

130 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 7.5
Solutions for equation (7.87) and optimal eigenvalues (with r = 2) for the
system G(s) = 10−s

(s+1)(s−2) .

Example 7.7
Consider a linear time-invariant SISO system with transfer function G(s) = 1

s
. Suppose

that one wants to find the optimal eigenvalues according to the functional (7.82) with
r = 1.
Applying the Letov theorem then

−s2 + 1 = 0 (7.85)

and so the optimal eigenvalue is λopt = −1.
Alternatively, a realization of the system is given by A = 0, B = 1, C = 1. In this
reference system, the CARE equation reads:

−P2 + 1 = 0⇒ P̄ = 1 (7.86)

So Kopt = −BP̄ = −1. Finally, given that Ac = A−BKopt = −1, the optimal eigenvalue
is found: λopt = −1.

Example 7.8
Let us consider the linear time-invariant SISO system with transfer function G(s) =

10−s
(s+1)(s−2)

and suppose r = 2. In this case, the optimal eigenvalues are given by:

(s+ 1)(s− 2)(1− s)(−s− 2) +
1

2
(10− s)(10 + s) = 0

⇒ s4 − 5.5s2 + 54 = 0 (7.87)

The solutions to equation (7.87) are s1,2 = −2.2471 ± j1.5163 and s3,4 = 2.2471 ±
j1.5163 (see Figure 7.5). The optimal eigenvalues are λ1,2 = −2.2471± j1.5163.

Example 7.9
Let us consider a linear time-invariant SISO system with transfer function G(s) = 1

s2

and let r = 1. In this case, the Letov formula becomes:

s4 + 1 = 0 (7.88)

The solutions to equation (7.88) are s1,2 = −0.7071 ± j0.7071 and s3,4 = 0.7071 ±
j0.7071 and they belong to the circumference of unitary radius (Figure 7.6).

Variational Calculus and Linear Quadratic Optimal Control 131

FIGURE 7.6
Solutions for equation (7.88) and the optimal eigenvalues (r = 1) for system
G(s) = 1

s2 .

The result in Example 7.9 can be generalized to a system of n integrators
in cascade (G(s) = 1

sn). In fact, in this case (r = 1), the equation for obtaining
the optimal eigenvalues becomes:

(−1)ns2n + 1 = 0 (7.89)

Example 7.10

Let us consider the all-pass system G(s) =
(1−s)(2−s)
(1+s)(2+s)

. In this case the Letov formula

becomes:

(1− s)(2− s)(1 + s)(2 + s) +
1

r
(1− s)(2− s)(1 + s)(2 + s) = 0

⇒ (1 +
1

r
)(1− s)(2− s)(1 + s)(2 + s) = 0

The optimal eigenvalues are λ1 = −1 and λ2 = −2 ∀r.

Generalizing the result of the previous exercise, it may be intuited that
for whatever type of all-pass system the optimal eigenvalues do not depend
on r and are given by the eigenvalues (if it is the case, sign changed) of the
open-loop system.

Example 7.11

G(s) =
(1+s)(2−s)
(1−s)(2+s)

is an all-pass system. For ∀r the optimal eigenvalues are λ1 = −1

and λ2 = −2.

Example 7.12

Consider now a systemG(s) =
b(s)
a(s)

satisfying the following property:G(s) = −GT (−s).
For such a system the optimal eigenvalues for r = 1 are given by the roots of a(s)+b(s) =

0. In fact, since
b(s)
a(s)

= − b(−s)
a(−s)

b(s)a(−s) + b(−s)a(s) = 0 (7.90)

132 Optimal and Robust Control: Advanced Topics with MATLAB r

and since from the Letov formula with r = 1 one has

a(s)a(−s) + b(s)b(−s) = 0 (7.91)

adding equations (7.90) and (7.91), one gets:

a(s)a(−s) + b(s)b(−s) + b(s)a(−s) + b(−s)a(s) = 0

and thus
(a(−s) + b(−s)) (a(s) + b(s)) = 0

We will see in Chapter 9 that systems satisfying G(s) = −GT (−s) are loss-less systems.
For such systems, it can be proven (the theorem is often referred as Chebyshev theorem)

that, given that G(s) =
b(s)
a(s)

is loss-less, then the polynomial a(s) + b(s) has negative

real part roots. Therefore, for loss-less systems, the optimal eigenvalues with r = 1 are
given by:

a(s) + b(s) = 0 (7.92)

From the Letov theorem, some important considerations can be drawn in
the extreme cases where r → 0 or r →∞.

If r is very large (in the limit case r → ∞), the term 1
r b(s)b(−s) in the

Letov formula is negligible compared to term a(s)a(−s). The optimal eigen-
values are given by a(s)a(−s) = 0. In this case, conclude that if the system
has poles with negative real part, the optimal eigenvalues coincide with the
open-loop system poles. If, instead, the system also has some poles with pos-
itive real part, then the optimal eigenvalues are given by the open-loop poles
with negative real part and the sign reversed open-loop poles with positive
real part. In conclusion, if the open-loop system is asymptotically stable then
the optimal control with r →∞ is the one which leaves the system eigenvalues
unchanged. The case with r →∞ from a physical viewpoint implies minimiz-
ing as much as possible energy at the input (and, at the limit, not acting on
the system at all, given that by definition it is asymptotically stable).

When r → 0, the term a(s)a(−s) can be neglected with respect to
1
r b(s)b(−s) and the Letov formula can be approximated to 1

r b(s)b(−s) = 0.
This formula can calculate m optimal eigenvalues (where m is the order of
polynomial b(s)). The other n − m eigenvalues (n is the system order and
so also the order of polynomial a(s)) can be obtained from the formula
s2(n−m) = (−1)n−m+1b20r

−1 where b0 is the coefficient associated to the higher
power in the polynomial b(s), that is, b(s) = b0s

m + b1s
m−1 + . . . + bm. The

eigenvalues are therefore arranged in a Butterworth configuration in a circle

of radius (
b20
r)

1
2(n−m) .

MATLABr Exercise 7.6
Let us reconsider the example in Exercise 7.1 and calculate the optimal eigenvalues
from the Letov formula for various values of r.

• If r = 1, then ∆(s) = (s2−2s−3)(s2+2−3s)+(s+2)(−s+2) = s4−11s+13. The
solutions of ∆(s) = 0 with negative real part are λ1,opt = −3.1070 and λ2,opt =
−1.1605 and coincide with the optimal eigenvalues calculated in Exercise 7.1.

• If r = 10, then the Letov formula produces ∆(s) ' (s2 − 2s − 3)(s2 + 2 − 3s)
and so the optimal eigenvalues are given by the open-loop eigenvalues (if it is the

Variational Calculus and Linear Quadratic Optimal Control 133

case, sign changed) λ1,opt ' −1 and λ2,opt ' −3. To evaluate the accuracy of
the approximation use the MATLAB command:

>> [K,P,E]=lqr(A,B,C’*C,10)

λ1,opt = −1.0184 and λ2,opt = −3.0104 are obtained.

• If r = 0.01, then the Letov formula gives a closed-loop eigenvalue equal to the
zero of the open-loop system, that is λ1,opt = −2, whereas the other eigenvalue
is given by the formula s2 = (−1)2 · 100 (in fact, b0 = 1), and so λ2,opt = −10.

Let us consider the eigenvalues obtained by applying the MATLAB command

>> [K,P,E]=lqr(A,B,C’*C,0.01)

that is λ1,opt = −1.9629 and λ2,opt = −10.3028. Notice that even here the
approximation from the Letov formula in the extreme case of very small r is
more than sufficient.

Example 7.13
Given the system G(s) = s+20

(s2−4s+8)2
find the optimal eigenvalues with respect to r

assuming that J =
∫∞
0 (yT y + uT ru)dt. Then fix r so that one optimal eigenvalue is

equal to λ = −5.

Solution
System G(s) = s+20

(s2−4s+8)2
is a SISO system, in minimal form, and unstable with poles

equal to s1,2 = 2 ± 2j. Since the functional J is defined as per equation (7.82), all
the assumptions that allow one to use the Letov formula to solve the assigned optimal
control problem are respected.
So, we have:

a(s)a(−s) + r−1b(s)b(−s) = 0⇒

(s2 − 4s+ 8)2(s2 + 4s+ 8)2 + r−1(20 + s)(20− s) = 0⇒

s4 − r−1s2 + 400r−1 + 64 = 0 (7.93)

Solving the bi-quadratic equation and considering only the two solutions with negative
real part, we have:

sopt,1,2 = −

√
r−1 ±

√
r−2 − 1600r−1 − 256

2

To ensure that one of these solutions is equal to λ̄, we have to impose that (7.93) equals
zero for s = λ̄:

λ̄4 − r−1λ̄2 + 400r−1 + 64 = 0⇒

r =
λ̄2 − 400

λ̄4 + 64

Since r > 0, only λ̄ < −20 is admissible. So it is not possible to follow the assigned
specifications.
The roots of the equation (7.93) can be studied by building an opportune root locus.
Consider

s4 − r−1s2 + 400r−1 + 64 = 0⇒

1 + r−1 400− s2

s4 + 64
= 0

By studying the root locus of the fictitious transfer function G̃(s) = 400−s2
s4+64

, all the

134 Optimal and Robust Control: Advanced Topics with MATLAB r

−60 −40 −20 0 20 40 60
−10

−5

0

5

10

Root Locus

Real Axis

Im
a
g
in

a
ry

 A
x
is

FIGURE 7.7
Root locus of G̃(s) = 400−s2

s4+64 .

solutions of the equation (7.93) can be obtained (Figure 7.7). To know the optimal
eigenvalues with respect to r, we have to refer to the left half plane of this root locus.
Notice there are no values of r−1 (and so of r) which ensure real solutions with −20 <
λ̄ < 0.

7.9 Linear Quadratic Regulator with Cross-weighted
Cost

There exist several generalizations of the LQR problem presented above. An
important one derives from the consideration that the variables z(t) to keep
small may contain a feedthrough term. In fact, if we consider z(t) = Cx(t) +
Du(t), the index to minimize becomes:

J =

∫ ∞
0

(xTCTCx + 2xTCTDu + uT (R + DTD)u)dt (7.94)

For this reason, in LQR problems the more general definition of the index
to minimize

J =

∫ ∞
0

(xT Q̄x + 2xT N̄u + uT R̄u)dt (7.95)

Variational Calculus and Linear Quadratic Optimal Control 135

may be considered with general weight matrices Q̄, N̄, and R̄.
Index (7.95) appears when the variables to keep small contain derivatives

of the state variables, but cross-coupled costs also appear when frequency-
dependent weighting terms are used.

In this case, the Riccati equation becomes:

P(A−BR̄−1N̄T)+(A−BR̄−1N̄T)TP−PBR̄−1BTP+(Q̄−N̄R̄−1N̄T) = 0 (7.96)

with P ∈ Rn×n. If P is the solution, the optimum gains are now given by:

Kopt = R̄−1(N̄T + BTP) (7.97)

The LQR problem defined by index (7.95) may be also solved in
MATLABr with the command lqr.

7.10 Finite-horizon Linear Quadratic Regulator

For system (7.59), let us consider now the following performance index:

J =

∫ T

t

(xT (τ)Qx(τ) + uT (τ)Ru(τ))dτ (7.98)

which assumes that the upper bound of the integral in the performance index
is a finite time T rather than infinite and that the lower bound is t rather
than zero.

The gains of the optimal control law are now given by:

Kopt = R−1BTP(t) (7.99)

where P(t) is now a time-varying matrix given by the solution of the differ-
ential Riccati equation:

Ṗ + Q− PBR−1BTP + PA + ATP = 0 (7.100)

with P(t) = 0.
Equation (7.100) is difficult to analytically solve for systems with order

higher than two. It is usually numerically solved with an iterative backward
in time procedure.

The solution of the infinite horizon problem is recovered from that of equa-
tion (7.100) by taking:

P = lim
t→−∞

P(t, T) = lim
T→∞

P(0, T) (7.101)

In the following example the use of MATLABr symbolic computation to
solve a simple differential Riccati equation is illustrated.

136 Optimal and Robust Control: Advanced Topics with MATLAB r

MATLABr Exercise 7.7
Consider system:

ẋ = x+ u (7.102)

and the performance index (7.98) with Q = 1 and R = 1. Since a state-space realization
of system (7.102) is given by A = 1 and B = 1, equation (7.100) becomes:

Ṗ − P 2 + 2P + 1 = 0 (7.103)

It can be solved with the MATLAB command:
>> dsolve(’DP=P^2-2*P-1’)

obtaining

P (t) = 1−
√

2 tanh(
√

2t+
√

2c1) (7.104)

where the constant c1 is obtained by imposing P (0) = 0.
The solution of the infinite horizon problem is obtained as:

P = lim
t→−∞

P(t, T) = 1 +
√

2 (7.105)

that is the same result that can be obtained by solving the algebraic Riccati equa-
tion (7.62) with the command:
>> are(1,1,1)

7.11 Optimal Control for Discrete-time Linear Systems

To conclude this chapter, let us look briefly at discrete-time systems. Consider
a discrete-time system in state-space form:

xk+1 = Axk + Buk
yk = Cxk

(7.106)

The quadratic index in this case is defined as:

J =

∞∑
k=0

(xTk Qxk + uTk Ruk)dt (7.107)

with Q positive semi-definite and R positive definite. The gain matrix of con-
trol law uk = −Kxk which minimizes index (7.107) is found by solving the
algebraic Riccati equation for discrete-time systems:

ATPA− P−ATPB(R + BTPB)−1BTPA + Q = 0 (7.108)

and by making

K = (BTPB + R)−1BTPA (7.109)

Variational Calculus and Linear Quadratic Optimal Control 137

MATLABr Exercise 7.8
Consider the discrete-time LTI MIMO system with state-space matrices:

A =

 −2 0 0
0 1 0
0 0 0.2

 ; B =

 1 0.1
2 5

0.3 3

 ; C =

[
1 0 1
−1 2 1

]
(7.110)

and the optimal control problem (7.107) with Q = CTC and R = 2I.
Define system (7.110) in MATLAB
>> A=[-2 0 0; 0 1 0; 0 0 0.2]

>> B=[1 0.1; 2 5; 0.3 3]

>> C=[1 0 1; -1 2 1]

>> D=zeros(2)

and then use the command dlqr to calculate the linear quadratic regulator for discrete-
time LTI systems:
>> [K,P,E]=dlqr(A,B,C’*C,2*eye(2))

One obtains the closed-loop optimal eigenvalues: λ1 = −0.3530, λ2 = 0.3753 and
λ = 0.0050 as it can be verified with command:
>> eig(A-B*K)

7.12 Exercises

1. Given the system G(s) = s+2
s2+4s+6 calculate the optimal controller

that minimizes the index defined by Q = CTC in these three cases:
r = r1 = 1, r = r2 = 0.01 and r = r3 = 20. Verify the performance
of the control law obtained.

2. Given the system with transfer function G(s) = 2s−1
s(s−1) calculate

the optimal eigenvalues with respect to r, if the index to optimize
is J =

∫∞
0

(yTy + uT ru)dt. Then calculate the characteristic values

of the system fixing r so that the optimal eigenvalue is λ = −
√

2.

3. Design the linear quadratic regulator (with r = 2) for the system

G(s) = s2+2s+1
s3−s2+5s+3 and calculate the optimal eigenvalues.

4. Given the system with state-space matrices:

A =

[
0 1
3 −2

]
; B =

[
0
1

]
; C =

[
−1 1

]
design the linear quadratic regulator with Q = CTC and r = 5.

5. Given the system with state-space matrices:

A =

 0 1 0
−1 0 0
0 0 3

 ; B =

 0
1
−1

 ; C =
[

1 1 1
]

design the linear quadratic regulator with Q = I and r = 7.

http://www.taylorandfrancis.com

8

Closed-loop Balanced Realization

CONTENTS

8.1 Synthesis of a Compensator for High-Order Systems 139
8.2 Filtering Algebraic Riccati Equation . 140
8.3 Computing the Closed-loop Balanced Realization 142
8.4 Procedure for Closed-loop Balanced Realization 144
8.5 Reduced Order Models Based on Closed-loop Balanced

Realization . 145
8.6 Closed-loop Balanced Realization for Symmetric Systems 149
8.7 Exercises . 150

For the open-loop balanced representation, linear Lyapunov equations related
to the controllability gramian and to the obsevability gramian are considered.
Similarly, in this chapter, to derive the closed-loop representation, the CARE
and the FARE are considered. The chapter is devoted to derive low order
controllers with guaranteed closed loop-stability. Another class of invariants
for the systems, the LQR characteristic values, are introduced. Moreover, an-
other canonical form of the original system, called closed loop representation,
is presented. Robust algorithms to derive it are dealt with, along with the
corresponding MATLAB codes.

8.1 Synthesis of a Compensator for High-Order Systems

In this chapter, we will look at synthesizing a compensator for a high order
system. One strategy is to consider a lower order model of the process, Gr(s),
and design a lower order compensator Cr(s). In this way, the regulator is
bound to work well for the lower order system (see Figure 8.1), but not nec-
essarily for the original model G(s) (see Figure 8.2). Therefore, the efficacy of
the project needs to be verified (with numerical simulations).

Another strategy is to design C(s) by assigning poles (design of the ob-
server and of the control law) on the basis of system G(s). In this way, an
n order compensator is obtained which can be approximated through model
order reduction. This case is called direct approximation of the compensator,

DOI: 10.1201/9781003196921-8 139

https://doi.org/10.1201/9781003196921-8

140 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 8.1
Control scheme with lower-order compensator applied to a lower order system
Gr(s).

FIGURE 8.2
Control scheme with lower-order compensator applied to a G(s) system.

whereas designing a lower-order compensator is known as indirect approxima-
tion of the compensator.

In both techniques, approximating the compensator is quite separate from
designing it. Below, we will see how closed-loop balancing is performed by
using the CARE introduced in the previous chapter and a dual equation, the
so-called FARE (solving the dual problem of optimal filtering). With this tech-
nique, instead of approximating the controller or the process prior to or after
the synthesis, the controller and process are approximated simultaneously and
during synthesis.

8.2 Filtering Algebraic Riccati Equation

The dual equation of the CARE is called FARE (Filtering Algebraic Riccati
Equation) and is defined as:

AΠ + ΠAT −ΠCTCΠ + BBT = 0 (8.1)

Just as the CARE solves an optimal control problem once a certain func-
tional to minimize is given, the FARE is used to design an optimal observer
according to a particular criterion.

Closed-loop Balanced Realization 141

FIGURE 8.3
Control scheme with a state linear regulator and an asymptotic observer.

Referring to Figure 8.3, remember that optimal control based on a linear
regulator requires knowing the entire state vector x(t) or, should all the state
variables not be measurable, an estimate x̃(t) of the state via an observer.
To design an optimal controller, even designing the observer must be based
on optimizing a particular criterion. Designing a compensator means finding
gains K and h on the basis of established criteria. In the previous chapter,
an optimal strategy was found based on minimizing a quadratic functional in
choosing the gains K. An optimization criterion can be dually defined for the
design of the observer.

Remember that the fundamental condition which must be satisfied in an
observer project is to make matrix A0 a stability matrix. Once the error is
defined as e(t) = x(t)− x̃(t), then the error system dynamic is given by:

ė(t) = A0e(t) (8.2)

so that, to make x(t) ' x̃(t), that is, e(t) = eA0te(0) → 0, the gains h must
be chosen such that all the eigenvalues of A0 = A − hC have negative real
part.

Generally, noise added to the state variables, that is an uncertainty which
makes the variables of state differ from the mathematical model, must also
be considered. Another source of noise to be considered is the measurement
noise. All this leads to formulating the following state-space model:

142 Optimal and Robust Control: Advanced Topics with MATLAB r

ẋ(t) = Ax(t) + Bu(t) + d(t)
y(t) = Cx(t) + v(t)

(8.3)

where d(t) (noise on the state variables) and v(t) (measurement noise) are
stochastic signals. Their value is not known exactly but their statistics are.
Suppose that d(t) and v(t) are random signals with zero mean and suppose
we know the covariance matrices which characterize them:

Md = E{d(t)d(t)T }

Mv = E{v(t)v(t)T }

where Md ∈ Rn×n and Mv ∈ Rp×p. E{x(t)} =
∫∞
−∞ xpx(t)(x)dt is the expected

value of the stochastic signal x(t) with probability density function px(t)(x).
Even the error system at this point is non-deterministic. Let us establish the
eigenvalues so as to minimize the index defined by:

J̄ = E{(x(t)− x̃(t))T (x(t)− x̃(t))} (8.4)

Optimal filtering is the dual problem of optimal control. Optimal gains are
given by hTopt = M−1v CΠ where Π is the solution of the Riccati equation:

AΠ + ΠAT −ΠCTM−1v CΠ + Md = 0 (8.5)

Mv is a p × p matrix. If Mv = I and Md = BBT in equation (8.5), the
result is the FARE equation (8.1). As regards signal v(t), this choice means
that its covariance matrix is unitary. As for signal d(t) making Md = BBT

means hypothesizing that d(t) = Bξ(t) where ξ(t) is a stochastic signal which
also has a unitary covariance matrix.

8.3 Computing the Closed-loop Balanced Realization

The CARE (7.76) and FARE (8.1) are nonlinear equations, they are also
normalized given that R = I and Mv = I. With these two equations and
using the same procedure which produces open-loop balanced realizations from
gramians equations, we can obtain a closed-loop balanced form. To simplify, we
will refer to the closed-loop balanced realization based on these normalized
equations even though the procedure is general and can be applied to the
corresponding not-normalized equations.

Let us consider the CARE and FARE equations:

ATP + PA− PBBTP + CTC = 0 (8.6)

AΠ + ΠAT −ΠCTCΠ + BBT = 0 (8.7)

Closed-loop Balanced Realization 143

and let us indicate as P̄ and Π̄ the only positive definite solutions of CARE
and FARE. These two matrices depend on the reference system in the same
way as the gramians depend on the reference system (this can be proved by
following the same steps done for the case of open-loop balanced realization).
The eigenvalues of Π̄P̄, however, do not depend on the reference system. They
allow to define another set of system invariants, called characteristic values of
the system.

Definition 17 (Characteristic values of the system) The characteris-
tic values of a system in minimal form µ1 ≥ µ2 ≥ . . . ≥ µn are the square roots
in descending order of the eigenvalues of Π̄P̄. They are invariant quantities,
i.e., they do not depend on the state-space representation of the system.

The characteristic values of a system are also known as LQR characteristic
values. They are fundamental to derive the closed-loop balanced realization,
that is, the realization where the CARE and FARE produce the same diagonal
solution, i.e., Π̄ = P̄ = diag(µ1, µ2, . . . , µn).

Definition 18 (Closed-loop balanced realization) Given a linear time-
invariant system in minimal form, the closed-loop balanced realization is that
realization in which Π̄ = P̄ = diag(µ1, µ2, . . . , µn), where P̄ and Π̄ are the only
positive definite solutions of the CARE and FARE.

Note that the hypothesis which makes possible to define the closed-loop
balanced realization of a system is the existence of the positive definite solu-
tions for the CARE and FARE, that is, that the system is completely control-
lable and observable. As opposed to the case of open-loop balancing, it is no
longer necessary that the open-loop system is asymptotically stable. Besides,
since the system is controllable and optimal control is being designed, the
closed-loop system is guaranteed to be asymptotically stable.

This balancing technique arose from the need to balance systems with
small damping. Known as large space flexible structures they are used to
model antennae or light satellites with solar energy panels. In particular, often
distributed parameter models for these structures or concentrated parameter
models with a large number of state variables are formulated. The closed-loop
balancing of this class of structures arose from the need to design controllers
which could stabilize the oscillations of these very flexible structures. Open-
loop balancing for these types of structures is numerically difficult because
they have small damping. Closed-loop balancing has the advantage of not
causing numerical errors in finding the solution and it allows the controller to
be designed while effecting the balancing.

Closed-loop balancing facilitates the design of the optimal regulator and
observer at the same time by proceeding analogously to the open-loop case
to reduce system order. In the next paragraph, we will analyze in detail the
issues concerning lower order models based on closed-loop balancing.

144 Optimal and Robust Control: Advanced Topics with MATLAB r

8.4 Procedure for Closed-loop Balanced Realization

The procedure for closed-loop balanced realization is analogous to the one
for open-loop, on condition that the CARE and FARE equations are used
instead of the two Lyapunov equations of the two gramians. The procedure is
illustrated below. Note that the FARE solution is calculated first, then singular
value decomposition is applied to matrix Π̄ and from this the transformation
matrix P1 is defined. In the new reference system (where it is easy to verify
that Π̃ = I) the CARE solution needs to be calculated, then proceeding to
its singular value decomposition and then defining the transformation matrix
T2.

MATLABr Exercise 8.1
The procedure for closed-loop balanced realization is reported below.
function [system_bal,G,PIGREEK_bal,P_care_bal]=balrealmcc(system)

% closed-loop balanced realization

% [system_bal, G, PIGREEK_bal, P_care_bal]=balrealmcc(system)

% system is defined in state-space form

A=system.A;

B=system.B;

C=system.C;

%rank(ctrb(system))

%rank(obsv(system))

%controllability and observability hypotheses

PIGREEK=are(A’,C’*C,B*B’); %FARE

[Uc,Sc2,Vc]=svd(PIGREEK);

P1=Vc*sqrt(Sc2);

Atilde=inv(P1)*A*P1;

Btilde=inv(P1)*B;

Ctilde=C*P1;

%%%verify: Wtildec2=I

PIGREEKtilde=are(Atilde’,Ctilde’*Ctilde,Btilde*Btilde’); %FARE

Pcaretilde=are(Atilde,Btilde*Btilde’,Ctilde’*Ctilde); %CARE

[Uo,So2,Vo]=svd(Pcaretilde);

T2=Vo*(So2)^(-1/4);

Abil=inv(T2)*Atilde*T2;

Bbil=inv(T2)*Btilde;

Cbil=Ctilde*T2;

system_bal=ss(Abil,Bbil,Cbil,0);

PIGREEK_bal=are(Abil’,Cbil’*Cbil,Bbil*Bbil’); %New FARE

P_care_bal=are(Abil,Bbil*Bbil’,Cbil’*Cbil); %CARE

%%%%%%%%%%%%%Verify: calculate the characteristic values of system

Pcare=are(A,B*B’,C’*C); %CARE

G=sqrt(eig(PIGREEK*Pcare));

This function can be applied to a system in state-space form. For instance, given the
system:
>> A=[-0.2 0.5 0 0 0;

0 -0.5 1.6 0 0;

0 0 -14.3 87.7 0;

0 0 0 -25 75;

0 0 0 0 -10]

Closed-loop Balanced Realization 145

>> B=[0 0 0 0 30]’

>> C=[1 0 0 0 0]

>> system=ss(A,B,C,0)

the closed-loop balanced realization is constructed with the commands:
>> [system_bal,G,PIGREEK_bal,P_care_bal]=balrealmcc(system)

We get the characteristic values µ1 = 3.9859, µ2 = 0.7727, µ3 = 0.1276, µ4 = 0.0101
and µ5 = 0.0003, suggesting the choice of r = 3 for the order of the reduced order
model.

8.5 Reduced Order Models Based on Closed-loop Bal-
anced Realization

Let X∗ represent the reference system for the closed-loop balanced form. In
this reference system the CARE solution, P̄∗, is diagonal and the optimal
gains are of the form:

K∗opt = B∗Tdiag(µ1, µ2, . . . , µn)

Furthermore, A∗c = A∗ − B∗K∗opt = A∗ − B∗B∗T P̄∗ certainly has all eigen-
values with negative real part.

If the index r is such that the system characteristic values can be divided
into two groups, so that µ1 ≥ µ2 ≥ . . . ≥ µr � µr+1 ≥ . . . ≥ µn, then a lower
order model could be constructed which only accounts for the first r state
variables of the system. In other words, instead of feeding back the n state
variables, only r are fed back.

So, in A∗c , we will use the matrix P̄∗ defined by

P̄∗ =



µ1

. . .

µr
0

. . .

0


Corresponding to this approximation, the control law becomes:

u = −K∗optx
∗ = −B∗T P̄∗x∗ = −B∗T



µ1x
∗
1

...
µrx

∗
r

0
...
0



146 Optimal and Robust Control: Advanced Topics with MATLAB r

If the discarded characteristic values µr+1, . . . , µn are effectively small,
the signals µr+1x

∗
r+1, . . . , µnx

∗
n contribute minimally to the feedback and so

it should be expected that matrix A∗c remains a stability matrix. In other
words, the characteristic values µ1, . . . , µn represent weights indicating how
important the corresponding state variables are in the feedback. When there
are two groups of characteristic values of very differing orders (µr � µr+1),
some system variables have a small effect in the feedback and the closed-loop
system remains stable even when only the first r state variables are used for
the feedback. Obviously, in this case, the closed-loop system is stable, but the
control system performance could deteriorate. Alternatively, what happens
when an open-loop optimum approximation is made is that the closed-loop
system destabilizes because an important state variable was discarded to carry
out the feedback (i.e., associated with a high characteristic value). Although
generally true, it is not unconditional that the strongly controllable and ob-
servable parts are the most important for guaranteeing closed-loop stability.

Suppose that the system is closed-loop balanced. We have seen that if

µr � µr+1, then the state vector can be partitioned: x =

[
x1

x2

]
, where x1

represents the first r components and x2 the remaining n − r components.
Correspondingly, the matrices A, B and C can be partitioned as:

A =

[
A11 A12

A21 A22

]
; B =

[
B1

B2

]
; C =

[
C1 C2

]

Taking into account that Kopt = BT P̄ with P̄ =


µ1

µ2

. . .

µn

 =

[
P̄1

P̄2

]
, the closed-loop matrix is given by:

Ac = A− BKopt = A =

[
A11 A12

A21 A22

]
−
[

B1

B2

] [
BT1 BT2

] [P̄1 0
0 P̄2

]
=

=

[
A11 − B1BT1 P̄1 A12 − B1BT2 P̄2

A21 − B2BT1 P̄1 A22 − B2BT2 P̄2

]
We are guaranteed that the eigenvalues of those matrices have negative

real part, whereas for the lower order model obtained neglecting n − r state
variables, or equivalently considering P̄2 = 0, this issue should be critically
studied. The closed-loop matrix becomes:

Ãc =

[
A11 − B1BT1 P̄1 A12

A21 − B2BT1 P̄1 A22

]
such that the state linear regulator is applied on r state variables instead of
on all the n state variables and the closed-loop system may also be unstable
as shown in the next example.

Closed-loop Balanced Realization 147

MATLABr Exercise 8.2
Consider the continuous-time LTI system with state-space matrices:

A =


1 0 0 0
0 10 0 0
0 0 2 0
0 0 0 3

 ; B =


1
1
1
1

 ; C =
[

1 1 1 1
]

(8.8)

Define the system in MATLABr

>> A=diag([1 10 2 3])

>> B=ones(4,1)

>> C=ones(1,4)

>> system=ss(A,B,C,0)

and compute the closed-loop balanced realization with the procedure described in Sec-
tion 8.4:
>> [systemb, G, Pgreekb, Pcareb]=balrealmcc(system)

Now, let us consider r = 2 and impose P̄2

>> Pcarebred=Pcareb

>> Pcarebred(3:4,3:4)=zeros(2)

We calculate the gains
>> Kred=systemb.b’*Pcarebred

and the closed-loop eigenvalues
>> eig(systemb.a-systemb.b*Kred)

One obtains λ1,2 = 0.0655± 14.6635j, λ3 = −0.7484 and λ4 = 0.2539 which show that
the closed-loop system is not stable. Instead, if the full control is applied:
>> K=systemb.b’*Pcareb

>> eig(systemb.a-systemb.b*K)

The closed-loop eigenvalues are: λ1 = −10.3287, λ2 = −3.9679, λ3 = −1.3195, λ4 =
−2.4151 and the closed-loop system is stable.

We have already seen that, if P̄2 is made up of small coefficients, the
approximation deriving from the fact that we are applying the linear regulator
only on r state variables instead of on all the n state variables, is allowed. Let
us now find out to what point the approximation is allowed or in other words
to what point is Ãc a stability matrix. To do this, the contribution P̄2 can be
interpreted as a perturbation term

Ãc = Ac + ∆Ac

with ∆Ac =

[
0 +B1BT2 P̄2

0 +B2BT2 P̄2

]
.

Generally, given matrices

Ã = A + ∆A

let us consider what specifications ∆A must have to guarantee that, given
that A is a stability matrix, also Ã is a stability matrix.

In certain particular cases the problem can be simply resolved. Think
of the case in which matrix A is an inferior triangular matrix. Any type of
perturbation which modifies the coefficients of A below the diagonal means
that Ã is a stability matrix. So, if matrix ∆A has a particular structure, it
does not affect the stability of Ã. Therefore, the conditions depend on the

148 Optimal and Robust Control: Advanced Topics with MATLAB r

fact that the perturbation is localized onto some terms or spread across all
the terms of the matrix.

More generally, the only information we have about matrix A is that it is
a stability matrix. The conditions on ∆A are of the type

‖∆A‖ < β (8.9)

so that if the 2-norm of this matrix is less than β, the perturbed system is
bound to remain stable. There are various methods of calculating β. The least
conservative (to which the highest value of β is associated) establishes that:

βmax =
1

‖(sI−A)−1‖∞
(8.10)

where ‖(sI−A)−1‖∞ is the H∞ norm of matrix (sI−A)−1:

‖(sI−A)−1‖∞ = sup
ω
{‖(jωI−A)−1‖S : ω ∈ R} (8.11)

Matrix (sI−A) is a complex matrix, function of ω. As ω varies, the matrix
whose spectral norm is greatest should be considered. βmax is the greatest
value which assures that if relation (8.9) is verified, matrix Ã is still stable.

Going back to the more specific case under examination, note that matrix
∆A can be written as:

∆A = B̃B̃T∆P (8.12)

with ∆P =

[
0 0
0 P2

]
. ∆A can be therefore considered a structured uncer-

tainty.
By using consistent norms we have that:

‖∆A‖ = ‖B̃B̃T∆P‖ ≤ ‖B̃B̃T ‖ · ‖∆P‖ ≤ ‖B̃B̃T ‖ · µr+1 (8.13)

Since P2 is a diagonal matrix, its norm will be less than µr+1. In this way,
a relationship between the uncertainty matrix and the characteristic value
µr+1 (which corresponds to the first state variable neglected in the closed-
loop reduced model) is established. If f(Ac) = β, then

µr+1 ≤
f(Ac)

‖B̃B̃T ‖
(8.14)

µr+1 is a quantity which depends on Ac and allows us to establish the condition
for which Ãc is a matrix of (asymptotic) stability.

From the closed-loop balanced realization, the characteristic values can
therefore be calculated as well as that which satisfies (8.14). At this point
(having found index r), the number of state variables which must be used
in feedback is established. Naturally, performance deteriorates as one may
notice from the performance index J = xT (0)Px(0) which shows an error

Closed-loop Balanced Realization 149

proportional to the neglected coefficients µr+1, . . . , µn (in fact P does not
contain the sub-matrix P2).

The direct truncation and singular perturbation techniques for model or-
der reduction can be applied to closed-loop balanced realization exactly as
in the case of the open-loop balanced realization widely discussed in Chap-
ter 6. We mention here another result on reduced order models based on the
closed-loop balanced realization which is important for the design of low-order
compensators. Starting from a system in closed-loop balanced realization, the
reduced order model obtained with direct truncation is still in a closed-loop
balanced form. When A22 is stable, the singular perturbation approximation
can be applied and the reduced order model is also closed-loop balanced.

8.6 Closed-loop Balanced Realization for Symmetric
Systems

As we saw in Chapter 6.3 in the case of open-loop balanced realization, sym-
metric systems have the advantage of certain properties which simplify the
computation of the balancing. Very similar properties also hold for the closed-
loop balanced realization.

Let us consider the CARE equation (7.76) and apply the relations char-
acteristic of symmetric systems (C = BTT, B = T−1CT , A = T−1ATT,
AT = TAT−1):

ATP + PA− PBBTP + CTC = 0⇒

TAT−1P + PA− PBCT−1P + TBC = 0

Multiplying left by matrix T−1, we get:

AT−1P + T−1PA− T−1PBCT−1P + BC = 0

So making P∗ = T−1P

AP∗ + P∗A− P∗BCP∗ + BC = 0 (8.15)

Proceeding analogously with the FARE (8.1):

AΠ + ΠAT −ΠCTCΠ + BBT = 0⇒

AΠ + ΠTATT−1 −ΠTBCΠ + BCT−1 = 0

Multiplying right by T and making P∗ = ΠT, we get:

150 Optimal and Robust Control: Advanced Topics with MATLAB r

AP∗ + P∗A− P∗BCP∗ + BC = 0 (8.16)

Relation (8.16) is equal to equation (8.15). Therefore, analogous to open-
loop balancing, CARE and FARE are equal for symmetric systems. The ob-
tained equation is still quadratic but in contrast to the Riccati equation the
solution is not symmetric. Furthermore, there is no guarantee that the solution
is positive definite. Note however that:

P∗ = ΠT,P∗ = T−1P⇒ P∗ · P∗ = ΠP (8.17)

where Π and P are solutions for the FARE and CARE. If, out of all the
solutions, the positive definite matrices Π̄ and P̄ are selected, the characteristic
values can still be defined as the square roots of the eigenvalues of Π̄P̄. So,
for symmetric systems and because of relation (8.17), the characteristic values
can be calculated as the square roots of the eigenvalues of the matrix (P∗)2.
Since the matrix T can be calculated from the observability and controllability
matrix, to determine the characteristic values, instead of solving two Riccati
equations, only one equation has to be solved.

So, equation (8.15) is equivalent to the cross-gramian equation and is called
the cross-Riccati equation. Analogously to Wco, P∗ also holds two pieces of
information: one is that it can calculate the system characteristic values and,
furthermore, the signs of the eigenvalues allow one to determine the signature
matrix of the system.

8.7 Exercises

1. Given the matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−3 −8 −8 −5

 (8.18)

determine ‖∆A‖max, so that A + ∆A is a matrix with eigenvalues
with negative real part.

2. Given the system with transfer function

G(s) =
1

(1− s)(s+ 2)2(s+ 0.5)2

determine a balanced closed-loop realization and a suitable reduced
order model. Then verify that the model is closed-loop stable.

Closed-loop Balanced Realization 151

3. Calculate the characteristic values for the system with transfer func-
tion G(s) = 2s

s2+1 .

4. Calculate the closed-loop balanced realization for the system with
transfer function G(s) = s+1

s5+7s2+6s+5 . Design a reduced order reg-
ulator and observer making sure that the closed-loop system is
asymptotically stable.

5. Given the system with transfer function G(s) = s
s2+1 + s2+1

s(s2+2)

calculate the characteristic values and synthesize the system with
circuit components.

6. Given the system with transfer function G(s) = 1
s−1 calculate the

linear state regulator, optimal observer and the compensator C(s)
(see Figure 8.4), using the CARE and FARE.

FIGURE 8.4
Block scheme for Exercise 6.

7. Calculate, if possible, the system that has characteristic values µ1

and µ2 eigenvalues λ1 = −5 and λ2 = −1.

8. Verify that the characteristic values of an all-pass system are all
equal to the static gain k.

9. Design a reduced order model for system G(s) = s+1
s3+5s2+7s−2 .

10. Given the system

G(s) =
1

(1− s)(s+ 2)2(s+ 0.5)2

determine a closed-loop balanced realization and a reduced order
model. Verify then that the reduced order model is stable in closed-
loop.

http://www.taylorandfrancis.com

9

Positive-real, Bounded-real and
Negative-imaginary Systems

CONTENTS

9.1 Passive Systems . 154
9.1.1 Passivity in the Frequency Domain . 154
9.1.2 Passivity in the Time Domain . 159
9.1.3 Factorizing Positive-real Functions . 160
9.1.4 Passive Reduced Order Models . 161
9.1.5 Energy Considerations Connected to the Positive-real

Lemma . 161
9.1.6 Closed-loop Stability and Positive-real Systems 162
9.1.7 Optimal Gain for Loss-less Systems . 163

9.2 Circuit Implementation of Positive-real Systems 165
9.3 Bounded-real Systems . 166

9.3.1 Properties of Bounded-real Systems . 169
9.3.2 Bounded-real Reduced Order Models 170

9.4 Relationship Between Passive and Bounded-real Systems 170
9.5 Negative-imaginary Systems . 171

9.5.1 Characterization of Negative-imaginary Systems in the
Frequency Domain . 171

9.5.2 Characterization of Negative-imaginary Systems in the
Time Domain . 175

9.5.3 Closed-loop Stability and Negative-imaginary Systems . 176
9.6 Exercises . 178

In this chapter the main properties of positive-real, bounded-real, and
negative-imaginary systems are discussed. Emphasis is also given to the re-
lationships of duality existing among them. These classes of systems are all
characterized first in the frequency domain and then in the time domain with
the introduction of the positive-real lemma, the bounded-real lemma, and the
negative-imaginary lemma. Hamiltonian matrices associated to these lemmas
are also dealt with, along with Riccati equations for positive-real and bounded-
real systems. The importance of these classes of systems in relation to robust
control is also underlined. Several worked examples are included.

DOI: 10.1201/9781003196921-9 153

https://doi.org/10.1201/9781003196921-9

154 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 9.1
Example of a passive electrical circuit (L > 0, C > 0, R1 > 0, R2 > 0).

9.1 Passive Systems

There is perfect duality between dynamical systems and circuits. A dynamical
system can be made of circuits which can mimic its behavior. Consider the
circuit in Figure 9.1 with parameters L > 0, C > 0, R1 > 0, R2 > 0. This type
of circuit is passive: it dissipates the energy supplied by the generator without
ever being able to supply any. By attributing an equivalent impedance to
the inductor and capacitor, the circuit can be studied in the Laplace domain
(see Figure 9.2). Thus, working with algebraic equations rather than with
integral-differential equations, the relationships characterizing the circuit can
be derived. For example, consider the impedance of a circuit defined as

Z(s) =
V (s)

I(s)
(9.1)

Calculating this characteristic transfer function is straightforward. More
generally, when a circuit has more than one input (e.g., the circuit in Figure 9.3
has two independent current generators), the circuit can be characterized by
a matrix of impedances, each from each input to each output.

First, let us consider what conditions make a SISO system passive, then
we will extend the analysis to systems with multiple inputs and outputs.

9.1.1 Passivity in the Frequency Domain

Deciding whether a SISO system is passive is done by analyzing its impedance
characteristics by means of the concept of positive-real function.

Definition 19 (Positive-real function) A function is positive-real if it sat-
isfies the following properties:

Positive-real, Bounded-real and Negative-imaginary Systems 155

FIGURE 9.2
Example of a passive electrical circuit (L > 0, C > 0, R1 > 0, R2 > 0) studied
in the Laplace domain.

FIGURE 9.3
Example of a passive electrical circuit with two inputs.

1. Function Z(s) is analytic for <e s > 0 (i.e., there are no poles
on the right-hand half of the complex plane);

2. Any function poles lying on the imaginary axis are simple and
have positive and real residues;

3. <e (Z(s)) ≥ 0 ∀<e s ≥ 0.

Once a positive-real function is defined, we discuss how to determine if the
system is passive by analyzing its impedance characteristics.

Theorem 18 A SISO system is passive if and only if its impedance is
positive-real.

The importance of the last condition of the positive-real definition should
be highlighted; the fact that the real part of the impedance is positive is
clearly linked to the fact that the system is dissipating energy. Next, we will
speak equivalently about positive-real systems and passive ones. Furthermore,

156 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 9.4
Example of a relaxation electrical circuit.

FIGURE 9.5
Example of a loss-less circuit.

strictly positive-real systems will refer to those systems strictly satisfying prop-
erty 3) in Definition 19, i.e., <e (Z(s)) > 0 ∀<e s ≥ 0. Notice also that
the third condition can be equivalently checked by considering the function
<e (Z(jω)), and in particular requiring that <e (Z(jω)) ≥ 0 ∀ω > 0.

Let us look at some examples of classes of passive systems. Firstly, generic
RLC systems (henceforth we assume R > 0, L > 0 and C > 0) have a
positive-real impedance which makes them passive.

Another example of passive systems are positive-real functions with simple
poles and positive residues whose impedance derives from circuits made up
only of resistors and capacitors, the so-called class of relaxation systems. An
example is shown in Figure 9.4.

In loss-less systems, i.e., circuits made up of ideal capacitors and induc-
tors (an example is shown in Figure 9.5) the impedance is always such that
<e (Z(jω)) = 0 ∀ω (precisely because there are no losses). This impedance
is odd positive-real (Z(s) = −Z(−s)), its pecularity being that its poles and
zeros (all on the imaginary axis, otherwise, it would degenerate or dissipate
energy) alternate in frequency.

Positive-real, Bounded-real and Negative-imaginary Systems 157

(a) (b)

(c) (d)

FIGURE 9.6
Examples of systems having (a) and (b) and not having (c) and (d) the prop-
erty of losslessness.

Example 9.1
Let us consider the systems whose pole-zero maps are shown in Figure 9.6:

• Z(s) = s2+1
s(s2+4)

(Figure 9.6(a)) is a positive-real loss-less system;

• Z(s) = s
s2+1

(Figure 9.6(b)) is a positive-real loss-less system;

• Z(s) = s2+4
s2+1

(Figure 9.6(c)) is not a positive-real loss-less system;

• Z(s) = s2+4
s(s2+1)

(Figure 9.6(d)) is not a positive-real loss-less system.

Note that, relaxation systems are strictly odd positive-real, whereas loss-
less systems are positive-real but not strictly so.

The characteristic values of an odd positive-real function are all one,
whereas the singular values cannot be calculated given that Lyapunov equa-
tions have no solution. This means that a lower order model based on closed-
loop balancing cannot be obtained, since all the state variables have equal
weight in the feedback and so have to be necessarily taken into consideration.

This result also holds for MIMO systems.

158 Optimal and Robust Control: Advanced Topics with MATLAB r

(a) (b)

FIGURE 9.7
Examples of loss-less positive-real systems: (a) low-pass filter; (b) high-pass
filter.

Example 9.2
Let us calculate the characteristic values of an odd positive-real function G(s) = 2

s
.

Consider the realization: A = 0, B = 1, C = 2. The CARE equation is:

−P 2 + 4 = 0

and so P̄ = 2. The FARE equation is:

−4Π2 + 1 = 0

and so Π̄ = 1
2

.
Therefore,

Π̄P̄ = 1⇒ µ = 1

Example 9.3
Let us consider the two circuits in Figure 9.7. The one in Figure 9.7(a) is a low-pass
filter, whereas the one in Figure 9.7(b) is a high-pass filter. Since both circuits are
loss-less, their characteristic values are one.

Note that the term positive systems refers to a different class of systems. A
linear system is said to be externally positive only if its output (the zero-state
response) is non-negative for any non-negative input.

Theorem 19 A linear system is externally positive if and only if its impulse
response is non-negative.

An as-yet open question is how to verify the non-negativity of y(t) =
CeAtB, the impulse response of a continuous linear time-invariant system.
This requires numerical verification except when there are special pole and
residue properties as in the case of relaxation systems which are externally
positive (having positive residues).

Analogous to the SISO systems, passive MIMO systems are those whose
transfer matrix is positive-real.

Positive-real, Bounded-real and Negative-imaginary Systems 159

Definition 20 (Positive-real transfer matrix) A transfer matrix is
positive-real if and only if:

1. Each of its components is analytical for <e s > 0 (i.e., there are
no poles on the right-hand half of the complex plane);

2. For each of the imaginary poles of Z(s), if any, its residue is a
positive semi-definite Hermitian matrix;

3. Z(jω) + ZT (−jω) is positive semi-definite for each ω such that
jω is not a pole of Z(jω).

Remember that Z†(jω) is the Hermitian matrix (i.e., the transposed con-
jugated matrix) of Z(jω), such that condition 3) of the positive-real definition
may be formulated in terms of Z†(jω) + Z(jω). For strictly positive-real sys-
tems, the condition is that Z†(jω)+Z(jω) is positive definite ∀ω. This implies
that, as ω varies, the matrix Z†(jω) + Z(jω) only has positive eigenvalues.

9.1.2 Passivity in the Time Domain

The definition discussed above is in the frequency domain. There are also
analogous conditions to characterize passive systems in the time domain. Let
us consider a minimal realization (A,B,C,D) of the impedance matrix Z(s),
assumed square (i.e., m = p). To characterize a passive system from a re-
alization of it, the following theorem, known as the positive-real lemma, is
needed.

Theorem 20 (Positive-real lemma) A linear time-invariant system in
minimal form R(A,B,C,D) is positive-real if there exists a positive definite
matrix P which satisfies:  PA + ATP = −LLT

PB = CT − LW
D + DT = WTW

(9.2)

with L ∈ Rn×m and W ∈ Rm×m.

Note in particular that the factorization of equation (9.2) exists if matrix
D is positive definite (this in fact allows to obtain a matrix D + DT that can
be factorized as the product of two matrices).

Consider, for example, an improper system. It decomposes into a strictly
proper part and a remainder. From a circuitry point of view, these two terms
correspond to a dynamical circuit block (being a function of s) and a resis-
tance. If the resistance is negative, the circuit is not passive and the function is
not positive-real. This corresponds exactly to the case when D is not positive
definite.

On the hypothesis that the matrix D is positive definite, L can be calcu-
lated from the second equation of (9.2):

160 Optimal and Robust Control: Advanced Topics with MATLAB r

L = (−PB + CT)W−1 (9.3)

Note that matrix W is invertible since D+DT 6= 0, given that D is positive
definite.

For this reason, it does not suffice that D is positive semi-definite, but D
has to be positive definite.

By substituting into the first equation of (9.2), we obtain:

PA + ATP = −(−PB + CT)(D + DT)−1(−PB + CT)T (9.4)

and by re-ordering

P(A− B(D + DT)−1C) + (AT − CT (D + DT)−1BT)P+
+PB(D + DT)−1BTP + CT (D + DT)−1C = 0

(9.5)

Equation (9.5) is a Riccati equation in which the quadratic term is positive
so there is no guarantee of a positive definite solution. A Hamiltonian matrix
can be associated with the Riccati equation (9.5):

H =

[
A− B(D + DT)−1C B(D + DT)−1BT

−CT (D + DT)−1C −AT + CT (D + DT)−1BT

]
(9.6)

According to Theorem 20, a system is positive-real if the Riccati equation
(9.5) provides a positive definite solution.

The positive-realness of a system can be also studied by examining the
Hamiltonian matrix (9.6). The condition can be derived by taking into account
the following theorem relating the eigenvalues of the Hamiltonian matrix (9.6)
with the singularity of the matrix Z(jω) + ZT (−jω) at some ω.

Theorem 21 Assume that A has no imaginary eigenvalues, (D+DT) is non-
singular and ω0 ∈ R. Then λ = 0 is an eigenvalue of (Z(jω0) + ZT (−jω0)) if
and only if (H− jω0I) is singular.

For MIMO systems with n = 1 and for SISO systems it can be derived that
the system is positive-real if the Hamiltonian matrix (9.6) has no eigenvalues
on the imaginary axis.

9.1.3 Factorizing Positive-real Functions

Once obtained P, the matrix L can also be determined, and from these the
matrix

W(s) = W + LT (sI−A)−1B

which factorizes the original positive-real transfer function matrix as follows:

Z(s) + ZT (−s) = WT (−s)W(s)

Therefore, a positive-real transfer function matrix can be factorized as the
product of two matrices which depend on s.

Positive-real, Bounded-real and Negative-imaginary Systems 161

Example 9.4
Consider, for example, Z(s) = 2

s
that is positive-real.

Since ZT (−s) = − 2
s

, then W (s) = 0 factorizes the original positive-real function.

Example 9.5
Now consider Z(s) = − 2

s
which is not positive-real. Consider the realization: A = 0,

B = 1 and C = −2 (notice that the residue is negative). Consider also the second
equation of the positive-real lemma (9.2): PB = CT −LW . Given that C < 0, no value
of P can satisfy this equation. So, neither L nor W (s) can be calculated.

9.1.4 Passive Reduced Order Models

Now let us consider the issue of finding a reduced order model of a positive-
real system. Suppose that the system has no poles on the imaginary axis, and
to calculate the open-loop balanced realization from which we can calculate
the singular values and derive a lower order model. To evaluate the efficacy of
the model, it is not sufficient to consider the error norm between the original
system and the lower-order model but, since this latter should accurately de-
scribe the original system characteristics, we must also verify that the reduced
order model is still positive-real.

There is a method which guarantees this property. As we saw in Chapter
6, it is important to build a lower-order model into a state-space realization
which has the desired characteristics. In this case, one may consider the dual
equation of the Riccati equation (9.4):

ΠAT + AΠ = −(−ΠCT + B)(D + DT)−1(−ΠCT + B)T (9.7)

and find a realization in which the solutions to (9.4) and (9.7) are equal and
diagonal. Naming these solutions Π̄ and P̄ note they are positive definite matri-
ces given that the original system is positive-real. Furthermore, since they are
diagonal, when direct truncation is applied and the matrix subblock neglected,
the subblock obtained is positive definite, so the original characteristics of the
system (i.e., passivity) are preserved. When dealing with symmetric systems,
the lower-order model can be obtained via one equation.

9.1.5 Energy Considerations Connected to the Positive-real
Lemma

The positive-real lemma came about as a result of considerations on circuit
energy. Let us consider the impedance in Figure 9.8. Given that the current
and voltage are as in Figure 9.8, the energy dissipated by the impedance is:

E =

∫ T

0

v(t)i(t)dt (9.8)

The circuit is passive if the dissipated energy is not negative. For a linear
time-invariant system:

162 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 9.8
A generic impedance.

{
ẋ = Ax + Bu
y = Cx + Du

(9.9)

analogous to equation (9.8) the energy can be defined as:

E =

∫ T

0

uT (t)y(t)dt (9.10)

System (9.9) is passive if energy (9.10) is non-negative. This condition on
the energy is equivalent to:

P > 0;[
ATP + PA PB− CT

BTP− C −DT −D

]
≤ 0

(9.11)

where the notation P > 0 indicates that P has to be positive definite. (9.11)
is a collection of matrix inequalities; if they have a solution then the system is
passive. In Chapter 12, we will discuss the exact meaning of these expressions
and show that many control problems can be re-formulated as linear matrix
inequalities.

9.1.6 Closed-loop Stability and Positive-real Systems

There is a significant connection between the stability of feedback systems and
positive-real systems. Let us consider the feedback system in Figure 9.9, it can
be shown that if G1(s) and G2(s) are positive-real and at least one of the two
systems is strictly positive-real, then the closed-loop system is asymptotically
stable.

Theorem 22 The feedback system shown in Figure 9.9 is asymptotically sta-
ble if G1(s) and G2(s) are positive-real, at least one of the two systems being
strictly positive-real.

Positive-real, Bounded-real and Negative-imaginary Systems 163

FIGURE 9.9
Closed-loop system with positive-real G1(s) and G2(s).

Example 9.6
Consider the system in Figure 9.9 with G1(s) = 1

s+4
and G2(s) = s

s2+1
. Since G2(s)

is loss-less (therefore positive-real) and G1(s) is a relaxation system (therefore strictly
positive-real), the closed-loop system is asymptotically stable. It is easy to verify that

the closed-loop transfer function equals W (s) =
G1(s)

1+G1(s)G2(s)
= s2+1

s3+4s2+2s+4
and that

the closed-loop system is asymptotically stable.

Example 9.7
The condition expressed by Theorem 22 is only sufficient, the opposite not being veri-
fied. Let us look at two counter-examples of systems which do not satisfy the theorem
conditions, one case showing a closed-loop unstable system, the other asymptotically
stable.
First, let us consider G1(s) = 1

s−1
and G2(s) = s

s2+1
. The closed-loop transfer function

is W (s) = s2+1
s3−s2+2s−1

such that the closed-loop system is unstable.

Now let us consider G1(s) = 1
s−0.1

and G2(s) = 1
s2+2s+1

, here the closed-loop transfer

function is W (s) = s−0.1
s3+1.9s2+0.8s+0.9

. By calculating the system poles or by applying

the Routh criterion, the closed-loop system can be verified as being asymptotically
stable.

9.1.7 Optimal Gain for Loss-less Systems

There is a significant tie-in between the optimal gain and coefficients of C
for the class of loss-less systems. Consider the optimal control problem for a
loss-less system S(A,B,C), with the following optimization index:

J =

∫ ∞
0

(xTCTCx+ uTu)dt (9.12)

The optimal gain turns out to be equal to matrix C, i.e., K = C.
A system S(A,B,C) is loss-less if and only if the positive-real lemma holds,

in other words if there exists a symmetric and positive definite matrix P1 such
that:

P1A + ATP1 = 0 (9.13)

164 Optimal and Robust Control: Advanced Topics with MATLAB r

P1B = CT (9.14)

Now, let us consider the CARE equation for loss-less systems:

ATP + PA− PBBTP + CTC = 0 (9.15)

The solution of this equation allows the optimal gain to be calculated, but
by using relations (9.13) and (9.14), it can be proved that P1 satisfies CARE
and therefore K = BTP1 = C.

Moreover, it follows another result concerning the optimal eigenvalues for
SISO loss-less systems with index (9.12): the optimal eigenvalues are the roots
of

N(s) +D(s) = 0 (9.16)

where N(s) and D(s) are the numerator and denominator polynomials of the
transfer function of system S(A,B,C).

MATLABr Exercise 9.1
Consider the continuous-time LTI system with state-space matrices:

A =


0 1 0 0
0 0 −1 0
0 0 0 8
0 0 −8 0

 ; B =


1
0
0
1

 ; C =
[

2 0 0 4
]

The transfer function of this system is:

G(s) =
6s3 + 132s

s4 + 65s2 + 64

from which it is immediate to verify that the system is loss-less (G(s) = −GT (−s)).
Now, with the help of MATLAB, we solve the Riccati equation for optimal control and
verify that K = C.
First, let us define the state-space matrices:
>> A=[0 1 0 0; -1 0 0 0; 0 0 0 8; 0 0 -8 0]

>> B=[1 0 0 1]’

>> C=[2 0 0 4]

and calculate its transfer function:
>> system=ss(A,B,C,0)

>> tf(system)

Let us now solve the Riccati equation ATP + PA − PBBTP + CTC associated with
index (9.12). To do this, use the command:
>> [K,P,E]=lqr(A,B,C’*C,1)

One gets:
K =

[
2 0 0 4

]
i.e., K = C.
The corresponding optimal eigenvalues are given by: λ1,2 = −1.8456 ± i7.2052, λ3 =
−1.5738 and λ4 = −0.7351. They can be also calculated by equation (7.92) through
the command:
>> roots([1 6 65 132 64])

Also note that equation (9.16) leads to the same result of equation (7.92).

Positive-real, Bounded-real and Negative-imaginary Systems 165

FIGURE 9.10
For R1 = 1kΩ, C = 2µF , L = 1mH and R2 = 5kΩ the passive circuit

implements the transfer function G(s) = 2·10−6s2+(10+10−3)s+6·103
2·10−9s2+10−2s+1 .

9.2 Circuit Implementation of Positive-real Systems

In this section, an example of the implementation of positive-real systems is
illustrated.

Example 9.8

Given the system with transfer function G(s) =
2·10−6s2+(10+10−3)s+6·103

2·10−9s2+10−2s+1
propose, if

possible, a passive electrical circuit implementation.

Solution
First verify if the function G(s) is positive-real, i.e., if it is possible to obtain a passive
electric circuit which is analogous to the given system. To do this, we verify if conditions
1-3 of Definition 19 are true. Points 1-2 can be checked immediately. For point 3, the
real part of G(jω) needs to be calculated:

<e(G(jω)) =
6 · 103 + (10−1 − 4 · 10−6)ω2 + 4 · 10−15ω4

(1− 2 · 10−9ω2)2 + 10−4ω2

Note that <e (G(jω)) ≥ 0 ∀ω, so the system is positive-real.
Proceed by rewriting the transfer function as the sum of two terms, one strictly proper
and one improper. To do this, we divide the polynomial numerator by the denominator,
obtaining:

G(s) = 1000 +
10−3s+ 5 · 103

2 · 10−9s2 + 10−2s+ 1

The first term can be interpreted as a resistor (R1) of value 1kΩ, while the second term
is a generic impedance in series with R1. Rewrite the second term as follows:

G(s) = 1000 +
1

2·10−9s2+10−2s+1
10−3s+5·103

and iterate the procedure with the term 2·10−9s2+10−2s+1
10−3s+5·103 . Note that this term should

be interpreted as the admittance associated with the impedance in series with R1.
Divide the polynomial numerator by the denominator to obtain:

166 Optimal and Robust Control: Advanced Topics with MATLAB r

G(s) = 1000 +
1

2 · 10−6s+ 1
10−3s+5·103

This form of G(s) yields a direct interpretation in terms of series and parallel
impedances or elementary admittances. In fact the term 10−3s + 5 · 103 can be in-
terpreted as the series impedance of an inductor with a resistance (with L = 1mH and
R2 = 5kΩ). The series of these two components should be then connected in parallel
with an admittance equal to 2 · 10−6s (and so with a capacitor C = 2µF). Finally, we
have to consider the resistor R1 in series to this circuit block. The equivalent circuit is
shown in Figure 9.10.

9.3 Bounded-real Systems

Before defining bounded-real systems in the more general case, consider a
SISO system. A SISO system G(s) is bounded-real if G(s) is stable and if the
magnitude plot of the Bode diagram is below the value 0dB for any ω, that
is, if the maximum magnitude is less than or equal to one.

From this definition it follows that G(s) = 1
s and G(s) = 4

s+1 are not

bounded-real systems, while G(s) = 1
s+2 is.

Generally, the following defines bounded-real systems.

Definition 21 A system S(s) is bounded-real if these conditions apply:

1. All the elements of the transfer function matrix, i.e., Sij(s), are
analytic in <e s > 0 (i.e., the polynomials in the denominator of
Sij(s) are Hurwitz polynomials);

2. Matrix I − ST (−s)S(s) is a non-negative Hermitian matrix for
<e s > 0 or matrix I − ST (−jω)S(jω) is non-negative for all the
values of ω.

Condition 2) can also be formulated according to the standard definition
of the H∞ norm of a system.

Remember that H∞ norm of a system S(s) is defined as

‖S(s)‖∞ = max
ω

[σmax(S(jω))]

Condition 2) can be thus written as

‖S(s)‖∞ ≤ 1

Moreover a system is said to be strictly bounded-real if ‖S(s)‖∞ < 1.

Positive-real, Bounded-real and Negative-imaginary Systems 167

Example 9.9
Consider system G(s) = 1

s+2
; condition 1) is clearly satisfied. Condition 2) implies that

1−
1

2− jω
1

2 + jω
< 1

i.e., that
1

4 + ω2
< 1

which is the same condition obtained by applying the definition of bounded-real systems
to SISO systems.

As in the case of positive-real systems, conditions can be given directly in
the time domain through the bounded-real lemma.

Theorem 23 (Bounded-real lemma) A system S(s) =

[
A B

C D

]
in min-

imal form is bounded-real if ∃ P symmetric and positive definite that satisfies

PA + ATP = −CTC− LLT (9.17)

−PB = CTD + LW (9.18)

I−DTD = WTW (9.19)

with L ∈ Rn×m and W ∈ Rm×m.

Provided that W is invertible, we can write

L = (−PB− CTD)W−1

and substituting in the condition (9.17), we obtain the quadratic equation
associated with the bounded-real condition of a system:

P(A + B(I−DTD)−1DTC) + (AT + CTD(I−DTD)−1BT)P+
+PB(I−DTD)−1BTP + CTD(I−DTD)−1DTC + CTC = 0

(9.20)

If the system is strictly proper, (D = 0), then equation (9.20) becomes

PA + ATP + PBBTP + CTC = 0 (9.21)

Equation (9.20) can be associated with the following Hamiltonian matrix:

H =

[
A + B(I−DTD)−1DTC B(I−DTD)−1BT

−CTD(I−DTD)−1DTC− CTC −AT − CTD(I−DTD)−1BT

]
(9.22)

If there exists a positive definite solution of the Riccati equation (9.20),
then the system is bounded-real, otherwise not. Analogous to positive-real
systems, the real boundness of a system can be checked from the eigenvalues
of H. For strictly proper MIMO systems, for MIMO systems with n = 1, and

168 Optimal and Robust Control: Advanced Topics with MATLAB r

for SISO systems, the condition is that H has no eigenvalues on the imaginary
axis.

In strictly proper systems (D = 0) the Hamiltonian matrix (9.22) can be
written as

H =

[
A BBT

−CTC −AT

]
(9.23)

Example 9.10
Consider the system G(s) = k

s+1
, taking into account its Bode diagram, the system is

bounded-real if k ≤ 1, and strictly bounded-real if k < 1.
Applying the bounded-real lemma, we obtain the same result. In fact, a realization in
state form of the system is given by A = −1, B = 1, C = k, for which the Hamiltonian
is:

H =

[
−1 1
−k2 1

]
The characteristic polynomial is given by:

det (λI−H) = λ2 − 1 + k2

The condition that the eigenvalues are not on the imaginary axis is |k| ≤ 1. For these
values the system is bounded-real.
Note that if we consider the CARE associated with G(s)

H =

[
−1 −1
−k2 1

]
we obtain

det (λI−H) = λ2 − 1− k2

In this case, the eigenvalues of H are never purely imaginary (independently of the
value assumed by k), so the issue of the optimal regulator is always solvable (since the
system is always controllable).

If the system S(s) is bounded-real, i.e., if we are able to determine the
positive definite solution of the Riccati equation (9.20), then W(s) = W +
LT (sI−A)−1B can be defined, leading to the following factorization:

I− ST (−s)S(s) = WT (−s)W(s)

The bounded-real lemma derives from a more general definition which can
be given for dynamical systems (not necessarily linear). A system is bounded-
real if ∀u, ∀T it holds that∫ T

0

yT (t)y(t)dt ≤
∫ T

0

uT (t)u(t)dt

The conditions expressed by the bounded-real lemma are limit conditions
of this more general definition.

Positive-real, Bounded-real and Negative-imaginary Systems 169

FIGURE 9.11
System constituted by the feedback of G1(s) and G2(s). The system is asymp-
totically stable if G1(s) ·G2(s) is a strictly bounded-real system.

Finally, the problem can be reformulated in terms of linear matrix inequal-
ities. A system is bounded-real if a solutions to the inequalities

P > 0[
ATP + PA + CTC PB + CTD

BTP + DTC DTD− I

]
≤ 0

(9.24)

can be found.

9.3.1 Properties of Bounded-real Systems

There is an important result linking the properties of bounded-real systems
with closed-loop asymptotic stability as expressed by the following theorem:

Theorem 24 (Small gain theorem) The system shown in Figure 9.11 is
asymptotically stable if L(s) = G1(s)G2(s) is a strictly bounded-real system.

The proof of this theorem is based on the fact that, injecting a signal into
the summing node, it will recur attenuated in input. In fact, since the system
is bounded-real, each frequency component of the signal will be attenuated.
Note also that in the SISO case the theorem implies that the Nyquist plot of
the equation L(s) = G1(s)G2(s) does not surround point (−1, 0).

The theorem expresses a very important result. Since the H∞ norm is a
consistent norm, we can obtain information about the stability of the feedback
system from the value of the norm of the single systems. For example, if
‖G1(s)‖∞ < γ we can deduce that the feedback system will be asymptotically
stable for any systemG2(s) such that ‖G2(s)‖∞ < 1

γ . As we will see below, this
result is of utmost importance for characterizing the robustness of a control
system.

170 Optimal and Robust Control: Advanced Topics with MATLAB r

9.3.2 Bounded-real Reduced Order Models

The Riccati equation (9.20) is also important for obtaining a reduced-order
model with particular properties. If we approximate a bounded-real system
using the open-loop balancing, in fact, we have no guarantee that the approxi-
mated system is bounded-real. We ought to have an approximated model that
faithfully represents this characteristic of the initial system.

To approximate a bounded-real system through a reduced-order model
which is also bounded-real, the Riccati equation (9.20) and its dual can be
used for balancing and then proceed similarly to closed-loop balancing. In
addition, if the system is symmetric, the two equations can be replaced by a
single Riccati equation.

9.4 Relationship Between Passive and Bounded-real
Systems

There is a relationship between passive systems and bounded-real systems.
Before clarifying this relationship, we will briefly show why we need to find a
link between passive systems and bounded-real systems. The theory of passive
filter design often requires a specification in the frequency domain which the
designed filter must meet. This mask is defined by two curves in the Bode
diagram which represent the upper and lower limits within which the trans-
fer function of the designed filter must lie. Given transfer function G(jω), it
has then to be implemented through components R, L and C. If the trans-
fer function is positive-real, as we have seen, this implementation is always
possible.

Once assigned a mask, the problem of designing a filter is to find a transfer
function which adheres to the specifications defined by the mask and at the
same time is positive-real. This problem is difficult to solve, whereas it is easier
to find a bounded-real function that respects the specifications defined by the
mask. The importance of a link between passive and bounded-real systems
now becomes evident, because it permits us, once the bounded-real function
is found, to obtain a passive system which satisfies the assigned specifics. This
relation is expressed through a matrix called a “scattering matrix”.

If S(s) is a transfer matrix of a bounded-real system, a scattering matrix
can be defined as:

G(s) = [I + S(s)][I− S(s)]−1

which has the positiveness property.

Positive-real, Bounded-real and Negative-imaginary Systems 171

Moreover, if S(s) =

[
Ã B̃

C̃ D̃

]
, then a realization of G(s) is given by:

G(s) =

[
(Ã + I)(Ã− I)−1

√
2(Ã− I)−1B̃

−
√

2(ÃT − I)−1C̃ D̃− C̃T (Ã− I)−1B̃

]

9.5 Negative-imaginary Systems

Another important class of systems is that of negative-imaginary systems. Let
us begin with by doing some considerations related to the SISO case. We have
seen that in the case of positive-real systems the transfer function is such that
<e (Z(jω)) ≥ 0 ∀ω. Consequently, the Nyquist plot entirely lies in the half-
plane with positive x-axis. In the case of negative-imaginary systems, a dual
property holds, with the Nyquist plot entirely found in the half-plane with
negative y-axis. Quite interestingly, as we have seen that positive-real systems
represent the model of given physical systems, also for the case of negative-
imaginary systems, we will see that there are classes of physical systems whose
model is negative-imaginary.

9.5.1 Characterization of Negative-imaginary Systems in the
Frequency Domain

Let us now formally introduce the notion of a negative-imaginary transfer
function matrix. Here, in particular, we consider different definitions, which
correspond to the fact that negative-imaginary systems have been first in-
troduced with the assumption of poles in the open left half plane, and then
extended to include simple poles on the imaginary axis and one or two poles
in the origin.

Definition 22 A square real-rational proper transfer function matrix G(s) is
negative-imaginary if it has no pole in the closed right half of the complex
plane and for all ω ≥ 0 j(G(jω)−G†(jω)) ≥ 0.

Definition 23 A square real-rational proper transfer function matrix G(s) is
negative-imaginary if:

1. G(s) has no poles in the origin and in the open right half of the
complex plane;

2. For all ω ≥ 0 such that jω is not a pole of G(s), j(G(jω) −
G†(jω)) ≥ 0;

3. If s = jω0 is a pole of G(s), then it is simple and the residue
matrix K = lim

s→jω0

(s−jω0)jG(s) is Hermitian and positive semidef-

inite.

172 Optimal and Robust Control: Advanced Topics with MATLAB r

Definition 24 A square real-rational proper transfer function matrix G(s) is
negative-imaginary if:

1. G(s) has no poles in the open right half of the complex plane;

2. for all ω > 0 such that jω is not a pole of G(s), j(G(jω) −
G†(jω)) ≥ 0;

3. If s = jω0 (ω0 > 0) is a pole of G(s), then it is simple and the
residue matrix K = lim

s→jω0

(s− jω0)jG(s) is Hermitian and positive

semidefinite;

4. If s = 0 is a pole of G(s), then lim
s→0

skG(s) = 0 for all k ≥ 3 and

lim
s→0

s2G(s) is Hermitian and positive definite.

Finally, the next definition formalizes the concept of a strictly negative-
imaginary transfer matrix.

Definition 25 (Strictly negative-imaginary transfer matrix) A square
real-rational proper transfer function matrix G(s) is negative-imaginary if it
has no pole in the closed right half of the complex plane and for all ω > 0
j(G(jω)−G†(jω)) > 0.

Negative-imaginary systems are those systems having a negative-imaginary
transfer function matrix.

Definition 26 A linear system is said to be (strictly) negative-imaginary if
and only if its transfer function matrix is (strictly) negative-imaginary.

Example 9.11
Let us consider the SISO system with transfer function equal to G(s) = 1

s+1
. This

system is stable. Then, since G(jω) + G†(jω) = 2
1+ω2 > 0, the system is strictly

positive-real. In addition, since j(G(jω)−G†(jω)) = 2ω
1+ω2 > 0 for all ω > 0, then the

system is also strictly negative-imaginary.
The same conclusion is obtained considering that G(jω) = 1

1+ω2 +j −ω
1+ω2 , which shows

that <e(G(jω)) > 0 and =m(G(jω)) < 0 for all ω > 0, and, consequently, the Nyquist
plot entirely lies in the quadrant <e(G(jω)) > 0 and =m(G(jω)) < 0.
Therefore, G(s) = 1

s+1
constitutes an example of a system that is both strictly positive-

real and strictly negative-imaginary.

Example 9.12
Consider now the mass-spring-damper system shown in Figure 9.12 with M,k, b > 0,
and consider two scenarios. In the first one, let us assume that the output of the system
is the speed of the mass; in the second one, let us assume that the output is the position
of the mass. We will see that in the first case one gets a positive-real system, whereas in
the second case a negative-imaginary system. This shows that using a different sensor,
and so measuring a different variable (position/speed), yields a model of a different
class. This is important also for the type of control that could be implemented in the
system.
By applying the Newton’s law to the system in Figure 9.12, one gets:

Positive-real, Bounded-real and Negative-imaginary Systems 173

FIGURE 9.12
A mass-spring-damper system that depending on the choice of y may be
positive-real or negative-imaginary.

Mẍ+ bẋ+ kx = F (9.25)

Then, considering the first scenario, the output corresponds to the derivative of x, that

is, y = ẋ. Hence, the transfer function for case 1 is G1(s) =
Y (s)
U(s)

= s
Ms2+sb+k

.

Instead, in the second case, the output is the position, that is, y = x, and the transfer

function is given by G2(s) =
Y (s)
U(s)

= 1
Ms2+sb+k

.

The system is stable. Now, notice that in the first case one has:

G1(jω) +G†1(jω) =
2ω2B2

(k − ω2M)2 + ω2B2
> 0, ∀ω > 0 (9.26)

and in the second case one gets:

j(G2(jω)−G†2(jω)) =
2ωB

(k − ω2M)2 + ω2B2
> 0,∀ω > 0 (9.27)

We conclude that G1(s) is positive-real and G2(s) is negative-imaginary, such that the
choice of the sensor is fundamental to determine the type of system that is obtained.

The result in Example 9.12 is more general than a specific example. We
discuss now how it applies to a larger class of systems. Consider a lightly
damped flexible structure with a single actuator and a single sensor, located
in the same place of the actuator (in this case one says that the sensor is
colocated). Such a structure can be modeled using the so-called modal analysis,
which leads to the following transfer function model:

G(s) =

∞∑
i=1

φi(s)

s2 + κis+ ω2
i

(9.28)

where, for each mode i, ωi is a modal frequency, φi(s) is a first-order polyno-
mial, κi is the viscous damping constant associated to mode i, and ωi 6= ωj
for i 6= j.

Suppose now to consider a force actuator and a velocity measurement,
then the general model (9.28) becomes:

174 Optimal and Robust Control: Advanced Topics with MATLAB r

G(s) =
∞∑
i=1

ψ2
i s

s2 + kis+ ω2
i

(9.29)

where ψi is a real number. It can be easily verified that this system is positive-
real.

Now, consider a force actuator and a colocated position sensor. In this
case, the general model (9.28) particularizes into:

G(s) =
∞∑
i=1

ψ2
i

s2 + kis+ ω2
i

(9.30)

that is negative-imaginary.
So, depending on the type of sensor used for the control of a flexible struc-

ture one can face a control problem involving either a positive-real system or
a negative-imaginary one.

A similar result also holds for the case of m colocated position/velocity
sensors and actuators. In the case of velocity measurements, the transfer func-
tion matrix has the following form:

G(s) =

∞∑
i=1

s

s2 + kis+ ω2
i

ψiψ
T
i (9.31)

where, for each mode i, ψi is a column vector of m elements. In the case of
position measurements, instead, the transfer function matrix reads:

G(s) =
∞∑
i=1

1

s2 + kis+ ω2
i

ψiψ
T
i (9.32)

The transfer function matrix (9.31) is positive-real, whereas (9.32) is
negative-imaginary.

Negative-imaginary systems may also represent the model of an electrical
circuit composed of resistors, capacitors, and inductors. Consider the circuit
shown in Figure 9.13 where the input is the voltage generator u and the output
is the voltage y across the capacitor C. Then, it can be demonstrated that the

transfer function G(s) = Y (s)
U(s) is negative-imaginary. The same results holds

for the dual case that the input is provided by a current generator and the
output by the current in an inductor that is connected in parallel with the
generator. Multi-port configurations can be considered as well.

Example 9.13
Consider the electrical circuit of Figure 9.14, with input u and output y. By applying
Kirchhoff’s circuit laws, one derives the following transfer function:

G(s) =
Y (s)

U(s)
=

sC1Req + 1

s2C1C2R2Req + sC1Req + 1
(9.33)

where Req = R1 + R2. Clearly, for positive values of the components this system is
stable. Let us now calculate j(G(jω)−G†(jω)):

Positive-real, Bounded-real and Negative-imaginary Systems 175

FIGURE 9.13
Electrical circuits where the voltage output is in series with the voltage input
are negative-imaginary systems. Here, the gray box encapsulates an arbitrary
network of passive components (capacitors, resistors and inductors).

j(G(jω)−G†(jω)) =
2ω3C2

1C2R2Req

(1− ω2C1C2R2Req)2 + ω2C1Req
(9.34)

Since j(G(jω)−G†(jω)) > 0 for all ω > 0, the system is strictly negative-imaginary.

9.5.2 Characterization of Negative-imaginary Systems in the
Time Domain

Similarly to what observed for positive-real and bounded-real systems, also
for negative-imaginary systems a characterization in the time domain can be
given. In particular, there exists a result analogous to the positive-real lemma
and known as the negative-imaginary lemma.

Theorem 25 (Negative-imaginary lemma) A linear time-invariant sys-
tem R(A,B,C,D) with m inputs and outpus is negative-imaginary if and only
if A has no eigenvalues on the imaginary axis, D is symmetric, and there
exists a positive definite matrix P which satisfies:{

AP + PAT ≤ 0
B + APCT = 0

(9.35)

The following theorem further characterizes negative-imaginary systems in
the time domain, providing in particular a necessary and sufficient condition
for strictly negative-imaginary systems.

Theorem 26 A linear time-invariant system R(A,B,C,D) with m inputs
and outpus is strictly negative-imaginary if and only if i) A has no eigen-
values on the imaginary axis; ii) D is symmetric; iii) there exists a posi-
tive definite matrix P which satisfies (9.35); iv) the transfer function matrix

176 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 9.14
Example of an electrical circuit (C1 > 0, C2 > 0, R1 > 0, R2 > 0) whose
transfer function is negative-imaginary.

G(s) = C(sI − A)−1B + D is such that G(s) − GT(−s) has no zeros on the
imaginary axis s = jω with ω 6= 0.

At variance with the positive-real lemma, in the negative-imaginary lemma
we find a linear matrix inequality. Linear matrix inequalities are dealt with
in detail in Chapter 12, and, therefore, we do not study here the problem of
solving (9.35), but limit the discussion to the illustration of a scalar example.

Example 9.14
Consider the following system

ẋ = −x+ u
y = x

(9.36)

Here, A = −1, B = 1, C = 1 and D = 0. The conditions (9.35) become:{
−2P ≤ 0
1− P = 0

(9.37)

which hold for P = 1. As P > 0, the system is negative-imaginary. In addition, for this
system G(s) = 1

s+1
and G(s)−GT (−s) = 2s

s2−1
. As G(s)−GT (−s) has a zero in the

origin, but no zeros on the imaginary axis s = jω with ω 6= 0, then also the hypotheses
of Theorem 26 hold and we conclude that the system is strictly negative-imaginary.

9.5.3 Closed-loop Stability and Negative-imaginary Systems

We have seen that the negative feedback connection of two positive-real sys-
tems (one of which is strictly positive-real) guarantees the stability of the
closed-loop system. For negative-imaginary systems there is an analogous re-
sult, but in this case a positive-feedback connection has to be used. This
difference is particularly important in practice. Consider for instance the case
of colocated sensor and actuator pairs in a flexible structure, then, if a velocity

Positive-real, Bounded-real and Negative-imaginary Systems 177

FIGURE 9.15
Positive-feedback configuration with negative-imaginary G1(s) and G2(s).

sensor is used, control has to operate in a negative feedback configuration. On
the contrary, if position measurements are used for control, then a positive
feedback configuration has to be implemented.

The relationship between closed-loop stability and negative-imaginary sys-
tems is formally expressed in the following theorem.

Theorem 27 Consider the positive feedback configuration shown in Fig-
ure 9.15 with G1(s) negative-imaginary, G2(s) strictly negative-imaginary,
Ḡ1 = lim

s→∞
G1(s), Ḡ2 = lim

s→∞
G2(s) ≥ 0 and Ḡ1Ḡ2 = 0. Then, the closed-loop

system is asymptotically stable if and only if ρ(G1(0)G2(0)) < 1.

Notice that this theorem guarantees closed-loop stability through phase
stabilization, whereas the small gain theorem is based on gain stabilization.
For this reason, it explicitly requires a static gain condition ρ(G1(0)G2(0)) < 1
to hold.

Example 9.15
Consider the system in Figure 9.15 with G1(s) = 1

s+1
and G2(s) = 1

s2+3s+4
. G1(s)

and G2(s) are both strictly negative-imaginary. In addition, as Ḡ1 = Ḡ2 = 0 they also
satisfy the hypothesys Ḡ1Ḡ2 = 0. Then, since ρ(G1(0)G2(0)) = 1

4
< 1, the closed-loop

system is asymptotically stable. This can be verified by noticing that the closed-loop
transfer function is given by

W (s) =
G1(s)

1−G1(s)G2(s)
=

s2 + 3s+ 4

s3 + 4s2 + 7s+ 3
(9.38)

and has the following poles: s1,2 = −1.6963± j1.4359, and s3 = −0.6074.

Example 9.16
Let us now generalize the previous example, by considering G1(s) = k

s+1
with k > 0.

G1(s) is strictly negative-imaginary for any k > 0, and, once again, we have that
Ḡ1 = Ḡ2 = 0, such that Ḡ1Ḡ2 = 0. Then, applying Theorem 27, since ρ(G1(0)G2(0)) =
k
4
< 1 if and only if k < 4, we conclude that for k > 0 the closed-loop system is

asymptotically stable if and only if k < 4. This can be also verified by calculating the
closed-loop transfer function

178 Optimal and Robust Control: Advanced Topics with MATLAB r

W (s) =
G1(s)

1−G1(s)G2(s)
=

s2 + 3s+ 4

s3 + 4s2 + 7s+ 4− k
(9.39)

and studying the stability with the Routh criterion restricted to the case k > 0. Notice,
in fact, that Theorem 27 expresses a necessary and sufficient condition provided that
G1 and G2 are negative-imaginary, and so this analysis applies only for k > 0.

9.6 Exercises

1. Given the continuous-time system with transfer function G(s) =
α

s3+s2+4s+4 calculate for which values of α the system is bounded-
real.

2. Given the continuous-time system with transfer function G(s) =
4

s2+αs+4 calculate for which values of α the system is bounded-real.

3. Given the continuous-time system with state-space matrices:

A =

 0 1 0
0 0 1
−5 −3 −2

 ; B =

 0
0
α

 C =
[

1 0 0
]

calculate for which values of α the system is bounded-real.

4. Given the continuous-time system with state-space matrices:

A =

 −1 0 0
0 −2 0
0 0 −0.5

 ; B = CT =

 α
α
α


calculate for which values of α the system is strictly bounded-real.

5. For the feedback system shown in Figure 9.16 with G(s) = 1
s2

prove, if possible, that there is a stable first order compensator
which makes the system closed-loop passive. Note: do not make
any cancellation.

6. Given the system with transfer function G(s) = s+1
(s+2)(s+3) calcu-

late the Cauchy index of the system with two different analytical
methods. Then calculate the energy associated with the impulse re-
sponse. Finally, using the bounded-real lemma, verify analytically
if G(s) is bounded-real.

7. Determine for which values of α the system with transfer function
G(s) = α

2s3+s2+4s+5 is bounded-real using two different methods.

Positive-real, Bounded-real and Negative-imaginary Systems 179

FIGURE 9.16
Block scheme for exercise 5.

8. Given the system with transfer function G(s) = s(s2+2)
(s2+1)(s2+4) , pro-

pose, if possible, a passive electric circuit realization.

9. Given the system G(s) = 1
(s+1)2 determine if there is an R

such that the optimal closed-loop system (with functional J =∫∞
0

(yT y + uTRu)dt) is passive.

10. Write down an example of a third-order loss-less system and verify
that its characteristic values are equal to one.

11. Determine for which values of z1 and p1 the continuous-time system
with transfer function G(s) = s+z1

s2(s+p1)
is negative-imaginary.

12. Given the system in positive feedback configuration (as in Figure
9.15) with G1(s) = 40

s+40 and G(s) = 5
s2+5s+α , find for which values

of α > 0 the closed-loop system is stable.

13. Consider the continuous-time system with transfer function G(s) =
1

s2+3s+4 . If possible, derive an electric circuit realization and a me-
chanical one.

http://www.taylorandfrancis.com

10

Enforcing the Positive-real or the
Negative-imaginary Property in a Linear
Model

CONTENTS

10.1 Why to Enforce the Positive-real and Negative-Imaginary
Property in a Linear Model . 181

10.2 Passification . 182
10.3 Forward Action to make a System Negative-Imaginary 187

10.3.1 The SISO Case . 187
10.3.2 The MIMO Case . 191

10.4 Exercises . 193

This chapter deals with the problem of enforcing either the positive-real or
the negative-imaginary property in a linear model through a forward action.
Given a linear model, which is for example not positive-real, it is shown how
to design a forward action able to make the system passive. In an analogous
way, it is discussed how to design a forward action to make a system negative-
imaginary. MATLAB problems are included.

10.1 Why to Enforce the Positive-real and Negative-
Imaginary Property in a Linear Model

Suppose that we are modeling a system through an identification technique
based for instance on the input-output response. In general, even if we know
that the system is passive or negative-imaginary, there is no guarantee that the
model that we obtain is such. We have already seen a similar problem arising
in the context of reduced order model in Section 9.1.4, where starting from
a passive system the reduced order model may not be such, unless a specific
technique is adopted. In this case, we face the problem of deriving a model of
a system that is already known to be positive-real or negative-imaginary, for
example because it is a flexible structure with colocated sensors and actuators,

DOI: 10.1201/9781003196921-10 181

https://doi.org/10.1201/9781003196921-10

182 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 10.1
Block scheme of the feedforward action used to enforce the positive-real or
negative-imaginary property.

and having no guarantee that the approximated model produced through iden-
tification satisfies the known property of the physical system. Such a scenario
requires to compensate in some way the positive-real or negative-imaginary
violations.

Another motivation comes from the results that concern closed-loop sta-
bility of positive-real and negative-imaginary systems (Chapter 9). In fact,
one can think to apply the techniques illustrated in this chapter to make a
system positive-real or negative-imaginary using a feedforward control and
then to control the system in a feedback scheme exploting the stability results
for closed-loop configurations made of positive-real or negative-imaginary (in
particular, adopting a negative feedback scheme for positive-real systems and
a positive feedback scheme for negative-imaginary systems).

Here, we briefly mention that there are several techniques to enforce the
positive-real and negative-imaginary property in a linear model (in particular,
there are successful approaches based on perturbing the state-space matrices
or using feedback of the state variables), but in this chapter we limit the
discussion to illustrate a technique based on the use of a feedforward control
action, according to the scheme of Figure 10.1. The technique requires the
tuning of a small number of parameters (one or two, as discussed in more
detail below).

10.2 Passification

This section deals with the following problem: given a not passive system,
can a feedforwad action make it passive? This problem is referred to as the
problem of passification. It is worth noticing that this can be done for MIMO
stable systems and only requires a single feedforward parameter as proven

Enforcing the Positive-real or the Negative-imaginary Property 183

in the following theorem. Essentially, the theorem states that a MIMO stable

system G(s) =

[
A B

C D

]
, in general not passive, can be made passive through

the addition of αI to its feedforward matrix D.

Theorem 28 Let G(s) =

[
A B

C D

]
be a minimal realization of an

asymptotically stable system, then there exists α ≥ 0 such that the system

Gα(s) =

[
A B

C D + αI

]
is passive.

If G(s) is passive, trivially α = 0 and Gα(s) is also passive, so that we
have to prove the theorem for the case that G(s) is not passive.

Let us define the following quantity:

λ̄ := inf
ω
λmin(G(jω) + GT (−jω)) (10.1)

Since G(s) is not passive, λ̄ < 0. Moreover, since G(s) is a proper asymp-
totically stable transfer matrix, it has no poles on the imaginary axis and,
therefore, λ̄ is a real finite quantity.

Let us define as ω̄ the point at which λmin(G(jω̄) + GT (−jω̄)) = λ̄ (in the
limit case, it can be also ω̄ = +∞).

Let us now consider the matrix (G(jω̄) + GT (−jω̄)). This is an Hermitian
(and therefore diagonalizable) matrix:

G(jω̄) + GT (−jω̄) = TΛTT (10.2)

where T is an unit matrix containing the orthogonal eigenvector of G(jω̄) +
GT (−jω̄) and Λ = diag(λ1, λ2, . . . , λn). The smallest eigenvalue of G(jω̄) +
GT (−jω̄) is λ̄.

If the quantity αI is added to the D matrix of the original system G(s),
one obtains:

Gα(jω̄) + GT
α(−jω̄) = G(jω̄) + GT (−jω̄) + 2αI =

= TΛTT + 2αI = T(Λ + 2αI)TT
(10.3)

Therefore, if α is chosen as α ≥ −λ̄/2, all the eigenvalues of Gα(jω̄) +
GT
α(−jω̄) are non-negative, from which it can be concluded that the original

system may be made passive by adding αI to the original D matrix. Moreover,
if α > −λ̄/2, the system Gα is strictly passive.

The result can be also extended to Lyapunov stable systems.
The minimum value of α, say ᾱ, that makes the system passive can be

found checking the eigenvalues of the Hamiltonian matrix:

Hα =

[
A− B(D + DT + 2αI)−1C B(D + DT + 2αI)−1BT

−CT (D + DT + 2αI)−1C −AT + CT (D + DT + 2αI)−1BT

]
(10.4)

184 Optimal and Robust Control: Advanced Topics with MATLAB r

associated to the system having in place of matrix D matrix D̃ = D + αI.
This is rigorously defined for all α such that α 6= −λi((D + DT)/2), i.e., −α
should not be an eigenvalue of the symmetric part of D. ᾱ is that value that
guarantees that the minimum eigenvalue λmin(ω) of Gα(jω) + GT

α(−jω) is
positive.

Let us consider a value of α, say α∗, such that λmin(ω) crosses the real
axis (i.e., the corresponding Hα has imaginary eigenvalues). For α ≥ α∗,
Gα(s) is passive if and only if Hα has no eigenvalues on the imaginary axis.
Therefore, the following steps can be adopted to find the minimum value
of α such that Gα(s) is passive. Pick a random value of ω, say ω0, and let
αl = −λmin(G(jω0) + GT (−jω0))/2. Let then αh be a real number large
enough that Hαh

has no eigenvalues on the imaginary axis (i.e., such that
Gαh(s) is passive). In summary, the following bisection algorithm has been
used to find the minimum value of α such that Gα(s) is passive:

• Fix α = (αl + αh)/2;

• Calculate Hα;

• If Hα has no imaginary eigenvalues, then fix αh = α, otherwise αl = α;

• Stop the procedure when αh − αl < ε, where ε > 0 is the required precision
for the calculation of the minimum value of α.

Example 10.1
Let us consider a SISO system defined by the following state-space matrices:

A =

[
0 1
−5 −5

]
; B =

[
0
1

]
; C =

[
7 −9

]
; D = 1 (10.5)

The transfer function of system (10.5) is G(s) = s2−4s+12
s2+5s+5

. Since, for SISO systems,

G(jω)+GT (−jω) = 2Re [G(jω)], the real part of G(jω) has to be studied. In particular,
the values at which Re [G(jω)] = 0 can be calculated from the characteristic polynomial
of the Hamiltonian matrix H. This is given by:

ψ(s) = det(sI−H) = s4 + 37s2 + 60 (10.6)

Solving for ψ(jω) = 0 yields two positive solutions: ω1 = 1.3037 and ω2 = 5.9414.
For these values, we thus have Re [G(jω)] = 0. In fact, Re [G(jω)] is given by:

Re [G(jω)] =
ω4 − 37ω2 + 60

(5− ω2)2 + 25ω2
(10.7)

The plot of this function is shown in Figure 10.2.

Solving for
dRe [G(jω)]

dω
= 0 (i.e.,

ω(104ω4−140ω2−3650)

((5−ω2)2+25ω2)2
= 0) yields ω̄ = 2.5759. Since

Re [G(jω̄)] = −0.8394, then λ̄ = −1.6788. Therefore, α has to be chosen so that

α ≥ λ̄
2

= 0.8394. For instance, the system

A =

[
0 1
−5 −5

]
; B =

[
0
1

]
;

C =
[

7 −9
]

; D = 1 + α;
α = 0.8394

(10.8)

is passive, since Re [Gα(jω)] ≥ 0 ∀ω as shown in Figure 10.3.

Enforcing the Positive-real or the Negative-imaginary Property 185

10
−2

10
−1

10
0

10
1

10
2

−1

−0.5

0

0.5

1

1.5

2

2.5

ω

R
e
 G

(j
ω

)

FIGURE 10.2
Plot of Re [G(jω)] vs. ω for example 10.1.

10
−2

10
−1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

ω

R
e
 G

α
(j

ω
)

FIGURE 10.3
Plot of Re [Gα(jω)] for system (10.8) vs. ω.

MATLABr Exercise 10.1
Let us consider the MIMO system defined by the following state-space matrices:

A =


0 1 0 0
0 0 1 0
0 0 0 1
−1 −2 −5 −2

 ; B =


1 2
−1 1
0 1
−1 1

 ;

C =

[
1 −1 1 −1
1 1 1 1

]
; D =

[
1.5 2
1 4

]
.

(10.9)

The eigenvalues of G(jω) + GT (−jω) are shown in Figure 10.4. The corresponding
eigenvalues of H are: λ1,2(H) = ±3.4219, λ3,4(H) = ±j0.5945, λ5,6(H) = ±j1.0602,
λ7,8(H) = ±j1.6629. These values indicate that the eigenvalues of G(jω) + GT (−jω)
cross the real axis three times, i.e., in correspondence of ω1 = 0.5945, ω2 = 1.0602
and ω3 = 1.6629. In this case, it is the minimum eigenvalue of G(jω) + GT (−jω) that
crosses the real axis at ω1, ω2 and ω3.
By applying the bisection algorithm with ε = 0.0001, it can be found that the minimum
value of α such that G(s) is passive is α = 3.2674.
In correspondence of this value, the eigenvalues of H are: λ1,2,3,4(H) = ±0.7699 ±

186 Optimal and Robust Control: Advanced Topics with MATLAB r

10
−2

10
−1

10
0

10
1

10
2

−10

0

10

20

30

40

50

ω (rad/s)

λ
i(ω

)

FIGURE 10.4
Eigenvalues of G(jω) + GT (−jω) for system (10.9).

j1.5088, λ5,6(H) = ±0.4873 and λ7,8(H) = ±0.0040. The eigenvalues of Gα(jω) +
GTα (−jω) for α = 3.2674 are shown in Figure 10.5.

10
−2

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

ω (rad/s)

λ
i(ω

)

FIGURE 10.5
Eigenvalues of Gα(jω) + GT

α(−jω) for system (10.9) with D̃ = D + αI and
α = 3.2674.

The MATLABr code used is here reported:
A=[0 1 0 0; 0 0 1 0; 0 0 0 1; -1 -2 -5 -2];

B=[1 2; -1 1; 0 1; -1 1];

C=[1 -1 1 -1; 1 1 1 1];

D=[1.5 2; 1 4];

system=ss(A,B,C,D)

MH=[A-B*inv(D+D’)*C B*inv(D+D’)*B’;

-C’*inv(D+D’)*C -A’+C’*inv(D+D’)*B’];

eig(MH)

w=logspace(-2,2,1000);

autovaloreminvsomega=w;

E=[];

Z=freqresp(system,w);

ZZ=Z;

for i=1:length(w)

Enforcing the Positive-real or the Negative-imaginary Property 187

ZZ=Z(:,:,i)+ctranspose(Z(:,:,i));

autovaloreminvsomega(i)=min(eig(ZZ));

E=[E’; eig(ZZ)’]’;

end

figure,semilogx(w,E)

alpha=3.2674;

D=alpha*eye(2)+system.D;

systemalpha=ss(A,B,C,D);

MH=[A-B*inv(D+D’)*C B*inv(D+D’)*B’;

-C’*inv(D+D’)*C -A’+C’*inv(D+D’)*B’];

eig(MH)

w=logspace(-2,2,1000);

autovaloreminvsomega=w;

E=[];

Z=freqresp(systemalpha,w);

ZZ=Z;

for i=1:length(w)

ZZ=Z(:,:,i)+ctranspose(Z(:,:,i));

autovaloreminvsomega(i)=min(eig(ZZ));

E=[E’; eig(ZZ)’]’;

end

figure,semilogx(w,E)

10.3 Forward Action to make a System Negative-
Imaginary

In this section, the problem of designing a forward action to enforce the
negative-imaginary property into a system is dealt with, first for the SISO
case and then for the more general MIMO case.

10.3.1 The SISO Case

In the SISO case, it is convenient to distinguish the results according to the
different definitions of negative-imaginary systems given in Section 9.5.1. Let
us begin with the case dealt with in Definition 22, where the original system
is asymptotically stable.

Theorem 29 Let us consider an asymptotically stable SISO system with

transfer function G(s) = N(s)
D(s) . The forward action F (s) = k

s+α for suitable

values of k > 0 and α > 0 makes the system G(s) negative imaginary.

If F (s) = k
s+α is used, then the poles of G(s) + F (s) are those of G(s)

plus the one of F (s) and so they are all in the open left half of the complex
plane. This F (s) also ensures that for all ω ≥ 0, j(G(jω) +F (jω)−G∗(jω)−
F ∗(jω)) ≥ 0.

188 Optimal and Robust Control: Advanced Topics with MATLAB r

To see this, let us rewrite G(jω) as the sum of its real and imaginary
part, that is, G(jω) = GR(ω) + jGI(ω), and do the same for F (jω) =
FR(ω) + jFI(ω) = kα

α2+ω2 − j kω
α2+ω2 . Now, we notice that, since all the coeffi-

cients of N(s) and D(s) are real quantities and G(s) is asymptotically stable,
then lim

ω→0
GI(ω) = 0 and lim

ω→+∞
GI(ω) = 0. The system G̃(s) = G(s) +F (s) is

negative-imaginary if the imaginary part of G̃(jω) is negative. Since

G̃(jω) = G̃R(ω) + jG̃I(ω) = GR(ω) +FR(ω) + j

[
GI(ω)− kω

α2 + ω2

]
(10.10)

if there exist k > 0 and α > 0 such that ∀ω:

k > α2GI(ω)

ω
+GI(ω)ω (10.11)

then the imaginary part of G̃(jω) is negative.

Taking into account that lim
ω→0

GI(ω)ω = 0 and lim
ω→+∞

GI(ω)
ω = 0, one can

apply the De L’Hopital’s theorem to obtain that the limits lim
ω→+∞

GI(ω)ω

and lim
ω→0

GI(ω)
ω are finite. This yields that the right hand term of (10.11) is

uniformly bounded from above ∀ω ≥ 0 and, for any choice of α > 0, there
exists k > 0 such that (10.11) is satisfied.

It is interesting to note that Theorem 29 also applies with another choice of
F (s), namely F (s) = kα−sα+s . The imaginary part of F (jω) is FI(jω) = − 2kω

α2+ω2 ,
and in this case a smaller gain k is obtained.

Also notice that α in F (s) = k
s+α is a free parameter. Once a value is

set, then, consequently, the gain k has to be chosen to satisfy (10.11). α can
be selected, for instance, by taking into account that the function kω

α2+ω2 ,
representing the imaginary part of −F (jω), is non-negative for any value of
ω and has a maximum, equal to k

2α , at ω = α.
Let us now discuss a design strategy for F (s). Consider a system with

the positive-frequency Nyquist plot shown in Figure 10.6(a). Note that GI(ω)
has only one local maximum at ω1. Let M be this maximum, that is, M =
maxGI(ω). The first step is to select α, for instance as α = ω1. Once fixed α,
to find k, an iterative procedure may be used. Let k1 be k1 = M(α2 +ω2

1)/ω1

(if α = ω1, then k1 = 2Mα). Given ki, if kiω
α2+ω2 < GI(ω) for any ω ∈ (0,+∞),

then the gain has to be increased, that is, ki+1 = ki + ∆k, where ∆k > 0
represents the increment at each iteration. Otherwise, if kiω

α2+ω2 > GI(ω) in
the whole interval ω ∈ (0,+∞), then the procedure may be stopped and the
value k = ki has to be selected. In virtue of Theorem 29 the procedure reaches
convergence.

Given ki, testing if kiω
α2+ω2 < GI(ω) over a continuum of frequencies could

be impractical. This step can be performed more efficiently by using the
negative-imaginary lemma given in Section 9.5.2.

Enforcing the Positive-real or the Negative-imaginary Property 189

(a) (b)

FIGURE 10.6
Positive-frequency Nyquist plot for two generic systems used to illustrate the
design strategy for the forward action making negative-imaginary the original
system: (a) GI(ω) has only one maximum; (a) GI(ω) has more than one
maximum.

Let us now consider the more general case, illustrated in Figure 10.6(b),
where GI(s) displays several local maxima (say that their number is nH)
and let us indicate with ωh, with h = 1, . . . , nH , these points. Two cases are
distinguished: unconstrained gain k and constrained gain k. In the first case,
the procedure previously described may be adopted.

The second case, that is, when the value of gain k is constrained, is faced
by using several forward blocks in parallel: F (s) = kh

s+αh
with h = 1, . . . , nH ,

where αh are selected as αi = ωi and the parameter kh of each block are
sequentially obtained in accordance with the following procedure. Given the
local maximum Mh of GI(ω), fix kh,i = Mh and then check if

kh,iω
α2+ω2 > GI(ω)

in the interval [ωh−1, ωh+1[(for h = 1 ωh−1 = 0 has to be considered and
for h = nH ωh+1 = +∞). If this is the case, then kh = kh,i, otherwise
kh,i+1 = kh,i+ ∆k, and so on. As each of the blocks kh

s+αh
contributes with an

imaginary part that is negative ∀ω, F (s) makes the original system negative-
imaginary. In any case, the procedure seeks to minimize the values of the gains
kh that allow us to achieve the negative-imaginary condition.

Example 10.2
Consider the mass-springer-damper system of Example 9.12 with the mass velocity as
output and with the following parameters: M = 1, b = 3, k = 4. In this case the system
is not imaginary-negative. Its transfer function is given by:

G(s) =
s

s2 + 3s+ 4
(10.12)

Let us now apply Theorem 29 with F (s) = k
s+1

, that is, having fixed α = 1.

Since GI(ω) =
ω(4−ω2)

(4−ω2)2+9ω2 , condition (10.11) becomes:

k >
(4− ω2)(1 + ω2)

(4− ω2)2 + 9ω2
(10.13)

The maximum of the function
GI (ω)
ω

+GI(ω)ω =
(4−ω2)(1+ω2)

(4−ω2)2+9ω2 occurs at ω = 1 where

190 Optimal and Robust Control: Advanced Topics with MATLAB r

2GI(1) = 1/3. Hence, selecting k > 1/3 guarantees that the system G(s) + F (s) is
negative-imaginary.

Consider now the case of a system having simple poles on the imaginary
axis, which is dealt with taking into account Definition 23. Suppose that the
system is not negative-imaginary because condition 3 of Definition 23 does
not hold. In more detail, suppose that ω0,1, . . . , ω0,np are the (simple) poles
for which the residue Kl = lim

s→jω0,l

(s− jω0,l)jG(s) (l = 1, . . . , np) is negative.

Then, the forward action F (s) =
∑np
l=1

kl
s2+ω2

0,l
for suitable values of kl >

0 may be used to enforce the negative-imaginary property. In fact, F (s) is
able to change the sign of the residues of G̃(s) = G(s) + F (s) associated to
ω0,1, . . . , ω0,np as lim

s→jω0,l

(s−jω0,l)jG̃(s) = lim
s→jω0,l

(s−jω0,l)jG(s)+ kl
ω0,l

. Hence,

kl > −ω0,l lim
s→jω0,l

(s − jω0,l)jG(s) may be used for the purpose. Also note

that, on the contrary, adding F (s) does not change the residues associated
to the other poles on the imaginary axis as lim

s→jω0

(s − jω0)jF (s) = 0 for

ω0 6= ω0,1, . . . , ω0,np .

Example 10.3
Consider the system G(s) = 1

(s2+4)(s2+20)
. This system is not negative-imaginary. In

fact, we have that lim
s→j
√

20
(s − j

√
20)jG(s) = − 1

32
√

20
< 0, which violates condition 3

of Definition 23.
Consider then F (s) = k

s2+20
and select the parameter k to satisfy:

lim
s→j
√

20
(s− j

√
20)jG(s) +

k

2
√

20
> 0 (10.14)

that yields k > 1/16. With this choice of the parameter, then G(s) + F (s) =
1

(s2+4)(s2+20)
+ k
s2+20

is negative-imaginary, according to Definition 23.

Finally, consider the case where the original system has one or two poles
in the origin, which is dealt with by considering Definition 24. Let us first
suppose that the original system G(s) has no poles in the open right half of
the complex plane, at most one or two poles in the origin and that lim

s→0
s2G(s)

is non-negative. We can also assume that there are no other poles on the
imaginary axis as we already have discussed how to deal with such poles. In
this case, the forward action F (s) = k

s with a proper choice of k may be
used. In fact, conditions 1), 3) and 4) of Definition 24 are trivially satisfied.
Concerning condition 2), it has to be proved that the imaginary part of G̃(jω)
is non-positive, this yields:

k > GI(ω)ω (10.15)

The right hand side of equation (10.15) is bounded from above for ∀ω ≥ 0.
In fact, given G(s) proper and with at most two poles in the origin, then GI(ω)
is strictly proper and its denominator has at most one root in ω = 0. It follows

Enforcing the Positive-real or the Negative-imaginary Property 191

that the limits lim
ω→0

GI(ω)ω and lim
ω→+∞

GI(ω)ω are finite and so there exists k

satisfying equation (10.15). In particular, k is selected as k > maxGI(ω)ω.
If the original system is such that lim

s→0
s2G(s) is negative, F (s) = k

s is

not a proper choice as lim
s→0

s2(G(s) + k
s) = lim

s→0
s2G(s). A forward action with

two poles in the origin, say F (s) = k
s2 , is suitable to make non-negative the

limit lim
s→0

s2(G(s) + F (s)), but gives no contribution to the imaginary part.

Hence, two terms have to be used: first, F1(s) = k1
s2 has to be selected so

that lim
s→0

s2(G(s) + F1(s)) becomes non-negative; at this point, F2(s) = k2
s is

applied to system G(s) + F1(s) that satisfies the hypotheses of the previous
case.

Example 10.4
Consider now the system G(s) = 1

s2(s+1)
that is not negative-imaginary. In fact, condi-

tions 1), 3) and 4) of Definition 24 hold, but not condition 2) as GI(ω) = 1
ω(1+ω2)

> 0

for ω > 0.
Now, since lim

s→0
s2 1
s2(s+1)

= 1 > 0, we can select k2 = 0. Hence, we use F (s) = k1
s

. To

derive k1, we consider the condition

1

ω(1 + ω2)
−
k1

ω
< 0 (10.16)

As maxGI(ω)ω = 1, then F (s) = k
s

with k > 1 makes negative-imaginary the system
G(s) + F (s).

10.3.2 The MIMO Case

In this section the problem of enforcing the negative-imaginary property in
a MIMO system is dealt with. To address this problem, first we need to dis-
cuss a fundamental relationship existing between positive-real and negative-
imaginary systems is exploited.

Theorem 30 Given a square proper positive real transfer function matrix

Z(s), then R(s) , Z(s)
s is negative-imaginary.

Taking into account this relationship we can reformulate the problem of
enforcing the negative-imaginary property in terms of the equivalent prob-
lem of enforcing the positive-real property for which we already know that a
solution exists. In particular, we have the following result.

Theorem 31 Given a m × m square proper real-rational transfer function
matrix G(s) that has no poles in the open right half plane, has at most two
poles in the origin and for each of the poles on the imaginary axis, if any,
the residue is a Hermitian matrix, then the forward action F(s) = k

s Im for
suitable values of k > 0 makes the system G(s) negative-imaginary.

192 Optimal and Robust Control: Advanced Topics with MATLAB r

In practice, one has to consider the transfer function matrix sG(s) and
find k such that sG(s) + kIm is positive-real. Then, in virtue of Theorem 30,
G(s) + k

s Im is negative-imaginary.
Hence, the value of k may be found by using the procedure of Section 10.2,

where one has to consider λmin(jω[G(jω) − G∗(jω)]) vs. ω for ω ∈ (0,+∞)
and select k > minλmin(jω[G(jω)−G∗(jω)])/2.

Notice that Theorem 31 can be applied to the SISO case, as well. This
means to set F (s) = k

s rather than F (s) = k
s+α . Using F (s) = k

s yields a sys-
tem that is negative-imaginary according to Definition 24, while the result of
Theorem 29 is stronger as it shows how to obtain negative-imaginary systems
that are also asymptotically stable.

MATLABr Exercise 10.2
Consider the MIMO system

A =

[
0 1
0 −3

]
; B =

[
1 0
0 5

]
; C =

[
1 0.2
0 1

]
; D = 0 (10.17)

This system is not negative-imaginary as it can be checked by calculating its transfer
function matrix

G(s) =

[
1
s

s+5
s2+3s

0 5
s+3

]
(10.18)

and then j[G(jω)−G∗(jω)]. This matrix, in fact, is not positive semi-definite for any
ω ∈ (0,∞) as the smallest eigenvalue of this matrix, namely λmin = λmin(j[G(jω) −
G∗(jω)]), is negative for all ω > 0 (Figure 10.7(a)).
Let us now proceed by considering the procedure described above and study
λmin(jω[G(jω)−G∗(jω)]) (Figure 10.7(b)). Since minλmin(jω[G(jω)−G∗(jω)]) ' 1,
we select k = 0.5. This yields F (s) = 0.5

s
I2 that makes G(s) negative-imaginary (Fig-

ure 10.7(c)).

10
-5

10
0

10
5

-10

-8

-6

-4

-2

0

2

m
in

10
4

(a)

10
-5

10
0

10
5

-1

0

1

2

m
in

(b)

10
-5

10
0

10
5

0

2000

4000

6000

m
in

(c)

FIGURE 10.7
Enforcing the negative-imaginary property in system (10.17).
(a) λmin(j[G(jω) − G∗(jω)]); (b) λmin(jω[G(jω) − G∗(jω)]); (c)
λmin(j[G̃(jω) − G̃∗(jω)]) where G̃(s) = G(s) + F (s) with F (s) = k2

s I2
and k2 = 0.5.

The following MATLABr commands can be used to solve the problem:

Enforcing the Positive-real or the Negative-imaginary Property 193

s=tf(’s’);

A=[0 1; 0 -3];

B=[1 0; 0 5];

C=[1 0.2; 0 1];

D=0;

system1=ss(A,B,C,D);

w=logspace(-5,5,1000);

mineigvsomega=w;

E=[];

E2=[];

Z=freqresp(system1,w);

ZZ=Z;

for i=1:length(w)

ZZ=1i*(Z(:,:,i)-ctranspose(Z(:,:,i)));

mineigvsomega(i)=min(eig(ZZ));

E=[E’; eig(ZZ)’]’;

end

figure,semilogx(w,mineigvsomega,’k’)

xlabel(’\omega’),ylabel(’\lambda_m_i_n’)

E=[];

for i=1:length(w)

ZZ=1i*w(i)*(Z(:,:,i)-ctranspose(Z(:,:,i)));

mineigvsomega(i)=min(eig(ZZ));

E=[E’; eig(ZZ)’]’;

end

figure,semilogx(w,mineigvsomega,’k’)

xlabel(’\omega’),ylabel(’\lambda_m_i_n’)

k1=0.5; %gain of the forward action

nn=2; %size of the original square tf matrix

feedforwardcontrol=k1/s*eye(nn);

controlledsystem=parallel(system1,feedforwardcontrol)

Z2=freqresp(controlledsystem,w);

ZZ2=Z2;

for i=1:length(w)

ZZ2=1i*(Z2(:,:,i)-ctranspose(Z2(:,:,i)));

mineigvsomega(i)=min(eig(ZZ));

E2=[E2’; eig(ZZ2)’]’;

end

figure,semilogx(w,autovaloreminvsomega2,’k’,’LineWidth’,2)

xlabel(’\omega’),ylabel(’\lambda_m_i_n’)

10.4 Exercises

1. Given the continuous-time system with transfer function G(s) =
7−s

s2+7s+10 , find F (s) such that G(s) + F (s) is positive-real.

2. Given the continuous-time system with transfer function G(s) =
7−s

s2+7s+10 , find F (s) such that G(s) + F (s) is negative-imaginary.

194 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 10.8
Block scheme for Exercise 4.

FIGURE 10.9
Block scheme for Exercise 5.

3. Given a system G(s) = s
(s+5)2 , find a forward action F (s) such that

the system G(s) + F (s) is negative-imaginary. Use F (s) = F1(s) =
k
s+2 and repeat the exercise with F (s) = F2(s) = k

s . Then, compare
the results.

4. Consider the system in Figure 10.8 with G1(s) = s−2
s2+2s+1 and

G2(s) = 1
s+5 . Find a transfer function F (s) such that the closed-

loop system is stable.

5. Consider the system in Figure 10.9 with G1(s) = s−2
s2+2s+1 and

G2(s) = 1
s+5 . Find a transfer function F (s) such that the closed-

loop system is stable.

11

H∞ Linear Control

CONTENTS

11.1 Introduction . 195
11.2 Solution of the H∞ Linear Control Problem . 197
11.3 The H∞ Linear Control and the Uncertainty Problem 205
11.4 Exercises . 208

In this chapter, the H∞ norm of a system and the tools to calculate it are
introduced. Moreover a new representation of the system, useful for deriving
a robust controller, is studied. The optimization problem in term of H∞ norm
is presented. The guidelines to derive the H∞ compensator that results from
coupling an observer with the optimal control gains are presented. Even if
the H∞ compensator must be solved by using MATLAB tools, the procedure
is described in detail in deriving simple controllers by using a sequence of
simple computations. In the chapter the multiobjective control problem is
also studied.

11.1 Introduction

Let us consider the classic control scheme for SISO systems shown in Fig-
ure 11.1. The transfer functions that characterize the feedback scheme are:

Y (s)

D(s)
=

1

1 + C(s)P (s)H(s)
(11.1)

Y (s)

R(s)
=

C(s)P (s)

1 + C(s)P (s)H(s)
(11.2)

Y (s)

N(s)
= − C(s)P (s)H(s)

1 + C(s)P (s)H(s)
(11.3)

The analysis of these transfer functions reveals that some of the typical re-
quirements of a control system involve conflicting specifications. For example,
the requirement of input tracking requires a large bandwidth, but this implies

DOI: 10.1201/9781003196921-11 195

https://doi.org/10.1201/9781003196921-11

196 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 11.1
Scheme of classical control.

a deterioration in performance in terms of rejection of the measurement noise
n(t) within the bandwidth. Conversely, the requirements of rejection of noise
d(t), of parametric insensitivity and input tracking are not in conflict with
each other.

Given these considerations, in relation to the control system discussed
above, it makes sense to consider the problem of finding the parameters of C(s)
which first assure the stability of the closed-loop system while minimizing the

sensitivity of the transfer function S(s) = Y (s)
D(s) , thus assuring good disturbance

attenuation for all the bandwidth frequencies. Since the index to minimize
must account for disturbance varying with frequency, it can be represented by
the H∞ norm of the sensitivity function.

The H∞ control allows us to solve this kind of problems and not only: it
provides a general control scheme which allows us to deal also with MIMO
systems and more general problems.

Before illustrating H∞ control, let us first discuss how to calculate the H∞
norm of a system. The definition of H∞ norm, in previous chapters, does not
allow the calculation, so we need to use an iterative algorithm. In fact, there
is no closed formula to calculate this norm.

Consider the system G(s) and notice that the H∞ norm is less than γ
(‖G(s)‖∞ < γ) if and only if the system G(s)/γ is bounded-real. This fact
can be used to calculate the H∞ norm of the system. Since it is possible to
determine whether a system is bounded-real or not through the bounded-real
lemma, calculating the H∞ norm can be done by performing a bounded-real
lemma test.

Hence, given the system G(s) = (A,B,C), the H∞ norm can be found, by
verifying for which values of γ the system G(s)/γ = (A, Bγ ,C) is bounded-real.
So we have to consider the Hamiltonian matrix

H =

[
A BBT

γ2

−CTC −AT

]
(11.4)

H∞ Linear Control 197

FIGURE 11.2
Scheme of robust control.

fix a value of γ and verify if the matrix (11.4) has no eigenvalues on the
imaginary axis. If it does, system G(s)/γ is not bounded-real and the norm
of G(s) is not less than γ. At this point we have to choose a larger value of γ
and run the test again. The H∞ norm value is given by the smallest value of γ
which assures that the system G(s)/γ is still bounded-real, that is, the value
for which the Hamiltonian matrix (11.4) has no eigenvalues on the imaginary
axis.

Example 11.1
Consider the system with transfer function G(s) = 10

s+5
. From the Bode diagram we

see that the H∞ norm of this system is ‖G(s)‖∞ = 2. If we consider a realization of
the system with A = −5; B = 10; C = 1 we can calculate the H∞ norm using the
procedure based on the Hamiltonian (11.4). In this case we obtain:

H =

[
−5 100

γ2

−1 5

]
(11.5)

The characteristic polynomial of the Hamiltonian is p(λ) = λ2 − 25 + 100
γ2

, from which

it can be derived that the limit condition for which the Hamiltonian has no eigenvalues
on the imaginary axis is γ = 2.

11.2 Solution of the H∞ Linear Control Problem

The scheme used for H∞ control is shown in Figure 11.2. P(s) represents
the system to be controlled, K(s) is the compensator to be determined. The
system outputs are divided in two groups: the output variables available for
the control (variables y) and the interest variables (variables z). The objective
of the control is to minimize the effect of the exogenous inputs (variables w)
on the interest variables, acting through the manipulable inputs (or control
signals), represented by the variables u.

198 Optimal and Robust Control: Advanced Topics with MATLAB r

The effect of the exogenous inputs (which include disturbances) on the
variables of interest is represented by the transfer matrix from w to z, denoted
by Tzw(s). We refer to the H∞ norm as a measure of the size of the transfer
matrix from w to z.

Once γ > 0 is assigned, the control problem H∞ consists in determining
the compensator K(s) which stabilizes the closed-loop system of Figure 11.2
and guarantees ‖Tzw‖∞ ≤ γ.

The state equations of the system P(s) in the H∞ control scheme are given
by:  ẋ = Ax + B1w + B2u

z = C1x + D11w + D12u
y = C2x + D21w + D22u

(11.6)

where the dimensions of the vectors x, w, u, z and y are respectively, n, m1,
m2, p1 and p2.

With the compact notation given by the realization matrix the system to
be controlled can be written as:

P(s) =

 A B1 B2

C1 D11 D12

C2 D21 D22


The problem of the H∞ control can be solved in the time domain or

frequency domain. Originally, it was solved in 1988 in the frequency domain.
Two years later, the problem was solved in the time domain, which permits
correlating the results to those for optimal control and the Kalman filter.

Throught this section, controllability and observability of the system

P(s) is assumed and it also occurs that

[
B1

D21

]
DT

21 =

[
0
I

]
and

DT
12

[
C1 D12

]
DT

21 =
[

0 I
]
. These latter hypotheses ensure the orthog-

onality of the variables y and z, as well as of w and u, leading to the compact
controller formulas discussed herein.

Let us analyze in detail the time domain technique to solve the problem.
This allows us to obtain a compensator of order n, defined by the two gain
matrices, Kc for the regulator and Ke for the observer. Let us consider D11 =
D22 = 0 and let us define as X∞ and Y∞ the two solutions of the Riccati
equations expressed in compact form:

X∞ = RIC

[
A− B2D̃12DT

12C1 γ−2B1BT1 − B2D̃12BT2
−C̃T1 C̃1 −(A− B2D̃12DT

12C1)T

]
(11.7)

and

Y∞ = RIC

[
(A− B1DT

21D̃21C2)T γ−2CT1 C1 − CT2 D̃21C2

−B̃1B̃T1 −(A− B1DT
21D̃21C2)

]
(11.8)

H∞ Linear Control 199

with C̃1 = (I−D12D̃12DT
12)C1 and B̃1 = B1(I−DT

21D̃21D21).
Equation (11.7) is a compact way of indicating the solution of the Riccati

equation:

A∗TX∞ + X∞A∗ + X∞R∗X∞ + Q∗ = 0

with A∗ = A − B2D̃12DT
12C1, R∗ = γ−2B1BT1 − B2D̃12BT2 and Q∗ = C̃T1 C̃1.

Similarly, equation (11.8) defines the solution of an analogue Riccati equation.
The solutions of these two Riccati equations depend on γ, which represents

the objective reached by the H∞ control. Starting from the matrices X∞ and
Y∞ the gains characterizing the compensator can be derived:{

Kc = D̃12(BT2 X∞ + DT
12C1)

Ke = (Y∞CT2 + B1DT
21)D̃21

(11.9)

where

D̃12 = (DT
12D12)−1

D̃21 = (D21DT
21)−1

Note that the Hamiltonian associated with the Riccati equation (11.7), if γ
is very large, coincides with the Hamiltonian for optimal control (so a solution
can be found). A solution is not guaranteed to exist when γ is small, that is,
in the presence of strict requirements for the control system. In this case, the
matrix R∗ = γ−2B1BT1 − B2D̃T

12BT2 may be non-negative definite.
The existence of a stabilizing compensator which guarantees ‖Tzw‖∞ < γ

is assured if there are two positive definite solutions to the Riccati equations
(11.7) and (11.8) and if the maximum eigenvalue of the product matrix X∞ ·
Y∞ is less than γ2, that is if ρ(X∞ ·Y∞) < γ2.

The procedure for solving the H∞ control problem can be summarized in
the following steps:

1. Determine a state-space representation for the process P (s);

2. Verify the existence conditions (invertibility of DT
12D12 and D21DT

21);

3. Fix a positive value of γ large enough (to solve the two Riccati
equations);

4. Solve the two Riccati equations, obtaining the two positive definite
solutions;

5. Verify if the condition ρ(X∞ ·Y∞) < γ2 is met;

6. If the steps 4) and 5) are verified, it is possible to repeat the proce-
dure, lowering γ to point 3).

The obtained compensator consists of a control law expressed as u = −Kcx̂
and an observer which dynamics is given by the following equation:

˙̂x = Ax̂ + B2u + B1ŵ + Z∞Ke(y − ŷ) (11.10)

200 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 11.3
Block scheme of the H∞ control.

with ŵ = γ−2BT1 X∞ and ŷ = C2x̂ + γ−2D21BT1 X∞x̂.
In compact form the state-space equations of the compensator are:

K(s) =

[
A− B2Kc − Z∞KeC2 + γ−2(B1BT1 − Z∞KeD21BT1)X∞ Z∞Ke

−Kc 0

]
with Z∞ = (I− γ−2X∞ ·Y∞)−1.

The control scheme relative to the H∞ control is summarized in Figure
11.3 with H1 = γ−2B1BT1 X∞, H2 = γ−2D21BT1 X∞, and H3 = Z∞Ke.

Relaxing the assumptions on D11 and D22 leads to more complex formulas.
Here we focused on this scenario since it contains all the essential features of
the general problem.

Example 11.2
As an example of H∞ control consider the system in Figure 11.4. Suppose u is the
torque applied by the motor to the axis and J = 1 is the moment of inertia of the
axis. θ is the angle between the motor axis and the x-axis. Assuming the engine is
frictionless, the system model is represented by a double integrator. If x1 is the angular
velocity variable and x2 the state variable representing the angular position, the model
in state-space form is expressed by the following equations:{

ẋ1 = d+ u
ẋ2 = x1

(11.11)

H∞ Linear Control 201

FIGURE 11.4
Example of system to be controlled with the H∞ control.

where we highlighted the presence of a disturbance d on the engine torque. The output

to be regulated is defined as z =

[
x2

u

]
, so as to take into account the effect of

the disturbance on variable x2, but also on input u. The output is given by variable
x2 affected by noise n (y = x2 + n). Finally, the exogenous input vector is given by

w =

[
d
n

]
.

Summarizing, the complete model in state-space form is given by:
ẋ1 = w1 + u
ẋ2 = x1

z1 = x2

z2 = u
y = x2 + w2

(11.12)

Recalling the formulation of state-space equations (11.6) for the H∞ control scheme: ẋ = Ax + B1w + B2u
z = C1x + D11w + D12u
y = C2x + D21w + D22u

the realization matrix of the system to be controlled can be easily derived:

P(s) =

 A B1 B2

C1 D11 D12

C2 D21 D22

 =


0 0 1 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 1 0 1 0


Applying the H∞ control procedure (shown in the next chapter), the transfer function
of the compensator

K(s) =
−977.4(s+ 0.40)

(s+ 2.33)(s+ 373.4)

and the optimum value γott = 2.62 are obtained. Finally, the solution matrices of the

Riccati equations are X∞ =

[
1.59 1.08
1.08 1.47

]
and Y∞ =

[
1.47 1.08
1.08 1.59

]
.

Example 11.3
In this exercise a further example of H∞ control is given. Let us consider a Rapid
Thermal Processing (RTP) system in semiconductor wafer manufacturing, in which the

202 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 11.5
Block scheme for the control of the RTP system.

ability of rapidly changing the temperature is important for the fabrication of devices
with very small crystal length.
Let us consider the following linear model:

ẋ = Ax + Bu
y = Cx

(11.13)

with

A =

 −0.0682 0.0149 0
0.0458 −0.1181 0.0218

0 0.04683 −0.1008

 ; B =

 0.5122
0.5226
0.4185

 ; C =
[

0 1 0
]

; D = 0

The state vector x represents the temperatures of three tungsten halogen lamps which
are tied into one actuator. Only the central one is used for feedback. The reader is
referred to the book by Franklin, Powell and Emami-Naeini for a deeper discussion on
the linear model of the RTP system and its control by classical methods.
Consider now a H∞ control problem. Let us start from the control scheme reported in
Figure 11.5. The objective of the control (beyond closed-loop stability) is to track the
input, i.e., to minimize the error e(t) = r(t) − y(t). So, the first step is to rewrite the
problem in terms of this block scheme. To do this, let us write the state-space equations
by introducing the variable ỹ = r − y (that is the input of the controller):

ẋ = Ax + Bu
ỹ = w − Cx

(11.14)

To satisfy the objective of input tracking, we choose z∞ = e and w = r. This is the
worst case for the error, since for a SISO system the H∞ norm represents the maximum
value of the frequency response, or in other words the maximum amplification for any
sinusoidal input.
The whole equations of the system to be controlled are rewritten as:

ẋ = Ax + Bu
z∞ = w − Cx
ỹ = w − Cx

(11.15)

from which it is possible to define B1 =
[

0 0 0
]T

, B2 = B, C1 = C2 = −C,
D11 = D21 = 1, and D12 = D22 = 0.
The realization matrix of the process can be written as:

P (s) =


−0.0682 0.0149 0 0 0.5122
0.0458 −0.1181 0.0218 0 0.5226

0 0.04683 −0.1008 0 0.4185
0 −1 0 1 0
0 −1 0 1 0

 ;

H∞ Linear Control 203

0 50 100 150 200
0

5

10

15

20

25

t [s]

T
e
m

p
e
ra

tu
re

 [
K

]

y

r

FIGURE 11.6
Response of the closed-loop system with the designed H∞ controller K(s) as
in equation (11.16).

Applying the procedure for the design of the H∞ control by using the MATLABr

command hinfric, we obtain a performance index γopt = 1.01 and the following com-
pensator:

K(s) =
1.1285(s+ 0.099)(s+ 0.071)

(s+ 1908)(s+ 0.14)(s+ 0.088)
(11.16)

The temperature tracking response of the closed-loop system is reported in Figure 11.6
where the input signal (dashed line) is followed by the response (continuous line).

Example 11.4
Let us now discuss a further example related to the design of an H∞ controller. In
this case we will determine the controller and the optimal value of γ through the direct
application of the procedure outlined in this section.
Consider the following first order system:

ẋ = x+ u+ d
y = x+ n

(11.17)

Our task is to control the state variable x and the control signal u in presence of a
disturbance d and a measurement noise n. Therefore, the equations must be rewritten,

considering z =

[
x
u

]
and w =

[
d
n

]
, as follows:

ẋ = x+ w1 + u
z1 = x
z2 = u
y = x+ w2

(11.18)

According to equations (11.6), the system is characterized by A = 1, B1 =
[

1 0
]
,

B2 = 1, C1 =
[

1 0
]T

, C2 = 1, D11 =

[
0 0
0 0

]
, D12 = DT21 =

[
0 1

]T
, and

D22 = 0.
We then calculate D̃12 =

(
DT12D12

)−1
= 1, D̃21 =

(
D21DT21

)−1
= 1, A∗ =

204 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 11.7
Graphical solution of the inequality in (11.21) to find γ in Example 11.4.

A − B2D̃12DT12C1 = 1, C̃1 =
(

I−D12D̃12DT12

)
C1 =

[
1 0

]T
, R∗ = γ−2B1BT1 −

B2D̃12BT2 = γ−2− 1, Q∗ = C̃T1 C̃1 = 1 and derive the Riccati equation:

2X∞ +
(
γ−2 − 1

)
X2
∞ + 1 = 0 (11.19)

whose solution is X∞ =
−γ2−γ

√
2γ2−1

1−γ2 . It can be verified that Y∞ = X∞.

If γ � 0, the solutions are positive, while for γ = 1√
2

the solutions are negative. In

general, X∞ > 0 for γ > 1.
Let us now calculate the product X∞Y∞ as:

X∞Y∞ = 1

(1−γ2)2

(
−γ2 − γ

√
2γ2 − 1

)2
=

= 1

(1−γ2)2

[
γ4 + γ2

(
2γ2 − 1

)
+ 2γ3

√
2γ2 − 1

] (11.20)

According to step 5), we must have that X∞Y∞ < γ2. This holds true when:

1

(1−γ2)2

[
γ4 + γ2

(
2γ2 − 1

)
+ 2γ3

√
2γ2 − 1

]
< γ2

1

(1−γ2)2

[
γ2 +

(
2γ2 − 1

)
+ 2γ

√
2γ2 − 1

]
< 1[

3γ2 − 1 + 2γ
√

2γ2 − 1
]
< 1 + γ4 − 2γ2

−γ4 + 5γ2 + 2γ
√

2γ2 − 1− 2 < 0

(11.21)

The last inequality in (11.21) can be graphically solved, as in Figure 11.7. We find that
γ > 2.67 represents the limit case where X∞ = Y∞ = 2.729. The H∞ controller can
be derived calculating Kc = −Ke = −2.729, Z∞ = (1 − γ−2X∞Y∞)−1 = 132.44 and
AK = A − B2Kc − Z∞KeC2 + γ−2

(
B1BT1 − Z∞KeD21BT1

)
X∞ = −362.9185. This

yields the following H∞ controller: K(s) = −986.99
s+362.9185

.

Other examples of H∞ control are addressed in the following chapters
where a very general technique is used to solve them, based on the so-called
Linear Matrix Inequalities (LMI).

H∞ Linear Control 205

FIGURE 11.8
Scheme of robust control with uncertainty ∆(s).

11.3 The H∞ Linear Control and the Uncertainty Prob-
lem

As we saw in the introduction, uncertainty is a problem of fundamental im-
portance in control systems. In the case of H∞ control, we have a significant
result to check the robustness of the control system to uncertainties.

Consider again the control scheme shown in Figure 11.2. As discussed
above, the objective of the H∞ control is to determine a stabilizing controller
that ensures that ‖Tzw(s)‖∞ < γ. In fact, the transfer matrix depends on the
characteristics of the process P (s) to be controlled and on the choice of the
compensator, i.e., Tzw = Tzw(P,K). Thus, for this reason, one can act on K
so as to obtain ‖Tzw(s)‖∞ < γ.

Now, let us consider the uncertainty ∆(s) defined as in Figure 11.8. The
uncertainty is modeled through a transfer function from z to w. We will see be-
low that this model can represent various types of uncertainty (multiplicative
and additive, for example).

The scheme in Figure 11.8 can be simplified as in Figure 11.9, which high-
lights that the connection between ∆(s) and Tzw(s) is a feedback connection.
At this point, system stability can be assessed by applying Theorem 24 (the
small-gain theorem). If system ∆(s)Tzw(s) is bounded-real, then the feedback
system is asymptotically stable. Since the H∞ norm is a consistent norm,
then ‖∆(s)Tzw(s)‖∞ ≤ ‖∆(s)‖∞‖Tzw(s)‖∞, so if ‖Tzw(s)‖∞ < γ then for
any uncertainty that ‖∆(s)‖∞ < 1

γ the feedback system is guaranteed to be
asymptotically stable.

Therefore, the H∞ control system is guaranteed to be robust to any stable
perturbation having H∞ norm less than 1

γ .

206 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 11.9
Feedback connection between ∆(s) and Tzw(s).

FIGURE 11.10
Scheme representing the additive uncertainty on G(s).

Now let us see how additive and multiplicative uncertainty can be rep-
resented according to the scheme in Figure 11.9. First, consider the additive
uncertainty as in Figure 11.10. Opening the circuit at the points marked (a)
and (b), the scheme can be redrawn as in Figure 11.11, showing that by choos-
ing Tzw = K(I −GK)−1 the additive uncertainty can be modeled according
to the scheme in Figure 11.9.

As for the multiplicative uncertainty of type G̃(s) = G(s)(I + ∆(s)), rep-
resented by Figure 11.12, we can use an equivalent scheme as in Figure 11.13.
So, multiplicative uncertainty can be modeled as in Figure 11.9 selecting
Tzw(s) = KG(I −KG)−1.

H∞ Linear Control 207

FIGURE 11.11
Formulation of additive uncertainty in terms of feedback between ∆(s) and
Tzw(s).

FIGURE 11.12
Scheme representing the multiplicative uncertainty on G(s).

FIGURE 11.13
Formulation of multiplicative uncertainty in terms of feedback between ∆(s)
and Tzw(s).

208 Optimal and Robust Control: Advanced Topics with MATLAB r

11.4 Exercises

1. Calculate analytically the H∞ norm for the system with transfer
function G(s) = 2s+1

s+2 .

2. Given the continuous-time system with state-space matrices:

A = −1; B =
[

1 2
]

; C =

[
3
4

]
determine analytically the H∞ norm.

3. Given the continuous-time system with state-space matrices:

A = −3; B =
[

1 3
]

; C =

[
6
9

]
determine analytically the H∞ norm.

4. Given the system  ẋ1 = x1 + u+ 2w
y = x1 + w
z = 2x1 + 2u

calculate analytically the compensator C(s) with the H∞ control
technique.

5. Calculate the performance of the H∞ control for the system: ẋ = 2x+ 0.1w + u
z = 2x+ 0.7u
y = −x+ 2w

(11.22)

12

Linear Matrix Inequalities for Optimal and
Robust Control

CONTENTS

12.1 Definition and Properties of LMI . 210
12.2 LMI Problems . 211

12.2.1 Feasibility Problem . 211
12.2.2 Linear Objective Minimization Problem 212
12.2.3 Generalized Eigenvalue Minimization Problem 212

12.3 Formulation of Control Problems in LMI Terms 213
12.3.1 Stability . 213
12.3.2 Closed-loop Stability . 213
12.3.3 Simultaneous Stabilizability . 214
12.3.4 Positive-real Lemma . 214
12.3.5 Bounded-real Lemma . 214
12.3.6 Calculating the H∞ Norm Through LMI 215

12.4 Solving a LMI Problem . 215
12.5 LMI Problem for Simultaneous Stabilizability 218
12.6 Solving Algebraic Riccati Equations Through LMI 221
12.7 Computation of Gramians Through LMI . 223
12.8 Computation of the Hankel Norm Through LMI 224
12.9 H∞ Control . 226
12.10 Multiobjective Control . 228
12.11 Exercises . 235

This chapter introduces a technique based on matrix inequalities (the so-
called Linear Matrix Inequalities or LMIs) which solves many control problems
through a very general formulation. After expressing the main ideas on which
the approach relies, the most important control problems are reformulated
according to LMI. Whenever this formulation is possible, it paves the way
to the use of convex optimization techniques for their solution. In the chap-
ter, the optimal control problems, the H∞ control and the multi-objective
optimization problem are, in particular, focused on. MATLAB includes an
efficient toolbox for solving LMI problems, as discussed in the chapter along
with several worked examples.

DOI: 10.1201/9781003196921-12 209

https://doi.org/10.1201/9781003196921-12

210 Optimal and Robust Control: Advanced Topics with MATLAB r

12.1 Definition and Properties of LMI

A LMI is a relation of the following form:

A(x) = A0 + x1A1 + x2A2 + . . .+ xnAn < 0 (12.1)

where x =
[
x1, x2, . . . , xn

]
is a vector of unknowns, said decisional

variables or optimization variables, A0,A1,A2, . . . ,An are assigned symmetri-
cal matrices, and where the inequality has to be seen in matricial sense (A(x)
is a negative definite matrix).

Note that constraints of type A(x) > 0 and A(x) < B(x) can be reformu-
lated according to (12.1), considering −A(x) < 0 and A(x)− B(x) < 0.

Also note that all the points x that satisfy the LMI (12.1) constitute a
convex set. In fact if A(y) < 0 and A(z) < 0, then A(y+z

2) < 0.
From the convexity property derives the important consequence that, al-

though the inequality (12.1) has no analytical solution in the general case, it
can be solved numerically with the guarantee to find a solution if it exists.

Moreover, since the set of solutions, also called “feasible set,” is a convex
subset of Rn, finding a solution for the LMI (12.1) is a convex optimization
problem. Recall that an optimization problem consists of finding a minimum
(or a maximum) in certain regions defined by some constraints on the inde-
pendent variables.

Furthermore, all the conditions
A1(x) < 0
A2(x) < 0

. . .
Ak(x) < 0

are equivalent to one single LMI of type:

A(x) =


A1(x) 0 . . . 0

0 A2(x) . . . 0
...

. . .
...

0 0 . . . Ak(x)

 < 0

Finally, it is important to notice that nonlinear inequalities of convex type
can be transformed in LMI. For example, the following set of inequalities:{

R(x) > 0
Q(x)− S(x)R−1(x)ST (x) > 0

(12.2)

with symmetric R(x) and Q(x) is equivalent to the LMI:[
Q(x) S(x)
ST (x) R(x)

]
> 0 (12.3)

Linear Matrix Inequalities for Optimal and Robust Control 211

In this way, the nonlinear inequality (12.2) can be transformed in a linear
inequality (12.3).

In many control problems the LMIs are not in form (12.1), but are struc-
tured as follows:

L(X1, . . . , Xn) < R(X1, . . . , Xn) (12.4)

where L and R are affine functions of some structured matricial variables
X1, . . . ,Xn.

For example, consider

ATX + XA < 0 (12.5)

with A =

[
a11 a12
a21 a22

]
. This LMI problem has a particular importance for the

study of the stability of linear time-invariant systems. In fact, it is equivalent
to the Lyapunov theorem for time-invariant systems. A linear time-invariant
system is asymptotically stable if the LMI (12.5) admits a solution X > 0. If

we consider X =

[
x11 x12
x12 x22

]
, it is immediate to verify that the inequality

ATX + XA < 0 can be written as A1x11 + A2x12 + A3x22 with A1, A2 and A3

appropriate matrices.
LMIs can be applied to control, identification and design problems. Their

importance for these kinds of problems is motivated by several considerations:
the design specifications and the design constraints can be expressed in LMI
terms; the control problems can be reformulated in terms of convex optimiza-
tion problems; many of the control problems lack analytical solutions, but
they can be treated in LMI terms.

Furthermore, in the period in which LMIs were discovered, the interior
point method to solve convex optimization problems was developed. The de-
velopment of this optimization method was a further motivation to use the
LMI.

12.2 LMI Problems

Some convex optimization problems are considered canonical. In particular,
many control problems can be formulated in terms of three LMI canonical
problems which will be described in detail.

12.2.1 Feasibility Problem

The feasibility problem consists of finding a solution x to the LMI problem

212 Optimal and Robust Control: Advanced Topics with MATLAB r

A(x) < 0 (12.6)

and it is equivalent to solving the optimization problem:

min t with constraint A(x) < tI (12.7)

with t < 0. This problem can be solved with the MATLABr command feasp.

12.2.2 Linear Objective Minimization Problem

Minimizing a convex objective function with a LMI is still a convex problem.
In particular, if the objective function is linear it is said to be a linear objective
minimization problem. This problem is defined by:

min CTx < 0 with constraint A(x) < 0 (12.8)

This problem can be solved using the MATLAB command mincx.

12.2.3 Generalized Eigenvalue Minimization Problem

The generalized eigenvalue minimization problem consists in minimizing

minλ (12.9)

with the constraints  A(x) < λB(x)
B(x) > 0
C(x) < 0

(12.10)

This problem can be solved using the MATLAB command gevp.
A simplified version of the problem is given by the objective to minimize

minλ (12.11)

with the constraints {
λI−A(x) > 0
B(x) > 0

(12.12)

Solving a LMI problem means determining first if the problem admits
solutions, and so calculating the feasible solution.

The interior point optimization algorithms developed by Nesterov and Ne-
mirovski allowed to solve in an efficient and fast way the previously discussed
canonical generical LMI problems.

Linear Matrix Inequalities for Optimal and Robust Control 213

12.3 Formulation of Control Problems in LMI Terms

Many control problems can be formulated in terms of LMI inequalities. In this
section we examine some important examples.

12.3.1 Stability

The system ẋ = Ax is asymptotically stable if there exists a matrix P > 0
which satisfies ATP + PA < 0. The LMI problem is feasible if the system is
asymptotically stable. To study the stability of a linear time-invariant system
through LMI, we have to solve a feasibility problem defined by:

P > 0
ATP + PA < 0

(12.13)

This LMI problem admits a closed form solution, given by the Lyapunov
theorem for linear time-invariant systems.

12.3.2 Closed-loop Stability

The LMI problem (12.13) can be properly adapted to the study of closed-loop
stability. In this case the feasibility problem reads

P > 0
AcP + PAT

c < 0
(12.14)

where Ac = A − BK is the closed-loop state matrix. Note that we have con-
sidered the equivalent problem of studying the stability of system AT

c .
Substituting the expression of Ac in equation (12.14), we obtain

P > 0
(A− BK)P + P(AT −KTBT) < 0

(12.15)

and letting Q = KP we obtain

P > 0
AP− BQ + PAT −QTBT < 0

(12.16)

The LMI problem (12.16) in the two unknowns P and Q allows one to find
the control law which stabilizes the system under the assumption that it is
controllable. Since P is positive definite, we can calculate the inverse and get
K: K = QP−1.

214 Optimal and Robust Control: Advanced Topics with MATLAB r

12.3.3 Simultaneous Stabilizability

The peculiarity of the method described in the previous section can be applied
to the simultaneous stabilizability problem. This term indicates the possibility
to find a control law which stabilizes simultaneously two or more systems.

So, consider m systems (all of order n) S1(A1,B1), . . . , Sm(Am,Bm). The
problem of the existence of a control law u = −Kx that stabilizes simulta-
neously these systems can be viewed as a feasibility problem defined by the
following LMIs:

P > 0
A1P− B1Q + PAT

1 −QTBT1 < 0
. . .
AmP− BmQ + PAT

m −QTBTm < 0

(12.17)

We will see in the following chapter that there exist some analytical con-
ditions for the study of simultaneous stabilizability of two systems, while for
most systems the numerical approach here described has to be used. In Section
12.5 an example of simultaneous stabilizability is described.

12.3.4 Positive-real Lemma

The problem of determining if a system is passive, i.e., checking whether∫ T
0
uT (t)y(t)dt ≥ 0, can be solved through the positive-real lemma discussed

in Chapter 9. This problem can also be formulated in LMI terms. Also in this
case, this yields a feasibility problem. Particularly, the positive-real lemma
can be formulated in terms of two LMIs defined by

P > 0[
ATP + PA PB− CT

BTP− C −DT −D

]
≤ 0

(12.18)

The problem is feasibile if the assumptions of the positive-real lemma are
verified.

12.3.5 Bounded-real Lemma

Recall that a system is bounded-real if for any input u(t) the output is such

that
∫ T
0
yT (t)y(t)dt ≤

∫ T
0
uT (t)u(t)dt. For linear time-invariant systems this

property can be verified through the bounded-real lemma, or in LMI terms
verifying that the problem defined by

P > 0[
ATP + PA + CTC PB + CTD

BTP + DTC DTD− I

]
≤ 0

(12.19)

is feasible.

Linear Matrix Inequalities for Optimal and Robust Control 215

12.3.6 Calculating the H∞ Norm Through LMI

The H∞ norm of a system G(s) = C(sI − A)−1B is α if ‖G(jω)‖∞ ≤ α ∀ω
or equivalently ‖α−1G(jω)‖∞ ≤ 1, i.e., if the system G̃(jω) = α−1G(jω) is
bounded-real. The approach shown in Chapter 11 is based on the construction

of a Hamiltonian matrix H =

[
A BBT

α2

−CTC −AT

]
and on the verification of the

minimum value of α for which the matrix has no eigenvalues on the imaginary
axis.

Considering that this problem is associated to the Riccati equation ATP+
PA + CTC + (α2)−1PBTBP = 0, the problem can be reformulated with a
matrix inequality

ATP + PA + CTC + (α2)−1PBTBP < 0

where a nonlinear term in P appears. In turn, this nonlinearity inequality can
be reformulated as a LMI:

P > 0[
ATP + PA + CTC PB

BTP 0

]
≤ α2

[
εI 0
0 I

]
(12.20)

The LMI (12.20) is a generalized eigenvalue problem of type F (x) <
α2E(x). ε is a small quantity introduced to obtain a numerical solution of
the problem.

12.4 Solving a LMI Problem

In MATLABr, it is possible to define any LMI problem and solve it with one
of the commands feasp, mincx, or gevp. The definition of the LMI problem
does not depend on the type of problem to solve and it is completely general.

The definition of a LMI problem begins with the command setlmis and
ends with the command getlmis. At first it is necessary to define the deci-
sional variables, i.e., the unknowns, of the LMI problem. The command to use
is lmivar with the following syntax:

P=lmivar(type,structure)

This command allows one to choose unknown symmetric matrices, rect-
angular matrices or matrices of other type. Depending on the chosen matrix
type, the structure contains different information:

• If type=1, the matrix P is square and symmetric. Element (i,1) of structure
specifies the dimension of the i-block, while element(i,2) specifies the type of
block (0 for scalar blocks of type xI, 1 for complete blocks, -1 for zero-blocks);

216 Optimal and Robust Control: Advanced Topics with MATLAB r

• If type=2, the matrix P is rectangular of size m × n as specified in struc-
ture=[m,n];

• If type=3, the matrix P is of other type.

MATLABr Exercise 12.1
Define the following matrices of decisional variables: a 3 × 3 symmetric matrix X1; a

2 × 4 rectangular matrix X2; and X3 =

 ∆ 0 0
0 δ1 0
0 0 δ2I2

 with I2 identity matrix of

order two and ∆ a 5× 5 matrix:
X1=lmivar(1,[3 1]);

X2=lmivar(2,[2,4]);

X3=lmivar(1,[5 1; 1 0; 2 0]);

A LMI can be specified in MATLAB defining each of its constituent terms
with the command lmiterm. The LMI is thus specified term by term. The
syntax of the command for each term is:

lmiterm(termID, A,B,flag)

In the termID parameter different information are summarized. The first
element answers the question: at which LMI belongs the term? termID(1)

in fact can be +n or −n depending on whether the specified term appears,
respectively, in the left- or right-hand of the n−th matrix inequality.

The second and the third element answer the question: to which block
belongs the specified term? In fact, termID(2:3) can be equal to [0 0] for
external factors or to [i, j] to indicate the ij block of a generic matrix term
that appears in the LMI.

Finally, the fourth element specifies which type of term we are adding to
the LMI problem. In fact, termID(4) can be 0, X or -X depending on whether
the term is constant, of type AXB or AX ′B.

The other parameters of the command lmiterm are more intuitive. A and
B represent the matrices that left- or right- multiply the variable respectively,
while the flag is set on ’s’ to specify with a single command that in the LMI
appears not only the given term, but also its symmetric.

In MATLAB it is also possible to use a graphical interface to define a LMI
problem. The interface can be launched through the command lmiedit and
provides the sequence of the commands that define the LMI problem.

MATLABr Exercise 12.2
As example, we discuss the definition of a LMI problem for the study of the stability
of a linear time-invariant system with state matrix A = diag(−1,−2, . . . ,−10).
A=diag([-1:-1:-10]);

setlmis([]);

P=lmivar(1,[10 1]);

lmiterm([-1 1 1 P],1,1); % LMI #1: P

lmiterm([2 1 1 P],A’,1,’s’); % LMI #2: A’*P+P*A

stabproblem=getlmis;

Once defined, it is possible to solve the LMI problem with the command feasp:

Linear Matrix Inequalities for Optimal and Robust Control 217

[tmin,Psol] = feasp(stabproblem);

Running the procedure returns a value t < 0. To obtain the solution matrix of the
problem we must pass from the decisional matrices to the correspondent matrix with
the command dec2mat:
Pmatrice=dec2mat(stabproblem,Psol,P);

MATLABr Exercise 12.3
Consider the problem of calculating the H∞ norm for the system with state matrices:

A = diag(−1,−2, . . . ,−10); B =


1
1
...
1

; C =
[

1 1 . . . 1
]
.

We observe that the system is a relaxation system and it is also a strictly proper system.
This implies that the H∞ norm of the system coincides with the value of the frequency
response obtained for ω → 0 so it can be calculated considering G(0) = C(−A)−1B.
Let us begin defining the system with MATLAB:
>> A=diag([-1 -2 -3 -4 -5 -6 -7 -8 -9 -10]);

>> B=ones(10,1);

>> C=ones(1,10);

>> system=ss(A,B,C,0);

Then calculate the H∞ norm exploiting the peculiarities of the system as ‖G(s)‖∞ =
C(−A)−1B:
>> normmethod1=C*inv(-A)*B

A second method to calculate the H∞ norm is based on the use of the command
normhinf:
>> normmethod2=normhinf(system)

In the LMI toolbox a specific command to calculate the H∞ norm also exists. In this
case the system has to be defined as an object of type ltisys and the norm can be
calculated as follows:
>> g=ltisys(A,B,C,0)

>> [normmethod3, pekf]=norminf(g)

Finally, we show the calculation of the H∞ norm through the definition of a LMI
problem which makes use of the equation (12.20):
>> setlmis([]);

>> P=lmivar(1,[10 1]);

>> lmiterm([-1 1 1 P],1,1); % LMI #1: P>0

>> lmiterm([2 1 1 P],A’,1,’s’); % LMI #2: A’*P+P*A

>> lmiterm([2 1 1 0],C’*C); % LMI #2: C’*C

>> lmiterm([2 2 1 P],B’,1); % LMI #2: B’*P

>> lmiterm([-2 1 1 0],0.00001); % LMI #2: epsilon

>> lmiterm([-2 2 2 0],1); % LMI #2: 1

>> LMIproblem=getlmis;

>> [a1,po]=gevp(LMIproblem,1);

>> normmethod4=sqrt(a1)

Note that the command gevp requires that the LMIs in which the generalized eigenvalue
λ to minimize appears are written at the end of the list. In addition we have to specify
in how many LMIs λ appears (in this case, it does in a single LMI).

218 Optimal and Robust Control: Advanced Topics with MATLAB r

12.5 LMI Problem for Simultaneous Stabilizability

The problem of simultaneous stability is illustrated through an example. Then,
an application to the control of nonlinear circuits is discussed.

Consider the system {
ẋ1 = x21 + 3x2 + 2u
ẋ2 = x1 + x2

(12.21)

At u = 1 the system admits two equilibrium points (x̄1, x̄2) = (1,−1)
and (x̃1, x̃2) = (2,−2). Suppose we want to stabilize the system around both
equilibrium points with a unique control law.

The linearized system around the two equilibrium is described by the state
matrices:

A1 =

[
2 3
1 1

]
; A2 =

[
4 3
1 1

]
; B = B1 = B2 =

[
2
0

]
Therefore it is necessary to solve the LMI problem:

P > 0
A1P− BQ + PAT

1 −QTBT < 0
A2P− BQ + PAT

2 −QTBT < 0
(12.22)

Once the matrices are defined in MATLABr, the LMI problem can be
defined through the commands:

>> setlmis([]);

>> P=lmivar(1,[2 1]);

>> Q=lmivar(2,[1,2]);

>> lmiterm([-1 1 1 P],1,1);

>> lmiterm([2 1 1 P],A1,1,’s’);

>> lmiterm([2 1 1 Q],B,-1,’s’);

>> lmiterm([3 1 1 P],A2,1,’s’);

>> lmiterm([3 1 1 Q],B,-1,’s’);

>> stabilz2=getlmis;

The solution can be calculated through the commands:
>> [tmin,xfeas] = feasp(stabilz2);

>> Pvalue=dec2mat(stabilz2,xfeas,P);

>> Qvalue=dec2mat(stabilz2,xfeas,Q);

>> k=Qvalue*inv(Pvalue)

Note that the obtained value guarantees that the closed-loop eigenvalues
have negative real part either if the system works around the equilibrium point
x̄ or around x̃:

>> eigenvaluessystem1=eig(A1-B*k)

>> eigenvaluessystem2=eig(A2-B*k)

As crosscheck, verify that the controller that, for example, is obtained by

Linear Matrix Inequalities for Optimal and Robust Control 219

assigning the eigenvalues λ1 = −1 and λ2 = −0.5 in the closed-loop system
A1−BK does not guarantee the stability of A2−BK. To do this, it is possible
to use the commands:

>> openloopeigenvalues=eig(A1)

>> K=acker(A1,B,[-1 -0.5])

>> eig(A1-B*K)

>> eigenvaluessystem1=eig(A1-B*K)

>> eigenvaluessystem2=eig(A2-B*K)

MATLABr Exercise 12.4
In this MATLAB exercise, the LMI approach to simultaneous stability is adopted for
the design of an asymptotic observer for a nonlinear circuit.
Let us begin with the linear case, discussing the LMI problem for the observer design
for a system described by:

Ẋ = AX, (12.23)

The dynamical equations of the observer system are:

˙̂
X = AX̂ + Ke, (12.24)

where K are the observer gains and the error is defined as e = CX − CX̂ with (A,C)
being the state matrices of the system. K has to be chosen in order to ensure the stability
of the error system. This can be done following a LMI approach defined starting from
the following Lyapunov equation:

AT
OP + PAO = −Q̄, (12.25)

with P and Q̄ positive definite matrices and AO = A−KC the state matrix of the error
system.
The corresponding LMI problem is the following:{

AT
OP + PAO < 0

P > 0
(12.26)

where the first constraint is:

(A−KC)TP + P(A−KC) < 0 (12.27)

Define now Q = PK and substitute in equation (12.26):{
ATP− CTQT + PA−QC < 0
P > 0

(12.28)

Once P and Q solving problem (12.28) are obtained, K is calculated as K = P−1Q. The
problem is feasible if system (A,C) is observable.
Let us now design the observer for the nonlinear circuit described by the following
equations:  ẋ = α[y − h(x)]

ẏ = x− y + z
ż = −βy

(12.29)

with h(x) = m1x + 1
2

(m0 − m1)(|x + 1| − |x − 1|) representing the piece-wise linear
nonlinearity. This nonlinear system represents the dimensionless equations governing
the so-called Chua’s circuit, a nonlinear circuit able to show complex behavior, like
chaos. The design of an observer for such kinds of systems can be considered as a solution
of the nontrivial problem of chaos synchronization. In the following the parameter values
are considered as: α = 9, β = 14.286, m0 = −2/7 and m1 = 1/7.

220 Optimal and Robust Control: Advanced Topics with MATLAB r

In this case, the observer has to be effective for each of the possible linear regions in
which the observed system and the observer may work. The advantages of the LMI
approach for observer design is that other inequalities may be added to the problem so
that a set of LMIs has to be solved to find the gains able to simultaneously stabilize
more than one system.
Define eX = X−X̂ as the state estimation error. In general, the equation that describes
the error system dynamics is:

ėX = AiX−AjX̂−KC(X− X̂) (12.30)

where Ai and Aj represent respectively the state matrices of the linearized systems in
the i-th or j-th region of a generic PWL nonlinearity. If the systems are working in
different regions of the PWL nonlinearity, the two matrices Ai and Aj are different.
Otherwise (i.e., when the observer works in the same region of the observed system),
the matrices Ai and Aj are equal and the error system dynamic reduces to:

ėX = (Ai −KC)eX (12.31)

In this situation the observer can be designed to be stable by solving the following LMI
problem: {

AT
i P− CTQT + PAi −QC < 0; i = 1, . . . , q

P > 0
(12.32)

where q is the number of regions of the considered PWL nonlinearity. This means that
all the LMIs described in each region of the nonlinearity for Ai = Aj have to be solved.
If the LMI problem is feasible, the gain vector K able to stabilize all the possible error
dynamics can be derived.
Although the error system is imposed to be stable only if the observed system and the
observer are in the same PWL region (when the two systems are in different regions, the
error dynamics is given by equation (12.30)), numerical simulations reveal that these
conditions suffice to allow the design of an observer able to reconstruct the dynamics
of the observed system.
The considered PWL function has three linear regions, thus the linearized system can
be described by the following state matrices:

A1 = A3 =

 −αm1 0 0
1 −1 1
0 −β 0

 ; A2 =

 −αm0 0 0
1 −1 1
0 −β 0


C = C1 = C2 =

[
1 0 0

]
Once the matrices are defined in MATLABr, the LMI problem for the observer design
can be set through the commands:
>> setlmis([]);

>> P=lmivar(1,[3 1]);

>> Q=lmivar(2,[1,3]);

>> lmiterm([-1 1 1 P],1,1);

>> lmiterm([2 1 1 P],A1’,1,’s’);

>> lmiterm([2 1 1 Q],C’,-1,’s’);

>> lmiterm([3 1 1 P],A2’,1,’s’);

>> lmiterm([3 1 1 Q],C’,-1,’s’);

>> stabilz2=getlmis;

The solution can be calculated through the commands:
>> [tmin,xfeas] = feasp(stabilz2);

>> Pvalue=dec2mat(stabilz2,xfeas,P);

>> Qvalue=dec2mat(stabilz2,xfeas,Q);

>> k=inv(Pvalue)*Qvalue

Note that the obtained value guarantees that the eigenvalues of the error system have
negative real part whether the system works in the first or in the second linear region
of the PWL:

Linear Matrix Inequalities for Optimal and Robust Control 221

−5 0 5

−5

0

5

x

x
O

−1 0 1

−1

0

1

y

y
O

−5 0 5

−5

0

5

z

z
O

FIGURE 12.1
Representation of the observer state variables as a function of the observed
system state variables for Exercise 12.4: all the three state variables are cor-
rectly observed.

>> eigenvaluessystem1=eig(A1-k*C)

>> eigenvaluessystem2=eig(A2-k*C)

The effectiveness of the designed observer is proven in Figure 12.1 where the state vari-
ables of the observer, i.e., xO, yO and zO, are reported as a function of the corresponding
state variables of the observed system.

12.6 Solving Algebraic Riccati Equations Through LMI

In this paragraph, two examples of control problems formulated in terms of
Riccati equations and solved through LMI are dealt with.

MATLABr Exercise 12.5
Consider first the problem of determining whether a system is bounded-real or not. In
this case, assumed that the system is proper, we should establish if there exists or not
a solution to the Riccati equation:

ATP + PA + PBBTP + CTC = 0

Consider the system defined by
>> A=[0 1 0; 0 0 1; -5 -4 -3];

>> B=[0 0 1]’;

>> C=[1 0 0];

>> system=ss(A,B,C,0);

The system is controllable and observable and has transfer function G(s) =
1

s3+3s2+4s+5
. The system is also stable. It is possible to verify immediately that the

system is bounded-real from the Bode diagram (in fact the maximum value of |G(jω)|
is less than 1). Let us now consider how to do it solving a Riccati equation of using the
LMI approach.
Define the matrix Q as follows:
>> Q=C’*C;

222 Optimal and Robust Control: Advanced Topics with MATLAB r

the solution of the Riccati equation can be obtained through the command
>> Xare=are(A,-B*B’,Q)

Otherwise, we can solve the LMI problem defined by the minimization of the trace of
matrix P subject to a constraint of type[

ATP + PA + CTC BP
BTP −I

]
≤ 0

The problem can be defined in MATLABr with the following commands (note that
the problem is of type mincx)
>> setlmis([]);

>> X=lmivar(1,[3 1]);

>> lmiterm([1 1 1 X],A’,1,’s’);

>> lmiterm([1 1 1 0],Q);

>> lmiterm([1 2 1 X],B’,1);

>> lmiterm([1 2 2 0],-1);

>> lmisys=getlmis;

>> c=mat2dec(lmisys,eye(3))

>> [copt,xopt]=mincx(lmisys,c,[1e-5, 0, 0, 0, 0])

>> Xopt=dec2mat(lmisys,xopt,X)

We obtain the same solution found by solving the Riccati equation

Xare = Xopt =

 1.0528 0.5209 0.1010
0.5209 0.4682 0.1324
0.1010 0.1324 0.0445


The existence of a positive definite solution assures that the system is bounded-real.
Instead, if we consider C =

[
10 0 0

]
, the system is not bounded-real. In fact, as

it is possible to verify in MATLABr, the Riccati equation does not admit a solution
and the LMI problem is not feasible.

MATLABr Exercise 12.6
Now consider the problem of determining the optimal controller, solving the CARE
equation:

ATP + PA− PBBTP + CTC = 0

To solve the problem using the approach based on the solution of the Riccati equation,
we proceed in a completely analogous way to the previous case. Define the system:
>> A=[1 -2 1; 3 0 1; 1 -2 -1];

>> B=[1 0 1]’;

>> C=[1 1 0];

>> system=ss(A,B,C,0);

and solve the Riccati equation with the command are or directly with the command
care:
>> Xare=are(A,B*B’,C’*C)

The control problem can also be solved with the LMI approach. In this case the presence
of the minus sign in the nonlinear term requires some adaptations to solve the LMI
problem (in fact, this term leads to a non-convex constraint). So we consider P̄ =
P−1, for which the Riccati equation becomes analogous to the case in the MATLABr

Exercise 12.5:

AP̄ + P̄AT + P̄CTCP̄− BBT = 0

Doing so, we get a Riccati equation with a positive nonlinear term. At this point we can
consider a new problem of type mincx, maximizing, rather than minimizing, the trace
of matrix P̄ (since it is the inverse of matrix P). We can obtain this changing the sign of
the identity matrix with the command c=mat2dec(lmisys,-eye(3)), or minimizing an

Linear Matrix Inequalities for Optimal and Robust Control 223

objective function with an opposite sign than the one in the MATLABr Exercise 12.5.
The commands to define and solve the LMI problem are the following:
>> setlmis([]);

>> X=lmivar(1,[3 1]);

>> lmiterm([1 1 1 X],A,1,’s’);

>> lmiterm([1 1 1 0],-B*B’);

>> lmiterm([1 2 1 X],C,1);

>> lmiterm([1 2 2 0],-1);

>> lmisys=getlmis;

>> c=mat2dec(lmisys,-eye(3))

>> [copt,xopt]=mincx(lmisys,c,[1e-5, 0, 0, 0, 0])

>> Xopt=inv(dec2mat(lmisys,xopt,X))

Obviously, we obtain the same solution with the two methods:

Xare = Xopt =

 2.2166 0.2635 0.6757
0.2635 1.7438 −0.0275
0.6757 −0.0275 0.2342


from which we can immediately calculate the value of the gain K of the optimal control
law as: K = BTP =

[
2.89 0.24 0.91

]
.

12.7 Computation of Gramians Through LMI

We discuss here an example of LMI-based calculation of the controllability
gramian with two different methods. The procedure can be easily adapted to
the observability gramian.

Let us first introduce the LMI problem defined by the maximization of the
trace of P subjected to the following constraints:

P > 0[
ATP + PA PB

BTP −I

]
≤ 0

(12.33)

The solution P represents the inverse of the controllability gramian of
system S(A,B).

MATLABr Exercise 12.7
Consider the system with state-space matrices:

A1 =


−1 0 0 0 0
0 −2 0 0 0
0 0 −3 0 0
0 0 0 −4 0
0 0 0 0 −5

 ; B =


1
1
1
1
1

 (12.34)

Once defined the matrices in MATLABr, the linear objective problem can be specified
as:
>> setlmis([]);

>> P=lmivar(1,[5 1]);

224 Optimal and Robust Control: Advanced Topics with MATLAB r

>> lmiterm([-1 1 1 P],1,1);

>> lmiterm([2 1 1 P],A’,1,’s’);

>> lmiterm([2 2 1 P],B’,1);

>> lmiterm([2 2 2 0],1);

>> gramlmi1=getlmis;

The linear objective can be defined through the command:
>> c=mat2dec(gramlmi1,-eye(5));

note that the sign allows to maximize the trace of P. The solution can be calculated
through the commands:
>> [tmin,xfeas] = mincx(gramlmi1,c,[1e-5 0 0 0 0]);

>> Pvalue=dec2mat(gramlmi1,xfeas,P);

>> Psol=inv(Pvalue)

Another approach for the calculation of the controllability gramian is based
on the fact that the constraints of the LMI problem of equation (12.33) are
equivalent to:

Q > 0
AQ + QAT + BBT ≤ 0

(12.35)

with Q = P−1. In this case the trace of Q has to be minimized.

MATLABr Exercise 12.8
Consider again system (12.34) and define the LMI problem:
>> setlmis([]);

>> P=lmivar(1,[5 1]);

>> lmiterm([-1 1 1 P],1,1);

>> lmiterm([2 1 1 P],A,1,’s’);

>> lmiterm([2 1 1 0],B*B’);

>> gramlmi=getlmis;

The linear objective is defined through the command:
>> c=mat2dec(gramlmi,eye(5));

and the solution can be calculated through the commands:
>> [tmin,xfeas] = mincx(gramlmi,c,[1e-5 0 0 0 0]);

>> Pvalue=dec2mat(gramlmi,xfeas,P);

The solution obtained is comparable with the controllability gramian calculated through
the corresponding Lyapunov equation.

12.8 Computation of the Hankel Norm Through LMI

The Hankel norm of a system with stable transfer matrix G(s) = C(sI −
A)−1 + D is defined as:

‖G(s)‖H = sup
u∈L2(∞,0]

(∫∞
0
yT (t)y(t)dt∫ 0

−∞ uT (t)u(t)dt

) 1
2

(12.36)

Linear Matrix Inequalities for Optimal and Robust Control 225

where

y(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ)dτ

and

L2(∞, 0] =

{
u :

(∫ 0

−∞
uT (t)u(t)dt

) 1
2

<∞

}

It expresses the quantity of energy that can be transferred through the
system from past inputs into future outputs. It can be demonstrated that:

‖G(s)‖H = σ1 (12.37)

where σ1 is the maximum singular value of the system. For a LTI system
the Hankel norm is also the minimum value of γ satisfying the following LMI
problem: 

P > 0
Q > 0
ATQ + QA + CTC ≤ 0[

ATP + PA PB
BTP −I

]
< 0

γP−Q > 0

(12.38)

Problem (12.38) is a generalized eigenvalue problem under LMI con-
straints. It is solved by using the MATLAB command gevp, as shown in
the following example.

MATLABr Exercise 12.9
Consider the system with state-space matrices given by:

A =


−1 0 0 0 0
0 −2 0 0 0
0 0 −3 0 0
0 0 0 −4 0
0 0 0 0 −5

 ; B = CT =


1
1
1
1
1


and calculate the Hankel norm.
Let us first define the matrices:
>> A=diag([-1 -2 -3 -4 -5]);

>> B=ones(5,1);

>> C=B’;

One of the LMI constraints of the problem is not a strict inequality. To deal with such
a constraint, one has to introduce a small perturbation matrix:
>> m=.00001*eye(5);

The LMI problem is now set:
>> setlmis([]);

>> P=lmivar(1,[5,1]);

>> Q=lmivar(1,[5,1]);

>> lmiterm([-1 1 1 P],1,1);

>> lmiterm([1 1 1 0],0);

226 Optimal and Robust Control: Advanced Topics with MATLAB r

>> lmiterm([-2 1 1 Q],1,1);

>> lmiterm([2 1 1 0],0);

>> lmiterm([3 1 1 P],1,A,’s’);

>> lmiterm([3 2 1 P],B’,1);

>> lmiterm([3 2 2 0],-1);

>> lmiterm([4 1 1 Q],1,A,’s’);

>> h=C’*C+m;

>> lmiterm([-4 1 1 0],-h);

>> lmiterm([5 1 1 Q],1,1);

>> lmiterm([-5 1 1 P],1,1);

>> lmisys=getlmis;

>> options=[0.00001 0 0 0 0];

>> [Hnorm,PQ]=gevp(lmisys,1,options);

>> P=dec2mat(lmisys,PQ,P);

>> Q=dec2mat(lmisys,PQ,Q);

One obtains: ‖G(s)‖H = 1.1151.
This result can be compared with the calculation of the maximum singular value of the
system as follows:
>> Wo2=gram(A’,C’);

>> Wc2=gram(A,B);

>> S=eig(Wo2*Wc2);

>> s1=max(S)

which yields σ1 = 1.1150.

12.9 H∞ Control

In this paragraph, we illustrate the LMI approach to solve the H∞ control
problem through an example. Consider the system:

ẋ = w + 2u
z = x
y = −x+ w

(12.39)

Remember that the general equations for a system to which the H∞ control
is applied, are given by: ẋ = Ax + B1w + B2u

z = C1x + D11w + D12u
y = C2x + D21w + D22u

(12.40)

System (12.39) is equal to system (12.40) if the following values of the
parameters are chosen: a = 0; b1 = 1; b2 = 2; c1 = 1; d11 = d12 = 0; c2 = −1;
d21 = 1; d22 = 0.

Now, let us define in MATLAB the system as a ltisys object
>> A=0;

>> B1=1;

>> B2=2;

Linear Matrix Inequalities for Optimal and Robust Control 227

>> C1=1;

>> D11=0;

>> D12=0;

>> C2=-1;

>> D21=1;

>> D22=0;

>> P=ltisys(A,[B1 B2], [C1; C2],[D11 D12; D21 D22])

To solve the problem we can use two methods: the resolution method based
on the Riccati equations or the method based on an optimization problem with
LMI constraints. In the first case, we need to follow the procedure described
in Chapter 11. In the second case we have to consider the LMI minimization
problem with linear objective defined by the constraints:

(
N12 0
0 I

)T  AR + RAT RCT1 B1

C1R −γI D11

BT1 DT
11 −γI

(N12 0
0 I

)
< 0 (12.41)

(
N21 0
0 I

)T  ATS + SA SBT1 CT1
BT1 S −γI DT

11

C1 D11 −γI

(N21 0
0 I

)
< 0 (12.42)

(
R I
I S

)
≥ 0 (12.43)

where N12 and N21 are the bases of the null spaces, respectively, of (BT2 ,D
T
12)

and of (C2,D21). In MATLAB, we do not need to define the inequalities
(12.41)–(12.43) every time, but we can use directly the command hinflmi.

To use the method based on the Riccati equations the following command
has to be used:

>> [gopt,K]=hinfric(P,[1 1])

while to use the LMI-based method, the following command has to be used:
>> [gopt,K]=hinflmi(P,[1 1])

In both cases, the size of the matrix D22 (i.e., [1 1]) or, in other words,
the size of the output vector y and of the input vector u, has to be specified.

Similar performance is obtained with the two approaches: γ = 1.0088 with
the method based on Riccati equations, and γ = 1.0023 with the LMI-based
method.

To verify the obtained performance, the control scheme in Figure 11.2 has
first to be implemented. This can be done by connecting within a feedback
loop system P (s) and controller K(s). If the two systems have been defined
as ltisys objects, one has to use the command slft; while if the two systems
have been defined as lti objects, the command feedback has to be used.

Consider the first case. The closed-loop system is defined by:
>> systemcl=slft(P,K,1,1)

228 Optimal and Robust Control: Advanced Topics with MATLAB r

sistemacl also is a ltisys object, i.e., it is defined by the realization matrix.
Note that in this case, since u is no more an external input of the system,
but it derives from the feedback of y, the closed-loop system has a 2× 2 state

matrix and Dcl ∈ R1×1: sistemacl=

[
Acl

2×2 Bcl1×1
Ccl1×1 Dcl

1×1

]
.

To verify, for instance, that the closed-loop system is stable, one has to
find the matrix Acl and then to compute its eigenvalues:

>> eig(systemcl(1:2,1:2))

this can be also done by using the command:
>> spol(sistemacl)

Obviously, closed-loop eigenvalues with negative real part (λ1 = −0.0726 ·
104 and λ2 = −9.8886 · 104) are obtained.

Otherwise, lti objects can be used. For example, the closed-loop system
can be rewritten as a lti object (recall that, in this case, the input is w, and
the output is z):

>>systemcllti1=ss(systemcl(1:2,1:2),systemcl(1:2,3),

systemcl(3,1:2),systemcl(3,3))

Analogously, the closed-loop system can be defined after having defined
system P (s) and controller K(s) as lti object, and then use the command
feedback:

>> Plti=ss(A,[B1 B2],[C1; C2],[D11 D12; D21 D22]);

>> Klti=ss(K(1,1),K(1,2),K(2,1),K(2,2));

>> systemcllti2=feedback(Plti,Klti,2,2,+1)

Note that, in this case, the system ‘systemcllti’ has two inputs and two
outputs, since the scheme implemented by the command feedback takes into
account both output z and output y and both input w and input u.

By the Bode diagram of the closed-loop system, it can be verified that
‖Tzw(s)‖∞ ≤ 1.0023. The command to use is

>> bode(systemcllti1)

or
>> bode(systemcllti2(1,1))

12.10 Multiobjective Control

As discussed above, the objective of the H∞ control is to find among the
controllers that stabilize the closed-loop system the one minimizing the norm
‖Tzw(s)‖∞. However, generally, there exist other types of performance that
can be optimized. The multiobjective control has been introduced for this
reason, allowing to take into account other types of performance, beyond that
represented by the H∞ norm.

Linear Matrix Inequalities for Optimal and Robust Control 229

FIGURE 12.2
Scheme of the multiobjective control.

The reference scheme of the multiobjective control is shown in Figure 12.2
where further outputs, i.e., the variables z2, are highlighted. The state-space
equations corresponding to the control scheme of Figure 12.4 are given by:

ẋ = Ax + B1w + B2u
z∞ = C1x + D11w + D12u
z2 = C2x + D21w + D22u
y = C3x + D31w + D32u

(12.44)

In the multiobjective control what is minimized is the weighted sum of
two terms: the first is the H∞ norm of the transfer matrix from w to z∞;
the second is the H2 norm (defined below) of the transfer matrix from w to
z2. The idea underlying the multiobjective control is further discussed, after
defining the H2 norm of a system.

The H2 norm is defined as follows:

‖G(s)‖2 =
(

1
2π

∫∞
−∞ trace[G(jω)G(jω)∗]dω

) 1
2

=

=
(

1
2π

∫∞
−∞

∑r
i=1 σi[G(jω)]dω

) 1
2

(12.45)

where r is the rank of G(jω).
For systems with stochastic inputs, the physical meaning of the H2 norm

derives from the fact that, when the system is driven by a white noise with
zero mean and unit variance, then the H2 norm is equal to:

‖G(s)‖2 = (E[yT (t)y(t)])
1
2 (12.46)

The H2 norm thus represents a measure of the energy associated to the
output of a system driven by a white noise with zero mean and unit variance.

The H2 norm can be also viewed as the energy associated to the signal z2.
In fact, if y(t) is the impulse response of a system, then we have that:

230 Optimal and Robust Control: Advanced Topics with MATLAB r

‖G(s)‖2 = (trace[

∫ ∞
0

yT (t)y(t)])
1
2 (12.47)

As concerns the calculation of the H2 norm, it can be performed from the
controllability and observability gramians:

‖G(s)‖2 = (trace(CW2
cC

T))
1
2 = (trace(BTW2

oB))
1
2 (12.48)

The aim of the multiobjective control is thus to find a controller that
stabilizes the closed-loop system and that, indicated with Tz∞,w and Tz2,w
the transfer function matrices from w to z∞ and from w to z2, minimizes
α‖Tz∞,w‖2∞ + β‖Tz2,w‖22 with α ≥ 0 e β ≥ 0.

With MATLAB the multiobjective control can be run with the command
hinfmix. This also allows one to include a further constraint (also formulated
in terms of LMIs) related to the region in which the closed-loop eigenvalues
have to lie. Obviously, not all the multiobjective control problems are feasible,
since some constraints can be in conflict with each other.

The following examples help to illustrate the multiobjective control.

MATLABr Exercise 12.10
We go back to the example discussed in Section 12.9, referring to system (12.39), and
adding a further specification to the control system: we now also want to minimize the
energy associated with the input. To do this, a multiobjective control has to be set by
defining a new variable z2 = u. The equations of the system to control become:

ẋ = w + 2u
z∞ = x
z2 = u
y = −x+ w

(12.49)

System (12.49) is equivalent to system (12.44) with a = 0; b1 = 1; b2 = 2; c1 = 1;
d11 = d12 = 0; c2 = 0; d21 = 0; d22 = 1, c3 = −1; d31 = 1; d32 = 0.
Assuming that system P has been defined in MATLAB as a ltisys object (as in the
examples dealt with previously), the command hinfmix can be used. The syntax is:
[gopt,h2opt,K,R,S] = hinfmix(P,rv,obj,region)

where P is the process to control (a ltisys object), rv is a vector listing the sizes of z2,
y and u and obj=

[
VMNormH∞ VMNormH2 α β

]
where VMNormH∞

and VMNormH2 are the maximum admissible values for ‖Tz∞,w‖∞ and ‖Tz2,w‖2,
respectively, or in other words the minimum performance that have to be guaranteed.
Given this syntax, note that command hinfmix can be used in a flexible way. For
instance, the H∞ control can be implemented as follows:
>> [gopt,h2opt,K_Hinf]=hinfmix(P,[1 1 1],[0 0 1 0])

The performance so obtained is: ‖Tz∞,w‖∞ ≤ gopt = 1.0009. In this case, the control
does not take into account in any way the objective defined by the H2 norm.
To evaluate the performance of the control system, the closed-loop system has first to
be calculated:
>> systemLTIol=ss(P(1,1),P(1,2:3),P(2:4,1),P(2:4,2:3));

>> compensatorLTI=ss(K_Hinf(1,1),K_Hinf(1,2),

K_Hinf(2,1),K_Hinf(2,2));

>> systemLTIcl=feedback(systemLTIol,compensatorLTI,2,3,1);

The inputs of this system are w and u. The outputs are z∞, z2 and ỹ. So, to study

Linear Matrix Inequalities for Optimal and Robust Control 231

the performance of the H∞ control, the transfer function from input 1 (w) to output 1
(z∞) has to be investigated.
We can plot the Bode diagram and verify that the norm H∞ is less than gopt:
>> Hs=tf(systemLTIcl);

>> bode(Hs(1,1))

>> normhinf(Hs(1,1))

Consider now a H2/H∞ problem in which the two norms are weighted in the same way
(α = 1, β = 1) and in which no minimum specification is considered:
>> [gopt,h2opt,K_H2_Hinf]=hinfmix(P,[1 1 1],[0 0 1 1]);

In this case, we obtain gopt = 1.9104 and h2opt = 1.2110. The performance in terms
of H∞ norm is slightly worse, but now the H2 norm is quite low. This can be verified
by plotting the impulse response of the closed-loop system controlled with the H∞
technique and the one of the system controlled with the H2/H∞ technique.
We first define the new closed-loop system by the commands:
>> systemLTIol=ss(P(1,1),P(1,2:3),P(2:4,1),P(2:4,2:3));

>> compensatorLTI=ss(K_H2_Hinf(1,1),K_H2_Hinf(1,2),

K_H2_Hinf(2,1),K_H2_Hinf(2,2));

>> systemLTIcl2=feedback(systemLTIol,compensatorLTI,2,3,1);

>> Hs2=tf(systemLTIcl2);

and then compare the two plots of the impulse response:
>> figure(1); impulse(systemLTIcl)

>> figure(2); impulse(systemLTIcl2)

In the latter case (H2/H∞ control) the variables have smaller amplitudes (and so
energy).
The comparison of the Bode diagrams reveals that the H∞ control leads to a larger
bandwidth. Therefore, the system controlled with the H∞ technique is much faster
than that controlled with the H2/H∞ technique, but requires more energy.
Note also that the objectives achieved in this way represent the maximum performance
that can be obtained with the H2/H∞ control. In fact, if we consider for instance:
>> [gopt,h2opt,K_H2_Hinf]=hinfmix(P,[1 1 1],[1 1 1 1]);

we find that the problem is not feasible.
Finally, we show an example where we also specify the admissible region for the closed-
loop eigenvalues. In fact note that the closed-loop eigenvalues of the H∞ control, ob-
tained by
>> pole(Hs)

are quite large: λ1 = −1.4087 · 104, λ2 = −0.2357 · 104, λ3 = −1.4087 · 104, λ2 =
−0.2357 · 104.
Let us therefore include a new constraint. We want the closed-loop eigenvalues to be
such that −10 ≤ Reλ ≤ 0. By using the command
>> region=lmireg

through a series of multiple choices the given region can be set. Then, by using the
command:
>>[gopt,h2opt,K_H2_Hinf_R]=hinfmix(P,[1 1 1],[0 0 1 0],region);

the H∞ control with a constraint on the position of the closed-loop eigenvalues is
defined.
We now calculate the transfer matrix obtained with this control and indicate it as Hs3:
>> systemLTIol=ss(P(1,1),P(1,2:3),P(2:4,1),P(2:4,2:3));

>> compensatorLTI=ss(K_H2_Hinf_R(1,1),K_H2_Hinf_R(1,2),

K_H2_Hinf_R(2,1),K_H2_Hinf_R(2,2));

>> systemLTIcl3=feedback(systemLTIol,compensatorLTI,2,3,1);

>> Hs3=tf(systemLTIcl3);

note that now the closed-loop eigenvalues
>> pole(Hs3)

are much smaller λ1,2 = λ3,4 = −8.9068 + j8.3754.
By comparing the Bode diagrams and the impulse responses of the controlled sys-
tems obtained with the three different techniques we note that, in this latter case, we

232 Optimal and Robust Control: Advanced Topics with MATLAB r

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

−180

−135

−90

−45

0

ω (rad/s)

P
h
a
s
e
 (

d
e
g
)

−80

−60

−40

−20

0

Bode diagram

M
a
g
n
it
u
d
e
 (

d
B

)

H
∞

 control

H
2
/H

∞
 control

H
∞

/region control

FIGURE 12.3
Performance obtained by the H∞ control technique, the H2/H∞ control tech-
nique and the H∞ control technique with constraint on the position of the
closed-loop eigenvalues. The control is applied to system (12.49).

have intermediate performance. The Bode diagrams of the given example are shown in
Figure 12.3.

MATLABr Exercise 12.11
As a second example of multiobjective control, consider the system shown in Figure 12.4.
The process to control is first-order with transfer function G(s) = 1

s+1
. The first ob-

jective of the control system (beyond closed-loop stability) is to track the input, i.e., to
minimize the error e(t) = r(t)− y(t).
First, formulate the control problem in terms of the block scheme of the multiobjective
control. To do this, let us write the state-space equations by introducing the variable
ỹ = r − x (that is the input of the controller):

ẋ = −x+ u
ỹ = r − x (12.50)

Next, define the variables z: to satisfy the objective of input tracking, fix z∞ = e and
w = r. In this way, in fact, we consider the worst case for the error. In fact, for a SISO
system the H∞ norm represents the maximum value of the frequency response, or in
other words the maximum amplification for any sinusoidal input.
Let us now consider the objective of the H2 control. We define z2 = y = x in such a
way to minimize the output energy.
The whole equations of the system to control are thus given by:

Linear Matrix Inequalities for Optimal and Robust Control 233

FIGURE 12.4
Example of multiobjective control.

ẋ = −x+ u
z∞ = w − x
z2 = x
ỹ = w − x

(12.51)

Comparing equations (12.51) with the reference model for multiobjective control as in
equations (12.44), we get: A = −1; B1 = 0; B2 = 1; C1 = −1; D11 = 1; D12 = 0;
C2 = 1; D21 = 0; D22 = 0; C3 = −1; D31 = 1; D32 = 0.
Let us assume that the control objective is to minimize 5‖Tz∞,w‖2∞ + 5‖Tz2,w‖22 with
the further constraint that the closed-loop eigenvalues are such that −10 ≤ Reλ < 0.
In this case we have to use the command:
>> [gopt,h2opt,K]=hinfmix(P,[1 1 1],[1 1 5 5],region)

The performance obtained in this case is gopt = 1.0000 and h2opt = 0.6494, while the

controller is given by K(s) =

[
−5.3574 1.5066
−0.6449 0.3396

]
.

MATLABr Exercise 12.12
In this exercise a further example of H∞ control is given. Let us consider the problem
of controlling the vertical position of plasma in the Joint European Torus (JET) (see
for more information the paper by Fortuna et al. listed in the references of the chapter).
The plasma vertical position can be modeled as a cascade of two stages: a first linear
system modeling the Poloidal Radial Field Amplifier (PRFA) with transfer function

G1(s) =
100

1 + sTa
(12.52)

and the plant model

G2(s) =
1

sTv

1

s− γ
(12.53)

where Tv = 10.4ms and γ = 80.
Consider now the following state-space realization:

A =

[
0 1
0 80

]
; B =

[
0
1

]
; C =

[
9615 0

]
; D = 0;

Consider again the control scheme reported in Figure 12.4 for which the first objective
of the control is to track the input, i.e., to minimize the error e(t) = r(t)− y(t).
Rewrite the state space equations by introducing the variable ỹ = r − y:

Ẋ = AX + Bu
ỹ = w − CX

(12.54)

234 Optimal and Robust Control: Advanced Topics with MATLAB r

To satisfy the objective of input tracking, we choose z∞ = e and w = r. The whole
equations of the system to control are rewritten as:

Ẋ = AX + Bu
z∞ = w − CX
ỹ = w − CX

(12.55)

from which it is possible to define B1 =
[

0 0
]T

, B2 =
[

0 1
]T

, C1 = C2 = −C,
D11 = D21 = 1, and D12 = D22 = 0.
The realization matrix of the process can be written as:

P (s) =


0 1 0 0
0 80 0 1

−9615 0 1 0
−9615 0 1 0

 ;

Applying the procedure to obtain the H∞ controller we obtain a performance index
γopt = 1.31 in correspondence of the following transfer function:

K(s) =
1.54 · 107s+ 153.2

(s2 + 4.70 · 104s+ 9.28 · 108)

However, using the controller K(s) the poles of the closed-loop system are p1 = −1.8 ·
10−5, p2 = −80 and p3,4 = −2.34 · 104 ± 1.93 · 104j.
If we want to design the H∞ controller choosing a suitable region for the closed-loop
system poles, we may use the procedure defined for the multiobjective control imposing
that the closed-loop poles have both real and imaginary part between 0 and −20, i.e.,
the feasible region is a square. In this case the H∞ controller with a γopt = 110 is
defined by:

K(s) = 0.99
(s+ 0.16)

(s+ 114.2)

leading to the following closed-loop poles: p1 = −15.52, p2 = −13.57 and p3,4 =
−9.03± 3.62j.

The LMI techniques discussed can stimulate the students to formulate
other control problems, using this powerful and efficient tool.

The Lagrange’s equation provides a method to derive the differential equa-
tions governing a system. Moreover, the differential Riccati equation is a design
tool to obtain the optimal control law, but other matrix differential equations
also arise, as shown in the book of Helmke and Moore, in solving and con-
ceiving more system analysis and design tools. The solution of such problems
requires efficient numerical iterative solving procedures.

Since the formulation of many system theory and modern control optimal
problems in terms of LMIs leads to convex optimization problems, it allows
to use the interior point algorithm which is a universal solver for many prob-
lems and requires few iterations to converge to the solution. Therefore, from
modelling to design, differential equations are the core of system analysis and
control and efficient iterative optimization procedures are the machinery to
solve them.

Linear Matrix Inequalities for Optimal and Robust Control 235

12.11 Exercises

1. Using LMI techniques, determine the H∞ norm of the system with
transfer function G(s) = s+1

(s+2)(s+3) .

2. Using LMI techniques, determine if the system with transfer func-
tion G(s) = 10 s+1

(s2+5s+10) is bounded-real or not.

3. Given the system:
ẋ = Ax + B1w + B2u
z∞ = C1x + D11w + D12u
z2 = C2x + D21w + D22u
y = C3x + D31w + D32u

with A =

[
0 1

0.2 −1

]
; B1 =

[
0
1

]
; B2 =

[
0
1

]
; C1 =

[
2 1

]
;

C2 =
[

0 0
]
; C3 =

[
1 0

]
; D11 = D12 = 0; D21 = 0; D22 = 1;

D31 = 1 and D32 = 0, design a multiobjective control and verify the
obtained performance. Consider then the objective ‖Tz∞w‖∞ ≤ 0.5
and ‖Tz2w‖2 ≤ 2.5. Is it possible to design a controller satisfying
the specifications?

4. Calculate the compensator (regulator and observer) which stabilizes
the system

ẋ = Ax + Bu
y = Cx

with A =

 λ1 0 0
0 λ2 0
0 0 λ3

; B =

 b1,i
b2
b3

; C = BT ; λ1 = −1;

λ2 = 1; λ3 = 5; b1,1 = 4; b1,2 = −1; b2 = 1 and b3 = 1.

5. Using the LMI approach, find the control law that stabilizes simul-
taneously the two systems:

A1 =

 −2 0 0
0 1 0
0 0 5

 ;B1 =

 0
1
1


and

A2 =

 −5 0 0
0 −6 0
0 0 3

 ;B2 =

 0
1
3



http://www.taylorandfrancis.com

13

The Class of Stabilizing Controllers

CONTENTS

13.1 Parameterization of Stabilizing Controllers for Stable Processes 237
13.2 Parameterization of Stabilizing Controllers for Unstable

Processes . 239
13.3 Parameterization of Stable Controllers . 242
13.4 Simultaneous Stabilizability of Two Systems . 245
13.5 Coprime Factorizations for MIMO Systems and Unitary

Factorization . 245
13.6 Parameterization in Presence of Uncertainty . 247
13.7 Exercises . 250

This chapter deals with the problem of determining, rather than a single con-
troller that meets the assigned specifications, a class of controllers that meet
them. Using this technique, the class of the controllers can be expressed in
function of one or more parameters that allow the designer to specify later
additional control objectives. For this reason the problem to find a univer-
sal class of controllers which satisfy certain specifications takes the name of
parameterization of the controllers. For simplicity, we mainly consider SISO
systems, even if the discussed results may be easily generalized to MIMO
systems as briefly shown in Section 13.5.

13.1 Parameterization of Stabilizing Controllers for
Stable Processes

Referring to Figure 13.1, which shows the classic feedback control scheme, we
want to determine the whole class of controllers which internally stabilize the
closed-loop system. With internally stable, we mean that at any point of the
feedback loop the system must be stable. The objective is that the system
defined by the state variables x1, x2 and x3 is stable, i.e., that all the possible
transfer functions from any input of the system (r, d and n) to any of the
variables x1, x2 and x3 are stable.

DOI: 10.1201/9781003196921-13 237

https://doi.org/10.1201/9781003196921-13

238 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 13.1
Feedback control scheme.

In this section we consider the case in which the process to control is
asymptotically stable. In the next paragraph we will consider the extension to
the case when the process is not stable. Let H∞ indicate the set of asymptoti-
cally stable processes. The following theorem expresses the class of stabilizing
controllers.

Theorem 32 Given a process P (s) ∈ H∞ the class of the controllers that
make the closed-loop system internally stable is given by:

C(s) =
Q(s)

1− P (s)Q(s)
(13.1)

with Q(s) ∈ H∞.

Applying the parameterization of stabilizing controllers expressed by equa-
tion (13.1) we obtain a transfer function given by:

F (s) =
C(s)P (s)

1 + C(s)P (s)
=

Q(s)
1−P (s)Q(s)P (s)

1 + Q(s)
1−P (s)Q(s)P (s)

= P (s)Q(s)

From the expression of the closed-loop transfer function we deduce imme-
diately that, if P (s) and Q(s) are asymptotically stable, also F (s) is. Since
the controller (13.1) is an internally stabilizing controller, all nine possible
transfer functions between r, d and n and x1, x2 and x3 are asymptotically
stable.

We can also get immediately that Q(s) is the transfer function between r

and u: Q(s) = U(s)
R(s) .

The Class of Stabilizing Controllers 239

Once the parameterization of stabilizing controllers has been found, it is
possible to search the member (or the members) of this class that satisfies
further specifications. Consider, for example, the zero error specification of
the unit step (closed-loop) response. To impose this specification, we must
ensure that the steady-state of the unit step response is equal to one. Applying
the final value theorem (that can be applied, as the closed-loop system is
asymptotically stable), we obtain:

lim
t→+∞

y(t) = lim
s→0

sQ(s)P (s)
1

s
= Q(0)P (0) (13.2)

So the condition to impose is

Q(0)P (0) = 1

Example 13.1
Determine a controller that is internally stabilizing and guarantees zero error for the
response to the ramp input for the system P (s) = 1

(s+1)(s+5)
.

Consider Q(s) = as+b
s+1

. Since Q(0) = b and P (0) = 1
5

, imposing that the unit step error

is zero (i.e., that Q(0) = 1
P (0)

), we obtain b = 5.

To impose that also the ramp error (indicated with ER(t)) vanishes, consider

lim
t→+∞

ER(t) = lim
s→0

s

(
1

s2
−

1

s2
F (s)

)
= lim
s→0

1

s
(1− F (s)) = 0

⇒ lim
s→0

1

s

(
1−

as+ 5

s+ 1

1

(s+ 1)(s+ 5)

)
= 0

⇒ lim
s→0

s2 + 7s+ (11− a)

(s+ 1)2(s+ 5)
=

11− a
5

= 0⇒ a = 11

So Q(s) = 11s+5
s+1

, from which we get that C(s) =
Q(s)

1−Q(s)P (s)
= 11s3+71s2+85s+25

s2(s+7)
. As

expected, C(s) has two poles at the origin, which are necessary to have a ramp error
equal to zero.

13.2 Parameterization of Stabilizing Controllers for
Unstable Processes

Now consider the case of an unstable process. In this case, the function P (s) is
rewritten as the ratio of two transfer functions that have peculiar properties. In
particular, we use a factorization that takes the name of coprime factorization.

Definition 27 Given an unstable process P (s), we say that P (s) = N(s)
M(s) is

coprime factorization, if N(s) and M(s) are stable functions and there exist
two transfer functions X(s) and Y (s) so that ∀s the following relation holds

N(s)X(s) +M(s)Y (s) = 1 (13.3)

240 Optimal and Robust Control: Advanced Topics with MATLAB r

Before enunciating the necessary and sufficient conditions for a factoriza-
tion to be coprime, we show with an example a factorization that cannot
satisfy equation (13.3).

Example 13.2
Consider the process P (s) = 1

s−1
and the factorization N(s) = 1

(s+1)2
and M(s) =

s−1
(s+1)2

. The two functions N(s) and M(s) are asymptotically stable and P (s) =
N(s)
M(s)

.

The condition (13.3) becomes

1

(s+ 1)2
X(s) +

s− 1

(s+ 1)2
Y (s) = 1

and has to hold ∀s. In particular, considering the limit case s → ∞, the condition to
satisfy becomes 0·X+0·Y = 1, which is clearly impossible to solve. So the factorization
is not coprime.

In the last example, we can note that N(s) has two zeros at infinity, while
M(s) has one zero at infinity and one zero at the unstable pole of P (s). In
fact, the examined factorization is not coprime, just because its functions have
a common zero (at infinity). Generalizing this result, we can conclude that,
whenever there exists a s0 such that N(s0) = M(s0) = 0 (i.e., whenever N(s)
and M(s) have a common zero), the factorization is not coprime. In fact,
this condition is a necessary and sufficient condition, as summarized in the
following theorem.

Theorem 33 Necessary and sufficient condition for a factorization to be co-
prime is that N(s) and M(s) have no common zero, neither finite nor infinite.

It follows that a coprime factorization of P (s) = 1
s−1 is given by: N(s) =

1
(s+1) and M(s) = s−1

(s+1) .

The coprime factorization permits us to express the class of the stabilizing
controllers for unstable processes.

Theorem 34 Given a process P (s), generally unstable, the class of the con-
trollers that make the closed-loop system internally stable is given by:

C(s) =
X(s) +M(s)Q(s)

Y (s)−N(s)Q(s)
(13.4)

where Q(s) ∈ H∞ and P (s) = N(s)
M(s) with N(s) ∈ H∞ and M(s) ∈ H∞ being

a coprime factorization of P (s).

With the parameterization (13.4) we obtain a closed-loop function equal
to

F (s) =
C(s)P (s)

1 + C(s)P (s)
=

(X(s) +M(s)Q(s))N(s)

M(s)Y (s) +X(s)N(s)
= (X(s) +M(s)Q(s))N(s)

The Class of Stabilizing Controllers 241

Also in this case we can immediately say that, if Q(s) ∈ H∞, then also
F (s) ∈ H∞.

The coprime factorization can also be done in the time domain. Consider

a system in minimum form R =

[
A B
C D

]
.

The functions M(s) and N(s) are given by

M(s) =

[
A + BF B

F I

]
(13.5)

N(s) =

[
A + BF B

C + DF D

]
(13.6)

Note that in both realizations of N(s) and M(s) the state matrix A∗ =
A + BF is the same. In fact, to factorize P (s), the two functions N(s) and
M(s) must have the same poles. Moreover, since N(s) ∈ H∞ and M(s) ∈ H∞,
we need to choose F so that A∗ has eigenvalues with negative real part.

Once matrix F has been found solving a problem of eigenvalue placement,
N(s) and M(s) can be obtained through the following expressions:

M(s) = F (sI−A− BF)
−1

B + I

N(s) = (C + DF) (sI−A− BF)
−1

B + D

To find X(s) and Y (s) we have to solve another problem of eigenvalue
placement. In particular, given that

X(s) =

[
A + HC H

F 0

]
(13.7)

Y (s) =

[
A + HC −B−HD

F I

]
(13.8)

we need to find H through eigenvalue placement (chosen arbitrarily). Given
the particular structure of X(s) and Y (s) we can prove that they are such
that the identity NX +MY = I is satisfied.

Notice that here we have reported the general form as these expressions
hold true also in the MIMO case that is briefly discussed at the end of the
chapter. Clearly, for SISO systems I = 1.

Example 13.3
Given the system P (s) = 1

(s−2)(s−1)
, design a compensator, such that to stabilize the

closed-loop system, assuring zero error of the step response and assuring that the effect
of the disturbance d(t) = A sin(ωt) with ω = 10rad/s vanishes for t→ +∞.
At first, since the process P (s) is unstable, we set a coprime representation. For

example we can choose N(s) = 1
(s+1)2

and M(s) =
(s−2)(s−1)

(s+1)2
. Imposing that

N(s)X(s) + M(s)Y (s) = 1, one obtains X(s) = 19s−11
s+1

and Y (s) = s+6
s+1

(functions

chosen arbitrary).

242 Optimal and Robust Control: Advanced Topics with MATLAB r

To ensure that the error of the step response is null, we must impose that lim
s→0

F (s) = 1

and so that
lim
s→0

N(s)(X(s) +M(s)Q(s)) = 1

⇒ N(0)X(0) +N(0)M(0)Q(0) = 1

⇒ Q(0) = 6

Finally, consider the specification of the disturbance. From the scheme in Figure 13.1

we can get the transfer function from disturbance to output:
Y (s)
D(s)

=
P (s)

1+C(s)P (s)
=

N(s) (Y (s)−N(s)Q(s)). To ensure that the effect of the sinusoidal disturbance is null,
we must impose that for ω = 10rad/s we have N(jω) (Y (jω)−N(jω)Q(jω)) = 0
⇒ Q(jω) = −94 + 70j.
Writing Q(s) as Q(s) = c1 + c2

s+1
+ c3

(s+1)2
, we find Q(s) imposing that:

Q(0) = c1 + c2 + c3 = 6

and

Q(jω) = c1 +
c2

1 + 10j
+

c3

(1 + 10j)2
= 0

Equating the real part and the imaginary part of the first and second member of the

last relation, we find that Q(s) = −79s2−881s+6
(s+1)2

.

13.3 Parameterization of Stable Controllers

In this section, we will consider a further very important specification. In the
parameterizations seen previously there is no guarantee that the compensator
C(s) is stable. Consider now under which conditions it is possible to stabilize
a process P (s) through stable compensators. Systems in which it is possible to
find a stable and stabilizing controller are called strongly stabilizable systems.

Definition 28 A system that can be stabilized with a stable compensator is
called strongly stabilizable.

Suppose that the process P (s) has zeros with positive real part, i.e., it is a

minimum phase system. For example, consider P1(s) = (s−1)(s−5)
(s+1)2 and study if

it is possible to stabilize G(s) with a compensator of type C(s) = k. The root
locus, i.e., the locus of the points such that kP1(s) + 1 = 0 for any k, shows
the positions of the closed-loop poles at different values of k and allows one
to establish whether there exists a value of k for which C(s) = k is a stable

and stabilizable compensator. The root locus of the system P1(s) = (s−1)(s−5)
(s+1)2

is shown in Figure 13.2. For small values of k we find stable and stabilizable
compensators.

The Class of Stabilizing Controllers 243

−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3
Root Locus

Real Axis

Im
a

g
in

a
ry

 A
x
is

FIGURE 13.2
Root locus of the system P1(s) = (s−1)(s−5)

(s+1)2 .

Consider now the system P2(s) = (s−1)(s−5)
(s+1)(s−2) . Its root locus is shown in

Figure 13.3. In this case a controller of type C(s) = k which stabilizes the
system does not exist.

The difference between the two systems P1(s) and P2(s) is that in the
second case between two zeros with positive real part there is an odd number
of poles. This condition that we have illustrated for C(s) = k is actually a
more general property which guarantees the existence of stable and stabilizing
controllers, as expressed in the following theorem.

Theorem 35 The necessary and sufficient condition for a system P (s) to be
strongly stabilizable is that between any pair of zeros with positive real part
there is an even number of poles.

This condition is called parity interlacing property and it has to be verified
taking into account also the zeros at infinity.

If a system satisfies the parity interlacing property then it is possible to
find stable and stabilizing controllers. Before introducing the parameterization
of those controllers we need to define what is meant by unit function.

Definition 29 A function Q(s) ∈ H∞ is said to be unit if also 1
Q(s) ∈ H∞.

For example, the function Q(s) = 1
s+1 is not unit, as its inverse 1

Q(s) = s+1

is not realizable. Instead, Q(s) = s+5
s+2 is unit, while Q(s) = s−5

s+2 is not unit,
because its inverse does not belong to H∞.

The parameterization of the class of stable and stabilizing compensators
is expressed through the following theorem.

244 Optimal and Robust Control: Advanced Topics with MATLAB r

−6 −4 −2 0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Root Locus

Real Axis

Im
a

g
in

a
ry

 A
x
is

FIGURE 13.3
Root locus of the system P2(s) = (s−1)(s−5)

(s+1)(s−2) .

Theorem 36 Given a process P (s) = N(s)
M(s) with N(s) and M(s) being a

coprime factorization of P (s), the class of controllers which are stable and
stabilizing the closed-loop system is given by:

C(s) =
U(s)−M(s)

N(s)
(13.9)

where U(s) is a unit function.

Example 13.4
Consider for example P (s) = s−1

s(s−0.5)
. This system verifies the parity interlacing prop-

erty, as between the zero with positive real part z = 1 and the zero at infinity there are
no poles. The system P (s) can be stabilized using the compensator (13.9).

Given the coprime factorization N(s) = s−1
(s+1)2

and M(s) =
s(s−0.5)

(s+1)2
, C(s) is given by:

C(s) =
U(s)− s(s−0.5)

(s+1)2

s−1
(s+1)2

=
(s+ 1)2U(s)− s(s− 0.5)

s− 1
(13.10)

In order to obtain a stable C(s), the term s− 1 at the denominator must be simplified.
So, in correspondence of the zero with positive real part (z = 1), the numerator of C(s)
must be zero. So, we have to impose that U(1)−M(1) = 0, i.e., U(1) = M(1).
A second condition to impose derives from the fact that, choosing for simplicity U(s)
of first order, the degree of the numerator of C(s) has to be equal to one. In fact the
order of C(s) is n = 1 and the numerator, to ensure that the system is realizable, must
also be a polynomial of degree one. For this, the maximum degree coefficient of the
term (s + 1)2U(s) and of the term s(s − 0.5) must be equal, so that the numerator of
(s+ 1)2U(s)− s(s− 0.5) is a polynomial of degree two. Remember also that this term
has a root z = 1 that cancels out the term s− 1: this makes C(s) realizable.
To impose the condition that the maximum degree coefficients of these two terms are
equal, we must set U(∞) = M(∞) since lim

s→∞
M(s) is exactly the value of the maximum

degree coefficient.

The Class of Stabilizing Controllers 245

So we get two interpolation conditions:

U(1) = M(1) (13.11)

U(∞) = M(∞) (13.12)

Assuming that U(s) = k s+α
s+β

(unit function if α > 0 and β > 0) and imposing these

two conditions we find that

k
1 + α

1 + β
=

1

8
(13.13)

k = 1 (13.14)

It follows that the parameters of U(s) are related each other according to the equation
1+α
1+β

= 1
8

which defines a straight line. All the points on this line are suitable values

to obtain stable and stabilizing controllers. For example choosing α = 1, we have
β = 15. So we have U(s) = s+1

s+15
(unit since U(s) ∈ H∞ and U−1(s) ∈ H∞) and

C(s) = − 11.5s+1
s+15

.

13.4 Simultaneous Stabilizability of Two Systems

From the techniques introduced in this chapter, the conditions to solve the
problem of simultaneous stability of the two systems can be derived. Consider
the reference scheme in Figure 13.1 and suppose that one wants to find a
compensator that simultaneously stabilizes two systems, P1(s) and P2(s). The
conditions of simultaneous stabilizability depend on the system characteristics
defined by ∆(s) = P1(s) − P2(s). The main result is given by the following
theorem.

Theorem 37 Given two systems P1(s) and P2(s) and defined ∆(s) = P1(s)−
P2(s), it is possible to find a compensator that stabilizes both systems if ∆(s)
satisfies the parity interlacing property.

The compensator stabilizing both systems is the stable compensator that
stabilizes the system ∆(s).

This result is only valid for the simultaneous stabilizability of two systems,
whereas the technique shown in Chapter 12 can be applied on two or more
systems, but it does not allow to establish if the compensator exists.

13.5 Coprime Factorizations for MIMO Systems and
Unitary Factorization

Since matrix multiplication is not commutative, for MIMO systems we have
to distinguish between left and right coprime factorization. Given the MIMO
system P (s) = N(s)M−1(s), the factorization is right coprime if

246 Optimal and Robust Control: Advanced Topics with MATLAB r

X(s)N(s) + Y (s)M(s) = I

In this case, the class of the controllers that make the closed-loop system
internally stable (which for SISO systems is given by equation (13.4)) is given
by:

C(s) = (Y (s)−Q(s)N(s))−1(X(s) +Q(s)M(s)) (13.15)

Instead, given P (s) = M̃−1(s)Ñ(s), the factorization is left coprime if

Ñ(s)X̃(s) + M̃(s)X̃(s) = I

and the class of the controllers that make the closed-loop system internally
stable is given by:

C(s) = (X̃(s) + M̃(s)Q(s))(Ỹ (s)− Ñ(s)Q(s))−1 (13.16)

In the coprime factorization obtained through the time domain method we
have seen that it is possible to choose in an arbitrary way the eigenvalues of
the matrices A + BF and A + HC. When these values are fixed to be equal to
the optimal eigenvalues associated to the solution of the CARE equation and
the FARE equation, the factorization is said to be unitary coprime factoriza-
tion.

Given the system P (s) = N(s)M−1(s), indicated with P2 the CARE so-
lution

ATP2 + P2A− P2BBTP2 + CTC = 0

and with P1 the FARE solution

AP1 + P1AT − P1CTCP1 + BBT = 0

in the unitary right coprime factorization we fix as eigenvalues of M(s) and
N(s) the optimal eigenvalues. So, we choose F = −BTP2 in the equations
(13.5) and (13.6). Concerning X(s) and Y (s), we choose in the equations
(13.7) and (13.8) H = −P1CT . In this way we get:

NT (−s)N(s) +MT (−s)M(s) = I

Unitary factorization is also defined for left factorized MIMO systems
P (s) = M̃−1(s)Ñ(s). The left unitary coprime factorization is defined by

Ñ(s)ÑT (−s) + M̃(s)M̃T (−s) = I

with

M̃(s) =

[
A∗ C

H∗ I

]
(13.17)

and

The Class of Stabilizing Controllers 247

Ñ(s) =

[
A∗ C

B 0

]
(13.18)

where A∗ = A + H∗C and H∗ = −P1CT .

13.6 Parameterization in Presence of Uncertainty

Consider now the case of a process P (s) with additive uncertainty: P (s) =
P0(s) + r(s). P0(s) represents the nominal transfer function, while r(s) in-
dicates the additive structural uncertainty. So we have |P (jω) − P0(jω)| <
|r(jω)|.

Let us define with T (s) = C(s)P0(s)
1+C(s)P0(s)

the closed-loop transfer function.

With the techniques analyzed above,the class of compensators C(s) that make
T (s) asymptotically stable can be parametrized. Now we consider the objec-
tive to find the class of compensators that stabilize the closed-loop system in
presence of structural uncertainties.

Often the uncertainty is defined considering the following normalization:

|P (jω)− P0(jω)|
|P0(jω)|

<
|r(jω)|
|P0(jω)|

or in the s domain

P (s)− P0(s)

P0(s)
= m(s)

with m(s) = r(s)
P0(s)

. So we want to find the class of compensators C(s) that

stabilizes any process P (s) = P0(s)[1 + m(s)]. To do this we have to impose
also that the zeros of 1+C(s)P (s) (i.e., the closed-loop poles) are with strictly
negative real part.

Since

1 + C(s)P (s) = 1 + C(s)P0(s)(1 +m(s)) =

= (1 + C(s)P0(s))[1 +m(s)
C(s)P0(s)

1 + C(s)P0(s)
]

1 + C(s)P (s) is given by the product of two terms: 1 + C(s)P0(s) and 1 +
m(s)T (s). The first term 1 +C(s)P0(s) certainly has roots with negative real
part, because it is the denominator of the closed-loop transfer function T (s).
The second term 1 + m(s)T (s) depends on the closed-loop transfer function
and on the uncertainty m(s).

248 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 13.4
Feedback control scheme.

If |m(s)T (s)| < 1 for s with positive real part, then 1 +m(s)T (s) is guar-
anteed to never vanish for s with positive real part. Therefore, this term does
not have roots that would lead the system to instability.

Consider the scheme in Figure 13.4 and consider the transfer functions:

[
X1(s)
R(s)

X1(s)
D(s)

X2(s)
R(s)

X2(s)
D(s)

]
=

[
(1 + C(s)P (s))−1 −P (s)(1 + C(s)P (s))−1

C(s)(1 + C(s)P (s))−1 (1 + C(s)P (s))−1

]

Consider now the class of compensators defined by C(s) = Q(s)
1−P (s)Q(s) . We

have seen previously that this class of compensators internally stabilizes the
system, when P (s) is stable. The use of this class of compensators for unstable
systems requires some adaptations that will be described below. At this point,

let us suppose we can use C(s) = Q(s)
1−P (s)Q(s) for which Q(s) = C(s)

1+P (s)C(s) . This

allows the given transfer functions to be rewritten in terms of P (s) and Q(s)
(to abbreviate we omit the variable s):[

X1(s)
R(s)

X1(s)
D(s)

X2(s)
R(s)

X2(s)
D(s)

]
=

[
1− PQ −P (1− PQ)
Q 1− PQ

]
From this expression, we can get the conditions to impose to Q(s) so that

the system is internally stable. The term that represents the transfer function
from r to x2 requires that Q(s) ∈ H∞.

Consider now the term 1− PQ:

1− PQ = 1− N(s)

D(s)

Q1(s)

Q2(s)
=
D(s)Q2(s)−N(s)Q1(s)

D(s)Q2(s)

The fact that Q(s) ∈ H∞ implies that Q2(s) has roots with negative real
part, but D(s) can have roots with positive real part. These roots must be
canceled, imposing some interpolation conditions on the numerator of 1−PQ.
From this it follows that, indicated with α1, α2, . . . , αn the poles of P (s) with

The Class of Stabilizing Controllers 249

positive real part (i.e., the roots ofD(s)), we must impose that P (αi)Q(αi) = 1
∀αi.

Concerning P (1−PQ), we will clarify below that the necessary adaptation
to deal with unstable systems is that this term must be stable.

The last condition to impose derives from some considerations on the
process disturbances. We must impose that |m(s)T (s)| < 1 ∀s with non-

negative real part. But since T (s) = C(s)P0(s)
1+C(s)P0(s)

, Q(s) = C(s)
1+P0(s)C(s) and

m(s) = r(s)
P0(s)

, we have m(s)T (s) = r(s)Q(s). If s = jω then we have to im-

pose that |r(jω)Q(jω)| < 1 ∀ω. The condition is then that r(s)Q(s) is strictly
bounded-real.

In conclusion, the conditions to impose to Q(s) to obtain the class of

controllers C(s) = Q(s)
1−P (s)Q(s) that stabilize internally the process P (s) =

P0(s) + r(s) are:

1. Q(s) ∈ H∞;

2. P (αi)Q(αi) = 1 for any unstable pole αi of P (s);

3. |r(jω)Q(jω)| < 1 ∀ω.

Note that to apply the condition P (αi)Q(αi) = 1 since P (s) is unstable
requires some adaptation. In particular, the so-called Blaschke product needs
to be used.

Consider, for example, an unstable system P (s) = 1
(s−1)(s−2) and consider

also the system P̃ (s) = 1
(s+1)(s+2) . The system P̃ (s) can be obtained from

the product (called a Blaschke product) of the system P (s) and the all-pass

system: B(s) = (s−1)(s−2)
(s+1)(s+2) .

The idea is to apply the conditions previously discussed to the system P̃ (s)
taking into account the unstable poles of P (s). Applying the conditions 1–3.
to the system P̃ (s) we obtain Q̃(s). From this, we consider Q(s) = B(s)Q̃(s).
In this way Q̃(s) ∈ H∞ by construction, but also Q(s) ∈ H∞ as it is the
product of two stable functions (in fact, also B(s) ∈ H∞).

Note at this point that P̃ (s)Q̃(s) = P (s)Q(s). So, in this way it is pos-
sible to build a transfer function Q(s) which satisfies the conditions 1–3 but
starting from P̃ (s) ∈ H∞. At this point, the condition P̃ (αi)Q̃(αi) = 1 with
αi indicating the poles of P (s) with positive real part can be applied.

Finally note that, since in this context designing strictly bounded-real
functions is more complicated than designing positive-real functions, often we
design Q(s) to obtain a positive-real function and then we apply the scattering
matrix to obtain a bounded-real function.

250 Optimal and Robust Control: Advanced Topics with MATLAB r

13.7 Exercises

1. Given the system G(s) = s+5
s2+2s+2 determine the class of stabiliz-

ing compensators. Then determine a closed-loop compensator that
assures zero error for the unit step response.

2. Given the system G(s) = s+5
s2−2s+2 determine the class of stabiliz-

ing compensators. Then determine a closed-loop compensator that
assures zero error for the unit step response.

3. Given the system G(s) = 1
s−2 determine the class of the stable

and stabilizing compensators. Then determine a closed-loop com-
pensator that assures a pole in p = −5.

4. Given the system G(s) = s−1
(s−2)(s−5) determine the class of stable

and stabilizing compensators.

5. Given the system with transfer function G(s) = 4
s−3 determine

the coprime factorization. Then determine the class of stabilizing
compensators with unit step response equal to 1. Finally, calculate
the energy associated to the impulse response for the closed-loop
system.

6. Determine the right and left unitary coprime factorization of the
system G(s) = 1

(s−1)2 .

7. Calculate the unitary coprime factorization of the system with
transfer function G(s) = s+1

s2+3s+1 .

8. Calculate a compensator that stabilizes simultaneously the two
plants with transfer function G1(s) = 1

s−1 and G2(s) = 1
s−2 .

9. Given the systems {
ẋ = Aix + Biu
y = Cix

with Ai =

 αi 0 0
0 −1 0
0 0 −2

; Bi = CTi =

 1
−1
θi

 and with αi = i

and θi = i+1 for i = {1, 2}, determine if it is possible to simultane-
ously stabilize them and, if so, design the linear state regulator and
observer so that the two systems are asymptotically stable. Verify
the result.

10. Calculate, if possible, a control law u = −Kx that can simultane-
ously stabilize the two systems with state-space matrices:

The Class of Stabilizing Controllers 251

A1 =


−1 0 0 0 0
0 2 0 0 0

0 0
√

5 0 0
0 0 0 −3 0
0 0 0 0 −4

; A2 =


1 0 0 0 0

0
√

7 0 0 0
0 0 −4 0 0
0 0 0 −5 0
0 0 0 0 −7

;

BT1 = BT2 =
[

1 1 1 1 0
]T

.

http://www.taylorandfrancis.com

14

Formulation and Solution of Matrix
Algebraic Problems through Optimization
Problems

CONTENTS

14.1 Solutions of Matrix Algebra Problems Using Dynamical
Systems . 253
14.1.1 Problem 1: Inverse of a Matrix . 254
14.1.2 Problem 2: Eigenvalues of a Matrix . 256
14.1.3 Problem 3: Eigenvectors of a Symmetric Positive

Definite Matrix . 258
14.1.4 Problem 4: Observability and Controllability Gramian . 259

14.2 Computation of the Open-loop Balanced Representation via the
Dynamical System Approach . 260

14.3 Concluding Remarks . 263
14.4 Exercises . 264

In this chapter, taking into account the possibility to derive, by using a dif-
ferent computational paradigm, the open-loop balanced representation, some
matrix computational methods are dealt with. The different computational
methods are reformulated in terms of various optimization problems that can
be addressed solving nonlinear matrix differential equations. This approach is
appealing from a system point of view, in fact the formulation of a suitable
optimization problem paves the way to a computational approach that is uni-
versal. From a numerical point of view, the solutions can be obtained using
simple integration methods, such as the Euler method.

14.1 Solutions of Matrix Algebra Problems Using Dy-
namical Systems

In the previous chapters, we made use of standard matrix algebra to calculate
quantities such as the eigenvalues, the eigenvectors, or the inverse of a ma-
trix. These simple calculations, however, may become highly computational

DOI: 10.1201/9781003196921-14 253

https://doi.org/10.1201/9781003196921-14

254 Optimal and Robust Control: Advanced Topics with MATLAB r

demanding, when the size of the matrix increases. Similarly, the computation
of the solution of Lyapunov equations via the vectorization method discussed
in Chapter 2 may also lead to numerical issues. Aim of this chapter is to recast
some fundamental operations of matrix algebra in terms of nonlinear dynami-
cal systems, whose steady-state solution provides the result of the given matrix
operation. The main idea of this approach is that, rather than computing a
matrix operation, a nonlinear dynamical system is let to evolve. This system
is such that it converges to the result of the matrix operation that one aims
to solve. Hence, this method requires, given the matrix operation to solve, to
properly write a nonlinear dynamical system that can converge to the solution
of this problem.

Let us begin with four classical problems of matrix algebra and reformulate
them in terms of nonlinear dynamical systems. Here, we discuss only a subset
of the problems that can be studied via this approach. The technical details
and further problems can be retrieved in the literature cited as recommended
essential references.

14.1.1 Problem 1: Inverse of a Matrix

Let A ∈ Rn×n be a square matrix. If the inverse of this matrix exists, then, it
can be found by considering the following nonlinear dynamical system:

Ċ(t) = −µAT [AC(t)− I] (14.1)

where C(t) ∈ Rn×n, I is the n×n identity matrix and µ is a scalar parameter
setting the convergence rate to the solution. This nonlinear dynamical system
evolves towards a steady-state solution given by:

lim
t→+∞

C(t) = C̄ (14.2)

By definition, the steady-state solution C̄ satisfies Ċ(t) = 0 in equa-
tion (14.1). Hence, we have that:[

AC̄− I
]

= 0 (14.3)

which gives:

C̄ = A−1 (14.4)

Notice that system (14.1) has a number of state variables equal to n2.

Example 14.1
To illustrate the procedure outlined above, let us first discuss a simple example, with
A being diagonal:

A =

[
3 0
0 −0.5

]
(14.5)

Let us, hence, consider the dynamical system (14.1) with n = 2, set µ = 1, and write the

Formulation and Solution of Matrix Algebraic Problems 255

system dynamics of each of the coefficients of the matrix C(t) (the four state variables
of the system): 

ċ11 = −3 (3c11 − 1)
ċ12 = −9c12

ċ21 = −0.25c21

ċ22 = −0.25c22 − 0.5

(14.6)

As the differential equations of system (14.6) are decoupled, the solution can be ana-
lytically found: 

ċ11(t) = c11(0)e−9t + 1
3

ċ12(t) = c12(0)e−9t

ċ21(t) = c21(0)e−0.25t

ċ22(t) = c21(0)e−0.25t − 1
2

(14.7)

The final step is to calculate lim
t→+∞

C(t). This yields:

C̄ =

[
1
3

0
0 −2

]
= A−1 (14.8)

Let us now introduce a general procedure to calculate the evolution of the
dynamical system (14.1) by using MATLAB. We use the differential equation
solver ode45 available in MATLAB. The function describing the equations of
the system can be written as follows:

function dxdt=prob1_MatrixInversion(t,x,A,mu)

n2=length(x);

C=reshape(x,sqrt(n2),sqrt(n2));

dxdt=-mu*A’*(A*C-eye(sqrt(n2)));

dxdt=dxdt(:);

end

The inputs of the function include the matrix A, for which the inverse
must be calculated, and the convergence rate µ as well as time and the system
state variables. The dynamical system is integrated by using the MATLAB
command

>> [T,Y]=ode45(@prob1_MatrixInversion,[0:0.01:10],...

...rand(n2,1),[],A);

>> Ainv=reshape(Y(end,:),sqrt(n2),sqrt(n2));

where n2 is the number of entries of matrix A.

MATLABr Exercise 14.1
Using MATLAB, calculate the inverse of the matrix

A =



0.5377 0.3426 0.7147 −1.2075 0.2939 1.4384 0.3192
1.8339 3.5784 −0.2050 0.7172 −0.7873 0.3252 0.3129
−2.2588 2.7694 −0.1241 1.6302 0.8884 −0.7549 −0.8649
0.8622 −1.3499 1.4897 0.4889 −1.1471 1.3703 −0.0301
0.3188 3.0349 1.4090 1.0347 −1.0689 −1.7115 −0.1649
−1.3077 0.7254 1.4172 0.7269 −0.8095 −0.1022 0.6277
−0.4336 −0.0631 0.6715 −0.3034 −2.9443 −0.2414 1.0933


(14.9)

The dynamical system (14.1) can be integrated by using the MATLAB command

256 Optimal and Robust Control: Advanced Topics with MATLAB r

0 2 4 6 8 10

t [s]

-1

-0.5

0

0.5

1

1.5

C
ij

FIGURE 14.1
Trend of the variables Cij(t) for system (14.1) with A as in (14.9).

>> [T,Y]=ode45(@prob1_MatrixInversion,[0:0.01:10],rand(numel(A),1),[],A);

obtaining the time evolution of the coefficients Cij(t) shown in Figure 14.1. The steady-
state solution can be calculated as:
>> Cbar=reshape(Y(end,:),length(A),length(A))

that is

C̄ =



−0.1236 0.1453 −0.2700 0.0534 0.1135 −0.0196 −0.1893
0.1910 0.1001 0.1300 −0.0812 0.0525 −0.0669 0.0625
0.2161 −0.1920 −0.1124 0.1165 0.2996 0.2221 −0.1763
−0.5461 0.2693 −0.0821 0.1839 −0.2133 0.4540 −0.2704
−0.0166 0.0311 −0.2312 −0.2004 −0.0292 0.4473 −0.4537
0.2049 0.1540 0.2423 0.2454 −0.3013 −0.0570 0.0818
−0.3218 0.3738 −0.6225 −0.4894 −0.3405 1.1699 −0.3272


(14.10)

The inverse of the matrix A is thus given by: A−1 = C̄.

14.1.2 Problem 2: Eigenvalues of a Matrix

Let H be a n×n square matrix and consider the following nonlinear dynamical
system:

Ḣ = H (HN−NH)− (HN−NH) H (14.11)

where

N =


µ1 0 · · · 0
0 µ2 · · · 0
...

...
. . .

...
0 0 · · · µn

 (14.12)

Formulation and Solution of Matrix Algebraic Problems 257

with µ1 > µ2 > . . . > µn > 0 positive real numbers. It can be demonstrated
that the dynamical system in equation (14.11) converges to a diagonal matrix
H̄ whose diagonal entries are the eigenvalues of the matrix H(0).

Therefore, to calculate the eigenvalues of a matrix A, one can integrate
system (14.11), starting from initial condition given by H(0) = A. To this
aim, the following MATLAB procedure can be employed. Once again, the dif-
ferential equation solver ode45 can be used, after writing the system equations
as follows:

function dxdt=prob2_MatrixEigenvalues(t,x)

n2=length(x);

H=reshape(x,sqrt(n2),sqrt(n2));

N=diag([sqrt(n2):-1:1]);

dxdt=H*(H*N-N*H)-(H*N-N*H)*H;

dxdt=dxdt(:);

end

The dynamical system is then integrated by using the MATLAB command
>> [T,Y]=ode45(@prob2_MatrixEigenvalues,[0:0.01:10],A);

>> E=reshape(Y(end,:),length(A),length(A));

where the initial conditions have been set equal to the matrix A, whose eigen-
values have to be computed.

MATLABr Exercise 14.2
Calculate the eigenvalues of the matrix

A =

 0.6930 0.7707 0.1762
0.2608 0.0757 0.5628
0.1127 0.5856 0.1239

 (14.13)

The dynamical system (14.11) can be integrated by using the MATLAB command
>> [T,Y]=ode45(@prob2_MatrixEigenvalues,[0:0.01:10],A);

where the initial conditions are set equal to the matrix A. The time evolution of the
state variables Hij(t) obtained in this way are shown in Figure 14.2. They converge to
the steady-state matrix
>> Hb=reshape(Y(end,:),length(A),length(A));

that reads

H̄ =

 1.115 0 0
0 0.2976 0
0 0 −0.52

 (14.14)

The diagonal entries of this matrix are equal to the eigenvalues of A as it can be checked
by using the MATLAB command
>> E=eig(A)

Note that the eigenvalues must be real quantities, otherwise the system
(14.11) diverges or does not converge to a steady-state solution.

258 Optimal and Robust Control: Advanced Topics with MATLAB r

0 2 4 6 8 10

t [s]

-0.5

0

0.5

1

1.5

H
ij

FIGURE 14.2
Trend of the variables Hij(t) for system (14.11) with A as in (14.13).

14.1.3 Problem 3: Eigenvectors of a Symmetric Positive Def-
inite Matrix

Let us consider the following nonlinear dynamical system:

Θ̇ = AΘN−ΘNΘTAΘ (14.15)

where A is symmetric positive definite, N is a diagonal matrix as in equa-
tion (14.12) and Θ(0) an orthonormal matrix that could be set equal to the
identity matrix. In this case, it can be shown that the columns of the ma-
trix Θ∞ = lim

t→+∞
Θ(t) are the eigenvectors of A (which are real quantities, as

the matrix is symmetric positive definite and thus has real eigenvalues and
eigenvectors).

To obtain Θ∞, the dynamical system (14.15) is integrated by using MAT-
LAB. The first step is to write the system equations as follows:

function dxdt=prob3_MEigenv(t,x,A)

n2=length(x);

Theta=reshape(x,sqrt(n2),sqrt(n2));

N=diag([sqrt(n2):-1:1]);

dxdt=A*Theta*N-Theta*N*Theta’*A*Theta;

dxdt=dxdt(:);

end

The dynamical system is solved by using the MATLAB command
>> [T,Y]=ode45(@prob3_MEigenv,[0:0.01:10],eye(length(A)),[],A);

>> Q=reshape(Y(end,:),length(A),length(A));

where the initial conditions are set to the identity matrix of the suitable

Formulation and Solution of Matrix Algebraic Problems 259

dimensions and A is the symmetric positive definite matrix whose eigenvectors
have to be calculated.

MATLABr Exercise 14.3
Calculate the eigenvectors of the matrix

A =


7.0975 −8.4650 5.8477 −6.3906 −0.9032
−8.4650 25.2876 −19.9587 2.3167 15.7190
5.8477 −19.9587 16.8034 1.0059 −14.2585
−6.3906 2.3167 1.0059 24.2867 −12.0941
−0.9032 15.7190 −14.2585 −12.0941 29.2483

 (14.16)

The dynamical system (14.15) is integrated by using the MATLAB commands
>> I=eye(5);

>> [T,Y]=ode45(@prob3_MEigenv,[0:0.01:10],I(:),[],A);

>>Q=reshape(Y(end,:),5,5)

that produces the steady-state solution

Q =


0.1413 0.3313 0.1294 0.9199 −0.0855
−0.5879 −0.3389 −0.2894 0.1930 −0.6469
0.4969 0.1778 0.2990 −0.2525 −0.7539
0.1560 −0.7877 0.5604 0.1880 0.0763
−0.6026 0.3511 0.7043 −0.1321 0.0092

 (14.17)

whose columns are the eigenvectors of A as it can be verified by using the MATLAB
command
>> [V,E]=eig(A)

or calculating the diagonal matrix
D=Q’*A*Q

which yields

D =


59.6802 0 0 0 0

0 33.1344 0 0 0
0 0 6.9494 0 0
0 0 0 2.5407 0
0 0 0 0 0.4125

 (14.18)

14.1.4 Problem 4: Observability and Controllability Gramian

Let us consider the gramian equations (5.1) and (5.2) and compute their
solutions via the approach based on the integration of dynamical systems. Let
us begin with the observability gramian. It can be found as the matrix X that
minimizes the following performance index

J =
1

2
||E||22

where E = ATX + XA + CTC. This problem can be reformulated in terms of
the following dynamical system:

Ẋ = ATX + XA + CTC (14.19)

whose steady-state solution is the observability gramian. In fact, considering
Ẋ = 0 leads to the gramian equation.

260 Optimal and Robust Control: Advanced Topics with MATLAB r

Similarly, for the controllability gramian the following system has to be
considered:

Ẋ = AX + XAT + BBT (14.20)

Notice that the algebraic problems we are discussing in this chapter are
related to optimization problems which, in turn, are solved by a matrix that
can be also obtained as the steady-state solution towards which a dynamical
system converges. The choice of the initial conditions from which the nonlinear
dynamical system starts is often a crucial step to obtain the desired solution.

The MATLAB functions to use for the computation of the observability
and controllability gramians are

function dxdt=ObsvGram(t,x,A,C)

n2=length(x);

X=reshape(x,sqrt(n2),sqrt(n2));

dxdt=A’*X+X*A+C’*C;

dxdt=dxdt(:);

and
function dxdt=CtrbGram(t,x,A,B)

n2=length(x);

X=reshape(x,sqrt(n2),sqrt(n2));

dxdt=A*X+X*A’+B*B’;

dxdt=dxdt(:);

The two dynamical systems are then integrated by using the MATLAB
commands

>> [T,Y]=ode45(@CtrbGram,[0:0.01:10],eye(length(A)),[],A,B);

>> Wc=reshape(Y(end,:),length(A),length(A));

>> [T,Y]=ode45(@ObsvGram,[0:0.01:10],eye(length(A)),[],A,C);

>> Wo=reshape(Y(end,:),length(A),length(A));

14.2 Computation of the Open-loop Balanced Represen-
tation via the Dynamical System Approach

The problems presented in the previous section can be jointly used to obtain
more complex operations. In particular, in this section, we illustrate how to
employ them to derive the open-loop balanced representation of a linear time-
invariant system.

Let us define the matrix

P∞ = W
(− 1

2)
c

(
W

1
2
c WoW

1
2
c

) 1
2

W
(− 1

2)
c (14.21)

where Wo and Wc are the observability and controllability gramians calculated

Formulation and Solution of Matrix Algebraic Problems 261

for a given state-space representation (A,B,C,D). It can be proved that with

the transformation matrix T̃ = P
− 1

2∞ one obtains a state space representation(
Ã, B̃, C̃,D

)
for which it holds that

W̃c = W̃o (14.22)

that is, the two gramians are equal. However, in general they are not diagonal.
The matrix P∞ can be found as the steady-state solution of the nonlinear
dynamical system

Ṗ = P−1WoP
−1 −Wc (14.23)

assuming to select the initial conditions as P(0) = P0, where P0 is a positive
semi-definite matrix.

The MATLAB function defining the equations for system (14.23) can be
written as

function dxdt=PinfSystem(t,x,Wo,Wc)

n2=length(x);

P=reshape(x,sqrt(n2),sqrt(n2));

[T,Y]=ode45(@prob1_MatrixInversion,[0:0.1:10],rand(n2,1),[],P);

Pinv=reshape(Y(end,:),sqrt(n2),sqrt(n2));

dxdt=Pinv*Wo*Pinv-Wc;

dxdt=dxdt(:);

Notice that this function makes use of the routine of problem 1 to obtain
the inverse matrix. The system can be integrated with the commands

>> In2r=reshape(eye(sqrt(n2)),n2,1);

>> [T,Y]=ode45(@PinfSystem,[0:0.1:100],In2r,[],WoD,WcD);

>> Pinf=reshape(Y(end,:),sqrt(n2),sqrt(n2))

Notice that condition (14.22) does not guarantee open-loop balancing, for
which it required that the two gramians are equal and diagonal:

W̄c = W̄o =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn

 (14.24)

where σ1, σ2, . . . , σn are the Hankel singular values.
To address this issue, let us define

Λ =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn

 (14.25)

.
Now, as W̃c = T̃WcT̃

T and W̃c = QΛQT , we have that Wc =

262 Optimal and Robust Control: Advanced Topics with MATLAB r

T̃−1QΛQT T̃−1, and so Λ = QT T̃WcT̃
TQ. Therefore, to calculate the open-

loop balanced realization
(
Ā, B̄, C̄,D

)
the following transformation has to be

considered:

T̄ = T̃TQ (14.26)

Accordingly, one can define an algorithm to obtain the open-loop balanced
representation starting from the state-space representation (A,B,C) entirely
based on the dynamical system approach:

1. Calculate the gramians Wc and Wo using problem 4;

2. Calculate the transformation matrix T̃ combining problem 1 to cal-
culate the inverse of P and problem in equation (14.23) to obtain
the matrix P∞;

3. Calculate the eigenvector matrix Q for the matrix W̃c = T̃WcT̃
T

by using problem 3;

4. Calculate the inverse of T̄ = T̃TQ using again problem 1;

5. Check the singular values and the open-loop balancing by calcu-
lating the eigenvalues of the matrix Λ = QT T̃WcT̃

TQ by using
problem 2.

MATLABr Exercise 14.4
Let us consider again the system in Exercise 5.2, characterized by the following state-
space representation:

A =

 −1 0 0
1/2 −1 0
1/2 0 1

 ; B =

 1 0
0 −1
0 1

 ; C

[
0 0 1
1 1 0

]
(14.27)

Let us now apply the procedure outlined above.
The first step is the computation of the gramians for the given state-space representation
as
>> [T,Y]=ode45(@ObsvGram,[0:0.01:10],reshape(eye(3),9,1),[],A,C);

>> Wo=reshape(Y(end,:),3,3);

and
>> [T,Y]=ode45(@CtrbGram,[0:0.01:10],reshape(eye(3),9,1),[],A,B);

>> Wc=reshape(Y(end,:),3,3);

Now, the matrix P∞ can be calculated as
>> [T,Y]=ode45(@PinfSystem,[0:0.01:10],reshape(eye(3),9,1),[],Wo,Wc);

>> Pinf=reshape(Y(end,:),3,3);

Next, we calculate the transformation matrix T̃:
>> Tt=Pinf^(-0.5);

and its inverse
>> [T,Y]=ode45(@prob1_MatrixInversion,[0:0.01:10],rand(numel(Tt),1),[],Tt);

>> TtInv=reshape(Y(end,:),3,3);

With these matrices, the state-space representation
(

Ã, B̃, C̃,D
)

where the two grami-

ans are equal can be computed:
>> At=TtInv*A*Tt;

>> Bt=TtInv*B

>> Ct=C*Tt

Formulation and Solution of Matrix Algebraic Problems 263

>> [T,Y]=ode45(@CtrbGram,[0:0.01:10],reshape(eye(3),9,1),[],At,Bt);

>> Wct=reshape(Y(end,:),3,3)

>> [T,Y]=ode45(@ObsvGram,[0:0.01:10],reshape(eye(3),9,1),[],At,Ct);

>> Wot=reshape(Y(end,:),3,3)

The next step is to obtain the eigenvector matrix Q as
>> [T,Y]=ode45(@prob3_MEigenv,[0:0.01:50],reshape(eye(3),9,1),[],Wct);

>> Q=reshape(Y(end,:),3,3)

and therefore
>> Tbal=Tt’*Q

is the transformation matrix which allows to derive an open-loop balanced representa-
tion as:
>> Abal=inv(Tbal)*A*Tbal

>> Bbal=inv(Tbal)*B

>> Cbal=C*Tbal

This ultimately yields the open-loop balanced representation

Ab =

 −0.8005 −0.1686 −0.2657
−0.2866 −0.7578 0.3816
0.3317 −0.2803 −1.4417

 ; Bb =

 0.9327 −0.7801
−0.3406 −0.8712
−0.3442 −0.0330

 ;

Cb =

[
−0.2508 −0.9325 0.2431
1.1896 0.0733 0.2458

]
(14.28)

14.3 Concluding Remarks

In this chapter, algorithms to solve classic matrix algebra problems based on
the integration of continuous-time dynamical systems have been presented. By
the joint application of some of these problems, we focused on an algorithm to
determine the open-loop balanced realization of a linear time-invariant system.

As the introduced dynamical systems are nonlinear, their evolution is cal-
culated by means of numerical integration, hence they are recast as discrete-
time dynamical models. This naturally leads to the question whether it is
possible to conceive a way to solve the dynamical systems directly in the
continuous-time, analog, domain. There exists a dichotomy between electronic
analog circuits and continuous-time dynamical systems. Reformulating matrix
algebra problems in terms of dynamical systems paves the way to the design
of analog computing devices able to solve them in real-time.

264 Optimal and Robust Control: Advanced Topics with MATLAB r

14.4 Exercises

1. Using the procedure introduced in this chapter, calculate the inverse

of the matrix A =

 1 0 0
0 2 0
0 0 a

 with a = 0.1, a = 0.01 and a =

0.001. Evaluate the time needed to reach the steady-state in the
three cases.

2. Calculate the eigenvalues of the matrix A in equation (14.13) per-
turbing the matrix N with a gaussian noise. Evaluate the effect of
the perturbation on the steady-state matrix.

3. Calculate the eigenvectors of the matrix A in equation (14.16) per-
turbing the matrix N with a gaussian noise. Evaluate the effect of
the perturbation on the steady-state matrix.

4. Determine the controllability and observability gramians for the
continuous-time LTI system with state-space realization

A =

[
0 1
−3 −2

]
; B =

[
0
1

]
; C

[
−1 1

]
(14.29)

5. Calculate the singular values of the system with transfer function

G(s) = s2−5s+4
s2+5s+4 .

6. Calculate an open-loop balanced realization for the system with
state-space matrices:

A =


−0.5 −1 0 0

1 −0.5 0 0
0 0 −3 0
0 0 0 −4

 ; B =


1
−1
−1
1

 ;

C =
[

0 1 −1 1
] (14.30)

15

Time-delay Systems

CONTENTS

15.1 Modeling Systems with Time-delays . 265
15.2 Basic Principles of Time-delay Systems . 266
15.3 Stability of Time-delay Systems . 269
15.4 Stability of Time-delay Systems with q = 1 . 270
15.5 Direct Method . 275
15.6 Exercises . 281

Aim of this chapter is to provide a few main results related to time-delay
systems. The concepts explored in this chapter have a fundamental importance
in robust control theory due to the implications of time-delay in practical
implementations of control systems. Indeed, time-delay systems are accurate
models of real systems. Control engineers tend to neglect the presence of
time-delay in feedback loops assuming that the control input is presented
in the proper time to observe the desired response. However, many systems
are based on the existence of a time-delay, such as radars and sonars whose
working principle relies on the time-delay between the emitted wave and the
reception of the echo. Moreover, the presence of a human operator in a control
loop is modeled as a time-delay, an aspect of crucial importance in the theory
of human-machine interaction.

15.1 Modeling Systems with Time-delays

In industrial automation time-delays are a common feature, always appearing
in plants and systems involved in automatic factories. In the evaluation of
just-in-time production, the queue delay systems are the key points of the op-
timization. Time-delays are present in the temperature control system for our
showers and, if we think to the internal combustion engines, also the produc-
tion of torque is delayed with respect to the required one. An interesting series
of examples of systems with time-delays include different classes of systems:

DOI: 10.1201/9781003196921-15 265

https://doi.org/10.1201/9781003196921-15

266 Optimal and Robust Control: Advanced Topics with MATLAB r

• Fluid flow models for a congested router in TCP/AQM controlled network;

• Car following systems;

• Rotating cutting and milling machines;

• Heating systems.

In the last decade, particular interest has been also devoted to internet con-
gestion with many contributions devoted to understand the role of time-delay
in this field. In particular, the topic of robust control of time-delay systems
is dealt with in several books, listed as recommended essential references for
this chapter, where important applications in underwater control systems, in
biosystems analysis and control, and in the area of mathematical modeling
have been also discussed.

In this chapter we will discuss only some fundamental results about this
topic. The chapter is organized as follows: in the second part the main prob-
lems related to time-delay systems are reported with practical examples in
order to introduce in a concrete way the topic. In the part three a classifi-
cation of the various categories of time-delay systems will be presented. Our
discussion is referred to closed-loop schemes of delay systems corresponding
to the feedback design, and some particular results regarding the possibility
of stabilizing a class of delay systems in the state-space domain are presented.
The referenced books on delay systems include exhaustive theoretical results,
whereas in this chapter we give a brief introduction focusing more on reference
examples rather than theoretical results.

15.2 Basic Principles of Time-delay Systems

Let us consider the continuous-time linear system S1, where the output y(t)
is related to the input u(t) by the relationship y(t) = u(t − τ). This system
represents an ideal time-delay. In fact, the output is a replica of the input
after a delay τ . The transfer function of this system is given by

G(s) = e−sτ (15.1)

which is a direct application of one of the properties of the Laplace transform.
The characteristic of G(s) is that it is an all-pass stable system, i.e.,

|G(jω)| = 1, ∀ω. The system is BIBO stable, the unique singularity is for
s → −∞ and the unique zero is at s → ∞. The system belongs to the class
of infinite dimensional linear systems.

Let us now consider the closed-loop system reported in Figure 15.1. The
transfer function is

Time-delay Systems 267

FIGURE 15.1
A closed-loop system with a time-delay block.

F (s) =
ke−sτ

1 + ke−sτ
(15.2)

In order to check its stability the poles of the systems must be computed
by solving

1 + ke−sτ = 0 (15.3)

Equation (15.3) is a transcendental equation that can be rewritten as

ke−στe−jωτ = −1 (15.4)

that is a complex equation corresponding to the following conditions on the
real and imaginary part:

ke−στ cosωτ = −1
ke−στ sinωτ = 0

(15.5)

The second condition yields sinωτ = 0, that is solved by ωτ = iπ, with
i = 1, 2, . . . , n. The first condition implies that the index i must be odd. In
this case, the solution is given by σ = ln k

τ . The system is therefore stable if
0 < k < 1.

The same result can be obtained considering the small-gain theorem. In
fact, since it is an unitary control feedback scheme, then |ke−jωτ | must be less
than 1, ∀ωτ that leads to the condition 0 < k < 1.

Another possibility to derive the same result is to consider the Nyquist
plot and determine the number of encirclements of the critical point (−1, 0).
In fact, in this case, we find that for each k > 1 the critical point is encircled,
and thus the system is unstable.

From this simple example, we have seen that the poles of time-delay system
are an infinite number. In order to have information about the stability of a
time-delay system, several approaches can be used:

1. The analytical one, that means to find the infinite roots of the
characteristic equation;

2. The classical approach in the frequency domain by using the
Nyquist criterion and the Bode diagrams.

268 Optimal and Robust Control: Advanced Topics with MATLAB r

The stability of delayed systems depends not only on the static gain k,
but also on the time-delay τ . The next example illustrates another important
case study.

Example 15.1
Let us consider the classical control scheme shown in Figure 15.2. It can be physi-
cally interpreted as a delay speed control system for a motion controlled system. The
controlled system may represent a car, an airplane, a bicycle and so on, whereas the
control action is performed with some delay, due to the physiological characteristics of
the human response.

FIGURE 15.2
The closed-loop system used in Example 15.1.

To obtain the stability condition, the phase margin of the open-loop system must be
considered. Stability requires that it is positive. In order to compute it, the so-called
crossover frequency can be calculated as∣∣∣∣ kjωc e−jωcτ

∣∣∣∣ = 1 (15.6)

Therefore, we have ωc = k. The phase margin is given as follows:

mφ = π − ψωc = π −
π

2
− ωcτ =

π

2
− ωcτ =

π

2
− kτ (15.7)

Therefore, the stability condition yields kτ < π
2

.
It is evident that high values of the time-delay τ require to decrease the gain, at the
expenses of the precision of the control. On the contrary, for small values of the time-
delay τ , an higher gain can be used, with better performance.

The examples reported above show the effect of the time-delay in simple
case studies. More in general, systems may include more than a single delay. In
similar cases, in order to get some insights on the system behavior, it is often
convenient to introduce an approximation of the various time-delay elements.
It therefore useful to get a rational function approximation of the general delay
element e−sτ that reflects its important properties. The Padé approximation
is the approximation more commonly used in many applications. It is derived
matching the first coefficient of the Taylor expansion of e−sτ with that of a
rational transfer function of order n that must have all-pass characteristics.

Therefore, if the approximation function is indicated as Rn(s) = Nn(s)
Dn(s)

, we

have

Dn(s) = Nn(−s) (15.8)

Time-delay Systems 269

The Padé approximation is already implemented in MATLAB. The fol-
lowing commands can be used to obtain the third-order Padé approximation
of e−sτ with τ = 1:

>> tau=1

>>[N,D]=pade(tau,3)

15.3 Stability of Time-delay Systems

The state-space representation of a linear time-invariant (LTI) system with
time-delays is the following:

ẋ(t) = A0x(t) +

q∑
i=1

Aix(t− τi) (15.9)

where Ak ∈ Rn×n with k = 0, . . . , q are constant state matrices and τi ≥ 0 for
i = 1, . . . , q are time-delays.

If τi = iτ , then the delays are said to be commensurate and the system to
be a commensurate delay system:

ẋ(t) = A0x(t) +

q∑
i=1

Aix(t− iτ) (15.10)

Otherwise, the system is said to be an incommensurate delay system.
The stability of system (15.9) is fully determined by its characteristic quasi-

polynomial p(s, τi), which is given by:

p(s, τi) = det

(
sI−A0 −

q∑
i=1

Aie
−sτi

)
(15.11)

or equivalently

p(s, τi) = p0(s) +

q∑
i=1

pi(s)e
−sτi (15.12)

where pi(s) with i = 0, . . . , q are polynomials related to the state matrices Ai.

In particular, they can be expressed as p0(s) = sn +
n−1∑
j=0

p0,js
j and pi(s) =

n∑
j=0

pk,js
j for i = 1, . . . , q.

For commensurate delay system, the characteristic quasi-polynomial may
be written as:

270 Optimal and Robust Control: Advanced Topics with MATLAB r

p(s, τ) = det

(
sI−A0 −

q∑
i=1

Aie
−siτ

)
(15.13)

or equivalently as

p(s, τ) =

q∑
i=0

pi(s)e
−siτ (15.14)

where pk(s) have the same meaning than in the case of systems with incom-
mensurate time delays.

Note that the quasi-polynomial admits infinite roots. If all the roots are
in the left-half plane, the time-delay system is asymptotically stable.

For simplicity, in the rest of the chapter we will mainly focus on commen-
surate delay systems.

Let us now define formally the stability property for a time delay system
from the properties of its characteristic quasi-polynomial and, in particular,
introduce the notion of delay-independent stability.

Definition 30 The characteristic quasi-polynomial (15.13) is said to be stable
if all the roots of the characteristic quasi-polynomial p(s, τ) lie in the open left
half plane. It is said to be delay-independent stable if this condition is valid
for all τ ≥ 0.

System (15.9) is stable if and only if its characteristic quasipolynomial is
stable. In addition, it is stable independent of delay if its characteristic quasi-
polynomial is such.

15.4 Stability of Time-delay Systems with q = 1

Let us consider the class of SISO time-delay systems with the following transfer
function

G̃(s) =
N1(s)

N2(s) +N3(s)e−sτ
(15.15)

where Ni(s) are polynomials of order ni. In particular, we assume that the
orders of the polynomials are such that n1 ≤ n2 and n3 ≤ n2.

The denominator can be considered the characteristic quasi-polynomial of
a time-delay system with q = 1.

G̃(s) can be rewritten as follows

G̃(s) =
F1(s)

1 + F2(s)e−sτ
(15.16)

Time-delay Systems 271

FIGURE 15.3
Feedback control scheme. The control scheme is a negative feedback loop with
F (s) in the direct chain and G(s) in the indirect one. The reference signal is
labeled as R and the controlled output is labeled as Y.

−2 −1.5 −1 −0.5 0 0.5
−1

−0.5

0

0.5

1

Real

Im
a

g

FIGURE 15.4
Nyquist plot of G(s) as in equation (15.18).

being F1(s) = N1(s)
N2(s)

and F2(s) = N3(s)
N2(s)

rational transfer functions. This sys-

tem corresponds to the classical feedback control scheme (Figure 15.3) with

F (s) = F1(s) and G(s) = F2(s)
F1(s)

e−sτ . This formalization allows us to use the

classical results of control theory to analyze this class of time-delay systems,
by inspecting the closed-loop properties of the transfer function F (s)G(s).

Example 15.2
Let us consider the following transfer function

G̃(s) =
1

(s+ 1)2 + (s+ 2)e−s
(15.17)

It can be rewritten as

G̃(s) =

1
(s+1)2

1 +
(s+2)

(s+1)2
e−s

(15.18)

The Nyquist plot, shown in Figure 15.4, does not encircle the critical point and therefore
the quasi-polynomial admits only roots that are in the left-half plane.
To confirm this results, we calculate the phase margin from the Bode diagram, obtaining

272 Optimal and Robust Control: Advanced Topics with MATLAB r

mφ = 46◦, which allows us to conclude that the system G̃(s) is asymptotically stable
and the quasi-polynomial does not have roots for σ > 0.

Now, we present some classical examples that are reported in the literature
which confirm how critical can be the analysis of the stability of time-delay
systems. The analysis of these examples will be made by using also MATLAB.

Example 15.3
Let us consider the following transfer function

G̃(s) =
1

s+ 1 + se−s
(15.19)

Here, p(s) = s+1+se−s. Letting p(s) = 0 yields s+1
s

= −e−s. Considering s = σ+ jω,
the equation does not admits solution for σ > 0. Moreover, for σ = 0 it follows:

−
jω + 1

jω
= e−jω (15.20)

whose modulus yields

√
ω2 + 1

ω
= 1 (15.21)

that admits infinite solutions for ω →∞. This leads to have solutions on the imaginary
axis with multiplicity greater than 1, so that the system is unstable.
This can also be shown by computing the H∞ norm of the system G̃(s) by consider-
ing the denominator p(jω) = (jω + 1) + jω(cos(ω) − j sin(ω) and using the following
MATLAB commands
for o=0.001:0.001:20

R=o*sin(o)+1;

I=o*cos(o)+o;

M=R^2+I^2;

plot(o,M,’.r’);

hold on

end

The minimum of the modulus tends to zero, as shown in Fig. 15.5, therefore the H∞
norm tends to infinity, thus G̃(s) does not belong to the H∞ class.
Moreover, if we consider a Padé approximation of the time-delay e−s of order nP = 50,
the impulse response calculated with MATLAB oscillates, as shown in Figure 15.6, thus
showing that the system is not asymptotically stable.
If we use the Nyquist plot of s

s+1
e−s, we cannot draw conclusions on the stability since

the critical point is crossed by the plot.

Example 15.4
Let us consider the system with transfer function

G̃(s) =
1

(s+ 1) [(s+ 1) + se−s]
(15.22)

Even if the poles of G̃(s) are those of the previous example with a further pole in s = −1,
this example is quite different as the two systems have a different behavior for ω →∞.
The transfer function in (15.22), in fact, belongs to the H∞ class as shown by using
the following MATLAB commands which calculate the magnitude of the polynomial
p(jω) = (jω + 1)(jω + 1 + jω(cos(ω)− j sin(ω))), that is the denominator of G̃(s).
for o=0.001:0.001:20

R=o*sin(o)+1-o^2*cos(o)-o^2;

I=o*cos(o)+2*o+o^2*sin(o);

M=R^2+I^2;

Time-delay Systems 273

FIGURE 15.5
Magnitude of the denominator p(jω) of the transfer function G̃(s) as
in (15.18). The zoom in the inset allows to verify that the magnitude reaches
the minimum value of 0, thus leading to an infinite H∞ norm.

0 10 20 30 40 50

t [s]

0

0.2

0.4

0.6

0.8

1

1.2

y
(t

)

FIGURE 15.6
Unit step response of G̃(s) as in (15.18) with a 50-th order Padé approximation
of the time-delay e−s.

274 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 15.7
Magnitude of the denominator p(jω) of transfer function G̃(s) as in (15.22).
The zoom in the inset allows to verify that the magnitude reaches the mini-
mum value of 0.25, thus leading to |G̃(s)|∞ ≈ 4.

plot(o,M,’.b’);

hold on

end

We consider now the Padé approximation of the time-delay e−s of order nP = 50 and
calculate the impulse response with MATLAB as reported in Fig. 15.8, thus showing
that the system is stable. However, this example is very sensitive to the parameters and
the stability is fragile.

Example 15.5
Let us consider the following transfer function

G̃(s) =
1

(s
a

+ 1) [(s+ 1) + se−s]
(15.23)

This example generalizes the previous one with the introduction of the parame-
ter a, which indicates the location of a further pole. The fragility of the stabil-
ity depends on a since, even if G̃(s) belongs to the H∞ class, the parameter a
modulates the distance of the roots from the imaginary axis. The following MAT-
LAB code allows to calculate the minimum magnitude of the polynomial p(jω, a) =
(s
a

+ 1) [(s+ 1) + s(cos(ω)− j sin(ω))] for different values of the parameter a.
for k=1:20

a=.1*k

for i=1:20000

o=0.001*i;

R=-o^2/a-o^2/a*cos(o)+1+o*sin(o);

I=o/a+o^2/a*sin(o)+o+o*cos(o);

p=R^2+I^2;

H(i)=p;

end

M=min(H);

V(k)=M;

Time-delay Systems 275

0 10 20 30 40 50

t [s]

0

0.2

0.4

0.6

0.8

1

1.2

y
(t

)

FIGURE 15.8
Unit step response of G̃(s) as in (15.22) with a 50-th order Padé approximation
of the time-delay e−s.

end

plot(0.1:0.1:2,V)

The curve reported in Figure 15.9 shows that for increasing values of α the minimum
tends towards zero, thus leading to an infinite H∞ norm.

15.5 Direct Method

This section is devoted to illustrate the direct method that provides a criterion
to evaluate the stability of quasi-polynomials of the form:

p(s, τ) = p0(s) + p1(s)e−sτ (15.24)

under the hypothesis that the system without delay is stable, that is, the
roots of p(s, 0) are all in the left-half plane. The limit value of the delay,
τ∗, for which the delay system is stable, is found by considering when the
characteristic equation p(s, τ) = 0 has some solution on the imaginary axis.
Thanks to the complex conjugate symmetry of the complex roots, this root is
also a solution of the equation p(−s, τ) = 0 for the same value of τ . Using this
result, one can look for simultaneous solutions of p(s, τ) = 0 and p(−s, τ) = 0
for s = jω:

p0(jω) + p1(jω)e−jωτ = 0
p0(−jω) + p1(−jω)ejωτ = 0

(15.25)

276 Optimal and Robust Control: Advanced Topics with MATLAB r

0 0.5 1 1.5 2

a

0

0.2

0.4

0.6

0.8

1

1.2

m
in

 |
p
(j

,a
)|

FIGURE 15.9
Minimum over ω of the magnitude of the polynomial p(jω) for different values
of the parameter a.

that prompts for the derivation of the exponential term as follows:

ejωτ = −p0(−jω)

p1(−jω)
(15.26)

Substituting this expression in (15.25), we get

p0(jω)p0(−jω)− p1(jω)p1(−jω) = 0 (15.27)

or equivalently

|p1(jω)|2 − |p0(jω)|2 = 0 (15.28)

When equation (15.27) (or equation (15.28)) admits a solution, say ω̄, then,
the limit delay for stability can be derived from (15.26) with ω = ω̄. Otherwise,
if equation (15.27) (or equation (15.28)) does not have any solution, then the
system with characteristic equation p(s, τ) = 0 is stable for any value of τ .

Example 15.6
Consider the following time-delay system

ẋ(t) = −ax(t)− bx(t− τ) (15.29)

with a > 0 and b > 0. If we take the Laplace transform of the previous equation, we
find

(s+ a+ be−sτ)X(s) = 0 (15.30)

Therefore, system (15.33) has a characteristic quasi-polynomial p(s, τ) of the form
(15.24) with p0(s) = s + a and p1(s) = b. Let us then study for which values of
the parameters a and b the system is delay-independent stable.

Time-delay Systems 277

For system (15.33), equation (15.27) reads:

(jω + a)(−jω + a)− b2 = 0 (15.31)

and hence

a2 + ω2 − b2 = 0 (15.32)

that has no solution if a > b > 0.
Consider now the transfer function F (s) =

p1(s)
p0(s)

= b
s+a

and notice that, if a > b > 0,

then F (s) is strictly bounded-real, |F (jω)| = | b
jω+a

| < 1 ∀ω. As we will discuss below,

this result holds in general.

Consider the control scheme in Figure 15.10. If F (s) is set as F (s) = p1(s)
p0(s)

,

then the characteristic equation of this feedback configuration is p(s, τ) = 0
with p(s, τ) as in (15.24).

In order to assess when the feedback system in Figure 15.10 is time-
independent stable, the small gain theorem can be applied. Consequently,
if F (s) is strictly bounded-real, then we can conclude that p(s, τ) = p0(s) +
p1(s)e−sτ is time-independent stable.

FIGURE 15.10
Feedback scheme having the characteristic quasi-polynomial (15.24) when

F (s) = p1(s)
p0(s)

.

Example 15.7
Let us consider the following time-delay system:

ẋ(t) =

[
0 1
−1 −k

]
x(t) +

[
0 0
0 −1

]
x(t− τ) (15.33)

Taking the Laplace transform of the previous equation, we get:

sX(s) =

[
0 1
−1 −k

]
X(s) +

[
0 0
0 −1

]
e−sτX(s) (15.34)

and so: {
sI−

[
0 1
−1 −k

]
−
[

0 0
0 −1

]
e−sτ

}
X(s) = 0 (15.35)

The characteristic quasi-polynomial can be computed as follows:

p(s, τ) = det

[
s −1
1 s+ k + e−sτ

]
(15.36)

278 Optimal and Robust Control: Advanced Topics with MATLAB r

and hence

p(s, τ) = s2 + sk + se−sτ + 1 (15.37)

The quasi-polynomial (15.37) is in the form (15.24) with p0(s) = s2 + sk + 1 and
p1(s) = s. Notice that p(s, 0) is Hurwitz if k > 0.
Therefore, to derive the condition on k yielding a delay-independent stable system, we
have to consider

F (s) =
s

s2 + sk + 1
(15.38)

and study when it is strictly bounded-real. To this aim, let us consider a state-space
representation of F (s) as follows:

A =

[
0 1
−1 −k

]
; B =

[
0
1

]
; C =

[
0 1

]
; D = 0 (15.39)

and calculate the Hamiltonian matrix associated to the bounded-real lemma:

H =

[
A BBT

−CTC −AT

]
(15.40)

We obtain:

H =


0 1 0 0
−1 −k 0 1
0 0 0 1
0 −1 −1 k

 (15.41)

The characteristic polynomial of H is:

det(λI−H) = λ4 + (3− k)2λ2 + 1 (15.42)

Studying the roots of this polynomial, one finds that, for k > 1, H has no eigenvalues
on the imaginary axis. Consequently, F (s) is bounded-real for k > 1 and system (15.33)
is delay-independent stable.

Example 15.8
Consider now the time-delay system:

ẋ(t) = A0x(t) + A1x(t− τ) (15.43)

with

A0 =

[
−2 0
0.5 −2

]
; A1 =

[
0 0.5
0 0

]
(15.44)

Let us compute the characteristic quasi-polynomial:

p(s, τ) = det(sI−A0 −A1e
−sτ) (15.45)

We get:

p0(s) = s2 + 4s+ 4 (15.46)

and

p1(s) = −
1

4
(15.47)

The transfer function F (s) = −
1
4

s2+4s+4
is strictly bounded-real and, therefore, the

system is delay-independent stable.
Another criterion to assess delay-independent stability is now presented. According to

Time-delay Systems 279

FIGURE 15.11
Trend of the maximum eigenvalue Λmax of (jωI−A0)−1A1. Since it is strictly
less than 1 for any ω, the system (15.43) is delay-independent stable.

this criterion, one has to check if the maximum eigenvalue Λmax of (jωI−A0)−1A1 is
strictly less than one, for any ω, provided that A0 and A0 + A1 are Hurwitz.
This criterion can be applied to system (15.43) with the following MATLAB code:
for o=0:0.01:10

AA=inv(j*o*eye(2)-A0)*A1;

L=max(abs(eig(AA)));

plot(o,L,’b.’);

hold on

end

The trend of Λmax(ω) obtained in this case is reported in Fig. 15.11.

Example 15.9
Let us consider the following time-delay system:

ẋ(t) =

[
0 1
−1 −k

]
x(t) +

[
0 0
0 −1

]
x(t− τ) + u(t) (15.48)

with k = 0.1. As shown in Example 15.7, for this value of k, the system is not delay-
independent stable if u(t) = 0. Is it possible to find a control action u(t) = −Lx(t),
with L a scalar quantity, such that the controlled system is delay-independent stable?
To address this problem, let us consider the controlled system

ẋ(t) =

[
0 1
−1 −k

]
x(t) +

[
0 0
0 −1

]
x(t− τ)−

[
L 0
0 L

]
x(t) (15.49)

and calculate its characteristic quasi-polynomial:

p(s, τ) = det(sI−A0 −A1e
−sτ + LI) (15.50)

We obtain:

p0(s) = s2 + s

(
1

10
+ 2L

)
+

(
1 + L2 +

L

10

)
(15.51)

and

280 Optimal and Robust Control: Advanced Topics with MATLAB r

-10 -5 0 5 10

Real

-2

-1

0

1

2

Im
a
g

FIGURE 15.12
Closed-loop eigenvalues for the controlled system (15.49) at different values
of the controller gain L.

p1(s) = s+ L (15.52)

Solving the control problem is, therefore, equivalent to find L such that the function

F (s) =
p1(s)
p0(s)

is bounded-real. To this aim, we can use the following MATLAB com-

mands:
for l=10:-.1:0.1

A=[0 1;(-1-l^2-l/10) (-1/10 -2*l)];

B=[0;1];

C=[l 1];

H=[A B*B’;-C’*C -A’];

cl_eig=eig(H)

plot(real(cl_eig),imag(cl_eig),’b.’)

hold on

end

Since the eigenvalues of the Hamiltonian matrix associated to the bounded-real lemma
lie on the imaginary axis for L ≤ 0.4, then, as shown in Figure 15.12, the system is
delay-independent stable for L ≥ 0.4.
Let us fix for example L = 0.5 and check that the controlled system is delay-independent
stable with the direct method. For this value of L, we have:

p0(s) = s2 +
11

10
s+ 1.3 (15.53)

and

p1(s) = s+ 0.5 (15.54)

Application of the direct method requires that equation (15.28) has no solution. For
this system, equation (15.28) becomes:

(1.3− ω2)2 +
121

100
ω2 −

(
1

4
+ ω2

)
= 0 (15.55)

and thus

Time-delay Systems 281

ω4 −
239

100
ω2 +

36

25
= 0 (15.56)

that has no real solution.

It is important to remark that, in the previous example, the problem of
delay-independent stability is solved with a control law with a single param-
eter.

The result is valid for systems with commensurate delays, as stated in the
following general theorem.

Theorem 38 Let us consider a commensurate time-delay system as in equa-
tion (15.10) with A0 and A0 +

∑q
i=1 Ai stable matrices. Then, there exists a

linear state-space regulator u(t) = −Lx(t) with scalar gain L such that the
controlled system

ẋ(t) = Ā0x(t) +

q∑
i=1

Aix(t− iτ) (15.57)

where Ā0 = A0 − LI is delay-independent stable.

15.6 Exercises

1. Propose an approximation for G(s) = e−sτ with τ = 1, τ = 0.5 and
τ = 0.1 by using the Padé method and numerically compute the
H∞ norm of the error between G(s) and its approximation.

2. Determine, if possible, the compensator C(s) that stabilizes the
closed-loop system of Figure 15.13 with G(s) = k

s , k = 1 and τ = 2.

FIGURE 15.13
Block scheme for Exercise 2.

3. Consider the block scheme in Figure 15.14 with G(s) = 1
s+α . Deter-

mine the value of α such that the system is asymptotically stable.

4. Consider the system in Figure 15.15 with G(s) = 1
(s+1)3 and deter-

mine for which values of τ the system is asymptotically stable.

282 Optimal and Robust Control: Advanced Topics with MATLAB r

FIGURE 15.14
Block scheme for Exercise 3.

FIGURE 15.15
Block scheme for Exercises 4 and 5.

5. With reference to system in Figure 15.15 with G(s) = k
(s+1)3 and

τ = 0.1, determine for which values of k the feedback system is
asymptotically stable.

Recommended Essential References

We report here a list of recommended essential references for each chapter of
the book. The reader can find an extensive discussion of fundamental results
that in our book have been only briefly summarized as well as new results and
techniques to deepen the knowledge on the given topic.

Chapter 1

1. G. Franklin, J. D. Powell, A. Emami-Naeini, Feedback Control of
Dynamic Systems, 5th Edition, Prentice Hall, Englewood Cliffs, NJ,
2004.

2. J. C. Doyle, B. A. Francis, A. R. Tannenbaum, Feedback Control
Theory, Macmillan Publishing Company, New York, 1992.

3. W. S. Levine, The Control Handbook, CRC Press and IEEE Press,
Boca Raton, 1996.

4. S. P. Bhattacharyya, H. Chapellat, L. H. Keel, Robust Control. The
Parametric Approach, Prentice Hall PTR, 2000.

5. K. Zhou, J. C. Doyle Essentials of Robust Control, Prentice Hall
PTR, 1999.

Chapter 2

1. T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, NJ,
1979.

2. D. G. Schultz, J. L. Melsa, State Functions and Linear Control
Systems, McGraw-Hill, New York, 1967.

3. V. L. Kharitonov, “Asymptotic stability of an equilibrium position
of a family of systems of linear differential equations,” Differen-
tial’nye Uraveniya, 1978, 14, 83–1485.

283

284 Optimal and Robust Control: Advanced Topics with MATLAB r

4. R. C. Dorf, R. H. Bishop, Modern Control Systems, 12th Edition,
Prentice Hall, Englewood Cliffs, NJ, 2010.

5. W. S. Levine, The Control Handbook, CRC Press and IEEE Press,
Boca Raton, 1996.

Chapter 3

1. H. Kwakernaak, R. Sivan, Linear Optimal Control Systems, John
Wiley & Sons, 1972.

2. W. J. Rugh, Linear System Theory, Prentice Hall, Englewood Cliffs,
NJ, 1966.

3. T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, NJ,
1979.

4. C. Piccardi, S. Rinaldi, I sistemi lineari: teoria, modelli, appli-
cazioni, Città Studi, Biella, 1998.

5. N. Wiener, Nonlinear Problems in Random Theory, The Mas-
sachusetts Institute of Technology, 1958.

Chapter 4

1. G. H. Golub, C. F. Van Loan, Matrix Computations, The Johns
Hopkins University Press, Baltimore, MD, 1996.

2. T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, NJ,
1979.

3. W. S. Levine, The Control Handbook, CRC Press and IEEE Press,
Boca Raton, 1996.

Chapter 5

1. K. Zhou K., J. C. Doyle, K. Glover, Robust and Optimal Control,
Prentice Hall, Upper Saddle River, 1996.

Recommended Essential References 285

2. F. W. Fairman, Linear Control Theory: The State Space Approach,
John Wiley & Sons, West Sussex, England, 1998.

3. R. A. Roberts, C. T. Mullis, Digital Signal Processing, Addison-
Wesley Publishing Company, 1987.

4. C. K. Chui, G. Chen, Discrete H∞ Optimization, 2nd Edition,
Springer, London, 1997.

Chapter 6

1. B. Moore, “Principal component analysis in linear systems: Con-
trollability, observability, and model reduction,” IEEE Trans. Au-
tomatic Control, 1981, 26(1), 17–32.

2. G. Obinata, B. D. O. Anderson, Model Reduction for Control Sys-
tem Design, Springer-Verlag, London, 2001.

3. M. Green, D. J. N. Limebeer, Linear Robust Control, Prentice Hall,
Englewood Cliffs, NJ, 1995.

4. F. Fagnani, J. Willems, “Representations of symmetric linear dy-
namical systems,” SIAM Journal on Control and Optimization
archive, 31(5), 1993.

5. L. Fortuna, A. Gallo, C. Guglielmino, G. Nunnari, “On the solution
of a nonlinear matrix equation for MIMO realizations,” Systems and
Control Letters, 1988, 11, 79–82.

6. L. Fortuna, G. Nunnari, A. Gallo, Model Order Reduction Tech-
niques With Applications in Electrical Engineering, Springer-
Verlag, London, 1992.

Chapter 7

1. B. D. O. Anderson, J.B. Moore, Optimal Control. Linear Quadratic
Methods, Prentice-Hall, Englewoods Cliff, NJ, 1989.

2. H. Kwakernaak, R. Sivan, Linear Optimal Control Systems, John
Wiley & Sons, 1972.

3. T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, NJ,
1979.

286 Optimal and Robust Control: Advanced Topics with MATLAB r

4. G. C. Goodwin, S. F. Graebe, M. E. Salgado, Control Systems De-
sign, Valparaiso, 2000.

5. A. Sinha, Linear Systems: Optimal and Robust Control, CRC Press,
Boca Raton, 2007.

6. D. Kleinman, “On an iterative technique for Riccati equation com-
putations,” IEEE Trans. Automatic Control, 1968, 13(1), 114–115.

7. K. J. Astrom, R. M. Murray, Feedback Systems. An Introduction
for Scientists and Engineers, Princeton University Press, Princeton,
NJ, 2008.

8. W. S. Levine, The Control Handbook, CRC Press and IEEE Press,
Boca Raton, 1996.

Chapter 8

1. E. A. Jonckheere, L. M. Silverman, “A new set of invariant for linear
systems. Applications to reduced order compensator design,” IEEE
Trans. Automatic Control, 1981, 26(1), 17–32.

2. L. Fortuna, G. Nunnari, A. Gallo, Model Order Reduction Tech-
niques With Applications in Electrical Engineering, Springer-
Verlag, London, 1992.

3. L. Fortuna, G. Muscato, G. Nunnari, “Closed-loop balanced re-
alizations of LTI discrete-time systems,” Journal of the Franklin
Institute, 1993, 330(4), 695–705.

4. K. J. Astrom, R. M. Murray, Feedback Systems. An Introduction
for Scientists and Engineers, Princeton University Press, Princeton,
NJ, 2008.

Chapter 9

1. B. D. O. Anderson, S. Vongpanitlerd, Network Analysis and Synthe-
sis: A Modern Systems Theory Approach, Dover Publications Inc.,
New York, 2006.

2. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix In-
equalities in System and Control Theory, SIAM Studies in Applied
Mathematics, Philadelphia, PA, 1994.

Recommended Essential References 287

3. I. R. Petersen, A. Lanzon (2010). “Feedback control of negative-
imaginary systems”. IEEE Control Systems Magazine, 30(5), 54–
72.

4. A. Ferrante, A. Lanzon, L. Ntogramatzidis (2017). “Discrete-time
negative imaginary systems”. Automatica, 79, 1–10.

Chapter 10

1. A. Buscarino, L. Fortuna, M. Frasca, M. G. Xibilia (2012). “An
analytical approach to one-parameter MIMO systems passivity en-
forcement”. International Journal of Control, 85(9), 1235–1247.

2. A. Buscarino, L. Fortuna, M. Frasca (2016). “Forward action to
make a system negative imaginary”. Systems & Control Letters, 94,
57–62.

3. M. Bucolo, A. Buscarino, L. Fortuna, M. Frasca (2019). “For-
ward action to make time-delay systems positive-real or negative-
imaginary”, Systems & Control Letters, 131, 104495.

Chapter 11

1. R. T. Stefani, B. Shahian, C. J. Savant, G. H. Hostetter, Design of
Feedback Control Systems, Oxford Series in Electrical and Computer
Engineering, Oxford University Press, Oxford, 2001.

2. P. Dorato, R. K. Yedavalli, Recent Advances in Robust Control,
IEEE Press, New York, 1990.

3. S. Boyd, V. Balakrishnan, P. Kabamba, “A Bisection Method for
Computing the H∞ Norm of a Transfer Matrix and Related Prob-
lems,” Math. Control Signals Systems, 1989, 2, 207–219.

4. P. Dorato, L. Fortuna, G. Muscato, Robust Control for Unstruc-
tured Perturbations-An Introduction, Lecture Notes in Control and
Information Sciences, Springer-Verlag, London, 1992.

5. R. Chiang, M. G. Safonov, G. Balas, A. Packard, Robust Control
Toolbox, 3rd Edition, The Mathworks Inc., Natick, MA, 2007.

6. B. A. Francis, A course in H∞ control theory, Lecture Notes in
Control and Information Sciences, Springer-Verlag, Berlin, 1987.

288 Optimal and Robust Control: Advanced Topics with MATLAB r

7. J. C. Doyle, K. Glover, P. P. Khargonekar, B. A. Francis, “State-
space solutions to standard H2 and H∞ control problems”, IEEE
Trans. Automatic Control, 1989, 34, 831–847.

8. W. S. Levine, The Control Handbook, CRC Press and IEEE Press,
Boca Raton, 1996.

Chapter 12

1. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix In-
equalities in System and Control Theory, SIAM Studies in Applied
Mathematics, Philadelphia, PA, 1994.

2. R. E. Skelton, T. Iwasaki, K. M. Grigoriadis, A Unified Algebraic
Approach to Linear Control Design, Taylor & Francis, 1998.

3. P. Gahinet, A. Nemirovski, A. J. Laub, M. Chilali, LMI Control
Toolbox. For Use with MATLABr, The Mathworks Inc., Natick,
MA, 1995.

4. Y. Nesterov and A. Nemirovski, Interior Point Polynomial Algo-
rithms in Convex Programming, Studies in Applied Mathematics,
SIAM, 1993.

5. U. Helmke, J. B. Moore, Optimization and Dynamical Systems,
Springer-Verlag, London, 1996.

6. L. Fortuna, M. Frasca, M. G. Xibilia, Chua’s Circuit Implementa-
tions: Yesterday, Today and Tomorrow, World Scientific, Singapore,
2009.

7. W. S. Levine, The Control Handbook, CRC Press and IEEE Press,
Boca Raton, 1996.

8. L. Fortuna, A. Gallo, G. Nunnari, “A self-tuning adaptive control
implementation by using a transputer-based parallel architecture”,
Trans. Inst. MC, 1990, 12, 156–164.

Chapter 13

1. D. C. Youla, J. J. Bongiorno, C. N. Lu, Single-loop Feedback Stabi-
lization of Linear Multivariable Dynamical Plants, American Math
Society, Colloquium Publications, vol. XX, Providence, RI, 1956.

Recommended Essential References 289

2. D. C. Youla, H. A. Jabr, J. J. Bongiorno, “Modern Wiener-Hopf
design of optimal controllers. Part I: the single-input-output case,”
IEEE Trans. Automatic Control, 1974, 10, 159–173.

3. P. Dorato, L. Fortuna, G. Muscato, Robust Control for Unstruc-
tured Perturbations-An Introduction, Lecture Notes in Control and
Information Sciences, Springer-Verlag, London, 1992.

4. J. C. Doyle, B. A. Francis, A. R. Tannenbaum, Feedback Control
Theory, Macmillan Publishing Company, New York, 1992.

5. B. D. O. Anderson, J.B. Moore, Optimal Control. Linear Quadratic
Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

6. W. S. Levine, The Control Handbook, CRC Press and IEEE Press,
Boca Raton, 1996.

Chapter 14

1. U. Helmke, and J. B. Moore. Optimization and dynamical systems.
Springer Science & Business Media, 2012.

2. A. Cichocki, R. Unbehauen, and R. W. Swiniarski. Neural networks
for optimization and signal processing. Vol. 253. New York: Wiley,
1993.

Chapter 15

1. C. V. Hollot, V. Misra, D. Towsley, W. Gong, (2002). “Analysis
and design of controllers for AQM routers supporting TCP flows”.
IEEE Transactions on Automatic Control, 47(6), 945–959.

2. K. Gu, J. Chen, and V. L. Kharitonov, (2003). Stability of time-
delay systems, Springer Science & Business Media.

3. V. Kharitonov, (2012). Time-delay systems: Lyapunov functionals
and matrices, Springer Science & Business Media.

4. J. E. Marshall, H. Gorecki, A. Korytowski, and K. Walton, (1992).
Time-Delay Systems: Stability and Performance Criteria with Ap-
plications. London: Ellis Horwood.

5. L. Mirkin, Time Delays in Control Systems, available online at url
”http://leo.technion.ac.il/Courses/TDCE/TDCSnotes.pdf”

http://leo.technion.ac.il

290 Optimal and Robust Control: Advanced Topics with MATLAB r

6. L. Belhamel, A. Buscarino, L. Fortuna, M.G. Xibilia, (2020). “Delay
Independent Stability Control for Commensurate Multiple Time-
Delay Systems”, IEEE Control Systems Letters, 5(4), 1249–1254.

Appendix A. Norms

In this Appendix the main norms used in the text or, in any case, significant
for the control theory, are summarized.

Norm of a Vector

The norm of a vector x ∈ Cn is a function f : Cn → R satisfying the following
properties:

• f(x) ≥ 0;

• f(x) = 0↔ x = 0;

• f(x + y) ≤ f(x) + f(y) with x and y ∈ Cn;

• f(αx) = |α|f(x) with α ∈ R.

Let x =


x1
x2
...
xn

, the 1-norm is:

‖x‖1 =

n∑
i=1

|xi| (A.1)

The 2-norm is instead defined by:

‖x‖2 =

(
n∑
i=1

|xi|2
) 1

2

(A.2)

The 1-norm and the 2-norm are special cases of a more general family of
norms, the p-norm of a vector:

‖x‖p =

(
n∑
i=1

|xi|p
) 1
p

(A.3)

291

292 Optimal and Robust Control: Advanced Topics with MATLAB r

Another commonly used norm of the p-norm family is the∞-norm defined
as:

‖x‖∞ = max
i
|xi| (A.4)

Norm of a Matrix

By considering the role of matrices as linear operators, the norm of a matrix
can be defined extending the norm of a vector to matrices. The norm is said
to be an induced norm, since it depends on the choice of the vector norm. The
p-norm (induced by the vector p-norm) is defined as follows:

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

= max
‖x‖=1

‖Ax‖p (A.5)

The most commonly used norms are the 1-norm, the 2-norm and the ∞-
norm, defined as follows:

‖A‖1 = max
j

n∑
i=1

|aij | (A.6)

‖A‖2 = σ1(A) = max
i
λi(A

∗A) (A.7)

‖A‖∞ = max
i

n∑
j=1

|aij | (A.8)

Additional norms (which are not induced norms) can be defined. We report
only the Frobenius norm, which is defined as follows:

‖A‖F =

 n∑
j=1

n∑
i=1

|aij |2
 1

2

(A.9)

Norm of a Scalar Signal

Given a signal g(t) ∈ R with t ∈ R, the 1-norm, the 2-norm and the ∞-norm
are defined as follows:

‖g(t)‖1 =

∫ +∞

−∞
|g(t)|dt (A.10)

Appendix A. Norms 293

‖g(t)‖2 =

(∫ +∞

−∞
|g(t)|2dt

) 1
2

(A.11)

‖g(t)‖∞ = sup
t∈R
|g(t)| (A.12)

Norm of a Vector Signal

For a vector-valued signal g(t) =


g1(t)
g2(t)
...
gn(t)

, the 1-norm, the 2-norm and the

∞-norm are given by:

‖g(t)‖1 =

∫ +∞

−∞
‖g(t)‖2dt (A.13)

‖g(t)‖2 =

(∫ +∞

−∞
‖g(t)‖22dt

) 1
2

(A.14)

‖g(t)‖∞ = sup
t∈R
‖g(t)‖2 (A.15)

Norm of a Transfer Function Matrix

For transfer function matrices, usually only two norms are commonly used: the
2-norm and the∞-norm. Given a transfer function matrix G(s), and indicated
as g(t) the impulse response, i.e., g(t) = L−1(G(s)), the 2-norm and the ∞-
norm can be defined either in the frequency domain or in the time domain.
In the frequency domain the norms are defined as:

‖G(s)‖2 =

(
1

2π

∫ +∞

−∞
‖G(jω)‖2F dω

) 1
2

(A.16)

‖G(s)‖∞ = sup
ω∈R

σ1(G(jω)) (A.17)

while in the time domain the two norms are defined by:

294 Optimal and Robust Control: Advanced Topics with MATLAB r

‖G(s)‖2 =

(
1

2π

∫ +∞

−∞
‖g(t)‖2F dt

) 1
2

(A.18)

‖G(s)‖∞ = sup
u 6=0

‖(Gu)(t)‖2
‖u(t)‖2

(A.19)

Appendix B. Algebraic Riccati
Equations

Algebraic Riccati equations appear in many problems discussed in this text. In
this section we summarize the main algebraic Riccati equations for continuous-
time systems.

Algebraic Riccati Equations for Optimal Control and
Optimal Observer

PA + ATP− PBR−1BTP + Q = 0 (B.1)

AΠ + ΠAT −ΠCTM−1v CΠ + Md = 0 (B.2)

CARE and FARE for Closed Loop Balancing

ATP + PA− PBBTP + CTC = 0 (B.3)

AΠ + ΠAT −ΠCTCΠ + BBT = 0 (B.4)

CARE and FARE for Closed Loop Balancing for Not-
strictly Proper Systems

ATP + PA− (PB + CTD)(I + DTD)−1(BTP + DTC) + CTC = 0 (B.5)

AΠ + ΠAT − (ΠCT + BDT)(I + DDT)−1(CΠ + DBT) + BBT = 0 (B.6)

295

296 Optimal and Robust Control: Advanced Topics with MATLAB r

Algebraic Riccati Equations for Positive-real Systems

PA + ATP = −(−PB + CT)(D + DT)−1(−PB + CT)T (B.7)

ΠAT + AΠ = −(−ΠCT + B)(D + DT)−1(−ΠCT + B)T (B.8)

Algebraic Riccati Equations for Bounded-real Systems

P(A + B(I−DTD)−1DTC) + (AT + CTD(I−DTD)−1BT)P+
+PB(I−DTD)−1BTP + CTD(I−DTD)−1DTC + CTC = 0

(B.9)

P(AT + CT (I−DDT)−1DBT) + (A + BDT (I−DDT)−1C)P+
+PCT (I−DDT)−1CP + BDT (I−DDT)−1DBT + BBT = 0

(B.10)

Algebraic Riccati Equations for Strictly Proper Bounded
Real Systems

PA + ATP + PBBTP + CTC = 0 (B.11)

PAT + AP + PCTCP + BBT = 0 (B.12)

Algebraic Riccati Equations for H∞ Control

(A− B2D̃12DT
12C1)X∞ + X∞(A− B2D̃12DT

12C1)T+

+X∞(γ−2B1BT1 − B2D̃12BT2)X∞ + C̃T1 C̃1 = 0
(B.13)

(A− B2D̃12DT
12C1)TX∞ + X∞(A− B2D̃12DT

12C1)+

+X∞(γ−2CT1 C1 − CT2 D̃21C2)X∞ + B̃1B̃T1 = 0
(B.14)

with C̃1 = (I − D12D̃12DT
12)C1, B̃1 = B1(I − DT

21D̃21D21), D̃12 = (DT
12D12)−1

and D̃21 = (D21DT
21)−1.

Appendix B. Algebraic Riccati Equations 297

Cross Riccati Equations for Optimal Control and Optimal
Observer (for Symmetrical Systems)

For symmetrical systems, cross-Riccati equations can be defined. As an exam-
ple, we report those related to optimal control and optimal observer:

AP∗ + P∗A− P∗BCP∗ + BC = 0 (B.15)

http://www.taylorandfrancis.com

Appendix C. Invariance Under
Frequency Transformations

In this appendix, we briefly summarize some important properties of sys-
tems subject to a frequency transformation that is loss-less. In particular,
we show that for these systems the singular values, the characteristic values
and the shape of the Nyquist plot remain the same of the original (i.e., not
transformed) system. The proofs and technical details can be found in the
references reported at the end of this appendix.

Frequency Transformations

Given a linear time-invariant system, either SISO or MIMO, with transfer
function matrix G(s), a frequency transformation replaces s with a SISO trans-
fer function F (s). The frequency transformation is indicated as s← F (s) and
the transformed system as G̃(s) = G(F (s)).

Frequency transformations are important in filter design: for instance, in
the SISO case, if G(s) is a prototype low-pass filter and F (s) a loss-less system,
then a multi-bandpass/bandstop high-order filter G(F (s)) can be obtained.

Invariance of Hankel Singular Values

The first result concerns the controllability and observability gramians of the
system G(F (s)). Let us indicate them as Wc and Wo. Let Wc and Wo be
the gramians of system G(s), and, finally, let PI the positive definite matrix
solution of equations (9.13) and (9.14) for the loss-less system F (s). If G(s)
is stable and in minimal form and F (s) is a loss-less strictly proper transfer
function,Wc andWo are related to Wc and Wo by the following relationships:

Wc = Wc ⊗ PI
−1

Wo = Wo ⊗ PI
(B.1)

From these relationships, it is immediate to derive that the singular values

299

300 Optimal and Robust Control: Advanced Topics with MATLAB r

of G(F (s)), here indicated as σGF1 , σGF2 , . . . , σGFnGnF are equal to those of G(s)
(indicated as σG1 , σ

G
2 , . . . , σ

G
nG):

σGFi = σGj (B.2)

with j = 1, . . . , nG and (j − 1)nF + 1 ≤ i ≤ jnF .

Invariance of Characteristic Values

The second result concerns the solution of the CARE and FARE for the system
G(F (s)). Let us indicate with P and Π the positive definite solutions of the
CARE and FARE for the trasformed system G(F (s)). In addition, let PG and
ΠG be the positive definite solutions of the CARE and FARE for system G(s).
Then we have that, if G(s) is a controllable and observable system of order
nG and F (s) a loss-less strictly proper transfer function of order nF , for the
system obtained by applying the substitution s ← F (s), i.e., G(F (s)), which
is of order nGnF , the following relationships hold:

P = PG ⊗ PI

Π = ΠG ⊗ PI
−1 (B.3)

The direct consequence of this result is that, indicated with µG1 ≥ µG2 ≥
. . . ≥ µGnG the characteristic values of G(s) and with µGF1 ≥ µGF2 ≥ . . . ≥
µGFnGnF those of G(F (s)), then:

µGFi = µGj (B.4)

with j = 1, . . . , nG and (j − 1)nF + 1 ≤ i ≤ jnF .

Invariance of the Shape of the Nyquist Plot

Also the shape of Nyquist plot is invariant to frequency transformation. The
key property here is that the frequency transformation s ← F (s) is an odd
function and entirely spans the Nyquist path, i.e., for these functions it occurs
that F (jω) = jF̄ (ω). This is a class more general than loss-less positive-
real functions, but includes them. For simplicity here let us consider loss-less
transformations and a SISO system G(s).

Let Cs be the Nyquist path for a linear time-invariant continuous-time
SISO system G(s) in the complex plane and consider the Nyquist plot of G(s),
i.e., the closed oriented curve CG obtained evaluating G(s) for every s ∈ Cs.
The curve CG acan be viewed as the image of a mapping γ : (−∞,+∞)→ C

Appendix C. Invariance Under Frequency Transformations 301

through G(jω). This prompts for the definition of the shape of the Nyquist
plot as the codomain ΓG of γ. Clearly, the shape can be also viewed as the
locus of points in the complex plane visited by CG.

For systems under frequency transformations we have the following result.
Given a SISO system G(s) and a loss-less frequency transformation s ←

F (s), then the closed oriented curve CG̃ in the complex plane, representing

the Nyquist plot of G̃ = G(F (s)), has the same shape of the closed oriented
curve CG, representing the Nyquist plot of G(s). In addition, let mG be the
number of clockwise turnings of CG, then the curve CG̃ performs a number of
clockwise turnings mG̃ given by mG̃ = −IcmG, where Ic is the Cauchy index
of F (ω).

This result is very important to study the closed-loop stability of the trans-
formed system by considering the characteristics of the original system G(s)
and of the frequency transformation F (s).

Also notice that the result, here presented for a SISO system, also holds
in the more general case of MIMO systems.

Positive-real Systems Under Loss-less Transformations

Other interesting results of loss-less frequency transformations apply when the
original system G(s) is positive-real. In this case, it can be demonstrated that
the transformed system G(F (s)), under a loss-less frequency transformation,
is also positive-real.

In addition, one can consider the so-called stochastic balancing, which is
obtained starting from the Riccati equation associated to the positive-real
lemma:

PA + ATP + (−PB + CT)(D + DT)−1(−PB + CT)T = 0 (B.5)

and its dual:

ΠAT + AΠ + (−ΠCT + B)(D + DT)−1(−ΠCT + B)T = 0 (B.6)

In the stochastic balanced form the two solutions are equal and diagonal.
The elements of the diagonal are system invariants and relationships similar
to (B.4) can be written for them (in fact, similarly to the characteristic values,
they also derive from solutions of Riccati equations). The consequence of this
is that, for positive-real transformed systems under a loss-less frequency trans-
formation one can build a reduced order model starting from the stochastic
balanced realization of the original system, truncating it and then, as a final
step, using the frequency transformation.

302 Optimal and Robust Control: Advanced Topics with MATLAB r

References

S. Koshita, Y. Mizukami, T. Konno, M. Abe, M. Kawamata (2008). “Analysis
of second-order modes of linear continuous-time systems under positive real
transformations”, IEICE Trans. Fundam. E91-A(2), 575–583.

A. Buscarino, L. Fortuna, M. Frasca, M. G. Xibilia (2016). “Invariance of char-
acteristic values and L∞ norm under lossless positive real transformations”,
Journal of the Franklin Institute 353, 2057–2073.

A. Buscarino, L. Fortuna, M. Frasca, M. G. Xibilia (2017). “Positive-real
systems under lossless transformations: Invariants and reduced order models”.
Journal of the Franklin Institute, 354(11), 4273–4288.

A. Buscarino, L. Fortuna, M. Frasca (2019). “Nyquist plots under frequency
transformations”, Systems & Control Letters, 125, 16–21, doi.org/10.1016/
j.sysconle.2019.01.004.

M. Bucolo, A. Buscarino, L. Fortuna, M. Frasca (2021). “Nyquist plots for
MIMO systems under frequency transformations”, IEEE Control Letters,
10.1109/LCSYS.2021.3053660.

https://doi.org/10.1016/j.sysconle.2019.01.004
https://doi.org/10.1016/j.sysconle.2019.01.004

Index

H2 norm, 229
H∞ control, 195

algebraic Riccati equation, 296
LMI, 226

H∞ norm, 80, 196
LMI, 215

L2(∞, 0], 225
A-invariant subspace, 41

additive uncertainty, 5, 206
algebraic Riccati equation, 119, 199

H∞ control, 296
bounded real systems, 296
discrete-time systems, 136
LMI, 221
observer, 295
optimal control, 295
positive real systems, 296

all-pass system, 45, 102
antisymmetric part, 14

balanced realization
closed-loop, 142
open-loop, 59

Blaschke product, 249
bounded real lemma, 167

LMI, 214

canonical decomposition of a linear
system, 40

Cauchy index, 93, 98
characteristic values, 143, 157
closed-loop balanced realization, 142,

143
closed-loop balanced realization (MAT-

LAB procedure), 144
condition number, 55, 56

control algebraic Riccati equation,
127, 142, 295

controllability canonical decomposi-
tion, 37

controllability gramian, 60
controllability matrix, 35
coprime factorization, 239
covariance matrix, 142
cross-gramian matrix, 90

decomposition, 35
differential Riccati equation, 135
direct truncation, 79

energy, 87, 118
equilibrium point, 11
Euler equation, 108

feasible set, 210
filtering algebraic Riccati equation,

140, 142, 295
finite impulse response, 100
FIR filter, 99
flexible structures, 143
frequency transformations, 299

generalized coordinates, 110
gramian

controllability, 60
LMI, 223
observability, 61

Hadamard product, 96
Hamiltonian matrix, 124
Hankel matrix, 36, 98
Hankel norm, 224

LMI, 224
Hankel singular values, 69

303

304 Index

Hermitian matrix, 53
Hurwitz criterion, 20

infinite impulse response, 100
input normal form, 72
interior point, 212

Kalman canonical decomposition, 35
Kharitonov criterion, 23
Kleinman method, 120, 122
Kronecker product, 21

Lagrange multipliers, 113
left coprime factorization, 245
Letov theorem, 129
linear quadratic regulator, 107

finite-horizon, 135
LMI, 209

feasibility problem, 211
generalized eigenvalue minimiza-

tion problem, 212
linear objective minimization prob-

lem, 212
loss-less systems, 156

optimal gains, 163
LQR functional, 117
Lyapunov equation, 59
Lyapunov equations, 20
Lyapunov I criterion, 12
Lyapunov II criterion, 13
Lyapunov II criterion- LTI systems,

16

matrix
Hermitian, 53
positive definite, 13

minimal form, 36
multiobjective control, 228
multiplicative uncertainty, 5, 206

negative-imaginary lemma, 175
Negative-imaginary systems, 171
noise, 142, 196
norm

matrix, 292
scalar signal, 292

transfer matrix, 293
vector, 291
vector signal, 293

observability canonical decomposi-
tion, 39

observability gramian, 61
observability matrix, 36
observer, 139
open-loop balanced realization, 59,

69, 70
open-loop parameterization, 96
optimal control, 107, 121

discrete-time systems, 136
optimal filtering, 142

Padé approximation, 268
parameterization of stabilizing con-

trollers
stable controllers, 242
stable processes, 237
unstable processes, 239

parameterization with uncertainty,
247

parametric uncertainty, 2
parity interlacing property, 243
passification, 182
passive systems, 154

implementation, 165
performance index

H∞, 196
quadratic, 117

positive definite function, 13
positive definite matrix, 13, 15
positive real lemma

LMI, 214
positive system, 158
positive-real function, 154

factorization, 160
positive-real lemma, 159
positive-real transfer matrix, 159
principal component analysis, 63

realization matrix, 4
reduced order models, 77, 82

Index 305

based on closed-loop balanced re-
alization, 145

passive, 161
relaxation circuit, 95
relaxation systems, 156
right coprime factorization, 245
robust control, 1, 195, 205
robustness, 205

scattering matrix, 170
simultaneous stabilizability, 214, 245

LMI, 218
singular perturbation, 81
singular value decomposition, 51
singular values

all-pass system, 102
FIR filter, 101
matrix, 51
system, 69

small gain theorem, 169
spectral norm, 54
stability, 11
stability with uncertainty, 23
state function of Pontryagin, 115
state transformation matrix, 46, 66
strongly stabilizability, 242
structural uncertainty, 4
structured uncertainty, 2
Sylvester test, 15
symmetric matrix, 14
symmetric system, 86, 88
symmetrical part, 14

time-delay systems, 265

uncertainty, 1, 205
unit function, 244
unstructured uncertainty, 4

Variational calculus, 107
vectorization, 16

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Symbol List
	1. Modelling of Uncertain Systems and the Robust Control Problem
	1.1. Uncertainty and Robust Control
	1.2. The Essential Chronology of Major Findings in Robust Control

	2. Fundamentals of Stability
	2.1. Lyapunov Criteria
	2.2. Positive Definite Matrices
	2.3. Lyapunov Theory for Linear Time-Invariant Systems
	2.4. Lyapunov Equations
	2.5. Stability with Uncertainty
	2.6. Further Results on the Lyapunov Theory
	2.6.1. Hystorical Notes
	2.6.2. Lyapunov Stability

	2.7. Exercises

	3. Kalman Canonical Decomposition
	3.1. Introduction
	3.2. Controllability Canonical Partition
	3.3. Observability Canonical Partition
	3.4. General Partition
	3.5. Remarks on Kalman Decomposition
	3.6. Exercises

	4. Singular Value Decomposition
	4.1. Singular Values of a Matrix
	4.2. Spectral Norm and Condition Number of a Matrix
	4.3. Exercises

	5. Open-loop Balanced Realization
	5.1. Controllability and Observability Gramians
	5.2. Principal Component Analysis
	5.3. Principal Component Analysis Applied to Linear Systems
	5.4. State Transformations of Gramians
	5.5. Singular Values of Linear Time-invariant Systems
	5.6. Computing the Open-loop Balanced Realization
	5.7. Balanced Realization for Discrete-time Linear Systems
	5.8. Exercises

	6. Reduced Order Models and Symmetric Systems
	6.1. Reduced Order Models Based on the Open-loop Balanced Realization
	6.1.1. Direct Truncation Method
	6.1.2. Singular Perturbation Method

	6.2. Reduced Order Model Exercises
	6.3. Symmetric Systems
	6.3.1. Reduced Order Models for SISO Systems
	6.3.2. Properties of Symmetric Systems
	6.3.3. The Cross-gramian Matrix
	6.3.4. Relations Between W2c, W2o and Wco
	6.3.5. Open-loop Parameterization
	6.3.6. Relation Between the Cauchy Index and the Hankel Matrix
	6.3.7. Singular Values for a FIR Filter
	6.3.8. Singular Values of All-pass Systems

	6.4. Exercises

	7. Variational Calculus and Linear Quadratic Optimal Control
	7.1. Variational Calculus: An Introduction
	7.2. The Lagrange Method
	7.3. Towards Optimal Control
	7.4. LQR Optimal Control
	7.5. Hamiltonian Matrices
	7.6. Solving the Riccati Equation via the Hamiltonian Matrix
	7.7. The Control Algebraic Riccati Equation
	7.8. Optimal Control for SISO Systems
	7.9. Linear Quadratic Regulator with Cross-weighted Cost
	7.10. Finite-horizon Linear Quadratic Regulator
	7.11. Optimal Control for Discrete-time Linear Systems
	7.12. Exercises

	8. Closed-loop Balanced Realization
	8.1. Synthesis of a Compensator for High-Order Systems
	8.2. Filtering Algebraic Riccati Equation
	8.3. Computing the Closed-loop Balanced Realization
	8.4. Procedure for Closed-loop Balanced Realization
	8.5. Reduced Order Models Based on Closed-loop Balanced Realization
	8.6. Closed-loop Balanced Realization for Symmetric Systems
	8.7. Exercises

	9. Positive-real, Bounded-real and Negative-imaginary Systems
	9.1. Passive Systems
	9.1.1. Passivity in the Frequency Domain
	9.1.2. Passivity in the Time Domain
	9.1.3. Factorizing Positive-real Functions
	9.1.4. Passive Reduced Order Models
	9.1.5. Energy Considerations Connected to the Positive-real Lemma
	9.1.6. Closed-loop Stability and Positive-real Systems
	9.1.7. Optimal Gain for Loss-less Systems

	9.2. Circuit Implementation of Positive-real Systems
	9.3. Bounded-real Systems
	9.3.1. Properties of Bounded-real Systems
	9.3.2. Bounded-real Reduced Order Models

	9.4. Relationship Between Passive and Bounded-real Systems
	9.5. Negative-imaginary Systems
	9.5.1. Characterization of Negative-imaginary Systems in the Frequency Domain
	9.5.2. Characterization of Negative-imaginary Systems in the Time Domain
	9.5.3. Closed-loop Stability and Negative-imaginary Systems

	9.6. Exercises

	10. Enforcing the Positive-real or the Negative-imaginary Property in a Linear Model
	10.1. Why to Enforce the Positive-real and Negative-Imaginary Property in a Linear Model
	10.2. Passification
	10.3. Forward Action to make a System Negative-Imaginary
	10.3.1. The SISO Case
	10.3.2. The MIMO Case

	10.4. Exercises

	11. H∞ Linear Control
	11.1. Introduction
	11.2. Solution of the H∞ Linear Control Problem
	11.3. The H∞ Linear Control and the Uncertainty Problem
	11.4. Exercises

	12. Linear Matrix Inequalities for Optimal and Robust Control
	12.1. Definition and Properties of LMI
	12.2. LMI Problems
	12.2.1. Feasibility Problem
	12.2.2. Linear Objective Minimization Problem
	12.2.3. Generalized Eigenvalue Minimization Problem

	12.3. Formulation of Control Problems in LMI Terms
	12.3.1. Stability
	12.3.2. Closed-loop Stability
	12.3.3. Simultaneous Stabilizability
	12.3.4. Positive-real Lemma
	12.3.5. Bounded-real Lemma
	12.3.6. Calculating the H∞ Norm Through LMI

	12.4. Solving a LMI Problem
	12.5. LMI Problem for Simultaneous Stabilizability
	12.6. Solving Algebraic Riccati Equations Through LMI
	12.7. Computation of Gramians Through LMI
	12.8. Computation of the Hankel Norm Through LMI
	12.9. H∞ Control
	12.10. Multiobjective Control
	12.11. Exercises

	13. The Class of Stabilizing Controllers
	13.1. Parameterization of Stabilizing Controllers for Processes
	13.2. Parameterization of Stabilizing Controllers for Unstable Processes
	13.3. Parameterization of Stable Controllers
	13.4. Simultaneous Stabilizability of Two Systems
	13.5. Coprime Factorizations for MIMO Systems and Unitary Factorization
	13.6. Parameterization in Presence of Uncertainty
	13.7. Exercises

	14. Formulation and Solution of Matrix Algebraic Problems through Optimization Problems
	14.1. Solutions of Matrix Algebra Problems Using Dynamical Systems
	14.1.1. Problem 1: Inverse of a Matrix
	14.1.2. Problem 2: Eigenvalues of a Matrix
	14.1.3. Problem 3: Eigenvectors of a Symmetric Positive Definite Matrix
	14.1.4. Problem 4: Observability and Controllability Gramian

	14.2. Computation of the Open-loop Balanced Representation via the Dynamical System Approach
	14.3. Concluding Remarks
	14.4. Exercises

	15. Time-delay Systems
	15.1. Modeling Systems with Time-delays
	15.2. Basic Principles of Time-delay Systems
	15.3. Stability of Time-delay Systems
	15.4. Stability of Time-delay Systems with q = 1
	15.5. Direct Method
	15.6. Exercises

	Recommended Essential References
	Appendix A. Norms
	Appendix B. Algebraic Riccati Equations
	Appendix C. Invariance Under Frequency Transformations
	Index

