
 Ronald T. Kneusel, Ph.D.

Using Swarm Intelligence and Evolutionary Algorithms
to Solve Problems in Engineering and Science

Practical Swarm Intelligence in Python

Image credit David Castor

Practical Swarm Intelligence in Python

Using Swarm Intelligence and Evolutionary Algorithms

to Solve Problems in Engineering and Science

Ronald T. Kneusel, Ph.D.

i

Copyright (C) 2021 by Ronald T. Kneusel. All Rights Reserved.
Correspondence: swarmoptimizationbook@gmail.com

Contents

I Algorithms 1

1 Swarm Algorithms 2
1.1 What is Swarm Optimization? . 3
1.2 A High-Level Taxonomy . 7
1.3 A Brief Visit To The Zoo . 10

2 Setting The Stage 13
2.1 Our General Approach . 13
2.2 Objectives . 16
2.3 Boundaries . 17
2.4 Initializers . 18
2.5 Are We Done Yet? . 22
2.6 Inertia . 23
2.7 Setting Up An Optimization . 24

3 Random Optimization 28
3.1 Good Enough For Now . 28
3.2 The RO Class . 33

3.2.1 Optimize . 34
3.2.2 Initialize . 35
3.2.3 Step . 35
3.2.4 Done . 36
3.2.5 CandidatePositions . 37
3.2.6 Evaluate . 37
3.2.7 Results . 38

3.3 Testing the RO Class . 38

4 Particle Swarm Optimization 44
4.1 Making Sense of the World . 44

4.1.1 Canonical PSO . 44
4.1.2 Bare Bones PSO . 48
4.1.3 Configuring a Particle Swarm . 48

4.2 The PSO Class . 49
4.2.1 Optimize . 51
4.2.2 Initialize . 51
4.2.3 Step . 52
4.2.4 Done . 53

ii

CONTENTS iii

4.2.5 NeighborhoodBest . 53
4.2.6 RingNeighborhood . 54
4.2.7 BareBonesUpdate . 55
4.2.8 Evaluate . 55
4.2.9 Results . 55

4.3 Testing the PSO Class . 56

5 New Kids On The Block 62
5.1 Jaya . 62

5.1.1 Description . 62
5.1.2 Implementation . 63

5.2 The Grey Wolf Optimizer . 64
5.2.1 Description . 65
5.2.2 Implementation . 66

5.3 Testing Jaya and GWO . 68
5.3.1 Success or Failure? . 69
5.3.2 Dispersion . 70
5.3.3 Convergence . 71
5.3.4 Precision . 71
5.3.5 Runtime . 74
5.3.6 Evaluation . 75

6 Genetic Algorithm 78
6.1 Making Darwin Proud . 78
6.2 The GA Class . 82

6.2.1 Step . 82
6.2.2 Evolve . 83
6.2.3 Mutate . 83
6.2.4 Crossover . 84

6.3 Testing the GA Class . 84
6.3.1 Modifying Population Size and Generations 84
6.3.2 Modifying CR, F, and η . 86
6.3.3 Comparison with Other Algorithms 90
6.3.4 Higher-Dimensional Searches . 90

7 Differential Evolution 95
7.1 Unnatural Mutation . 95

7.1.1 Configuring DE . 97
7.2 The DE Class . 97

7.2.1 Step . 98
7.2.2 CandidatePositions . 99
7.2.3 Candidate . 99

7.3 Testing the DE Class . 100
7.3.1 Experiments with a 2D Gaussian . 100
7.3.2 Modifying CR and F . 102
7.3.3 Comparing DE to Other Algorithms 105

CONTENTS iv

II Experiments 110

8 Initial Experiments 111
8.1 Standard Test Functions . 111
8.2 The 0-1 Knapsack . 119

8.2.1 The Problem . 120
8.2.2 The Setup . 120
8.2.3 The Results . 124

8.3 Curve Fitting . 127
8.3.1 The Problem . 128
8.3.2 The Setup . 129
8.3.3 The Results . 133

9 Training a Neural Network 139
9.1 The Problem . 139
9.2 The Setup . 142
9.3 The Results . 148

10 Images 153
10.1 Image Registration . 153

10.1.1 The Problem . 153
10.1.2 The Setup . 154
10.1.3 The Results . 158

10.2 Image Segmentation . 164
10.2.1 The Problem . 164
10.2.2 The Setup . 165
10.2.3 The Results . 168

10.3 Image Enhancement . 171
10.3.1 The Problem . 171
10.3.2 The Setup . 172
10.3.3 The Results . 174

11 Music 178
11.1 Setting the Stage . 178

11.1.1 Tools . 179
11.1.2 Building Melodies . 179

11.2 Learning and Merging Melodies . 180
11.3 Learning Similar Melodies . 185
11.4 Learning Melodies from Scratch . 187

11.4.1 The Code . 188
11.4.2 The Experiments . 193

12 Cell Towers and Circles 197
12.1 Cell Towers . 197

12.1.1 The Setup . 197
12.1.2 The Code . 198
12.1.3 The Experiments . 201

12.2 Packing Circles . 204

CONTENTS v

12.2.1 The Code . 207
12.2.2 The Experiments . 208

12.3 Summary . 210

13 Grocery Store Simulation 213
13.1 The Design . 213

13.1.1 Inventory . 213
13.1.2 Stores . 215
13.1.3 Shoppers . 216
13.1.4 Running the Simulation . 216

13.2 The Shopper . 217
13.3 The Store . 219
13.4 The Simulation . 221

13.4.1 Testing the Algorithms . 222
13.4.2 Working with RO . 224
13.4.3 Varying the Number of Shoppers . 226

14 Discussion 228

Introduction

I encountered my first swarm algorithm in 2007 when I stumbled across a description of
particle swarm optimization (PSO). At the time, I had a particular optimization problem to
solve, one that didn’t lend itself to more traditional, gradient-based methods. Grid search
was an option, but I was hoping some creative people had found a better way; it turns out
they did. Particle swarm optimization solved my problem quickly. Along the way, I realized
how powerful and widely applicable a tool it is.

After PSO, I encountered other swarm algorithms beginning with differential evolution
(DE). The flood-gates opened when I read about the vast and ever-expanding array of
nature-inspired optimization methods. I was intrigued and have consistently used swarm
algorithms ever since for tasks ranging from curve fitting with nonlinear functions to gen-
erating architectures for convolutional neural networks. This isn’t to say I don’t have
reservations about the utility of a continuously growing swarm of swarm algorithms, but
such reservations need to wait until Chapter 1.

This book is the result of my experience with swarm algorithms and continues my
fascination with the power of randomness and how it can generate order from disorder –
witness biological evolution.

We’ll define what we mean by swarm algorithm or swarm optimization more rigorously
in Chapter ??. But, for now, think of a swarm optimization as a way to find the best set
of parameters to solve a problem. Finding the parameters is the optimization part. The
swarm is how the optimization happens – think of a flock of birds wandering through a
space where each point in the space represents a possible solution to the problem.

This book is meant as a practical introduction to using swarms to solve optimization
problems. I added emphasis on the word practical because the goal is to introduce you to
the thought process behind using swarms. At the same time, we’ll present a representative
set of swarm algorithms, explain how they work, and provide implementations in Python
along with all the other parts necessary to quickly build solutions to problems.

This book is not, however, a scholarly treatment of the subject. We won’t be proving
theorems or diving into deep mathematical formulations. Instead, we’ll learn by doing, by
experimentation, and by empirical observation of how our algorithms perform.

It’s my sincere hope that by the time you put this book down, you’ve learned how to
apply swarm optimization algorithms to your own problems using the Python framework
as a guide.

If you are already familiar with swarm techniques, you might have raised an eyebrow at
the above mention of differential evolution as DE is an evolutionary algorithm, something
distinct from the concept of a swarm algorithm.

We won’t be pedantic or overly academic. If an algorithm fits our framework and involves
multiple agents searching a space according to some method of updating that search, we’ll
consider it a “swarm algorithm” and fair game for inclusion and discussion. My defense

vi

CONTENTS vii

for this affront is the book’s practical emphasis. I want you to come away from the book
prepared to apply swarm algorithms to your problems, regardless of whether the method is
appropriately labeled “swarm intelligence” or “evolutionary algorithm.”

Who Is This Book For?

This book is for people who need to solve problems expressable as locating the best set of
parameters. These are often problems in engineering, like where to place a set of cell towers
with specific characteristics. Or, they are problems in commerce: how should I arrange
the products in my grocery store to maximize my profit? As we’ll see in Part II, we can
use swarms for creative efforts, like generating melodies from scratch. I have even heard
of brewers using optimization techniques to improve the quality of their beer; something of
which I wholeheartedly approve.

Swarm approaches are that generic; seemingly, the only limiting factor is creativity in
mapping the problem to searching a space of possible solutions. For example, a bit of imag-
ination was necessary to map a multidimensional vector to a convolutional neural network
architecture. However, once the mapping was defined, the swarms performed brilliantly.

Therefore, this book is for engineers and scientists. It’s also for students of these dis-
ciplines. Additionally, it’s for economists and mathematicians, as well as composers and
brewers of fine beer. If you can cast the problem in the form of locating the best position in
a multidimensional space, then it’s likely swarm algorithms apply, even if your measure of
the quality of a solution is complex and not a simple, closed-form mathematical function.

What Can You Expect To Learn?

The emphasis here is on building intuition through experimentation. This is not a theory
book. We don’t ask why any particular algorithm works, at least in detail, but instead, we
use them and learn via experience how well they work and in what situations one might
work better than another. A key concept we’ll learn is there’s no free lunch; there is no best
swarm algorithm, you need experience with many to understand, even intuitively, when to
try one or another.

To be explicit, you can expect to learn the following,

• What swarm algorithms entail and how to cast a problem in a form where it applies.

• The algorithm and implementation of several widely-used swarm optimizers, includ-
ing classics like particle swarm optimization and differential evolution, and newer
algorithms like the Grey Wolf Optimizer and Jaya.

• How to develop intuition about when to try which algorithm and what sort of perfor-
mance to expect.

• How to construct a basic code framework in Python suitable for our experiments and
useful as a model for more serious implementations tailored to your own problems.

What Do I Expect You To Know Already?

The requirements for this book are minimal. I expect you to know mathematics through
high school algebra. Familiarity with the concept of a vector will be helpful, but there is

CONTENTS viii

no need to run out and take a crash course in linear algebra. I try to keep math notation
to a minimum. Should the notation be unfamiliar, a glance at the source code will clarify.

Throughout the book, we develop what I call a “framework” – a set of Python 3.X
classes implementing the swarm algorithms and supporting utilities. Therefore, it will help
matters if you are familiar with Python. If you are a programmer but not familiar with
Python, I suspect you’ll pick up on it rather quickly. The web abounds in quality Python
tutorials.

The framework does make heavy use of Python’s NumPy library. NumPy adds array
processing abilities to Python. Frankly, without NumPy, Python would not be a good choice
for most of the scientific applications to which it is currently applied. For example, Python
is the primary language used by the deep learning community because of NumPy and the
power and performance it provides an otherwise elegant but slow language. Therefore,
familiarity with NumPy will help in understanding the code. Again, the web abounds in
tutorials. If you are familiar with existing array-oriented scientific languages like Matlab
or IDL, or their open-source versions, Octave and GDL, then you’ll have little difficulty
parsing NumPy code.

The Code

All code and data files referenced in the text are on the book’s Github site:

https://github.com/rkneusel9/SwarmOptimization

The algorithm and framework code uses NumPy (https://numpy.org/). Code pro-
ducing plots depends on Matplotlib (https://matplotlib.org/). These libraries are
standard fare for Python, and both are easily installed on Linux, macOS, and Windows.
The music experiments of Chapter 11 have additional requirements, which are detailed
there. At all times, my assumed environment is Linux, specifically Ubuntu 18.04 or later.
While it is quite possible to work in Windows, I think it will be easier to work instead in a
virtual machine running Ubuntu, especially for the music experiments.

About This Book

The book is divided into two parts. The first part introduces swarm optimization, the
framework, and the selected algorithms. The second part puts everything to work running
a set of experiments intended to show swarm optimization’s diverse applicability and give
you enough background to apply swarm algorithms in your work.

Part I

1. Swarm Algorithms We begin with an introduction to swarm algorithms. This
chapter presents a high-level description of what these terms mean, followed by a
high-level taxonomy of optimization algorithms and some comments on the current
state of affairs.

2. Setting The Stage In this chapter, we develop our Python framework. The frame-
work is the environment in which we conduct our experiments. This chapter defines

https://github.com/rkneusel9/SwarmOptimization
https://numpy.org/
https://matplotlib.org/

CONTENTS ix

concepts and classes for handling boundaries, initialization, and the all-important ob-
jective function, the thing we seek to minimize or maximize. The chapter concludes
with a worked example to demonstrate how the components function together.

3. Random Optimization (RO) The simplest of all swarm algorithms is random
optimization where a set of independent particles wanders through the search space,
each particle looking to find someplace better than its current position. Random
optimization is so simple that many don’t consider it a swarm algorithm at all. RO is
described and then implemented in code. We then introduce a simple example to test
the implementation. The example carries forward through the remainder of Part I.

4. Particle Swarm Optimization (PSO) In a sense, PSO is the grandfather of
swarm algorithms. It was developed in the mid-1990s and has strongly influenced
many other algorithms. As with Random Optimization, PSO is described and then
implemented and finally tested on our running example, including comparison with
RO. There are many versions of PSO. Here we introduce only two: canonical and bare
bones.

5. New Kids On The Block Two algorithms are presented in this chapter as rep-
resentatives of the many new algorithms presently in the literature. Specifically, we
introduce the Grey Wolf Optimizer (GWO) and Jaya. As with RO and PSO, we de-
scribe the algorithms, develop Python classes, and test them against each other and
PSO and RO.

6. Genetic Algorithm (GA) Here, we introduce our version of the genetic algorithm.
The implementation and approach are slightly non-standard but fit nicely with our
framework. Unlike the swarm algorithms of previous chapters that use a particular
algorithm to update the position of the swarm particles, the genetic algorithm seeks
to evolve a solution from a population of individuals via breeding and random muta-
tion. The correspondence between “population” and “swarm”, along with a specific
approach to breeding (crossover) and mutation, lets us cast GA in a form amenable to
our framework. After implementing the algorithm, we test it against all the previous
algorithms.

7. Differential Evolution (DE) We save DE for last because it is in the same class
as the genetic algorithm – it is evolutionary instead of algorithmic. However, it could
be argued to fall somewhere between the two classes of algorithms. As with GA, DE
fits our framework and the concept of a swarm, so we include it. Additionally, DE is
too powerful and useful to ignore. We implement DE in Python, including both the
“rand” and “best” versions and a new hybrid, “toggle”. We also tweak the crossover
rule to allow traditional or GA-style. Don’t be concerned if the terms are meaningless
now; we’ll describe them thoroughly when the time comes. As before, DE is compared
to all the other algorithms on our running test problem.

Part II

8. Initial Experiments Part I of the book set up our working environment and in-
troduced us to the swarm algorithms we want to explore. This chapter starts our
explorations with some elementary experiments, including evaluating a series of stan-
dard test functions. Virtually all new swarm algorithms present themselves with

CONTENTS x

metrics based on how well they handle the test functions. Additionally, we try the
algorithms on the 0-1 knapsack, a classic computer science problem, and nonlinear
curve fitting.

9. Training A Neural Network Modern deep neural networks are generally not
trained via swarm algorithms. The experiments in this chapter are not intended to
bridge that gap. Rather, we’ll instead use swarms to train modest, traditional, fully-
connected neural networks. All experiments used search spaces of perhaps a couple
dozen or fewer dimensions to this point in the book. In this chapter, we increase the
dimensionality about two orders of magnitude using swarms to train neural networks
with nearly 2000 learnable parameters.

10. Images This chapter conducts experiments in image registration, segmentation, and
enhancement. We’ll see clearly (pun intended) that swarms can help in this area.
Registration means aligning images so they match as best as possible. Segmentation
means changing the image into regions that have some reason for being grouped. For
us, segmentation means best representing a grayscale image histogram by the sum of
a specified number of Gaussian functions. Finally, image enhancement means making
images look nicer. We’ll experiment with a widely-used enhancement function and
learn the best parameters to use for a set of standard test images.

11. Music Can swarms generate melodies? That’s the question we answer in this chap-
ter. Spoiler, the answer is “yes.” First, we learn to copy a single melody, then to
merge two melodies. Next, we ask if a swarm can learn a melody that sounds like
a set of related melodies. Here the two sets are Irish skip jigs and Bach chorales.
Finally, we test whether swarms can learn melodies in a given musical mode. The
point of this chapter is to explore how a swarm might assist in what is, fundamentally,
a subjective, human endeavor.

12. Cell Towers and Circles Many tasks involve allocation of resources according to
constraints. This chapter addresses one such problem and then another related to it.
The first problem is to learn where to place a set of cell towers to maximize coverage
while simultaneously avoiding places where a tower cannot be put, like a building or
a road. Yes, towers can be placed on buildings, but not in our world. The related
problem is that of packing a square with a given number of identically sized circles.

13. Grocery Store Simulation Grocery stores tend to put frequently purchased items,
like milk, towards the back of the store. In this chapter, we simulate a one-dimensional
grocery store and learn that a swarm comes to the same conclusion to maximize daily
revenue. This experiment demonstrates using a simulation as the objective function.

14. Discussion We’ve reached the end of the book. We spend a bit of time summarizing
what we’ve learned about each algorithm and its suitability for different tasks based
on the results of our experiments.

Contact

This is an active book, meaning you try things, get results, and increase your understanding.
Included in that is the ability to communicate with me should you desire to, especially if
you – gasp! – find a bug in the code. Reach me here:

CONTENTS xi

swarmoptimizationbook@gmail.com

with comments and questions, etc.

Part I

Algorithms

1

Chapter 1

Swarm Algorithms

Why?
Most books do not start with a question, but I think one should. The purpose of

this book is to introduce you to practical swarm algorithms so you can add them to your
algorithmic toolbox. You already have many other tools in that box, and, presumably,
when you pull one out, you do so because you know it to be suitable for the task. The same
should be true for swarm algorithms.

So, again, why? Why learn about and use these techniques?
We know there is no such thing as “one algorithm to rule them all,” so any claim

swarm algorithms are always the best option is misinformed. However, swarm algorithms
are several other things that might entice you to learn about them and apply them to your
projects.

Firstly, and to me, most importantly, swarm algorithms are fascinating and fun. I’ve al-
ways been interested in the intersection between randomness and utility.1 Swarm algorithms
use randomness to arrive at something useful, a solution to a problem.

Secondly, swarm algorithms apply to hard problems, those that are not easily solved by
other techniques. The approach is so general that almost any creative mapping between
what a particle in the solution space represents and the actual solution you want stands a
chance of succeeding (caveat emptor!)

Thirdly, as we’ll do in this book, it is possible to set up a code framework for many
swarm algorithms and options, a framework you can quickly use to find a solution to a
problem as it arises. Here I’m thinking of the day-to-day work of an engineer who suddenly
needs to find the proper shape for an antenna, and she doesn’t have time to go and learn
about the latest and greatest approaches; she needs a workable solution now.

Fourth, you might use swarm algorithms because you don’t have access to expert math-
ematicians or operations research people who can help you implement a state-of-the-art
solution. Of course, when your swarm solutions fail or are not precise enough, then you
should seek out such people. If expert approaches are like a Corvette, then swarm algo-
rithms are like an old Ford pickup that just keeps running and eventually gets you where
you want to go.

Hopefully, these are sufficient reasons for you to keep reading. As I said, the first is
adequate for me; the others are merely icing on the cake.

I once read that engineering is the art of making what you want from what you can get.
Swarm algorithms are well-suited to this mode of thinking – they are easy to try, and even

1For example, see my book “Random Numbers and Computers” (Springer 2018).

2

CHAPTER 1. SWARM ALGORITHMS 3

though they are stochastic and cannot give guarantees; they often get close enough; they
are often the “what you can get” part.

In many cases, this is all you need. CPU cycles are cheap and plentiful. It might seem
like overkill to run a million iterations of a swarm of particles to find the parameters to fit
your one dataset best, but if in clock time it takes ten seconds per run, that’s just fine –
run a bunch of searches to see what consensus you get, then use the one-off answer and get
on with your project.

This chapter introduces us to swarm algorithms (Section 1.1). Unlike the hopes of many
physicists in the 1980s searching for a grand unified theory of nature, the swarm algorithm
does fit nicely on a t-shirt.

We follow in Section 1.2 with a brief taxonomy of swarm techniques. The goal is to give
you some insight into the characteristics of different algorithms.

Recent decades have witnessed an explosion of new swarm algorithms, the majority of
which claim to be “nature-inspired.” I’m tempted to make a comparison with the Cambrian
explosion, the sudden diversification of life 540 million years ago. At that time, most of
the major groups of animals appear for the first time in the fossil record. Of course, while
descendants of these animals still exist, many have gone extinct, i.e., trilobites (sadly). I
fully expect most nature-inspired algorithms to follow the trilobites and relatively quickly.
In Section 1.3, we visit the swarm algorithm zoo with the sort of critical eye we should
regularly employ in science.

A note on terminology before we proceed. I’m using the phrase “swarm algorithm” as
a catch-all for algorithms that manipulate a swarm or population of agents in some way to
search space. This includes both swarm intelligence and evolutionary algorithms. At times,
I’ll refer to these algorithms as “swarm optimization.” I do this to emphasize the goal of the
algorithm. I’m still using the word “swarm” in the expanded sense. In practice, I see little
utility in distinguishing between swarm intelligence and evolutionary algorithms, while, as
part of a research program, the distinction is crucial and necessary.

1.1 What is Swarm Optimization?

We have a problem. To solve the problem, we need to find the best set of something. The
something might be the parameters of a function best fitting a set of data, an arrangement of
cell towers, products on store shelves, circles in a square, the weights and biases of a small
neural network, or even the notes and durations of a melody. All of these are examples
found in this book. In general, we have a problem where we need to find the “best” set of
something from a broader set of possible somethings. How should we proceed?

If we can make the following two statements true:

• We have a problem where the set of possible solutions can be mapped in some way to
a position in a multidimensional space.

• We have a function defined everywhere in that multidimensional space such that the
value of the function is a proxy for the quality of the solution represented by that
position.

then we might hope to solve our problem by somehow searching through this space of
solutions seeking the best position as that will, we hope, map to the best solution to our
actual problem. The experiments in this book demonstrate methods for developing this
mapping. For now, let’s assume we have it.

CHAPTER 1. SWARM ALGORITHMS 4

This is good; we have now reduced our problem to moving through a multidimensional
space looking for a particular position, the position with the best, usually minimum, function
value. How should we search this space?

One fairly obvious way to search the space is to pick points at equal intervals along each
axis and evaluate our function at those positions. The position leading to the best function
value will be our solution. We’ll note here that we can always define our function so smaller
is better; we’ll seek the global minimum of the function. We lose nothing by insisting on
this, so, henceforth, please assume all functions are to be minimized.

Searching by picking points at equal intervals is known as a grid search. It’s quite
systematic, and if the space to search is small in terms of the number of dimensions and
size in each dimension, then grid search might be a sensible thing to do. For example,
grid search is often used to optimize the C and γ parameters of a support vector machine
classifier.

However, with a bit of thought, we see a problem with this approach. As the dimension-
ality of the search space increases, the number of points to consider to claim a reasonable
search was performed increases far faster. This effect is quite similar to the curse of dimen-
sionality that so plagued early machine learning models.2

Can we do better? Here’s a thought: let’s pick a point in the space at random and
evaluate the function there. Then, using some rule, choose a nearby point, and evaluate the
function at that point. If the nearby point has a smaller function value, we move to that
point. If not, pick another nearby point and try again.

If we do this repeatedly, we might hope to move, eventually, to a good position in the
space and thereby find a suitable solution to our problem. Indeed, if the space is convex
with only one minimum position, think of a bowl, then this process will succeed as we only
ever move closer and closer to the global minimum. Of course, it might be highly inefficient
compared to more sensible approaches, but it will work.

Excellent! We have an approach to solving our problem. Unfortunately, we don’t. Our
approach could fail because our space might have multiple minima. If it does, and we fall
into one, we’ll never move back up to get out and find a still better minimum.

Therefore, instead of picking just one point at a time, let’s scatter many points through-
out the space and apply the same rule to each of them to search for the best position.
Scattering points throughout the search space and moving them according to some rule to
find the best position in the space is the essence of swarm optimization.

Swarm optimization falls under the larger heading of metaheuristics:

A metaheuristic is a high-level problem-independent algorithmic frame-
work that provides a set of guidelines or strategies to develop heuristic
optimization algorithms. The term is also used to refer to a problem-
specific implementation of a heuristic optimization algorithm accord-
ing to the guidelines expressed in such a framework. ([1])

From this definition, it is clear we are using metaheuristics in the second sense, as a partic-
ular implementation of an algorithm to solve a specific problem. To be even more precise,
our goal is global optimization, we seek a single, best solution for a single function.

Let’s be still more precise about our terminology. When we use the word “swarm”, we
mean the following:

2Modern deep learning has mostly overcome this curse, though mainly by accident and not by design.

CHAPTER 1. SWARM ALGORITHMS 5

A swarm is a collection of agents, usually identical, moving through
a space guided by a set of rules governing their overall motion.

Here the set of rules means any set, from the empty set (no rules, pure randomness) to
highly ordered motion (like a grid search, no randomness).

This definition tells us what a swarm is, but not precisely what we mean by agents,
space, and rules. Nor does it tell us anything more about the mysterious function referred
to above. We need additional definitions, so let’s start with agent :

An agent is a conceptual entity representing a position in a multi-
dimensional space. The agent may also possess other characteristics
and information, such as knowledge of its previous motion through
the space.

In practice, our agents are vectors of continuous numbers representing a position in the
space.

Let’s continue defining terms:

Space is multidimensional and (frequently) continuous. It is also often
bounded. The positions in space are representations of solutions to a
problem.

This definition assumes the mapping from a position in space to a problem solution exists.
Sometimes this mapping is obvious. If we want to find the minimum of a function over some
range, the space is the argument to the function itself. For example, if we have z = f(x, y)
and we want the minimum value, zmin, our space has two dimensions, x and y. However, in
most interesting cases, the number of dimensions is higher and the mapping less obvious.
Chapter 9 has us using a swarm to train a traditional neural network. In that case, the
space encompasses all the weights and biases of the network, so each position in the space
represents, quite literally, the actual weight and bias values of the network. The space here
is large, with nearly 2000 dimensions. Most of our experiments are less ambitious. For
example, our melody experiments use a space of 40 dimensions to represent a melody of 20
notes where dimensions are note and duration pairs.

Let’s recap: we’ve taken our original problem, cast it as a space in which agents can
move, knowing that each position represents a potential solution to our problem. We know
now what we mean by a swarm, an agent, and a space. We’ve also hinted that we’ll use
a swarm of agents to search this space for an acceptable solution. This leaves two terms
to define: the set of rules governing the motion of the swarm of agents and the function
defined at every point in the space telling us how good a solution that point represents.

First, the set of rules:

A set of rules governing the motion of a swarm of agents is a swarm
optimization algorithm. The algorithm uses the positions of the
swarm agents and other related information to decide how to move
each agent to a new position.

We developed a simple swarm optimization algorithm above: scatter a set of agents
throughout the space and move them to new positions whenever an agent finds someplace
better than the place it currently is. This simple approach has a name, random optimization,

CHAPTER 1. SWARM ALGORITHMS 6

Algorithm 1 A swarm optimization search.

Input: An objective function, bounds, and initialization type
Output: The best position found by the swarm

Initialize the swarm
while not done do

Update the particle positions
Evaluate the new positions
if new global best position found then

Store the new global best
end if
Increment the iteration counter

end while

and we’ll develop it in detail in Chapter 3. Naturally, there are many other ways to move
the swarm through the search space; otherwise, there would be no point in this book. We’ll
get to these other ways for a select set of algorithms throughout all of Part I.

We have one definition remaining, the mysterious function defined everywhere in space
that tells us how good a solution a position represents:

The objective function is defined everywhere in space. The value
returned by the objective function, almost always a scalar, represents
the quality of the solution that position represents.

The word “optimization” implies something is being optimized, being refined, or made
better. The objective function, the formal name for the function we’ve been referring to
so far, is the thing we intend to optimize by finding its minimum value. Since we define
the mapping between the points of the multidimensional space and possible solutions to
the problem, we likewise need to define a suitable objective function so that the minimum
of the objective function truly represents the best solution to the problem. The objective
function needs to capture the problem’s essence, so the values returned correspond to better
or worse solutions.

If we seek the minimum of a mathematical function over some range, then the function’s
value is the objective function. However, objective functions in swarm optimization can be
more complicated. The objective function for the experiment of Chapter 9 where we are
training a neural network is the network’s performance on the held-out test dataset. In
Chapter 11, our objective function is a set of measurements we intend to represent how
“nice” a melody sounds in terms of fidelity to the desired musical mode and the types of
intervals and note durations it contains. The objective function is the key to success in a
swarm search, so we need to develop or chose it carefully. There are many cases, however,
where the choice of the objective function is rather apparent. For example, we’ll use the
mean squared error between two values or sets of values more than once.

Algorithm 1 presents, in generic terms, the method employed by virtually all swarm opti-
mization algorithms. It will fit on a t-shirt. What distinguishes one algorithm from another
is implementing the phrase Update the particle positions. Note, Algorithm 1 refers to the
agents as “particles.” This is common, and we’ll continue to use the word particle through-
out the book, even for algorithms more traditionally associated with a genetic metaphor,
i.e., genetic algorithms. This handy abuse of terminology simplifies the presentation.

CHAPTER 1. SWARM ALGORITHMS 7

If you peruse the literature on swarm optimization, you’ll run into two terms repeatedly:
exploration and exploitation. The former refers to the swarm’s wandering through the space
of possible solutions to the problem. The latter refers to the swarm’s deciding a particular
location in the solution space is worth a closer look. Different swarm algorithms seem to
favor one over the other or switch during the search from one mode to another, usually
from exploration to exploitation.

When the search starts, the swarm as a whole knows nothing about the search space.
As the swarm evolves from iteration to iteration, one pass through the while loop of
Algorithm 1, it discovers more about the search space by its explorations. When a partic-
ularly promising location is found, many algorithms switch, usually implicitly, to a mode
of exploitation – the swarm focuses on that region of the search space to narrow down the
search and locate the best solution. For many algorithms, it is not unusual for the swarm
to collapse on itself in the vicinity of the best solution found. At that point, barring some
additional feature of the algorithm allowing for renewed exploration, the swarm is done; it
won’t find any place in the search space that might be better. We’ll see examples of this
collapse several times during our experiments.

As with most things in life, balance matters. One, often serious, issue with swarm
optimization is switching to exploitation mode too quickly – the swarm’s collapse. If not
identical, this is akin to becoming trapped in a local minimum of the objective function.
Many algorithms have some ability to avoid this effect. Perhaps part of the swarm focuses
on the promising region, but other parts of the swarm continue to explore if the grass is
greener somewhere else.

For example, we’ll work extensively with particle swarm optimization (PSO) and dif-
ferential evolution (DE). PSO addresses the exploration versus exploitation balance by
adjusting parameters: c1, c2, and ω. Typically, c1 and c2 are fixed for the problem, and ω
is decreased as the search proceeds under the (hopeful) assumption that later iterations of
the swarm will have found a good place in the search space, and it makes sense to begin
exploitation. Still, parts of the swarm will continue to explore, and there are variations of
PSO that explicitly add a “repulsive” term to prevent premature exploitation.

By contrast, though useful and powerful, differential evolution is known for giving up
on exploration too quickly. If the objective function has a strong minimum that is easily
found or lacks many local minima, this tendency to converge quickly is a benefit – fewer
iterations are needed to find a good solution. However, balance again shows itself the better
approach, so there are variants of DE that balance exploration and exploitation by using
random components of the swarm regardless of the quality of their current location in the
search space.

The previous two paragraphs are for background, do not be concerned if they don’t
make much sense now. Chapter 4 and Chapter 7 present PSO and DE respectively and
in-depth.

1.2 A High-Level Taxonomy

A taxonomy is an organization into meaningful groups, a classification system. The best-
known taxonomy is from biology and groups all living things into a hierarchy: kingdom,
phylum, class, order, family, genus, and species. Thankfully, swarm techniques are not so
diverse that a detailed and hierarchical taxonomy is needed.

Taxonomies are imposed from without based on characteristics; they are not unique. The

CHAPTER 1. SWARM ALGORITHMS 8

high-level taxonomy we’ll present here uses terms from [2] along with a simpler grouping
between nature-inspired swarm algorithms and those that are not.

In [2], global optimization algorithms are grouped into five categories where the category
description is my summary:

• “Mountaineer” The mountaineer’s goal is to climb a mountain, to reach the high-
est peak. Algorithms in this class only move towards the goal; they only move up,
never down – exploitation over exploration.

• “Sightseer” The sightseers traverse the search space looking for interesting places
to exploit by maintaining knowledge gained by the history of objective function eval-
uations.

• “Team” The team is a population algorithm, a group of individuals (agents) work
together to explore and exploit the search space.

• “Surveyor” The surveyor builds an approximate map of the search space, then
uses the map to select new regions to explore and map in finer detail.

• “Chimera” The chimera is a hybrid algorithm built from components of existing
algorithms.

The six algorithms we’ll work with in this book are random optimization (RO), particle
swarm optimization (PSO), Jaya, Grey Wolf Optimizer (GWO), genetic algorithm (GA),
and differential evolution (DE). The details of each algorithm are given in their respective
chapters, but we can group them according to the taxonomy above as follows:

Algorithm Category

Random Optimization “Mountaineer”
Particle Swarm Optimization “Team”
Jaya “Team”
Grey Wolf Optimizer “Team”
Genetic Algorithm “Team”
Differential Evolution “Team”

I suspect you’ve noticed a theme in the assignments. Except for random optimization,
all of our algorithms fall into the “Team” category – a population of agents working together
in some manner to locate the best position in the search space.

Our implementation of random optimization uses a population of agents as well, but,
unlike all the other algorithms, the agents are blissfully unaware of each other. Individually,
they are all mountaineers, each moving only when a better position is located relative to
their current position.3 A supreme overlord watches the population to pick who is doing
the best. Still, that knowledge is cached; it is not used to influence the motion of the
individuals.

The taxonomy of [2] is useful, but less so to us, because it’s likely almost all swarm-based
algorithms fall into the “Team” category – that’s what makes them swarm-based.

Within swarm optimization, we can create a trivial categorization, not worthy of the
name “taxonomy”, by separating algorithms into two groups: those inspired by something in
nature and those that aren’t. Many such partitions use an animal or plant-based criterion, as

CHAPTER 1. SWARM ALGORITHMS 9

Artificial physics algorithm Particle collision algorithm
Big bang-big crunch Rain water algorithm
Black hole Rain-fall optimization algorithm
Central force optimization Ray optimization
Charged system search River formation dynamics
Chemotherapy Science algorithm Self-driven particles
Colliding bodies optimization Simulated annealing
Electro-magnetism optimization Simulated raindrop algorithm
Fractal-based algorithm Sine cosine algorithm
Galaxy-based search algorithm Sonar inspired optimization
Gravitational search Space gravitational algorithm
Harmony search Spiral optimization
Hydrological cycle algorithm Stochastic difusion search
Intelligent water drop Thermal exchange optimization
Ions motion algorithm Vision correction algorithm
Integrated radiation algorithm Vortex search algorithm
Light ray optimization Water cycle algorithm
Mass and energy balances algorithm Water wave optimization
Optics inspired optimization Weighted attraction method

Table 1.1: Selected physics-inspired optimization algorithms.

opposed to something based on physics. We’ll save the animal and plant-inspired algorithms
for Section 1.3.

Table 1.1, based on [3] with additions from [4], lists optimization algorithms involving
some process in physics. Building an optimization algorithm by simulating some aspect of
the physical world is a reasonable thing to do. After all, physics is the foundational science,
and physicists have spent centuries working to understand the basic principles involved.
Table 1.1 is for your reference, should you care to explore these algorithms. For this book,
we’ll declare these algorithms not to be nature-inspired.

Since we are restricting the term “nature-inspired” to algorithms based on the behavior
of animals and plants, let’s see what label to use for our algorithms:

Algorithm Nature-inspired?

Random Optimization No
Particle Swarm Optimization Yes
Jaya No
Grey Wolf Optimizer Yes
Genetic Algorithm Yes
Differential Evolution Yes

Something called Grey Wolf Optimizer is likely to be nature-inspired, and it is. Particle
swarm optimization is often said to be inspired by the flocking of birds. Both the genetic
algorithm and differential evolution are, not surprisingly, based on evolution. As stated
above, random optimization is a hill-climbing algorithm, not at all nature-inspired. Jaya,

3As we’ve declared we will always minimize our objective functions, perhaps we should use a term like
“submariner” in place of “mountaineer?”

CHAPTER 1. SWARM ALGORITHMS 10

Figure 1.1: Nature-inspired results in Google Scholar by year.

likewise, does not claim inspiration from nature. Therefore, we have a healthy mix of
algorithms for our experiments.

1.3 A Brief Visit To The Zoo

Before we wander too far along the path, I feel a need to pause and make a few observations
on the plethora of new “nature-inspired” algorithms now on the market. To be clear, if an
algorithm offers something substantive, something that previous algorithms lack in some
way, then I’m all for it. However, that does not seem to be the case with what we’ve decided
to label as “nature-inspired” algorithms, meaning those distinct from algorithms seeking to
emulate some physical process (e.g., simulated annealing).

Wait, you say, Section 1.2 makes it clear that you, dear author, are willing to use nature-
inspired algorithms. True, this book discusses several, starting with one of the first, particle
swarm optimization. However, except for the Grey Wolf Optimizer and Jaya, the algorithms
selected for inclusion are well-proven and battle-hardened. Also, Jaya makes no claims to
be inspired by nature. In that sense, the only new, nature-inspired algorithm we’ll explore
is the Grey Wolf Optimizer.

The following is my take on the current state of affairs; your mileage will, of course,
vary. However, I’m not alone. I point you to [5]. The introduction frames the situation
precisely and plainly. I recommend you spend a little time with that paper.

Figure 1.1 shows the number of Google Scholar results by year to the search: nature-
inspired optimization metaheuristic. These results include five books published since 2016:
[6], [7], [8], [9], and [10]. Of these five books, three were published as recently as 2020.
Interest in nature-inspired algorithms is indeed high and growing. This interest is a good
thing, but that doesn’t mean the ever-growing list of nature-inspired algorithms necessarily
is.

Table 1.2 lists many nature-inspired algorithms, and the list is by no means exhaustive

CHAPTER 1. SWARM ALGORITHMS 11

– see [3]. It is difficult to believe all of these algorithms are unique or sufficiently distinct
from existing algorithms that their publication is warranted.

That the algorithms of Table 1.2 “work” I have no doubt. The usual formula for a
new swarm algorithm paper includes testing the algorithm against standard test functions
(Section 8.1) and a select handful of existing algorithms, usually including at least canonical
PSO. The typical result is something along the lines of “our new <insert-nature-inspired-
name-here> algorithm is <better|competitive|comprable> in these limited test cases to
existing algorithms.” While no doubt true, I find such a conclusion unsatisfying and, to be
frank, unhelpful in the long run. Are we really to accept that there is something about the
Salp Swarm algorithm that is fundamentally better than PSO or one of its variants? Given
that no algorithm will always be best at highly diverse tasks, why even report a competitive
result? I have nothing against the salp swarm algorithm; it was selected randomly as the first
name I noticed when I glanced at the list in Table 1.2. But, even if the nature-inspiration is
valid, why would we expect salp motion to be better at searching a space than the flocking
of birds when the same rules of evolution produced both?

Thoughtful comments from [11] are in order here:

Are recent nature-inspired algorithms novel? Yes and no. On the one hand,
most (but certainly not all) of the algorithms reviewed in this paper ([11]) are
distinct from existing optimisation algorithms, and given a particular search
space, they would likely follow different trajectories to existing algorithms. On
the other hand, many of these algorithms use variants of well-established meta-
heuristic concepts that are also found in existing metaheuristic frameworks such
as PSO, EAs and local search. Furthermore, the analysis of PSO-style algo-
rithms shows that many of their underlying ideas have also been explored by
the more mainstream PSO community.

Should this trend of inventing and publishing nature-inspired algorithm after nature-
inspired algorithm continue, we might run out of obvious names. I recommend researchers
wishing to continue the trend go prehistoric. Indeed, there’s a certain pleasant ring to
“Trilobite Swarm Optimization,” a name I offer to the community as a candidate. Indeed,
given their long successful run and vast numbers of fossils, swarms of trilobites effectively
plied the Cambrian and Ordovician seas, locating food sources while avoiding hostile preda-
tors like Anomalocaris. Might an algorithm combining the near-mindless wanderings of a
trilobite with primitive evasion strategies to avoid fast swimming Anomalocaris’ overhead be
a useful analogy for searching a space of solutions? I leave the implementation to interested
readers, but please, don’t publish your results.

Tongue-in-cheek names and mild ranting aside, I believe there is yet much to discover
in this field, perhaps less in seeking inspiration from nature, at least at the level of animal
behavior, and perhaps more from enhancing the intelligence of the agents combined with
existing search strategies. Hybrid algorithms, which we do not discuss in this book because
of space constraints, also seem promising, at least from my testing, to say nothing of the
mountain of literature references. A hybrid algorithm combines aspects of one or more
swarm algorithms and is categorized as a chimera according to [2].

Let’s get started with the rest of the book. You’ll learn key swarm optimization algo-
rithms, how they work, and how to create reference implementations you can use or modify
for your own tasks. With the intuition gained through the experiments of Part II, I be-
lieve you’ll be in a good position to effectively evaluate and assess the utility of existing
algorithms and the many new ones that will inevitably appear in the years to come.

CHAPTER 1. SWARM ALGORITHMS 12

African buffalo optimization Grasshopper optmisation algorithm
Alienated ant algorithm Great salmon run
Ant colony optimizer Grey wolf optimizer
Ant lion optimizer Harris hawks optimization
Artificial bee colony Invasive weed optimization
Artificial root foraging algorithm Jaguar algorithm
Bacterial foraging Japanese tree frogs calling
Bacterial-GA foraging Keshtel algorithm
Bat algorithm Killer whale optimization
Bee colony optimization Krill herd
Bee hive Lion optimization algorithm
Bees algorithm Locust swarm algorithm
Bees swarm optimization Marriage in honey bees
Bee system Monkey search
Bottlenose dolphin optimization Moth-Flame optimization algorithm
Bumblebees Opt bees
Cat swarm Owl search algorithm
Chicken swarm optimization Paddy field algorithm
Coral reefs optimization algorithm Queen-bee evolution
Coyote optimization algorithm Red deer algorithm
Cricket algorithm Roach infestation algorithm
Crow search algorithm Salp swarm algorithm
Cuckoo search Shark smell optimization
Cuttlefish algorithm Sheep shepherding algorithm
Dolphin echolocation Shuffled frog leaping algorithm
Dragonfly algorithm Sperm whale algorithm
Dynamic virtual bats algorithm Spotted hyena optimizer
Eagle strategy Squirrel search algorithm
Egyptian vulture algorithm Swine flow optimization algorithm
Elephant search algorithm Termite colony optimization
Emperor penguins colony Tree growth algorithm
Fast bacterial swarming algorithm Virtual ant algorithm
Firefly algorithm Virtual bees
Fish swarm school Virus colony search
Flower pollination algorithm Weightless swarm algorithm
Fruit fly optimization Whale optimization algorithm
Glowworm swarm optimization Wolf search

Table 1.2: Selected nature-inspired optimization algorithms based on animals or plants.

Chapter 2

Setting The Stage

Now that we have a general idea of what our topic is, let’s set the stage for the algo-
rithms and experiments that follow. In this chapter, we’ll build the Python framework
used throughout the remainder of the book. In doing so, we’ll see how to structure swarm
optimization problems and understand the parts the algorithms have in common. Our
framework expresses these parts as a set of classes.

In Section 2.1, we lay out our general approach, the structure of our framework. Sec-
tion 2.2 presents an Objective class to wrap the objective function. We know the objective
function is the most task-specific portion of the framework and that it will vary during our
experiments. Next, in Section 2.3, we discuss boundaries, limitations on the allowed values
used during the search. These fit nicely in a Bounds class that we’ll subclass as needed.

Swarm algorithms need to be initialized. This initialization process is essential and
often crucial to the success of the search. We’ll define a set of initialization classes covering
common cases in Section 2.4. From this set, you’ll see how to define your initializations.

Knowing when to stop is a good thing. We’ll run the algorithm until we’ve exhausted
the number of iterations we set at the beginning, or until our objective function has reached
a set threshold. However, we might, at times, wish to use more custom stopping criteria.
Therefore, in Section 2.5, we discuss what it means to be done with a search.

One of our algorithms, particle swarm optimization (PSO), uses a concept referred to as
inertia to control the evolution of the swarm. In Section 2.6, we define basic inertia classes
to schedule how PSO uses inertia during a search. Again, these will guide the way should
you wish to experiment with different approaches.

Finally, in Section 2.7, we put all the pieces together in code to illustrate how to set up
a swarm optimization run and interpret its results.

2.1 Our General Approach

A swarm optimization search follows a set algorithm as we saw in Chapter 1. In that
chapter, we introduced our general algorithm, here reproduced as Algorithm 2 for easy
reference.

The inputs to the search are,

• The objective function, the thing that lets us know how well we are doing.

• The bounds for the search, including the number of dimensions our objective function
is expecting along with the ranges allowed for each of those dimensions.

13

CHAPTER 2. SETTING THE STAGE 14

Algorithm 2 A swarm optimization search.

Input: An objective function, bounds, and initialization type
Output: The best position found by the swarm

Initialize the swarm
while not done do

Update the particle positions
Evaluate the new positions
if new global best position found then

Store the new global best
end if
Increment the iteration counter

end while

• How we’ll initialize our swarm, which includes the type of initialization and the number
of particles,

• And how we’ll know when we are done searching.

Let’s pick an example to make things less abstract. We have a function of two variables,
z = f(x, y), and we’re looking for the minimum value of this function in the range [0.01, 1] for
both x and y. In other words, we seek two numbers, xm and ym, such that zm = f(xm, ym)
is as small as possible for 0.01 ≤ xm, ym ≤ 1.

We already know two things: we have a two-dimensional search space, and we know the
bounds on the dimensions, [0.01, 1]. What we have left to select, aside from the type of
search algorithm – the Update the particle positions part of Algorithm 2 – is the objective
function, the number of particles in the swarm, the type of swarm initialization, and what
it means for the search to be done.

The objective function measures the quality of each particle, i.e., how good of a solution
it represents. For our example, the value of f(x, y) for a given x and y is the objective
function since we seek the minimum value of this function. Notice that we are making no
assumptions as to what f(x, y) is. It could be a simple algebraic function, or it could be
a complex multistep algorithm in its own right. All we know or care about at this point
is that f(x, y) accepts two numeric inputs and returns a numeric output. This is already
a step better than traditional optimization as we don’t need to know of nor require the
existence of any derivatives of f(x, y).

The larger the swarm, the more computation needs to be done, but we might also expect
to find the solution more quickly. However, this is not always the case; sometimes, it is
better to use a smaller swarm and search more by using more iterations. In general, a
modest-sized swarm is a good place to start, say in the range of 10 to 100 particles. The
computational overhead of the objective function plays into selecting the swarm size. If the
objective function can be evaluated quickly, we might choose a slightly larger swarm or more
iterations of the swarm. However, if the objective function is computationally expensive,
we might go with a smaller swarm and hope for quicker convergence to the solution or use
tighter bounds to reduce the size of the search space.

We’ll use N particles for the swarm. This means that our swarm consists of N two-
dimensional vectors represented in Python as a Nx2 NumPy matrix of positions where each
row of the matrix is a particle, and each column of the matrix is the position of the particle
along that dimension. As we’ve stated before, the goal of the search is to find the best

CHAPTER 2. SETTING THE STAGE 15

position within this space where best means we can use the particle position to construct a
solution that best solves our problem.

For our running example, the swarm represents candidate positions, candidate values of
x and y. The search moves the swarm through the two-dimensional search space evaluating
candidate positions as it goes to try and find the best x and y possible to minimize f(x, y)
subject to the boundary condition of 0.01 < x, y < 1. The difference between types of
swarm algorithms is how they move the particles through the search space.

We have the objective function, the swarm size and dimensionality, and the search
bounds. The next step is to initialize the swarm. Think of this as scattering the particles
throughout the search space in some manner. The most obvious, and often wholly satisfac-
tory, approach, is to scatter the particles randomly within the bounds of the search space.
So, for our example here, our initialization step is to assign each particle to randomly se-
lected values in the range 0.01 < xi, yi < 1 where i refers to the i-th particle in the swarm.
We’ll encounter two other initialization approaches later in the chapter.

The final choice we have to make is when to stop searching. Typically, we use two
criteria. The first is to set an upper limit on the number of iterations. Here an iteration
is a pass through the while loop of Algorithm 2. The second is to test the best position
the swarm currently knows of, and if it is within some tolerance, we call it a day and
stop searching. For our minimization of f(x, y), we set an iteration maximum of M and a
tolerance of θ. Therefore, after each swarm position update and evaluation of the objective
function for each new particle position, we check to see if we’ve performed the maximum
number of steps or if our f(xbest, ybest) is below our threshold, θ. Recall, the framework
always minimizes the objective function. This is not a difficulty in cases where we desire to
maximize. In those cases, we negate the objective function value so maximization is now
minimization.

Algorithm 2 has the step: Update the particle positions. This is the part where the
particular swarm optimization algorithm comes into play. Each does this in its own way, as
we will see in later chapters where we develop the optimization classes. However, the general
form of a search does not change: we still initialize a swarm and step through updating
and evaluating it until we’re done returning the best position found by the swarm as our
solution.

The framework is a collection of classes we’ll pass to the individual swarm algorithms.
The classes encapsulate concepts like initialization, boundaries, and objective functions.
We’ll also define ancillary classes used by particular swarm optimizations, like the inertia
classes used by the particle swarm optimization (PSO) class of Chapter 4.

To set up a swarm optimization problem, then, we’ll use the framework classes to create
objects passed to an instance of the desired swarm algorithm. We run the search by calling
the Optimize method of the swarm object.

Briefly, here are the framework components (classes) developed in this chapter,

• Objective - the objective function used by the swarm. We’ll typically implement this
class from scratch.

• Bounds - the boundary conditions used by the swarm and by the Initializer.

• Initializer - the particular initialization method used by the swarm. We use this
functionality to explore the effect of different initialization approaches.

• Done - the concept of “done”. If not used, each swarm algorithm counts iterations
and, optionally, looks for a tolerance to be met.

CHAPTER 2. SETTING THE STAGE 16

class Objective:
def __init__(self):

pass
def Evaluate(self, pos):

pass

Figure 2.1: The most basic Objective class.

• Inertia - the inertial update method used by PSO. This is particular to particle swarm
optimization. It can be used to explore the effect of different inertia schedules.

Let’s develop the components of the framework beginning with the objective function.

2.2 Objectives

The objective function is key to successfully applying swarm optimization. It is also the
thing most tailored to the particular task at hand. We saw above how the objective function
might be as simple as evaluating an algebraic function. However, we’ll see complex objective
functions later in the book that bear no resemblance to an algebraic function.

The goal of the objective function is to measure the quality of each particle position, each
possible solution to the problem. The objective function is assumed to return a floating-
point value where smaller is better.

In code, the objective function class is quite simple. A skeleton of one is presented in
Figure 2.1. There are only two methods we need to fill in. The constructor (__init__)
can be used to pass any extra information to the objective function when initialized. For
example, in Chapter 8, we’ll experiment with nonlinear curve fitting. In that case, we’ll
pass the sampled data points we want to fit to the objective function via the constructor.

The most important method is Evaluate. This method is called for each particle on
each pass through Algorithm 2. The single argument to Evaluate is a particle position
vector. In the example of the previous section, where we sought to minimize f(x, y), pos
would be a two-element NumPy vector where pos[0] is x and pos[1] is y. The Evaluate
method’s job is to return a single number indicating how good of a solution pos represents.
Let’s define f(x, y) = xy going forward. The Objective class becomes,

class Objective:
def Evaluate(self, pos):

return pos[0] * pos[1]

where we need not define the constructor explicitly as we are passing no information used
by Evaluate.

To use the objective function with a swarm algorithm, we create an instance of the
objective function class, passing any information it needs via the constructor, and then
pass that instance to the swarm algorithm.

In Section 2.7, we’ll see how to put all the framework pieces together to set up an
optimization problem. For now, let’s move on to defining boundaries.

CHAPTER 2. SETTING THE STAGE 17

class Bounds:
def __init__(self, lower, upper, enforce="clip"):

self.lower = np.array(lower)
self.upper = np.array(upper)
self.enforce = enforce.lower()

def Upper(self):
return self.upper

def Lower(self):
return self.lower

def Limits(self, pos):
1: npart, ndim = pos.shape
2: for i in range(npart):

if (self.enforce == "resample"):
3: for j in range(ndim):
4: if (pos[i,j] <= self.lower[j]) or

(pos[i,j] >= self.upper[j]):
pos[i,j] = self.lower[j] +

5: (self.upper[j]-self.lower[j])*
np.random.random()

else:
6: for j in range(ndim):

if (pos[i,j] <= self.lower[j]):
pos[i,j] = self.lower[j]

if (pos[i,j] >= self.upper[j]):
pos[i,j] = self.upper[j]

pos[i] = self.Validate(pos[i])
return pos

def Validate(self, pos):
return pos

Figure 2.2: The Bounds class.

2.3 Boundaries

We said above we’ll reimplement the Objective class to tailor it to each problem. The
Bounds class will most often be used as-is or subclassed. The purpose of the Bounds class
is to ensure swarm positions are kept within a set range.

The Bounds class sets the upper and lower values for each dimension of the problem.
It also handles checking of these limits and allows, in subclasses, for an extra step we’ll use
to ensure that not only are values for a particular dimension within the set bounds, they
are also valid in terms of what we expect that dimension to represent. For example, we
may want to enforce integer values for particular dimensions.

The Bounds class is shown in Figure 2.2. The constructor expects two arguments,
lower and upper. These are lists or NumPy vectors with the lower and upper limits for
each dimension, respectively. The optional third argument decides what to do if a particular
particle’s position along a dimension is out of bounds. The default is to clip, to set the
dimension to the lower or upper limit. If, however, it is set to “resample”, a randomly
selected value within the lower and upper limit replaces the offending value. All of this
checking is done by the Limits method. Note, these methods are called by the swarm
algorithm classes; we need not call them ourselves. The Upper and Lower methods are
used to return the upper and lower limits passed in via the constructor. The Validate
method by default does nothing beyond returning its argument. This is the method we’ll

CHAPTER 2. SETTING THE STAGE 18

sometimes override in a subclass to enforce special requirements on particle values.
Let’s look more closely at the Limits method in Figure 2.2. Its argument, pos, is a

matrix representing the current positions for each particle in the swarm. First, we return the
number of particles (rows of pos) and the number of dimensions for each particle (columns
of pos) (1). We then loop over the particles to process them individually (2). How
each particle is processed depends on whether we’re clipping or resampling. In either case,
we loop over the dimensions of the particle (3) (6). If clipping, we ask if the current
particle’s current dimension (pos[i,j]) is less than or greater than the limits for that
dimension. If so, we set the value to the respective limit. If we’re resampling, and we find
a particle dimension that exceeds its bounds (4), we replace that value by a randomly
selected one that is within limits (5). Regardless of whether we’re resampling or clipping,
after processing the limits on the current particle’s position, we call Validate, which, by
default, does nothing.

Returning to our running example for this chapter, if we want to minimize f(x, y) over
x and y in the range [0.01, 1], we create a Bounds object like so,

bounds = Bounds([0.01,0.01],[1,1])

where we set the lower and upper limits on x and y to be 0.01 and 1.0, respectively. Note,
we are implicitly taking the default action to clip particle positions to the lower or upper
limit if they go out of bounds.

The Bounds class is used by the swarm algorithms and by the initializers, to which we
now turn.

2.4 Initializers

The first step in Algorithm 2 says Initialize the swarm. This is the part where we set up our
initial particle positions within the search space. We already alluded above to one possible
way to do this: by randomly scattering the particles within the bounds of the search space.
As far as our framework is concerned, whatever object we pass to the swarm algorithms
as an initializer needs to support a constructor that accepts the number of particles in the
swarm, the dimensionality of the particles, and an optional Bounds object to set the limits
on the initial positions. It also needs to have an InitializeSwarm method that takes no
arguments, but returns a NumPy matrix representing initial particle positions. This matrix
has as many rows as there are particles in the swarm and as many columns as there are
dimensions in the search space. This is the matrix that the algorithms will evolve to search
for the best solution to our problem.

We’ll define three initializers here and illustrate how they work graphically for a two-
dimensional search space. The three are RandomInitializer, QuasirandomInitializer,
and SphereInitializer. We’ll experiment with these in later chapters. The first does
what you might expect; it scatters the swarm particles randomly within the bounds of the
search space. The second is similar, but instead of a pseudorandom generator, it uses a
quasirandom generator. Quasirandom generators are space-filling, meaning they distribute
the particles more uniformly throughout the search space. The SphereInitializer
places the particles on the edge of a hypersphere bounded by the search space. The idea
here is to put the particles near the edges so that the likely solution is within the hyper-
sphere.

CHAPTER 2. SETTING THE STAGE 19

class RandomInitializer:
def __init__(self, npart=10, ndim=3, bounds=None):

self.npart = npart
self.ndim = ndim
self.bounds = bounds

def InitializeSwarm(self):
if (self.bounds == None):

self.swarm = np.random.random((self.npart, self.ndim))
else:

self.swarm = np.zeros((self.npart, self.ndim))
lo = self.bounds.Lower()
hi = self.bounds.Upper()
for i in range(self.npart):

for j in range(self.ndim):
self.swarm[i,j] = lo[j] +
(hi[j]-lo[j])*np.random.random()

self.swarm = self.bounds.Limits(self.swarm)
return self.swarm

Figure 2.3: The RandomInitializer class.

The code for RandomInitializer is in Figure 2.3. The constructor (__init__)
accepts the number of particles in the swarm (npart), the dimensionality of the search
space (ndim), and, optionally, a Bounds object to define the limits of the search space.
These values are stored in the instance for use by InitializeSwarm.

Initialization happens when InitializeSwarm is called. If no Bounds object was
given, initialization is particularly simple; we just return a NumPy matrix of random values
in the range [0, 1). This matrix has npart rows and ndim columns.

If a Bounds object was given, we first define the matrix representing the swarm, extract
the per dimension lower (lo) and upper (hi) bounds from the Bounds object and then
loop over particles and the dimensions of the particles selecting random values in the bounds
for each.

The call to Limits seems superfluous at first since we just finished selecting values
for the swarm particles that we know are within the limits given by the Bounds object.
However, this is not the whole story. If we look back at Figure 2.2, we see that the Limits
method, after checking that the entire swarm is in bounds, calls Validate. If the object
passed to RandomInitializer is a subclass of Bounds, it is possible that the subclass
implements this method. Hence, the call to Limits ensures that Validate will be called
on the newly initialized swarm.

The two other initializer classes, QuasirandomInitializer and SphereInitializer,
implement the same methods as RandomInitializer but tailor the assignment of values.
Let’s start with QuasirandomInitializer as shown in Figure 2.4.

A Halton process can generate a quasirandom sequence. This process is implemented in
Figure 2.4 in the Halton method. This method returns the i-th Halton number for the given
base, b.1 Halton sequences work best when the bases are primes, so in __init__ we set
up a table to have a different prime for each dimension (self.primes). The constructor
accepts the number of particles (npart), dimensionality (ndim), and a Bounds object as
before. It also optionally accepts an initial index into the Halton sequence (k) and a jitter

1See p. 75, Section 2.9, Random Numbers and Computers, Kneusel, Springer 2018.

CHAPTER 2. SETTING THE STAGE 20

class QuasirandomInitializer:
def Halton(self, i,b):

f = 1.0
r = 0
while (i > 0):

f = f/b
r = r + f*(i % b)
i = floor(i/float(b))

return r
def __init__(self, npart=10,ndim=3,bounds=None,k=1,jitter=0.0):

self.npart = npart
self.ndim = ndim
self.bounds = bounds
self.k = k
self.jitter = jitter
self.primes = [

2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97,101,103,107,109,113,

127,131,137,139,149,151,157,163,167,173,
179,181,191,193,197,199,211,223,227,229,
233,239,241,251,257,263,269,271,277,281,
283,293,307,311,313,317,331,337,347,349,
353,359,367,373,379,383,389,397,401,409,
419,421,431,433,439,443,449,457,461,463,
467,479,487,491,499,503,509,521,523,541,
547,557,563,569,571,577,587,593,599,601,
607,613,617,619,631,641,643,647,653,659]

def InitializeSwarm(self):
self.swarm = np.zeros((self.npart, self.ndim))
if (self.bounds == None):

lo = np.zeros(self.ndim)
hi = np.ones(self.ndim)

else:
lo = self.bounds.Lower()
hi = self.bounds.Upper()

1: for i in range(self.npart):
for j in range(self.ndim):

h = self.Halton(i+self.k,self.primes[j %
len(self.primes)])

q = self.jitter*(np.random.random()-0.5)
2: self.swarm[i,j] = lo[j] + (hi[j]-lo[j]) * h + q

if (self.bounds != None):
self.swarm = self.bounds.Limits(self.swarm)

return self.swarm

Figure 2.4: The QuasirandomInitializer class.

CHAPTER 2. SETTING THE STAGE 21

class SphereInitializer:
def __init__(self, npart=10, ndim=3, bounds=None):

self.npart = npart
self.ndim = ndim
self.bounds = bounds

def InitializeSwarm(self):
self.swarm = np.zeros((self.npart, self.ndim))
if (self.bounds == None):

lo = np.zeros(self.ndim)
hi = np.ones(self.ndim)

else:
lo = self.bounds.Lower()
hi = self.bounds.Upper()

radius = 0.5
for i in range(self.npart):

p = np.random.normal(size=self.ndim)
self.swarm[i] = radius + radius* p / np.sqrt(np.dot(p,p))

self.swarm = np.abs(hi-lo)*self.swarm + lo
if (self.bounds != None):

self.swarm = self.bounds.Limits(self.swarm)
return self.swarm

Figure 2.5: The SphereInitializer class.

value (jitter). The jitter value is used to slightly adjust the actual value returned by the
Halton sequence to prevent each initialization from being the same. By default, we don’t
use jitter and start the Halton sequence from one.

The InitializeSwarm method creates the swarm matrix and gets the bounds from
the Bounds object or uses [0, 1) if no Bounds object is given. All the action happens in
the dual loops (1). We loop over the particles (i) and the dimensions (j) where for each
particle and dimension, we get the next value of the Halton sequence and any jitter (q).
The actual swarm position is set as a random value in the range for that dimension (2).
Note, like a pseudorandom generator, the Halton sequence is bounded to [0, 1), so we can
use it directly as we did for the random case (see Figure 2.3). Finally, if we have a Bounds
object, we call Limits to let the Validate method run.

The SphereInitializer selects random points on an ndim-dimensional hypersphere.
To select a p-dimensional vector on a hypersphere, we need to select p values from a Gaus-
sian distribution and scale them by the norm of the resulting vector.2 The code for the
SphereInitializer class is in Figure 2.5.

The constructor is identical to that of the RandomInitializer. All the fun happens
in the InitializeSwarm method. After selecting the bounds, we set radius = 0.5 to
construct the set of points in [0, 1). After all swarm points have been sampled, we’ll scale
them from [0, 1) to the bounds limits in lo and hi. This sets the size of the hypersphere
so that it will fit within the bounds of all dimensions. We build the swarm, one particle
position vector at a time using the loop over npart. First, we select the vector, p, of ndim
dimensions, from a Gaussian with zero mean and standard deviation of one. We then apply
the hypersphere transformation scaling by the radius. Note, we add in the middle point,
0.5, to shift the hypersphere to center on 0.5. Finally, we get the actual particle positions

2See Muller, M. E. “A Note on a Method for Generating Points Uniformly on N-Dimensional Spheres.”
Comm. Assoc. Comput. Mach. 2, 19-20, Apr. 1959.

CHAPTER 2. SETTING THE STAGE 22

Figure 2.6: Initialized swarms using random (left), quasirandom (middle), and hypersphere
initialization (right). Each swarm contains 100 particles.

by scaling the [0, 1) positions by the per dimension range (np.abs(hi-lo)) and add in
the lower bounds. As before, if we have a Bounds object, we call Limits before returning
the newly initialized swarm matrix.

Let’s trade code for plots to see what these initializers are doing. We’ll initialize swarms
of 100 particles in two dimensions so we can plot them. The way to get the initialized
swarms is straightforward,

>>> import numpy as np
>>> from RandomInitializer import *
>>> from QuasirandomInitializer import *
>>> from SphereInitializer import *
>>> r = RandomInitializer(npart=100, ndim=2).InitializeSwarm()
>>> q = QuasirandomInitializer(npart=100,ndim=2).InitializeSwarm()
>>> s = SphereInitializer(npart=100, ndim=2).InitializeSwarm()

Each of the swarms (r, q, and s) is a 100x2 matrix. We plot the particle positions using
the first column as the x-coordinate and the second as the y-coordinate to show us how the
initial particles are scattered throughout the two-dimensional search space. This leads to
Figure 2.6.

On the left, we see the randomly initialized swarm. It looks pretty random, as it should.
We also see that it is not uniform over the two-dimensional search space. There are areas
of concentrated particles and voids. In the middle of Figure 2.6, we see the quasirandomly
initialized swarm. Here the distribution of particles is much more uniform. Finally, on
the right, we see the spherically initialized swarm. All of the particles are on a 2D sphere
(circle) within the default [0, 1) bounds.

2.5 Are We Done Yet?

Each swarm algorithm knows how to stop the search when the maximum number of it-
erations through Algorithm 2 has been reached or when the objective function value for
the best particle position known by the swarm is below a given threshold. However, if the
swarm algorithm was passed an instance of a class supporting a Done method, it calls the
method passing in information about the state of the search. The Done method returns a
boolean value. If it returns True, the search is completed. If it returns False, the search
continues. The information passed to the Done call includes the list of current swarm best
positions found and their associated objective function values. It also includes the current
position of each swarm particle, the maximum number of iterations set, and the current

CHAPTER 2. SETTING THE STAGE 23

iteration value.
For the majority of our experiments, we’ll simply use the intrinsic checks inside the

swarm algorithms to decide if the search is done or not. An exception is when we explicitly
iterate through the swarm algorithms by calling the Step method. In those cases, we’ll
call the Done method directly. We’ll see exactly what that means when we discuss the
individual swarm algorithms in later chapters.

We’ll end this chapter with an example showing how to use the framework to set up
and execute an optimization search, but, before we do that, let’s take a quick look at the
last part of the framework, the inertia class used by PSO.

2.6 Inertia

While we do not yet know the details of the PSO class, we know it includes a parame-
ter, the inertia, which is generally changed during the search. Historically, this value is
changed linearly with increasing iteration number so it gets smaller the longer the search
has been run. We’ll define two inertia classes for PSO, though it is straightforward after
seeing how they are implemented to design your own. These are the LinearInertia and
RandomInertia classes.

The purpose of the inertia objects is to return a single floating-point number in the
range [0, 1], which is typically labeled w or ω in the PSO literature. We’ll see in Chapter 4
precisely what this ω represents, but for now, we’ll content ourselves with the interface the
PSO class expects from any inertia object passed to it.

The LinearInertia class is,

class LinearInertia:
def __init__(self, hi=0.9, lo=0.6):

if (hi > lo):
self.hi = hi
self.lo = lo

else:
self.hi = lo
self.lo = hi

def CalculateW(self, w0, iterations, max_iter):
return self.hi - (iterations/max_iter)*(self.hi-self.lo)

The constructor accepts upper (hi) and lower (lo) limits for ω, both scalar values. A
bit of code ensures that hi ≥ lo. The main method of the class is CalculateW, which
the PSO class calls. The arguments are w0, an initial ω value defined when the PSO object
is created, the current number of swarm iterations completed (iterations), and the
maximum number of iterations (max_iter). For LinearInertia, we want ω to decrease
linearly from hi to lo over max_iter iterations. The code in CalculateW does this
by subtracting an ever increasing fraction of the difference between hi and lo from hi so
when the search starts, ω is hi and when the search ends, ω is lo. Typical literature values
for hi and lo are 0.9 and 0.5, respectively. If you are familiar with neural networks, ω acts
in much the same way as momentum during gradient descent.

If, instead of a constantly decreasing ω, we want a random value, we can use the
RandomInertia class. Structurally, it is identical to LinearInertia except for the
actual equation used to return ω in CalculateW. In this case, the return value is,

return 0.5 + random.random()/2.0

CHAPTER 2. SETTING THE STAGE 24

which returns a random value in the range [0.5, 1.0).

2.7 Setting Up An Optimization

Throughout this chapter we’ve made use of a running example, that of finding the minimum
of f(x, y) = xy for x and y in [0.01, 1]. Now that we have a developed framework to support
the swarm optimization algorithms, let’s set up and run a search using the yet-to-be-defined
PSO class. Of course, given our bounds on x and y, we already know the answer we should
get: x = 0.01 and y = 0.01. Let’s see if the PSO algorithm agrees.

To set up the problem, we need an objective function class, an instance of the Bounds
class, an initializer (we’ll use RandomInitializer), and, since we’re using PSO, an inertia
object. We’ll use the LinearInertia class. We’ll list the code in pieces. The actual code
is in the file fxy.py in the source code available with this book.

First, we import NumPy and the framework components,

import numpy as np
from PSO import *
from LinearInertia import *
from Bounds import *
from RandomInitializer import *

Next, we define our objective function class and make an instance of it,

class Objective:
def Evaluate(self, pos):

return pos[0]*pos[1]
obj = Objective()

where we see how simple an objective function can be.
We now define the parameters of the search, including the bounds, initializer, and inertia,

npart = 10
ndim = 2
m = 100
tol = 1e-4
b = Bounds([0.01,0.01], [1,1])
i = RandomInitializer(npart, ndim, bounds=b)
t = LinearInertia()

where npart is the number of particles in the swarm, ndim is the number of dimensions for
each particle, here two because we are looking for x and y to minimize f(x, y). We set the
maximum number of iterations to 100 (m) and the tolerance to 0.0001 (tol). Recall, this
means that the search will run for at most 100 swarm updates or stop if the best position
found by the swarm returns an objective function value less than 0.0001.

We then define the bounds for the problem, b, to keep both x and y inside [0.01, 1].
The first argument to Bounds is a list of the lower limit for each dimension, the second
is for the upper limit. Next, we set up the random initializer (i). We tell it how many
particles (npart), how many dimensions for each (ndim), and pass in the bounds instance
so it knows the range of values it can use. Finally, t defines the default linear inertia

CHAPTER 2. SETTING THE STAGE 25

object which will start the PSO ω parameter at 0.9 and decrease it linearly to 0.5 over the
iterations of the search.

We are now ready to define the actual PSO swarm and run the optimization. The code
required is particularly straightforward given the framework,

swarm = PSO(obj=obj, npart=npart, ndim=ndim, init=i, tol=tol,
max_iter=m, bounds=b, inertia=t)

swarm.Optimize()

The first line constructs the swarm by passing in the objective function (obj), number
of particles (npart), their dimension (ndim), the initializer (i), tolerance (tol), maximum
number of iterations (m), the bounds (b), and the inertia (t). The actual search becomes
a single call to the Optimize method. This method, defined virtually identically for each
of the swarm algorithms we’ll discuss in later chapters is,

def Optimize(self):
self.Initialize()
while (not self.Done()):

self.Step()
return self.gbest[-1], self.gpos[-1]

which follows Algorithm 2 quite closely. The swarm is initialized using the initializer object
passed to it (Initialize), then a loop searches until Done returns True. The Step
method performs the required swarm position updates and evaluations of the objective
function. When the search is over, the best objective function value (gbest[-1]) and
associated position in the search space (gpos[-1]) are returned. These are lists tracking
the evolution of the search so the last element of the list is the best position found. We’ll use
these lists later to show how the search evolved. In our example call to Optimize above,
we ignored these return values. That’s because we can get more information by calling the
Results method,

res = swarm.Results()
x,y = res["gpos"][-1]
g = res["gbest"][-1]
print("f(%0.8f, %0.8f) = %0.8f" % (x,y,g))
print("(%d swarm best updates, %d iterations)" %

(len(res["gbest"]), res["iterations"]))

The Results method returns a Python dictionary containing the gbest and gpos
values along with other information like the number of iterations performed. The number
of elements in the gbest list is the number of times the swarm improved its best solution
during the search.

If we run this code, we’ll get slightly different answers each time because of the stochas-
tic nature of the initialization process, but, because our search space is straightforward,
we’ll always find the true minimum position of (0.01, 0.01), though the number of swarm
improvements needed will vary. For example, a single run produced this output,

f(0.01000000, 0.01000000) = 0.00010000
(8 swarm best updates, 100 iterations)

showing that the minimum position was found, that all 100 iterations were used, and there
were eight times that the swarm improved its initial best position. By displaying the

CHAPTER 2. SETTING THE STAGE 26

positions (res["gpos"]) and objective function values (res["gbest"]), we can see
how the swarm moved to the best solution,

f(0.96153452, 0.01689004) = 0.01624035
f(1.00000000, 0.01000000) = 0.01000000
f(0.72279699, 0.01000000) = 0.00722797
f(0.66630552, 0.01000000) = 0.00666306
f(0.39462535, 0.01000000) = 0.00394625
f(0.37345245, 0.01000000) = 0.00373452
f(0.15094400, 0.01000000) = 0.00150944
f(0.01000000, 0.01000000) = 0.00010000

where the first line is the best position found by the initial swarm. The PSO algorithm
then improved the initial swarm to progressively find better and better locations until the
true minimum was found. Notice that in this particular run, y converged to is limit very
quickly.

You may have a bit of an uneasy feeling about this example. Yes, it was contrived, but
especially so because we told the Bounds object to use clipping when a particle dimension
went out of bounds, and it so happens that the proper value for our minimum is on the
boundary in this case. This is why the y value so quickly found the edge. What if we change
the boundary conditions to use resampling instead? The change to the code is,

b = Bounds([0.01,0.01], [1,1], enforce="resample")

with everything else the same. If we now run the search, we see a different result,

f(0.07176122, 0.01060304) = 0.00076089
(4 swarm best updates, 100 iterations)

where the quick convergence we had before has disappeared. If we increase the number of
swarm iterations from m = 100 to m = 1000, we get closer,

f(0.01084622, 0.02919965) = 0.00031671
(8 swarm best updates, 1000 iterations)

Here, we’ve told the algorithm to use a small swarm size (10 particles) and search for
a long time (1,000 iterations). As we work with the algorithms, we’ll build intuition and
see that 10 particles are probably too few, so let’s increase the number of particles to 100
(npart=100) while still using resampling on the Bounds object. We’ll leave the number
of iterations at m = 100, as before. A search with this larger swarm gives us,

f(0.02181587, 0.01145074) = 0.00024981
(3 swarm best updates, 100 iterations)

which is a better result. Notice, the smaller swarm for more iterations and the larger swarm
for fewer iterations both performed the same amount of work: 10,000 objective function
evaluations after initialization since 10×1000 = 100×100 = 10, 000. The stochastic nature
of the random initializer means that multiple runs of each of these swarms will oscillate
between which one returns a better result.

In the following chapters, we’ll define multiple swarm search algorithms. Some, like
PSO, are swarm intelligence algorithms, while others, like differential evolution (DE), are
really evolutionary algorithms in disguise. The point of the framework introduced in this
chapter is to make switching and experimenting with these algorithms straightforward.

CHAPTER 2. SETTING THE STAGE 27

Let’s replace the PSO object with DE for the exercise above where we are using 10 particles
for 100 iterations. After importing the DE module, we need only replace the call to PSO
with,

swarm = DE(obj=Objective(), npart=npart, ndim=ndim, init=i,
tol=tol, max_iter=m, bounds=b)

and run the code again. Notice that the DE class does not use an inertia object. This run
produces,

f(0.01000140, 0.01000028) = 0.00010002
(31 swarm best updates, 100 iterations)

which is a still better result, about as good as we could hope to get. This illustrates a general
observation about differential evolution: it seems particularly good at rapidly converging
when the search space is relatively simple. However, as we’ll see later in the book, more
sophisticated search spaces are sometimes best searched with an algorithm like PSO, where
an algorithm like DE is likely to get stuck in a poor position in the search space. We need
to be aware of multiple algorithms and their relative strengths and weaknesses. As you
work through the book, you’ll develop the intuition you need to know when to try which
algorithm, though experimentation is vital. Always indulge your “what if?” questions.

In this chapter, we defined our framework and we demonstrated its use on a simple
example. Let’s move ahead to investigate our first swarm algorithm, one so simplest it isn’t
really a swarm intelligence algorithm at all: random optimization.

Chapter 3

Random Optimization

We begin our investigation of swarm algorithms with the simplest of all, random optimiza-
tion (RO). Random Optimization is so simple that while it is, technically, a swarm algo-
rithm, it is not a swarm intelligence algorithm because the swarm exhibits no intelligence,
it’s purely random.

This chapter introduces the concepts behind the algorithm (Section 3.1). Then, we
build the Python class using the framework pieces of Chapter 2 to implement the algorithm
(Section 3.2) and do a few basic tests to demonstrate how it is working (Section 3.3).

3.1 Good Enough For Now

Recalling our mental picture of optimization as a search by the swarm through a space
of possible solutions, random optimization is akin to a set of prospectors, each searching
for gold by doing his or her thing in separate parts of the search space. In this sense,
random optimization is a purely local search approach. The individual particles search their
immediate region, but they never communicate with each other to see if there is a better
place to search somewhere else in the search space, hence, there is no global intelligence to
the algorithm.

Algorithm 4 lays out a random search. Naturally, it closely resembles what we saw in
Algorithm 2 of Chapter 2, but we’ve filled in some of the details a bit to tailor the algorithm
to RO.

As before, we need framework parts for the objective function, the bounds, and the type
of initialization we want to use. Then, the for loop initializes the swarm by scattering the
particles throughout the search space according to the initializer we decided to use.

The swarm searches individually by letting each particle perform an independent search
while checking after each particle move whether or not the new position is the best the
entire swarm as a whole has seen. The critical point in this algorithm that separates it from
all the others we’ll investigate in later chapters is the particles do not communicate with
each other. There is no sharing of information that might cause one particle to move to a
different region of the search space based on what another particle has learned. Regardless,
with a proper swarm size and initialization, this approach can be surprisingly effective.

The concept behind RO is straightforward enough, but there is that one line in Algo-
rithm 4,

Select a new position some random distance away from the current position

28

CHAPTER 3. RANDOM OPTIMIZATION 29

Algorithm 4 The random optimization algorithm.

Input: An objective function, bounds, and initialization type
Output: The best position found by the swarm

for each particle do
Select an initial position within the bounds of the search space
Evaluate the objective function at this position
Mark this position as the best found by the particle so far

end for
Store the best initial particle position as the swarm global best position
while not done do

for each particle do
Select a new position some random distance away from the current position
Evaluate the new position
if fitness of new position < fitness of current position then

Move to the new position
if new position fitness < swarm best position fitness then

Store the new global best
end if

end if
end for
Increment the iteration counter

end while

What should we make of this? What does “at random” and “some distance away” actually
mean?

By “at random” we mean just that, we select a new position relative to the current
position by selecting a random offset vector to add to the current position vector. There
are multiple ways to do this, but ultimately, we need a random offset vector to add to
the current particle’s position to move to a new position in the search space. As we lack
any outside information to tell us that moving from the current particle position to a new
position in a particular direction is any better than moving in any other direction, we can
pick the offset vector freely. At the same time, we lack any information to tell us how far
we should move in these steps, so we might as well make most steps relatively small, but
allow for the possibility of selecting a large step from time to time.

Selecting a set of random values that are usually small but sometimes larger speaks to
a Gaussian or normal distribution. For example, Figure 3.1 shows a histogram of samples
from a standard normal distribution, one with a mean of zero and a standard deviation of
one. The data for the figure is easy to generate in Python,

import numpy as np
import matplotlib.pylab as plt
d = np.random.normal(size=(200000,))
h,x = np.histogram(d, bins=100)
h = h / h.sum()
plt.plot(x[:-1],h,color=’b’)
plt.show()

Here, we select 200,000 random values from N(0, 1) (d) and then plot a histogram of those
values. Each time the code is run, we’ll get a slightly different plot, but it will always have

CHAPTER 3. RANDOM OPTIMIZATION 30

Figure 3.1: A histogram of samples from a standard normal curve.

much the same appearance and be like the plot shown in Figure 3.1.
In Figure 3.1, we see that the vast majority of samples are very close to zero. This

satisfies the desire to select new candidate positions for our swarm that aren’t too far from
where the particle currently is. However, with decreasing likelihood, we’ll sometimes get
output that is much further from zero. This satisfies the desire to occasionally make a larger
jump to explore elsewhere.

We see that the output is, to a high degree, contained within the range [−5, 5]. So, if
we divide our selected samples by five, we’ll be close to selecting in the range [−1, 1]. We
want both positive and negative values to make the offset vector point in all directions.

We still haven’t addressed what we mean by “some distance away”. We’re close, though.
We know we want an offset vector with specific characteristics, and we see how to get it,
but we’d like to control the relative distance or size of the vectors, too. To do that, we
introduce a parameter, η, which we’ll use as a scale factor. We pass this scale factor in at
swarm creation to adjust for a particular problem, but we’ll see that often we don’t need
to adjust η at all.

Let’s get specific. If the current particle’s position is p, where we know that p is an n-
dimensional vector (here n is ndim from Chapter 2), we can select a new candidate position
like so,

p′ = p+ ηpq/5

where q is the offset vector made up of random draws from N(0, 1) for each of the n
dimensions in p. The size of the jump is controlled by η as a fraction of the current position
of the particle, p. Of course, we must ensure that the new candidate position, p′, is within
the bounds of the search space. We’ll see how in Section 3.2 when we develop the code for
the RO class.

CHAPTER 3. RANDOM OPTIMIZATION 31

Figure 3.2: A 2D random walk of 300 steps using the RO candidate update equation.

Next, we evaluate the objective function at the new candidate position, p′. If the
objective function value at the candidate position is less than the objective function value
of the particle’s current position, we found a better place to be, so we update the particle’s
position, p← p′ and store the associated objective function value. However, if the candidate
position is not better, we stay where we are until we find someplace better to go.

In Algorithm 4, we evaluate candidate positions for each of the particles to make up
one iteration of the swarm. Whenever we find a new position, we also check to see if this
position is better than the global best position known by the swarm. If so, we update that
position as well. It is the global best position which decides whether the tolerance has been
met and is returned when the search concludes.

The elegance of RO is its simplicity and the implicit invitation to expand the algorithm
to make it more sophisticated. With RO as a base, it is no wonder so many researchers have
developed their different approaches, either to RO updates or to entirely new algorithms
where the swarm does pass information among itself to converge more rapidly or reliably.
For example, we’re using a normal curve to select new candidate locations. It isn’t too hard
to imagine replacing the normal curve with something else, something with parameters that
could be adjusted for the task at hand. A beta distribution, perhaps?

Let’s generate a two-dimensional walk for a particle using our update equation to see
how it might explore the search space. We’ll limit the space to [0, 1] and set η = 0.2. The
result is Figure 3.2, where the path shows how the particle moved through space. In terms
of the RO algorithm, this path shows cases where the particle found a new, better position
and moved to it. Most jumps are small, corresponding to the small offset vector we’d expect
from the distribution of Figure 3.1. However, some are large, so the particle does have the
opportunity to move through the search space to explore new regions while still spending
time looking closely around its current position. The path starts near the center of the

CHAPTER 3. RANDOM OPTIMIZATION 32

Figure 3.3: Random walks of 300 steps for η = 0.05 (left), η = 0.5 (middle), and η = 0.8
(right).

search space so we can track the motion more easily. The code to generate the random walk
is,

def candidate(p, eta):
return p + eta*p*np.random.normal(size=2)/5.0

eta = 0.2
d = []
p = [0.5,0.5] + np.random.random(2)/8
d.append(p)
for i in range(300):

p = candidate(p, eta)
p = np.clip(p,0,1)
d.append(p)

d = np.array(d)

where candidate returns a new “candidate” position according to our update equation.
For the walk, we always move to the candidate position. The current particle position is
in p, and the path is tracked in d, which is turned into a 2D NumPy array for plotting in
the final line. The np.clip function acts like a call to the Limits method of a Bounds
object.

The RO algorithm has only one adjustable parameter, η. Figure 3.3 shows the effect
of different values of η where on the left η = 0.05, in the middle η = 0.5, and on the right
η = 0.8. When η is large, the particle jumps around quickly but does not closely inspect
its local region before moving on. When η is small, the particle explores the local region
without jumping to more distant regions of the search space. As we’ll see in Section 3.2,
the RO class uses a default value of η = 0.1 as a compromise between local and regional
searching.

Look again at Figure 3.3 and picture the overlapping paths from a swarm of particles,
each one taking a similar random walk. This is what the RO algorithm will do, so we
have some reason to hope that this approach, as unguided as it is, isn’t entirely doomed to
failure. The overlapping paths will explore the space, eventually. With the right compromise
between local exploitation and regional exploration, we might expect the swarm, or at least
parts of it, to collapse into the best region of the search space. This implies a possible
strategy is to set η to some value like 0.1 or 0.2 initially, and as the swarm evolves to make
η smaller to force more local searching to fine-tune the optimization. In effect, this is what
the ω parameter of PSO, which we saw in Chapter 2, does. We’ll see explicitly how in
Chapter 4.

CHAPTER 3. RANDOM OPTIMIZATION 33

class RO:
def __init__(self, obj,

npart=10,
ndim=3,
max_iter=200,
eta=0.1,
tol=None,
init=None,
done=None,
bounds=None):

def Results(self):
def Initialize(self):
def Done(self):
def Evaluate(self, pos):
def CandidatePositions(self):
def Step(self):
def Optimize(self):

Figure 3.4: Skeleton of the RO class.

Parameter Description

obj Objective function object
npart Number of particles in the swarm
ndim Number of dimensions in the search space
max_iter Maximum number of swarm iterations
eta Step size parameter
tol Tolerance value
init Initializer object
done Done object
bounds Bounds object

Table 3.1: The arguments to the RO class constructor.

Let’s move on from algorithm description to implementation and build the RO class.

3.2 The RO Class

The RO class is an archetype for the swarm algorithms in following chapters. In each case,
we’ll present the skeleton of the class, the methods, and then fill in the source code for
the methods with description. Most of the algorithms we implement in code have at least
the methods we see in the RO class, though how the methods work varies somewhat from
algorithm to algorithm. All, however, use the framework objects we defined in Chapter 2.
Note, the code listings have been made more compact for presentation purposes. The actual
source code file, RO.py, contains appropriate comments and spacing.

Figure 3.4 shows the skeleton of the RO class. There are only a handful of methods.
One point of this book is to help you see what these approaches have in common and how
many are just variations on a theme.

The constructor (__init__) accepts nine possible arguments. The constructor is the
interface to the framework parts. The arguments are as shown in Table 3.1.

CHAPTER 3. RANDOM OPTIMIZATION 34

Except for η, all of these parameters are present in the constructor argument lists for
each of the swarm algorithms. We already know what these parameters do. If the default
value is None, the RO class supplies default functionality. For example, the done argument
will typically be None to use the simple case of counting swarm iterations or meeting
the tolerance value. If no tolerance value is given, the search stops after completing all
iterations. The code for the constructor is,

def __init__(self, ...):
self.obj = obj
self.npart = npart
self.ndim = ndim
self.max_iter = max_iter
self.init = init
self.done = done
self.bounds = bounds
self.tol = tol
self.eta = eta
self.initialized = False

where the arguments to the constructor, or their default values, are stored as member
variables. The final line sets initialized to False. This is used to prevent calling
methods before actually initializing the swarm.

Let’s now implement each of the remaining methods of the RO class. We’ll do so in a
top-down fashion beginning with Optimize.

3.2.1 Optimize

The Optimize method is typically how we’ll use the RO class. It is a literal implementation
of Algorithm 2,

def Optimize(self):
self.Initialize()
while (not self.Done()):

self.Step()
return self.gbest[-1], self.gpos[-1]

Before we can use the swarm, we need to set up the initial conditions, so, Optimize
calls Initialize (see Section 3.2.2). With the swarm initialized, we start iterating where
each iteration step selects possible candidate positions, moves to them if they are better
than the current positions, and updates the global best found by the swarm. All of this is
inside the Step method. The while loop runs until Done returns True.

When the search ends, the list representing the sequence of global best objective function
values is in gbest, and the corresponding particle positions in gpos. Therefore, Optimize
returns these values to the caller, though, as we saw in Chapter 2, we can get this information
and more by calling the Results method.

Note, the methods of the class are public, meaning we can call any of them from external
code. While using Optimize is easy to do, there will be times when we call Initialize
and loop calling Step so we can interrogate the swarm as it evolves.

Let’s now look at how the swarm is initialized.

CHAPTER 3. RANDOM OPTIMIZATION 35

3.2.2 Initialize

The RO constructor was passed an initializer object to set up the initial particle positions (see
Section 2.4). The Initialize method uses this object and sets up additional housekeeping
to track the evolution of the swarm. In code,

def Initialize(self):
self.initialized = True
self.iterations = 0
self.pos = self.init.InitializeSwarm()
self.vpos= self.Evaluate(self.pos)
self.gidx = []
self.gbest = []
self.gpos = []
self.giter = []
self.gidx.append(np.argmin(self.vpos))
self.gbest.append(self.vpos[self.gidx[-1]])
self.gpos.append(self.pos[self.gidx[-1]])
self.giter.append(0)

where we set initialized to True. We also set the iteration counter (iterations) to
zero.

The particle swarm is stored in pos, a NumPy matrix with npart rows and ndim
columns. Therefore, each row of pos represents a single swarm particle’s current posi-
tion in the ndim-dimensional search space. We get the initial positions by calling the
InitializeSwarm method of the initializer passed to the RO constructor.

Each particle is located somewhere in the search space. The position in the search space
translates into a particular value of the objective function. So, we need to know not only
the current position of the particle, but also the current value of the objective function for
that position. We’ll store the objective function values in vpos. To initialize the search,
we need to evaluate the initial positions and keep their objective function values. This
is accomplished by the call to Evaluate, which we’ll define below in Section 3.2.6. As
the objective function values are scalars, vpos is a NumPy vector of npart elements.
Therefore, if we want to know the status of particle i, we get its position by asking for
pos[i] and the objective function value at that position by asking for vpos[i].

The next four lines set up lists to track the evolution of the swarm search. These values
are updated together each time a new global best is located. We track the particle number
of the new best (gidx), the objective function value (gbest), the position (gpos), and
the iteration number when it was found (giter). With this approach, we get the current
best objective function value of the swarm by asking for gbest[-1] and the position of
the best with gpos[-1]. Or, if we’d rather track the evolution, we can walk through the
list and see how the swarm moved to its final best position.

3.2.3 Step

A single swarm iteration is captured in the Step method,

def Step(self):
new_pos = self.CandidatePositions()
p = self.Evaluate(new_pos)
for i in range(self.npart):

if (p[i] < self.vpos[i]):
self.vpos[i] = p[i]

CHAPTER 3. RANDOM OPTIMIZATION 36

self.pos[i] = new_pos[i]
if (p[i] < self.gbest[-1]):

self.gbest.append(p[i])
self.gpos.append(new_pos[i])
self.gidx.append(i)
self.giter.append(self.iterations)

self.iterations += 1

First, we get a set of new candidate positions for each particle in the swarm, CandidatePositions.
This sets new_pos to a matrix the same size as pos. There is a one-to-one correspondence
between new_pos and pos. This means that the current position of particle 17 is in
pos[17] while the new candidate position is in new_pos[17]. We next evaluate the ob-
jective function for each of the new candidate positions and put these values in the vector
p.

Then, we loop over each particle in the swarm. We first ask whether the candidate
objective function value for the current particle, i, is less the current objective function
value, vpos[i]. If it is, we move to the new position by updating both vpos[i] and
pos[i].

Next, we ask the same question about the current particle’s candidate position and the
best position the swarm has current knowledge of, gbest[-1]. If the new position is
better, we append the new objective function value to gbest and append the position to
gpos. Similarly, we update gidx with the current particle number and add the current
iteration number to giter. When all particles have been processed, the swarm update
step is completed, so we increment iterations.

3.2.4 Done

Checking whether or not the search is complete means asking a few questions about what
has been handed to the RO class when the instance was constructed. Specifically, the code
is,

def Done(self):
if (self.done == None):

if (self.tol == None):
return (self.iterations == self.max_iter)

else:
return (self.gbest[-1] < self.tol) or

(self.iterations == self.max_iter)
else:

return self.done.Done(self.gbest,
gpos=self.gpos,
pos=self.pos,
max_iter=self.max_iter,
iteration=self.iterations)

First, we ask whether or not an object supporting a Done method was given to RO. If so,
we drop down and call the Done method of that object returning whatever boolean value
it returns. If False, then the search continues; otherwise, the search terminates. Note, the
Done method is solely responsible for making this decision. The RO class will happily loop
forever if Done consistently returns False. The arguments to Done reflect the current
state of the search. This is to help the code in Done decide whether to continue or not.

CHAPTER 3. RANDOM OPTIMIZATION 37

If no object was given when the RO instance was constructed, we fall back to checking
whether or not a tolerance value was set. If not, we return whether we’ve run out of
iterations. If a tolerance value was set, we check for maximum iterations and whether the
current best objective function value, gbest[-1], is less than the tolerance value.

The Initialize, Step, and Done methods implement the calls in Optimize. Now,
let’s develop the code for selecting and evaluating candidate positions.

3.2.5 CandidatePositions

We worked through the candidate position method we’re using in Section 3.1. Let’s put
that into code here. The implementation works with NumPy arrays, so we can select new
candidate positions for the entire swarm with a minimum of code,

def CandidatePositions(self):
n = np.random.normal(size=(self.npart, self.ndim))/5.0
pos = self.pos + self.eta*self.pos*n
if (self.bounds != None):

pos = self.bounds.Limits(pos)
return pos

We first set n to an npart by ndim matrix of random values drawn from a normal
distribution with zero mean and a standard deviation of one. We divide these values by
five to map virtually all of them to the range [−1, 1]. This is the offset vector we’ll scale
by η and use as a fraction of the current position, both positive and negative, to add as an
offset. This is the new candidate position.

If we passed a bounds object to the RO instance, we make sure to call its Limits
method to give it a chance to clip or resample out of bounds particle positions and to run
any custom Validate method the Bounds object may have. We then return the set of
candidate positions so we can evaluate them.

3.2.6 Evaluate

When we create the RO instance, we must pass it an objective function object. This object,
as we saw in Chapter 2, is problem-specific and initialized outside of the RO class. At that
time, any ancillary information needed to evaluate a single particle position must be passed
in via the constructor. Here, the RO class Evaluate method calls the objective function
object’s Evaluate method for each particle,

def Evaluate(self, pos):
p = np.zeros(self.npart)
for i in range(self.npart):

p[i] = self.obj.Evaluate(pos[i])
return p

For the RO class, the argument to Evaluate is a set of candidate positions, one for
each particle in the swarm. Therefore, we need an npart sized vector to hold the objective
function values (p). Then, we loop over each particle and store the objective function value
returned by calling obj.Evaluate.

In this book, we do not concern ourselves with performance considerations. However,
since the evaluation of the objective function for a single particle position is independent
of all other particles, we could at this point parallelize the algorithm and evaluate multiple

CHAPTER 3. RANDOM OPTIMIZATION 38

positions at one time. This might increase the performance of the search considerably as
calling obj.Evaluate will happen thousands and thousands of times for a typical search.
For our experiments starting in Chapter 8, we’ll instrument the objective function object
so it tracks how often it is called, and we’ll see just how many evaluations are (sometimes)
necessary for the algorithm to converge.

We now have all the methods we need to run a random optimization task. The final
method is a convenience one to return information about the swarm and the search.

3.2.7 Results

We get information about completed searches by calling Results. The definition is,

def Results(self):
if (not self.initialized):

return None
return {

"npart": self.npart,
"ndim": self.ndim,
"max_iter": self.max_iter,
"iterations": self.iterations,
"tol": self.tol,
"eta": self.eta,
"gbest": self.gbest,
"giter": self.giter,
"gpos": self.gpos,
"gidx": self.gidx,
"pos": self.pos,
"vpos": self.vpos,

}

The Results method packages swarm results and returns them as a dictionary. We
used this method in Chapter 2 to demonstrate how to use the framework objects. We’ll
use this method going forward. We already know what each of the items returned are, so
we won’t elaborate on them here. Every swarm optimization algorithm we implement has
a Results method. What is in common between the methods, like gbest and gpos, will
always be in the dictionary. Additionally, any algorithm-specific parameters will be present
as well. Therefore, for the RO class, we see that η is present.

Our implementation of the RO class is complete. Again, the source code is in the file
RO.py. Let’s take the RO class for a test drive.

3.3 Testing the RO Class

The example of Chapter 2 was a simple optimization problem for which we had every reason
to expect the algorithm to, in time, find a good solution. To test the performance of the RO
class, and to gain insight into not only how it operates but how all swarm-based algorithms
operate, let’s pick an example we’ll use going forward in subsequent chapters. This lets us
compare algorithm performance while testing.

Our test example will be in the same vein as the example of Chapter 2. We’ll find the
minimum of a 2D function, but one that isn’t as simple as f(x, y) = xy. Instead, we’ll look
for the minimum of,

CHAPTER 3. RANDOM OPTIMIZATION 39

Figure 3.5: Two views of the test function, f(x, y).

f(x, y) =− 5 exp

(
−1

2

(
(x+ 2.2)2

0.4
+

(y − 4.3)2

0.4

))
+

− 2 exp

(
−1

2

(
(x− 2.2)2

0.4
+

(y + 4.3)2

0.4

)) (3.1)

which is a pair of two-dimensional Gaussians with minima at (2.2,−4.3) and (−2.2, 4.3),
but the minima are not of equal depth so the global minimum is at (−2.2, 4.3). Figure 3.5
shows two views of this function.

The set up for the RO class requires initializer and bounds objects, and to define an
objective function class. As in Chapter 2, the objective function is simply the value of
f(x, y) for a given x, y. We have a two-dimensional problem we’ll bound to −6 ≤ x, y ≤ 6.

The code presented below is found in the fxy_gaussian.py file of the source code dis-
tribution. Note, the fxy_gaussian.py file is configured to use all the swarm algorithms
we’ll develop. The listing in this chapter is specific to the RO class only.

First, let’s import our modules, define the objective function class, make an instance of
it, and the Bounds object,

from RO import *
from Bounds import *
from RandomInitializer import *
from QuasirandomInitializer import *
from SphereInitializer import *

class Objective:
def Evaluate(self, p):

return -5.0*np.exp(-0.5*((p[0]+2.2)**2/0.4+(p[1]-4.3)**2/0.4)) +
-2.0*np.exp(-0.5*((p[0]-2.2)**2/0.4+(p[1]+4.3)**2/0.4))

obj = Objective()
b = Bounds([-6,-6], [6,6], enforce="resample")

Notice, we also import the three initializer classes from Chapter 2. The objective func-
tion object is put in obj and the class is a direct implementation of the equation for

CHAPTER 3. RANDOM OPTIMIZATION 40

f(x, y) with p standing in for x and y. The Bounds object is restricted to [−6, 6] and uses
resampling for out of bounds dimensions.

We still need to create an initializer object. We’ll show the random case here, but trust
you’ll experiment with the quasirandom and sphere initializers as well. All we need is a
single line,

i = RandomInitializer(npart=npart, ndim=2, bounds=b)

where we pass in the Bounds object and set the number of dimensions to two. We assume
npart is set to the number of particles we want in the swarm. Below, we’ll experiment
with the number of particles and the maximum number of iterations of the swarm, which
we’ll call miter.

Let’s create our random optimization swarm object and do the search,

swarm = RO(obj=obj, npart=npart, ndim=2, max_iter=miter, init=i, bounds=b)
swarm.Optimize()

Now, let’s get the results and see how we did,

res = swarm.Results()
x,y = res["gpos"][-1]
v = res["gbest"][-1]
print("f(%0.8f, %0.8f) = %0.10f" % (x,y,v))
print("(%d swarm best updates)" % (len(res["gbest"]),))

Notice, we call Results to get the dictionary of results and then extract the best
position, x and y, along with the function value at that position, v. The length of gbest
gives us the number of swarm updates.

Let’s run the search using npart=10 and miter=100. Each time we run, we’ll get a
different output, but one run returned,

f(-2.24570451, 3.82387180) = -3.7563742785
(19 swarm best updates)

To use the fxy_gaussian.py file to run this search, use a command line like,

> python3 fxy_gaussian.py 10 100 RO RI

We know the global minimum of f(x, y) is at (−2.2, 4.3) and has a value of −5. Our
search above was heading in the right direction, but it wasn’t able to find a good approxi-
mation of the minimum.

If we repeat the search ten times, we’ll get some statistics on how well we do on average.
Of course, when you run the code ten times, you’ll get ten different results. My run showed
that for eight of the ten runs, the swarm selected an endpoint near the global minimum of
(−2.2, 4.3). However, twice it was moving in the wrong direction, towards (2.2,−4.3). The
mean and standard error of the minimum found, and the number of swarm updates needed
was,

Minimum found −3.7851± 0.8534
Swarm updates 38.9± 6.2

Recall, this is for a swarm of ten particles and 100 iterations.

CHAPTER 3. RANDOM OPTIMIZATION 41

We have a small swarm, only ten particles. Let’s increase the number of iterations by
a factor of ten and see if letting the swarm explore more helps. So, change miter=100 to
miter=1000. Ten runs gives us a new set of means,

Minimum found −4.9999777± 0.0000098
Swarm updates 49.0± 11.8

which is significantly better. For this run, the swarm headed for the proper global minimum
in all cases. A small swarm with many iterations was able to do a good job, on average.
What if we use a larger swarm but return to using miter=100? Let’s move from npart=10
to npart=100. In that case, we get,

Minimum found −4.9997805± 0.0001287
Swarm updates 21.4± 2.9

where the results are nearly as good as for ten times as many iterations of a swarm with
only one-tenth the number of particles. Note, also, that the number of swarm updates is
lower, on average, than for the case with only ten particles. This observation makes sense:
a smaller swarm is more likely to need to search around to find good places, and that leads
to a large number of swarm updates.

All of the above validates our intuition that small swarms that get to explore are good,
as are larger swarms with fewer iterations. So, shouldn’t we always use large swarms, then?
Not really. If the objective function is computationally expensive, and we have good reason
to believe our bounds are tight, meaning the solution is likely within them, then we might
opt for a smaller swarm to save on doing too many calls to the objective function. If we run
the search to miter iterations every time, the number of calls to the objective function is
npart×miter plus another npart calls to initialize the swarm.

Also, in the example above, the swarm of ten particles run for 1000 iterations, 10,000
objective function calls, was, on average, better at finding the global minimum than the
swarm of 100 particles run for 100 iterations, also 10,000 objective function calls. We’ll do
similar analyses for the other swarm algorithms we develop.

If we don’t call Optimize of RO, but instead manually call Initialize followed by
miter calls to Step, we can interrogate the swarm during the search to see where it is in
the search space. This opens up the possibility of creating a movie of the search since we
are in two dimensions. Naturally, we can’t show such a movie in a book, but we can show
frames from it. Building the movie and showing specific frames from it gives us Figure 3.6.

Figure 3.6 shows the swarm positions at different points in the search. Moving clockwise
from the upper left, we see the initial swarm configuration. The particle positions are circles,
the best position of the swarm is a star, and the known global minimum of f(x, y) is shown
as a square. Note, for this figure, and similar ones in subsequent chapters, we’re fixing the
NumPy pseudorandom number seed so each swarm initializes in exactly the same way. We
set the NumPy seed by adding,

np.random.seed(8675309)

before the Bounds object is created.
Fixing the seed means we can compare how the swarms evolve from the same starting

point. Notice that the initial swarm best position is actually quite close to the second
minima of the function at (2.2,−4.3) yet the swarm evolves to find the true global minima
at the end of the search.

CHAPTER 3. RANDOM OPTIMIZATION 42

Figure 3.6: Frames from a search with a swarm of twenty particles and 100 iterations.
Clockwise from the upper left: initial swarm positions, frame 33, frame 66, and final swarm
positions. Swarm particles are circles. The swarm best position is a star and the known
global best position is a square.

Next in Figure 3.6, we see frame 33, after 33 iterations of the swarm. The best particle
has now moved quite close to the global minimum. The next frame is frame 66. We see
that the swarm best is virtually on top of the global minimum. We also see that other
particles near the global minimum have moved in that direction. The final frame shows
the configuration of the swarm at the end of the search. The global best position has been
found with reasonable quality, and we see that other nearby particles are also closing in on
the minimum. Given the plot of Figure 3.5, the particles near the minimum are “falling
into” the hole.

Random optimization, as mentioned at the beginning of this chapter, is individualistic.
There is no communication between members of the swarm. We see this in Figure 3.6.
The swarm best particle has moved to the global minimum, but the majority of the swarm
is still wandering about in the search space. Those particles are unaware of how well the
swarm best particle is doing. We’ll repeat this sort of analysis when we test the other swarm
algorithms in later chapters. In some of those cases, we’ll see a different kind of behavior

CHAPTER 3. RANDOM OPTIMIZATION 43

from the swarm precisely because the particles share information about their current state.
This concludes our implementation and testing of the RO class. Now that we know how

a specific swarm algorithm works and interfaces with the framework created in Chapter 2,
we can move on to our next swarm intelligence algorithm: particle swarm optimization.

Chapter 4

Particle Swarm Optimization

Chapter 3 started us off with the simplest of swarm optimization algorithms, random op-
timization. In this chapter, we encounter what is perhaps the most widely used swarm
optimization technique, particle swarm optimization or PSO.

Section 4.1 describes the PSO algorithm, including variations on the main theme that
we’ll develop as part of our PSO class. The PSO class itself is defined, method by method,
in Section 4.2. We put the PSO class through its paces in Section 4.3 and compare it to
random optimization.

4.1 Making Sense of the World

James Kennedy, co-creator of the PSO algorithm, wrote that the main insight leading to
PSO was: “People learn to make sense of the world by talking with other people about it.”
[12].

The random optimization algorithm of Chapter 3 implements a swarm of particles mov-
ing independently through the search space. Particle i never shares information with particle
j. A supreme overseer watches the independent agents and notes the best solution position
any one of them found.

In a particle swarm, the particles do share information with each other. They do learn
about the world (search space) by talking with other people (particles) about it. We’ll
outline the canonical algorithm in a bit, but, in essence, in PSO a particle knows two
things: the best place it’s found in the search space, and the best place the swarm as
a whole, or a subset of it (a neighborhood), has found. The first piece of knowledge is
cognitive, something the particle knows without being told. The second is social, something
the particle knows because other particles told it. The tension between these two types of
knowledge guides particles as they search. The (hopeful) net result is the swarm converging
on the best solution to the problem we are trying to solve.

The number of PSO variants developed over the last several decades is legion. We’ll
content ourselves with only two: canonical PSO [13] and bare bones PSO [14]. Canonical
PSO is outlined in Algorithm 6. We’ll see below how to modify it for bare bones PSO.

4.1.1 Canonical PSO

Let’s contemplate Algorithm 6. The inputs include the now familiar objective function
(Section 2.2), a bounds object (Section 2.3), an initialization object (Section 2.4), and an

44

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 45

Algorithm 6 The canonical PSO algorithm.

Input: An objective function, bounds, initialization type, c1, c2, ω0, inertia schedule
Output: The best position found by the swarm

for each particle, i do
Select an initial position within the bounds of the search space, xi
Evaluate the objective function at this position
Mark this position as the best found by the particle so far, x̂i ← xi

end for
Store the best initial particle position as the swarm global best position, g
Set the initial particle velocities to zero, vi ← 0
while not done do

for each particle, i do
Set ω for this iteration of the swarm
Get the neighborhood best position for particle i, ĝi
Update the velocity: vi ← ωvi + c1(x̂i − xi) + c2(ĝi − xi)
Update the position: xi ← xi + vi
Evaluate the new position, xi
if fitness of new position, xi < fitness of particle best position, x̂i then

Update the particle best position, x̂i ← xi
end if
if fitness of new position < fitness of swarm best position then

Store the new global best, g ← xi
end if

end for
Increment the iteration counter

end while

inertia object (Section 2.6). In addition, we need three scalar parameter values: c1, c2, and
ω0. If we include an inertia object as input, ω0 becomes optional.

A read through Algorithm 6 reveals references to several types of vectors. First, we
have xi. This is the position of particle i. The position is a d-dimensional vector where d
is the dimensionality of the search space. All the vectors in Algorithm 6 are d-dimensional.
Associated with each particle are two other vectors. The first is the particle’s velocity,
vi. The velocity is used to update the particle’s position for the next iteration of the
swarm. The second vector associated with each particle is x̂i. This vector is the best
position in the search space that particle i has found on its own. The c1 and c2 vectors are
randomly generated on each iteration: c1 = c1U1 and c2 = c2U2 with U1 and U2 uniform
d-dimensional random vectors, [0, 1).

There are two additional vectors called out in Algorithm 6. One we’ve encountered
before, though not as a mathematical symbol. It’s g. This is the global best position, the
value we want to return when the search completes. The concept of a neighborhood of
particles, which we’ll make more concrete momentarily, gives us ĝi. This vector represents
the best position the neighborhood of particle i knows about.

A neighborhood is a set of particles, and each particle belongs to at least one neighbor-
hood. In its simplest form, the entire swarm forms a single neighborhood. In that case,
ĝi = g. The idea of neighborhoods is to partition the swarm into sets of particles that can
influence each other. The arrangement of particles into neighborhoods is the topology of

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 46

the swarm. Researchers have investigated many different types of topologies. We’ll imple-
ment two in our PSO class. The first is global, there is only one neighborhood, and every
particle belongs to it. The second is a ring. If the swarm has n particles, we can imagine
they are arranged in a ring, so that particle i is linked to particles i − 1 and i + 1, with
suitable wrapping so that particle n−1 is followed by particle zero. With this topology and
a given number of neighbors on either side of it, we have a neighborhood for each particle.
For example, if working with particle 5 and the number of neighbors on each side of it is
two, then particles 3 through 7 form the neighborhood of particle 5 and ĝ5 will be the best
position known by particles 3 through 7. Notice that particle 5 is part of more than one
neighborhood. This is often the case with swarm topologies. Continuing our example, all
of the following ring neighborhoods include particle 5:

(1, 2, 3, 4, 5); (2, 3, 4, 5, 6); (3, 4, 5, 6, 7); (4, 5, 6, 7, 8); (5, 6, 7, 8, 9)

The people analogy for PSO helps here. As people, we typically belong to more than one
group. We have our families, our coworkers, our local community, and many specialized
communities related to our beliefs, politics, hobbies, sports, etc. Therefore, when Algo-
rithm 6 refers to a neighborhood, it is referring to an arrangement of the particles, which,
for us, means either all particles in one neighborhood or a ring of neighborhoods. We’ll see
in Section 4.2 exactly how the ring neighborhoods are configured.

The first for loop in Algorithm 6 gets the set of initial swarm positions, x. It then
evaluates the objective function at each of these positions. Since the swarm has only looked
at the initial set of positions, we set x̂i to xi as that is the best position each particle knows
about so far. The best x̂i position is used to initialize the swarm best position, g. While
not called out explicitly in Algorithm 6, we also need to store the objective function value
at each particle best position and the global best position.

The while loop runs the search. The loop continues until a maximum number of swarm
updates has been performed, a tolerance on the objective function value has been met, or
a Done object has returned true (Section 2.5).

The inner for loop represents a single swarm update. The first step is to set ω for
the current iteration. If we peek ahead a bit, we see that ω is used in the velocity update
equation as a coefficient on the current velocity of particle i. Section 2.6 told us that ω is
a number in the range [0, 1]. Typically, it is never below 0.5. We see now why it is called
inertia. It reduces the velocity of the particle on the next swarm iteration. As the search
progresses, it is beneficial to make ω smaller under the belief that the swarm is closer to
the best position in the search space and that we don’t want to move too far on the next
iteration. We want to slow down, so we keep less of the previous iteration’s velocity. This is
precisely what the LinearInertia class of Section 2.6 does; it reduces ω linearly as the
number of swarm iterations increases. Typical values start ω at 0.9 and when the maximum
number of iterations is complete ω has decreased to 0.5. After setting ω, we get ĝi for the
neighborhood of particle i.

The next two steps in Algorithm 6 are the core of canonial PSO. The first applies the
velocity update equation to decide what the velocity of particle i is for this iteration,

vi ← ωvi + c1(x̂i − xi) + c2(ĝi − xi) (4.1)

There are three terms in Equation 4.1. The first we already mentioned, it multiplies the
existing velocity vector for particle i by ω < 1 to retain a fraction of the previous velocity.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 47

Intuitively, ωvi makes sense. Without it, the velocity might explode in magnitude.
The next two terms in Equation 4.1 are the cognitive and social terms alluded to above.

The cognitive component,

c1(x̂i − xi)

employs the knowledge particle i has gained on its own. The best position particle i has
found during the search is in x̂i. The vector difference between this particle best position
and the particle’s current position is multiplied, component by component, by c1, a random
vector with components in the range [0, c1).

The social component,

c2(ĝi − xi)

is influenced by the neighborhood best position, ĝi. It is also multiplied by a random vector
in the range [0, c2). The sum of these three components becomes the vector used to update
the position of particle i,

xi ← xi + vi (4.2)

where, if you are bothered by the straight addition of a velocity and a position, you can
imagine the velocity vector to be multiplied by ∆t = 1 as the time step between swarm
updates.

The newly updated particle position, xi, is passed to the objective function for evalua-
tion. If the fitness of xi is less than the fitness of the particle best position, x̂i; the particle
best position is updated. If the fitness of xi is also less than the fitness of g, the overall
swarm best position, it is also updated.

The swarm update step completes when all particles have been moved to a new position,
and those new positions have been evaluated. At this point, the iteration counter is incre-
mented, and the next swarm update loop begins. When done, the position in g is returned
as the solution to the search.

Algorithm 6 does not expressly mention two features of many PSO implementations:
the bounding of xi and the bounding of vi. The former establishes the search space. A
decision must be made when a particle attempts to move beyond the bounds of the search
space. Perhaps the simplest is to take any component of xi outside the allowed range and
clip it to the limit. For example, if xij , the j-th position component of particle i, is updated
to 17, and the limit for that component is 15, then change the 17 to a 15 and continue. In
our framework, we use enforce="clip" when instantiating a Bounds object in this case.
Another option is to replace the offending component value with one randomly selected from
the allowed range. For the framework, enforce="resample" causes this to happen.

The velocity may be limited in the same way as the position, component by component.
Typically, this is not required because of the first term in Equation 4.1, but if velocities
are increasing dramatically, clipping or resampling should be used. The framework uses a
Bounds object to control the range of allowed velocities just as it does for positions.

Let’s take a look at our second PSO variant, bare bones PSO (BBPSO), to see how it
differs from the canonical algorithm.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 48

4.1.2 Bare Bones PSO

In 2003, Kennedy outlined a new variant of PSO, which he termed Bare bones PSO [14].
Bare bones PSO does away with the concept of velocity, Equation 4.1, and changes the
update rule, Equation 4.2, to a stochastic one that randomly updates particle position
components with either the corresponding component of the particle best position or a new
component value selected from a normal distribution with a mean between the particle best
component and the neighborhood best component. [14] refers to the probability threshold
deciding which one of these two component updates is used as the interaction probability,
pb.

Mathematically, then, xij is set during the update loop to,

x̄ =
1

2
(ĝij + x̂ij) (4.3)

σ = |ĝij − x̂ij |
xij ∼ N (x̄, σ)

if p ∼ U [0, 1) < pb. Otherwise,

xij ← x̂ij (4.4)

copies the corresponding component of the particle best position.
Note that x̄ is the mean value between the current component (j) of the neighborhood

best position and the particle best position. The variance of the normal distribution is
set to the absolute value of the difference in these positions. Doing this sets the position
component to some random value near the mean of the best the particle knows and the best
the neighborhood knows. As the swarm learns and, as often happens, contracts as particles
move towards g, the normal distribution becomes tighter and tighter as σ gets smaller and
smaller. This is an entirely reasonable thing for the swarm to do as it nears the global best
position.

We’ve described canonical PSO, and bare bones PSO, but we haven’t paid much atten-
tion to how to configure a PSO swarm for a search. Let’s remedy that next.

4.1.3 Configuring a Particle Swarm

To configure any swarm search, we need an objective function, the dimensionality of the
search space, bounds, initialization, the number of particles, and what it means to be done
(tolerance value or a maximum number of iterations). For a particle swarm, we need to set
other values as well, like c1 and c2. If we’re using a constant ω, we need to set ω0; otherwise,
we need to configure an inertia object.

Typically, we set c1 and c2 before running the search and then leave them as constants.
However, as with anything in this field that can be adjusted, someone has looked at the
effect of adjusting these values dynamically. Let’s review what these values represent and
then consider their implications. For the following, we are thinking only of the canonical
algorithm; bare bones PSO doesn’t use c1 or c2.

We use c1 to weight the cognitive component of the velocity update. This reflects local
knowledge, the particle’s discoveries. So, if we make c1 > c2, we’ll be telling the particle to
spend more time searching around what it knows to be a good place and pay less attention
to what the remainder of the neighborhood or swarm is telling it. Likewise, making c2 > c1

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 49

class PSO:
def __init__(self, ...):
def Results(self):
def Initialize(self):
def Done(self):
def Evaluate(self, pos):
def RingNeighborhood(self, n):
def NeighborhoodBest(self, n):
def BareBonesUpdate(self):
def Step(self):
def Optimize(self):

Figure 4.1: Skeleton of the PSO class.

does the opposite; the particle thinks less for itself and instead goes along with the crowd
(neighborhood). We’ll experiment with these options below.

Historically, it was suggested to use c1 = c2 = 2.0, but careful analysis in [15] led to a
recommendation of c1 = c2 = 1.49, the default values the PSO class uses. [16] showed that
particle trajectories converge if,

ω >
1

2
(c1 + c2)− 1

which our default c1, c2, and ω values satisfy.
What about ω? Again, a myriad of experiments have been performed and published.

The notion of linearly decreasing ω over the life of the search from about 0.9 to about
0.5 seems, operationally, to be a reasonable thing to do. These are the default values for
a framework LinearInertia object, so, in our experiments, we’ll often use the default
constructor in that case. For variety, the framework also includes RandomInertia, which
uses a randomly selected inertia value on each iteration, but the range is restricted to [0.5, 1).
When we test the PSO class in Section 4.3, we’ll experiment a bit with c1 and c2, but we’ll
leave experimenting with ω as an exercise for the reader.

Let’s make PSO concrete. The next section walks through the code for the PSO class.
Compare the implementation in Section 4.2 with Algorithm 6.

4.2 The PSO Class

Like the RO class of Section 3.2, the PSO class uses the framework objects of Chapter 2.
We’ll present a skeleton of the class, the class constructor, and then fill in the skeleton,
method by method. The source code for the PSO class is in the file PSO.py. As before, the
listing here is condensed, see PSO.py for comments and proper spacing.

The PSO class skeleton is in Figure 4.1. The overlap in method names with the other
optimization classes, like RO in Figure 3.4, is clear. However, while some methods are
identical from algorithm to algorithm, others only share a name, the underlying code is
different.

The constructor (__init__) takes up to 17 possible arguments. The PSO class is the
most sophisticated class we’ll encounter. Much of this is because it implements multiple
variants of the PSO algorithm. The possible arguments are in Table 4.1.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 50

Parameter Description

obj Objective function object (required)
npart Number of particles in the swarm (10)
ndim Number of dimensions in the search space (3)
max_iter Maximum number of swarm iterations (200)
c1 Cognitive parameter (1.49)
c2 Social parameter (1.49)
w Base inertia parameter value (ω0 = 0.729)
inertia Inertia object (None means use ω0)
bare If true, use the bare-bones update rule (False)
bare_prob Probability of updating a particle’s components (bare-bones only, 0.5)
tol Tolerance value (None)
init Initializer object (None)
done Done object (None)
ring If true, use a ring topology (False)
neighbors Number of particle neighbors for the ring, must be even (2)
vbounds Velocity bounds object (None)
bounds Bounds object (None)

Table 4.1: Arguments to the PSO class constructor.

Many of these arguments are universal to the swarm algorithms we’ll develop. The
arguments new to the PSO class are,

Parameter Description

c1 Cognitive parameter
c2 Social parameter
w Base inertia parameter value (ω0)
inertia Inertia object (None means use ω0)
bare If true, use the bare-bones update rule
bare_prob Probability of updating a particle’s components (bare-bones only)
ring If true, use a ring topology
neighbors Number of particle neighbors for the ring, must be even
vbounds Velocity bounds object

We see that c1, c2, and w relate directly to c1, c2, and ω from the velocity update
equation (Equation 4.1). If not supplied, these values default to 1.49, 1.49, and 0.729,
respectively. These are the recommended values in [15]. In most cases, you’ll want to
adjust ω as the swarm evolves from iteration to iteration. The framework supports this
via the inertia parameter accepting an instance of an inertia class like LinearInertia
(see Section 2.6).

Set bare to True to use the bare bones update rule instead of canonical PSO. If desired,
one can adjust bare_prob to a value in [0, 1] to control the probability of selecting a new
value for the current particle’s components or using the same component from the best
position the current particle knows.

The PSO class supports two swarm topologies: global and ring. To select a ring topology,
set ring to True and make neighbors an even number to set the number of neighbors,
half to the left and half to the right of the current particle. The default is two.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 51

At times, it is desirable to bound the particle velocities. To do this with the PSO class,
pass a properly initialized Bounds object, or subclass, to the vbounds parameter. If set,
the particle velocities, after the update, are bounded by calling the Limits method of the
bounds object.

The code for the constructor is quite similar to all the other swarm classes,

def __init__(self, ...):
self.obj = obj
self.npart = npart
self.ndim = ndim
self.max_iter = max_iter
self.init = init
self.done = done
self.vbounds = vbounds
self.bounds = bounds
self.tol = tol
self.c1 = c1
self.c2 = c2
self.w = w
self.bare = bare
self.bare_prob = bare_prob
self.inertia = inertia
self.ring = ring
self.neighbors = neighbors
self.initialized = False
if (ring) and (neighbors > npart):

self.neighbors = npart

where arguments are stored in member variables. If the ring topology is selected and the
number of neighbors happens to be higher than the number of particles in the swarm, the
neighborhood is set to the number of particles.

As in Chapter 3, we present the remainder of the PSO class code in a top-down fashion.

4.2.1 Optimize

All the swarm classes use the same form for this method,

def Optimize(self):
self.Initialize()
while (not self.Done()):

self.Step()
return self.gbest[-1], self.gpos[-1]

which follows Algorithm 2 by initializing the swarm (Initialize) before entering the
while loop to do swarm updates and evaluations (Step) until done (Done). As before,
the swarm best objective function value and position are returned.

Let’s look at how PSO initializes the swarm.

4.2.2 Initialize

The code for Initialize is,

def Initialize(self):
self.initialized = True
self.iterations = 0
self.pos = self.init.InitializeSwarm()

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 52

self.vel = np.zeros((self.npart, self.ndim))
self.xpos = self.pos.copy()
self.xbest= self.Evaluate(self.pos)
self.gidx = []
self.gbest = []
self.gpos = []
self.giter = []
self.gidx.append(np.argmin(self.xbest))
self.gbest.append(self.xbest[self.gidx[-1]])
self.gpos.append(self.xpos[self.gidx[-1]].copy())
self.giter.append(0)

The swarm is marked as initialized (initialized), and the iteration counter set to
zero (iterations). Next, the InitializeSwarm method of the initializer object sets
the initial positions of the particles (pos), see Section 2.4. The initial particle velocities are
set to zero (vel).

The initial position of each particle is, by default, the best-known position for that
particle, so the positions are simply copied to the per particle best positions, xpos. As
with pos, xpos is a 2D NumPy array where each row is that particle’s best-known position.
The particle best objective function values are stored in xbest by evaluating the objective
function at the initial positions.

The remainder of the code sets up tracking of the swarm best position as described in
Section 3.2.2. Each swarm algorithm will track the evolution of the swarm in this way.

4.2.3 Step

The Step method implements a single swarm evaluation and update step. The code is,

def Step(self):
if (self.inertia != None):

1: w = self.inertia.CalculateW(self.w,
self.iterations, self.max_iter)

else:
2: w = self.w

if (self.bare):
3: self.pos = self.BareBonesUpdate()

else:
for i in range(self.npart):

4: lbest, lpos = self.NeighborhoodBest(i)
c1 = self.c1 * np.random.random(self.ndim)
c2 = self.c2 * np.random.random(self.ndim)

5: self.vel[i] = w*self.vel[i] + \
c1*(self.xpos[i] - self.pos[i]) + \
c2*(lpos - self.pos[i])

if (self.vbounds != None):
6: self.vel = self.vbounds.Limits(self.vel)
7: self.pos = self.pos + self.vel

if (self.bounds != None):
8: self.pos = self.bounds.Limits(self.pos)
9: p = self.Evaluate(self.pos)

for i in range(self.npart):
10: if (p[i] < self.xbest[i]):

self.xbest[i] = p[i]
self.xpos[i] = self.pos[i]

11: if (p[i] < self.gbest[-1]):
self.gbest.append(p[i])

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 53

self.gpos.append(self.pos[i].copy())
self.gidx.append(i)
self.giter.append(self.iterations)

12: self.iterations += 1

A swarm iteration step starts by setting the value of ω. If an inertia object is been
supplied, its CalculateW method is called (1). The arguments are ω0 (w), the current
swarm iteration number (iterations) and the maximum number of iterations to perform
(max_iter), ignoring any early termination. We saw the code for the LinearInertia
and RandomInertia classes in Section 2.6. If no inertia object was passed to the PSO class,
ω0 is used for each swarm update (2). If using bare bones PSO, the BareBonesUpdate
method is called (3). We’ll see the definition in Section 4.2.7. Otherwise, the canonical
swarm update is used.

The canonical update examines each particle in the swarm. First, we locate the local
best objective function value (lbest) and position (lpos) for the neighborhood in which
the current particle (pos[i]) resides by calling NeighborhoodBest (4). We’ll review
the code for NeighborhoodBest in Section 4.2.6 below. After this, we generate c1 and
c2 to use for this particle as some random fraction of c1 and c2, respectively. Note that c1
and c2 are vectors to use different values for each dimension of the particle.

With the preliminaries out of the way, the velocity update for particle i is found by
implementing Equation 4.1. Note, after the update, we check to see if a Bounds object was
given and if so, we call the Limits method (6). The velocity vector is used to move the
particle to its new position (7).

Once all particles move to a new position, any boundary conditions are applied (8) and
the new particle positions are evaluated with a call to Evaluate (9) (see Section 4.2.8)
to return a vector of objective function values (p). Each particle is then checked to see
if it is either a new particle best position (10) or a new swarm best postion (11) with
appropriate bookkeeping to track the evolution of the swarm. Finally, the swarm update
step completes, so the iteration counter is bumped (12).

4.2.4 Done

This method is identical to the Done method of the RO class. See the code in Section 3.2.4.

4.2.5 NeighborhoodBest

To update the swarm in the Step method, we need to know the best location for the
neighborhood of the current particle. This is true for both canonical and bare bones variants
of PSO. This objective function value and position are returned by NeighborhoodBest
using the current particle number as the argument. Let’s take a look at the code for this
method,

def NeighborhoodBest(self, n):
if (not self.ring):

return self.gbest[-1], self.gpos[-1]
lbest = 1e9
for i in self.RingNeighborhood(n):

if (self.xbest[i] < lbest):
lbest = self.xbest[i]
lpos = self.xpos[i]

return lbest, lpos

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 54

If the search is not using a ring neighborhood, then the best objective value and position
currently known to the swarm are returned. These are stored in the lists gbest and gpos,
respectively. Therefore, the current bests are the last elements in the list (indexed with
[-1]).

On the other hand, if the PSO object is using a ring neighborhood, we loop over the
set of particle indices returned by RingNeighborhood (see Section 4.2.6) to find which of
them is the best. Notice, the search is not looking for the best position of the neighborhood
particles, given where they currently are, but rather the best position that the neighborhood
particles have ever found. This is why we look for the smallest xbest for the neighborhood
particles. When found, the neighborhood best objective value (lbest) and position (lpos)
are returned.

4.2.6 RingNeighborhood

The RingNeighborhood method takes the index of a particle (n, a row of pos) and
returns a list of indices representing the set of particles considered to be neighbors of n. As
we’re implementing a ring topology, this means the set of indices that are m/2 before and
m/2 after the given particle number n where m is the size of the neighborhood passed to
the PSO object when it was constructed.

Before walking through the code for this method, let’s see it in action by exercising
RingNeighborhood directly at the Python command prompt,

>>> from PSO import *
>>> p = PSO(obj=None, ring=True, npart=20, neighbors=4)
>>> p.RingNeighborhood(10)
array([8, 9, 10, 11, 12])
>>> p.RingNeighborhood(18)
array([16, 17, 18, 19, 0])
>>> p.RingNeighborhood(0)
array([18, 19, 0, 1, 2])

The commands above load the PSO class and create an instance, p. As we are interested
in calling the RingNeighborhood method directly we create the instance by passing None
as the objective function, setting ring to True, setting the number of particles in the swarm
to twenty, and the number of neighbors to four.

We now call the RingNeighborhood method directly passing in the desired particle
number. First, we ask for the indices of the neighborhood of particle 10 and are told that
the neighborhood contains particles 8, 9, 10, 11, and 12. There are four neighbors to particle
10, two on each side of it. This follows the ring topology as we defined it in Section 4.1.
Next, we want to know the neighborhood of particle 18. This time, the method returns a
neighborhood of 16, 17, 18, 19, and 0. The neighborhood of particle 0 is particles 18, 19,
0, 1, and 2. At this point, the pattern is clear: the neighborhood of particle n is particles
n− 2, n− 1, n, n+ 1, and n+ 2 modulo the number of particles in the swarm.

Putting this observation into code gives us RingNeighborhood,

def RingNeighborhood(self, n):
idx = np.array(range(n-self.neighbors//2,n+self.neighbors//2+1))
i = np.where(idx >= self.npart)
if (len(i) != 0):

idx[i] = idx[i] % self.npart

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 55

i = np.where(idx < 0)
if (len(i) != 0):

idx[i] = self.npart + idx[i]
return idx

We create the NumPy array, idx, as consecutive indices from n−m/2 to n+m/2 where
n is n and m is the size of the number of neighbors (neighbors). The values in idx may
be negative or greater than the number of particles in the swarm (npart), so we first ask
if any values in idx are too large and if so, we replace them with the value modulo npart.
This wraps neighborhood numbers equal to or above npart to the lower end of the range.
Then, we check for negative values in idx, and if there are any, add npart to them to
wrap around the other way. Finally, the updated set of neighborhood indices is returned.
Note that n is always the value in the middle of idx. Let’s now consider the bare bones
swarm update.

4.2.7 BareBonesUpdate

If bare is True, the Step method will call BareBonesUpdate to select new swarm
positions. The code is,

def BareBonesUpdate(self):
pos = np.zeros((self.npart, self.ndim))
for i in range(self.npart):

lbest, lpos = self.NeighborhoodBest(i)
for j in range(self.ndim):

if (np.random.random() < self.bare_prob):
m = 0.5*(lpos[j] + self.xpos[i,j])
s = np.abs(lpos[j] - self.xpos[i,j])
pos[i,j] = np.random.normal(m,s)

else:
pos[i,j] = self.xpos[i,j]

return pos

The method needs to return an entirely new swarm array (pos), so storage for it is
created. Each particle is then visited. The bare bones update also uses neighborhoods, so
NeighborhoodBest is called passing in the current particle number to get the position
of the neighborhood best.

Next, each dimension of the current particle is updated. If a random scalar is below
bare_prob, the update follows Equation 4.3, otherwise it’s Equation 4.4 to copy the j-th
component of the i-th particle’s best-known position. When the loops over particles and
dimensions finish, the new swarm positions are returned.

4.2.8 Evaluate

This method is identical to the Evaluate method of the RO class. See the code in Sec-
tion 3.2.6.

4.2.9 Results

As for RO, the Results method returns information related to how the swarm evolved.
For the PSO class, Results returns all the information the RO version does, except eta
and vpos, which do not apply to PSO. See Section 3.2.7. Additionally, Results returns

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 56

PSO-specific values c1, c2, w (ω0), and vel, the velocity vectors for the current particle
positions (returned in pos).

This completes the PSO class. Please look at the full source code in the file PSO.py.
Now, let’s use our new class to see how it behaves, and how it compares with the RO class
of Chapter 3.

4.3 Testing the PSO Class

We used the fxy_gaussian.py code presented in Chapter 3 to demonstrate the behavior
of the RO class. Let’s do the same here with the PSO class. Recall, fxy_gaussian.py is
configured to find the minimum of Equation 3.1, a pair of two-dimensional Gaussians with
minimum at (−2.2, 4.3) (see Figure 3.5). All the code is already in fxy_gaussian.py
and discussed in Section 3.3. The only change to use PSO is the invocation of the swarm
object,

swarm = PSO(obj=obj, npart=npart, ndim=2, max_iter=miter, init=i,
bounds=b, inertia=LinearInertia(), bare=False,
bare_prob=0.5, ring=False, neighbors=4)

Most of this code is the same as before: the same objective function object (obj), the same
number of particles (npart), dimensions (2), iterations (miter), initializer object (i), and
bounds (b).

There are five new parameters, inertia, bare, bare_prob, ring, and neighbors.
The first is set to an instance of the class LinearInertia, which, as we’ve discussed,
decreases ω linearly on each swarm update from a default starting value of ω = 0.9 down
to ω = 0.5 when the search is over. Notice, there is no tol keyword, so the swarm runs
through all miter iterations.

The second and third parameters, bare and bare_prob, select whether or not to use
the bare bones update rule or the canonical update rule and the likelihood of choosing
to keep the particle best position for a dimension during the swarm update step, see Sec-
tion 4.2.7. We’ll start with the canonical rule (bare=False). The last two parameters
decide whether or not to use a ring topology (ring) and, if so, how many neighbors each
particle has, half on either side of it.

One run of fxy_gaussian.py using the default setup,

> python3 fxy_gaussian.py 10 100 PSO RI

gave,

f(-2.20002195, 4.29989850) = -4.9999999326
(20 swarm best updates)

which is quite close to the actual minimum, so we have some confidence that the PSO class
is working. Summarizing ten runs gives (mean ± SE),

PSO RO

Minimum found −4.3983± 0.3792 −3.7851± 0.8534
Swarm updates 18.4± 1.7 38.9± 6.2

where the RO class test from Section 3.3 is included for comparison.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 57

Figure 4.2: Frames from a PSO search with a swarm of twenty particles and 100 iterations.
Clockwise from the upper left: initial swarm positions, frame 33, frame 66, and final swarm
positions. Swarm particles are circles. The swarm best position is a star and the known
global best position is a square.

We see immediately that PSO, for the same size swarm and number of iterations, is
doing a better job than RO. A look at the output of the ten PSO runs shows that 8 of
the 10 searches ended up at the overall minimum near (−2.2, 4.3) while the remaining two
searches found the shallower minimum near (2.2,−4.3). Bumping miter from 100 to 1000
to search longer changes the results for ten new runs to,

Minimum found −4.7000± 0.2846
Swarm updates 194.6± 46.2

which is misleading because nine of the ten runs found the global minimum of exactly -5.0
while the remaining one found the other minimum of exactly -2.0.

Let’s see some frames from the swarm as it searches. For this, we’ll go back to 100
iterations and show the same frame numbers as in Figure 3.6. The PSO frames are in
Figure 4.2.

Clockwise from the upper left are the initial swarm positions, iteration 33, iteration 66,

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 58

and the final positions. The swarm best is the star, and the square is the known minimum.
The swarm performed well. The final particle positions were quite different from the initial
positions. For RO, the initial and final particle positions were broadly similar as each
particle was conducting a local search and was unaware of better positions found by other
particles. With PSO, the particles move in response to the movements of the rest of the
swarm (remember, we’re using a single global neighborhood for the moment). However,
something about the overall motion of the PSO swarm might seem a little “off” to you.
The minimum was found, and the particles moved towards it, but a peculiar vertical line
of particles runs through the minimum. This is due to the Bounds object. A glance at
fxy_gaussian.py shows that the Bounds object was told to randomly resample particle
dimensions that hit the limit. For the 2D space we’re searching, this means an out-of-bounds
dimension will pick a new position along a vertical or horizontal line depending upon which
dimension exceeds the limit. This explains why the swarm is stretched vertically.

Let’s regenerate Figure 4.2, but this time we’ll set enforce="clip" for the Bounds
object. Recall, in Chapter 3, we set fxy_gaussian.py to use a fixed NumPy pseudoran-
dom number seed. This means every run of the code will produce the same initial sequence
of particle positions.

Now, by using clipping, when a particle’s dimension exceeds a limit, it will be clipped to
the limit value. We’ll still get the global minimum, but the overall behavior of the swarm
will be somewhat different; see Figure 4.3.

The frame 33 plot (upper right) shows some particles stuck along the upper edge of the
search space. This is clipping in action. As swarm iterations proceed, the best is quickly
found, and the particles all start to converge on it (lower right). The swarm has collapsed
upon the global minimum by the end of the search (lower left). This collapse of the swarm,
when clipping, is a characteristic behavior often seen in the canonical algorithm. We’ll leave
clipping on for the remainder of this chapter.

To this point, our experiments have not adjusted the cognitive (c1) and social (c2) scale
factors. The default PSO class values are c1 = c2 = 1.49, as indicated above. Setting the
values like this balances the tension for a particle between the region near the best position
it has found and the overall best position of the neighborhood or swarm itself. The lower
left of Figure 4.3 shows us the endpoint for this case.

Let’s run two experiments, one where c1 > c2 and the other where c1 < c2. As before,
we fix the NumPy pseudorandom number seed to get the same initial particle configuration.
We need to set specific c1 and c2 values. We can do this easily in the constructor or after
creating the swarm object by using Python’s lenient object-oriented abilities. For example,

swarm = PSO(obj=obj, npart=npart, ndim=2, max_iter=miter, init=i,
bounds=b, inertia=LinearInertia(), bare=False,
bare_prob=0.5, ring=False, neighbors=4)

swarm.c1 = 0.745
swarm.c2 = 1.49

will create the swarm object and then set c1 and c2 directly making c1 = c2/2. Recall,
we want all ω values used to be greater than (c1 + c2)/2 − 1, and our choices for c1 and
c2 satisfy this requirement since the smallest ω returned by the LinearInertia class is
0.5 > (0.745 + 1.49)/2 − 1 = 0.1175. Similarly, we can reverse the values to use c1 = 1.49
and c2 = 0.745. Running fxy_gaussian.py with these two modifications produces the
final swarm configurations shown in Figure 4.4 with c1 = 0.745, c2 = 1.49 on the left and
c1 = 1.49, c2 = 0.745 on the right.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 59

Figure 4.3: Frames from a PSO search that clips when particles move beyond the boundary.
Clockwise from upper left: initial configuration, frame 33, frame 66, final configuration.
Compare with Figure 4.2.

The left side of Figure 4.4 isn’t an error; the entire swarm collapses on top of itself at
the wrong minimum. Why? This case has c1 = c2/2, meaning the cognitive component,
the part of the velocity update based on what the particle has learned for itself, is only half
the social component’s size. The social component is based on the neighborhood, but, for
this example, the neighborhood is the entire swarm. Therefore, each swarm update step
strongly favors moving in a direction closer to the best position the swarm already knows.

Isn’t moving towards the global best position what we want? Yes and no. Here, the
fixed random seed used to initialize the swarm places a particle near the (2.2,−4.3) local
minimum position and correctly marks it as the initial swarm best position (see upper left of
Figure 4.3). Since all particles are now strongly attracted to the swarm best position, on each
iteration, the particles move towards this location and further away from the true global
minimum we want to find. Without much of a chance for local (cognitive) exploration,
particles fall into the trap and move together on top of the local minimum. A quirk of
the way the swarm was initialized has resulted in a failure. If the initial swarm positions
had landed a particle near the global minimum, the search might have been successful.
The emphasis on the social component of the velocity update has virtually removed the
possibility that an individual particle, exploring the region it knows best, might find a new

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 60

Figure 4.4: Final swarm configurations for c1 = 0.745, c2 = 1.49 (left) and c1 = 1.49, c2 =
0.745 (right).

global minimum.
The right side of Figure 4.4 tells a different story. In this case, the global minimum

was found, but the swarm did not collapse upon itself, as in the case where c1 = c2. Here,
the relationship between c1 and c2 is c1 = 2c2 so the cognitive component is emphasized
over the social component. If you run this example and view the plots frame to frame,
you’ll see that the swarm wanders around. Overall, it is drawn to where the current best
position is, but not as quickly as in the previous case. When an individual particle is near
the global minimum, the swarm’s best position shifts to it, and the swarm starts moving in
that direction. When the search ends after 100 iterations, many particles are still wandering
around exploring other regions of the search space, as seen in Figure 4.4.

We see now that letting c1 = c2 is a reasonable thing to do without any prior intuition as
to whether c1 or c2 should be made more prominent. The first example shows that too much
emphasis on the social component can fail. The swarm is composed of social butterflies who
chase after whatever the crowd currently considers to be the best. By way of contrast, if we
dare to continue the analogy, the particles in a random search are all rugged individualists
who search on their own without influence. Finally, a reasonable balance between c1 and
c2 reflects a population of well-adjusted individuals who think for themselves while being
sensitive to social trends, should those trends be worthy of their attention.

Before concluding this extended example, let’s take a cursory look at the behavior
of a swarm using the bare bones update rule. We’ll run with bare=True and change
bare_prob (pb) accordingly. However, to avoid being needlessly pedantic, we won’t plot
the results. Instead, we trust the reader to run the code and view the frames on his or her
own.

So, change the code in fxy_gaussian.py like so,

swarm = PSO(obj=obj, npart=npart, ndim=2, max_iter=miter, init=i,bounds=b,
inertia=LinearInertia(), bare=True, bare_prob=0.5,
ring=False, neighbors=4)

where we’ll set the probability of selecting a new particle position based on the swarm and
particle best positions, per dimension, to 0.1, 0.5, or 0.9. For example, when pb = 0.1, for
any dimension of a particle, there is only a 10% chance that a new position will be selected

CHAPTER 4. PARTICLE SWARM OPTIMIZATION 61

and a 90% chance that the particle’s best-known position will be used. Review the code in
Section 4.2.7 to refresh your memory of how a bare bones swarm update happens.

If we run the search for each of these probabilities and view the resulting frames, we
see each run converges to the global minimum, but they do so in slightly different ways.
For pb = 0.1, the particles wander around slowly, almost like a random search, which
makes sense as there is little opportunity to explore new places rapidly; the low probability
usually results in small change to the current particle position. When pb = 0.9, however, the
particles make larger jumps and quickly locate the global minimum. As iterations continue,
the swarm collapses upon itself. Finally, when pb = 0.5, each component of a particle’s
position is updated in a manner balanced between exploring a new location along that
dimension or sticking with what is comfortably familiar. We can imagine pb acting like a
slider between c1 and c2 in the canonical PSO case: move pb → 1, and the swarm explores
more coarsely and is influenced by the swarm (neighborhood) best. Slide pb → 0, and the
opposite happens, the particles stick with what they already know.

The PSO is a workhorse, but it takes some experimentation to gain intuition about
how it behaves. There seems to be no end to the number of new variations appearing
in the literature. The two versions we considered in this chapter, the original canonical
version and the bare bones version, have parameters that need to be set appropriately. For
canonical PSO, we need reasonable c1 and c2 values, to say nothing of a sensible ω update
schedule. For bare bones, we have pb. Also, in both cases, there is the topology to consider.
We contented ourselves with the simplest topologies, global and ring, but there are others.
The von Neumann topology, a lattice, is often considered to be one of the best. We didn’t
include it in the PSO class to keep things simple, but you should consider implementing it
yourself if you find PSO is a tool you use frequently.

In the next chapter, we contemplate two newer algorithms selected from the zoo for how
well they seem to perform on many problems and for their simplicity in not possessing any
adjustable parameters (more or less). So, prepare for victory and watch out for the wolves.

Chapter 5

New Kids On The Block

We learned in Chapter 1 that there is a zoo’s worth of new optimization algorithms to
contemplate. Many are nature-inspired, at least loosely, while others are not, but all are
part of the swarm intelligence zoo.

In this chapter, we’ll explore two denizens of the zoo. The chosen denizens are Jaya
([17]) and the Grey Wolf Optimizer (GWO) ([18]). These algorithms were selected because
they are relatively new, straightforward to implement, and have no tuning parameters.1

Specifically, we’ll discuss then implement Jaya and GWO (Section 5.1, Section 5.2) and
compare them with PSO and RO using our now familiar 2D Gaussian optimization example
(Section 5.3).

5.1 Jaya

Rao introduced Jaya in 2016 and followed up with a book, [19]. The book outlines many
uses for Jaya and many variants. Here, we’ll discuss the original Jaya algorithm. Jaya,
Sanskrit for “victory”, is a straightforward algorithm with no tuning parameters. The lack
of tuning parameters makes Jaya attractive, and the original 2016 paper has been referenced
over 1100 times to Fall 2021. Let’s describe the algorithm and then its implementation using
our framework.

5.1.1 Description

Jaya works with a swarm of positions in a search space, as do all of our algorithms. Many
parts of its operation mirror random optimization quite closely, but, unlike RO, Jaya does
use the knowledge of the swarm to influence candidate positions for particles. Algorithm 4,
which we introduced to describe the operation of RO works just as well for Jaya. The only
difference is in how the

Select a new position some random distance away from the current position

line is implemented. For Jaya, candidate positions are selected based on the current particle
position’s per component magnitude, the current best position in the swarm, and the current
worst position in the swarm. A single equation governs the selection of new candidate
positions on each swarm update step,

1This statement isn’t strictly true. GWO has a tunable scale parameter that we’ll explore later in the
chapter.

62

CHAPTER 5. NEW KIDS ON THE BLOCK 63

class Jaya:
def __init__(self, ...):
def Results(self):
def Initialize(self):
def Done(self):
def Evaluate(self, pos):
def CandidatePositions(self):
def Step(self):
def Optimize(self):

Figure 5.1: Skeleton of the Jaya class.

Parameter Description

obj Objective function object (required)
npart Number of particles in the swarm (10)
ndim Number of dimensions in the search space (3)
max_iter Maximum number of swarm iterations (200)
tol Tolerance value (None)
init Initializer object (None)
done Done object (None)
bounds Bounds object (None)

Table 5.1: The usual set of swarm algorithm parameters.

xi ← xi + r1(xbest − |xi|)− r2(xworst − |xi|) (5.1)

Here xi is the current position of particle i, xbest and xworst are the current best and worst
positions of any particle in the swarm, and r1, r2 are random vectors in [0, 1).

Jaya seeks to move the candidate positions towards the swarm’s best (xbest) and away
from the swarm’s worst (xworst). Contrast this with PSO, which never considers the worst,
but uses the tension between the particle’s knowledge (cognitive) and the swarm’s knowledge
(social). In Jaya, there is no dichotomy of affinity; there is only attraction to the “good”
and repulsion from the “bad”.

Let’s implement Jaya using our framework. We’ll see that, as far as code is concerned,
we only need to take the RO class and alter one method.

5.1.2 Implementation

A skeleton for the Jaya class is shown in Figure 5.1. The source code is in Jaya.py.
The constructor (__init__) accepts the usual suspects as keywords, see Table 5.1.
These are the typical set of parameters each swarm class uses. This is reasonable, as

Jaya has no tuning parameters, so there are no additional things to think about when using
the class.

The Results method returns the expected set of swarm best information (gbest,
gpos, giter, and gidx) along with the final swarm position (pos) and the objective
function values at those positions (vpos).

The Initialize method is line-for-line identical to the method from RO. See Sec-
tion 3.2.2. Likewise, the Done, Evaluate, Step, and Optimize methods are identical to

CHAPTER 5. NEW KIDS ON THE BLOCK 64

those in RO. See Sections 3.2.4, 3.2.6, 3.2.3, and 3.2.1, respectively.
This leaves a single method to discuss, CandidatePositions. Let’s take a look at it,

def CandidatePositions(self):
pos = np.zeros((self.npart, self.ndim))
f = np.argsort(self.vpos)
best = self.pos[f[0]]
worst= self.pos[f[-1]]
for i in range(self.npart):

r1 = np.random.random(self.ndim)
r2 = np.random.random(self.ndim)
pos[i] = self.pos[i] + r1*(best - np.abs(self.pos[i])) - \

r2*(worst - np.abs(self.pos[i]))
if (self.bounds != None):

pos = self.bounds.Limits(pos)
return pos

The CandidatePositions method fills in pos, an npart by ndim NumPy array.
First, it sorts the existing positions (self.pos) by their current objective function values
(self.vpos) and selects the best and worst positions. Then, a candidate is generated
for each particle by implementing Equation 5.1 using random vectors r1 and r2. As
before, the candidate positions are checked for boundary violations by calling Limits on
any supplied Bounds object.

In terms of implementation, this is all there is to Jaya. In a sense, it is even simpler than
RO because the method for selecting candidate positions is based on simple vector math,
no sampling from a Gaussian distribution, nor any need to think about adjusting a scaling
factor (η) to the scope of the search space. Jaya handles this on its own by considering the
best and worst of the swarm.

We’ll seek victory with Jaya shortly. For now, let’s see what a pack of wolves might do
with an optimization problem.

5.2 The Grey Wolf Optimizer

The Grey Wolf Optimizer was introduced by Mirjalili, Mirjalili, and Lewis in [18]. Its
popularity has grown since then with nearly 6300 references to date. As the name suggests,
the optimizer seeks to model the behavior of a pack of grey wolves. Specifically, it models
the social hierarchy of the wolves and through that hunting as searching, encircling, and
attacking “prey”. Here “prey” is the best position in the search space representing the
solution to the problem at hand. As with Jaya, we’ll describe the algorithm (Section 5.2.1)
and then implement it (Section 5.2.2). Then we can get to the fun stuff in Section 5.3.

Before describing GWO, a clarification is in order. Recently work has demonstrated
that GWO, along with several other popular nature-inspired algorithms, are not actually
novel at all, but older PSO ideas wrapped in often strained metaphors.2 That being the
case, then, it is fair to wonder why GWO is included here. The emphasis in this book is
on practicality and ease of application. GWO is popular and definitely works in terms of
providing solutions to problems. In that sense, it doesn’t matter if it’s new or not. All
the same, for the larger optimization field, it is critically important to understand what is

2Villalón, Christian Leonardo Camacho, Thomas Stützle, and Marco Dorigo. “Grey wolf, firefly and bat
algorithms: Three widespread algorithms that do not contain any novelty.” In International Conference on
Swarm Intelligence, pp. 121-133. Springer, Cham, 2020.

CHAPTER 5. NEW KIDS ON THE BLOCK 65

novel and what is not. I suspect, in the end, that many of the myriads of nature-inspired
algorithms will prove to be alternate takes on well-known approaches. But, if GWO, which
is easy to try, works, then it works, so we’ll keep it in our small collection of algorithms at
the risk of alienating genuine optimization researchers.

5.2.1 Description

A wolf pack has an alpha, a lead wolf. It also has subordinate wolves in a hierarchy where
the second-in-command, as it were, is the beta followed by the delta. There is a scapegoat
wolf, designated omega, but for the GWO algorithm, all wolves (particles) that are not
alpha, beta, or delta, are considered omega: they are followers only. The alpha, beta, and
delta positions dominate the update for the swarm in that the motions of all particles are
influenced by these three. During initialization, the top three best particle positions, those
with the three smallest objective function values, are designated the initial alpha, beta, and
delta. During the swarm update step, if any new position proves to be a better alpha, beta,
or delta, then the corresponding leader is deposed and pushed down the hierarchy making
the previous delta an omega, like the rest of the pack.

If you read [18], you’ll encounter a full presentation of the rationale, however strained,
behind the different equations used to model the behavior of grey wolves. For our purposes,
we’ll explain the practical: the parts of GWO pieced together to implement the search so
we can evaluate the algorithm’s performance.

A successful swarm optimization algorithm balances global and local search, exploration
and exploitation. For GWO, this is accomplished via two equations used to define the A
and C vectors used in the update process. Note, for GWO, we’ll use bold uppercase letters
as vectors to match how the algorithm is presented in [18].

The A vector depends upon a scalar, a, which itself depends upon a scale factor that
we’ll call η. The scalar a is similar to ω in PSO: it decreases linearly as the swarm searches,
i.e., a is a function of the number of iterations performed and runs from η down to zero.
The default value for η, indeed the only value for η used in most GWO implementations, is
two.

The swarm update step first sets a, then, for each particle, calculates A and C vectors,
one each for the alpha, beta, and delta. These are used to define temporary vectors X1,
X2, and X3. The mean of X1, X2, and X3 is used to update the particle’s position.

So, as a set of equations, the fraction of the update for particle xi based on the position
of the alpha wolf is,

a = η − η(jcurrent/jmax) (5.2)

A = 2ar1 − a (5.3)

C = 2r2 (5.4)

D = |Cα− xi| (5.5)

X1 = α−AD (5.6)

where Equation 5.2 sets a for this iteration with jcurrent the current iteration number and
jmax the maximum number of iterations. We then use a to calculate A with r1 a random
vector drawn uniformly from [0, 1) (Equation 5.3). Since r2 is a random vector in [0, 1),
Equation 5.4 makes C is a random vector in [0, 2).

CHAPTER 5. NEW KIDS ON THE BLOCK 66

class GWO:
def __init__(self, ...)
def Results(self):
def Initialize(self):
def Done(self):
def Step(self):
def Optimize(self):

Figure 5.2: Skeleton of the GWO class.

The C vector is used in Equation 5.5 to define D as an offset from the current position
of the alpha wolf, α. The offset is then used in Equation 5.6 to calculate the first temporary
position vector, X1. Notice that the offset is multiplied by A which in turn is itself set by
a. The mode of the search is set by ‖A‖ and C. When ‖A‖ > 1, the algorithm is exploring
the search space, but when ‖A‖ < 1, the mode switches to attack, the swarm converges on
the prey (best location).

The entire process that lead to X1 is repreated using the beta (β) and delta (δ) wolf
positions to calculate X2 and X3, respectively. Then, finally, the mean of these vectors is
used as the new position for particle i,

xi ← (X1 +X2 +X3)/3 (5.7)

With all particles updated, the objective function is evaluated. New alpha, beta, and
delta wolves are selected whenever a particle’s objective function value is small enough to
knock one of the leaders down a notch. The displaced leader takes the spot of the one below
and so on. At all times, the best position found by the swarm is recorded and ultimately
returned when the search is complete. Now, let’s see how all of the above translates into
code we can use.

5.2.2 Implementation

A skeleton for the GWO class is shown in Figure 5.2. The source code is in GWO.py. The
skeleton is hauntingly familiar.

The constructor accepts the usual parameters along with eta to adjust η from its default
value of two, if desired. This is like the RO constructor, where η plays a similar role. There
are only two methods we need to discuss, Initialize and Step. All the others match
those in RO and Jaya with corresponding names.

The Initialize method is,

def Initialize(self):
self.initialized = True
self.iterations = 0
self.pos = self.init.InitializeSwarm()
self.vpos= np.zeros(self.npart)
for i in range(self.npart):

self.vpos[i] = self.obj.Evaluate(self.pos[i])

self.gidx = []
self.gbest = []
self.gpos = []
self.giter = []

CHAPTER 5. NEW KIDS ON THE BLOCK 67

idx = np.argmin(self.vpos)
self.gidx.append(idx)
self.gbest.append(self.vpos[idx])
self.gpos.append(self.pos[idx].copy())
self.giter.append(0)

idx = np.argsort(self.vpos)
self.alpha = self.pos[idx[0]].copy()
self.valpha= self.vpos[idx[0]]
self.beta = self.pos[idx[1]].copy()
self.vbeta = self.vpos[idx[1]]
self.delta = self.pos[idx[2]].copy()
self.vdelta= self.vpos[idx[2]]

The first section of code sets the iteration counter, initializes the particle positions (pos),
and their objective function values (vpos). The second block of code selects the particle
with the minimum objective function value and sets it as the initial swarm best.

To set up the wolf pack, we need an alpha, beta, and delta. So, we sort all the ob-
jective function values and select the smallest three to serve as initial alpha, beta, and
delta positions along with their respective objective function values, valpha, vbeta,
and vdelta.

The bulk of the GWO implementation is in Step. There are two main loops. The first
moves each particle to a new position based on the position of the three leaders. The second
loop then evaluates all the new positions, tracks the swarm best, and if there should be any
change in pack leadership. In code,

def Step(self):
1: a = self.eta - self.eta*(self.iterations/self.max_iter)

for i in range(self.npart):
A = 2*a*np.random.random(self.ndim) - a
C = 2*np.random.random(self.ndim)
Dalpha = np.abs(C*self.alpha - self.pos[i])

2: X1 = self.alpha - A*Dalpha
A = 2*a*np.random.random(self.ndim) - a
C = 2*np.random.random(self.ndim)
Dbeta = np.abs(C*self.beta - self.pos[i])

3: X2 = self.beta - A*Dbeta
A = 2*a*np.random.random(self.ndim) - a
C = 2*np.random.random(self.ndim)
Ddelta = np.abs(C*self.delta - self.pos[i])

4: X3 = self.delta - A*Ddelta
5: self.pos[i,:] = (X1+X2+X3) / 3.0

if (self.bounds != None):
self.pos = self.bounds.Limits(self.pos)

6: for i in range(self.npart):
self.vpos[i] = self.obj.Evaluate(self.pos[i])

7: if (self.vpos[i] < self.valpha):
self.vdelta = self.vbeta
self.delta = self.beta.copy()
self.vbeta = self.valpha
self.beta = self.alpha.copy()
self.valpha = self.vpos[i]
self.alpha = self.pos[i].copy()

8: if (self.vpos[i] > self.valpha) and
(self.vpos[i] < self.vbeta):
self.vdelta = self.vbeta

CHAPTER 5. NEW KIDS ON THE BLOCK 68

self.delta = self.beta.copy()
self.vbeta = self.vpos[i]
self.beta = self.pos[i].copy()

9: if (self.vpos[i] > self.valpha) and
(self.vpos[i] < self.vbeta) and
(self.vpos[i] < self.vdelta):
self.vdelta = self.vpos[i]
self.delta = self.pos[i].copy()

10: if (self.valpha < self.gbest[-1]):
self.gidx.append(i)
self.gbest.append(self.valpha)
self.gpos.append(self.alpha.copy())
self.giter.append(self.iterations)

self.iterations += 1

First, a is set according to the current iteration of the swarm. Recall, a goes from η
down to zero over the number of iterations (1). Then we loop to update each particle
position based on the the current alpha, beta, and delta wolf locations. We calculate a
new, temporary position, X1, according to Equation 5.3 for A, Equation 5.4 for C, and
Equation 5.5 for Dalpha (2). These calculations are repeated for the two other leaders,
beta (3) and delta (4). Finally, the new particle position is set as the mean of the three
temporary positions (5). With all particles in their new positions, and after the boundary
conditions are enforced by a call to Limits, the objective function is evaluated (6).

While updating the objective function values for each particle, we check to see if the
current particle is the new alpha (7), beta (8), or delta (9). If any of these conditions are
true, we make the current particle the corresponding leader and shift the displaced leaders
down. So, if there is a new alpha, the old alpha becomes beta, and beta becomes delta.
Similarly, if there is a new beta, the old beta becomes delta and likewise for a new delta.
At the same time, we check to see if the current particle position is also the new global best
(10). To do this, we only need to consider if there is a new alpha as any new swarm best
location will also be a new alpha. The swarm update step is now complete, so we bump
the iteration counter to ensure a is set correctly for the next iteration.

Let’s put both Jaya and GWO to the test comparing their performance with RO and
PSO.

5.3 Testing Jaya and GWO

We’ll continue using fxy_gaussian.py. We’ll introduce a new level of testing here,
as well, in part to put the new algorithms through their paces, and in part to illustrate
additional ways to evaluate swarm optimization algorithms.

We know the code in fxy_gaussian.py is already configured to select the algorithm
from the command line. The instantiations of the swarm object are the only parts specific
to Jaya and GWO. They are as we might expect them to be at this point,

swarm= Jaya(obj=obj, npart=npart, ndim=2, max_iter=miter, init=i,bounds=b)

and,

swarm= GWO(obj=obj, npart=npart, ndim=2, max_iter=miter, init=i, bounds=b)

CHAPTER 5. NEW KIDS ON THE BLOCK 69

Resampling: Clipping:

Algorithm S F W

RO 96.20 0.04 3.76
PSO 98.20 0.00 1.80
Jaya 99.30 0.00 0.70
GWO (η = 2) 77.04 0.00 22.96
GWO (η = 4) 99.20 0.00 0.80

Algorithm S F W

RO 96.10 0.00 3.90
PSO 77.24 0.00 22.76
Jaya 96.74 0.00 3.26
GWO (η = 2) 73.48 0.00 26.52
GWO (η = 4) 89.46 0.00 10.54

Table 5.2: Percentage of 5000 searches resulting in success (S), failure (F), or the wrong
(W) minimum for resampling at the boundary (left) or clipping (right).

They set up the objective function object (obj), swarm size (npart), maximum number of
iterations (miter), initialization object (i) and bounds (b). The simplicity of Jaya means
that there are no additional parameters to set. For GWO, we’ll keep η = 2 for the time
being.

Let’s do some test runs without fixing the seed value for the NumPy pseudorandom
generator. We’ll set the Bounds object to resample as well. The command lines to use are,

> python3 fxy_gaussian.py 10 100 JAYA RI
> python3 fxy_gaussian.py 10 100 GWO RI

The mean for each algorithm over ten runs is,

Minimum found Swarm updates Failures

Jaya −4.9999± 0.0000 15.8± 1.5 0
GWO −3.4999± 0.4743 11.8± 0.8 5
PSO −4.3983± 0.3792 18.4± 1.7 2
RO −3.7851± 0.8534 38.9± 6.2 2

Note, in the table we’ve added the number of failed searches over the ten runs. A failed
search did not find the global minimum of the Gaussian function at (−2.2, 4.3). From
this single example, Jaya is having a good day while GWO is not. It’s also clear that the
algorithms do not converge at the same rate. We’ll plot this in a bit, but first, let’s repeat the
search 5000 times and track the proportion of failures. Recall, the NumPy pseudorandom
number seed is not fixed in this case.

5.3.1 Success or Failure?

We’ll count three different outcomes for each of the 5000 searches: success, failure, and
wrong. A successful search finds the global minimum to within a distance of 0.3 from the
true minimum. This means that the position returned by the search is no further away from
the global minimum than that. A wrong result means that the final swarm best position
was within 0.3 of the other local minimum. In that case, the swarm converged, only it
converged in the wrong place. It was trapped in the local minimum and did not escape.
Finally, any result that wasn’t at either minimum is considered a failure. The code for this
experiment is in fxy_failures.py. We’ll run the test twice. The first time, we’ll set the
Bounds object to resample, and the second time, we’ll clip instead. Table 5.2 shows us how
the algorithms faired.

CHAPTER 5. NEW KIDS ON THE BLOCK 70

Consider only the left side of Table 5.2 for the moment. We see immediately that three
of the algorithms faired quite well overall. None were perfect, but all were able to find the
global minimum better than 96% of the time, and Jaya was victorious nearly 99% of the
time. Also, when RO, PSO, and Jaya were not able to find the global minimum, they still
converged on the other minimum, the only exception being RO a handful of times. The
odd man (wolf) out in this case was GWO. If the default η value was used, the correct
minimum was located only 77% of the time. However, increasing η moved GWO up into
second place, right behind Jaya.

Now, compare the resampling results with the clipping results on the right side of Ta-
ble 5.2. Here we see a different story. The RO algorithm performs the same, though,
naturally, if you run fxy_failures.py yourself, you’ll see slightly different results. Sur-
prisingly, PSO is now performing on par with GWO in the resampling case. Jaya’s perfor-
mance drops to match RO and GWO is even worse. Clipping is not to the liking of many
algorithms, at least for this example, a result worth keeping in mind when setting up your
searches.

5.3.2 Dispersion

In Chapters 3 and 4, we fixed the pseudorandom number seed in fxy_gaussian.py
to generate frames showing the evolution of the swarms as they attempted to find the
global minimum. You may have noticed an extra file appeared in the frames directory,
dispersion.npy. We ignored this file then, but let’s make use of it now.

If you look at the code in fxy_gaussian.py, you’ll see that when writing frames to
disk there is an extra function called,

def Dispersion(swarm, i, d):
x,y = swarm.pos[:,0], swarm.pos[:,1]
dx = x.max() - x.min()
dy = y.max() - y.min()
d[i] = (dx + dy) / 2.0

The Dispersion function accepts a swarm object, an iteration number (i) and a
vector, d. The point of this function is to calculate a measure of how dispersed throughout
the search space the swarm currently is. We’re calling this the “dispersion.” It is nothing
more than the mean of the swarm range in each direction. The more compact the swarm
is, the smaller this number will be. The Dispersion function updates d for the current
iteration of the swarm. When the search is complete, the d vector is written to disk in
dispersion.npy. If we fix the pseudorandom number seed to the same value as before,
8675309, we can generate dispersion files for RO, PSO, Jaya, GWO (η = 2), and GWO
(η = 4). We can then plot the dispersion of the swarms as a function of iteration number
(see the file dispersion_plot.py).

Figure 5.3 shows how each swarm behaves for both resampling and clipping boundary
conditions. The plots show the trend line and a symbol every fifth iteration.

How should we interpret these plots? Let’s start with resampling on the top. We
immediately notice both GWO plots converge on zero. In these cases, the swarms did
collapse; each particle was virtually on top of all the others. Moreover, there is a definite
phase transition, as it were. The swarms were oscillating between more or less diverse, then,
suddenly, they quickly converge. Both RO and Jaya avoid collapse and show a smooth,
shallow decrease in dispersion over the entire search. PSO is similar, but oscillates, much
like GWO does. Still, there is no collapse at the end of the search.

CHAPTER 5. NEW KIDS ON THE BLOCK 71

Now consider the bottom of Figure 5.3, the clipping case. The RO curve is identical, as
expected because no RO particle hits the boundary, so, given the fixed NumPy seed, the
searches will match. The other searches, however, all collapse to zero or close to it. PSO
oscillates, as in the resample case, but shows a strong negative slope down to virtually zero
by search’s end. GWO (η = 4) roughly follows PSO: oscillations and a steady decrease in
swarm diversity. GWO (η = 2) drops diversity rapidly and then declines to zero. However,
in this case, we must remember that GWO (η = 2) is converging on the wrong minimum.
One particle starts near the wrong minimum, and, due to the η value, the swarm doesn’t
escape; it all falls into the trap. Finally, Jaya shows a rapid drop in dispersion around
iteration 38. This marks the point where the last particle far from the global minimum
made the jump to join the rest of the swarm.

5.3.3 Convergence

How the swarms converge to the global minimum as a function of iteration, algorithm type,
and initial configuration is our next adventure. We’re interested in how well and how quickly
the swarm locates the global minimum without concern about how dispersed the swarm is.
We’ll use the same seed as before to plot the current global best objective function value
as a function of the iteration. We’ll create two plots: one for resampling and the other for
clipping. Again, we show the trend line and a symbol every fifth iteration.

The code for the convergence plots is in the file fxy_convergence.py. Each algo-
rithm tracks the evolution of the swarm and returns the list of swarm best updates by
calling the Results method. From this list, we can generate a per iteration sequence like
so,

res = swarm.Results()
g = np.zeros(miter)
for j,i in enumerate(res["giter"]):

g[i:] = res["gbest"][j]

where miter is the number of swarm iterations. For every swarm best update, we noted
the iteration number when it happened (giter). So, if we set every output value in g,
starting with that index, to the new swarm best that occurred, we’ll fill g appropriately
until the next swarm best update happened, in which case, we update g from that point
onward. In the end, g contains the curve we want to plot. Running points_plot.py
generates Figure 5.4 with the convergence curves for each algorithm, the resampling case
on the top, the clipping case on the bottom.

Both Jaya and PSO behave similarly and converge to the global minimum reasonably
quickly, by iteration 35 when resampling and even earlier, around iteration 15, when clip-
ping. Random optimization is identical regardless of boundary rules and converges smoothly
as the search progresses, but with some sudden changes in slope.

As before, the starkest difference is with GWO. For η = 2, the resampling curve rapidly
converges to the correct value, but for this same η, the clipping curve is trapped in the
other minima. When η = 4, both resampling and clipping locate the correct minimum.

5.3.4 Precision

Our convergence plot, Figure 5.4, is visual and only shows 100 iterations of the swarms.
One good metric to use when comparing swarm algorithms is the precision, which we’ll

CHAPTER 5. NEW KIDS ON THE BLOCK 72

Algorithm Error (mean± SE)

RO 0.0000103433957914± 0.0000016743641739
PSO 0.0000000000000000± 0.0000000000000000
Jaya 0.0000190824476841± 0.0000030181708582
GWO (η = 2) 0.0000003834092728± 0.0000000476242994
GWO (η = 4) 0.0000026417375218± 0.0000005018126146

Table 5.3: Error between the known minimum value, -5.0, and the minimum found by the
swarm for 40 searches (20 particles, 1000 iterations).

define as the error between the known actual minimum of the test function and the final
minimum value found by the swarm.

We can calculate this precision for the Gaussian we’ve been using by randomly initializ-
ing the swarms and running the search for many more iterations. Repeating searches many
times allows us to report the mean and standard error of the final best objective function
value found. The code to use is in fxy_precision.py. It’s run in much the same way as
fxy_gaussian.py, but accepts one more command line parameter, the number of times
to search before reporting the overall mean and standard error of the absolute difference
between the final position and the known minimum value of exactly -5.0. Note, we’re only
interested in searches that succeed, so the code loops until the desired number of successful
searches have happened. Those that fall into the other minimum are ignored.

We’ll run each search with 20 particles but use 1000 swarm updates before looking at
the minimum found. And, we’ll repeat each search 40 times. The results are in Table 5.3.

Table 5.3 is shown without scientific notation to make it visually obvious that the
algorithms show differences in precision, for this sample problem, of up to several orders of
magnitude in some cases. When run longer, PSO zeros in on the actual minimum position
with as much precision as Python can give for a floating-point number. Python uses IEEE
754 binary64 format (C type double). This format stores numbers internally as binary
floating-point values using a 53-bit significand. This implies full possible precision in the
value returned by PSO to approximately 16 decimals. The best we could hope for.

The next most precise result is GWO for η = 2, though this result is some nine orders
of magnitude bigger. The η = 4 result is an order of magnitude larger than the η = 2
result. So, GWO found the minimum position, but whether the location is “good enough”
depends on the problem. In many practical cases, it certainly will be good enough, but the
difference is too significant for some applications. The RO result is an order of magnitude
larger still than the GWO η = 4 result, and the Jaya result is twice the RO result making
Jaya the least precise algorithm for this experiment. Again, the application decides if Jaya
is good enough.

We fixed the number of iterations in Table 5.3 and looked at the precision of the global
best when that many iterations were complete. Let’s switch things up a bit now and see how
many iterations, on average, it takes for the swarm to converge to a particular error level.
The code leading to these results is in fxy_precision2.py, and the results themselves
are in Table 5.4.

Much is happening in Table 5.4. Let’s break it down. For the most significant error,
10−4, we’re able to run all of the algorithms. This is a fairly significant error, though
possibly adequate for some problems. RO is the winner in this case, as it requires about
150 updates on average. Jaya comes next, followed by PSO. So far, so good for RO and

CHAPTER 5. NEW KIDS ON THE BLOCK 73

Algorithm Error Iterations (mean± SE)

RO 10−4 148± 25
PSO 1238± 361
Jaya 466± 68
GWO (η = 2) 7749± 1039
GWO (η = 4) 10964± 1588

RO 10−5 2420± 876
PSO 1318± 464
Jaya 1593± 209

RO 10−6 15126± 5588
PSO 1752± 456
Jaya 3018± 585

RO 10−7 78114± 17141
PSO 2516± 571
Jaya 13175± 1888

Table 5.4: Mean number of iterations over ten searches with 20 particles to locate the global
minimum to less than the given error (mean± SE).

Jaya. GWO performs poorly on this test. Many iterations are needed to get the error down
to less than 10−4.

We need to clarify something before describing the remainder of Table 5.4. Both PSO,
through the LinearInertia class, and GWO, when it adjusts a, depend upon the max-
imum number of iterations specified when the swarm object is created. This requirement
poses a bit of a problem when we’re interested in how many iterations it takes for the
swarm to reach a given error rate, on average. We cannot merely iterate the swarm forever
without wanting to set an upper limit on the number of iterations. Setting such a limit, say
to 1,000,000, means that ω (PSO) and a (GWO) will decrease at a painfully slow rate. So,
what are we to do? In fxy_precision2.py, the maximum number of iterations is set
to 1,000,000 for RO and Jaya. However, for PSO, it’s set to 10,000 and for GWO 20,000.
The latter two values are empirical guesses, and they do affect the results.

For example, in Table 5.4, PSO needed nearly 1300 iterations on average to reach an
error below 10−4. However, in Table 5.3, PSO was at zero error after 1000 iterations. This
isn’t a bug, it’s due to the effect of the maximum number of iterations on the value of ω
and the rate at which it decreases. For example, let’s seek the number of iterations, on
average, leading to an error of less than 10−8 for PSO as we change the maximum number
of possible iterations, see fxy_pso_precision.py. We get these means over ten runs
for each iteration maximum,

Maximum Iterations Iterations to error < 10−8

100 120± 7
500 236± 10

1000 606± 82
5000 1376± 374

10000 3324± 724
50000 5719± 2548

100000 22614± 5098

CHAPTER 5. NEW KIDS ON THE BLOCK 74

This effect explains the PSO results shown in Table 5.4. PSO can converge faster, if
we take the time to set the maximum number of iterations to the smallest value necessary,
assuming we’re using a linearly decreasing ω. What is “the smallest value necessary”?
That’s a good question, only experimentation will tell, or the use of a smarter way to
schedule ω as the search progresses.

The GWO results in Table 5.4 stop after the 10−4 case because when the desired error
is lower, the swarm doesn’t reach it before exhausting the 20,000 maximum number of
iterations. The takeaway here is that GWO, for this example, is not particularly precise.
Again, whether it is precise enough depends upon the application.

Let’s finish discussing Table 5.4. As we increase our demand for precision, we see the
behavior we might expect from RO: the unguided search requires ever-increasing iterations
to reach the desired error threshold. The same is true of PSO and Jaya, but the rate at
which the number of iterations grows is less. Still, a precision of 10−7 is quite high, and
Jaya can find it in a reasonable number of iterations for many applications.

Precision matters, setting swarm parameters intelligently matters, too, but, as always,
experimentation and intuition come into play. PSO did quite well on these tests, as did Jaya.
RO performed surprisingly well, overall, but GWO was disappointing. Let’s conclude this
section by taking a cursory look at the clock time associated with each of the algorithms.

5.3.5 Runtime

It’s fair to ask whether one algorithm is faster or slower than another in terms of clock
time for the same number of swarm iterations. Naturally, the runtime is highly dependent
upon the implementation, and, for pedagogical purposes, we’ve spared all expense at highly
efficient implementations. Therefore, it’s with some trepidation that we dare to look at
how fast the algorithms are. We’ll do so, with the understanding that the relative clock
time is only a hint of how efficient the algorithms are and with the defense that, because
of our framework, many implementations are similar in structure. A full evaluation of the
algorithms’ actual performance, from a computer science perspective, is beyond what we’re
after here.

With the above disclaimers in place, we can measure the mean runtime for a fixed num-
ber of swarm updates. The code we’re using is in the file fxy_runtime.py. Calculating
the mean runtime, in seconds, for ten runs of a search of 20 particles and 5000 iterations
leads to,

Algorithm Runtime (seconds, mean± SE)

RO 1.4113 ± 0.0014
PSO 4.0503 ± 0.0170
Jaya 2.5692 ± 0.0049
GWO (η = 2) 6.9775 ± 0.0057
GWO (η = 4) 7.1043 ± 0.0080

Both RO and Jaya run quickly. PSO is in the middle, and GWO is significantly slower
than any of the others. The implementations use multiple loops over the particles to select
new positions and then to evaluate the objective function at each position. RO is likely
faster because candidate positions are chosen by a single-line call to a NumPy function,
thereby eliminating one of the slower for loops in plain Python. The remaining runtime
differences are likely to be overcome by more efficient implementations. The runtimes above
should be used as a guide for these specific implementations only.

CHAPTER 5. NEW KIDS ON THE BLOCK 75

5.3.6 Evaluation

In this section, we tested Jaya and GWO and compared them to the swarm algorithms we
already know, RO and PSO. We looked at how often a randomly initialized search succeeded,
how the swarms changed as they searched (dispersion), how quickly they converged to the
global minimum (convergence), how well they located the minimum (precision), and how
fast the algorithms searched (runtime). Granted, we did this for a single, two-dimensional
search space, but the results were illustrative all the same.

What should we make of these new algorithms? Jaya is simplicity itself. It performed
admirably, and its complete lack of any tuning parameters makes it attractive; just set it up
and go. The Grey Wolf Optimizer did well enough once we adjusted its one parameter, the
one we called η, but was less than sterling when fine precision was required. As mentioned
above, most implementations fix η at two and do not adjust it, nor let users adjust it.
We didn’t even consider adjusting the scale of C, as suggested in [18]. Some reviews of
GWO have been critical, both of the nature-based inspiration as yet another example of
a strained metaphor, and of a perceived ineffective update rule.3 Is the criticism of GWO
unwarranted? Only time will tell, but we’ll continue to use GWO, and Jaya, for all our
experiments going forward, especially for those in the second part of this book.

For now, let’s seek victory elsewhere and forget about who’s the leader of the pack.
We’ll shift paradigms and consider the first of two evolutionary algorithms we’ll sneak into
our framework. We do this in part because we can, and, even more so, because they are
useful tools and we should be more than just one-trick ponies. One might be tempted to
consider these evolutionary algorithms wolves in sheep’s clothing, but that would be taking
things a bit too far. Regardless, let’s explore the wonderful world of evolution, at least as
far as we can use it to solve difficult optimization problems.

3See the pagmo2 documentation, https://esa.github.io/pagmo2/docs/cpp/algorithms/gwo.
html.

https://esa.github.io/pagmo2/docs/cpp/algorithms/gwo.html
https://esa.github.io/pagmo2/docs/cpp/algorithms/gwo.html

CHAPTER 5. NEW KIDS ON THE BLOCK 76

Figure 5.3: Dispersion as a function of swarm iteration number for resampling (top) and
clipping (bottom). Note, the GWO (η = 2) case converged on the wrong minimum in the
clipping case.

CHAPTER 5. NEW KIDS ON THE BLOCK 77

Figure 5.4: Swarm best as a function of iteration number. (Top) resampling bounds,
(bottom) clipping bounds. The pseudorandom number seed was fixed so each swarm evolved
from the same initial configuration.

Chapter 6

Genetic Algorithm

The algorithms we’ve developed so far fit solidly within the swarm intelligence family.
This chapter, and the one that follows, sneak in two other algorithms that are not strictly
“swarm intelligence,” but are instead evolutionary algorithms. However, their architecture
is amenable to our framework, so we feel justified in including them, doubly so because of
their practical utility.

In this chapter, we’ll discuss and present code for the genetic algorithm class. In simplest
terms, a genetic algorithm employs concepts from biological evolution and uses them to
evolve a population of agents, “particles” in our language, to solve a problem. In biological
evolution, there is no overall goal or direction; organisms evolve because that’s what they
do as a consequence of factors like mutation and in response to natural selection. For a
genetic algorithm, evolution is highly directed. An overlord is watching and selecting who
gets to breed, and how often, and what kind of mutations occur and when, all in an attempt
to minimize the objective function.

Section 6.1 describes our implementation of the genetic algorithm, one that plays nicely
with our framework. In Section 6.2, we detail the algorithm code as we have for all the
previous algorithms. As before, we expound on the differences knowing many methods of
the GA class are identical to those in previous classes.

Finally, in Section 6.3, we test the GA class against our other algorithms. We’ll persist
with our running test example of 2D Gaussians and then expand it to five dimensions.

6.1 Making Darwin Proud

Darwin’s publication of “On the Origin of Species” in 1859 was a watershed moment for
the biological sciences and, indeed, for all of humanity. Darwin didn’t discover all the ideas
in the book, Wallace deserves some credit, and credit is due to others who came before
Darwin, but in the end, the synthesis was mainly his. The book introduced the concept of
natural selection, often, somewhat incorrectly, simplified to “survival of the fittest.”

For our purposes, we’ll pare down what evolution is and reduce it to the phrase above.
After all, we have an explicit way of measuring fitness, which is only implicitly measured
in biological evolution by observing the gene pool of future generations. We’ll simplify the
drivers of evolution and keep only random mutation and crossover to simulate the process
of mating between agents. To be consistent, we’ll persist in calling the agents “particles” –
only this time the particles can breed with each other like biological agents.

Along with random mutation and crossover due to breeding, which we’ll be explicit about

78

CHAPTER 6. GENETIC ALGORITHM 79

Figure 6.1: Implementing crossover to replace a parent particle with a child.

momentarily, we have an additional knob we can turn. We’ll control who the particles may
breed with in much the same way as a dog breeder. Turning this knob affects the rate at
which the swarm converges.

The title of this section is “Making Darwin Proud.” Naturally, we don’t know if he
would be proud of such an application of his theory, and, perhaps, he might frown on it
as not being based in actual biology. However, once he understood the utility, I suspect
he would be pleased with the parallel and happy to learn that his core concepts are more
widely applicable than he might have first supposed.

Most presentations of a genetic algorithm jump down to the level of genes and talk
about mutation or crossover as in chromosomal crossover during conception. We’ll be more
abstract than that so we can continue to use our framework.

We represent particles as floating-point vectors of some dimensionality, the dimensional-
ity of the problem space we are exploring. We’ll continue to do so for the genetic algorithm.
Mutation becomes quite simple in this situation: we pick a dimension of the particle’s cur-
rent position at random and change it. The new value is bounded by the Limit method of
any supplied Bounds object. Mutation is little different from resampling when a boundary
violation occurs.

Crossover is similarly straightforward in our case. Unlike a genetic programming algo-
rithm that needs to select specific places in the evolved code when an expression subtree is
replaced with another from a separate individual, we have no structure to our particles, only
locations along different dimensions with the particle representing a point in Rn. There-

CHAPTER 6. GENETIC ALGORITHM 80

Algorithm 7 Genetic algorithm.

Input: An objective function, bounds, and initialization type
Output: The best position found by the swarm

for each particle do
Select an initial position within the bounds of the search space
Evaluate the objective function at this position

end for
Store the best initial particle position as the swarm global best position
while not done do

for each particle do
Evolve the particle
Evaluate the new position
if new position fitness < swarm best position fitness then

Store the new global best
end if

end for
Increment the iteration counter

end while

fore, to crossover two individuals, we select a dimension at random for the first individual
and replace all values after that dimension with the corresponding values from the second
individual. This process is quite analogous to chromosomal crossover.

Figure 6.1 shows visually how we’ll implement crossover. The current particle, marked
with the large arrow on the left, is to be updated. A member of the top-performing particles
(η) is selected as a mate. The right side of the diagram illustrates crossover. A dimension
is selected, here dimension three, and the child is formed by keeping elements zero through
two of the first parent and updating the rest with the corresponding elements of the second
parent. Finally, the child immediately replaces the parent in the swarm.

While we have no specific name for it, the knob deciding which particles the current
particle may breed with is implemented as a fraction of the swarm when ranked by objective
function value. Only the top N particles, where N = bηnparticlesc, η a fraction, are available
as mates, though all particles have an opportunity to breed. Doing this lets particles in the
lower part of the swarm, those with larger objective function values, have an opportunity
to improve by incorporating “better genes” into their offspring’s genetic code.

When particle i breeds, the child replaces the parent in the next iteration of the swarm.
There are many other ways to handle the approach to breeding, but we’ll keep this one
throughout the book. As an experiment for the reader, it might be fun to think of other
ways to accomplish this. The main point is that more fit members of the swarm should prop-
agate to the next iteration in some fashion. Furthermore, we’ll persist the best performing
individual in each swarm iteration and move it to the next iteration intact.

Algorithm 7 shows our approach to the genetic algorithm; it should look quite familiar.
In fact, Algorithm 7 is nearly identical to Algorithm 4 for the RO class. However, instead
of a line reading,

Select a new position some random distance away from the current position

we have,

CHAPTER 6. GENETIC ALGORITHM 81

Evolve the particle

We discussed above what we mean by “evolve the particle,” and we’ll develop the code
in Section 6.2 below. All other parts of the algorithm are directly analogous to the other
swarm algorithms we’ve examined. This is by design, so we can introduce the genetic
algorithm and use it with our framework.

The GA class has three parameters. How should we set them? The short answer is
“it depends”. The best set of parameters, if there is one, is likely specific to the problem.
However, general guidelines are possible. For example, the fraction of the swarm available
for breeding, η, defaults to the upper 50%. If we set η = 1, the entire swarm is now available
for breeding, meaning there is no preference given for particles that are better performing.
Is this a bad thing to do? Perhaps not, it’s easy to imagine that two poorly performing
particles might mate and produce an excellent performer. What if we set η = 0.1 or even
η = 0.05? We’ll force all particles to breed with top performers, but the gene pool, as it
were, will be correspondingly smaller. One imagines such a swarm might become stuck in
a local minimum and be unable to escape for lack of genetic diversity. As a rule of thumb,
then, η = 0.5 seems like a good starting point, though smaller η and a larger swarm might
prove useful. As with all swarm algorithms, experimentation is required. For many practical
applications, we need only one good solution, after that, our use for the swarm is over, so
experimentation to get that one good solution is not usually much of an issue unless the
objective function is expensive to calculate.

What about crossover probability? In the United States, by age 50, roughly 85% of
women have had at least one child. By this, we might say evolution has provided a default
crossover probability for us of about 0.85. Indeed, perusing the literature shows that the
crossover probability is often around 80%, which we’ll use as our default. Again, any
ideal value will likely be problem-specific. We do want crossover to be rather high to
encourage diversity in the swarm from generation to generation. However, if it is too
high, breeding might wash out beneficial “genes”, here meaning individuals that might
have spread better solutions to the rest of the swarm. On the other hand, a tiny crossover
probability means most of the particles will barely change from iteration to iteration, and
we might expect the search to be painfully slow. Finally, what about mutation? The effect
of mutation as a driver for evolution is well understood. However, most mutations are not
beneficial, and evolution by mutation alone is painfully slow; witness the billions of years
needed for prokaryotes to evolve into eukaryotes, let alone sexual reproduction. We set the
default mutation rate to 5%, meaning on each swarm update, a particle has a 5% chance
of mutating. When a particle is selected for mutation, the particle’s affected dimension is
chosen from a uniform distribution. Doing this makes sense in a generic system where the
position vector’s numerical values are interpreted as just that, values along some dimension
in a high dimensional space. However, the entire point of using a swarm algorithm is
to map the solution of a problem into movement through this high-dimensional space to
some best location. This implies some dimensions of the particle’s position might be more
critical to the solution than others. If that’s the case, is the best option for selecting which
parameter to mutate a uniform distribution? Might it be that another distribution would
be better? I am unaware of investigations along these lines, probably because evolution is
purely random, but there are strongly conserved portions of the genome that are seldom
mutated. Regardless, it’s entertaining to consider the possible effect of applying a non-
uniform distribution to the selection of which dimension is mutated. However, such a
distribution is most definitely problem-specific and requires the infusion of prior knowledge

CHAPTER 6. GENETIC ALGORITHM 82

class GA:
def __init__(self, ...):
def Results(self):
def Initialize(self):
def Done(self):
def Evaluate(self, pos):
def Mutate(self, idx):
def Crossover(self, a, idx):
def Evolve(self):
def Step(self):
def Optimize(self):

Figure 6.2: Outline of the GA class.

or intuition by the practitioner configuring the swarm search. For our purposes, we’ll stick
with uniform selection of the mutated “gene” and use a low mutation rate most of the time.

Let’s look at the code for the GA class emphasizing its differences from the other opti-
mization classes.

6.2 The GA Class

The outline of the GA class is in Figure 6.2. Many methods are identical to those we’ve seen
before. The Step method is altered slightly, and there are three new methods: Evolve,
Mutate, and Crossover. The source code for the GA class is in the file GA.py.

The GA class constructor accepts all the parameters we’ve used before, see Table 5.1.
Additionally, it accepts three new parameters,

Parameter Description

CR Crossover probability (0.8)
F Mutation probability (0.05)
top Top fraction to breed (0.5)

We use CR to set the probability of a particle breeding during a swarm update step
(crossover). If a random float is less than CR, the particle breeds on this iteration with
a mate selected from the top performing fraction of the swarm when sorted by current
objective function value. Finally, in addition to the opportunity to breed, a particle may
experience a random mutation with probability F. Using “CR” and “F” is intentional. We’ll
see these same quantities again in Chapter 7 on differential evolution. Notice, on any swarm
update, a particle may or may not breed. If it does breed, the child immediately replaces
the parent. Also, a particle may or may not randomly mutate. So, on any iteration, one of
these occurs: the particle does not breed or mutate, the particle breeds and replaces itself
with a child, the particle mutates, or the particle breeds, and the resulting child immediately
mutates.

6.2.1 Step

The Step method implements a single swarm update. The GA Step method is similar to
the RO Step method except instead of proposing possible new positions for each particle,
it calls Evolve to update the swarm position vectors directly. In code, then,

CHAPTER 6. GENETIC ALGORITHM 83

def Step(self):
self.Evolve()
self.vpos = self.Evaluate(self.pos)
for i in range(self.npart):

if (self.vpos[i] < self.gbest[-1]):
self.gbest.append(self.vpos[i])
self.gpos.append(self.pos[i].copy())
self.gidx.append(i)
self.giter.append(self.iterations)

self.iterations += 1

The swarm positions are evolved en masse and the new positions evaluated. Then, each
particle is examined to determine if it represents a new swarm best position. If the particle
is a new swarm best, it’s kept, along with the objective function value (vpos). As usual,
the iteration counter is incremented to signal that the swarm update is complete.

6.2.2 Evolve

The Evolve method is called during each swarm update step. Its purpose is to give the
particles an opportunity to breed or mutate. The code is a simple loop over the particles,

def Evolve(self):
idx = np.argsort(self.vpos)
for k,i in enumerate(idx):

if (k == 0):
continue

if (np.random.random() < self.CR):
self.Crossover(i, idx)

if (np.random.random() < self.F):
self.Mutate(i)

if (self.bounds != None):
self.pos = self.bounds.Limits(self.pos)

First, we get the sequence of indices into the current particle positions and objective
function values in order from smallest to largest. Then we loop over this sequence. The
very first particle in the sequence, the current best position, but not necessarily the swarm
best, is left as-is to propagate it intact to the next iteration. For all other particles, we ask
whether or not to breed the particle. If so, Crossover is called. Next, we ask if we want
to mutate the particle. Again, if so, Mutate is called. Finally, a call to Limits on any
supplied Bounds object ensures that the evolved particles stay in bounds.

6.2.3 Mutate

The code for Mutate is,

def Mutate(self, idx):
j = np.random.randint(0,self.ndim)
if (self.bounds != None):

self.pos[idx,j] = self.bounds.lower[j] +
np.random.random()*(self.bounds.upper[j]-self.bounds.lower[j])

else:
lower = self.pos[:,j].min()
upper = self.pos[:,j].max()
self.pos[idx,j] = lower + np.random.random()*(upper-lower)

CHAPTER 6. GENETIC ALGORITHM 84

The particle index is passed in (idx), and a dimension along the particle’s position
is selected at random (j). If there is a Bounds object, an arbitrary position within the
bounds for the selected dimension is used to update the particle. This is precisely what
happens when a dimension exceeds a given boundary. If no Bounds object was supplied, a
random position among the range of the selected dimension for the current swarm is used.

6.2.4 Crossover

The code for Crossover is,

def Crossover(self, a, idx):
n = int(self.top*self.npart)
b = idx[np.random.randint(0, n)]
while (a==b):

b = idx[np.random.randint(0, n)]
d = np.random.randint(0, self.ndim)
t = self.pos[a].copy()
t[d:] = self.pos[b,d:]
self.pos[a] = t.copy()

To implement crossover, the given particle (index in a) is bred with a randomly selected
particle residing in the top fraction of particles sorted by current objective function values
(idx). Since breeding a particle with itself is nonsensical and wouldn’t change anything,
we ensure that b is not a.

With the two parents selected, we pick a crossover point (d) and set up a child (t) where
values from zero to d-1 come from the first parent (a) and values from d to the end of the
position vector come from the second parent (b). Finally, the first parent is replaced by the
new child vector.

This completes our whirlwind tour of the GA class. Let’s put it to work, learn some-
thing about how it behaves when we tweak the CR, F, and η parameters, and compare its
performance to that of other swarm algorithms using our test function, Equation 3.1.

6.3 Testing the GA Class

Locating the global minimum of Equation 3.1 is our goal as it has been throughout the
book to this point. We’ll see how GA does here, too, but we also want to go beyond this
simple two-dimensional example. For now, let’s see how we do with Equation 3.1. We know
the fxy_gaussian.py code is already configured for all the algorithms we’ll investigate,
so we need only run it to use GA with its default parameters. This command line will do
the trick,

> python3 fxy_gaussian.py 20 100 GA RI

We’ll use 20 particles, 100 iterations, and random initialization as we did for the other
swarm algorithms.

6.3.1 Modifying Population Size and Generations

Naturally, each run produces a unique output. Let’s run 21 times and see what sort of
performance we get. Doing so gives us 14 successful searches, 5 wrong searches, and 2

CHAPTER 6. GENETIC ALGORITHM 85

failures. Recall, a success is finding the global minimum, or at least being quite near it. A
wrong search ended up in the other local minimum, and a failure was near neither minimum.
A success rate of 67% isn’t much to write home about.

The successful GA searches found an average minimum of −4.5378± 0.2271. The true
minimum is −5.0, so successful searches were not all that close. The mean number of swarm
best updates for successful searches was 4.6± 0.5.

What should we make of this lackluster performance? The GA algorithm lands some-
where between RO and the other swarm algorithms we’ve considered in terms of how much
the performance of particles affects the activities of other particles. In RO, all particles go
their own way, while for the other swarm algorithms, particles pay close attention to each
others’ performance. In GA, the driver for improvement is less overt. There is no principle
behind how crossover is applied, and mutation is purely random and unrelated to the goal
of the swarm, so the only driver is η since η is related to the current performance of the
swarm via the objective function value. A weak driver might mean greater flexibility in the
long run, but it also means slower movement of the swarm through the search space.

If you run fxy_gaussian again using the command line above, but add a final
command-line option to output frames and then step through the frames in sequence, you’ll
see the swarm move in a strange, grid-like, jumping fashion. This is an effect of crossover
on a two-dimensional search space. Often, particles don’t move at all and then jump. The
most significant driver of searching, in this case, is mutation. Compared to the other swarm
algorithms, there is no smooth flow through the search space towards the global minimum.

So, we might hypothesize that the dimensionality of the search space matters for GA,
and that few dimensions might make it hard for evolution to have much to work with. We’ll
return to this thought in a bit. We might also think that a population of twenty individuals
is too small, so let’s see what happens when we increase the population size from 20 to 100.
We’ll leave the number of iterations (generations) at 100 and tally the results over 21 runs
of the search. Running the search gives us 21 successes with an overall minimum value of
−4.9523± 0.0131 and 6.4± 0.6 swarm best updates, on average.

These results are encouraging. Not only were more searches successful, indeed, all were
successful, but the final minimum values found were closer to the actual minimum and
clustered more tightly around it, as evidenced by a much smaller standard deviation than
the twenty particle case. Still, other swarm algorithms found a better minimum value with
far fewer particles. For example, with only ten particles and 100 iterations, Jaya found the
minimum with virtually no error.

What happens if we return to only 20 particles but search for a longer period of time? For
this experiment, let’s bump the 100 generations to 1000. In this case, we have 16 successful
searches with 5 wrong and no failures. However, when the searches were successful, the
average minimum was −4.9947 ± 0.0013, significantly better than the case of only 100
iterations. The average number of swarm best updates was 11.4 ± 1.1, more than we had
with 100 iterations, but that shouldn’t surprise us with ten times as many generations as
before.

Some trends show themselves with this example as we alter the population size and the
number of iterations/generations. First, larger populations offer more raw material for the
evolutionary process and lead to more consistent performance. However, more generations
also play into the process, hence the better solutions found by the smaller population that
was allowed to evolve longer. These results beg the question: what happens if we have a
larger population and more generations? We know what sort of answer to expect, but let’s
experiment all the same. We’ll run a population of 100 particles for 1000 generations. As

CHAPTER 6. GENETIC ALGORITHM 86

anticipated, we have 21 successful searches with no wrong or failed searches. Our overall
minimum value is −4.9919± 0.0056 with 9.0± 0.7 swarm best updates, on average.

The rule of thumb regarding the GA seems clear: larger populations and more iterations
lead to more accurate solutions. There always seems to be a price to pay. It may be some
problems are quite difficult for other algorithms to solve because they are too invested in
paying attention to moving the swarm rapidly towards a solution, while something like
the genetic algorithm and it’s less overt control mechanism might be able to find a better
solution given enough time and resources. This is not unlike biological evolution, where
time is a primary ingredient.

6.3.2 Modifying CR, F, and η

The tests above constrained themselves to modify the population size and number of gen-
erations (iterations). Let’s look now at changing the crossover probability (CR), mutation
probability (F), and the fraction of the population available for breeding the next genera-
tion (η). We’ll fix the population size and number of generations at 100 each for all of the
following tests.

Let’s start by varying CR, the crossover probability. Recall, CR sets the likelihood of
a particle breeding with one of the top-performing particles. For all tests, the top fraction
is 0.5, the default. The lower CR is, the less likely it is that the particle will breed on a
swarm update. If CR is zero, no breeding happens, and only mutation alters the swarm.
Here, the mutation probability is the default of 0.05. If CR is one, every particle breeds on
every iteration.

The code is in fxy_gaussian_ga_cr.py. The code uses swarms of 100 particles run
for 100 iterations. For each CR value tested, the result reported is the mean and standard
error over 100 runs. The display also tells us how many of the searches succeeded in locating
the global minimum, how many found the wrong minimum, and how many failed to find
either minimum. For example, one run produced,

CR=0.00, min= -4.5252360 +/- 0.0455524 (success=100, wrong= 0, fail= 0)
CR=0.02, min= -4.6299699 +/- 0.0338846 (success=100, wrong= 0, fail= 0)
CR=0.04, min= -4.6957286 +/- 0.0339823 (success=100, wrong= 0, fail= 0)
CR=0.06, min= -4.8023189 +/- 0.0224232 (success=100, wrong= 0, fail= 0)
CR=0.08, min= -4.8123653 +/- 0.0208867 (success=100, wrong= 0, fail= 0)
CR=0.10, min= -4.7826065 +/- 0.0272041 (success=100, wrong= 0, fail= 0)
CR=0.12, min= -4.8305728 +/- 0.0202203 (success=100, wrong= 0, fail= 0)
CR=0.14, min= -4.8439194 +/- 0.0277094 (success=100, wrong= 0, fail= 0)
CR=0.16, min= -4.8310437 +/- 0.0272780 (success=100, wrong= 0, fail= 0)
CR=0.18, min= -4.8818124 +/- 0.0192430 (success=100, wrong= 0, fail= 0)
CR=0.20, min= -4.8670177 +/- 0.0276245 (success=100, wrong= 0, fail= 0)
CR=0.30, min= -4.9203102 +/- 0.0179200 (success=100, wrong= 0, fail= 0)
CR=0.40, min= -4.9169339 +/- 0.0179931 (success=100, wrong= 0, fail= 0)
CR=0.50, min= -4.8760211 +/- 0.0282628 (success= 99, wrong= 1, fail= 0)
CR=0.60, min= -4.8892758 +/- 0.0293400 (success=100, wrong= 0, fail= 0)
CR=0.70, min= -4.8435547 +/- 0.0257399 (success=100, wrong= 0, fail= 0)
CR=0.80, min= -4.8375457 +/- 0.0344338 (success= 99, wrong= 1, fail= 0)
CR=0.90, min= -4.8460925 +/- 0.0308933 (success= 99, wrong= 1, fail= 0)
CR=1.00, min= -4.8689705 +/- 0.0264315 (success= 99, wrong= 1, fail= 0)

We see that no searches failed, and only a handful found the wrong minimum. Note, the
wrong minimum searches show up when CR is about 0.5 or higher. This pattern seems
consistent from run to run of the test code. Whether this effect is conditioned on the

CHAPTER 6. GENETIC ALGORITHM 87

Figure 6.3: Mean minimum found as a function of CR (mean ± SE).

specific problem we’re solving or not is unclear.
A plot of this data is in Figure 6.3. For each CR, we plot the mean of all successful

searches and the standard error. When CR is zero, only mutation drives the search, and
the results are not as good as we would like, though still good enough to consider each
search successful. As CR increases, the mean minimum found improves, as we expect, since
particles have more opportunity to breed on each iteration. A CR in the range [0.2, 0.5]
delivers the best performance. As CR continues to increase, performance decreases slightly
up to a CR of one when each particle breeds on each iteration. The error bars’ size gives
us confidence that the effect we see in the plot is real.

Fixing the NumPy pseudorandom generator seed at 73939133 lets us plot the mean
swarm best position and dispersion values as a function of generation for specific crossover
probabilities ensuring the two plots represent the same sequence of swarm updates.1 The
code for these plots is also in fxy_gaussian_ga_cr.py. Recall, by “dispersion” we
mean a measure of how spread out the swarm is in x and y. If the swarm is collapsing, the
dispersion goes down.

Figure 6.4 presents the evolution of the swarm best (left) and the dispersion of the swarm
(right) as functions of the generation. For the swarm bests, we see distinct differences
between different CR values. When CR is zero, mutation only, the swarm best changes
slowly compared to other CR values. The other CR values track each other closely, though
one might argue that CR=1 does not perform quite as well as a CR of 0.5 or 0.8. Recall,
CR=0.8 is the default value for the GA class.

Note, because we fixed the pseudorandom seed value, each curve in Figure 6.4 starts at
the same initial swarm configuration. However, the first point plotted in the graph is the

1The number 73939133 is the largest right-truncatable prime, meaning 73939133, 7393913, 739391, 73939,
7393, 739, 73, and 7 are all prime. We use it here simply for fun.

CHAPTER 6. GENETIC ALGORITHM 88

Figure 6.4: (Left) Mean swarm best position and (right) mean swarm dispersion as functions
of generation and CR.

swarm after one iteration; therefore, the swarm has been updated once and affected by the
selected CR value. This accounts for the different starting positions of the curves.

The right side of Figure 6.4 tells the story of the swarm’s coverage of the 2D search
space. We immediately notice that CR=0, a mutation-only swarm with a probability of
mutation set at 5%, barely changes from iteration to iteration. This effect is to be expected.
If only some five particles of the 100 in the swarm change at all in any given generation,
and only in a single dimension (gene), then we should expect only minor effects on the
dispersion of the swarm, doubly so when averaging over 100 searches.

The dispersion for the remaining CR values tracks inversely with increasing CR. Again,
this seems a reasonable result. If CR=0.2, then on average, only 20 of the 100 particles
breed on any iteration, so particle positions will not change rapidly. However, when CR=0.8
or CR=1.0, most or all particles breed on every iteration forcing the swarm to reach the
level of uniformity reflected in Figure 6.4. That these effects are so apparent in a 2D search
is somewhat impressive.

Let’s turn our attention now to modifying F, the mutation rate. The code for the tests
is in fxy_gaussian_ga_f.py. We’ll make plots similar to those above for changing CR.
Our first plot tracks the global minimum as a function of F from [0, 1]. If F is zero, there
is no mutation, evolution is restricted to crossover only. This approach mixes the existing
swarm gene pool, the set of particles from the random initializer, but that’s all. As we
increase F, the likelihood of a particle mutating during swarm updates increases. When F
is one, mutation happens to all particles on every iteration.

Can mutation alone drive the swarm to the global minimum? We can test this if we
set CR to zero. Therefore, let’s make two curves tracking the mean swarm minimum as a
function of F. The first for CR=0.8, our default, and the second for CR=0.0, the mutation-
only case. The result is Figure 6.5.

Figure 6.5 tells us when mutation is not present (F=0), the swarm fails to converge
on the minimum even though some 90% of the swarm searches are heading towards the
global minimum. If F is low, 0.05, the presence of crossover matters and contributes to the
effectiveness of the search. Increasing F from its minimum value to about 0.3, combined
with the default crossover probability of 0.8, is the most effective combination in this case.
As in biological evolution, the most effective approach is sexual reproduction combined with
mutation over time. Do bear in mind, however, that our example is 2D. A mutation changes
as much of the particle’s genome as crossover does, though the probabilities involved are

CHAPTER 6. GENETIC ALGORITHM 89

Figure 6.5: Average minimum found as a function of F, the mutation probability.

different.
There is one more GA parameter we can manipulate, η. Let’s vary the fraction of

best particles available for breeding and see how this affects the rate of convergence of
the swarm, the dispersion, and the overall minimum found. The code for the tests is
in fxy_gaussian_ga_eta.py. Running the code produces figures akin to those we’ve
already seen.

Figure 6.6 tells us that as η increases, two things happen. First, for the fixed number
of iterations, the overall minimum found gets worse. Second, the scatter around the mean
increases, as evidenced by the larger error bars. For small η, the error bars are virtually
invisible, and the minimum found is much closer to the true minimum of -5.0. For the
Gaussian function, η = 0.2 seems quite reasonable.

What of the convergence and dispersion of the swarm as a function of iteration and
η? Figure 6.7 shows η = 0.2 converging quickly while maintaining a reasonable dispersion.
When η = 0.99, meaning virtually all particles are free to breed with any other particle,
the dispersion of the swarm remains higher, but the average minimum found is also higher.
Results like these for η = 0.2 and η = 0.99 make sense. A swarm allowing individuals to
breed with only top-performing individuals will have decreased diversity (dispersion), but
will also drive the swarm towards better positions in the search space. In the extreme case
of η = 0.01, meaning in essence for our test case, all particles breed with the top performer
only, dispersion is at its lowest, but overall performance in terms of minimum found is no
worse than most other η values. Surprisingly, however, η = 0.2 is still better, a likely sweet
spot for this particular problem.

The analysis of the Gaussian test problem points us towards a set of parameters we
might expect to work well: η = 0.2, F = 0.4, CR = 0.3. If we run these parameters 100
times, we get a final minimum value after 100 generations of -4.99421967, which is better

CHAPTER 6. GENETIC ALGORITHM 90

Figure 6.6: Average minimum found as a function of η, the fraction of the population
available for breeding.

than any of the previous results in this section. We’ll use this set of values for the remainder
of the chapter.

6.3.3 Comparison with Other Algorithms

Now that we understand the effect of the GA parameters, let’s compare against the other
algorithms. We’ll track the convergence of the swarm for GA, RO, PSO, Jaya, and GWO
simultaneously to see what conclusions we can draw from the results.

The code is in the file fxy_gaussian_algs.py and is structurally quite similar to
most of the code used above. We’ll run 100 searches per algorithm type and plot the mean
of the current swarm best objective function value as a function of iteration. The result
is Figure 6.8, where we see that PSO converges most rapidly, followed by Jaya and GWO
running neck and neck. Next, comes GA followed by RO. The ordering of GA and RO
is intuitively sensible. RO has no mechanism for sharing information between particles.
For GA, the sharing of information is implicit in crossover when portions of one particle’s
position are used to update another particle.

6.3.4 Higher-Dimensional Searches

In the second part of the book we’ll explore optimizations involving many more dimensions
than just the two we’ve explored so far. However, some readers may be wondering if we’re
too generous to the GA algorithm by giving it a simple two-dimensional search. After all,
in that case, crossover is either copy one dimension from each parent or both from one.
Mutation is similarly dramatic as it changes 50% of the particle’s genome when it happens.
Let’s see how GA fares searching a higher-dimensional space. We’ll continue with function

CHAPTER 6. GENETIC ALGORITHM 91

Figure 6.7: (Left) Mean swarm best position and (right) mean swarm dispersion as functions
of generation and η.

optimization, with locating the minimum of a Gaussian, but instead of two dimensions, we’ll
expand to five. Naturally, we cannot plot the function, but the form is a simple extension
of Equation 3.1 by adding three more dimensions,

f(x) =− 5 exp

(
−1

2

(
(x0 + 2.2)2

0.4
+

(x1 − 4.3)2

0.4
+

(x2 + 3.1)2

0.4
+

(x3 − 1.2)2

0.4
+

(x4 + 0.7)2

0.4

))
+

(6.1)

− 2 exp

(
−1

2

(
(x0 − 2.2)2

0.4
+

(x1 + 4.3)2

0.4
+

(x2 − 3.1)2

0.4
+

(x3 + 1.2)2

0.4
+

(x4 − 0.7)2

0.4

))
(6.2)

This function has a global minimum of -5.0 at (−2.2, 4.3,−3.1, 1.2,−0.7).
The code we need is in fxy_gaussian_ga_multi.py. We’ll run the search for various

swarm sizes and number of iterations. In each case,we’ll perform the search 50 times and
track the number of times we end up near the global minimum (success), the other minimum
(wrong), or neither (failure). For successful searches, we’ll report the mean minimum value
found. The code takes some time to run and produces output similar to Table 6.1.

The first number on each line is the size of the swarm. The second is the number of
iterations. We immediately notice that small populations do not do well. They often fail to
converge to the real minimum and even at times fail to converge to either minimum. The
frequency of wrong minimums decreases as the swarm size increases, as we might expect.
Evolution needs a larger population to work with. We also see that the mean result of a
search improves as the number of generations increases for fixed population size. Evolution
needs time, as well. However, of practical importance for using the GA approach, we see
there’s little difference between the minimum found after 1000 generations and that found
after 2000, though, as always, it depends on the application as to whether or not the
difference is meaningful.

Consider the results for a swarm of 2000 particles. The mean minimum position found
improves with the number of iterations, but the relative improvement decreases as the
number of iterations increases. There is significant improvement between 100 and 500
iterations, less between 500 and 1000, and so on. High precision results might be difficult
to achieve with the genetic algorithm.

CHAPTER 6. GENETIC ALGORITHM 92

Figure 6.8: Mean swarm best as a function of iteration for each algorithm type.

For comparison purposes, a tweak in the code for fxy_gaussian_ga_multi.py re-
places the instantiation of a GA object with a PSO particle swarm using LinearInertia.
If we rerun the code and wait overnight because our code is not parallelized, we get output
like Table 6.2.

Table 6.2, at first glance, looks quite nice. The particle swarm converges more rapidly
than the genetic algorithm, and when the number of particles or iterations is high is some-
times perfect for all 50 runs. However, a second look at Table 6.2, especially when compared
to the GA results in Table 6.1, reveals a distinct weakness in the PSO search relative to
GA.

For GA, as the population increases, the probability of landing in the wrong minimum
decreases until we never end up in the wrong place. For the particle swarm, the number of
wrong searches also decreases with increasing swarm size, but slowly and erratically, and it
never becomes as clean as the GA result. The price to pay for the particle swarm’s precision
when it finds the correct minimum seems to be an increased likelihood of not finding it at
all.

We leave the 5D Gaussian comparison with RO, Jaya, and GWO as an exercise for the
reader. Only straightforward changes to the code in fxy_gaussian_ga_multi.py are
needed. We’ll revisit this example in the next chapter and compare the GA and PSO results
to those found by differential evolution, to which we now turn.

CHAPTER 6. GENETIC ALGORITHM 93

(particles, iterations) mean minimum (n = 50) (success, wrong, fail)

(20, 100) -3.1994460± 0.1715789 (22, 22, 6)
(20, 500) -4.8024402± 0.0317703 (31, 19, 0)
(20, 1000) -4.9401292± 0.0243199 (23, 27, 0)
(20, 1500) -4.9778330± 0.0037183 (39, 11, 0)
(20, 2000) -4.9882480± 0.0016098 (30, 20, 0)

(100, 100) -3.7911285± 0.1136029 (32, 18, 0)
(100, 500) -4.8939450± 0.0136274 (39, 11, 0)
(100, 1000) -4.9590089± 0.0080581 (31, 19, 0)
(100, 1500) -4.9779871± 0.0050738 (37, 13, 0)
(100, 2000) -4.9747370± 0.0113306 (38, 12, 0)

(500, 100) -4.2072364± 0.0707933 (48, 2, 0)
(500, 500) -4.8126808± 0.0361144 (49, 1, 0)
(500, 1000) -4.9181503± 0.0278864 (45, 5, 0)
(500, 1500) -4.9524024± 0.0092210 (48, 2, 0)
(500, 2000) -4.9647868± 0.0086705 (48, 2, 0)

(1000, 100) -4.1254405± 0.0936570 (48, 2, 0)
(1000, 500) -4.7889888± 0.0359093 (50, 0, 0)
(1000, 1000) -4.9088754± 0.0213418 (50, 0, 0)
(1000, 1500) -4.9598445± 0.0051796 (50, 0, 0)
(1000, 2000) -4.9622745± 0.0076301 (50, 0, 0)

(2000, 100) -4.2631505± 0.0733849 (50, 0, 0)
(2000, 500) -4.8383683± 0.0293259 (50, 0, 0)
(2000, 1000) -4.9283615± 0.0094757 (50, 0, 0)
(2000, 1500) -4.9603370± 0.0057764 (50, 0, 0)
(2000, 2000) -4.9764850± 0.0026534 (50, 0, 0)

Table 6.1: Mean minimum found for GA and the 5D Gaussian. Successful searches only.

CHAPTER 6. GENETIC ALGORITHM 94

(particles, iterations) mean minimum (n = 50) (success, wrong, fail)

(20, 100) -4.8427106± 0.0504383 (33, 17, 0)
(20, 500) -4.9999178± 0.0000703 (23, 27, 0)
(20, 1000) -4.9994031± 0.0005821 (30, 20, 0)
(20, 1500) -4.9783888± 0.0213171 (37, 13, 0)
(20, 2000) -4.9532370± 0.0459497 (29, 21, 0)

(100, 100) -4.9998833± 0.0000556 (31, 19, 0)
(100, 500) -5.0000000± 0.0000000 (32, 18, 0)
(100, 1000) -4.9592468± 0.0400682 (30, 20, 0)
(100, 1500) -4.9471347± 0.0521650 (38, 12, 0)
(100, 2000) -4.9999997± 0.0000003 (35, 15, 0)
(500, 100) -4.9999966± 0.0000024 (37, 13, 0)

(500, 500) -5.0000000± 0.0000000 (35, 15, 0)
(500, 1000) -4.9998467± 0.0001514 (41, 9, 0)
(500, 1500) -5.0000000± 0.0000000 (42, 8, 0)
(500, 2000) -5.0000000± 0.0000000 (44, 6, 0)

(1000, 100) -4.9999999± 0.0000000 (35, 15, 0)
(1000, 500) -4.9999994± 0.0000006 (37, 13, 0)
(1000, 1000) -4.9522592± 0.0471951 (44, 6, 0)
(1000, 1500) -5.0000000± 0.0000000 (49, 1, 0)
(1000, 2000) -5.0000000± 0.0000000 (47, 3, 0)

(2000, 100) -5.0000000± 0.0000000 (34, 16, 0)
(2000, 500) -4.9897808± 0.0100938 (41, 9, 0)
(2000, 1000) -5.0000000± 0.0000000 (48, 2, 0)
(2000, 1500) -5.0000000± 0.0000000 (50, 0, 0)
(2000, 2000) -5.0000000± 0.0000000 (50, 0, 0)

Table 6.2: Mean minimum found for PSO and the 5D Gaussian. Successful searches only.

Chapter 7

Differential Evolution

Differential Evolution (DE) ([20]) is the second evolutionary algorithm we’ll sneak into our
toolkit. It’s a good one to have and to consult frequently. DE is of the same vintage as
PSO, the mid-1990s, and both have proved themselves time and again. Our toolkit would
be incomplete without it.

This chapter follows the format of the previous chapters. We’ll present differential
evolution in Section 7.1, and discuss the code in Section 7.2. As before, we’ll put DE
through its paces in Section 7.3, with both our simple Gaussian example and the 5D version
introduced in Section 6.3. DE is the last of our swarm algorithms. With it, our toolkit is
complete, and we move to the second part of the book – the experiments.

7.1 Unnatural Mutation

We discussed GA in Chapter 6 and saw that it worked by simplifying evolution, reducing
it to just crossover (breeding) and random mutation. This approach made sense. For DE,
we continue with the evolution metaphor but alter it slightly. As we will see, changing it
slightly has a significant impact on its effectiveness for many problems.

In GA, mutation affects a single dimension of the particle’s position. A random element
is updated. Crossover involves breeding two individuals, the current one and some member
of the swarm, possibly restricted to a top-performing member of the swarm. A crossover
point is selected, and all values up to that point for the current particle are kept with the
remainder coming from the selected breeding partner.

In DE, mutation and crossover still apply, but the step where each is performed is
named differently from what we might expect. In [20], mutation refers to the generation
of a position in the search space built from three donor vectors, three other particles.
Specifically, mutation finds v from three other swarm vectors, excluding the current swarm
vector, using,

v = v1 + F (v2 − v3) (7.1)

Here v1, v2, and v3 are the three donors to v and F , typically [0, 2], is the amplification
factor on v2 − v3, the differential variation, an offset to v1. Using the difference leads to
the algorithm name, “differential evolution”. Equation 7.1 creates the mutation vector, but
not the final candidate. While [20] uses “mutation” in reference to Equation 7.1, it is, in a
sense, breeding, a mixing of three individuals instead of a random error applied during the
creation of a new individual. We might consider Equation 7.1 to be unnatural mutation

95

CHAPTER 7. DIFFERENTIAL EVOLUTION 96

– unnatural because, in nature, mutation does not involve another individual, let alone
three of them. Rather, Equation 7.1 is similar to Equation 5.1, where some portion of the
difference between existing particles is used to update the position of another. For Jaya,
the difference is explicit in that the swarm’s best and worst positions are used. For DE, the
selection is random (usually, we’ll see a variant below).

After mutation creates v, we apply crossover. However, unlike crossover in GA where
a single break point is selected and two entire portions of the position vector are merged,
DE selects element by element. The goal is to generate the candidate vector, u, where the
elements of u are selected one at a time using,

ui =

{
vi, if r < CR or i = I

xi, otherwise
(7.2)

In Equation 7.2, i is the current index, CR is the crossover probability, r is a random
number [0, 1], x is the current particle position, and I is a randomly selected index [0, ndim).
The purpose of I is to ensure that at least one element of u comes from v, the mutation
vector.

Algorithmically, DE follows Algorithm 4 in Chapter 3, but replaces,

Select a new position some random distance away from the current position

with,

Apply DE mutation and crossover to generate a new position

where the candidate is derived from both Equation 7.1 and Equation 7.2.
The mere fact that we have a candidate vector (u) distinguishes DE from GA and makes

DE more like RO. In GA, evolution happens, period. If the result is helpful, great. If it isn’t,
we’re stuck with it. There is a weak overlord, the overlord who decides who gets to breed,
but the direct involvement of members of the swarm, beyond the single mate, is missing.
In DE, the mutation vector, the actual mate of the current vector, is built from the swarm
using entire vectors or differences of vectors. Additionally, crossover injects more diversity
because it acts element-by-element instead of two disjoint segments merged. As we’ll see
below, the mutation rule, and highly-mixed crossover, make DE a powerful technique.

Equation 7.1 uses three randomly selected vectors to build the mutation vector: v1, v2,
and v3. DE is highly customizable, like most metaheuristic algorithms, and many variants
have been explored leading to a nomenclature for specifying which version is being discussed.
The version in Equation 7.1 is known as,

DE/rand/1/bin

Let’s decode the designation. Beyond the obvious meaning of “DE”, the first field, “rand”,
means that v1 is a randomly selected swarm position vector. The “1” refers to the number
of differentials used in creating the mutation vector. Equation 7.1 has only one, v2 − v3.
Finally, “bin” refers to how crossover is implemented. Equation 7.2 selects elements of
the final candidate vector, u, by performing individual Bernoulli experiments, essentially
flipping a weighted coin. Recalling that a Bernoulli distribution is a special case of a
binomial distribution explains the “bin” label.

Our implementation supports three versions of the first field and two versions of the
second. Beyond using a randomly selected v1, we support “best” to use the current swarm

CHAPTER 7. DIFFERENTIAL EVOLUTION 97

best position as v1 and, new for this text as far as can be discerned, “toggle,” which on each
swarm update toggles between “rand” or “best”. Therefore, temporarily ignoring “toggle”,
we can configure the search to use,

DE/rand/1/bin random v1, coin flipping crossover
DE/best/1/bin swarm best v1, coin flipping
DE/rand/1/GA random v1, GA-style crossover
DE/best/1/GA swarm best v1, GA crossover

We’ll experiment with each of these options, and “toggle”, in Section 7.3.
Our DE implementation will not support anything other than a single differential, but

researchers have experimented with additional differentials. For example, DE/rand/2/bin
uses two differentials and changes Equation 7.1 to,

v = v1 + F (v2 + v3 − v4 − v5)

with all vi vectors randomly selected swarm particles.
The original DE paper ([20]) has been referenced over 27,000 times as of 2021. This

alone is clear evidence of DE’s utility. Is it the best technique? Clearly, no, it isn’t as we
know there is no “best” optimization algorithm for all cases [21].

DE’s strengths include rapid convergence. We’ll see this in the experiments that follow.
However, later in the book, we’ll also see rapid convergence is sometimes a liability. The
price we pay for rapid convergence is a tendency to become trapped in local minima. There
are also claims of DE not scaling well as the dimensionality of the search space increases.
Such claims must be interpreted in the context that led to them; there will doubtless be
practical situations where DE scales appropriately for the problem.

7.1.1 Configuring DE

DE is not parameter-free. We need to specify both F and CR (for the “bin” variant). What
values should we use? As expected when discussing swarm optimization, the answer is “it
depends on the problem.” Explorations in [22] imply for a given population size and CR
that F should not be less than,

Fcrit =

√
1− CR

2

nparticles

Other researchers find different thresholds. For example, in [20] we get F ∈ [0.5, 1] and
CR ∈ [0.8, 1]. Our implementation defaults to F = 0.8 and CR = 0.5, values recommended
in [23]. We are in the general ballpark, and we’ll experiment with F and CR in Section 7.3.

For now, let’s detail the essential features of the DE class and then jump into basic
experiments.

7.2 The DE Class

The DE class is outlined in Figure 7.1. The common set of methods are present. We’ll
walk through the Candidate, CandidatePositions, and Step methods. The others
are identical or virtually identical to those in the other swarm classes. The source code for
the DE class is in the file DE.py.

CHAPTER 7. DIFFERENTIAL EVOLUTION 98

class DE:
def __init__(self, ...):
def Results(self):
def Initialize(self):
def Done(self):
def Evaluate(self, pos):
def Candidate(self, idx):
def CandidatePositions(self):
def Step(self):
def Optimize(self):

Figure 7.1: Outline of the DE class.

The DE constructor accepts the same set of arguments as the GA class constructor,
including CR and F. We’ll discuss those when we use them, though they have much the
same meaning for DE as they do for GA. Additionally, the constructor accepts mode and
cmode arguments. The mode is a string, either “rand” (default), “best” or “toggle”. The
mode determines which variant of DE we’ll be using to select v1. We’ll get to the mode in
Section 7.2.3.

The cmode parameter specifies the version of crossover used. Allowed values are “bin”
(default) or “GA”. The default follows the original DE algorithm. It creates the candidate
vector by merging the current position vector and mutation vector element-by-element,
rolling a weighted die to decide which element to copy. The “GA” option mimics crossover
in the GA class. Here a single position is selected, and all values up to that position are
retained from the current position vector and all values after that position come from the
mutation vector.

Let’s walk through the relevant methods starting with Step and working our way up
to Candidate. The DE-specific code resides mainly in the Candidate method, so that’s
where we’ll spend most of our energy.

7.2.1 Step

The Step method performs a single DE swarm update. The code is straightforward and
modified only slightly from that of the other swarm algorithms,

def Step(self):
new_pos = self.CandidatePositions()
p = self.Evaluate(new_pos)
for i in range(self.npart):

if (p[i] < self.vpos[i]):
self.vpos[i] = p[i]
self.pos[i] = new_pos[i]

if (p[i] < self.gbest[-1]):
self.gbest.append(p[i])
self.gpos.append(new_pos[i].copy())
self.gidx.append(i)
self.giter.append(self.iterations)

self.iterations += 1

First, new candidate positions are created for each particle in the swarm (new_pos).
We do this with a call to CandidatePositions (Section 7.2.2). As with RO and GA, the

CHAPTER 7. DIFFERENTIAL EVOLUTION 99

candidate positions are evaluated (Evaluate) with the objective function values retained
in p.

The loop over particles examines the candidate’s objective function value. If the new
position’s objective function value is less than the current position’s (vpos[i]), we move
to the new position. If not, the particle remains where it is until the next iteration.

We also ask if the new position is a new swarm best. If it is, we make it the new swarm
best by appending it to the list of swarm bests (gbest, gpos). We then increment the
iteration counter and start the next iteration of the swarm.

7.2.2 CandidatePositions

This simple method generates new candidate positions for the entire swarm. In code,

def CandidatePositions(self):
pos = np.zeros((self.npart, self.ndim))
for i in range(self.npart):

pos[i] = self.Candidate(i)
if (self.bounds != None):

pos = self.bounds.Limits(pos)
return pos

where we set up space for the new swarm positions (pos) and then loop over the particles
to generate a candidate position (Candidate) for each. After the update, if there is a
Bounds object, we enforce boundary and other conditions. The entire set of new positions
is returned to Step. This method echoes the CandidatePositions method of the RO
class and serves the same function. See Section 3.2.5.

7.2.3 Candidate

The Candidate method implements DE mutation and crossover to return a candidate
position. If the candidate position is better than the current particle position, the candidate
position is kept. In code we have,

def Candidate(self, idx):
k = np.argsort(np.random.random(self.npart))
while (idx in k[:3]):

k = np.argsort(np.random.random(self.npart))
v1 = self.pos[k[0]]
v2 = self.pos[k[1]]
v3 = self.pos[k[2]]
if (self.mode == "best"):

v1 = self.gpos[-1]
elif (self.mode == "toggle"):

if (self.tmode):
self.tmode = False
v1 = self.gpos[-1]

else:
self.tmode = True

v = v1 + self.F*(v2 - v3)
u = np.zeros(self.ndim)
I = np.random.randint(0, self.ndim-1)
if (self.cmode == "bin"):

for j in range(self.ndim):
if (np.random.random() <= self.CR) or (j == I):

u[j] = v[j]

CHAPTER 7. DIFFERENTIAL EVOLUTION 100

elif (j != I):
u[j] = self.pos[idx,j]

else:
u = self.pos[idx].copy()
u[I:] = v[I:]

return u

where idx is the index of the current swarm particle. The goal of mutation in DE is to
select three other particles which do not contain idx and use them to build a donor vector
(v). The three particles are in v1, v2, and v3. We get them by generating a random
ordering of the particles (k) and ensuring that none of the first three selected contain the
current particle. If the mode of the DE class is “best”, the first particle selected is replaced
by the current swarm best position. If the mode is “toggle”, each call to Candidate
toggles between “rand” and “best” based on the state of self.tmode which is initialized
in __init__ to False.

A direct implementation of Equation 7.1 uses the three donor vectors to generate v: v1
plus the mutation fraction, F , times the difference between the other two donors.

With v, it is now possible to create the candidate vector, u. If cmode is “bin”, the
elements of u are set according to Equation 7.2 with I a fixed index. The if statement
checks CR and I ensuring at least one element of u comes from v. Otherwise, the new
element comes from the corresponding element in the current position the particle.

If cmode is “GA”, GA-style crossover is used instead. In that case, I is the position
where the split and merge takes place with current position values from index zero to I − 1
retained and values from I onward replaced with the corresponding portion of v.

The essence of DE is in the Candidate method, the remainder of the DE class is nearly
identical to the other swarm algorithms we’ve encountered. Let’s put DE to the test, first
against our 2D Gaussian and then the 5D Gaussian from Section 6.3.

7.3 Testing the DE Class

To put the DE class through its paces, we’ll first do basic runs of the 2D Gaussian we’ve
used consistently throughout the preceding chapters (Equation 3.1). Next, we’ll snapshot
how the swarm behaves during one of these searches by plotting the swarm positions in 2D
space. After that, we alter DE parameters to see the effects on convergence and swarm
diversity thereby echoing Section 6.3.2 where we did the same for GA. Finally, we compare
DE to all the previous algorithms using our 5D Gaussian (Equation 6.2).

7.3.1 Experiments with a 2D Gaussian

Previously, we started our experiments using a new algorithm by running a search for the
minimum of Equation 3.1. Let’s continue that tradition by running 21 searches each with
our four DE variants and tracking the number of successful searches, wrong searches, and
failures. The code we want is in de_gaussian.py and run with command lines like this,

> python3 de_gaussian.py 20 100 RI rand bin

This command runs a search using 20 particles, 100 iterations, random initialization, and
DE/rand/1/bin. Configuring a script for each DE variant and 21 searches produces the
following,

CHAPTER 7. DIFFERENTIAL EVOLUTION 101

DE/rand/1/bin success: 21, wrong: 0, fail: 0
DE/rand/1/GA success: 21, wrong: 0, fail: 0
DE/best/1/bin success: 20, wrong: 1, fail: 0
DE/best/1/GA success: 17, wrong: 3, fail: 0
DE/toggle/1/bin success: 21, wrong: 0, fail: 0
DE/toggle/1/GA success: 21, wrong: 0, fail: 0

Clearly, DE performs well on this simple search. In particular, DE/rand/ and DE/tog-
gle/ succeed on all 21 trials. Using DE/best/ produces a few wrong results, worse when
using DE/best/1/GA. The increased number of wrong results when using GA crossover is
not too surprising; there is less diversity generated by GA-style crossover than the coin-
flipping approach. Add in the restriction of using only the current swarm best for v1 when
creating the mutation vector, and diversity decreases still further. Of course, recall that
these results are for a 2D search space.

Altering the command line to,

> python3 de_gaussian.py 20 100 RI rand bin frames

creates a frames output directory with the current swarm state after each iteration. We’ll
fix the pseudorandom seed to 8675309 so you can run the code yourself to produce the
same output. Setting the seed also lets us compare the plots to previous chapters (e.g.,
Chapter 4).

A few of the 100 frames in the frames directory are shown in Figure 7.2. Running
clockwise from the upper left, we have the initial swarm configuration followed by iteration
3, iteration 18, and iteration 40. The known global best position is marked with an open
square. The current swarm best position is a star. Compare these frames, especially the
iteration numbers, with those of Figure 4.2 using PSO.

The DE algorithm located the global minimum in only a handful of iterations. As the
swarm continued to evolve, it split into two groups (iteration 18 in Figure 7.2), one around
the global minimum and the other around the other minimum. Further updates to the
swarm result in it collapsing on the global minimum by iteration 40. By way of contrast,
after 100 iterations, the PSO swarm was still widely dispersed.

The frames directory contains an additional file, dispersion.npy. This file tracks
the dispersion, the mean difference between the minimum and maximum value along each
dimension of the swarm, as a function of iteration. Let’s plot this to see how the swarm
evolved.

Figure 7.3 shows the dispersion of the swarm for DE variants including DE/toggle/1/bin.
In each case, there is a rapid drop in dispersion marking when the swarm starts to collapse
into the global minimum. Recall, the pseudorandom seed is fixed, so each swarm starts
from the same configuration. The timing of the swarm collapse depends on the v1 mode.

As we might expect, “best” leads to a rapid collapse of the swarm once the swarm best
locates the global minimum. This is true for either “bin” or “GA” crossover. Pulling the
swarm together around the current swarm best should lead to rapid convergence. Therefore,
the “best” curves make sense, exploitation of the minimum takes priority.

The other extreme is found for the “rand” searches. These, regardless of crossover
strategy, allow the swarm to explore for a longer period before collapsing. Again, the
stochastic nature of v1 selection implies this behavior, so the curves are sensible.

Finally, and somewhat satisfyingly, the “toggle” curve lies between “best” and “rand”.
The swarm is drawn towards the swarm best but not so rapidly that it cannot continue its

CHAPTER 7. DIFFERENTIAL EVOLUTION 102

Figure 7.2: DE swarm positions clockwise from upper left: initial, iteration 3, iteration 18,
and iteration 40.

exploration of the search space. The reader is encouraged to run de_gaussian.py with
the fixed pseudorandom seed to produce frames for DE/rand/1/bin, DE/best/1/bin, and
DE/toggle/1/bin modes. Stepping through the frames for the first mode shows exploration
with a small portion of the swarm spending many iterations around the other minimum.
For the second, the swarm converges rapidly on the global minimum, with no exploration
around the other minimum. Finally, toggle shows convergence to the global minimum with
a small portion of the swarm initially exploring the other minimum, precisely as expected.

7.3.2 Modifying CR and F

In Section 6.3.2, we modified CR and F for the genetic algorithm. Let’s do the same here for
DE. We’ll restrict ourselves to DE/rand/1/bin and leave other combinations as experiments
for the reader.

Recall, changing CR for GA implies changing the probability that a particle will breed
at all during a swarm update. For DE/rand/1/bin, changing CR alters the likelihood that
a component from the mutation vector will be used in the candidate vector. Therefore, the
experiment that follows is not strictly a direct comparison, but the CR parameter plays a

CHAPTER 7. DIFFERENTIAL EVOLUTION 103

Figure 7.3: Dispersion of different DE searches as a function of iteration.

similar role in each algorithm.
The code we need is in the file de_gaussian_cr.py. It’s a clone of the code used in

Section 6.3.2 replacing the call to GA with DE and altering the names of the output files.
In a sense, the code has evolved by a simple mutation of its “DNA”, its source. The code
generates the mean minimum value found as a function of CR. The swarm has 100 particles
and uses 100 iterations.

Running the code produces Figure 7.4, which we should compare to Figure 6.3 showing
the results for GA. Note, there is a significant y-axis scale difference between the two figures.

With GA, we found the search sensitive to CR; it varied more from run to run, as
illustrated by the size of the error bars. For DE, when CR is any value above a 5% chance
of copying components from the mutation vector, we see virtually uniform performance of
the search.

When CR is zero, the candidate vector contains only one value from the mutation
vector (see Section 7.2.3). For a 2D search, this one value matters, so even then, the search
progresses. When CR reaches one, the mutation vector becomes the candidate vector, and
the swarm improves via mutation only, there is no crossover.

Figure 6.4 shows the effect of CR on GA as a function of generation (iteration). Fig-
ure 7.5 shows the same for DE. DE is, for this particular search, less affected by CR than
GA. The left side of Figure 7.5 testifies to this with even CR = 0.0 leading to a good
minimum value. In that case, the requirement that at least one component of the mutation
vector is used in the candidate vector has had a meaningful impact. We might expect this
impact to be significantly reduced in a higher-dimensional search.

The right side of Figure 7.5 shows the effect of CR on the dispersion of the swarm. The
results make intuitive sense. A DE search with CR = 0.0, especially if the dimensionality of
the search space is low, is essentially a mutation-only search with GA: the candidate vector

CHAPTER 7. DIFFERENTIAL EVOLUTION 104

Figure 7.4: Mean minimum found as a function of CR (mean ± SE).

becomes the original position vector with a single (substantially) random mutation. We say
“substantially” because the component of the mutation vector used when CR = 0.0 is not
purely random, it was arrived at in a principled way using existing swarm positions. Still,
the variation is small on each swarm update, so we should expect the dispersion to remain
high as a function of iteration.

Dispersion falls off more rapidly as CR increases. For the 2D problem we’re considering,
we expect a rapid decrease in dispersion when the swarm starts to collapse on itself in the
well of the global minimum. We saw this effect clearly in Figure 7.3. In Figure 7.5, the
collapse into the global minimum is still evident, but smoothed because we are using a
swarm of 100 particles instead of only 20. Higher CR values imply a strong tendency for
the swarm to pull itself towards the global minimum as diversity goes down. The balance
of a DE search between exploration and exploitation can be influenced by CR. One might
imagine a more advanced DE search which modifies CR as the search progresses. The
situation is not quite so simple, however, as there is a complex interaction between CR and
F , and the “ideal” setting for both is highly problem-dependent.

Running the code in de_gaussian_f.py produces a plot of the search for two different
CR values, Figure 7.6. We immediately notice that when CR is nonzero, we get a good
solution for any value of F 6= 0.0. Likewise, when CR = 0.0, we are bounded and never
reach the same level of precision as the CR = 0.8 case.

What about the situation when F = 0.0? In that case, when CR = 0.8 we get worse
performance than with CR = 0.0. Recalling Equation 7.1,

v = v1 + F (v2 − v3)

we see that F = 0.0 implies the mutation vector is only v1 and v1 is a randomly selected
swarm vector. Therefore, the mutation vector is a copy of an existing swarm position.

CHAPTER 7. DIFFERENTIAL EVOLUTION 105

Figure 7.5: (Left) Mean swarm best position and (right) mean swarm dispersion as functions
of generation and CR.

Also, when CR = 0.8, there is an 80% chance of selecting an element of the candidate
vector from the mutation vector. At least one of the mutation vector’s two components
will be selected with certainty. So, when F = 0.0 and CR = 0.8, the candidate vectors,
with high probability, will be nothing more than an existing swarm particle position. In
this case, we shouldn’t be surprised to get worse performance. The latter case implies the
candidate vectors are exactly one element from v1 and the other from the particle’s current
position. We have mutation rather than the copying of another swarm vector, so we have
more opportunities to create a candidate vector that improves the overall swarm best.

We’ve likely extracted all the relevant insights we can regarding DE and the simple 2D
Gaussian problem. Let’s compare DE and all the previous algorithms on the 5D Gaussian
example.

7.3.3 Comparing DE to Other Algorithms

Equation 6.2 represents a pair of Gaussians in five dimensions with a global minimum value
of -5.0 at (−2.2, 4.3,−3.1, 1.2,−0.7). In Section 6.3.4, we compared the performance of
GA and PSO on this function for various combinations of swarm size and iterations. For
example, see Tables 6.1 and 6.2.

The test here is straightforward: we desire to plot the mean swarm best value for
successful minimization searches as a function of iteration and swarm size. The code we
need is in de_gaussian_5d_plot.py producing the results in Figure 7.7.

How should we interpret Figure 7.7? The figure shows the mean convergence of the
swarms by iteration and algorithm. Here 20 runs were performed and the per iteration
mean and SE are shown. Starting with the upper left plot, and going by rows, swarm sizes
are 5, 10, 20, 50, 100, and 200 particles. It is important to remember that the plots show
only successful searches, searches that found or moved towards the global minimum. We’ll
discuss below how often this happened for each algorithm. Searches continued until 20 were
successful. All algorithms used their default parameters, and PSO used the default linear
inertia class.

Let’s consider RO first. As we’ve come to expect from RO, even small swarms show a
steady movement towards the goal. By the time the swarm contains 50 particles, we are
close to reaching the global minimum by iteration 450, the limit used for the plots. As
always, “close” is relative, and within 20% might be fine for one application while another

CHAPTER 7. DIFFERENTIAL EVOLUTION 106

Figure 7.6: Average minimum found as a function of F, the differential scale factor.

wants eight digits of accuracy.
For PSO, we see steady improvement in the convergence rate as the population size

increases. A swarm of 100 particles converges to the minimum by around iteration 150.
We observe similar performance from GWO, which, for this problem, converges quickly
compared to the other algorithms once the number of particles is above twenty. Even GA
follows this trend but, as we might expect, performs poorly when the number of particles is
small. Improvement happens with iteration, but slowly due to the lack of diversity in the
population, behavior that reflects real-world dynamics of species.

Jaya does not perform well on this task, regardless of the size of the swarm. Swarms
of five particles or 200 particles behave much the same. Why is not immediately clear –
we invoke the “No Free Lunch” theorem and claim this task is simply unsuited to Jaya’s
approach. We saw Jaya work well on other tasks in Chapter 5.

What is most impressive about Figure 7.7 is DE. Even a tiny swarm of five particles
finds the global minimum by iteration 200, and all larger swarms perform equally well.
Additionally, the error bars on the DE curves vanish for all but the first several tens of
iterations. DE converges quickly and consistently for this problem. Compare with the
error bars for RO, which we might expect to remain relatively large as multiple searches
proceed given the purely stochastic nature of each search. DE uses a principled application
of randomly selected swarm positions while RO uses randomly selected candidate positions,
so we might expect run to run variance to be larger.

The code in de_gaussian_5d.py produces output reflecting how often each algorithm
succeeds in finding the 5D global minimum value, the wrong minimum value, or no minimum
(a failure), as a function of swarm size and number of iterations. A run of the code produced,

CHAPTER 7. DIFFERENTIAL EVOLUTION 107

Figure 7.7: Mean swarm best (n = 20) by iteration and algorithm type for the 5D Gaussian.
By row from the top left: 5 particles, 10 particles, 20 particles, 50 particles, 100 particles,
and 200 particles.

CHAPTER 7. DIFFERENTIAL EVOLUTION 108

(20, 100) s w f

RO 1 0 11
PSO 7 5 0
Jaya 6 5 1
GWO 9 3 0
GA 5 2 5
DE 11 1 0

(300) s w f

RO 3 5 4
PSO 11 1 0
Jaya 11 1 0
GWO 5 7 0
GA 9 2 1
DE 11 1 0

(500) s w f

RO 6 4 2
PSO 5 7 0
Jaya 10 2 0
GWO 9 3 0
GA 5 7 0
DE 12 0 0

(50, 100) s w f

RO 4 1 7
PSO 5 7 0
Jaya 7 4 1
GWO 5 7 0
GA 6 6 0
DE 12 0 0

(300) s w f

RO 10 1 1
PSO 7 5 0
Jaya 11 1 0
GWO 6 6 0
GA 6 6 1
DE 12 0 0

(500) s w f

RO 11 1 0
PSO 8 4 0
Jaya 11 1 0
GWO 5 7 0
GA 5 7 0
DE 12 0 0

(100, 100) s w f

RO 1 3 8
PSO 9 3 0
Jaya 10 2 0
GWO 6 6 0
GA 6 5 1
DE 12 0 0

(300) s w f

RO 12 0 0
PSO 8 4 0
Jaya 11 1 0
GWO 10 2 0
GA 7 5 0
DE 12 0 0

(500) s w f

RO 12 0 0
PSO 8 4 0
Jaya 12 0 0
GWO 6 6 0
GA 8 4 0
DE 12 0 0

where we’ve condensed and adjusted the format of the output to improve readability. Each
row above represents a swarm of 20, 50, or 100 particles and each table shows the successful
(s), wrong (w), and failed (f) searches for the given number of iterations: 100, 300, or 500.

The clear star of the show is DE. For even the smallest swarms with the fewest iterations,
DE finds the global minimum virtually every time. Again, strong evidence of DE’s utility
and justification for including it in our pantheon of algorithms. A close second is RO,
especially when the size of the swarm is larger.

Jaya puts on a good show in that it moves towards the global minimum once the number
of iterations is high enough, but as Figure 7.7 makes clear, the final minimum found is
disappointingly short of the goal. Compare Jaya’s performance with DE, which often located
the global minimum value with complete precision. Even GWO and PSO, more hit-or-miss
as to whether the right minimum is selected, locate the minimum with high accuracy when
found.

Perhaps Jaya simply needs more time, or rather, iterations. The code in jaya_5d.py
runs a swarm of 100 particles for 12 runs for each iteration limit, up to 160,000 iterations.
The results are,

700: min= -4.2601205 +/- 0.1378435 (success=12, wrong=0, fail=0)
1000: min= -4.1938387 +/- 0.1247555 (success=12, wrong=0, fail=0)
1500: min= -4.3806454 +/- 0.1374493 (success=12, wrong=0, fail=0)
2000: min= -4.2206336 +/- 0.1928849 (success=12, wrong=0, fail=0)
2500: min= -4.5656279 +/- 0.0965143 (success=12, wrong=0, fail=0)
5000: min= -4.5995791 +/- 0.0888398 (success=12, wrong=0, fail=0)

10000: min= -4.6535931 +/- 0.0779748 (success=11, wrong=1, fail=0)
20000: min= -4.9029048 +/- 0.0487318 (success=12, wrong=0, fail=0)
40000: min= -4.9909208 +/- 0.0017837 (success=12, wrong=0, fail=0)
80000: min= -4.9962642 +/- 0.0005475 (success=11, wrong=1, fail=0)

CHAPTER 7. DIFFERENTIAL EVOLUTION 109

160000: min= -4.9968910 +/- 0.0003000 (success=12, wrong=0, fail=0)

The leading number is the iteration limit. With only a few exceptions, the Jaya searches
find the correct minimum, but even with a high number of iterations, Jaya fails to converge
to the minimum with high precision. DE is the clear overall winner for this task.

Even the basic experiments above make a strong case for making DE a “go to” algorithm,
one that you should consult for many, if not most, problems. DE won’t always be the best
option, but it’s likely to put its best foot forward for most applications.

This concludes our investigation of the DE algorithm and with it our toolkit. We have
all the swarm optimization algorithms we need for the remainder of the book. Naturally, we
shouldn’t be completely satisfied when the growing universe of optimization algorithms lies
virtually unexplored before us, but we need to start somewhere. Hopefully, the framework
is flexible enough to make adding new algorithms a straightforward process, so please do so
as you go forward with the book.

Part II

Experiments

110

Chapter 8

Initial Experiments

This chapter presents a potpourri of experiments intended to familiarize us with the frame-
work we developed in Part I of the book. The goal of the experiments, beyond characterizing
the differences between the algorithms for problems more interesting than finding the min-
imum of an inverted Gaussian, is to work through the typical thought process used when
approaching a new swarm optimization problem.

Specifically, we start with standard test functions. You’ll see these in papers as you
review the metaheuristic literature, so they are a natural place to begin (Section 8.1). Next,
we explore a classic computer science problem: the 0-1 knapsack (Section 8.2). Finally, we
close out the chapter with nonlinear curve fitting (Section 8.3).

For all but the standard test functions, we’ll walk through the problem, what it entails,
and how we are mapping a potential solution to the swarm domain. The mapping happens
primarily through the objective function and the process of creating and interpreting the
meaning of a particle position in the search space. This process needs to be followed for
each problem we wish to solve, so we’ll get our feet wet here before moving on to more
challenging examples in later chapters.

8.1 Standard Test Functions

We know there are many swarm algorithms, likely hundreds, so it shouldn’t surprise us
to realize that the research community has developed a series of standard test functions
for evaluating them. The test functions show up time and again in papers describing new
algorithms. We’ll use a few of the test functions here to compare the performance of the
algorithms, like what we did to test the algorithms in Part I, but here the functions are
more challenging.

We’ll work with five functions: two 2D and three of arbitrary dimensionality that we’ll
vary from three to 50 dimensions. The functions are defined in Table 8.1 along with their
names and the location and value of their minimums. Plots of the functions in 3D space
are given in Figure 8.1.

Each function has its own test script: sphere.py, rastrigin.py, rosenbrock.py,
beale.py, and easom.py. Let’s walk through sphere.py understanding that the dif-
ference between it and the other test scripts is to update the Objective method with the
proper objective function.

The sphere.py script begins by importing necessary modules and the definition of a
helper function to calculate the Euclidean distance between the swarm best position and

111

CHAPTER 8. INITIAL EXPERIMENTS 112

f(x) = 10n+

n∑
i=1

[x2i − 10 cos(2πxi)] (Rastrigin)

f(x) =

n∑
i=1

x2i (Sphere)

f(x) =
n−1∑
i=1

[100(xi+1 − x2i)2 + (1− xi)2] (Rosenbrock)

f(x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2 (Beale)

f(x, y) = − cos(x) cos(y)e−((x−π)
2+(y−π)2) (Easom)

f(0, . . . , 0) = 0 (Rastrigin)

f(0, . . . , 0) = 0 (Sphere)

f(1, . . . , 1) = 0 (Rosenbrock)

f(3, 0.5) = 0 (Beale)

f(π, π) = −1 (Easom)

Table 8.1: (Top) The test functions. The first three are n-dimensional while the final two
are 2-dimensional. (Bottom) The location and value of the minimum for each test function.

Image credits: Rastrigin

public domain, others Cre-

ative Commons Attribution-

Share Alike (author Gaor-

tizg).

Figure 8.1: Plots of the standard test functions. Top: Sphere, Rosenbrock, Rastrigin.
Bottom: Beale and Easom.

CHAPTER 8. INITIAL EXPERIMENTS 113

the known function minimum, which for the sphere is at x = 0,

import sys
import time

from PSO import *
from DE import *
from RO import *
from GWO import *
from Jaya import *
from GA import *

from RandomInitializer import *
from SphereInitializer import *
from QuasirandomInitializer import *
from Bounds import *
from LinearInertia import *

def dist(p):
m = np.zeros(len(p))
return np.sqrt(((p-m)**2).sum())

The import and from statements make the framework available. The dist function takes
the swarm’s best position as a vector input (p). The length of p determines the dimen-
sionality of the search space, and m is a zero vector representing the minimum position. To
calculate the Euclidean distance, the difference between p and m is squared, then summed,
followed by the square root. We’ll use dist to calculate how far off the swarm is in space
from the known minimum. Subtracting m, which is all zeros, from p adds a bit of overhead
to the code but makes explicit the fact that we are looking for the distance between two
vectors.

The objective function comes next,

class Objective:
def __init__(self):

self.fcount = 0
def Evaluate(self, p):

self.fcount += 1
return (p**2).sum()

Recall, the objective function is an instance of a class with an Evaluate method accepting
a particle position (p). The sphere objective is simply the sum of the squares of the
components of the position. Notice that the constructor sets a member variable, fcount,
to zero and that Evaluate increments fcount by one each time it’s called. We’ll use this
to track how many times the swarm evaluates the objective function.

The main part of the script is next. In the first part, command line arguments are
parsed and the bounds and initializer defined,

ndim = int(sys.argv[1])
npart = int(sys.argv[2])
max_iter = int(sys.argv[3])
alg = sys.argv[4].upper()
itype = sys.argv[5].upper()
b = Bounds([-1]*ndim,[1]*ndim)
if (itype == "SI"):

i = SphereInitializer(npart, ndim, bounds=b)
elif (itype == "QI"):

CHAPTER 8. INITIAL EXPERIMENTS 114

i = QuasirandomInitializer(npart, ndim, bounds=b)
else:

i = RandomInitializer(npart, ndim, bounds=b)

The bounds are set to [−1, 1] for each dimension. The number of dimensions, particles, and
maximum iterations is given on the command line.

The objective function and swarm are defined next,

obj = Objective()

if (alg == "PSO"):
swarm= PSO(obj=obj, npart=npart, ndim=ndim, init=i, max_iter=max_iter,

bounds=b, inertia=LinearInertia())
elif (alg == "DE"):

swarm= DE(obj=obj, npart=npart, ndim=ndim, init=i, max_iter=max_iter,
bounds=b)

elif (alg == "RO"):
swarm= RO(obj=obj, npart=npart, ndim=ndim, init=i, max_iter=max_iter,

bounds=b)
elif (alg == "GWO"):

swarm= GWO(obj=obj, npart=npart, ndim=ndim, init=i, max_iter=max_iter,
bounds=b)

elif (alg == "JAYA"):
swarm= Jaya(obj=obj, npart=npart,ndim=ndim, init=i, max_iter=max_iter,

bounds=b)
elif (alg == "GA"):

swarm= GA(obj=obj, npart=npart, ndim=ndim, init=i, max_iter=max_iter,
bounds=b)

Each algorithm type is supported. We saw similar code in Part I. An instance of the
requested algorithm is created passing in the objective function object (obj), the number
of particles (npart), dimensions (ndim), the initializer (i), the maximum number of swarm
updates (max_iter), and the bounds object (b).

With everything in place, we can now run the search and evaluate the results,

st = time.time()
swarm.Optimize()
en = time.time()

res = swarm.Results()
b = res["gbest"][-1]
p = res["gpos"][-1]
count = swarm.obj.fcount

print("fmin = %0.16e at:" % (b,))
print("distance from minimum = %0.16e" % dist(p))
for i in range(ndim):

print(" {: .16e}".format(p[i]))
print("(%d swarm best updates, %d function evals, time: %0.3f seconds)" %

(len(res["gbest"]), count, en-st))

A single call to Optimize performs the search. The Results method returns the swarm
best objective function value and position. These are reported along with the distance
between the swarm best and the known minimum.

To call sphere use a command line like,

CHAPTER 8. INITIAL EXPERIMENTS 115

> python3 sphere.py 10 100 2000 RO RI

to use a 10-dimensional search space, 100 particles, 2000 iterations, random optimization,
and a random initializer. A run of the above produces output similar to,

fmin = 1.0234527774198612e-05 at:
distance from minimum = 3.1991448504559172e-03

9.6543865922902835e-04
9.7852774626079326e-04
1.0057781815023493e-03
1.0181475366500821e-03
-9.5983273434426637e-04
-1.2928723766729572e-03
7.3158773114536757e-04
1.1750084066928952e-03
7.4488248369607916e-04
-1.1105008435513333e-03

(1001 swarm best updates, 200100 function evals, time: 3.742 seconds)

The swarm converged reasonably well to the minimum at zero (again, “reasonable” is rela-
tive). Notice, there were over 1000 swarm best updates. The number of objective function
calls is 100 to initialize the swarm, one for each particle, and 2000 × 100 = 200, 000 to
complete the search.

If we leave everything the same and switch to a different algorithm, in this case GWO,
we might get,

fmin = 0.0000000000000000e+00 at:
distance from minimum = 0.0000000000000000e+00

-1.3487853396538051e-162
-1.3131842656860750e-162
7.7128119028146570e-163
-1.1606074164527127e-162
1.4918179808454143e-162
-8.1775665831359060e-163
1.1902081581475020e-162
4.6277860169243430e-163
-1.0656099228711197e-162
-1.3206814865781378e-162

(3476 swarm best updates, 200100 function evals, time: 14.845 seconds)

showing GWO to be far superior to RO in this case, as we might expect.
The results above are quite similar to those of Part I, and you can experiment with

the other test scripts at your leisure. Likewise, in Part I, we developed many tests of the
algorithms using a 2D or 5D Gaussian. Naturally, we can replace the objective function
in those experiments with any of the standard test functions, perhaps limited to only two
dimensions, and produce similar outputs. We leave that as an exercise for the interested
reader.

The file test_functions.py contains a script to evaluate a given standard test func-
tion using each swarm algorithm for a given swarm size and a maximum number of it-
erations. If the test function is sphere, Rosenbrock, or Rastrigin, the dimensionality is

CHAPTER 8. INITIAL EXPERIMENTS 116

varied from three to 50. The output is the mean and standard error of the minimum
value found and the distance between the minimum position and the known function
minimum over ten searches. The goal of test_functions.py is to show the relative
performance of the swarm algorithms. The repository contains output files generated
by test_functions.py with names like test_sphere_summary.txt. The script
test_functions runs the test for all the standard functions using swarms of 30 particles
and 2000 iterations. As the dimensionality increases, it is reasonable to believe that the
number of iterations of the swarm should also increase.

For example, a run using the Rastrigin function produced the following output,

3 dimensions, 2000 iterations:
RO : min: 0.0000 +/- 0.0000, dist: 0.0000 +/- 0.0000
PSO : min: 0.5969 +/- 0.2199, dist: 0.5386 +/- 0.1837
DE : min: 0.0000 +/- 0.0000, dist: 0.0000 +/- 0.0000
GWO : min: 0.0000 +/- 0.0000, dist: 0.0000 +/- 0.0000
Jaya: min: 0.0000 +/- 0.0000, dist: 0.0000 +/- 0.0000
GA : min: 0.0013 +/- 0.0004, dist: 0.0022 +/- 0.0004

10 dimensions, 6666 iterations:
RO : min: 2.6719 +/- 0.3251, dist: 1.5207 +/- 0.0877
PSO : min: 11.0694 +/- 1.7334, dist: 2.4905 +/- 0.1715
DE : min: 1.5059 +/- 0.4859, dist: 0.9891 +/- 0.1916
GWO : min: 0.0000 +/- 0.0000, dist: 0.0000 +/- 0.0000
Jaya: min: 10.4107 +/- 0.7590, dist: 2.2255 +/- 0.0780
GA : min: 0.0062 +/- 0.0013, dist: 0.0052 +/- 0.0006

25 dimensions, 16666 iterations:
RO : min: 11.1665 +/- 0.4215, dist: 2.8181 +/- 0.0548
PSO : min: 58.9343 +/- 1.1008, dist: 5.1038 +/- 0.0321
DE : min: 9.4809 +/- 0.6602, dist: 2.9468 +/- 0.1023
GWO : min: 0.0000 +/- 0.0000, dist: 0.0000 +/- 0.0000
Jaya: min: 50.6164 +/- 1.3750, dist: 4.6063 +/- 0.0723
GA : min: 0.0182 +/- 0.0022, dist: 0.0094 +/- 0.0005

50 dimensions, 33333 iterations:
RO : min: 33.2555 +/- 0.7373, dist: 4.4186 +/- 0.0588
PSO : min: 132.6803 +/- 3.1006, dist: 7.4736 +/- 0.0390
DE : min: 52.3571 +/- 4.4522, dist: 5.7280 +/- 0.1212
GWO : min: 1.1792 +/- 0.7900, dist: 0.4662 +/- 0.3112
Jaya: min: 127.6932 +/- 4.2923, dist: 7.2405 +/- 0.0648
GA : min: 0.0538 +/- 0.0043, dist: 0.0163 +/- 0.0006

where the full numeric output has been truncated to four digits.
The results above show most algorithms perform well when the dimensionality is low but

begin to struggle as the dimensionality increases, at least for small swarm sizes and number
of iterations. Two algorithms stand out, however. The first is GWO, which produced a
somewhat poor showing in our Gaussian tests in Part I. Here, GWO produces perfect results
for even 25 dimensions. At 50 dimensions, we see some decrease in performance, but the
result is still better than virtually any other algorithm.

The second surprise performer is the genetic algorithm. We saw it converge slowly for
the simpler examples in the first half of the book, but here it does a reasonable job even
with the 50-dimensional case.

The output from test_functions.py for the two-dimensional Beale function is,

RO : min: 0.0000 +/- 0.0000, dist: 0.0007 +/- 0.0001

CHAPTER 8. INITIAL EXPERIMENTS 117

PSO : min: 0.0796 +/- 0.0796, dist: 0.7035 +/- 0.7035
DE : min: 0.0000 +/- 0.0000, dist: 0.0000 +/- 0.0000
GWO : min: 0.0796 +/- 0.0796, dist: 0.7036 +/- 0.7035
Jaya: min: 0.0000 +/- 0.0000, dist: 0.0000 +/- 0.0000
GA : min: 0.1029 +/- 0.0968, dist: 0.6905 +/- 0.5400

demonstrating that several algorithms perform very nicely on this function (30 particles,
2000 iterations). The seemingly identical output for PSO and GWO is an illusion caused
by truncating the output to four digits.

The output presented above fixed the swarm size and number of iterations. What if,
instead, we fixed the algorithm? Let’s select DE/rand/1/bin and vary the swarm size
and number of iterations. We’ll test the 22-dimensional Rosenbrock function for swarm
sizes from 10 to 100 particles and iterations from 100 to 50,000. The code we need is in
rosenbrock_de.py. The main loop is,

outname = sys.argv[1]
navg = 6
ndim = 22
results = []

for npart in [10,20,30,40,50,60,70,80,90,100]:
for max_iter in [100,5000,10000,15000,20000,25000,30000,35000,40000,

45000,50000]:
r = np.zeros(navg)
for m in range(navg):

b = Bounds([-1.1]*ndim,[1.1]*ndim)
i = RandomInitializer(npart, ndim, bounds=b)
obj = RosenbrockObjective()
swarm = DE(obj=obj, npart=npart, ndim=ndim, init=i,

max_iter=max_iter, bounds=b)
swarm.Optimize()
res = swarm.Results()
p = res["gpos"][-1]
r[m] = dist(p)

rmean = r.mean(axis=0)
rSE = r.std(axis=0, ddof=1) / np.sqrt(navg)
results.append([npart, max_iter, rmean, rSE])
print("npart: %3d, max_iter: %6d, dist: %0.16f +/- %0.16f"

% (npart, max_iter, rmean, rSE), flush=True)

results = np.array(results)
np.save(outname, results)

The output is a NumPy array containing the mean and standard error of the distance
between the swarm best position and the minimum of the 22-dimensional Rosenbrock func-
tion.

We could show the output as a table, but it is more interesting to present it as an image.
The output represents samplings of a 2D function where the arguments are the swarm size,
number of iterations, and the outputs are the mean distance from the swarm best and
the true Rosenbrock minimum. Further, we can use spline interpolation to estimate the
performance over a grid of swarm and iteration points. Let’s show the code to get this far,

import numpy as np
import matplotlib.pylab as plt
from PIL import Image

CHAPTER 8. INITIAL EXPERIMENTS 118

from scipy.interpolate import interp2d

d = np.load("rosenbrock_de_results.npy")
x = d[:,0]
y = d[:,1]
z = d[:,2]

func = interp2d(x,y,z, kind="cubic")
xmin, xmax = x.min(), x.max()
ymin, ymax = y.min(), y.max()
X = np.linspace(xmin, xmax, 72)
Y = np.linspace(ymin, ymax, 72)
zimg = np.zeros((len(X),len(Y)))
for i,x in enumerate(X):

for j,y in enumerate(Y):
zimg[i,j] = func(x,y)

The code imports the standard modules and the function interp2d from scipy.interpolate.
The interp2d function accepts a set of input points, which need not be on a grid, and
returns an interpolation function using cubic splines to map any x and y to an output, z.
For us, x is the swarm size, and y is the number of iterations. That leaves z, the estimated
distance between the swarm best and the true minimum.

With x, y, and z, we create the interpolating function, func, and use it to fill in a two-
dimensional array, zimg. The linspace function returns a vector from xmin to xmax in
72 steps (X). These are the swarm sizes to interpolate. Similarly, Y is a vector of swarm
iterations. Looping over all combinations of the swarm size and iterations lets us use func
to estimate the swarm’s performance.

We want to display the estimated swarm performance as an image. To do that, we first
take the log of the estimates, adjusting for any estimates that are less than zero. Taking
the log brings out subtle differences. The actual distances in zimg range from near zero to
above four. Finally, we scale zimg to [0, 1] and multiply by 255 to turn it into a grayscale
image (img). In code,

zimg += np.abs(zimg.min())
zimg = np.log(zimg+1)
zimg /= zimg.max()
img = (255.0*zimg).astype("uint8")
img = Image.fromarray(img).resize((10*len(X),10*len(Y)))
img = np.array(img)

Besides scaling to [0, 255], we also expand the image to 720x720 pixels. All that remains is
to display img,

fig, ax = plt.subplots(figsize=(6,6))
ax.imshow(img, cmap=’gray’, extent=[100,50000, 100,10], aspect=’auto’)
plt.xlabel("Iterations")
plt.ylabel("Swarm size")
plt.savefig("rosenbrock_de_results.png", dpi=300)
plt.show()

We use imshow to set up the image with a grayscale color map and labeling on the axes
to match the range of the number of iterations and swarm size.

What does it look like? Each time we run rosenbrock_de.py, we’ll get different
results due to the random nature of swarm initialization. Figure 8.2 shows the result of

CHAPTER 8. INITIAL EXPERIMENTS 119

Figure 8.2: A run of the 22-dimensional Rosenbrock DE test code. Linear scaling (left) and
log scaling (right). Crosses mark the points sampled. Cubic spline interpolation forms the
background image.

one run with a linearly scaled image on the left and a log scaled version on the right. The
crosses mark the locations that were sampled.

How should we interpret Figure 8.2? The brighter a region, the further away from
the known minimum location. Intuition tells us we should expect small swarms and fewer
iterations to do relatively poorly. We see this in Figure 8.2 in the lighter region on the upper
left. Similarly, the lower right should show better convergence leading to a darker region.
We see this in both the linear and log scaled versions. In general, regardless of swarm size,
fewer iterations lead to poorer results, as expected.

Interestingly, even a small swarm with many chances to explore, the upper right of
Figure 8.2, does perhaps better than expected. However, the log scaled plot shows that the
upper right and lower right regions are still quite different. Visible as lighter and darker
“blobs”, the variation in final swarm location is likely stochastic with a new run of the test
generating a different pattern. However, the overall observations should persist. Viewing
the swarm convergence landscape in this way provides an alternative method for building
intuition about the entire optimization process.

8.2 The 0-1 Knapsack

We are now ready for our first actual experiment. We have a problem we need to solve, the
0-1 knapsack. We first describe the problem in detail to understand what we need to accom-
plish (Section 8.2.1). Then we walk through framing the problem as a swarm optimization
(Section 8.2.2) and, finally, run the experiment to discover useful solutions (Section 8.2.3).
We’ll use this format throughout the remainder of the book, if only implicitly at times.
Let’s get started.

CHAPTER 8. INITIAL EXPERIMENTS 120

8.2.1 The Problem

The 0-1 knapsack problem is a classic of computer science. It is normally solved via dynamic
programming. We’ll frame it differently here, so swarm optimization techniques apply. The
problem is easy to state:

We have a knapsack and a collection of items, one of each kind. The knapsack
has a fixed weight capacity that we may not exceed. Each of the items has two
properties: a weight and a value. What is the best combination of items that
maximize the value without exceeding the weight limit?

The “0-1” part of the name comes from having only one instance of each item. Either
we place it in the knapsack (1), or we don’t (0). As we’ll see, this restriction simplifies
the setup. We’ll avoid speculation as to why we desire to fill the knapsack with the most
valuable collection of objects possible.

Here’s a simple example of the problem and a solution for it. First, we need a list of
items with weights and values,

Item Value Weight

platinum bar 24 24
gold bar 20 10
silver bar 15 8
copper bar 5 7

Second, we need to know the maximum weight the knapsack can hold before it breaks. In
this case, it’s 25. The problem is simple, and the solution is easy to see with a few moments
of thought: we select the gold, silver, and copper bars. If we do, our total value is 40, and
the weight is 25, the limit of the knapsack. If we select the platinum bar, the weight is 24
leaving only 1 extra. None of the other items weigh so little; therefore, we could only take
the platinum bar. That’s a value of 24, nowhere near the 40 we get by taking the other
three items.

Let’s see how to cast the problem in a form where we can search for the solution.

8.2.2 The Setup

To use a swarm, we need to frame the solution to the problem in the form of a vector. The
name of the problem gives us a clue: “0-1 knapsack”. Either we include an item, or we
don’t. So, let’s use a vector where each element represents one of the items on our list. The
number of items available then determines the dimensionality of the search. The value we’ll
use for each item is whether we include it or not.

We have four possible items for the simple example problem, so our search space would
have four dimensions. The solution was to ignore the platinum bar and take the other three.
We can write this as a binary vector,

platinum, gold, silver, copper = 0, 1, 1, 1

Therefore, we’ll use a binary vector to represent the set of items selected. Each particle in
the swarm then represents a possible solution, a possible collection of items. Using a binary
vector also sets the bounds of the search. For each item (particle dimension), we bound the
search to the range [0, 1].

CHAPTER 8. INITIAL EXPERIMENTS 121

Are we good to go? Not quite. We want binary vectors; we don’t know what it means
to include an item if the particle position element representing it is 0.344. Additionally,
we need to enforce the weight limit. That’s an additional bound on the problem, but not
one applied to a particular particle dimension. How can we include the discretization and
weight requirements?

For our framework, we developed a Bounds class that knows how to enforce bounds and
check limits. Let’s subclass it for the knapsack problem. We’ll leave the Limits method
alone, but now use the previously empty Validate method. We’ll use Validate to make
the position vectors binary in each element, either 0 or 1.

We’ve now set up most of the problem. We know how to represent solutions as binary
vectors, and we know how to enforce the binary requirement. We still need to know how to
decide if one set of items is a better solution than another. That’s the objective function.

As each item has a value, and we want to maximize the value of the items in the
knapsack, the sum of the values of the selected items is a natural measure, assuming the
weight limit of the knapsack is not exceeded. Our framework always minimizes, however,
so instead of returning the overall value of the items represented by a particle, we’ll return
the negation of that value, so more valuable combinations yield smaller numbers.

At this point, we are ready to build the solution in code. Here’s how we’re setting it up,

Solution representation Binary vector. Each element is an item.
Boundary conditions Subclass Bounds using Validate to

discretize.
Objective function Negative of the sum of the values of selected

items.

The complete code for this problem is in the file knapsack.py, which is in the
knapsack directory. We’ll start with the objective function, then the subclass of Bounds.

The objective function needs to accept the item values and weights along with the
maximum weight allowed. Additionally, the Evaluate method needs to accept a vector
representing a collection of selected items from which it calculates the overall value and
weight. If the weight exceeds the maximum, we return a huge positive number. This
captures the weight constraint. Otherwise, we return the negative of the overall value of
the selected items. The code becomes,

class Objective:
def __init__(self, values, weights, max_weight):

self.values = values
self.weights= weights
self.max_weight = max_weight
self.fcount = 0

def Evaluate(self, p):
self.fcount += 1
value = (self.values*p).sum()
weight= (self.weights*p).sum()
if (weight > self.max_weight):

return 1e9
return -value

The constructor accepts two NumPy arrays, values and associated weights. It also
accepts the weight limit for the knapsack (max_weight). These are simply stored in the

CHAPTER 8. INITIAL EXPERIMENTS 122

instance along with setting fcount to zero. We saw fcount in Section 8.1, where it was
used to count the number of objective function evaluations during a search.

The Evaluate method is straightforward. We count the call by incrementing fcount.
Then we compute the total value and weight of the candidate solution represented by p, a
swarm position vector. We know the elements of p are either zero or one, so multiplying
the item values and weights by p and summing gives us the total value and weight. A quick
check to see if the weight exceeds the limit or not, and the negative of the overall value is
returned. This completes the objective function; let’s now build the custom bounds class.

The code for the KnapsackBounds class subclasses Bounds. The constructor becomes,

class KnapsackBounds(Bounds):
def __init__(self, lower, upper):

super().__init__(lower, upper, enforce="resample")

where the constructor takes the expected lower and upper bounds on each particle posi-
tion, here always zero and one. The lower and upper limits are passed to the superclass.
Notice that we are telling the superclass to enforce limits by resampling. For example, see
the Limits method of the Bounds class. Next, we implement our custom Validate
method,

def Validate(self, p):
p[np.where(p < 0.5)] = 0
p[np.where(p >= 0.5)]= 1
return p.astype("float64")

Recall, Validate is called by the Limits method of the Bounds class. Here, the first
two lines take the floating-point input position vector, which is already bounded to [0, 1],
and maps values less than 0.5 to zero and values 0.5 or above to one. This makes p a binary
vector representing a particular collection of items. Finally, we return the updated position,
ensuring it is still a floating-point vector.

The 0-1 knapsack problem is common, so there are many known examples for us to use.
The included examples are in the form of lists of items as a value/weight pair along with
a maximum weight for the knapsack. For each example, the optimal solution is given to
check whether we’ve found it.

Here’s one example, f1_l-d_kp_10_269, found in the low-dimensional folder,

10 269
55 95
10 4
47 60
5 32
4 23
50 72
8 80
61 62
85 65
87 46

The first line supplies the number of items (10) and the maximum allowed knapsack weight
(269). This is followed by one line for each item as a value/weight pair.

The files problem_generator.py and brute_force.py can be used together to
generate new 0-1 knapsack problems. For example, to generate a new problem with 14
items use,

CHAPTER 8. INITIAL EXPERIMENTS 123

> python3 problem_generator.py 14 examples/example14

This creates the problem file. To find the optimum set of items via brute force use,

> python3 brute_force.py examples/example14

Bear in mind that all possible combinations of items will be examined to find the optimum
solution. For example, a brute force search for a 26 item problem took over 30 minutes on
an Intel i5 machine. A 27 item search would take about twice as long and so on.

Let’s add a function to parse the problem files,

def LoadProblemFile(fname):
lines = [i for i in open(fname)]
n,wmax = [float(i) for i in lines[0].split()]
n = int(n)
values = np.zeros(n)
weights= np.zeros(n)
for i in range(n):

v,w = [float(j) for j in lines[i+1].split()]
values[i] = v
weights[i] = w

return values, weights, wmax

LoadProblemFile is plain text processing. We load the lines of the file, pull out the
number of items (n) and the maximum weight (wmax). This lets us set up values and
weights vectors to hold the per-item data. A simple loop extracts each item’s value and
weight. Finally, we return a list of values, weights, and the maximum allowed weight. The
optimum set of items is in the optimum directory in the file with the same name as the
problem file.

Let’s put the pieces together to build the complete solution. We already have Objective,
KnapsackBounds, and LoadProblemFile, so let’s describe the remaining parts of knapsack.py.
First, we import the necessary modules (not shown) and then set up the problem including
parsing the command line arguments and loading the example file,

npart = int(sys.argv[2])
max_iter = int(sys.argv[3])
alg = sys.argv[4].upper()
itype = sys.argv[5].upper()

values, weights, max_weight = LoadProblemFile(sys.argv[1])

obj = Objective(values, weights, max_weight)
ndim = values.shape[0]
b = KnapsackBounds([0]*ndim, [1]*ndim)

if (itype == "RI"):
ri = RandomInitializer(npart, ndim, bounds=b)

elif (itype == "QI"):
ri = QuasirandomInitializer(npart, ndim, bounds=b)

else:
ri = SphereInitializer(npart, ndim, bounds=b)

if (alg == "PSO"):
swarm= PSO(obj=obj,npart=npart, ndim=ndim, max_iter=max_iter, init=ri,

bounds=b, inertia=LinearInertia())

CHAPTER 8. INITIAL EXPERIMENTS 124

elif (alg == "DE"):
swarm= DE(obj=obj, npart=npart, ndim=ndim, max_iter=max_iter, init=ri,

bounds=b)
elif (alg == "RO"):

swarm= RO(obj=obj, npart=npart, ndim=ndim, max_iter=max_iter, init=ri,
bounds=b)

elif (alg == "GWO"):
swarm= GWO(obj=obj,npart=npart, ndim=ndim, max_iter=max_iter, init=ri,

bounds=b)
elif (alg == "JAYA"):

swarm= Jaya(obj=obj,npart=npart, ndim=ndim, max_iter=max_iter, init=ri,
bounds=b)

elif (alg == "GA"):
swarm= GA(obj=obj, npart=npart, ndim=ndim, max_iter=max_iter, init=ri,

bounds=b)

The code above is similar to the code we saw in Part I when testing the swarm algorithms.
The command line lets us select the desired number of particles, iterations, algorithm type,
and initializer. Notice that ndim is set by the number of items (the length of values)
after reading the example file.

The only code left to write performs the search and reports the results,

st = time.time()
swarm.Optimize()
en = time.time()

res = swarm.Results()
fcount = swarm.obj.fcount
weight = (weights*res["gpos"][-1]).sum()

print()
print("Final value=%0.2f, weight=%0.1f/%0.1f, objects:"

% (-res["gbest"][-1], weight, max_weight))
print()
print(np.array2string(res["gpos"][-1].astype("uint8")))
print()
print("(%d swarm best updates, %d function evals, time: %0.3f seconds)"

% (len(res["gbest"]), fcount, en-st,))
print()

The call to Optimize evolves the swarm, and Results returns a dictionary detailing how
the swarm did. The code in knapsack.py is now complete. Let’s see how well it works.

8.2.3 The Results

We’ll test knapsack.py with the 10 item example given above,

> python3 knapsack.py examples/low-dimensional/f1_l-d_kp_10_269 20 100 RO RI

where we’re using random optimization, 20 particles, 100 iterations, and random initializa-
tion. The output is,

Final value=295.00, weight=269.0/269.0, objects:

[0 1 1 1 0 0 0 1 1 1]

(6 swarm best updates, 2020 function evals, time: 0.270 seconds)

CHAPTER 8. INITIAL EXPERIMENTS 125

We’re told the best combination found has a value of 295 and a weight right at the limit
of 269. If we look at the f1_l-d_kp_10_269 file in the low-dimensional-optimum
directory, we see that 295 is the optimal solution. Good, our code appears to be working.

The example above has ten items. Therefore, the number of possible combinations
is 210 = 1024. A brute force search would need to look at every possible combination,
which would evaluate 1024 positions in the search space. We see above that the RO search
evaluated the objective function over 2000 times, about twice the number of possible com-
binations of items. Could it be that we didn’t search in a meaningful way but simply found
the solution by brute force?

If we add a final argument to the command line, we’ll store the search results in a
Python pickle file (code for this not shown above to save space). The results are a dictionary
containing the list of best positions found by the swarm (gbest) and at which iteration
it was found (gidx). These values tell us that the optimal solution with a value of 295
was found at iteration 10 after 220 positions were evaluated. That’s far less than the 1024
needed for a brute force search, a good sign that the code is doing what we want.

Let’s test the code against a more complex example using the file f2_l-d_kp_20_878
which sets up a problem with 20 items. With 20 items, we have a possible search space of
220 = 1, 048, 576 combinations. The known optimum solution is a value of 1024.

Let’s run again using random optimization but bump the iteration count by a factor of
ten,

> python3 knapsack.py examples/low-dimensional/f2_l-d_kp_20_878 20 1000 RO RI

giving,

Final value=1024.00, weight=871.0/878.0, objects:

[1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1]

(8 swarm best updates, 20020 function evals, time: 3.556 seconds)

indicating the swarm found the optimum solution and only used 20,000 objective function
calls to do it. In actuality, the number was likely less as we ran the swarm to completion
in terms of iterations. We could hardly do otherwise as, a priori, we do not know what the
solution might be.

Random optimization has performed well for us on two examples. Let’s continue using
the 20-item example and see how the other algorithms fare. We’ll run the search five times
using each algorithm. We’ll vary the swarm size and number of iterations a bit as well. The
results are in Table 8.2. The script itself is in the file test_knapsack.

From Table 8.2, it’s clear that RO and GWO are well-suited to this particular search.
PSO sometimes finds the best solution, but it doesn’t do so reliably.

We stated above that the 20-item search means there are at most 220 = 1, 048, 576
combinations of items. It’s reasonable to expect, then, that a search involving more than
that many objective function calls will likely find the best combination since each objective
function call evaluates a combination of items. Running knapsack.py with 20 particles
and 60,000 iterations gives us 1.2 million objective function calls. That’s nearly 200,000
more than the number of combinations a brute-force search would use. Do we find the best
combination regardless of the swarm algorithm in this case? It turns out that we don’t.

CHAPTER 8. INITIAL EXPERIMENTS 126

20 particles, 1000 iterations:
RO 1024, 1024, 1024, 1024, 1024
PSO 958, 967, 1024, 1016, 1024
DE 1016, 961, 933, 995, 978
GWO 1018, 1024, 1024, 1013, 1018
Jaya 1024, 966, 964, 1004, 958
GA 989, 961, 965, 956, 958

100 particles, 1000 iterations:
RO 1024, 1024, 1024, 1024, 1024
PSO 1010, 1010, 1016, 1024, 1024
DE 991, 979, 990, 981, 973
GWO 1024, 1024, 1024, 1024, 1024
Jaya 1009, 996, 987, 1004, 1018
GA 1013, 970, 996, 996, 996

20 particles, 5000 iterations:
RO 1024, 1024, 1024, 1024, 1024
PSO 1013, 1009, 996, 997, 1010
DE 997, 987, 972, 976, 965
GWO 1024, 1024, 1024, 1024, 1024
Jaya 1009, 991, 985, 990, 996
GA 1016, 997, 1009, 1009, 983

Table 8.2: Results for the 20 item knapsack search by algorithm and swarm parameters.
The final value found for five runs is shown.

If we run the search five times each for each algorithm, we see that DE fails to find the
optimum twice, as does Jaya, and GA fails once. RO, PSO, and GWO always converge on
the optimum value.

Each increase in the number of possible items results in a doubling of the number
of brute-force comparisons. The file generated_0 contains a 26 item example created
with problem_generator.py. A (lengthy) run of brute_force.py tells us that the
optimal solution has a value of 1058. The search space for this example is 226 = 67, 108, 864
possible combinations of items. Let’s run the algorithms on this problem five times each, like
above. We’ll use 100 particles for 15,000 iterations leading to 1.5 million objective function
evaluations. That’s only 2% of the possible combinations a brute force search would need.
The results are illustrative,

RO 1058, 1058, 1049, 1058, 1058
PSO 1038, 1038, 1049, 1030, 1041
DE 1029, 1036, 1006, 1018, 1019
GWO 1058, 1058, 1058, 1058, 1058
Jaya 1008, 1036, 1028, 1014, 1021
GA 1007, 1028, 1002, 1018, 1024

First, compared to the results of Table 8.2, we see that all of the algorithms are closer
to the optimal value of 1058 than many of the results in the table; more iterations or a
larger swarm helps. As previously, GWO is the star achieving a perfect result on all five
runs. With one exception, RO does the same. PSO, DE, Jaya, and GA, however, never

CHAPTER 8. INITIAL EXPERIMENTS 127

find the optimum solution. Once again, we need to consider multiple algorithms as no one
algorithm is the best choice in all circumstances.

As a final test, let’s run the algorithms against the file generation_2. This example
has 30 items meaning the search space has just over 1 billion possible combinations. Let’s use
100 particles and 30,000 iterations, leading to some 3 million objective function evaluations
or about 0.3% of the total possible. A brute force search revealed that the knapsack’s
optimum value is 1839 found by selecting 29 of the 30 items. Both RO and GWO find this
optimum solution showing again that they are well suited to this task.

We shouldn’t be too pleased with our swarm solutions, however. As the problem’s size
increases, so too will the number of swarm iterations necessary to locate the optimum set
of items. The dynamic programming approach to this problem works very well for over
10,000 items. It isn’t reasonable to expect our swarms to find the solution in a space of
210,000 possible combinations. All the same, that the problem can be approached at all by
swarm optimization is exciting and fun.

The 0-1 knapsack problem is an excellent introduction to the remaining experiments.
It was straightforward to implement using the framework and easy to follow in terms of its
operation. The objective function was simple to conceive, and adding the weight constraint
was trivial. The difference in the performance of each algorithm was informative. Old
standards like PSO and DE were not particularly good at this task. In some cases, PSO
did find the optimum solution, and one might imagine tweaking the PSO parameters to
see if that improves things. On the other hand, DE seems to have shown its oft-claimed
weakness by converging too quickly, thereby missing out on the exploration necessary to
find the optimum set of items for the knapsack. RO’s good overall performance backs up
this intuition as the swarm’s extreme individualism means there is no exploitation, only
mindless exploration that stumbles upon the optimum solution.

Let’s put our knapsack aside and move on to our second short experiment, curve fitting.

8.3 Curve Fitting

Curve fitting is a frequent task in many scientific and engineering disciplines. Experiments
generate data, and we’d like to characterize it by fitting a known function. The function’s
form is known, but the function’s parameters are not and need to be determined from the
data.

The standard means for fitting a function to a data set is to minimize the mean squared
error between the function using the current set of parameters and the data itself. For
linear functions, the best fit line can be calculated precisely. However, for nonlinear func-
tions, some form of optimization is usually used. Typical optimization algorithms require
knowledge of the derivative of the desired function, not usually an issue, and a set of initial
guesses as to what the parameters might be. It’s this latter requirement that makes nonlin-
ear curve fitting sometimes tricky. Without good guesses, the optimization algorithms fail
to converge. A typical example of a nonlinear optimization routine is the CURFIT routine
found in [24] which requires an auxiliary routine to calculate the function value and partial
derivatives at a point.

Our implementation bypasses the need to calculate derivatives. Instead, we’ll use the
points to be fitted and an objective function minimizing the mean squared error between the
points and the fit function. Each particle position represents a possible set of parameters.
As before, we’ll use three steps to explain the problem, set up the swarm solution, and

CHAPTER 8. INITIAL EXPERIMENTS 128

Figure 8.3: A sample dataset and best fit curve to f(x) = ax2 + bx+ c.

examine the results.

8.3.1 The Problem

We’ve run an experiment and collected data in the form of a set of N (x, y) pairs. We know
from theory that the data follows a quadratic function, so we want to fit a quadratic to the
data. The general form of the function we need to fit is,

f(x) = ax2 + bx+ c

where a, b, and c are the parameters we need to find to best fit the data. For a specific
set of (a, b, c), we can derive a measure of how well the function fits the data by calculating
the mean squared error between the y at each x where we have a measurement and the
function value. The claim, and it’s reasonable, is that the best fit function will have the
smallest mean squared error over all the data points. Of course, there need to be enough
data points to characterize the function in the first place, but we’ll assume our experiment
was well designed and we have the necessary information. Therefore, we claim the best set
of parameters, (a, b, c), are those where,

MSE =
1

N

N−1∑
i=0

(yi − f(xi))
2

is as small as possible.
For example, Figure 8.3 shows a set of points and the best fit quadratic found by the

code we’ll develop in Section 8.3.2. The parameters found were,

CHAPTER 8. INITIAL EXPERIMENTS 129

a = 1.7590716, b = −4.810116, c = 6.1650996

The data points were generated by make_sample_plot.py where the base function used
a = 1.5, b = −3, and c = 4.4 with random noise of up to 25% added or subtracted from the
base y value.

8.3.2 The Setup

Our goal is to find a set of parameters for a function. The number of parameters needed
by the function sets the dimensionality of the problem. The example above required three
parameters making each particle in the swarm a vector in 3D space. If there were five
parameters, the search space would be 5-dimensional.

Are there any special requirements on the types of values the particles can represent?
For curve fitting, the answer is no. We want continuous values. What about boundary
conditions? Do we need those? Here the answer is yes. We’ll experiment with boundaries
in Section 8.3.3, but for now, we see that our general rule of thumb holds for curve fitting:
the tighter the bounds on the parameters, the better in terms of simplifying the search
space. Of course, this sounds a bit like our criticism of other optimization techniques that
require an initial guess at the parameters. However, we’ll see that we have more freedom to
be sloppy and usually get a good solution. The user will set the problem’s bounds as inputs
to our framework Bounds class. No subclass is needed. This leaves the objective function.
The natural one to use is the mean squared error, and that’s precisely the function we will
use. The smaller the MSE, the better the fit.

To put it all together, then, here’s the set up,

Solution
representation

Particle components represent fit function
parameters.

Boundary conditions Given by the user.
Objective function The mean squared error between the data and

the fit.

However, we’re not quite ready to start writing code. We haven’t decided on how we’ll
represent the fit function. We know we’ll supply a set of data points, but we want to write
a generic tool able to fit any set of points to any function. How should we do it?

We’re using Python, so why not use the interpreter to help us? We’ll pass fit functions
to the code via strings and use Python’s eval function to interpret the string on demand.
Doing this frees us from adjusting source code every time we want to fit a different function.
We need to decide on a convention for referencing the parameters, and once we do that,
we’re all set to write code.

Most of the code examples to this point in the book used an objective function where the
argument to the Evaluate method is p, a NumPy vector representing a single particle’s
position in the search space. Let’s continue that tradition here, so we know that the
parameters are in p, and we get at them by subscripting. This lets us define arbitrary
functions as strings. For example, above, we showed a fit to a quadratic. The actual string
passed to the implementation was,

CHAPTER 8. INITIAL EXPERIMENTS 130

p[0]*x**2 + p[1]*x + p[2]

to represent ax2+bx+c with p[0] for a, p[1] for b, and p[2] for c. This is how we’ll pass
fit functions to the code. When this string is evaluated in the Evaluate method of the
objective class, it’s interpreted in the context of that method and returns the function value
we seek for the current value of p. Note, if the function uses any math functions like sqrt
or exp, we need to use the NumPy versions, np.sqrt and np.exp, as the arguments are
vectors, not scalars.

We’re going to pass the fit function as a string. We need to pass the data to be fit as
well. Let’s combine everything into one text file. The first line is the function to fit. The
remaining lines will be the dataset points as y followed by x. For the quadratic example,
the input file (sample.txt) is,

p[0]*x**2 + p[1]*x + p[2]
2.9974516653492604 1.0000000000000000
3.1367763014372589 1.2222222222222223
2.7258038027190272 1.4444444444444444
3.0645761653322778 1.6666666666666665
3.5985181506233666 1.8888888888888888
3.6291980453275348 2.1111111111111112
4.5033314937754909 2.3333333333333330
5.1992874806966309 2.5555555555555554
6.6311609175123172 2.7777777777777777
7.4920293273327463 3.0000000000000000

We chose this format because it’s compact and because it matches the format used by the
NIST curve fitting test functions used below.1

Everything’s in place; let’s build the code. We’re using the existing framework’s Bounds
class, so we need only create the custom Objective class. The rest of the code uses existing
framework pieces. All of the code is in the file curves.py.

The objective function class is,

class Objective:
def __init__(self, x, y, func):

self.x = x
self.y = y
self.func = func
self.fcount = 0

def Evaluate(self, p):
self.fcount += 1
x = self.x
y = eval(self.func)
return ((y - self.y)**2).mean()

The constructor keeps the data points to be fit in x and y. These are NumPy vectors.
The third argument to the constructor is func. It’s the string containing Python code to
implement the function to be fit. The arguments are stored, and the objective function
counter (fcount) is set to zero.

The Evaluate method bumps the count and then sets the local variable x to the fit
data. Doing this lets us refer to x in the function string. Next, eval calculates the set of

1NIST is the “National Institute of Standards and Technology”, a division of the U.S. Department of
Commerce. NIST is deeply involved with standards for all manner of things, including nonlinear curve fitting
routines.

CHAPTER 8. INITIAL EXPERIMENTS 131

output values, y. These are the function values, using the parameters in p, for the given
x positions. It’s the squared difference between these y values and those of the fit data we
seek to minimize.

The curves script accepts many arguments on the command line. Instead of proper
parsing, we’ll keep it simple and specify the ordering as,

curves <data> <lower> <upper> <ndim> <npart> <niter> <tol> <alg> RI|SI|QI
<plot> <output>

Here, <data> is a pathname to a text file containing the fit function and the fit points, like
the one shown above for the quadratic example. The <lower> and <upper> arguments
are the lower and upper parameter bounds. These are strings with x separating the values.
We’ll see examples below to clarify the syntax. Next comes the number of dimensions, the
number of parameters in the fit function, and the desired number of particles. The <niter>
argument sets the swarm iteration limit. Use <tol> to set a tolerance value. We put this
in the framework but have not used it until now. If the swarm best objective function value
falls below this threshold, stop the search early. Use <alg> to specify the swarm algorithm
name. Next comes the initializer type. We’ll stick with the random initializer (RI), but
please explore the other options on your own.

The final two arguments are for output. If present, <plot> is the file name for an
output plot showing the fit data and the swarm’s function. We’ll see these plots below. Use
<output> to specify the name of a Python pickle file to contain the results of the swarm
search.

As an example, here is the command line that generated Figure 8.3,

> python3 curves.py sample.txt -10 10 3 20 1000 1e-7 DE RI

This includes the sample.txt file shown above. The lower and upper bounds are given
as a single value to use the same value for all dimensions. If different ranges are needed
for each dimension, separate the bounds with an x. Here there are three parameters, each
bounded by [−10, 10]. The swarm has 20 particles and iterates 1000 times or until the MSE
is below 10−7. The DE algorithm is used and initialized randomly.

Before presenting the rest of curves.py, we need to define two helper functions. The
first reads the data file with the fit function and the data points. The second parses the
bounds,

def GetData(s):
lines = [i[:-1] for i in open(s)]
func = lines[0]
d = np.zeros((len(lines[1:]),2))
for i in range(1,len(lines)):

d[i-1,:] = [float(k) for k in lines[i].split()]
return d[:,1], d[:,0], func

def GetBounds(s,ndim):
if (s.find("x") == -1):

try:
n = np.ones(ndim)*float(s)

except:
n = None

else:
try:

n = np.array([float(i) for i in s.split("x")])

CHAPTER 8. INITIAL EXPERIMENTS 132

except:
n = None

return n

The GetData function reads the entire text file, keeps the first line as the string repre-
senting the fit function, and splits the remaining lines, which are (y, x) pairs. The return
value is a list of x, y, and the fit function.

The GetBounds function interprets s, a lower or upper bound string from the command
line. If the string does not contain a lowercase “x”, the single value is used for all dimensions.
Otherwise, the string is split to set per dimension limits. If there is an issue in converting
the boundary string, None is returned.

The rest of the main function in curves.py starts with,

X,Y,func = GetData(sys.argv[1])
ndim = int(sys.argv[4])
lower = GetBounds(sys.argv[2], ndim)
upper = GetBounds(sys.argv[3], ndim)
npart = int(sys.argv[5])
niter = int(sys.argv[6])
tol = float(sys.argv[7])
alg = sys.argv[8].upper()
itype = sys.argv[9].upper()

if (type(lower) is type(None)) and (type(upper) is type(None)):
b = None

else:
b = Bounds(lower, upper, enforce="resample")

if (itype == "QI"):
i = QuasirandomInitializer(npart, ndim, bounds=b)

elif (itype == "SI"):
i = SphereInitializer(npart, ndim, bounds=b)

else:
i = RandomInitializer(npart, ndim, bounds=b)

obj = Objective(X, Y, func)

This format has become familiar: parse the command line, set up the bounds using defaults
if GetBounds returned None, and create the desired initializer object. Finally, create an
instance of the Objective class passing the data points and fit function string. Notice,
this time, we explicitly set the tolerance to the value given on the command line.

Next, we define the desired swarm object passing in the necessary parameters. For PSO,
we use the default inertia schedule,

swarm= PSO(obj=obj,npart=npart, ndim=ndim, init=i, tol=tol, max_iter=niter,
bounds=b, inertia=LinearInertia())

The other swarm algorithms are initialized similarly.
The actual optimization and reporting of results is straightforward,

st = time.time()
swarm.Optimize()
en = time.time()

res = swarm.Results()

CHAPTER 8. INITIAL EXPERIMENTS 133

Filename Function #

chwirut1.txt exp(−p0x)/(p1 + p2x) 3

eckerle4.txt
p0
p1

exp(−0.5(x− p2)2/p21) 3

ENSO.txt p0 + p1 cos

(
2πx

12

)
+ p2 sin

(
2πx

12

)
+ p4 cos

(
2πx

p3

)
+ p5 sin

(
2πx

p3

)
9

+p7 cos

(
2πx

p6

)
+ p8 sin

(
2πx

p6

)
gauss1.txt p0 exp(−p1x) + p2 exp(−(x− p3)2/p24) + p5 exp(−(x− p6)2/p27) 8

gauss2.txt p0 exp(−p1x) + p2 exp(−(x− p3)2/p24) + p5 exp(−(x− p6)2/p27) 8

hahn1.txt (p0 + p1x+ p2x
2 + p3x

3)/(1 + p4x+ p5x
2 + p6x

3) 7

thurber.txt (p0 + p1x+ p2x
2 + p3x

3)/(1 + p4x+ p5x
2 + p6x

3) 7

sinexp.txt p0 sin(p1x) + p2 exp(−0.5(x− p3)2/p4) 5

Table 8.3: The NIST test functions along with the data file name and number of parameters.

print("Minimum mean total squared error: %0.9f (%s)" %
(res["gbest"][-1],os.path.basename(sys.argv[1])))

print("Parameters:")
for k,p in enumerate(res["gpos"][-1]):

print("%2d: %21.16f" % (k,p))
print("(%d best updates, %d function calls, time: %0.3f seconds)" %

(len(res["gbest"]), swarm.obj.fcount, en-st))

The minimum mean squared error is reported, followed by each parameter ending with
some information about the search. The curves.py file includes code to make the plot, if
a plot filename was given, and to store the res values in a Python pickle file.

This completes the implementation of curves.py. Let’s take it for a couple of laps
around the block.

8.3.3 The Results

To test the curves code, we’ll use the NIST nonlinear curve fitting test functions. These are
available from https://www.itl.nist.gov/div898/strd/ with several examples included
on the book website. The functions and the datasets are meant for evaluating nonlinear curve fitting
routines and include the certified values to many digits of accuracy. We’re not looking to match
state-of-the-art curve fitting routines, but we can use the functions to test our swarm approaches.
The data files are in the NIST subdirectory of the curves directory. Each function has two files
associated with it. The first is a .txt file. This is the file to pass to curves.py. It contains the
fit function and dataset. The second file is a .dat file. It’s a text file as well, but one that details
the origin of the dataset, the fit function, and the NIST certified parameter values along with two
examples of initial guesses. Additionally, the NIST subdirectory contains the sinexp.txt file.
This function is not a NIST standard function, but I’ve used it over the years as an example.

We’ll use the NIST test functions shown in Table 8.3 and fit each one five times with each of
our algorithms. The code is in test_functions.py in the curves directory. This script simply
sets up repeated calls to curves.py with the appropriate command-line arguments.

The result of immediate interest is the minimum MSE found. Aggregate output of test_functions.py
for a single run is in the file test_functions_MSE_results.txt. For each NIST function and
algorithm, the MSE is reported for each of the five runs. In general, the results are more or less

https://www.itl.nist.gov/div898/strd/

CHAPTER 8. INITIAL EXPERIMENTS 134

consistent from run to run, with a few instances of one run being wildly different from the others.
The mean over the five runs gives us MSE’s of,

Function RO PSO DE
chwirut1 11.14246058 11.14241653 11.14241653
eckerle4 0.01447502 0.00004181 0.00004181
ENSO 5.88368063 4.70200344 4.69368920
gauss1 69.48794461 240.96999499 5.26328897
gauss2 281.42404091 285.35262667 4.99011283
hahn1 0.44159257 1.36283698 0.00649352
sinexp 0.21600792 0.00000002 0.00000002
thurber 484.73325744 1221.31989747 152.50562814

and,

Function GWO Jaya GA
chwirut1 12.36848825 11.14241653 608.61817149
eckerle4 0.00004182 0.00004181 0.00005333
ENSO 5.33949256 4.69369441 4.92459862
gauss1 5.26402186 68.68690417 24.88613718
gauss2 4.99213618 4.99011283 14.66047428
hahn1 0.61034623 0.19537979 22.32650942
sinexp 0.67713391 0.00193188 0.00218510
thurber 283.80189992 173.19974512 3069.89358190

The smallest MSE found for each fit function is in bold face. The range of MSE values requires
many digits at times. Naturally, in many cases, most are not significant.

We see yet again that no one swarm algorithm rules them all. For the knapsack, Section 8.2,
RO and GWO were our star pupils. For curve fitting, DE is the clear winner, though it sometimes
shares the victory with PSO and Jaya. Interestingly, Jaya does not find the smallest MSE for the
sinexp function, which is, judging from the tiny MSE found by DE and PSO, the simplest of the
test functions.

How do the parameters found compare to the NIST certified values? We’ll look at DE’s results
on eckerle4 as a best-case example,

Parameter DE NIST certified value
p0 1.5543827173 1.5543827178
p1 4.0888321754 4.0888321754
p2 451.54121844 451.54121844

Here, p1 and p2 match the NIST certified value exactly. For p1, the DE value was only off in the
10-th decimal.

Figure 8.4 through Figure 8.6 show randomly selected fits for each of the NIST test functions
and algorithm. In general, the fits are close, but even visually, it’s often clear that DE has done the
best job overall. In some cases, the fit failed. Still, these examples show the overall utility of using
a swarm-based approach to nonlinear curve fitting.

This completes the experiments of this chapter, but before we move on; let’s answer the question:
what does the search process look like?

The file curves_plot.py generates output frames showing the fit function each time the
swarm finds a new global best set of parameters.

We won’t detail the code, it’s not relevant to swarm optimization, but we’ll show an example of
how you might use it. Let’s generate frames to watch DE learn the NIST gauss1 function. First,
we create the necessary output files with curves.py,

CHAPTER 8. INITIAL EXPERIMENTS 135

chwirut1:

RO PSO DE

GWO Jaya GA

eckerle4:

RO PSO DE

GWO Jaya GA

ENSO:

RO PSO DE

GWO Jaya GA

Figure 8.4: Representative fits for the NIST test functions.

CHAPTER 8. INITIAL EXPERIMENTS 136

gauss1:

RO PSO DE

GWO Jaya GA

gauss2:

RO PSO DE

GWO Jaya GA

hahn1:

RO PSO DE

GWO Jaya GA

Figure 8.5: Representative fits for the NIST test functions.

CHAPTER 8. INITIAL EXPERIMENTS 137

sinexp:

RO PSO DE

GWO Jaya GA

thurber:

RO PSO DE

GWO Jaya GA

Figure 8.6: Representative fits for the NIST test functions.

CHAPTER 8. INITIAL EXPERIMENTS 138

> python3 curves.py NIST/gauss1.txt 0 100x1x110x70x25x75x200x20 8 20 10000
1e-7 DE RI gauss1.png gauss1.pkl

This creates a plot in gauss1.png and stores the search results in gauss1.pkl.
Now, generate the frames with,

> python3 curves_plot.py gauss1.pkl NIST/gauss1.txt gauss1

to create an output directory, gauss1, with the frames and a single plot showing the MSE as a
function of swarm best updates. For my test run, the swarm converged to a good set of parameters
by update 65.

To create an animated GIF from the frames, use ImageMagick,

> convert -delay 100 -loop 0 gauss1/frame*.png gauss1.gif

to produce gauss1.gif thereby animating the search. ImageMagick is typically already installed
on most common Linux distributions.

Let’s continue our experiments in the next chapter by applying swarms to the training of tradi-
tional neural networks.

Chapter 9

Training a Neural Network

In this chapter, we apply swarm optimization to the task of training a traditional neural network.
By “traditional” we mean a fully-connected, feedforward model with one or two small hidden layers.
Don’t worry if none of these terms yet have meaning. We’ll describe everything as we go. As before,
we present the problem, show how we’ll set up the solution using the framework, and then see how
we do with several experiments.

9.1 The Problem

A neural network is a model that accepts a vector input and produces an output value interpreted as
the likelihood of membership in one of two or more classes. Naturally, neural networks are far more
than just this, but we’ll restrict ourselves here to traditional, supervised learning with feedforward
networks.

Figure 9.1 shows the structure of the kind of network we’ll explore. Read the figure from left to
right. The boxes on the left are the vector input, the feature vector, here with three elements. Next
comes the first hidden layer with four circles. Hidden layers are made of neurons, also called nodes.
Each neuron, the circles, receives input from each element of the feature vector and produces a single
output value. In this sense, neurons are analogous to biological neurons which accept multiple inputs
and produce one output. However, that’s where the similarity generally ends. The hidden layer’s
output becomes the input to the layer to its right, the second hidden layer with three nodes. The
process repeats, so this layer’s output is the input to the next layer with a single node, the output
layer. Therefore, the network accepts a 3-element vector input and produces a single scalar value as
output. The scalar value is interpreted as the likelihood of membership in class 1 as opposed to class
0. The figure represents a binary classifier which sorts input feature vectors into class 0 or class 1.

The numeric output is assigned a class label by applying a threshold. If the output is less than
the threshold, typically 0.5, the label is “class 0”, otherwise it’s “class 1”. It is straightforward to
extend a network like this to produce multiple outputs for multiclass classification.

The power of neural networks comes from the activity of the neurons. For example, the top
circle of the first hidden layer in Figure 9.1 receives input from each element of the feature vector,
(x0, x1, x2). Each of these values is multiplied by a weight assigned to one of the edges from the
input to the node. The weights are not shown, but each line connecting two nodes in the figure
has one. Additionally, each node starting with the first hidden layer has an associated bias value, a
scalar, also not shown.

The neuron’s action is straightforward: multiply each input value by the weight assigned to that
edge, sum them, add in the bias value, and pass that as the input to the activation function. The
activation function is a nonlinear function producing a scalar output. The scalar outputs of all the
nodes in a layer become the input vector to the next layer to the right.

From this description, we see what differentiates one network from another, assuming the layers
and nodes per layer are fixed, is the value of the weights and biases. The goal of training a neural
network is to find values for the weights and biases that allow the network to produce correct

139

CHAPTER 9. TRAINING A NEURAL NETWORK 140

Figure 9.1: A traditional neural network.

classifications. From theory, we know neural networks are universal function approximators, so
if there is a function mapping input feature vectors to class label outputs, we should be able to
approximate it with a neural network of an appropriate size and with enough example training data.
Of course, theory and practice are often wildly different.

As hinted above, mathematically, we represent the input to the network or the output of any net-
work layer, as a vector. A matrix of weights represents the mapping from any layer to the next layer.
Therefore, a traditional neural network’s entire operation is implemented as a series of matrix/vec-
tor multiplications and additions. This makes the implementation particularly straightforward for
array-processing libraries like NumPy.

The standard approach to learning the weights and biases, which works equally well for modern
deep neural networks, is to use a first-order gradient descent algorithm to update the weights and
biases based on propagation of the errors made by the network. Specifically, weights and biases are
updated based on the gradient,

wi+1 ← wi − η
∂L

∂w

Here, L is a measure of the error made by the network, w is one of the weights of the network,
and ∂L/∂w is how the loss changes for a change in w. The contribution of w to the gradient is
multiplied by a scale factor, η, known as the learning rate. The learning rate controls the size of
the update from iteration i to iteration i+ 1. Each iteration is a forward pass through the network
of the training data to get a measure of the error and a backward pass using the chain rule for
derivatives to find the ∂L/∂w for each w. The backward pass is known as backpropagation, and it’s
foundational to the success of deep learning ([25]).

However, that’s not how we’ll train our neural networks. Instead, we’ll use a swarm search to
learn what the weights and biases should be. This method works for small networks but does not
scale to networks large enough to be more than only mildly interesting.1 All the same, one of the
early uses for PSO in the mid-1990s was to train neural networks.

Let’s call the input vector x, the weight matrix between the input and the first hidden layer W ,
and the output of the first hidden layer a. We’ll also need a bias vector, one bias value for each node

1This is not entirely true. The new field of neuroevolution applies evolutionary algorithms to deep neural
networks.

CHAPTER 9. TRAINING A NEURAL NETWORK 141

in the hidden layer. Let’s call that b. Finally, we need an activation function. For the moment, we
don’t care what it is; we’ll just call it h and know that it accepts a vector as input and outputs a
vector.

With these definitions, the entire operation of the network from the input feature vector to the
output of the first hidden layer becomes,

a1 = h(W0x+ b0) = h

w00 w01 w02

w10 w11 w12

w20 w21 w22

w30 w31 w32

x0x1
x2

+

b0
b1
b2
b3

 =

a0
a1
a2
a3

where W , x, and b are shown explicitly.

Consider the node marked as “0” in first hidden layer of Figure 9.1. The inputs to this
node are each of the feature vector elements, (x0, x1, x2), multiplied by the weights for this node,
(w00, w01, w02) and then summed along with the bias value for the node, b0. The input to the
activation function and the output is,

a0 = h(x0w00 + x1w01 + x2w02 + b0)

This is precisely what we get when multiplying the first row of W by x and adding the first element
of b. Likewise, we get the proper expressions for the remaining nodes of the first hidden layer by
using the second through fourth rows of W and elements of b.

To complete the flow through the network, the output of the first hidden layer, (a0, a1, a2, a3),
becomes the input to the second hidden layer with three nodes,

a2 = h(W1a1 + b1) = h

w00 w01 w02 w03

w10 w11 w12 w13

w20 w21 w22 w23

a0
a1
a2
a3

+

b0b1
b2

 =

a0a1
a2

and, the final output value is,

a3 = h(W2a2 + b2) = h

[w00 w01 w02

] a0a1
a2

+ b0

with a3 a scalar. We pass a3 through a sigmoid function to determine the likelihood of x representing
an instance of class 1. The sigmoid is,

σ(x) =
1

1 + e−x

and is bounded so [−∞,+∞] → [0, 1] with σ(0) = 0.5. The output of a sigmoid is always in the
range [0, 1], so it is natural to talk about it as a probability. To be pedantic, it’s better to call the
output a likelihood as most neural networks are not calibrated. A calibrated network is one where
say 80% of the inputs with output 0.8 are actually class 1 and so on. However, the loose terminology
is seldom an issue.

The series of expressions above tell us how to move data through a traditional neural network.
The same steps may be expressed in matrix/vector form quite succinctly,

a1 = h(W0x+ b0)

a2 = h(W1a1 + b1)

a3 = W2a2 + b2

p =
1

1 + e−a3

CHAPTER 9. TRAINING A NEURAL NETWORK 142

with p the probability of x representing an instance of class 1. We can think of the sigmoid as the
activation function for the output layer.

We have yet to explicitly define the hidden layer activation function, h. We have several options,
but the current favorite of the deep learning community is the rectified linear unit or relu (sometimes
ReLU). The relu is,

relu(x) =

{
x, if x > 0

0, otherwise

and it’s the activation function we’ll use for our experiments below.
The equations above tell us how to pass a feature vector through the network to decide class

membership. We’ll use essentially this process when learning the weights and biases, the elements
of the different W matrices and b vectors.

The simple network of Figure 9.1 has a total of 35 parameters to learn: 27 weights and 8 biases.
If we want to use a swarm to find them, we need to search a 35-dimensional space. The actual
network we’ll experiment with is larger than this.

Our description of neural networks and training has been necessarily terse. We’re only providing
enough background to frame the problem we want to solve.2

Let’s see how to morph the problem of learning the weights and biases for a particular classifi-
cation task and architecture into a swarm optimization task.

9.2 The Setup

Before we can set up our swarm solution, we need to install a new Python library. The scikit-
learn library provides a cornucopia of machine learning algorithms and tools, including support for
traditional machine learning via the MLPClassifier class. We’ll use this class to handle data
processing for us and give us a performance baseline against which we can compare our swarm
results.

To install scikit-learn on Ubuntu use,

$ sudo pip3 install scikit-learn

and to test it,

$ python3
>>> import sklearn
>>> sklearn.__version__
’0.20.3’

where your version should be at least the version shown.
We’ll use the MLPClassifier class with our swarms by replacing the weights and biases it

would use with those derived from the particle positions. That way, we need not write code to pass
data through the model, and we can use the prediction methods to give us results.

We already know we’ll use the particle position vector to represent the weights and biases we
need for the network. Each particle position gives us a candidate set. We also need an objective
function to tell us that the weights and biases a particle represents are good or bad. Here’s where we
use the training data. It already has labels, so we’ll use the network’s performance on the training
set, using the current particle’s position to set the weights and biases, to calculate a measure of how
well the model is doing.

The steps we need are,

2To learn more about machine learning, and deep learning in particular, please see my books “Practical
Deep Learning with Python: A Hands-On Introduction” (No Starch Press, January 2021) and “Math for
Deep Learning” (No Starch Press, October 2021).

CHAPTER 9. TRAINING A NEURAL NETWORK 143

1. Initialize an instance of the MLPClassifier class with a selected number of layers and nodes
per layer. We’ll use the relu for the activation function.

2. For each particle position, replace the weights and biases of the MLPClassifier instance
with the particle position components via a consistent mapping from component to weights
and biases by layer.

3. Call the predict method on the model instance using the training data to generate output
class label predictions.

4. Compare the model’s predicted class to the actual known class to generate a measure of how
well the model has done. This gives a metric we can use to compare the swarm positions.

5. Use the metric as the objective function value. The smaller the metric, the better the model
is doing with that particular set of weights and biases.

6. Update the swarm positions according to the particular swarm algorithm in use and repeat
for the desired number of iterations or until a set of weights or biases is found that gives the
desired level of performance on the training data.

We’ll clarify these steps as we walk through them; don’t be concerned if they are fuzzy right now.
We have another preliminary task before we dive into code. We need a problem to solve, a classifier
to make. The classifier we’ll make is designed to take a feature vector representing measurements
derived from a histology slide and decide whether the feature vector represents a malignant or benign
breast cancer case. The dataset is small and easily loaded by sklearn using the following code,

import numpy as np
from sklearn.datasets import load_breast_cancer

x,y = load_breast_cancer(True)
x = (x - x.mean(axis=0)) / x.std(axis=0)
i0 = np.where(y == 0)
i1 = np.where(y == 1)
yp = y[i1]; yn = y[i0]
xp = x[i1]; xn = x[i0]
pp = int(0.7*len(yp))
nn = int(0.7*len(yn))
xtrn = np.concatenate((xp[:pp,:], xn[:nn,:]))
ytrn = np.concatenate((yp[:pp], yn[:nn]))
xtst = np.concatenate((xp[pp:,:], xn[nn:,:]))
ytst = np.concatenate((yp[pp:], yn[nn:]))
idx = np.argsort(np.random.random(len(ytrn)))
xtrn = xtrn[idx]
ytrn = ytrn[idx]
idx = np.argsort(np.random.random(len(ytst)))
xtst = xtst[idx]
ytst = ytst[idx]

np.save("nn_xtrn.npy", xtrn)
np.save("nn_ytrn.npy", ytrn)
np.save("nn_xtst.npy", xtst)
np.save("nn_ytst.npy", ytst)

You’ll find in the download_dataset.py script in the nn directory. The first time you run this
code, sklearn will download the dataset it needs, subsequent runs will use the already downloaded
data.

The code creates four output NumPy files. Two of the files are feature vectors, and two are
class labels associated with those feature vectors. One set of files is training data; the data used to
condition the model, especially when using backpropagation and gradient descent for training, as

CHAPTER 9. TRAINING A NEURAL NETWORK 144

we’ll do to get our baseline model. The remaining set is test data. Neural networks are typically
tested after they are fully trained with a set of data never used during training. This is the test
set, and it gives us an unbiased measure, compared to the training data, of how well the model
has learned. Of all the available breast cancer data, we’ll use 70% of it for training and hold the
remaining 30% back for testing. Going forward, we’ll use the NumPy files.

The feature vectors are 30-dimensional; each input to our network is a vector of 30 elements
representing the histology slide measurements. We don’t know what the measurements represent,
nor does any neural network. Instead, we’ll use the measurements and the label as they are. We need
to define our neural network architecture. We’ll use a single hidden layer with 60 nodes, meaning our
network has 30 inputs, 60 hidden nodes, and 1 output. This works out to 1921 weights and biases.
Therefore, our problem size is fixed, we’re working with particles in a 1921-dimensional space, far
larger than any space we’ve used before. Are our swarm algorithms up to the task? We’ll soon see.

Now we can write code. All of the code presented below is in the file nn.py. We start at the
beginning of the main portion of the script. We’ll skip the particular module imports and jump to
parsing the command line,

npart = int(sys.argv[1])
niter = int(sys.argv[2])
ndim = 1921 # params in a 30 > 60 > 1 MLP
itype = sys.argv[3].upper()

xtrn = np.load("nn_xtrn.npy")
ytrn = np.load("nn_ytrn.npy")
xtst = np.load("nn_xtst.npy")
ytst = np.load("nn_ytst.npy")

MCC = []; M = []
TP = []; TN = []
FP = []; FN = []
T = []; SC = []

nnodes = 60
clf = MLPClassifier(hidden_layer_sizes=(nnodes,),

solver="lbfgs", max_iter=3000, tol=0)
st = time.time()
clf.fit(xtrn, ytrn)
en = time.time()
mlp_prob = clf.predict_proba(xtst)
mlp_score = clf.score(xtst, ytst)
tn,fp,fn,tp,mcc = confmat(mlp_prob, ytst)
TP.append(tp); TN.append(tn); FP.append(fp); FN.append(fn);
T.append(en-st); SC.append(mlp_score)
MCC.append(mcc)
M.append("MLP")

The command line accepts a swarm size and a maximum number of iterations followed by
the initializer type. For this experiment, we’ll work with the random, sphere, and quasirandom
initializers. Next, the train and test datasets are loaded into xtrn and xtst respectively.

As we train different models using the other algorithms, we’ll track a series of metrics, so we set
up empty lists for those next.

We need a baseline model. That model is the performance of a traditional neural network on
this same dataset. Another name for a traditional neural network is a “multilayer perceptron” or
MLP, which is how we’re referring to it in code. We use the MLPClassifier class to create an
instance of a neural network. We then train it using the training data by calling the fit method.
The sklearn library handles all data, backpropagation, and gradient descent tasks for us. Training
is this one line of code. The predict_proba method returns the output probability for the test
data. This is the likelihood of a test feature vector being a member of class 1 (malignant). We also

CHAPTER 9. TRAINING A NEURAL NETWORK 145

use score to compute the accuracy. This is the fraction of correctly assigned class labels. The
confmat function, which takes the model output probabilities and known test set labels (ytst),
will be described shortly. Its goal is to generate metrics for evaluating the model’s performance with
its current set of weights and biases. Finally, we store the different metrics for this model.

Let’s examine confmat to see what it’s calculating for us,

def confmat(prob, ytst):
p = np.argmax(prob, axis=1)
tp=tn=fp=fn=0
for i in range(len(ytst)):

if (ytst[i]==1) and (p[i]==1):
tp += 1

if (ytst[i]==1) and (p[i]==0):
fn += 1

if (ytst[i]==0) and (p[i]==1):
fp += 1

if (ytst[i]==0) and (p[i]==0):
tn += 1

d = np.sqrt((tp+fp)*(tp+fn)*(tn+fp)*(tn+fn))
if (d != 0):

mcc = (tp*tn - fp*fn) / d
else:

mcc = 0.0
return tn,fp,fn,tp,mcc

This function creates a 2x2 confusion matrix. The confusion matrix is a table showing counts
for the number of times: a class 1 instance was called class 1 (true positive, TP), a class 0 instance
was called class 0 (true negative, TN), a class 1 instance was called class 0 (false negative, FN), and
a class 0 instance was called class 1 (false positive, FP). A perfect model has FN = FP = 0; it makes
no mistakes.

With these primary tallies, we can calculate many possible metrics. The one we’ve chosen
for ranking the final model performance ranking is Matthews Correlation Coefficient (MCC). This
metric has a maximum value of 1.0 when the model is perfect. The confmat function returns TN,
FP, FN, TP, and MCC.

At this point in nn.py, we have our datasets loaded and have built, trained, and tested our
baseline MLP classifier. Let’s define the swarm objective to see how we’ll transform a particle
position into a neural network. We know we need the training data as part of the objective, just
like we needed the dataset for the curve fitting experiments. We also need a dummy instance of
MLPClassifier we can use to update the weights and biases. Therefore, the setup for the objective
function is

snn = MLPClassifier(hidden_layer_sizes=(nnodes,), max_iter=1)
snn.fit(xtrn,ytrn)
obj = SwarmObjective(snn,xtrn,ytrn)

Here, snn is our dummy instance of MLPClassifier. We need to train the instance by calling
fit so structures internal to the object are in the proper state. We don’t care about how well it
did, we’re going to overwrite the weights and biases anyway. With snn in a proper state, we define
our objective function instance. Here’s what the SwarmObjective class looks like,

class SwarmObjective:
def __init__(self, snn, xtrn, ytrn):

self.snn = snn
self.xtrn = xtrn
self.ytrn = ytrn

def Evaluate(self, weights):
self.snn.coefs_[0] = weights[:1800].reshape((30,60))

CHAPTER 9. TRAINING A NEURAL NETWORK 146

self.snn.coefs_[1] = weights[1800:1860].reshape((60,1))
self.snn.intercepts_[0] = weights[1860:1920]
self.snn.intercepts_[1] = weights[1920]
return 1.0 - self.snn.score(self.xtrn, self.ytrn)

The constructor accepts the dummy MLPClassifier instance (snn), the training feature vec-
tors (xtrn), and associated labels (ytrn). The constructor stores these for use by Evaluate.

The Evaluate method accepts a particle position, which in this case we’re calling weights.
It’s a vector of 1921 elements. Our goal is to copy the weights into the proper places in the dummy
MLPClassifier instance and then calculate the training set’s accuracy. To do this, we require
some knowledge of the internals of the MLPClassifier class. Specifically, we need to know how
it stores the weights and biases. A review of the relevant scikit-learn documentation tells us that
weight matrices are stored in coefs_ and biases are stored in intercepts_. The network has a
single hidden layer, meaning we need one weight matrix between the input and the hidden layer and
another between the hidden layer and the output layer. Also, the hidden layer and the output layer
both have bias vectors. For the hidden layer, there are 60 elements in the bias vector because there
are 60 nodes. For the output layer, there is a single, scalar value. The first weight matrix maps the
30-element input to a 60-element output, so it’s a 30x60 matrix. The second weight matrix maps
60 elements to 1 and is a 60x1 matrix.

The mapping from the 1921-dimensional particle position to the weight matrices is arbitrary,
but we need to be consistent. The code maps the first 1800 to the first weight matrix, the next 60 to
the second weight matrix, the following 60 to the bias vector for the hidden layer, the last element
to the bias for the output layer.

With the weight and biases set, a call to score using the training data evaluates the model
returning the fraction of the training data that were correctly classified. Since we always minimize,
and the maximum accuracy of the model is 1.0, we subtract this number from 1.0 to return an
objective function value. As this dataset is reasonably balanced, meaning the number of benign
and malignant cases is more or less equal, we’ll use the score as our metric during optimization. If
the dataset were highly imbalanced with one class was far more common than the other, we’d want
another metric here, perhaps the MCC. The reason why is understood by considering a training set
that is 99% class 0 and 1% class 1. If the overall accuracy is our metric, a model predicting class 0
for all inputs will be 99% accurate. Clearly, this is not good. Note, we’ll use the accuracy to locate
the best set of weights and biases, but use MCC to rank the final models against each other.

As before, the swarm is randomly initialized, but we need to be careful in this case. We have two
different bounds we want to respect. The first has to do with the initial set of weights and biases,
which we want bound to a small range, and the second has to do with the actual limit on weights
and biases that we want to allow after searching for some period of time. We do this because it is
known that neural networks initialized with large values do not learn well. This effect may be due
to the use of backpropagation and gradient descent and not even apply to what we’re attempting to
do here, but without any prior knowledge of what the initialization values should be, we choose to
keep them small. Feel free to experiment with other initialization schemes. In code, the next lines
of the script are,

b = Bounds(-0.01*np.ones(ndim), 0.01*np.ones(ndim), enforce="resample")
if (itype == "SI"):

i = SphereInitializer(npart, ndim, bounds=b)
elif (itype == "QI"):

i = QuasirandomInitializer(npart, ndim, bounds=b)
else:

i = RandomInitializer(npart, ndim, bounds=b)
b = Bounds(-10*np.ones(ndim), 10*np.ones(ndim), enforce="resample")

We initially set b to an instance of our Bounds class limited to the range [−0.01, 0.01]. This Bounds
object is used to set up the desired swarm initializer (passed in on the command line). Here ndim
is 1921. Once the initializer object is created, we want to allow the swarms to search over a larger

CHAPTER 9. TRAINING A NEURAL NETWORK 147

region. Ad hoc examination of several similar neural networks tells us that final learned weights and
biases, for similar datasets, are seldom outside the range [−10, 10], so these are the limits we’ll use
with the actual swarm objects. Therefore, we redefine b to be a Bounds object in that range, with
resampling when bounds are exceeded.

Everything is now in place to train the network using the different swarm algorithms. We’ll loop
over the algorithm names and create the proper swarm object,

for alg in ["RO","PSO","DE","GWO","JAYA","GA"]:
if (alg == "RO"):

swarm = RO(obj=obj, npart=npart, ndim=ndim, max_iter=niter,
init=i, bounds=b)

elif (alg == "PSO"):
swarm = PSO(obj=obj, npart=npart, ndim=ndim, max_iter=niter,

init=i, bounds=b, inertia=LinearInertia())
elif (alg == "DE"):

swarm = DE(obj=obj, npart=npart, ndim=ndim, max_iter=niter,
init=i, bounds=b)

elif (alg == "GWO"):
swarm = GWO(obj=obj, npart=npart, ndim=ndim, max_iter=niter,

init=i, bounds=b)
elif (alg == "JAYA"):

swarm = Jaya(obj=obj, npart=npart, ndim=ndim, max_iter=niter,
init=i, bounds=b)

elif (alg == "GA"):
swarm = GA(obj=obj, npart=npart, ndim=ndim, max_iter=niter,

init=i, bounds=b)

st = time.time()
swarm.Optimize()
en = time.time()

SetWeights(obj.snn, swarm.gpos[-1])
prob = obj.snn.predict_proba(xtst)
score= obj.snn.score(xtst, ytst)

tn,fp,fn,tp,mcc = confmat(prob, ytst)
TP.append(tp); TN.append(tn); FP.append(fp);
FN.append(fn); T.append(en-st); SC.append(score)
MCC.append(mcc)
M.append(alg)

Once we have the swarm object, we optimize while tracking the time it takes. Next, we call
SetWeights, which we’ll see below, to place the best set of weights in the dummy MLPClassifier
object, snn, borrowing its reference from the SwarmObjective instance. Then, calls to predict_proba
and score give us the output probabilities and the test set’s accuracy. Finally, we calculate the
same set of statistics we found initially for the MLP and move on to the next swarm algorithm.

The SetWeights method does essentially what we did inside of the objective function: it copies
the weights from a particle position, here the swarm best, to the MLPClassifier instance,

def SetWeights(snn, weights):
snn.coefs_[0] = weights[:1800].reshape((30,60))
snn.coefs_[1] = weights[1800:1860].reshape((60,1))
snn.intercepts_[0] = weights[1860:1920]
snn.intercepts_[1] = weights[1920]

When every swarm algorithm has been tested, we rank the results by the Matthews Correlation
Coefficient calculated on the test set and display them in decreasing order. Recall, the closer the
MCC is to 1.0, the better the model is performing,

CHAPTER 9. TRAINING A NEURAL NETWORK 148

MCC = np.array(MCC)
idx = np.argsort(1.0-MCC)
MCC = MCC[idx]
M = np.array(M)[idx]
TP = np.array(TP)[idx]
TN = np.array(TN)[idx]
FP = np.array(FP)[idx]
FN = np.array(FN)[idx]
T = np.array(T)[idx]
SC = np.array(SC)[idx]

print("Ranked: (npart=%d, niter=%d)" % (npart, niter))
print(" MCC Score TP FP FN TN time")
for i in range(len(M)):

print("%10.6f %0.6f %4d %4d %4d %4d %8.3f %s" %
(MCC[i],SC[i],TP[i],FP[i],FN[i],TN[i],T[i],M[i]))

The code is now in place. Let’s run it for different combinations of swarm size, iterations, and
swarm initialization to see how this approach to training a neural network compares to backpropa-
gation and gradient descent.

9.3 The Results

A single run of nn.py looks like this at the command line,

> python3 -W ignore nn.py 30 1000 RI

We explicitly silence runtime warnings because the sklearn library raises them when the model hasn’t
converged according to the training heuristics. It’s safe to ignore those warnings. The command
uses a swarm of 30 particles for 1000 iterations and random initialization. The output produced is,

Ranked: (npart=30, niter=1000)
MCC Score TP FP FN TN time
0.987673 0.994186 107 0 1 64 126.168 DE
0.929243 0.965116 102 0 6 64 0.176 MLP
0.915988 0.959302 102 1 6 63 70.277 JAYA
0.913252 0.959302 104 3 4 61 68.451 GA
0.902805 0.953488 102 2 6 62 71.383 PSO
0.891448 0.947674 101 2 7 62 76.840 GWO
0.431914 0.738372 88 25 20 39 73.862 RO

telling us that for this run, DE produced the best performing model with an MCC of 0.987 and
overall accuracy of 99.4%. The raw TP, FP, FN, TN counts are also given. Recall, the results are for
the held-out test set. The model trained by DE made a single mistake; it called a single malignant
case benign. We see from the reported training times that the swarm approach is not exceptionally
fast, nor is it optimized in any way. The sklearn library is optimized for performance, as we’d expect
from a widely-used piece of open-source software.

We see that DE beat the MLP, the model trained with traditional gradient descent. That model
had 6 false negatives. Lastly, all the remaining swarm algorithms, except RO, performed reasonably
well by not falling apart. RO, on the other hand, had a low MCC and overall accuracy.

We know that swarm optimization is stochastic because of the swarm initialization process, let
alone randomness in many of the swarm update rules. And, we discussed above how traditional
training of neural networks is also stochastic. Therefore, we shouldn’t read too much into the results
of a single run. The results might change, perhaps dramatically, if we were to run the same set of
parameters a second time.

CHAPTER 9. TRAINING A NEURAL NETWORK 149

Let’s set up a script to run each swarm size, iteration limit, and initialization type six times.
Then, we’ll develop code to summarize the multiple runs and thereby, hopefully, reach some consen-
sus about how well the swarm algorithms perform on this task. The script is simply a list of repeated
command lines that capture the output in files with names like nn_30_1000_RI_run1.txt. Run-
ning the script requires some patience, nearly two day’s worth. When done, however, it has created
output files for six runs each of the following combinations of parameters,

Size Iterations Initializer
30 1000 RI, QI, SI
30 3000 RI, QI, SI

100 1000 RI, QI, SI
100 3000 RI, QI, SI

for a total of 12 combinations. A bit of code,

def GetRanking(fname):
lines = [i[:-1] for i in open(fname)]
lines = lines[3:]
ranks = []
for line in lines:

try:
ranks.append(line.split()[-1])

except:
pass

return ranks

ranks = {
"MLP": [], "RO": [], "PSO": [],
"DE": [], "GWO": [], "JAYA": [],
"GA": [],

}

for i in range(1, len(sys.argv)):
order = GetRanking(sys.argv[i])
for i,label in enumerate(order):

ranks[label].append(i)

for k in ["MLP","RO","PSO","DE","GWO","JAYA","GA"]:
r = np.array(ranks[k])
print("%4s: %0.3f +/- %0.3f, " % (k, r.mean(), r.std(ddof=1)),

r.astype("uint16"))

parses the output files passed on the command line to produce a summary across the six runs.
Table 9.1 shows the rankings across the six runs for a swarm with 30 particles. On the left are

the results for 1000 iterations and on the right for 3000 iterations. The set of six numbers on the
right column of each subtable lists the per-run rankings for that algorithm.

What to make of these results? Two statements are easy to make: the traditional MLP is still
the best performing model and the RO-trained model is always the worst. Another way to rank the
results, for both 1000 and 3000 iterations together, is to tally the number of times each algorithm
appears in the top three across iterations and initialization strategies. Doing this gives us an overall
ranking of,

CHAPTER 9. TRAINING A NEURAL NETWORK 150

RI:

MLP: 0.833± 1.169 [1 0 0 1 3 0]

DE: 1.667± 1.862 [0 1 2 0 5 2]

Jaya: 2.333± 1.633 [2 2 5 2 0 3]

PSO: 3.000± 1.414 [4 3 1 3 2 5]

GA: 3.500± 1.378 [3 5 4 4 1 4]

GWO: 3.667± 1.506 [5 4 3 5 4 1]

RO: 6.000± 0.000 [6 6 6 6 6 6]

QI:

MLP: 0.833± 1.169 [0 0 3 1 0 1]

PSO: 2.167± 1.602 [2 1 2 4 4 0]

DE: 2.333± 1.506 [1 2 5 2 1 3]

GWO: 2.500± 2.345 [4 3 0 0 2 6]

Jaya: 2.833± 1.329 [3 5 1 3 3 2]

GA: 4.500± 0.548 [5 4 4 5 5 4]

RO: 5.833± 0.408 [6 6 6 6 6 5]

SI:

MLP: 0.667± 0.516 [0 1 1 0 1 1]

DE: 1.833± 0.753 [1 2 3 1 2 2]

GWO: 2.667± 1.751 [2 5 2 4 3 0]

PSO: 3.167± 1.722 [3 4 0 3 5 4]

Jaya: 3.167± 1.835 [4 0 4 2 4 5]

GA: 3.500± 1.975 [5 3 5 5 0 3]

RO: 6.000± 0.000 [6 6 6 6 6 6]

MLP: 0.833± 0.983 [0 2 0 0 1 2]

GWO: 1.833± 1.722 [3 0 1 3 0 4]

PSO: 2.667± 1.506 [2 1 4 2 2 5]

DE: 3.000± 1.897 [4 5 2 1 5 1]

GA: 3.000± 2.098 [1 4 5 5 3 0]

Jaya: 3.667± 0.816 [5 3 3 4 4 3]

RO: 6.000± 0.000 [6 6 6 6 6 6]

MLP: 1.000± 0.632 [1 1 2 0 1 1]

PSO: 1.833± 1.722 [0 5 1 1 2 2]

GWO: 2.500± 2.258 [2 0 3 5 0 5]

DE: 3.000± 1.549 [4 3 0 3 4 4]

GA: 3.167± 1.941 [5 4 5 2 3 0]

Jaya: 3.500± 1.049 [3 2 4 4 5 3]

RO: 6.000± 0.000 [6 6 6 6 6 6]

MLP: 0.500± 0.548 [0 1 1 1 0 0]

Jaya: 1.667± 1.633 [2 0 0 3 4 1]

GWO: 2.500± 1.643 [3 2 5 0 2 3]

PSO: 3.167± 1.472 [1 3 2 4 5 4]

DE: 3.167± 1.472 [4 4 3 2 1 5]

GA: 4.000± 1.265 [5 5 4 5 3 2]

RO: 6.000± 0.000 [6 6 6 6 6 6]

Table 9.1: Swarm algorithm rank (mean ± std) by initialization scheme for 30 particles and
1000 iterations (left) or 3000 iterations (right).

Algorithm Top-3 Count
MLP 6

GWO 4
DE 3

PSO 3
Jaya 2
GA 0
RO 0

again confirming the MLP result already noted and giving a nod to GWO, DE, and PSO. However,
a swarm of only 30 particles is relatively small. Repeating the experiment with a swarm of 100
particles might offer more insights.

Table 9.2 shows the rankings for a swarm with 100 particles across the same iteration limits and
initializations as Table 9.1. If we again rank by the number of times each algorithm appears in the
top three we get,

Algorithm Top-3 Count
MLP 6

DE 4
Jaya 3

GWO 2
GA 2

PSO 1
RO 0

Again confirming the MLP, but also revealing a strong showing by DE. GWO dropped two positions
relative to the 30-particle swarms while GA rose two positions. RO is still the worst performer.

CHAPTER 9. TRAINING A NEURAL NETWORK 151

RI:

MLP: 0.667± 0.816 [0 1 0 0 1 2]

DE: 1.500± 1.049 [2 0 1 3 2 1]

Jaya: 1.667± 1.633 [3 4 2 1 0 0]

PSO: 3.500± 0.837 [4 3 3 5 3 3]

GWO: 3.500± 1.761 [1 2 6 4 4 4]

GA: 4.333± 1.211 [5 5 4 2 5 5]

RO: 5.833± 0.408 [6 6 5 6 6 6]

QI:

MLP: 0.500± 0.548 [0 0 1 1 0 1]

PSO: 1.667± 1.506 [3 3 0 0 1 3]

GA: 2.500± 1.049 [1 2 3 3 4 2]

DE: 2.667± 1.633 [2 4 4 4 2 0]

Jaya: 3.667± 1.633 [4 5 2 2 3 6]

RO: 5.000± 0.632 [5 6 5 5 5 4]

GWO: 5.000± 2.000 [6 1 6 6 6 5]

SI:

MLP: 0.833± 0.408 [0 1 1 1 1 1]

GA: 1.333± 1.506 [3 0 2 3 0 0]

DE: 2.333± 1.633 [1 4 0 2 3 4]

PSO: 3.333± 1.211 [4 3 4 5 2 2]

Jaya: 3.333± 1.862 [5 5 3 0 4 3]

GWO: 3.833± 1.472 [2 2 5 4 5 5]

RO: 6.000± 0.000 [6 6 6 6 6 6]

MLP: 0.667± 0.816 [0 1 0 1 0 2]

DE: 1.333± 1.506 [2 0 4 0 1 1]

GWO: 2.833± 1.169 [3 2 1 4 4 3]

Jaya: 2.833± 1.941 [5 3 2 5 2 0]

PSO: 3.000± 1.414 [1 4 3 2 3 5]

GA: 4.333± 0.816 [4 5 5 3 5 4]

RO: 6.000± 0.000 [6 6 6 6 6 6]

MLP: 1.667± 1.633 [0 4 0 2 3 1]

DE: 2.000± 2.000 [1 0 5 1 1 4]

Jaya: 2.167± 0.753 [3 1 2 3 2 2]

PSO: 2.333± 2.066 [4 2 3 0 5 0]

GA: 2.833± 1.169 [2 3 1 4 4 3]

GWO: 4.333± 2.251 [6 6 4 5 0 5]

RO: 5.667± 0.516 [5 5 6 6 6 6]

MLP: 1.000± 0.894 [2 1 2 0 0 1]

Jaya: 2.167± 1.722 [1 0 3 1 4 4]

GWO: 2.500± 1.049 [3 3 1 4 2 2]

GA: 2.833± 2.137 [0 5 4 2 1 5]

DE: 3.167± 1.722 [4 4 0 3 5 3]

PSO: 3.333± 2.066 [5 2 5 5 3 0]

RO: 6.000± 0.000 [6 6 6 6 6 6]

Table 9.2: Swarm algorithm rank (mean ± std) by initialization scheme for 100 particles
and 1000 iterations (left) or 3000 iterations (right).

If we rank the algorithms for the 100 particle/3000 iteration case by their mean MCC and
initialization scheme we get the following,

Algorithm RI SI QI
DE 0.95547± 0.01666, 0, 0 0.93353, 0.02950, 4, 0 0.94901± 0.02231, 0, 0
MLP 0.95016± 0.01039, 1, 0 0.94821, 0.00943, 0, 0 0.94253± 0.01320, 2, 0
Jaya 0.93364± 0.03090, 2, 0 0.93936, 0.01998, 1, 0 0.94467± 0.01046, 1, 0
GWO 0.93198± 0.01737, 3, 0 0.93362, 0.02113, 3, 0 0.62062± 0.48133, 5, 2
PSO 0.92870± 0.01319, 4, 0 0.92105, 0.03565, 5, 0 0.93461± 0.03436, 4, 0
GA 0.90925± 0.02435, 5, 0 0.93445, 0.02638, 2, 0 0.93831± 0.00056, 3, 0
RO 0.80685± 0.05445, 6, 0 0.10012, 0.27209, 6, 3 0.00000± 0.00000, 6, 6

where the table shows the mean MCC (± std), the algorithm’s rank for that initialization scheme,
and the number of times the search failed, meaning the MCC was zero or very close to zero.

Some general observations are in order. DE and Jaya tend to do well regardless of the initializa-
tion scheme. RO is entirely unsuited to this task as it always performs poorly and fails for SI and
QI initialization schemes. PSO, GWO, and GA are mediocre performers, though GA’s performance
improves when using QI and SI. GA’s rank for RI is 5, but it moves to 3 and then 2 for QI and SI.

As for the initialization schemes themselves, RI results in the best models followed by QI when
the search doesn’t fail. Some algorithms are more sensitive to the initialization method than others.

Many possible avenues remain to be explored when applying swarm techniques to neural net-
works. Please indulge your curiosity and explore them. For example, we initialized the swarms with
small values since we know that works well when training models with gradient descent. Is that
really necessary for the swarms? Also, we used the score, but other metrics could be used instead.

Finally, we spent no time optimizing the swarm algorithms themselves by adjusting their pa-
rameters. For example, we did not change F or CR for DE, let alone the “rand”, “best”, or “toggle”

CHAPTER 9. TRAINING A NEURAL NETWORK 152

options. Nor did we adjust the inertia parameter and schedule for PSO. The same is true for muta-
tion and crossover probabilities for GA and the scale factor for RO. There is every reason to believe
a more focused set of experiments seeking to optimize these values would lead to better results.
Could a swarm be used to optimize swarm parameters?

In this chapter, we explored an optimization problem in a high-dimensional space, nearly 2000
dimensions. We saw that the swarms, with a few exceptions for specific algorithms and initialization
schemes, were able to learn effectively and, at times, out-perform the standard MLP approach.

This chapter’s experiments are a form of neuroevolution [26], a field of research that uses evo-
lutionary algorithms to evolve neural networks. Neuroevolution is not restricted to searching for a
fixed architecture’s weights, as we did here, but goes beyond this to evolving the architecture itself.
Neuroevolution has recently found a synergy with deep learning and models far larger than were
thought possible to learn with an evolutionary algorithm have been trained. See [26] for a more
comprehensive picture.

Speaking of pictures, let’s continue now with a new application area: images.

Chapter 10

Images

In this chapter, we cast three common image manipulations, registration, segmentation, and enhance-
ment, as swarm optimization problems. Registration involves aligning multiple images, perhaps
acquired over time, so they overlap ideally. Segmentation seeks to split an image into meaningful
parts. And, while the term “enhancement” means multiple things, it generally alludes to “making
an image look nicer,” which is how we’ll use it here.

As with previous experiments, we set up the problem, discuss how to map it to a swarm op-
timization task, and then have fun with some experiments to see how well we do. As always, our
overall goal is to build intuition as to how diverse tasks can be viewed as swarm optimizations.

10.1 Image Registration

Many medical imaging modalities collect a series of images over time. For example, a functional
magnetic resonance imaging (fMRI) brain study images the brain over time to track changes in
blood oxygenation corresponding to increased neuronal activity. Deoxyhemoglobin is paramagnetic,
while oxyhemoglobin is diamagnetic. This difference is detectable in the signal received by an MRI
scanner and useful in localizing the source of neuronal activity. The changes in the images over
time are subtle and highly susceptible to patient motion. Therefore, we’d like to align the acquired
images so the brain remains as stationary as possible image to image.

A second use case involves aligning images of the same subject acquired with different imaging
modalities. For us this means aligning CT (computed tomography – x-rays) with PET (positron-
emission tomography – gamma rays) so both the anatomy provided by CT and the physiology
provided by PET are appropriately registered.

Our final use case is from microscopy. We’ll use swarm techniques to align frames from videos
taken with a geology microscope to produce a sharper image of the object.

The key to each of these is the ability to register the images to each other. Registration finds the
best way to align the images to maximize some metric. In general, image registration falls into one
of two approaches. Suppose the objects are not easily deformed, meaning they retain their shape
over time or images. In that case, registration is termed “rigid registration” and consists of finding
a rotation angle and translation vector, and possibly a scaling factor. If the objects do deform over
time or images, we might need to use nonrigid registration to align and warp the images. We’ll
restrict ourselves to rigid registration in this chapter though there is no a priori reason why swarms
cannot be applied to nonrigid registration.

10.1.1 The Problem

We can state the problem quite simply: we have a collection of misaligned images, and we need to
align them via rotation, translation, and scaling. We assume the imaged object is rigid and does not
change its shape from image to image, only its orientation and position. We’ll use grayscale images
from magnetic resonance imaging, a PET-CT study, and microscopy as our examples.

153

CHAPTER 10. IMAGES 154

Figure 10.1: Top: two unaligned MRI images (left) and aligned versions after a translation
and rotation (right). Bottom: a CT image (left) and paired PET image (right).

For example, Figure 10.1 shows two magnetic resonance images taken at times t0 and t1, t1 > t0
(top). Motion between the images has been exaggerated beyond what is typical. On the right, the
images are aligned by applying a translation in x and y of 2.976 and −3.209 pixels followed by a
counter-clockwise rotation of 5.195 degrees. Our goal is to align a series of images like these to the
orientation of the first one.

The bottom of Figure 10.1 shows us a CT image and a paired PET image. CT displays anatomy,
while PET shows physiology, the radioactive tracer’s activity as taken up by different tissues. Typ-
ically, cancer shows a strong response to the tracer leading to a bright spot in the image.

10.1.2 The Setup

The problem is easy to state and straightforward to consider. We need to find three numbers: x
translation, y translation, and rotation angle. We’ll add scaling later. So, our search space is small,
only three dimensions. The more interesting part of this experiment is the objective function. What
does it mean for a pair of images to be aligned? How can we measure alignment?

If the images were identical, only shifted and rotated, we might minimize the error by subtracting
them and adding the per-pixel residuals. Perfectly identical images that are perfectly aligned will,
of course, have zero residuals. However, our images will not be perfectly identical. For example,
the entire point of a functional brain scan is to observe small, but significant, differences in pixel
intensities throughout the brain and correlate them with known external activity like listening to
a sound or tapping fingers together. Further, breathing and even heartbeats cause a shift in the
brain’s position, so motion is inevitable.

Therefore, while we might consider minimizing an error metric, like the mean squared error
between the images, we might want to think a little more before proceeding. Additionally, what if
the images we desire to align are from entirely different modalities like our CT and PET images?
Such images are not in any real sense “identical,” so subtraction isn’t likely to be helpful.

Images are not random noise; they contain structure. In terms of information theory, images
have information, so we might expect their entropy is something less than that of pure randomness.
When information is measured in bits, a random 8-bit grayscale image should have an overall entropy
near eight as there are eight bits in a byte. Bearing this in mind, could we do something with the
information content of the images and build a metric indicating how well they are aligned?

CHAPTER 10. IMAGES 155

The entropy alone won’t suffice. It’s entirely possible to have two completely different images
with the same entropy. We need a way to measure information between the two images, a measure
telling us something about how much we know about image B given image A. As it happens, there
is a metric like that: mutual information.

Mutual information is a measure of how much information we have about one thing, given in-
formation about another. For images, the mutual information is maximized when the images are
best aligned. The particular mutual information we’ll work with is known as normalized mutual
information (NMI). To find the NMI between two images, we need the histogram of the individual
images and the pair’s joint histogram. The histograms are proxies for the individual (marginal)
probabilities and the joint probability of the image pixel values. We’ll start with the joint proba-
bility as we get the individual probabilities by summing along the axes of the 2D joint probability
distribution.

To find the joint histogram of two images, x and y, we need to count the number of times each
pair of image intensities appears. We are using grayscale images with intensities in the range [0, 255].
Therefore, we could make a joint histogram by creating a 256x256 array and then running through
each pixel of the image incrementing the (i, j) bin by one every time image x has an intensity of
i and image y has an intensity of j for the current pixel. The histogram of image x is found by
summing across the rows of the joint histogram. Likewise, the histogram of image y is found by
adding across the columns. Dividing by their overall sum turns the histograms into probability
distribution estimates.

In practice, using 256 bins for the joint histogram produces a sparse array. There are many
combinations of intensities from image x and image y that do not appear together, so the count is
zero. Good alignment can be found using a smaller number of bins, like twenty.

So far, our NMI calculation has found the joint histogram between the two images, converted
it to a joint probability distribution, and then found the two marginal probabilities to give us the
individual image probability distributions. What do we do with all these distributions?

The answer is to calculate some entropies and combine them to get the NMI, the value we’ll use
as an objective, something we seek to maximize as that implies well-aligned images.

Let’s define some quantities, the probability distributions we’ll find from the image histograms.
Specifically, px is the intensity probability distribution for image x. Likewise, py is the probability
distribution for image y and pxy the joint probability distribution for both images. With these, we
can calculate the normalized mutual information,

hx = −
N∑
i

pix log2 p
i
x (10.1)

hy = −
N∑
i

piy log2 p
i
y (10.2)

hxy = −
2N∑
i

pixy log2 p
i
xy (10.3)

NMI = (hx + hy)/hxy (10.4)

The NMI has a maximum value of 2, so the closer we are to this, the better aligned the images.
On the right of Figure 10.1, the aligned magnetic resonance images have an NMI of 1.568, for
example. The beauty of using NMI comes from the fact that the modality of the images need not be
the same; mutual information still captures the alignment because knowledge of one image implies
knowledge about the other.

The NMI is straightforward to calculate in code using NumPy. Our implementation is

def NMI(a,b):
h = np.histogram2d(a.ravel(),b.ravel(), bins=20)[0]
pxy = h / h.sum()
px = pxy.sum(axis=0)

CHAPTER 10. IMAGES 156

py = pxy.sum(axis=1)
hx = -(px*np.log2(px+1e-9)).sum()
hy = -(py*np.log2(py+1e-9)).sum()
hxy= -(pxy*np.log2(pxy+1e-9)).sum()
return (hx+hy) / hxy

where we first calculate the joint histogram using twenty bins. The np.histogram2d function
does this for us. Once we have h, a 20x20 matrix, we get the joint probability by dividing each
element by the overall sum. This gives us pxy. The marginal probabilities come next by simple
summing of pxy along the two axes.

With the distributions in place, we calculate the necessary entropies adding a tiny amount to
avoid zeros in the log. The negative sum calculates hx, hy, and hxy, all scalars. Finally, the NMI
is returned as the sum of the individual entropies divided by the joint entropy.

To set up the problem as a swarm search, we need a reference image, the image to which we’ll
align the others, and an image to be aligned. Each particle in the swarm represents a rotation angle,
an x direction shift, and a y direction shift. The objective function applies the shifts in x and y, then
the rotation, to generate a candidate image. The objective function returns the normalized mutual
information between the candidate image and the reference image. Since the NMI is maximized
when aligned, the objective function returns the negative as the framework always minimizes.

The bounds are straightforward, we can use the Bounds class as it is. Therefore, we need
only define the objective function class and use the framework components. The code is in the file
rigid.py. The Objective class is,

from scipy.ndimage import rotate, shift
class Objective:

def __init__(self, dname, sname):
self.dst = np.array(Image.open(dname).convert("L"))
self.src = np.array(Image.open(sname).convert("L"))
self.x, self.y = self.dst.shape

def Evaluate(self, p):
angle, xshift, yshift = p
img = rotate(shift(self.src, (xshift,yshift)), angle)

.astype("uint8")
x,y = img.shape
img = img[(x//2-self.x//2):(x//2+self.x//2),

(y//2-self.y//2):(y//2+self.y//2)]
if (img.shape[0] != self.dst.shape[0]) or

(img.shape[1] != self.dst.shape[1]):
return 1e9

return -NMI(self.dst, img)

When initialized, we pass in the names of the reference image (dname) and the image to be
aligned (sname). The images are read, converted to grayscale, and stored as NumPy arrays along
with the size of the images, here always assumed to be the same.

To evaluate a candidate rotation and translation, we first extract the angle, xshift, and
yshift. Then we use SciPy functions, shift and rotate, to create the candidate image. These
functions adapt the size of the output image to ensure it is completely contained. Therefore, we
extract the central region of img to compare with the reference. If the shift and rotation result in
an image that cannot be the same size as the original, we immediately return a very high fitness
value; otherwise, we return the negative of the NMI between the candidate and reference.

The bulk of rigid.py is in the main function. It’s format is quite familiar. At the beginning,
we parse the command line and gather the pathnames of the images we want to align,

def main():
sdir = sys.argv[1]
outdir = sys.argv[2]
npart = int(sys.argv[3])

CHAPTER 10. IMAGES 157

ndim = 3 # (angle, x shift, y shift)
niter = int(sys.argv[4])
alg = sys.argv[5].upper()
itype = sys.argv[6].upper()

simgs = [os.path.abspath(sdir+"/"+i) for i in
os.listdir(sdir) if (i.find(".png") != -1)]

simgs.sort()

os.system("rm -rf %s; mkdir %s" % (outdir,outdir))
os.system("mkdir %s/frames" % outdir)

x,y = np.array(Image.open(simgs[0]).convert("L")).shape
b = Bounds([-180,-x//2,-y//2], [180,x//2,y//2], enforce="resample")

results = []
im = Image.open(simgs[0]).convert("L")
im.save(outdir+"/frames/"+os.path.basename(simgs[0]))

The command line holds the usual suspects. We’ll see an example call below. We use simgs to
store the pathnames of the images to be aligned. After creating an output directory, we load the
first image, which we’ll always use as the reference image, and get its dimensions.

The dimensions let us create the Bounds object. Angles are expressed in degrees and bounded
to [−180, 180]. Image shifts are bounded to one-half the dimensionality of the image, either to the
left or right for x or top and bottom for y. Finally, edge transgressions during the search are handled
by resampling along the offending dimension. Before continuing, we set up a list to hold registration
results and copy the reference image to the output directory.

The rest of main runs a loop over the images aligning each one to the reference with a unique
swarm search. Output is stored to be dumped in the output directory as a record of the search
process. In code,

s = "\nRegistration results:\n"
print(s, flush=True, end="")

for k in range(len(simgs)):
if (k == 0):

continue

to start the loop over images and skip the first as that’s the reference image.
Next, a standard swarm search using the framework takes place,

if (itype == "QI"):
i = QuasirandomInitializer(npart, ndim, bounds=b)

elif (itype == "SI"):
i = SphereInitializer(npart, ndim, bounds=b)

else:
i = RandomInitializer(npart, ndim, bounds=b)

obj = Objective(simgs[0], simgs[k])
if (alg == "PSO"):

swarm = PSO(obj=obj, npart=npart, ndim=ndim, init=i, bounds=b,
max_iter=niter, inertia=LinearInertia())

elif (alg == "DE"):
swarm = DE(obj=obj, npart=npart, ndim=ndim, init=i, bounds=b,

max_iter=niter)
elif (alg == "RO"):

swarm = RO(obj=obj, npart=npart, ndim=ndim, init=i, bounds=b,
max_iter=niter)

elif (alg == "GWO"):

CHAPTER 10. IMAGES 158

swarm = GWO(obj=obj, npart=npart, ndim=ndim, init=i, bounds=b,
max_iter=niter)

elif (alg == "JAYA"):
swarm = Jaya(obj=obj, npart=npart, ndim=ndim, init=i, bounds=b,

max_iter=niter)
elif (alg == "GA"):

swarm = GA(obj=obj, npart=npart, ndim=ndim, init=i, bounds=b,
max_iter=niter)

st = time.time()
swarm.Optimize()
en = time.time()
res = swarm.Results()
results.append(res)
aligned = ApplyRegistration(simgs[0], simgs[k], res["gpos"][-1])
Image.fromarray(aligned).save(outdir+"/frames/"+

os.path.basename(simgs[k]))
angle, xshift, yshift = res["gpos"][-1]
t = " %3d: (NMI=%0.6f) theta=%10.5f, x=%10.5f, y=%10.5f\n" %

(k, -res["gbest"][-1], angle, xshift, yshift)
print(t, flush=True, end="")
s += t

The proper swarm is constructed using a custom Objective class instance. The Optimize call
performs the search and Results returns the conclusion reached. The current image is aligned
according to the search results (aligned) and written to the frames directory of the output.
Summary information is displayed.

Finally, the summary and list of search results is dumped to the output directory,

s += "\n"
print()
pickle.dump(results, open(outdir+"/results.pkl","wb"))
with open(outdir+"/README.txt","w") as f:

f.write(s)

The ApplyRegistration function referred to above is,

def ApplyRegistration(dname, sname, p):
dst = np.array(Image.open(dname).convert("L"))
X,Y = dst.shape
src = np.array(Image.open(sname).convert("L"))
angle, xshift, yshift = p
img = rotate(shift(src, (xshift,yshift)), angle).astype("uint8")
x,y = img.shape
img = img[(x//2-X//2):(x//2+X//2),(y//2-Y//2):(y//2+Y//2)]
return img

and it applies a rotation and translation to an image (sname) to align it with a reference image
(dname).

The output directory contains frames to hold the aligned images, results.pkl to keep the
list of search results, one per aligned image, and, finally, README.txt, a copy of the text output to
the console during the search.

Let’s take rigid.py for a test drive.

10.1.3 The Results

We need some misaligned images against which to test our code. A functional brain imaging dataset
is a good choice for us. The necessary dataset is on the book website, see fmri_rtk.npy. The script

CHAPTER 10. IMAGES 159

extract_frames.py creates a frames directory after applying additional random translations
and rotations. We do this to make the alignment task more of a challenge and to make misalignments
more obvious.

The images themselves are 64x64 pixel grayscale, echo-planar magnetic resonance images. The
subject was yours truly, so there is no issue about using the data for any purpose. Echo-planar
images are rather noisy. The experiment was conducted over twenty years ago using a customized
Bruker 3 Tesla scanner that was notoriously tricky to set up correctly, hence the ghosting in the
images. Nonetheless, the images are ideal for our purposes.

The functional brain images are a time series to be aligned. A slight variation of rigid.py,
rigid_pairs.py, aligns pairs of images. We won’t show the code changes; they are small, but
we need a paired dataset, so we’ll use frames from a publicly available PET-CT acquisition. The
images are aligned already, so we’ll intentionally shift and rotate the PET frames and leave the CT
frames fixed. The images are in the medical data directory. This dataset demonstrates the power
of using mutual information as our objective function since the images are from different modalities
and are, visually, quite different from each other.

After our experiments with three-parameter rigid registration, we’ll add a fourth, scaling, and
experiment with a collection of geology microscope images extracted from a video taken at the
eyepiece using a handheld cell phone. The images are in the bryozoa, crane_fly, and coin
directories. We’ll use the rigid_scale.py script for these experiments. Again, the differences
between rigid.py and rigid_scale.py are small, so we won’t list them here.

Let’s start with three-parameter rigid registration.

Three-Parameter Registration

To run a three-parameter registration at the command line we need something like this,

> python3 rigid.py fmri_rtk/frames aligned 30 1000 RO RI

Here, fmri_rtk/frames points to the location of the MRI images we want to align. The output
summary and frames go in the aligned directory. As always, we specify the number of particles,
number of iterations, algorithm, and initialization strategy.

Our experiments use similar command lines to test each algorithm under three conditions: 30
particles/100 iterations, 100 particles/100 iterations, and 30 particles/1000 iterations. The best way
to see the results is to use an image viewer to scroll through the output frames, those in the frames
directory. There are numeric measures we can look at as well.

The output generated by rigid.py looks like this,

Registration results:
1: (NMI=1.566116) theta= 5.19247, x= -3.33804, y= -8.01754
2: (NMI=1.607348) theta= 7.21931, x= 0.51426, y= -2.00828
3: (NMI=1.582311) theta= 10.99823, x= -2.35665, y= -3.28493
4: (NMI=1.611861) theta= 7.96963, x= 1.44706, y= -1.94081
5: (NMI=1.680435) theta= -0.00403, x= 4.04877, y= -1.97663
6: (NMI=1.660613) theta= 0.05624, x= 1.07595, y= -8.00458
7: (NMI=1.587619) theta= 8.96489, x= -0.14424, y= -3.35200
8: (NMI=1.568797) theta= 9.85593, x= -3.57678, y= -6.91617

The first eight frames are shown. The best NMI for each frame, aligning it to the first frame in
the directory, is given. Higher is better. The final set of parameters found is shown next: theta, the
rotation angle, and x and y shifts. The SciPy shift and rotate routines work with non-integer
values, so the subpixel shifts are meaningful, at least to a digit or two.

The functional MRI dataset was randomly shifted and rotated. Rotations were restricted to
±10 degrees, so any theta value in the output beyond that range indicates a search failure. When
scrolling through output frames, you’ll immediately detect such failures visually by a sudden jump
in the image sequence.

CHAPTER 10. IMAGES 160

Figure 10.2: NMI over all frames by algorithm type and swarm parameters for the fMRI
frames. Left: 30 particles, 100 iterations. Middle: 100 particles, 100 iterations. Right: 30
particles, 1000 iterations.

Let’s run each algorithm against the magnetic resonance images. A simple script sets up re-
peated calls to rigid.py and the output directories capture the results. We’ll not look at the
images directly here, they are too small to show meaningful changes in print, but we’ll consider the
distribution of NMI values by algorithm type and swarm/iteration limits.

Figure 10.2 shows box plots for each algorithm and swarm configuration. On the left are the
results for a swarm of 30 particles and 100 iterations. The clear winners are DE and PSO, with the
highest average NMI and a relatively narrow IQR. This is true for a small swarm and few iterations
on up. On the other hand, RO is a consistently poor performer at this task. Likewise, GA performs
poorly with a wide range of results. However, to be fair to GA, there are only three parameters
here, not a lot for evolution via mutation and crossover to work with.

GWO and Jaya give mixed results. Let’s start with GWO. A first glance at Figure 10.2 might
lead one to believe GWO is a solid performer, and, in some ways, it is. However, notice the clump
of outliers at low NMI. There are times when GWO fails spectacularly; it isn’t consistent like DE
and PSO are.

Jaya’s results are interesting. For small swarms and fewer iterations, Jaya doesn’t deliver strong
results. When flipping through the registered images, a lot of motion is evident. As the number of
swarm iterations increases, Jaya’s results improve, but it isn’t until 1000 iterations that Jaya starts
to look like DE and PSO. For this task, Jaya converges slowly. This is a definite negative as the
entire point of image registration is to align the images as precisely as possible, which might take
Jaya an asymptotically long time to accomplish.

Let’s take a look at aligning the paired medical images. For that we need command lines like
this,

> python3 rigid_pairs.py ct pt med 20 100 RO RI

with ct pointing to the CT frames, pt pointing to the paired but shifted PET frames, and med the
output directory. The remainder of the command line matches rigid.py.

The output directory contains the source frames (frames0), the paired frames after alignment
(frames1), and an additional directory called merged. Since we’re working with grayscale images,
we can overlay the CT and PET by setting the red channel of an RGB image to the CT and the
green channel to the PET. This is what ends up in the merged directory. The merged images will
be more yellow when the CT and PET overlap well and show red or green alone if the alignment is
poor. I encourage you to flip through the merged images for various runs of the alignment task.

Let’s run three sets of experiments on the paired images. First, we’ll use 20 particles and 100
iterations. Next, 100 particles and 100 iterations. Finally, 20 particles and 1000 iterations. Our
approach will be quite similar to what we did above for the time series of images.

Figure 10.3 shows how we did for the three sets of experiments in the same way we showed the
earlier results in Figure 10.2. A similar story presents itself. DE, PSO, and, this time, GWO, do
well overall for the 20 particle, 100 iteration case, though GWO fails once (the outlier). RO and
GA again perform poorly. However, when the search is allowed to continue, the 20 particle, 1000

CHAPTER 10. IMAGES 161

Figure 10.3: NMI over all frames by algorithm type and swarm parameters for the PET-CT
frames. Left: 20 particles, 100 iterations. Middle: 100 particles, 100 iterations. Right: 20
particles, 1000 iterations.

iteration case, even RO does better, but our money is better put on DE, PSO, Jaya, and GWO.
Swarms can locate useful rigid registration parameters, but, as we’ve seen repeatedly, not all

swarm algorithms are equally efficacious. The old standards, DE and PSO, are again good options.
Jaya works well, too, but takes longer to converge. The sporadic failings of GWO make one hesitate
to use it, especially when the system is automated and high reliability is required, though for a
one-off task that can be run again manually it might be just fine.

Let’s continue with rigid registration, but this time expand our parameter space by adding a
scaling factor to help account for out of plane camera motion.

Four-Parameter Registration

The experiments of Section 10.1.3 searched for three parameters: rotation, x translation, and y
translation. The images we’re working with in this section were acquired by holding a cell phone
while recording video in front of the eyepiece of a geology microscope with a magnification of 20x.
As might be expected, a lot of motion occurred, even when trying to be as still as possible. A three-
parameter registration can compensate for translation and rotation in the plane of the image, but
not for motion towards or away from the eyepiece. To account for that possibility, we’ll introduce
an additional search parameter: scaling of the image. We’ll scale the image by multiplying the size
by a constant factor and interpolating.

The code we need is in the file rigid_scale.py. It is nearly identical to the original rigid.py
script, but the objective function is adjusted,

class Objective:
def __init__(self, dname, sname):

self.dst = np.array(Image.open(dname).convert("L"))
self.src = np.array(Image.open(sname).convert("L"))
self.x, self.y = self.dst.shape

def Evaluate(self, p):
angle, xshift, yshift, scale = p
im = Image.fromarray(self.src)
a,b = im.size
img = np.array(im.resize((int(a*scale),int(b*scale)),

resample=Image.BICUBIC))
img = rotate(shift(self.src, (xshift,yshift)),

angle).astype("uint8")
x,y = img.shape
img = img[(x//2-self.x//2):(x//2+self.x//2),

(y//2-self.y//2):(y//2+self.y//2)]
if (img.shape[0] != self.dst.shape[0]) or

(img.shape[1] != self.dst.shape[1]):
return 1e9

return -NMI(self.dst, img)

CHAPTER 10. IMAGES 162

Figure 10.4: Example microscope images: crane fly (left), bryozoa (middle), and coin (right).

There is now a fourth parameter in the particle position, scale. To use scale, we extract the
image dimensions, and use Pillow’s resize method with bicubic interpolation to change the image
size after multiplying by the scale factor. As before, we extract the central region to produce
a candidate image the same size as the reference frame. The ApplyRegistration function is
similarly updated.

We need to set limits on the scale factor. To do this, we add it to the Bounds object,

b = Bounds([-180,-x//2,-y//2,0.7], [180,x//2,y//2,1.3], enforce="resample")

where we limit the scale factor to between 70% and 130% of the original image size.
As with rigid.py, we register the sequence of frames to the first frame. The goal here, however,

isn’t to generate a time series, but to align the frames so we can add them together to produce a
sharper, less noisy, image. To add the frames is straightforward,

simgs = [os.path.abspath(sys.argv[1]+"/"+i) for i
in os.listdir(sys.argv[1])]

oname = sys.argv[2]
img = np.array(Image.open(simgs[0]))
x,y = img.shape
oimg = np.zeros((x,y))

for s in simgs:
img = np.array(Image.open(s))
oimg += img

oimg = oimg / oimg.max()
Image.fromarray((255.0*oimg).astype("uint8")).save(oname)

where a directory’s worth of frames are loaded, added, and scaled [0, 1] to generate a single frame
for output (see add.py).

Figure 10.4 shows example images from each of the three sets of frames: crane_fly, bryozoa,
and coin. The crane fly is a late Eocene to early Oligocene epoch fossil from Florissant, Colorado.
Bryozoa are small, colonial animals similar to corals. This specimen is from the middle Devonian
Milwaukee Formation in southeastern Wisconsin. Finally, the coin is a silver diobol from the ancient
Greek city of Miletos, circa 500 BCE. It features a lion’s head facing right. Our hope with these
frames is to generate an aligned and stacked version sharper than the originals.

CHAPTER 10. IMAGES 163

The command line for rigid_scale.py is identical to that of rigid.py. Based on the results
above, we’ll restrict our runs to just DE and PSO. When a run is complete, we’ll use add.py to
produce an aligned frame and then characterize the frame’s sharpness to see whether the swarm
alignment helped or not.

A typical registration run produces output like so,

> python3 rigid_scale.py data/bryozoa/ bryozoa_30_200_PSO 30 200 PSO RI

Registration results:
1: (NMI=1.601956) theta= 0.04450, x=-0.04652, y=-0.01747, scale= 0.94108
2: (NMI=1.525078) theta= 0.06125, x=-0.11371, y= 0.53900, scale= 0.90403
3: (NMI=1.467275) theta= 0.03272, x=-0.53992, y= 0.10252, scale= 1.06752
4: (NMI=1.503909) theta= 0.03595, x=-0.39840, y= 0.35789, scale= 0.85060
5: (NMI=1.493586) theta= 0.03350, x=-0.55124, y=-0.06489, scale= 1.07348
6: (NMI=1.475772) theta= 0.04018, x=-0.88871, y= 0.05542, scale= 1.12517
7: (NMI=1.441288) theta= 0.06283, x=-0.80059, y= 0.39092, scale= 1.02170
8: (NMI=1.399838) theta= 0.02687, x=-0.52736, y=-0.25481, scale= 0.98239
9: (NMI=1.352890) theta= 0.04636, x=-0.36493, y=-0.79724, scale= 0.82886

10: (NMI=1.309046) theta= 0.02626, x= 0.14694, y=-0.02422, scale= 1.04672
11: (NMI=1.276236) theta= 0.07970, x=-0.31550, y=-0.40125, scale= 0.99238

which we use to produce the final, aligned image,

> python3 add.py bryozoa_30_200_PSO bryozoa_30_200_PSO.png

Likewise, using

> python3 add.py data/gray/bryozoa bryozoa_unaligned.png

sums the original, unaligned frames. Repeating the above for the crane fly and coin frames gives us
three sets of final images, DE, PSO, and unaligned, from each of the three sources.

Look at the images carefully, you’ll notice differences, particularly with the crane fly frames.
However, the differences are subtle enough they won’t show up in this book. We’d like some sort of
numeric measure of the image’s sharpness.

Perhaps the most straightforward approach to measuring image sharpness is to compute the
mean per pixel sharpness where sharpness is defined as the magnitude of the gradient. To get the
gradient per pixel, we use NumPy’s np.gradient function, which returns gradient images in the
x and y directions. The mean of the norm of these components over the image is the value we seek.

For example, Figure 10.5 shows the x (left) and y (right) gradient values for the DE-aligned coin
image. The mean per pixel magnitude of these images is our sharpness value,

y,x = np.gradient(coin)
sharpness = np.sqrt(x*x+y*y).mean()

where coin is the NumPy array version of the image. See the file sharpness.py. Here’s the
output per image,

Crane fly:
DE : 94.6379
PSO : 94.6234
unaligned: 94.3780

Bryozoa:
DE : 97.8336
PSO : 97.8299
unaligned: 97.4194

Coin:
DE : 98.5367
PSO : 98.5257

CHAPTER 10. IMAGES 164

Figure 10.5: Gradients for the DE-aligned coin image: x direction (left), and y direction
(right).

unaligned: 98.0557

showing that in each case, alignment with DE or PSO leads to an improvement over merely stacking
raw frames together; the mean sharpness goes up in each case compared to the unaligned images.
Also note, the DE-aligned image is consistently slightly sharper than the PSO-aligned image, though
the difference is very small and likely not meaningful, certainly not easily visible.

Swarm techniques can help us align a time series, pairs of images from different modalities, or
frames for stacking to produce an improved overall image. This is by no means all the utility swarms
offer in the area of image processing. Let’s change focus now, pun intended, and consider how swarm
techniques might help image segmentation.

10.2 Image Segmentation

The segmentation of images into regions is a standard image processing operation. There exist many
approaches to image segmentation, some are extremely sophisticated including the application of
semantic segmentation with deep neural networks. We’ll be more old-school here. We’ll segment
grayscale images by fitting the image histogram with the sum of N Gaussians and then place each
pixel in the image into one of the N bins using the center of the Gaussian as a label. This approach
splits the image along intensity lines without concern for spatial relationships in the image. As such,
it is a minimalist approach, but will place pixels with similar intensities into the same output bin.

10.2.1 The Problem

Our problem is to learn how to separate an image into regions that have some desired relationship.
Here, the association is imposed by the image histogram and how best to approximate it with the
sum of a set of Gaussians. The number of Gaussians in the approximation determines the number
of labels used for the image. The label is an integer assigning each pixel to a bin. We’ll use the
intensity value associated with the peaks of the Gaussians.

Figure 10.6 shows a standard test image segmented into 2, 4, or 6 groups by fitting that many
Gaussians to the image histogram. The bottom row shows the Gaussian fit superimposed over the
original grayscale histogram. The swarm’s goal is to find these best-fit Gaussians for the chosen
number of groups.

To be specific, for N desired groups, the swarm’s goal is to find the parameters to fit N Gaussians,

f(x) = c0e
−(x−c1)

2/c22

CHAPTER 10. IMAGES 165

Figure 10.6: Top: The standard Lena test image segmented to 2, 4, and 6 groups. Bottom:
The original image histogram and the best fit set of Gaussians (2, 4, or 6).

each with three parameters, c0, c1, and c2. Therefore, if we desire six groups, we need to find
3× 6 = 18 parameters. The height of a Gaussian is controlled by c0, the width by c2, and the center
position by c1 with x a grayscale intensity value, x ∈ [0, 255]. The c1 value will be the assigned
label.

10.2.2 The Setup

The problem statement makes it straightforward to map parameters to particle positions: if N
groups are desired, we need to find 3N parameters, so a particle position is a 3N -dimensional vector.
Further, the parameter values are continuous, so we do not need a custom Validate method on a
custom Bounds object.

What about allowed parameter ranges? Suppose we work with normalized histograms meaning
we divide the input image histogram by the sum to create a probability distribution. In that case,
the maximum value any bin in the histogram can have is 1.0. Therefore, the c0 parameter is limited
to [0, 1]. As c1 positions the center of the Gaussian, we limit it to [0, 255], the limit being the number
of intensities in an 8-bit grayscale image. Finally, we arbitrarily pick [0, 200] as the range for c2 as
200 is more than half the width of the histogram. Intuitively, as the number of desired groups goes
up, we expect the best fit set of Gaussians to be increasingly narrow.

What’s our objective function? In a sense, we’re curve fitting, but instead of a single function,
we have a set of N functions, the number of desired groups, and it’s their sum that needs to be as
close a fit to the original image histogram as possible. We’ll use the sum of the squared error as our
metric, which is similar to the curve fitting experiment in Section 8.3. For curve fitting, we used the
mean squared error instead. The difference between the two objective functions is minor, and, as
we’ll see, the sum works nicely in this case.

The code we’ll work with is in segment.py. The layout is very much old hat. Let’s start with
the objective function class, the only custom portion of the script,

class Objective:
def __init__(self, img):

x,y = img.shape
self.h = np.bincount(img.reshape(x*y), minlength=256)

CHAPTER 10. IMAGES 166

self.h = self.h / self.h.sum()
self.h[0] = self.h[255] = 0
self.fcount = 0

def Evaluate(self, p):
self.fcount += 1
n = len(p) // 3
c = p.reshape((n,3))
y = np.zeros(256)
for x in range(256):

t = 0.0
for i in range(n):

t += c[i,0] * np.exp(-(x-c[i,1])**2/c[i,2]**2)
y[x] = t

y = y / y.sum()
return np.sqrt(((self.h-y)**2).sum())

The constructor accepts the image to be segmented (img), grabs the size, and uses np.bincount
to get the 256-bin grayscale histogram, which is immediately normalized and stored (h). Addition-
ally, we set the count for intensities zero and 255 to zero. Doing this compensates for images with
large background regions that are zero (or 255, if inverted). We don’t want to waste time trying to
fit empty regions that contain no helpful information about the image itself. Finally, we initialize
the counter, fcount, so we can track how often the objective function is called.

The Evaluate method implements a fit and returns the squared error (really square root,
but the effect is the same). The particle position (p) is reshaped into n sets of three parameters
(c) corresponding to the three parameters of each of the n Gaussians. Next, we fill y, the vector
representing the fit to the image histogram, by generating the output of each Gaussian and summing
it with the others. After normalizing y, we return the error between the fit and the actual image
histogram in h. The closer this error is to zero, the better the sum of Gaussians is doing at
approximating the histogram.

The swarm seeks to find a best set of Gaussians that when summed approximate the image
histogram. However, this does not actually segment the image, it only sets up the boundaries to use
for segmenting. The function SegmentImage takes a best particle position and uses it to produce
a segmented version of the image where each pixel is assigned the intensity of the closest Gaussian
center. In code,

def SegmentedImage(src, p):
x,y = src.shape
n = len(p) // 3
c = p.reshape((n,3))
labels = np.zeros(x*y, dtype="uint8")
seg = np.zeros(x*y, dtype="uint8")
k = 0
for i in range(x):

for j in range(y):
d = np.abs(src[i,j] - c[:,1])
l = np.argmin(d)
seg[k] = int(c[l,1])
labels[k] = l
k += 1

return seg.reshape(x,y), labels

The particle position, p, is split into triplets, the parameters for the n Gaussians. We then create
an empty segmented image, seg, the same size as the input image, src, but a flat vector. Next, we
loop over each pixel in the input image and locate the nearest Gaussian using the c1 parameter as
the peak location. We set the current output pixel of the segmented image to the selected c1 value.
Recall, c1 is in the range [0, 255], so we use it as the intensity of the output pixel. We also keep the
specific Gaussian index in labels. We’ll see why shortly.

CHAPTER 10. IMAGES 167

When all pixels have been placed into a bin, meaning seg is updated with the Gaussian peak
location as the intensity value and label holds the index of the Gaussian selected, we reshape seg
to match the input image and return it along with the list of associated indices (labels).

The bulk of segment.py, as far as the main function is concerned, is nearly identical to many
of our other experiments. We parse the command line which looks like this,

> python3 segment.py lena.png 6 30 100 DE RI lena_30_100_DE

to segment the file lena.png into six groups using DE with a swarm of 30 particles for 100 iterations
and random initialization. The output directory is lena_30_100_DE.

As before, we select the desired initializer and create the desired swarm object. To set up bounds
and the objective function we use,

b = Bounds([0,0,0]*nclusters, [1.0,255,200]*nclusters, enforce="resample")
obj = Objective(img)

to configure nclusters worth of Gaussian parameters in the ranges discussed above and to create
the Objective instance passing in the NumPy array version of the input image.

Running the segmentation requires a call to Optimize followed by results. The summarization
code is

res = swarm.Results()
pickle.dump(res, open(outdir+"/results.pkl","wb"))

seg,labels = SegmentedImage(img, res["gpos"][-1])
Image.fromarray(seg).save(outdir+"/segmented.png")
Image.fromarray(img).save(outdir+"/original.png")

to get and store the results in the output directory, followed by the segmented and original images.
Next, we plot the original image histogram and the fit found. This is where the plots in Fig-

ure 10.6 came from,

y = PlotFit(res["gpos"][-1])
plt.plot(obj.h)
plt.plot(y)
plt.xlabel("Gray Level")
plt.ylabel("Probability")
plt.savefig(outdir+"/histogram_plot.png", dpi=300)

with PlotFit defined as

def PlotFit(p):
n = len(p) // 3
c = p.reshape((n,3))
y = np.zeros(256)
for x in range(256):

t = 0.0
for i in range(n):

t += c[i,0] * np.exp(-(x-c[i,1])**2/c[i,2]**2)
y[x] = t

y = y / y.sum()
return y

making it virtually identical to the Evaluate method of the Objective class.
We’d like a numeric way to compare the output of different swarm searches. Of course, we

can examine the segmented images to see how they look subjectively, but it would be nice to have
some measure we could compare. Fortunately, what we are doing is clustering in one dimension as

CHAPTER 10. IMAGES 168

we are partitioning the histogram with the nclusters-worth of Gaussians. Indeed, the standard
algorithm for this approach is k-means clustering, as we’ll see below.

The metric we need is called the silhouette score; we can interpret it as a clustering quality metric
where good clusterings imply silhouette scores near one. The sklearn toolkit provides the function
we need in the sklearn.metrics module. To use it, we need the original image grayscale values
and the labels output by the call to SegmentedImage above. The pair tells us which Gaussian,
which cluster, each grayscale value was assigned to. This lets the silhouette score do its magic. The
function’s actual operation is given in the sklearn documentation; we need only know that higher
silhouette scores are better and that overlapping clusters return a score near zero while wrong
clustering leads to a negative score. The code we need is

t = img.reshape((img.shape[0]*img.shape[1],1))
idx = np.argsort(np.random.random(t.shape[0]))
idx = idx[:int(0.25*len(idx))]
score = silhouette_score(t[idx], labels[idx], metric="euclidean")

where t is the flattened image. We select a random fraction of the pixels, 25%, to make the silhouette
score calculation faster, and pass them, and their labels, to silhouette_score.

Finally, we end the script by displaying the results and storing them in the output directory,

s = "\nSegmentation results:\n\n"
s += "Optimization minimum squared error %0.6f (time = %0.3f)\n" %

(res["gbest"][-1], en-st)
s += "(%d best updates, %d function evaluations)\n\n" %

(len(res["gbest"]), obj.fcount)
s += "Silhouette score = %0.6f\n\n" % score
s += "Cluster centers:\n"
s += np.array2string(res["gpos"][-1].reshape((nclusters,3))) + "\n\n"
print(s)
with open(outdir+"/README.txt","w") as f:

f.write(s)

A walk on your own through segment.py from top to bottom will ensure that you follow the
sequence of steps. Now, let’s try it on some images.

10.2.3 The Results

We’ll work with some standard test images, those of Figure 10.7. All of these are 256x256 pixel
grayscale images. We’ll run each one through segment.py for all combinations of algorithms and 4,
6, and 8 clusters. Finally, we mentioned above that the gold standard for this type of segmentation is
to use k-means, so we’ll compare it with k-means. To do that, we’ll use the code in kmeans.py. To
save space, we won’t walk through the k-means script, but it makes use of the KMeans class in the
sklearn.cluster module and produces output similar to segment.py including the segmented
image and the silhouette score.

To apply the algorithms to each test image we use segment_test_images.py,

import os
f = [i for i in os.listdir("test_images")]
for alg in ["RO","DE","PSO","GWO","JAYA","GA"]:

for n in [4,6,8]:
for t in f:

cmd = "python3 segment.py test_images/%s %d 20 2000 %s RI
segmentations/%s_20_2000_%s_%d" % \
(t,n,alg,t[:-4],alg,n)

print(cmd, flush=True)
os.system(cmd)

CHAPTER 10. IMAGES 169

barbara boat cameraman fruits

goldhill lena peppers zelda

Figure 10.7: The grayscale test images.

which is a straightforward application of segment.py to each of the test images with results in the
segmentation directory. The auxiliary scripts, merge_test_images.py and score_test_images.py,
create merged result images by algorithm and output the silhouette scores, respectively.

Let’s use swarms of 20 particles for 2000 iterations each and compare the silhouette scores with
the k-means results. Do use the merge script to generate per test image output and examine it in
conjunction with the k-means output. It’s clear that k-means is doing better overall, which isn’t
surprising given the known utility of the technique.

Consider Table 10.1, it shows the silhouette score for each segmentation of the test images. Each
cell of the table is sorted by rank. The most obvious conclusion is that k-means is the gold stan-
dard as it delivers segmentations leading to the highest silhouette scores with only two exceptions:
barbara 4 and cameraman 4. In those cases, Jaya outperformed k-means, and in cameraman 4,
RO outperformed both (or did it? See below.) Additionally, in many cases, the gap between the
k-means score and the best swarm score is rather high.

Do any swarm approaches show more promise than the others? If we rank the swarms across
all images and number of clusters by how often they appear in the top two positions, excluding
k-means, we get

Jaya 14
GA 10
RO 8
GWO 7
DE 6
PSO 2

suggesting that Jaya is working well at this task. The genetic algorithm is also a contender in this
case.

Both k-means and the swarm search partition the histogram into sections. The k-means al-
gorithm learns specific breakpoints while the swarm learns breakpoints as the c1 parameter of the
Gaussians. For example, the cameraman 4 search is one where both Jaya and RO outperformed
k-means. The center locations found for each algorithm were

k-means 18 95 136 171
Jaya 13 71 96 161
RO 13 32 128 167

CHAPTER 10. IMAGES 170

4 6 8

goldhill

k-means: 0.5625
DE: 0.4923

GWO: 0.4863
JAYA: 0.4526

RO: 0.4317
PSO: 0.4277
GA: 0.3670

k-means: 0.5434
GA: 0.5007

JAYA: 0.4778
DE: 0.4369

GWO: 0.4032
PSO: 0.3683
RO: 0.3628

k-means: 0.5328
GA: 0.4941

JAYA: 0.4939
RO: 0.4588

GWO: 0.4397
DE: 0.3885

PSO: 0.3300

lena

k-means: 0.5814
RO: 0.5661

JAYA: 0.4997
PSO: 0.4722

GWO: 0.4453
GA: 0.4270
DE: 0.3828

k-means: 0.5793
GWO: 0.5167

RO: 0.5141
GA: 0.5413

JAYA: 0.5109
PSO: 0.3750

DE: 0.3434

k-means: 0.5725
JAYA: 0.5243

GA: 0.4716
RO: 0.4131
DE: 0.3931

PSO: 0.2851
GWO: 0.2837

barbara

JAYA: 0.5897
k-means: 0.5834

RO: 0.5296
DE: 0.5052

GWO: 0.5024
PSO: 0.4666
GA: 0.4402

k-means: 0.5650
RO: 0.5393

GWO: 0.5270
JAYA: 0.5076

GA: 0.4660
DE: 0.3864

PSO: 0.3391

k-means: 0.5461
JAYA: 0.5269

RO: 0.5120
GA: 0.5055
DE: 0.4655

GWO: 0.4592
PSO: 0.3783

peppers

k-means: 0.5860
GA: 0.5513

JAYA: 0.5383
RO: 0.5344

GWO: 0.5354
PSO: 0.5201

DE: 0.4365

k-means: 0.5620
RO: 0.5288

JAYA: 0.4770
PSO: 0.4703

DE: 0.4538
GA: 0.4020

GWO: 0.3882

k-means: 0.5538
GWO: 0.4676

DE: 0.4635
JAYA: 0.4530

GA: 0.4457
PSO: 0.4447
RO: 0.3201

boat

k-means: 0.5828
DE: 0.4914
RO: 0.4440

GWO: 0.4009
GA: 0.1712

JAYA: 0.1056
PSO: -0.0882

k-means: 0.5422
GWO: 0.4378

GA: 0.4065
DE: 0.3407
RO: 0.2664

JAYA: 0.2512
PSO: 0.0470

k-means: 0.5279
GA: 0.4624

GWO: 0.3895
PSO: 0.3317

JAYA: 0.2777
RO: 0.2142
DE: 0.1311

zelda

k-means: 0.5520
JAYA: 0.5512

GA: 0.5454
DE: 0.5360

GWO: 0.5299
RO: 0.5282

PSO: 0.5073

k-means: 0.5443
JAYA: 0.5284

PSO: 0.5212
GWO: 0.4938

GA: 0.4810
DE: 0.4797
RO: 0.4563

k-means: 0.5266
JAYA: 0.5250

GA: 0.4826
GWO: 0.4800

RO: 0.4790
DE: 0.4060

PSO: 0.3989

cameraman

RO: 0.6438
JAYA: 0.6264

k-means: 0.6231
PSO: 0.6098

GWO: 0.5931
DE: 0.5298
GA: 0.4579

k-means: 0.6014
DE: 0.5193
RO: 0.5141
GA: 0.5121

GWO: 0.4746
JAYA: 0.4673

PSO: 0.4060

k-means: 0.6163
GWO: 0.5204

DE: 0.4965
JAYA: 0.4366

PSO: 0.3997
RO: 0.3797
GA: 0.3653

fruits

k-means: 0.5509
GA: 0.5455
DE: 0.5319

JAYA: 0.5212
GWO: 0.4115

RO: 0.3404
PSO: 0.2847

k-means: 0.5471
JAYA: 0.5062

PSO: 0.4359
GA: 0.3997
RO: 0.3857
DE: 0.3564

GWO: 0.2993

k-means: 0.5398
JAYA: 0.5155

GA: 0.5115
RO: 0.4431

PSO: 0.3941
DE: 0.3497

GWO: 0.3447

Table 10.1: Silhouette scores by algorithm type, number of clusters, and ranking.

CHAPTER 10. IMAGES 171

where the cluster centers (grayscale values) have been rounded to the nearest integer. The image
is segmented by replacing every pixel value with the center value for the nearest cluster. So, if the
pixel value is 16 and the k-means breakpoints are being used, the 16 is replaced by 18. Similarly, a
pixel with intensity 141 would be replaced by 136.

The corresponding segmented images are

k-means Jaya RO

and it would be difficult to argue that the swarms have found a better segmentation even though the
silhouette scores are higher. The k-means segmentation preserves more image detail. For example,
the buildings in the background are easier to interpret in the k-means image compared to the Jaya
or RO segmentations.

Our goal was to see how to we might apply swarm optimization to image segmentation. We were
able to do so successfully, if not at a state-of-the-art level. Let’s move on from image segmentation
to image enhancement.

10.3 Image Enhancement

The final experiment of this chapter involves what we’ll call “image enhancement”. Our goal is to
take a grayscale image and make it “look better” where “look better” means improving some metric
associated with human perception.

Our approach is quite similar to one that has appeared, repeatedly, in the literature. This
approach is a good example of the all-too-common tendency to take a paper, make a slight alteration
to the technique, and publish it as a new paper. A cursory perusal of the literature produced, as
an example, the following papers, all of which implement the same optimization using the same
objective function to enhance images: [27], [28], [29], [30], [31], [32], [33], and [34]. The only
functional difference between the papers is the particular optimization technique used: PSO, Firefly,
Cuckoo search, DE, PSO, Cuckoo, Cuckoo, and DE, respectively, and often with only minor tweaks
to the algorithm.

Of course, our implementation is yet another in this illustrious line of research, but we use
the excuse of pedagogy and make no claims to novelty nor applicability. For us, this is merely an
exercise.

Disclaimers aside, what, exactly, is it we aim to do? We want to learn how to apply a local
image enhancement function to an input grayscale image to make the image look nicer. The previous
sentence implies a couple of things. First, we have a local image enhancement function, and we do.
Second, that we have some way of measuring what “looks nicer” might mean. Again, we do.

10.3.1 The Problem

The function we seek to optimize is,

gij ←
kG

σ + b
(gij − cµ) + µa (10.5)

CHAPTER 10. IMAGES 172

where gij is a pixel of the original image, G is the original image mean, µ is the mean pixel intensity
of a 3x3 window around the current pixel, (i, j), and σ is the standard deviation of the 3x3 window.
The parameters we need to learn are a, b, c, and k.

Our objective function is

F = log(log(I))

(
edgels

rc

)
h (10.6)

where r and c are the image dimensions, rows and columns, I is the sum of the pixel intensities of
an edge-detected version of the input image, edgels is the number of edges above a threshold, here
20, and h is the entropy of the image,

h = −
∑
i

pi log2 pi

where pi is the probability of pixel intensity i derived from the grayscale histogram with 64 bins.
We’ll be more explicit about these terms when we look at the code. For now, we claim that F

measures “image niceness” and the larger F is, the better the image will look to a human observer.

10.3.2 The Setup

Our setup is straightforward. We just introduced our transfer function, the function whose parame-
ters we need to learn, and the objective function we’ll use to decide how well we’re doing. We need
an Objective class that implements the transfer function and F , and we need to decide on limits
for the parameters: a, b, c, and k. The parameters are continuous, so our standard Bounds class is
sufficient.

First, the Objective class,

class Objective:
def __init__(self, img):

self.img = img.copy()
self.fcount = 0

def F(self, dst):
r,c = dst.shape
Is = Image.fromarray(dst).filter(ImageFilter.FIND_EDGES)
Is = np.array(Is)
edgels = len(np.where(Is.ravel() > 20)[0])
h = np.histogram(dst, bins=64)[0]
p = h / h.sum()
i = np.where(p != 0)[0]
ent = -(p[i]*np.log2(p[i])).sum()
F = np.log(np.log(Is.sum()))*(edgels/(r*c))*ent
return F

def Evaluate(self, p):
self.fcount += 1
a,b,c,k = p
dst = ApplyEnhancement(self.img, a,b,c,k)
return -self.F(dst)

The constructor stores a copy of the image to enhance and sets the function call counter to zero.
The Evaluate method counts the objective function call, parses the particle position to extract
the a, b, c, and k parameters, and applies them with a call to ApplyEnhancement, which we’ll
see in a bit. The enhanced image is returned in dst and passed to F to calculate the F score. As
higher F is better, we return the negation.

The F method implements Equation 10.6. First, we use Pillow to apply an edge detector to the
enhanced image to get Is. From Is we find edgels by asking how many pixels of the edge image
are above 20. This gives us two of the three parts of Equation 10.6. The last part is the entropy.

CHAPTER 10. IMAGES 173

We get that from the normalized histogram (p) ignoring empty bins where p is zero. This gives us
ent. Finally, we return F by direct application of Equation 10.6.

The Objective class makes use of ApplyEnhancement to generate the candidate image,

from skimage.exposure import rescale_intensity
def ApplyEnhancement(g, a,b,c,k):

def val(a,b,r,c):
if (a<0) or (a>=r) or (b<0) or (b>=c):

return False
return True

def valid3(g,i,j):
r,c = g.shape
v = []
if val(i-1,j-1,r,c): v.append(g[i-1,j-1])
if val(i-1,j,r,c): v.append(g[i-1,j])
if val(i-1,j+1,r,c): v.append(g[i-1,j+1])
if val(i,j-1,r,c): v.append(g[i,j-1])
if val(i,j,r,c): v.append(g[i,j])
if val(i,j+1,r,c): v.append(g[i,j+1])
if val(i+1,j-1,r,c): v.append(g[i+1,j-1])
if val(i+1,j,r,c): v.append(g[i+1,j])
if val(i+1,j+1,r,c): v.append(g[i+1,j+1])
return np.array(v)

def mean(g,i,j):
return valid3(g,i,j).mean()

def sigma(g,i,j):
return valid3(g,i,j).std(ddof=1)

rows,cols = g.shape
dst = np.zeros((rows,cols))
for i in range(rows):

for j in range(cols):
m,s = mean(g,i,j), sigma(g,i,j)
dst[i,j] = ((k*g.mean())/(s+b))*(g[i,j]-c*m)+m**a

return rescale_intensity(dst, out_range=(0,255)).astype("uint8")

ApplyEnhancement accepts the image (g) and the parameters represented by the current particle’s
position and returns the enhanced image. There are four embedded functions: val, valid3, mean,
and sigma. The mean and sigma functions return the mean and standard deviation of the valid
pixels in the 3x3 region with the current pixel, (i, j), in the center. The valid3 and val functions
determine which pixels in the region are valid, meaning they exist. An alternative would have been
to zero pad the input image. Here, we consider only existing image pixels.

The main part of ApplyEnhancement examines each image pixel in turn and, after determining
the local mean and standard deviation, applies Equation 10.5 to determine the new pixel value in
the output image, dst. Finally, we rescale dst to bring it into byte range and return it. Notice the
inclusion of rescale_intensity from skimage.

If skimage is not already installed, the following should install it on most Linux distributions,

> sudo pip3 install scikit-image

The main function in enhance.py follows our usual format. We parse the command line (we’ll
see an example below) and then open and scale the image,

orig = np.array(Image.open(src).convert("L"))
img = orig / 256.0

CHAPTER 10. IMAGES 174

Where we are working with images in [0, 1] and not [0, 255]. When we create the final enhanced
version, of course, we scale back to byte range.

Next, we set up the boundaries for the search,

b = Bounds([0.0,1.0,0.0,0.5], [1.5,22,1.0,1.5], enforce="resample")

where we restrict the search to a ∈ [0, 1.5], b ∈ [1, 22], c ∈ [0, 1], and k ∈ [0.5, 1.5] with resampling
on boundary violations.

Next, we create the initializer based on the command line, set up the instance of the objective
function passing in the scaled image (img), and start the search, this time explicitly showing the
best F score on each iteration,

k = 0
swarm.Initialize()
while (not swarm.Done()):

swarm.Step()
res = swarm.Results()
t = " %5d: gbest = %0.8f" % (k,res["gbest"][-1])
print(t, flush=True)
s += t+"\n"
k += 1

Output is stored in s and dumped to the output directory in the README.txt file when the search
is complete,

res = swarm.Results()
pickle.dump(res, open(outdir+"/results.pkl","wb"))
s += "\nSearch results: %s, %d particles, %d iterations, %s\n\n"

% (alg, npart, niter, itype)
s += "Optimization minimum %0.8f (time = %0.3f)\n"

% (res["gbest"][-1], en-st)
s += "(%d best updates, %d function evaluations)\n\n"

% (len(res["gbest"]), obj.fcount)
print(s)
with open(outdir+"/README.txt","w") as f:

f.write(s)

Finally, we end the script by dumping the original and enhanced images to the output directory,

a,b,c,k = res["gpos"][-1]
dst = ApplyEnhancement(img, a,b,c,k)
Image.fromarray(dst).save(outdir+"/enhanced.png")
Image.fromarray(orig).save(outdir+"/original.png")

Let’s run the script on each of our test images, those of Figure 10.7, and see how we fare by
algorithm type.

10.3.3 The Results

A single run of enhance.py uses a command line like

> python3 enhance.py image.png 10 50 DE RI results

to enhance image.png and create an output directory, results, containing

enhanced.png
original.png
README.txt

CHAPTER 10. IMAGES 175

Figure 10.8: Image enhancement F scores by algorithm type and test image.

results.pkl

the enhanced image, original image, Python pickle of the swarm results, and the search text dumped
to the console (README.txt).

The process_images.py script generates command lines to process each test image with
each algorithm using a small swarm of ten particles for fifty iterations. We use random initialization
of the swarm (RI), but the reader is encouraged to experiment with quasirandom (QI) and sphere
(SI) initializations as well.

Figure 10.8 plots the best F value found by each algorithm for each test image. Recall, higher F
scores imply a better enhancement. A first glance at Figure 10.8 marks GA and RO as the weaker
performers.

There are definite ranges to the typical F values found. For example, the goldhill image produces,
for almost all algorithms, the highest F values and cameraman the lowest. Doubtless, the content of
the image is responsible for the ranges. The critical part for us to consider is the relative differences
in F values found by algorithm. In most cases, Jaya, DE, and GWO produce the highest F values
with PSO between them and GA and RO bringing up the rear.

What do the enhanced images look like? In the end, that’s what matters if we’re seeking to use
swarm approaches to enhance grayscale images. Figure 10.9 shows the original and per algorithm
enhanced version for the goldhill and boat test images.

The difference between the algorithm outputs is striking. And it’s clear that for both images,
the enhancement has, in many cases, improved the appearance of the image. This is particularly
true for the DE, GWO, and Jaya images, a trend that holds for the other test images as well.

Let’s rank the algorithms across all test images tallying how often the swarm algorithm appears
in the top two positions by F score. This gives,

Jaya 7
DE 5
GWO 4
PSO 0
GA 0
RO 0

CHAPTER 10. IMAGES 176

Figure 10.9: (Left) Original goldhill and boat images. (Right) Enhanced versions. Clockwise
from upper left: DE, GA, GWO, RO, PSO, and Jaya.

CHAPTER 10. IMAGES 177

showing us a decisive split between algorithms leading to nice enhancements (Jaya, GWO, DE) and
algorithms that fail (PSO, GA, RO), though PSO consistently leads to a middle-of-the-road level of
performance. Jaya is clearly victorious at this task.

However, are we being fair to GA? We know, unlike the other algorithms except perhaps RO,
that GA takes longer to converge, longer to explore the space it’s searching. And, we have only four
parameters, not a large genome for GA to manipulate. What if instead of a short search favoring
rapidly-converging algorithms, we took a longer view and let GA run for many more iterations and
gave it a larger population to work with?

If we process each test image with GA using swarms of 20 particles instead of 10 and 500
iterations instead of 50, we do see considerable improvement in the final F value and a corresponding
perceptual improvement in the enhanced image. For example, comparing the first set of GA F scores
with the second set and Jaya gives,

GA 10/50 GA 20/500 Jaya 10/50
barbara 5.3602 5.6461 5.9559
boat 4.0826 5.0791 5.3452
cameraman 2.6779 3.3829 3.4716
fruits 3.9964 4.3807 4.4596
goldhill 4.9597 6.4791 6.5423
lena 4.4269 5.2559 5.3502
peppers 4.1345 4.7982 5.1636
zelda 3.8476 4.0930 4.1558

proving that allowing GA to spend more time evolving and exploring has led to an improvement
in the final F score, sometimes a significant improvement. However, none of the GA scores exceed
those found by Jaya.

This chapter introduced three different experiments with images. In each case, we showed that
swarms could accomplish the desired goal, but perhaps less efficiently than other, known techniques
like using k-means to segment images. The image enhancement experiment is where the swarms
were able to shine. Visually, the output of the enhancements was often quite pleasing and genuinely
improved on the original image.

Our next chapter shifts from what we can see to what we can hear. Instead of manipulating pixel
intensity values, we’ll focus on music itself and see how swarms might be used as an aid to composers,
or, at the very least, to implement some fun experiments and show us yet another example of how
widely applicable swarm optimization can be.

Chapter 11

Music

Music is perhaps the most pleasant of human inventions. We live in a world of music with the
twentieth century alone witnessing the development of more new musical genres than all of previous
history.

One aspect of music garnering increasing attention is computer-generated music. Much of the
current research focuses, rightly so, on the power of deep neural networks. However, it is possible
to consider swarm-based approaches as well, hence the experiments of this chapter.

Using swarms to develop music isn’t a new idea. A Google Scholar search for “swarm-based
music generation” returned over 800 hits. So, we aren’t claiming anything novel here, just one more
example of the impressive range of topics to which swarm optimization is applicable.

Specifically, we’ll first set the stage in terms of the additional software we need installed on our
Ubuntu system to work with music files, including MIDI files. See Section 11.1. We’ll also develop
Bach and Irish slip jig music files, files we need for the experiments of Section 11.3.

We start in Section 11.2 by asking if a swarm can learn a single melody, if it can converge from
a random state to the melody we give it. Spoiler alert: it can. Next, we build on this basic result by
developing an objective function where the swarm attempts to learn to merge two separate melodies,
thereby producing a novel melody with aspects of both.

Section 11.3 presents experiments in learning a melody in the same vein as a group of existing
melodies. Here is where we’ll use the Bach and slip jig melodies of Section 11.1. Can a swarm learn
a new melody that sounds like Bach? We’ll find out if it can, and if so, how well.

For the ultimate set of experiments, those of Section 11.4, we attempt to learn a pleasant
melody from scratch. To do this, we’ll develop a multi-component objective function. For example,
one component will drive the swarm towards notes that are part of the selected musical mode (think
major or minor scale). We won’t win any awards for computer-generated music. Still, we’ll have
some fun with the idea – we know the concept of “pleasant melody” is one that might be quite
difficult, if not impossible, to quantify. However, we won’t let a simple impossibility stop us from
trying.

11.1 Setting the Stage

Throughout the book, we’ve focused on basic Python code, so while we’ve mentioned expecting
an Ubuntu-style Linux system as our operating environment, we’ve really only relied, primarily, on
access to the NumPy library, a library well-supported on Macintosh and Windows platforms. In
this chapter, however, we need some specific Linux tools to handle MIDI files, a music file format
that works with music hardware like keyboards, and tools to change MIDI files into musical scores.
We’ll install the Ubuntu versions here and hope that enterprising readers who use other platforms
will find the same or equivalent tools. I suspect Macintosh users will have no trouble doing this.
Windows users might consider setting up an Ubuntu 18.04 or later virtual machine instead.

178

CHAPTER 11. MUSIC 179

11.1.1 Tools

We need to install the following tools for use from the command line and Python. The Ubuntu
installation commands are

Package Installation
midiutil sudo pip3 install midiutil
wildmidi sudo apt-get install wildmidi
musescore sudo apt-get install musescore
mftext, abc2mid sudo apt-get install abcmidi

The commands above work for Ubuntu 18.04. If using Ubuntu 20.04 or later, replace musescore
with musescore3 during install and in the source code later in the chapter.

We’ll use the midiutil Python library to turn swarm-generated melodies, NumPy vectors,
into proper MIDI files on disk. MIDI stands for “Musical Instrument Digital Interface” and is the
standard used by musical devices. We’ll use MIDI files as output and, when building melodies, as
input. We’ll describe the process as needed while we go through the experiments.

If we generate MIDI files, which use a .mid extension, we need some way of playing the files.
Standard audio programs won’t work; the MIDI file doesn’t contain audio data. Instead, it includes
instructions to musical instruments on how to produce audio output, be it a single melody line, like
the files we’ll work with, or an entire orchestra playing a full score.

To play a MIDI file from the command line, we need a program to translate MIDI instructions
to audio – this is precisely what wildmidi does. For example, if we had an output file, say
melody_DE.mid, we could listen to the file with,

> wildmidi melody_DE.mid

There are options at the keyboard we can use when the MIDI file is playing, but our generated files
are only a few seconds long, so fast-forward and rewind really aren’t helpful.

Musescore is a powerful, open-source tool for scoring music. We’ll use it from the command
line in silent mode to turn a MIDI file into a PNG image representing the score. We’ll be able
to see as well as hear the output of our experiments. If you are a composer, you might enjoy the
capabilities the GUI interface to musescore provides.

We need two additional command-line tools to help us construct the NumPy melody files used
in Section 11.3. These are mftext and abc2midi, both of which are in the abcmidi package.
We’ll describe the tools when we need them.

11.1.2 Building Melodies

Our goal in this chapter is to generate melodies. However, to do that, we’ll sometimes need existing
melodies. For us, a melody is a NumPy vector, a set of pairs where each pair is a MIDI note number,
think note on a piano keyboard, and a duration, a fraction of a quarter note.

The website associated with this book has included several MIDI (.mid) and NumPy (.npy)
files for you. The NumPy files, mary.npy, happy.npy, and ode.npy, were created by hand to
represent the familiar tunes “Mary Had A Little Lamb,” “Happy Birthday to You,”1 and Beethoven’s
“Ode to Joy”. We’ll use these in Section 11.2.

The bach directory contains ten MIDI files and associated NumPy files; the opening melodies
for ten of J. S. Bach’s chorales. The MIDI files were created by composer Paul Kneusel (see
www.paulkneusel.com) and are in the public domain. Special thanks are due to Paul for his con-
siderable help with the objective function of Section 11.4. We’ll use the Bach pieces in Section 11.3.

The Bach pieces are one collection of similar melodies. A second collection is a set of Irish slip
jigs from the Nottingham Music Database (NMD). Because of licensing requirements, you’ll need to
build the NumPy versions of these pieces yourself using the directions below.

1On June 28, 2016, “Happy Birthday to You” was legally declared to be in the public domain in the
United States.

www.paulkneusel.com

CHAPTER 11. MUSIC 180

First, download the slip jigs in abc format from

http://abc.sourceforge.net/NMD/nmd/slip.txt

ABC is a text music notation format. See the main NMD page at

http://abc.sourceforge.net/NMD/

for a description of the database and links to information about the ABC format.
The slip.txt file combines 11 slip jigs in one file. The separation between the pieces is easy

to discern. With a text editor, separate the one file into 11 .abc files with the following names
matching the order in slip.txt

brandy.abc
dublin_streets.abc
gingerhog.abc
stout.abc
kid_mountain.abc
lamppost.abc
racehorse.abc
rocky_road.abc
coverley.abc
slip_jig.abc
staggering.abc

Then, convert the ABC files to MIDI files individually with

> abc2midi brandy.abc

ignoring any messages from abc2midi. When done, you’ll have a set of .mid files with the same
names as the .abc files plus a number after the base name corresponding to the position in the
original slip.txt file.

Play the MIDI versions with wildmidi. You’ll hear the entire piece, including multiple instru-
ments. For our purposes, we need only the first line, or channel in MIDI-speak. This is where the
mftext utility comes into play, though we need not use it manually. Instead, copy midi_dump.py,
included on the book website, into the directory where the .mid files reside and run it,

> python3 midi_dump.py *.mid

to produce the final .npy files used in Section 11.3.
Our tools and melody files are in place. Let’s run some experiments.

11.2 Learning and Merging Melodies

A swarm can learn a simple melody. Let’s see how in this section. Along the way, we’ll introduce
functions for dealing with music and music files. This chapter’s experiments are more complex than
any others in the book, so we’ll start at the beginning and build from there.

The code we’ll develop and use in this section is in the melody_merge.py file. Several functions
in this file will be used in the other experiments, so we’ll describe them here.

Our task is easy to state: we have a melody, and we want to initialize a swarm and get it to
learn the melody. Of course, there is no practical utility in this; we already have the melody; view
the experiment as a stepping stone to using swarms to generate novel melodies. We’ll see one way
to do that in this section as well.

We have three melody files to work with, mary.npy, happy.npy, and ode.npy. All three
files are NumPy vectors interpreted as (note, duration) pairs. For example, here’s mary.npy,

CHAPTER 11. MUSIC 181

64,1; 62,1; 60,1; 62,1; 64,1; 64,1; 64,2; 62,1; 62,1; 62,2; 64,1; 67,1

where the vector has been separated into pairs of numbers. The first number is the MIDI note
number. Each semitone is represented in a MIDI file as an integer. We’ll work with notes from 35
through 85 though we’ll interpret note 35 as a rest.

The second number is the duration of the note measured in quarter notes. The melody consists
of quarter notes (duration 1) and a half note (duration 2). The corresponding score is

From the swarm’s perspective, its goal is to learn the vector, the pattern of notes and durations.
Let’s walk through melody_merge.py in detail. First, we import the usual modules, including

a new one

from midiutil import MIDIFile

This gives us the ability to write MIDI files to disk from Python. We installed midiutil in
Section 11.1.

We intend to represent notes as pairs: MIDI note number and number of quarter notes. There-
fore, we’ll constrain the MIDI note numbers to [35, 85] and the durations to [0.25, 2] to allow notes
as short as a 1/16-th note and as long as a half note. Additionally, we need to make the MIDI note
number an integer and round the duration to the nearest 0.25. The latter requirement makes the
notes even 1/16-th, 1/8-th, quarter, and half notes. In code, then, we need a custom MusicBounds
class,

class MusicBounds(Bounds):
def __init__(self, lower, upper):

super().__init__(lower, upper, enforce="resample")
def Validate(self, p):

i = 0
while (i < p.shape[0]):

note, duration = p[i:(i+2)]
p[i] = int(note)
p[i+1] = np.round(4*duration)/4
i += 2

return p

The only method to implement is Validate. In Validate, we loop over the notes and durations
in the position vector, p, making the note an integer and rounding the duration to the nearest 0.25.

Next, we need an objective function. We’ll minimize the squared error between a candidate
position vector and the melody vector. However, we’ll add a twist, the ability to balance between
the squared error of two different melodies. If we give melody_merge.py a single melody, the
swarm will attempt to learn it by minimizing the squared error. If given two melodies, the swarm
will balance between minimizing the error to both. Additionally, we add alpha to shift the balance
between the first and second melodies. If alpha is zero, the swarm will focus exclusively on the
second melody. If alpha is one, the focus is on the first melody.

Let’s look at the code,

class MusicObjective:
def __init__(self, template1, template2=None, alpha=0.5):

if (template2 is None):
template2 = template1
alpha = 1.0

CHAPTER 11. MUSIC 182

if (len(template1) < len(template2)):
template2 = template2[:len(template1)]

if (len(template2) < len(template1)):
template1 = template1[:len(template2)]

self.template1 = template1
self.template2 = template2
self.alpha = alpha

def Evaluate(self, p):
d1 = ((p - self.template1)**2).sum()
d2 = ((p - self.template2)**2).sum()
return self.alpha*d1 + (1.0-self.alpha)*d2

Contrary to many of our other objective functions, MusicObjective spends more lines on the
constructor than Evaluate. The constructor expects two templates, two melody vectors loaded
from NumPy files. The second template is optional. Additionally, a default of 0.5 is set for alpha
to focus on both melodies equally.

The rest of the constructor decides what to do if only one melody is given, namely, set the second
to the first and make alpha one. As we’ll see, this eliminates one of the terms in the objective
function value. Next, if the melodies are of different lengths, the longer is cut to the length of the
shorter.

The Evaluate method calculates two squared errors, first between the particle position in p
and the first melody vector (d1) and then with the second (d2). The sum of the two squared errors,
weighted by alpha, is then returned.

Before discussing the main part of melody_merge.py, we need to define a few helper func-
tions: StoreMelody, DisplayMelody, and PlayMelody. We’ll use these functions, with slight
variation, in all the experiments of this chapter. The first writes a melody to disk as a MIDI file.
The second displays a melody at the console, and the third is a wrapper to play a melody in code.
The last two are self-evident, so we’ll only present the first one here,

def StoreMelody(p, fname):
tempo = 120
volume = 100
m = MIDIFile(1)
m.addTempo(0, 0, tempo)
m.addProgramChange(0, 0, 0, 0) # acoustic piano
i = 0
t = 0.0
while (i < len(p)):

note, duration = p[i:(i+2)]
i += 2
if (note == 35):

m.addNote(0, 0, 21, t, duration, 0) # rest
else:

m.addNote(0, 0, int(note), t, duration, volume)
t += duration

with open(fname, "wb") as f:
m.writeFile(f)

The essence of StoreMelody is the creation of a MIDIFile object, m, and the addition of
notes with their duration, the while loop. We fix the tempo and volume and set the MIDI output
for an acoustic piano sound. Other instruments are possible, but the piano sounds the best for the
simple melodies we’ll be working with. With all notes added, we write the MIDI file to the given
output filename, fname. Notice the check for MIDI note 35. If present, the volume is set to zero to
play the note as a rest.

The main function in melody_merge.py interprets the command line, sets up the bounds and
objective function, creates the swarm object, and calls Optimize. The results are put in the output

CHAPTER 11. MUSIC 183

DE

PSO

GA

GWO

Jaya

RO

Figure 11.1: Learning “Ode to Joy” by algorithm using 20 particles, 1500 iterations.

directory, including results.pkl, the swarm results, and melody.mid, the MIDI version of the
melody.

To test the code, we’ll use command lines like this,

> python3 melody_merge.py ode.npy none 0.5 results 20 1500 DE

to learn “Ode to Joy” using DE with 20 particles and 1500 iterations. The alpha value of 0.5 is
ignored because there is no second melody.

The search runs quickly, about five seconds. In this case, the swarm learns the melody correctly.
Repeating the search for each algorithm and generating scores from the MIDI files using musescore,
we’ll see how later in the chapter, produces Figure 11.1.

The figure is organized, from top to bottom, by how well the algorithm learned the melody.
Both DE and PSO converged on the exact melody while GA was close. GWO deviated still more
with Jaya and RO off in the weeds.

How much longer does the swarm need to search for GA, GWO, Jaya, and RO to converge? For
GA, moving to 4500 iterations did the trick. However, for Jaya, GWO, and RO, even 40,000 iterations
were not enough for the swarm to find the proper melody. It’s possible the strict discretization of
the durations threw Jaya and GWO, but it’s not certain that is the cause. GWO did get close,
though the timing of notes was rather odd.

Of course, suppose we are interested in swarm techniques as an aid to composition. In that
case, we don’t want to converge precisely to the source melody but instead learn something similar,
a variation. We’ll do just that in Section 11.3. For now, we’ve demonstrated that swarms can
learn melodies. Let’s see what happens when we force the swarm to learn something between two
melodies.

To learn something between two melodies, we need to add a second melody to the command
line,

> python3 melody_merge.py mary.npy ode.npy 0.5 results 20 10000 PSO

CHAPTER 11. MUSIC 184

This command attempts to find a melody balanced between “Mary Had A Little Lamb” and “Ode
to Joy”. Note, we increase the iteration count to 10,000 and use PSO. Let’s run this for different
alpha values: 0.1, 0.5, and 0.9. The first should favor “Ode to Joy” while the last should favor
“Mary Had A Little Lamb.” Figure 11.2 shows us what results.

Ode

α = 0.1

α = 0.5

α = 0.9

Mary

Figure 11.2: Gradation in melody between “Ode to Joy” and “Mary Had A Little Lamb.”

When α = 0.9 we expect the learned melody to be close to “Mary Had A Little Lamb”, and,
though somewhat strange in appearance, it is, but the key is wrong. Similarly, when α = 0.1, we
expect something close to “Ode to Joy”, which, again, while strange looking is by sound close. At
α = 0.5 we hope something equidistant from both. An argument could be made that the melody is
just that.

If you are like me and not used to reading musical scores, please listen to the MIDI files; they
are included on the book’s website. Or, rerun the code yourself to experiment with parameters and
alpha values, which is even more helpful at building intuition.

Our metric is squared error. Therefore, we expect the Euclidean distance between the swarm
best vector and the melody vectors from mary.npy and ode.npy to reflect this fact. Indeed, the
distances between the swarm best and the melodies are

Melody α = 0.1 α = 0.5 α = 0.9
Mary 8.310 4.528 1.090
Ode 1.436 5.050 8.842

These track exactly as we expect. When α = 0.1, there is little emphasis placed on “Mary Had A
Little Lamb” and almost all on “Ode to Joy” and we see this as the distance to the first is greater.
For α = 0.9, the situation is reversed, again clearly seen in the distance. Finally, for α = 0.5, the
distance is roughly the same; the swarm has converged to a position in the search space nearly
halfway between the two melodies.

Both PSO and DE learn the same final melody when α = 0.5 and the inputs are “Mary Had A
Little Lamb” and “Happy Birthday.” Multiple runs produce virtually identical output regardless of
the random initializer’s configuration. For five runs of DE, we get

62,0.75 61,0.75 61,1.00 61,1.00 65,1.00 64,1.50 62,1.25 61,0.75 62,1.00 61,1.50 66,1.00 66,1.00
62,0.75 61,0.75 61,1.00 61,1.00 64,1.00 64,1.50 62,1.25 61,0.75 62,1.00 61,1.50 65,1.00 66,1.00

CHAPTER 11. MUSIC 185

62,1.00 61,0.75 61,1.00 61,1.00 64,1.00 64,1.50 62,1.25 61,0.75 62,1.00 61,1.50 66,1.00 66,1.00
62,0.75 61,0.75 61,1.00 61,1.00 64,1.00 64,1.50 62,1.50 61,0.75 62,1.00 61,1.50 66,1.00 66,1.00
62,0.75 61,0.75 61,1.00 61,1.00 64,1.00 64,1.50 62,1.25 61,0.75 62,1.00 61,1.50 65,1.00 66,1.00

These results are virtually identical except for single changes in note number or duration from run to
run shown in bold. This indicates that the search space, discretized in note number and duration,
has a specific minimum for α = 0.5, and both DE and PSO can find it repeatedly.

11.3 Learning Similar Melodies

In Section 11.2, we explored merging two melodies by minimizing the joint Euclidean distance
between the melody vectors. In this section, we’ll continue in a similar vein, but instead of minimizing
the distance jointly between two melodies, we’ll measure the mean squared error between the current
swarm particle position and a randomly selected melody from a set of similar melodies.

The code we’ll work with is in melody_match.py. Here’s where we use the slip jig and Bach
chorale melodies from Section 11.1. Let’s walk through the main parts of the code focusing on
boundaries (MusicBounds) and the objective function (MusicObjective), which differ from the
versions used by melody_merge.py in Section 11.2.

We start with MusicBounds,

class MusicBounds(Bounds):
def __init__(self, lower, upper):

super().__init__(lower, upper, enforce="resample")
def Validate(self, p):

i = 0
while (i < p.shape[0]):

note, duration = p[i:(i+2)]
p[i] = int(note)
p[i+1] = int(duration*10)/10
i += 2

return p

The purpose here is to discretize the MIDI note numbers, as before. We discretize the durations
as well, but instead of forcing to the nearest 0.25, we round to the nearest tenth. Doing this more
closely matches the durations found in the slip jig and Bach melodies.

The most interesting part of melody_match.py is the objective function. We supply the
objective object with a database of existing melodies, a list of note, duration pairs. Then, on each
call to Evaluate, the mean squared error between the candidate particle position and a randomly
selected member of the set of melodies is returned. In code,

class MusicObjective:
def __init__(self, db):

self.fcount = 0
self.db = db

def Evaluate(self, p):
self.fcount += 1
n = np.random.randint(0, len(self.db))
b = self.db[n][:len(p)].copy()
b[1::2] = b[1::2]*30
a = p.copy()
a[1::2] = a[1::2]*30
return np.sqrt(((b-a)**2).sum()/len(a))

A random melody is selected from the database (db, n) and the mean squared error between it and
the particle position (p) is returned. Notice that the durations are multiplied by 30 before calculating
the MSE. Doing this makes the durations roughly equal to the MIDI note numbers. Without this

CHAPTER 11. MUSIC 186

scale factor, the MSE is dominated by note differences with duration differences counting for only a
tiny portion of the error sum.

When melody_match.py starts, it loads the similar melody database by calling LoadDatabase
which looks for all NumPy files in the given directory,

def LoadDatabase(dbdir):
dnames = [dbdir+"/"+i for i in os.listdir(dbdir)

if i.find(".npy") != -1]
dnames.sort()
db = []
for name in dnames:

db.append(np.load(name))
return db

The remainder of melody_match.py is quite similar to melody_merge.py. The main func-
tion parses the command line,

> python3 melody_match.py 20 results 25 130000 PSO RI bach

to run a search generating 20 notes with a swarm of 25 particles and 130,000 iterations using
randomly initialized PSO. The source melodies are the .npy files in the bach directory.

To get a feel for how the swarms perform, run experiment_match.py which is essentially

for alg in ["RO","DE","PSO","GWO","JAYA","GA"]:
for run in range(5):

cmd = "python3 melody_match.py 20 results/match/jigs/%s_run%d 25
130000 %s RI NMD" % (alg.lower(),run,alg)

os.system(cmd)

for alg in ["RO","DE","PSO","GWO","JAYA","GA"]:
for run in range(5):

cmd = "python3 melody_match.py 20 results/match/bach/%s_run%d 25
130000 %s RI bach" % (alg.lower(),run,alg)

os.system(cmd)

It runs each algorithm five times on the slip jigs and Bach chorales.
When complete, play each of the melodies using wildmidi. Some general observations from

my run of the code for the slip jigs are:

• RO produced random melodies with some interesting sequences.

• Jaya melodies were less random sounding than RO, but still not coherent.

• GWO was much like Jaya with quick bursts of notes indicating clusters of short durations.

• GA produced some short but nice sequences without quick bursts of notes like GWO.

Of particular interest is what happened with PSO and DE. For these algorithms, the swarm
converged on a single melody, one of the 11 slip jigs, namely “Dublin Streets.” DE learned the
melody almost note for note while PSO produced melodies strongly influenced by “Dublin Streets.”
Why “Dublin Streets” when all 11 melodies were equally likely to be selected for each call to
Evaluate? The exact cause is unclear, but we know from experience DE, and to a lesser degree
PSO, tend to converge quickly. DE’s propensity to fall into local minima might help explain things
as well. There might be a strong basin of attraction around this particular melody that DE quickly
finds, abandoning exploration for exploitation.

Do we see, or rather, hear the same effect with the Bach chorales? Listening to the generated
melodies leads us to much the same set of comments for RO, Jaya, GWO, and GA as above. Likewise,
PSO and DE are more interesting.

CHAPTER 11. MUSIC 187

Figure 11.3: Evolution of the swarm best objective function value for slip jigs (left) and
Bach chorales (right).

Unlike the slip jigs, the chorales appear to have multiple “local minima.” For PSO, the runs
were split between melodies much like Bach_Chorale_5 and Bach_Chorale_2. For DE, results
were split between Bach_Chorale_5 and Bach_Chorale_4.

Figure 11.3 shows the evolution of the swarm best for the slip jigs (left) and Bach chorales (right).
In both cases, RO failed to improve, and DE converged rapidly to almost no error, consistent with
collapsing to a specific melody. The algorithms performed much the same way for both sets of
melodies. PSO did second best but didn’t reach the same low MSE as DE. GWO, Jaya, and GA all
end up in much the same place as well.

What does all of this mean? In terms of learning, DE performs well, followed by PSO. We’ve
seen similar results before. In terms of using swarms to learn interesting variations, DE is probably
not the best option. PSO, or perhaps one of the others if run for a longer period of time, might
produce pleasing results, an experiment for the reader.

11.4 Learning Melodies from Scratch

The experiments of Section 11.2 and Section 11.3 attempted to generate a new melody by using
existing melodies as references. In this section, we dispense with pre-existing melodies and instead
seek to learn a pleasant, or at least reasonable, melody from scratch.

To do this, we maintain most of the framework we’ve used in this chapter and focus on a novel
objective function, one that can point us towards how pleasant a melody is.

It should be uncontroversial to state that what makes a melody pleasant is subjective. To rein
in the subjectivity, we seek a multi-part objective function that measures characteristics of a melody
generally believed to make it more pleasant sounding, at least for Western music.

The first rule of thumb for melodies is the range: they should not cover more than 18 steps
(semitones). A semitone is a half-step, from one white key on a piano to the next key to the right,
black or white. So, we need a term to penalize the melody if its range is too great.

Melodies using notes that are part of the desired musical mode are also more likely to sound
pleasant. The first note in a melody is the root, and the remaining notes should be those used
by a specific musical mode starting with that root. These seven modes, central to the tradition of
Western music, set the overall tone. For us, modes are a set of rules, a sequence of intervals from
the root to the next root one octave higher. We need a term that measures how far a given melody
is from the mode we’ve selected.

If the swarm is entirely free to select note durations, we might end up with awkward ones. We’d
like to favor quarter, half, and whole notes, though not with equal weighting. We need a term to
characterize the notes durations and how similar they are to the desired quarter, half, and whole
notes.

CHAPTER 11. MUSIC 188

Mode Intervals Characteristics

Ionian (Major) W W H W W W H bright, positive, strong, simple
Aeolian (Minor) W H W W H W W sad
Dorian W H W W W H W light, cool, jazzy
Lydian W W W H W W H bright, airy, sharp
Mixolydian W W H W W H W blues, celtic
Phrygian H W W W H W W dark, depressing
Locrian H W W H W W W darker still, “evil”

Table 11.1: The modes and their characteristics.

Finally, a melody is played one note at a time. The difference between note i and note i+ 1 is
the interval. As we’re using MIDI notation, integer values assigned to each semitone, we’ll consider
the integer difference between two notes. Not all intervals sound good. It’s generally agreed that
thirds and fifths sound pleasant. Thirds are three or four semitones apart (minor or major thirds)
while fifths are seven apart. Additionally, the intervals should match notes in the desired mode. We
need a term that tells us about the intervals in a melody.

All in all, we will develop a four-part objective function. The sum of the four parts is what we
seek to minimize with the hope that a small value implies a pleasant-sounding melody in the desired
mode.

For reference, Table 11.1 presents the modes giving their Greek names, intervals from the root,
and adjectives describing what melodies in that mode often sound like. The intervals tell us how to
step from the root to the notes of the mode with W a whole step (two semitones) and H a half step
(one semitone). For example, if the root is MIDI note 60, middle C, and the mode is Ionian with a
sequence of W W H W W W H, the notes of the scale are,

C W D W E H F W G W A W B H C
60 → 62 → 64 → 65 → 67 → 69 → 71 → 72

which is nothing more than the standard C major scale. Our objective function will look for notes
in this scale, if the root is C and the mode is Ionian.

11.4.1 The Code

The code for this experiment is in melody_maker.py. As before, we use a custom Bounds class,

class MusicBounds(Bounds):
def __init__(self, lower, upper):

super().__init__(lower, upper, enforce="resample")
def Validate(self, p):

i = 0
while (i < p.shape[0]):

note, duration = p[i:(i+2)]
p[i] = int(note)
p[i+1] = np.floor(duration)
i += 2

return p

where we ensure integer MIDI note numbers and truncated durations. We create the bounds object
with

note_lo = 35
note_hi = 84
dur_lo = 1
dur_hi = 5

CHAPTER 11. MUSIC 189

lower = [note_lo, dur_lo] * ndim
upper = [note_hi, dur_hi] * ndim
b = MusicBounds(lower, upper)

to limit durations to [1, 5]. When generating the MIDI output files, we’ll multiply all durations by
a global value, M = 0.5, meaning durations are limited to eighth to whole notes.

Let’s define the MusicObjective class piece by piece. The constructor is straightforward,

class MusicObjective:
def __init__(self, note_lo, note_hi, mode="major"):

self.mode = mode
self.fcount = 0
self.lo = note_lo
self.hi = note_hi + 1

where we set note limits, the objective function call counter, and the desired musical mode.
Next, the Evaluate method,

def Evaluate(self, p):
self.fcount += 1
score = self.Distance(p[::2], self.mode)
dur = self.Durations(p)
R = self.CheckRange(p)
v,t = self.Intervals(p[::2], self.mode)
return R + v + t + score + dur

which counts the objective function call and computes the four elements we outlined above: melody
distance from the desired mode (Distance), the note durations (Durations), the melody range
(CheckRange), and finally, the note intervals (Intervals). We’ll detail each of these below. The
objective function value returned by Evaluate is the sum of the values returned by each of these
functions.

Let’s start with CheckRange,

def CheckRange(self, p):
notes = p[::2]
lo = notes.min()
hi = notes.max()
return 0 if (hi-lo) <= 18 else 1

to get the high and low MIDI note numbers and ask if that range is less than or greater than 18. If
it is greater, return one; otherwise, zero. The binary return value is a strong signal to the swarm
that the range should be within 18 semitones.

Next, we look at the durations of the notes,

def Durations(self, p):
d = p[1::2].astype("int32")
dp = np.bincount(d, minlength=8)
b = dp / dp.sum()
a = np.array([0,0,100,0,60,0,20,0])
a = a / a.sum()
return np.sqrt(((a-b)**2).sum())

This function gets the note durations (d). Recall, these are integers in [1, 5]. The histogram
is created (dp) and normalized to probabilities (b). What should we do with this distribution?
We want to compare it to the distribution of durations we’d like to see. Above, we stated we want
primarily quarter, half, and whole notes with a strong emphasis on quarter, then half, and last of all,
whole. Consider the vector, a. It has as many elements as b and is normalized to be a probability
distribution, like b.

CHAPTER 11. MUSIC 190

For the range we set up, and the multiplier on durations of M = 0.5, quarter notes are element
two, half notes are element four, and whole notes element six. These elements of a are, arbitrarily,
set to 100, 60, and 20, meaning we’d like to see the ratio between quarter, half, and whole notes
be 100:60:20 → 5:3:1. A natural measure between a and b is the squared error, so we return it as
our metric. Another choice for metric might have been the KL-divergence to see, in a probabilistic
sense, how much b is like a. A desire for clarity in the presentation leaves the computation of a
where it is. It would be faster to define a once in the MusicObjective constructor and only refer
to it in Durations.

We have two parts of the objective function yet to define, Distance and Intervals. However,
both of these depend upon the selected musical mode. Specifically, we need to know which notes in
the set of allowed MIDI notes are notes that would be seen in the given mode for the given root of
the melody, the first note of the melody. To find those, we need a helper function, ModeNotes.

ModeNotes is rather long, so we’ll work with it in pieces. The first part is,

def ModeNotes(self, notes, mode):
modes = {

"ionian": [2,2,1,2,2,2,1],
"dorian": [2,1,2,2,2,1,2],
"phrygian": [1,2,2,2,1,2,2],
"lydian": [2,2,2,1,2,2,1],
"mixolydian": [2,2,1,2,2,1,2],
"aeolian": [2,1,2,2,1,2,2],
"locrian": [1,2,2,1,2,2,2],
"major": [2,2,1,2,2,2,1],
"minor": [2,1,2,2,1,2,2],

}
m = modes[mode.lower()]
A = np.zeros(self.hi-self.lo+1)
for i in range(notes.shape[0]):

A[int(notes[i]-self.lo)] = 1

The goal of ModeNotes is to return a binary vector representing MIDI notes from 36 through
85. If the corresponding element of the vector is one, that note is part of the mode with the first
note of the melody in notes as the root. If the note shouldn’t be in the mode, its entry is zero.

This part of the function defines the steps between notes by mode. We saw above that a whole
step adds 2 to the MIDI note number while a half step adds 1. Therefore, the proper sequence of
intervals for each mode is defined first. The sequence is indexed by the actual mode and assigned
to m to be used later in the function.

We intend to generate a binary vector of the notes in the mode. We also want a binary vector
of the notes actually in the melody. That’s what we set up in A. We loop over notes and set those
in the melody to one, leaving the rest as zero.

The next part of ModeNotes builds B, a vector like A, but marking the notes that are part of
the mode,

B = np.zeros(self.hi-self.lo+1)
note = int(notes[0])
while (note <= self.hi):

if (note <= self.hi):
B[note-self.lo] = 1

note += m[0]
if (note <= self.hi):

B[note-self.lo] = 1
note += m[1]
if (note <= self.hi):

B[note-self.lo] = 1
note += m[2]
if (note <= self.hi):

CHAPTER 11. MUSIC 191

B[note-self.lo] = 1
note += m[3]
if (note <= self.hi):

B[note-self.lo] = 1
note += m[4]
if (note <= self.hi):

B[note-self.lo] = 1
note += m[5]
if (note <= self.hi):

B[note-self.lo] = 1
note += m[6]
if (note <= self.hi):

B[note-self.lo] = 1

The root is note, the first note of the melody. Next comes a loop from this MIDI note number
to the maximum note number. For each possible MIDI note number, we ask if we are in range. If
we are, we set the element of B. Note the use of m to add the proper increment to the note to move
to the next note of the mode.

Finally, we repeat this process from the root down to the lowest MIDI note number,

note = int(notes[0])
while (note >= self.lo):

if (note >= self.lo):
B[note-self.lo] = 1

note -= m[6]
if (note >= self.lo):

B[note-self.lo] = 1
note -= m[5]
if (note >= self.lo):

B[note-self.lo] = 1
note -= m[4]
if (note >= self.lo):

B[note-self.lo] = 1
note -= m[3]
if (note >= self.lo):

B[note-self.lo] = 1
note -= m[2]
if (note >= self.lo):

B[note-self.lo] = 1
note -= m[1]
if (note >= self.lo):

B[note-self.lo] = 1
note -= m[0]
if (note >= self.lo):

B[note-self.lo] = 1
return A,B

where we use m in reverse order as the sequence of increments it contains goes from the root to one
octave higher. When the loop is complete, we return A and B. The Distance and Intervals
functions use these vectors in different ways.

The Distance function computes the Hamming distance between the two binary vectors re-
turned by ModeNotes. In code,

def Distance(self, notes, mode):
A,B = self.ModeNotes(notes, mode)
lo = int(notes.min() - self.lo)
hi = int(notes.max() - self.lo)
a = A[lo:(hi+2)]

CHAPTER 11. MUSIC 192

b = B[lo:(hi+2)]
score = (np.logical_xor(a,b)*1).sum()
score /= len(a)
return score

where we limit A and B to just the range of MIDI note numbers actually used by the melody.
The Hamming distance between two binary vectors (or integers) is the number of corresponding

bits that are different. For example,

A : 1 0 0 1 1 0 1 0 1 0 1 1
B : 1 1 0 1 0 0 1 0 1 0 1 0
different: 1 1 1

meaning the Hamming distance between A and B is three. Note, the Hamming distance is the
number of one bits in the exclusive-OR of A and B. The Distance function scales the Hamming
distance by the length of the vectors to turn it into a fraction where identical vectors return zero,
and completely different vectors return one.

The Intervals function looks at the intervals, the difference between note i and note i + 1
counting the number that are valid for the mode and whether the interval is a third (minor or
major), or a fifth. In code,

def Intervals(self, notes, mode):
_,B = self.ModeNotes(notes, mode)
valid = minor = major = fifth = 0
for i in range(len(notes)-1):

x = int(notes[i]-self.lo)
y = int(notes[i+1]-self.lo)
if (B[x] == 1) and (B[y] == 1):

valid += 1
if (abs(x-y) == 3):

minor += 1
if (abs(x-y) == 4):

major += 1
if (abs(x-y) == 7):

fifth += 1
w = (3*minor + 3*major + fifth) / 7
return 1.0 - np.array([valid,w])/len(notes)

Note the call to ModeNotes uses only the B vector, the list of notes in the mode for the current
root. We then loop over the actual notes of the melody and calculate the corresponding index into
B for the current note (x) and the following note (y).

If the notes are part of the mode, valid is incremented. If the interval is 3, it’s a minor
interval. If 4, it’s a major interval. Finally, if a fifth, we count it as well. We combine the three
counts, minor, major, and fifth using a weighted sum (w) to make thirds count three times as
much as fifths.

There are two return values. The first is the fraction of melody notes that are valid mode notes.
The second is the fraction of notes that are thirds or fifths. As we want to minimize, the return
value is one minus these values.

Our extensive objective function is now complete. The rest of melody_maker.py follows our
usual structure: parse the command line; set up the bounds, objective function, and initializer;
create the swarm object; and call Optimize to do the search.

When done, search results are stored in the output directory along with a MIDI file of the final
melody and the score. Let’s put melody_maker.py to work and see what evolves.

CHAPTER 11. MUSIC 193

11.4.2 The Experiments

We’ll run melody_maker.py via a script so we can generate sample melodies in all modes with all
algorithms. The file experiments_maker.py does just that,

n = 0
for alg in ["RO","DE","PSO","GWO","JAYA","GA"]:

for mode in ["ionian","dorian","phrygian","lydian","mixolydian",
"aeolian","locrian"]:

cmd = "python3 melody_maker.py 20 results/maker/%s/%s 20
800000 %s RI %s" % (alg,mode,alg,mode)

os.system(cmd)
print(cmd)
n += 2

print("%d melodies generated (time = %0.3f seconds)" % (n, time.time()-st))

A double loop over algorithms and modes creates what we need. Notice, we run for 800,000
iterations. If you are impatient, a smaller number can be used. I used 800,000 because I wanted
to see what a well-searched space would lead to and to see if the swarm collapsed in the end or
maintained some level of diversity.

Start experiments_maker.py and then go do something else. I recommend a weekend get-
away. When done, you can listen to the results with something like

> wildmidi results/maker/DE/lydian/melody_DE.mid

My run produced melodies that fit the desired musical mode and sounded nice in terms of intervals
and note durations. Naturally, our objective function is only covering the basics, it doesn’t know
about repetition or sudden jumps that sound nice, etc., so we should not set our expectations too
high.

Unexpectedly, the different swarm algorithms led to melodies that played for more or less time on
average, regardless of the mode. For instance, the DE melodies averaged about 9 seconds long, while
the PSO melodies were 8 seconds. GA averaged 9 seconds and GWO was the shortest, averaging
only 6 to 7 seconds. RO averaged 11 seconds, and Jaya 13 to 14 seconds, twice the length of GWO.
Yet, all melodies were only twenty notes long.

In terms of adjectives applicable to the results, DE and PSO were steady and pleasant sounding,
according to mode. Jaya had interesting, sometimes erratic, and definitely slower melodies. GWO
melodies were fast and wandering. GA produced airy, ranging, pleasant, and flowing melodies.
Finally, RO melodies were erratic and jumpy.

Subjective evaluation of the melodies is perhaps the best thing for us since we are exploring
how swarm optimization might help in the composition of new music. Still, we are optimizing an
objective function, so examination of swarm convergence is fair game.

Figure 11.4 shows the swarm best as a function of iteration for runs producing Ionian (left) and
Aeolian (right) mode melodies. The results are consistent across modes and follow what we’ve seen
in earlier chapters. RO learns slowly, if at all. DE and PSO converge quickly, with Jaya and GWO
converging less rapidly. GA ends up in much the same place between the two modes and does not
match Jaya or GWO, let alone PSO and DE, in terms of achieving a low objective function value.

We’ve focused on the swarm best, but, especially in a subjective setting like music, we should
expand our appreciation and listen to the evolution of the swarm best and the final swarm itself.

To listen to the evolution of the melody, we might use a sequence of instructions like

>>> import numpy as np; import pickle; from melody_maker import *
>>> p = pickle.load(open("results/maker/DE/dorian/melody_DE.pkl","rb"))
>>> len(p["gpos"])
49
>>> PlayMelody(p["gpos"][0])
>>> p["gbest"][0]
3.366777528150162

CHAPTER 11. MUSIC 194

Figure 11.4: Convergence of the swarms by algorithm type for Ionian mode (left) and
Aeolian mode (right).

>>> PlayMelody(p["gpos"][25])
>>> p["gbest"][25]
2.238948531956374
>>> PlayMelody(p["gpos"][-1])
>>> p["gbest"][-1]
0.9236193905898076

to load the search results and play different versions of the swarm best melody from the first (index
0) to the last (index -1). The objective function values decrease from 3.37 to 0.92, and the melodies
improve accordingly.

Continuing with the session immediately above, we can also play the swarm as it existed when
the search concluded,

>>> PlayMelody(p["pos"][0])
>>> PlayMelody(p["pos"][1])
>>> PlayMelody(p["pos"][2])
>>> p["vpos"][0], p["vpos"][1], p["vpos"][2]
(1.0328695638122378, 0.9593336763040933, 1.0042981352408091)

As well as show the objective function value for each swarm particle position played.
The interactive Python session above raises a question: what did the swarm do for so many

iterations? Did it continue to explore, or did it collapse onto itself? The analysis_maker.py
script examines the generated melodies and produces several outputs. Two are the plots shown in
Figure 11.4. In addition, the script dumps a measure of swarm diversity for each algorithm and
mode. Here, we define swarm diversity as the mean of the standard deviation of each element of a
particle position across the swarm,

>>> pos = ... 20x40 NumPy array ...
>>> s = pos.std(ddof=1, axis=0)
>>> diversity = s.mean()

for pos a set of swarm positions, say 20 particles and 40 dimensions, s a vector of 40 elements, and
diversity the mean of s. The higher the mean of s is, the more diverse the swarm. By algorithm
we get,

CHAPTER 11. MUSIC 195

RO 6.4985
DE 2.8550
Jaya 2.4262
GA 0.2321
GWO 0.2111
PSO 0.0580

meaning RO maintains the greatest swarm diversity, even after 800,000 iterations, while three of the
algorithms show little remaining diversity. PSO, in particular, has virtually none left.

Diversity isn’t enough, however. RO has high diversity, but the melodies it produces are not
particularly pleasing. DE and Jaya, on the other hand, made reasonable melodies, so high diversity
among the particles of the swarm is a benefit on top of the subjective quality of the results. Note,
diversity is measured across all modes; see analysis_maker.py for implementation details.

If we scale the per element standard deviations by the mean value of each element across the
swarm, we can plot the resulting vector to see if each element of a particle position is equally diverse
or if some elements have collapsed across the swarm. The result is Figure 11.5. Note, the code to
generate this plot is also in analysis_maker.py.

Figure 11.5: Per element swarm diversity for the Ionian mode, by algorithm.

Figure 11.5 mirrors the table above, showing the diversity across the swarms for Ionian mode.
RO has the highest diversity, evenly split across the elements of the swarm positions. Recall, swarm
positions are pairs of MIDI note number [35, 85] and durations [1, 5). The oscillation is a consequence
of scaling by the mean value of each position element.

DE and Jaya also maintain diverse swarms, though less so than RO. The effect on GWO, and
especially GA and PSO, is dramatic. GWO has virtually zero diversity across most elements of the
position vectors. GA has even less, and PSO is, practically speaking, completely homogeneous. If
we play the final swarm melodies of PSO, we immediately hear that they are almost entirely the
same.

This chapter explored music as generated by swarm algorithms. We demonstrated that swarms
could learn simple melodies and create melodies similar to those of a collection of related melodies,
though with some surprising results. Finally, we generated melodies from scratch, melodies that fit

CHAPTER 11. MUSIC 196

the desired musical mode, and produced pleasant, if uninspiring, results. As Paul Kneusel noted,
the Bach-like melodies sounded like a beginning student making small rhythm errors.

The experiments gave us a new way to appreciate our swarms. Instead of graphs and tables, in
this chapter, we hear the swarm evolve. The adjectives we used to describe the generated melodies
are loosely applicable to the behavior of the swarm algorithms themselves. DE and PSO are “steady”
in that they are consistent performers. Jaya is sometimes “erratic” and often “slow” to converge.
GWO does sometimes “wander” – it generally performs well but can sometimes go wide of the
mark. GA is “airy” and “ranging”, a consequence of mixing the elements of the particle positions.
Finally, RO is definitely “erratic”, like GWO sometimes is; it’s unclear whether it will perform well
or not. Of course, all such comparisons break down at some point, but on the whole, the adjectives
describing the melodies the algorithms generate fit the algorithms themselves.

It is entirely conceivable more could be done to enhance the melody_maker.py objective
function. The current implementation pays attention to mode, intervals, and range, but does not
include any attempt to insert some other, more subjective, rule of thumb related to what makes a
“good” melody. Perhaps something encouraging repetition of a short theme? Enhancements are left
as an exercise for the reader. During my experiments, I ran across a few melodies I liked, so I saved
them for possible future use.

Let’s continue our exploration of the wide range of tasks amenable to swarm optimization by
leaving music behind and focusing instead on the placement of assets.

Chapter 12

Cell Towers and Circles

Many engineering and logistics problems boil down to placing assets to maximize the coverage of
some area. The assets might be police stations, fire departments, camera traps for conservation
efforts, or cell phone towers.

In this chapter, we’ll run experiments to place simulated cell towers on a map to maximize the
area covered while avoiding masked areas where no towers are allowed. The individual cell towers
may cover different sized areas. The masked regions represent roads or parking lots, etc.

The idea of placing things an ideal distance apart can be generalized. For example, maximizing
the minimal distance between a set of points on the unit square corresponds to packing a set of
uniform circles in a square. The basic idea is similar to the cell phone tower example. Therefore,
we’ll also experiment with placing points on the unit square to see if swarms can find the known
ideal arrangements, or at least get close.

12.1 Cell Towers

Per our usual process, we’ll set up the simulation (Section 12.1.1), detail the code (Section 12.1.2),
and run various scenarios to see how we do all in an effort to increase our intuition about swarm
algorithms and their behavior (Section 12.1.3).

12.1.1 The Setup

Our world is a black and white map. We’ll use a grayscale image with 0 intensity for allowed regions
and maximum intensity (255) to mark banned areas. Some example maps are included, relatively
small to make our many searches run faster, but the code works with maps of any size.

Next, we need to simulate a cell tower. From the map’s perspective, the cell tower is a disc with
a center, (x, y), and a radius, r. The radius is fixed; it represents the strength of the tower, the area
it can cover. The location, of course, is what we are hoping the swarms will find for us. We’ll list
towers in a text file with each line a floating-point number, [0, 1], interpreted as the tower’s coverage
region as a fraction of some maximum allowed radius.

Therefore, our goal, for a given map, is to find a set of (x, y) pairs placing the N cell towers to
maximally cover the map while avoiding masked regions.

The search bounds are fairly obvious: we’re in pixel space, so the (x, y) locations are bounded
to [0,M] where M is the length of one of the map’s sides, assuming a square map. Additionally, to
save on extraneous swarm updates, we’ll discretize the positions to correspond to actual pixels in
the map image.

What are we optimizing? For a particular arrangement of towers, we can, literally, set map pixel
values to something other than zero, and when all towers are set, count the number of zero pixels
remaining. This number divided by the total number of pixels gives the fraction of the map not
covered by a tower. It’s this value we’ll minimize.

197

CHAPTER 12. CELL TOWERS AND CIRCLES 198

12.1.2 The Code

The simulation code is in cell.py. We load the usual modules at the top. We then need to define
custom Bounds and Objective classes. The Bounds class is

class CellBounds(Bounds):
def __init__(self, lower, upper, enforce):

super().__init__(lower, upper, enforce)
def Validate(self, p):

return np.floor(p)

CellBounds need only implement Validate to discretize a set of tower positions. The argu-
ment, p, is a 2N -element vector of (x, y) pairs for N towers. Discretization is straightforward: the
floor operation ensures the elements are integer and in range.

The Objective class is more interesting as it needs to accomplish two goals. First, it needs
to check if any of the proposed tower centers are in the map’s masked areas. If they are, the tower
configuration is invalid, and a suitable objective function value is returned. The second goal is
creation of a coverage map. This map is initially empty and then filled in, tower by tower, by setting
pixels in the area covered by the tower to a nonzero value. As stated above, the fraction of zero
pixels remaining gives us a measure of how well the area is covered. For this task, we know what
perfection is– there are no zero pixels, though such a condition might be impossible if the sum of
the area covered by all the towers is less than the area of the map.

Let’s walk through the Objective class code:

class Objective:
def __init__(self, image, towers, radius):

self.image = image.copy()
self.R, self.C = image.shape
self.radii = (towers*radius).astype("int32")
self.fcount = 0

def Collisions(self, xy):
n = 0
for i in range(xy.shape[0]):

x,y = xy[i]
if (self.image[x,y] != 0):

n += 1
return n

def Evaluate(self, p):
self.fcount += 1
n = p.shape[0]//2
xy = p.astype("uint32").reshape((n,2))
if (self.Collisions(xy) != 0):

return 1.0
empty = np.zeros((self.R, self.C))
cover = CoverageMap(empty, xy, self.radii)
zeros = len(np.where(cover == 0)[0])
uncovered = zeros / (self.R*self.C)
return uncovered

The Objective class implements three methods. Two are familiar: the constructor and
Evaluate, which is called by our framework. The third, Collisions, checks to see if the proposed
tower centers are allowed. If even one tower is centered in a masked region, the entire configuration
is rejected.

The constructor accepts the map (image), a 2D NumPy array scaled [0, 1], a vector of tower
radii as fractions of some maximum allowed radius (towers), and the maximum radius (radius).
We’ll clarify what we mean by “maximum allowed radius.”

Consider the Evaluate method. The 2N -dimensional particle position (p) is converted to xy,

CHAPTER 12. CELL TOWERS AND CIRCLES 199

a NumPy array of N rows, one for each tower, and two columns, the x and y coordinates of the
candidate tower center.

If Collisions returns nonzero, at least one tower center was in a map region that was not
zero. This invalidates the tower arrangement proposed by p, so we return 1.0 to indicate that none
of the map is covered.

Now that we know the arrangement of towers is allowed, we set up an empty map (empty) the
same size as the given map. The function CoverageMap accepts a map, a set of tower centers,
and the corresponding vector of tower radii. It returns a new 2D array where each pixel covered
by a tower is set to a nonzero value. Therefore, the number of zero elements in the cover array
represents locations not covered by at least one tower. Evaluate returns this number divided by
the total number of elements (pixels) in the map.

Let’s look in detail at CoverageMap as it requires a bit of explanation. First, the code,

def CoverageMap(image, xy, radii):
im = image.copy()
R,C = im.shape
for k in range(len(radii)):

x,y = xy[k]
for i in range(x-radii[k],x+radii[k]):

for j in range(y-radii[k],y+radii[k]):
if ((i-x)**2 + (j-y)**2) <= (radii[k]*radii[k]):

if i < 0 or j < 0:
continue

if i >= R or j >= C:
continue

im[i,j] += 0.5*(k+1)/len(radii)
imax = im.max()
for k in range(len(radii)):

x,y = xy[k]
im[x,y] = 1.4*imax

return im

CoverageMap accepts an image, either an empty array the size of the map or the map itself
when generating the final output, xy, the set of tower locations, and radii, the radius of each
tower, the area it covers. The return value is a new array representing the area covered by the
towers.

For example, Figure 12.1 presents a map on the left and the same map on the right with the
best set of tower locations found by GA after 400 iterations of a swarm with 20 particles. The map
on the left marks no-tower regions that might represent a road and some buildings. The image on
the right is the output of CoverageMap when given the map on the left as input.

CoverageMap creates a copy of the input image and keeps the size, R and C, handy. It then
loops over each tower to get the center location (x, y) and the radius (radii[k]).

To fill in the points inside the disc representing the tower, we loop over a square region with side
length equal to the diameter asking if each point in the square is also within the disc,

(i− x)2 + (j − y)2 ≤ r2

for current pixel (i, j), tower center at pixel (x, y), and radius, r. If the point is inside the disc, we
set it to a nonzero value,

imij ← imij +
k + 1

2N

with k the index of the current tower (zero-based) and N the number of towers. Adding in a per
tower intensity marks each tower differently while also showing us how they are overlapping.

Finally, CoverageMap loops over the tower centers one last time to set the actual center points
to be the brightest pixels in the output. Doing this marks the tower centers so we can verify they

CHAPTER 12. CELL TOWERS AND CIRCLES 200

Figure 12.1: (Left) A map marking roads and buildings. (Right) A set of towers covering
the map.

are not inside a masked region. To convert im to an actual image file, we divide by the maximum
value and multiply by 255.

The core of the cell tower application lies in CoverageMap. It is the most task-specific portion
of the code. The remainder of cell.py drives the search based on user-supplied arguments.

To run cell.py, use

> python3 cell.py <map> <towers> <npart> <niter> <alg> RI|QI|SI <outdir> [frames
]

where <map> is a map image, see the maps directory. The next three arguments, <npart>,
<niter>, and <alg>, supply the number of particles, iterations, and algorithm type as we’ve
used before. Likewise, the next two arguments are the initialization type and the name of the
output directory.

The final, optional argument is the literal word “frames”. In reality, any argument value here
will do. If the argument is present, the output directory will contain a frames directory showing
the cell tower placement for each iteration of the swarm, the right side of Figure 12.1. You can
use this set of images to visually track the swarm’s evolution in terms of the current best tower
arrangement.

The main function parses the command line. In particular, we load and process the input map,

map_image = 0.9*np.array(Image.open(sys.argv[1]).convert("L"))/255

converting to grayscale and scaling by 255. The additional factor of 0.9 sets the maximum intensity
of the masked regions. This is done to make the center points of the towers more prominent in the
output coverage images.

Next, we load the text file of tower radii, one per line, [0, 1],

towers = np.array([float(i[:-1]) for i in open(sys.argv[2])])

We’ll calculate a maximum radius later and use it to set the per tower radii.
Next, we create an instance of CellBounds and set it to the limits of the input map,

x,y = map_image.shape
lower = [0,0]*len(towers)
upper = [x,y]*len(towers)
b = CellBounds(lower, upper, enforce="resample")

CHAPTER 12. CELL TOWERS AND CIRCLES 201

ndim = 2*len(towers)

The maximum allowed radius, in pixels, is next. We chose to limit any tower to half the largest
dimensions of the input map,

w = x if (x>y) else y
radius = w//2

From here, we create the desired initializer and swarm objects. We’ve seen these statements
before. The only new option here is adding tol=1e-9 to the constructors since once we’ve covered
all pixels in the map, if possible with the given set of towers, the search is complete.

The objective function is created as well,

obj = Objective(map_image, towers, radius)

passing in the scaled map, the set of towers, and the maximum radius.
Everything is now in place. We could call Optimize and then look at the search results.

Instead, we’ll iterate step-by-step to track the evolution of the swarm,

k = 0
swarm.Initialize()
while (not swarm.Done()):

swarm.Step()
res = swarm.Results()
t = " %5d: gbest = %0.8f" % (k,res["gbest"][-1])
print(t, flush=True)
s += t+"\n"
k += 1
if (frames):

p = res["gpos"][-1]
n = p.shape[0]//2
xy = p.astype("uint32").reshape((n,2))
radii = (towers*radius).astype("int32")
cover = CoverageMap(map_image, xy, radii)
img = Image.fromarray((255*cover/cover.max()).astype("uint8"))
img.save(outdir+"/frames/"+("frame_%05d.png" % k))

The calls to Initialize, Done, Step, and Results we’ve seen before. While not done with
iterations or perfection, perform a step of the swarm, get the current best arrangement of cell towers,
and output the fraction of the map still not covered. Everything printed at the console is stored in
s to be dumped in the output directory.

If frames are output, a call to CoverageMap using the current best tower arrangement and
the actual map showing masked regions gives us the desired image. Notice the scaling of the image
to [0, 255] for output in the frames directory. Regardless of whether frames are output or not,
at the end of the search, we dump the final tower configuration image to the output directory as
coverage.png. The final output image is passed through a square root operation to enhance the
contrast of the tower regions.

12.1.3 The Experiments

With everything in place, we are now ready to run the simulation to see which algorithms perform
best on this task.

Let’s first define a collection of towers. We’ll use four different sets to which we give the uncreative
names of towers, towers1, towers2, and towers3.

Table 12.2 details the tower sets, including the maximum possible area they could cover if they
were not to overlap. Note, we do not enforce any limitation on the overlap. Two towers can be
adjacent to each other. Indeed, the simulation code allows towers to be placed on top of each other.

CHAPTER 12. CELL TOWERS AND CIRCLES 202

Filename Number of Towers Maximum Area Fraction

towers 6 0.715 0.1, . . . , 0.6
towers1 15 1.186 0.3 (15x)
towers2 30 2.121 0.3 (30x)
towers3 6 1.100 0.1,0.6,1.0

Table 12.1: The tower sets used in the experiments.

The number of towers ranges from a low of six to a maximum of 30 with radii fractions from 0.1
to 1.0. Note, towers and towers3 imply a maximum coverage area of less than 1.0, meaning the
strength and number of towers are insufficient to cover a map completely.

Our goal is the placement of towers on a map, so we need some maps. We’ll start with the empty
map, one with no masked regions. Additionally, we’ll define four more maps, those of Figure 12.2.
We intend to run many experiments, so the maps are rather small, 80x80 pixels, but that’s still large
enough for our purposes. The map in Figure 12.1 is larger, 512x512 pixels.

map_01 map_02 map_03 map_04

Figure 12.2: The maps used for the experiments.

Maps 1 and 2 represent roads and parking lots. Map 4 adds in a few buildings and a pond.
Map 3 is a flight of fancy. We’ll use all of the maps in the experiments below. Recall, if making
your own maps, make available background pixels intensity zero and masked regions intensity 255.
The larger the map, the longer the code takes to run. As always, we choose clarity in the code
over performance. I expect any system based on the ideas in this book will employ proper software
engineering practices.

A single run of cell.py,

> python3 cell.py maps/map_04.png towers3 20 300 PSO RI example frames

using map_04 and towers3 produced output in the example directory. The frames argument
created per iteration coverage maps as well.

The example directory contains the following files:

coverage.png
frames
map.png
README.txt
results.pkl

The first is the final cover image showing the towers superimposed on the map. Next is
the directory of frames. The original map image is in map.png and the dictionary returned by
swarm.Results() is in results.pkl to allow for detailed analysis of the search, if desired.

All text dumped to the console is captured in README.txt. The tail end of this file, for this
particular search, is,

CHAPTER 12. CELL TOWERS AND CIRCLES 203

297: gbest = 0.13140625
298: gbest = 0.13140625
299: gbest = 0.13140625

Search results: PSO, 20 particles, 300 iterations, RI

Optimization minimum 0.13140625 (time = 205.279)
(20 best updates, 6020 function evaluations)

showing the current swarm best coverage for the final three iterations of the swarm and some general
statistics on the search itself. This search ended with just over 13% of the map not covered by a
tower. From Table 12.2, we see that towers3 has a maximum total area of 1.1, but this does
not mean it is possible to completely cover the map since the towers represent discs, not arbitrary
shapes.

Figure 12.3: The final tower arrangement for the example PSO search.

Figure 12.3 shows the final arrangement of towers. The image has been enhanced to show the
tower bounds more clearly on the page. The one large tower is near the center and likely would
have been moved to the center if the road did not block it. Notice that none of the six tower center
locations are over a masked region of the image. Also, notice that the swarm did not optimize as
well as it might. The large tower completely overshadows one of the small towers. The swarm could
have moved this tower to the lower left or upper right corner to cover more of the map.

Let’s write a script to generate multiple runs of each algorithm for each map and two tower sets:
towers and towers1. The script is in the file experiments.py,

os.system("rm -rf results; mkdir results")
n = 0
for alg in ["RO","DE","PSO","JAYA","GWO","GA"]:

for tower in ["towers","towers1"]:
for m in range(5):

for r in range(8):
cmd = "python3 cell.py maps/map_%02d.png %s

20 300 %s RI results/%s_map_%02d_%s_run%d" % \
(m, tower, alg, alg.lower(), m, tower, r)

os.system(cmd)
n += 1

The script loops over algorithms, tower sets, maps (m), and runs (eight each) to fill the results
directory with 480 outputs. The script does take some time to run.

CHAPTER 12. CELL TOWERS AND CIRCLES 204

When experiments.py finishes running, we can interpret the output with analysis.py.
The script loops over the output directories,

def Results(alg):
res = np.zeros((2,5,8))
k = 0
for tower in ["towers","towers1"]:

for m in range(5):
for r in range(8):

fname = "results/%s_map_%02d_%s_run%d/README.txt" %
(alg.lower(), m, tower, r)

lines = [i[:-1] for i in open(fname)]
f = float(lines[-3].split()[-4])
res[k,m,r] = f

k += 1
return res

for each algorithm (alg). The return value is a NumPy array with the final fraction of the map not
covered for each of the eight trials. It’s the mean over trials, maps, and tower sets we are after.

So, how did the algorithms do? The output of analysis.py is shown in condensed form in
Table 12.2. Let’s start with map_0, the one with no masked regions. The total area of towers
is 0.715, and it is possible to arrange the towers so they do not overlap at all. Therefore, the best
we can hope to do in that case is 1 − 0.715 = 0.285. None of the algorithms meet this minimum
value, though PSO gets close with one run producing a result of 0.297. If we stick with the towers
column and look down across the maps, we see, overall, there is no clear winner or loser in terms of
algorithms; all do approximately equally well.

Now consider the towers1 column of Table 12.2. For map_0 we see that the 15 identical towers
are, as we might expect, better able to cover the region than the six larger towers on the left. Here
the winner is GA with a run producing a minimum of 0.093; only 9.3% of the area was not covered
by a tower.

Now, look at map_1, especially the upper limits, meaning the worse case outputs. Four of
the algorithms, RO, PSO, GWO, and GA, all had at least one run that failed to find an allowed
arrangement of towers. Recall, the objective function returns 1.0, no area covered, when a tower
center lands on a masked region. This failure also happened for GA and map_2.

Figure 12.4 shows the final uncovered area per algorithm and run for map_1 and the towers1
set of towers. There were eight runs for each algorithm. The plot offsets the runs slightly to prevent
the symbols from overlapping completely.

As noted, several algorithms failed, but not just once, several times each. When the algorithms
did not fail, they all performed about the same with one exception: GA. For GA, either the search
failed, or it produced the best coverage of all. A glance back at the towers1 minimums of Table 12.2
confirms GA as the best algorithm of all regardless of the map. It seems that GA either performs
well or fails spectacularly.

Figure 12.5 presents the final coverage for the towers1 set and GA. These are the best con-
figurations found; the minimum noted in Table 12.2. We see that GA, and to a lesser degree the
other algorithms, can find reasonably good solutions while respecting the constraints. However, as
we’ve also seen previously in this book, the swarm algorithms’ stochastic nature requires vigilance
and, sometimes, persistence to achieve the goal.

Let’s move to a new set of experiments for a related problem, that of packing circles in a square.

12.2 Packing Circles

Section 12.1 solved a practical problem, albeit in a simplified manner. In this section, we attempt
to solve the related problem of packing circles in a square. In reality, we’ll work with an equivalent
formulation, that of placing points in the unit square to maximize the minimal distance between
them. These points become the centers of identical circles packing a square as tightly as possible.

CHAPTER 12. CELL TOWERS AND CIRCLES 205

Towers Towers1
Map 0:

RO: 0.333 +/- 0.003 (0.319, 0.341) 0.139 +/- 0.005 (0.119, 0.167)
DE: 0.319 +/- 0.002 (0.312, 0.329) 0.183 +/- 0.003 (0.171, 0.192)

PSO: 0.302 +/- 0.002 (0.297, 0.310) 0.192 +/- 0.006 (0.161, 0.211)
GWO: 0.314 +/- 0.006 (0.301, 0.351) 0.147 +/- 0.017 (0.094, 0.210)

JAYA: 0.321 +/- 0.004 (0.309, 0.338) 0.175 +/- 0.002 (0.165, 0.185)
GA: 0.323 +/- 0.004 (0.311, 0.346) 0.115 +/- 0.004 (0.093, 0.131)

Map 1:
RO: 0.410 +/- 0.011 (0.349, 0.451) 0.570 +/- 0.126 (0.284, 1.000)
DE: 0.339 +/- 0.004 (0.324, 0.354) 0.258 +/- 0.010 (0.214, 0.293)

PSO: 0.321 +/- 0.005 (0.298, 0.339) 0.386 +/- 0.088 (0.278, 1.000)
GWO: 0.324 +/- 0.010 (0.305, 0.392) 0.577 +/- 0.124 (0.279, 1.000)

JAYA: 0.369 +/- 0.005 (0.349, 0.384) 0.283 +/- 0.007 (0.260, 0.306)
GA: 0.339 +/- 0.005 (0.318, 0.358) 0.574 +/- 0.161 (0.122, 1.000)

Map 2:
RO: 0.380 +/- 0.010 (0.350, 0.440) 0.261 +/- 0.023 (0.185, 0.394)
DE: 0.338 +/- 0.004 (0.321, 0.354) 0.212 +/- 0.006 (0.186, 0.233)

PSO: 0.316 +/- 0.005 (0.304, 0.344) 0.245 +/- 0.005 (0.228, 0.270)
GWO: 0.322 +/- 0.007 (0.308, 0.371) 0.252 +/- 0.018 (0.162, 0.308)

JAYA: 0.340 +/- 0.007 (0.313, 0.366) 0.242 +/- 0.006 (0.217, 0.271)
GA: 0.340 +/- 0.009 (0.306, 0.393) 0.251 +/- 0.107 (0.099, 1.000)

Map 3:
RO: 0.365 +/- 0.006 (0.337, 0.386) 0.177 +/- 0.010 (0.127, 0.205)
DE: 0.331 +/- 0.002 (0.323, 0.343) 0.199 +/- 0.003 (0.187, 0.207)

PSO: 0.310 +/- 0.002 (0.302, 0.322) 0.228 +/- 0.005 (0.206, 0.243)
GWO: 0.316 +/- 0.003 (0.308, 0.330) 0.210 +/- 0.017 (0.149, 0.259)

JAYA: 0.343 +/- 0.003 (0.332, 0.358) 0.210 +/- 0.007 (0.186, 0.238)
GA: 0.333 +/- 0.004 (0.312, 0.348) 0.133 +/- 0.005 (0.100, 0.146)

Map 4:
RO: 0.367 +/- 0.009 (0.323, 0.407) 0.257 +/- 0.017 (0.197, 0.333)
DE: 0.335 +/- 0.002 (0.328, 0.347) 0.208 +/- 0.004 (0.185, 0.225)

PSO: 0.310 +/- 0.003 (0.297, 0.323) 0.235 +/- 0.008 (0.186, 0.260)
GWO: 0.327 +/- 0.009 (0.300, 0.375) 0.248 +/- 0.013 (0.182, 0.291)

JAYA: 0.343 +/- 0.004 (0.325, 0.363) 0.219 +/- 0.006 (0.198, 0.245)
GA: 0.330 +/- 0.007 (0.303, 0.366) 0.136 +/- 0.007 (0.110, 0.164)

Table 12.2: Results for the towers and towers1 sets showing mean ± SE along with minimum
and maximum uncovered area.

CHAPTER 12. CELL TOWERS AND CIRCLES 206

Figure 12.4: Per run uncovered fraction for map 1 and towers1.

map_00 map_01 map_02 map_03 map_04

Figure 12.5: Best GA run for each map and towers1 (the minimums of Table 12.2).

CHAPTER 12. CELL TOWERS AND CIRCLES 207

Deterministic algorithms already exist; see [35]. The problem is known to be NP-hard. Our
solution, of course, will be swarm-based. This is another example of the wide-applicability of swarm
techniques and, in a practical sense, might be good enough.

Figure 12.6: Maximal minimal separation of points on the unit square for 2 through 9 points.
Circles represent the maximum packing arrangement centered on each point. (By Parcly
Taxel - Own work, FAL, https://commons.wikimedia.org/w/index.php?curid=67465446)

Figure 12.6 shows what we are seeking, the best packing of circles in a square. What we’re after
are the black dots, those on or within the inner square, which is the unit square. The exact distance
is known for two through nine points, see [36],

Points Distance

2
√

2 = 1.414214

3
√

6−
√

2 = 1.035276
4 1

5
√

2/2 = 0.707107

6
√

13/6 = 0.600925

7 2(2−
√

3) = 0.535898

8 (
√

6−
√

2)/2 = 0.517638
9 0.5

We’ll present our results in graphical form as deviations from the known maximum separation.

12.2.1 The Code

The code is in points.py. We won’t walk through the main portion of the code as it is nearly
identical to that of cell.py above. We need only contemplate the objective function and the
mapping between a swarm particle position and our solution, including any boundary constraints.

We want to place N points, (x, y), on the unit square such that the smallest distance between
the points is maximized. The mapping becomes straightforward: each swarm particle represents a
list of N (x, y) pairs. So, if we seek to place five points, we are in a 10-dimensional space,

p = (x0, y0, x1, y1, x2, y2, x3, y3, x4, y4)

with x and y constrained to [0, 1].
Therefore, the boundary condition becomes,

CHAPTER 12. CELL TOWERS AND CIRCLES 208

ndim = 2*int(sys.argv[1])
b = Bounds([0]*ndim, [1]*ndim, enforce="resample")

with ndim twice the number of points to place, the first command-line argument to points.py.
For now, we are resampling on boundary violations.

What of the objective function? The problem statement is to maximize the minimal distance
between the points. So, for any given set of points, we need to find the minimal separation between
any pair and use that. In code we get,

class Objective:
def __init__(self):

self.fcount = 0
def Evaluate(self, p):

self.fcount += 1
n = p.shape[0]//2
xy = p.reshape((n,2))
dmin = 10.0
for i in range(n):

for j in range(i,n):
if (i==j):

continue
d = np.sqrt((xy[i,0]-xy[j,0])**2 + (xy[i,1]-xy[j,1])**2)
if (d < dmin):

dmin = d
return -dmin

The constructor sets up fcount to count calls to the objective function. The Evaluate method
reshapes the particle position (p) into a set of points (xy) running through each pair to calculate
the Euclidean distance between them. As distance is symmetric, we need only look at each pair
once. Whenever we find a new minimum distance between a pair, we keep it in dmin. When all
pairs have been examined, we return the negation of dmin as the objective function value.

Do look at the main function of the points.py script. After the search, it dumps the outcome,
including the actual point positions, in the output directory, including a plot of the points on the
unit square.

12.2.2 The Experiments

For our experiments we’ll attempt to place N = 2, . . . , 9 points on the unit square. A simple script,
experiments_points.py, will do the runs for us,

import os
os.system("rm -rf results_points; mkdir results_points")
n = 0
for alg in ["RO","DE","PSO","JAYA","GWO","GA"]:

for pnts in [2,3,4,5,6,7,8,9]:
for r in range(8):

miter = pnts*6000
cmd = "python3 points.py %d 25 %d %s RI
results_points/%s_%d_run%d" %
(pnts,miter,alg,alg.lower(),pnts,r)

os.system(cmd)
n += 1

We’ll use a swarm of 25 particles and adjust the maximum number of iterations to make it a function
of the number of points. Intuitively, we feel that placing more points might require more iterations.
As previously, we’ll use random initialization and leave to the reader experimentation with other

CHAPTER 12. CELL TOWERS AND CIRCLES 209

initialization schemes. We use eight runs for each configuration to give us some idea of consistency
and mean performance.

Running experiments_points.py takes a few hours. When complete, the results_points
directory contains many results directories. To investigate the results, run analysis_points.py
to produce a summary and output plots, those presented in Figure 12.7.

Figure 12.7 shows the deviation from the ideal point separation, meaning a well-performing
search appears as points at or near zero. A first glance at the figure tells us most algorithms did
rather poorly, with deviation increasing as a function of the number of points, N .

A second glance at Figure 12.7 reveals a little more. For N = 2, . . . , 5, DE performed very well,
with one bad run for N = 5. Much the same may be said of GA, though only through N = 4, and
with small deviations from ideal. For N = 2, GWO was reasonably close, but not in a satisfactory
way and with one failure. Somewhat surprisingly, Jaya did poorly in all cases.

Overall, DE succeeded in simple cases, followed closely by GA, but none of the other algorithms
managed to find the ideal locations, and some were not even close. The algorithms did group, more
or less, meaning some level of precision, if not accuracy. Still, GWO, as we’ve seen before, had
occasional fits of lousy performance outside its main cluster of results.

Why did the algorithms fail? Is the task simply too hard? At some level, we would expect
the swarms to fail, certainly as N increases, especially so with the knowledge that the problem is
NP-hard. However, did we do right by the algorithms in our configuration of the problem?

In a sense, no, we did not. Intuition leads us to believe many solution points lie on the edges of
the unit square. Clearly, we don’t need an algorithm to show us the ideal positions for the N = 2
and N = 4 cases; even the N = 5 case is straightforward: points on opposite edges, points on all
corners, and an additional point in the center. So, we should configure our swarms to take advantage
of that fact.

We set the Bounds object to resample; therefore, every time a particle moved a dimension
beyond a boundary, we kicked that dimension back to a new random value. In so doing, we made
it extremely difficult for the swarm to converge on a boundary position, which is precisely what we
need it to do.

Therefore, let’s run again, but this time we’ll change one tiny piece of code. Instead of resample,
we’ll configure the Bounds object to use clip,

b = Bounds([0]*ndim, [1]*ndim, enforce="clip")

Now, boundary violations are clipped to zero or one.
Figure 12.8 shows the effect of the change. The swarms are much more likely to find the ideal

arrangement, or at least get quite close for the given number of swarm iterations. This is true of all
algorithms through N = 4. For N = 5, DE performs well on most runs.

The quality of the search decreases for N = 6 and even more so for N = 7. The N = 8 case is still
worse, overall, but PSO gets “trapped” and produces the same wrong value for all runs, 0.5. From
Figure 12.6, N = 8 leads to the four corners and a smaller inset diamond shape. The PSO results
for N = 8 found all four corners, but never the inner diamond shape. One run produced four corners
and the midpoints of the other four sides, which is the ideal configuration for N = 9 with the one
point in the center at (0.5, 0.5) removed. Indeed, for N = 9, PSO does find the ideal arrangement
on all runs. Clearly, something about how PSO works internally, mixed with the clipping boundary
condition, is forcing this kind of result, which is wrong in one case but correct in another.

Also of interest is Jaya’s performance for N = 9. With one exception, Jaya finds the ideal
arrangement where it was similarly poor for N ≥ 5. Jaya looks at the best and worst the current
swarm has to offer. It’s likely the clipping boundary condition forces the best and worst particle
positions into a configuration that finds the ideal in most cases.

For example, a single run of points.py, with clipping on boundary violations using this com-
mand line,

> python3 points.py 13 25 100000 jaya ri results

produced the following output,

CHAPTER 12. CELL TOWERS AND CIRCLES 210

Optimization minimum -0.36602540 (time = 1137.790)
(651 best updates, 3000030 function evaluations)

(x,y) = (0.00000000, 1.00000000)
(x,y) = (1.00000000, 1.00000000)
(x,y) = (0.68301270, 0.81698730)
(x,y) = (1.00000000, 0.00000000)
(x,y) = (0.00000000, 0.36602540)
(x,y) = (0.63397460, 0.00000000)
(x,y) = (0.18301270, 0.68301270)
(x,y) = (0.00000000, 0.00000000)
(x,y) = (0.31698730, 0.18301270)
(x,y) = (1.00000000, 0.63397460)
(x,y) = (0.36602540, 1.00000000)
(x,y) = (0.50000000, 0.50000000)
(x,y) = (0.81698730, 0.31698730)

where according to [36], the ideal separation for 13 points is

(
√

3− 1)/2 = 0.3660254037844386

meaning Jaya found the ideal arrangement of 13 points to at least eight decimals of accuracy.

12.3 Summary

The experiments in this chapter dealt with covering an area. In the first case, Section 12.1, we
placed simulated cell towers to cover a map while respecting masked regions where no towers could
be placed. We were moderately successful in placing different arrangements in a way that maximized
coverage, though we did fail on occasion, a well-known characteristic of swarm techniques.

In Section 12.2, we abstracted things a bit and asked how to place points on a unit square to
maximize the smallest distance between them. With relatively few swarm iterations, only tens of
thousands, we achieved some excellent placements of points, but not until we configured the search
correctly by clipping on boundary violations. We might view adding clipping as a form of external
knowledge since we could see for basic cases that many points would lie on the edge of the search
range, thereby making it essential to allow the swarms to converge at those positions.

Let’s leave covering problems behind and move on to yet another task, one quite different from
any we’ve explored previously: simulating a grocery store to learn the best ordering of products to
maximize daily revenue.

CHAPTER 12. CELL TOWERS AND CIRCLES 211

N = 2 (12000) N = 3 (18000)

N = 4 (24000) N = 5 (30000)

N = 6 (36000) N = 7 (42000)

N = 8 (48000) N = 9 (54000)

Figure 12.7: Deviation from the ideal point separation for N = 2, . . . , 9 for eight runs of
each algorithm using resampling on boundary violations and the given number of swarm
iterations.

CHAPTER 12. CELL TOWERS AND CIRCLES 212

N = 2 (12000) N = 3 (18000)

N = 4 (24000) N = 5 (30000)

N = 6 (36000) N = 7 (42000)

N = 8 (48000) N = 9 (54000)

Figure 12.8: Deviation from the ideal point separation for N = 2, . . . , 9 for eight runs of each
algorithm using clipping on boundary violations and the give number of swarm iterations.

Chapter 13

Grocery Store Simulation

This chapter presents us with a new situation, one where we need to design, configure, and execute
a simulation in an attempt to learn something useful in the real world.

Our running example is the following: we own a small grocery store and are interested in learning
how to arrange the products to maximize daily revenue.

To accomplish this goal, we first need to design the simulation environment (Section 13.1), then
we need to define the shopper agent (Section 13.2) and the store (Section 13.3). Finally, we simulate
to see what results (Section 13.4).

13.1 The Design

A real grocery store has a physical arrangement of products in space. Shoppers enter the store at
the front and walk through the store to get to the different places where products are located. For
example, there might be a bakery aisle, a deli, and a produce section. Dairy products are in one
location, while breakfast cereals are in another.

Therefore, our simulation needs to capture a grocery store’s physical layout, at least in some
abstract sense. We won’t go so far as to capture an actual store’s physical layout, though one might
imagine doing this. Instead, we’ll use an idealized physical layout. The important fact for us to
realize is our need to model the placement of products in some fashion.

Grocery stores are more or less static in their arrangement of products, but the people who
use the stores are not. We need to consider how shoppers make use of a particular sequence of
products in a store. To do that, we need to model shoppers as active agents where the store, and
its arrangement of products, is the environment where the agents exist and interact.

Shoppers are not all the same. A shopper might go to the store to purchase a single product,
perhaps sugar for her morning coffee, but, while walking through the store, the shopper sees a piece
of candy she likes and buys it on a whim or passes the paper aisle and remembers she needs napkins.
Each shopper is unique and has a different set of goals and priorities in selecting products. Our
simulation needs to capture this to some degree.

So, we need to simulate the store as an environment in which shoppers are the agents. The
collective action of the shoppers will help us determine which environment, meaning arrangement
of products, is most effective at reaching our overall goal of maximizing daily revenue.

Let’s lay out each part of the simulation design and see what it entails.

13.1.1 Inventory

To link our simulation to reality, we need to stock our store with products. For each product, we
need some knowledge of how often it is purchased and how much it costs relative to other products.
The Kaggle Groceries Market Basket dataset contains 169 items and actual purchase frequency over
a specific time interval.

213

CHAPTER 13. GROCERY STORE SIMULATION 214

item purchases item purchases

whole milk 2512 butter 544
rolls/buns 1808 beef 515
yogurt 1371 chocolate 487
root vegetables 1071 chicken 421
shopping bags 968 cream cheese 389
pastry 874 salty snack 371
bottled beer 791 dessert 364
canned beer 763 UHT-milk 328
fruit/vegetable juice 710 berries 326
brown bread 637 onions 304
frankfurter 579 candy 293
coffee 570 misc. beverages 278

Table 13.1: Grocery store products and their purchase frequency.

We’ll use a subset of these items, 24 in total, as our product list. For the cost of each item, we’ll
select it at random from a beta distribution, so the most frequently purchased items are relatively
inexpensive and the least often purchased are more expensive.

The 24 products our store will sell, along with their purchase frequency, are in Table 13.1.
Notice, the most frequently purchased item is milk, and one of the least is candy. The experiments
of Section 13.4 focus on these two products as indicators of how well the product arrangement has
maximized revenue.

Do we expect to learn anything new with this simulation regarding how to arrange products in a
grocery store? No, we don’t. Intuition and experience already tell us frequently purchased products
like milk should be at the back of the store to increase the probability of making an impulse purchase.
Still, as we’ll see, our simulation is sufficiently sophisticated to capture this essential outcome, so
the exercise in designing and implementing a swarm optimization solution is worthwhile.

Let’s make the product name/cost list. We start by paring down the 169 items in the Kaggle
dataset to the 24 of Table 13.1. The full list of product names and purchase frequencies are already
stored in the files item_counts.npy and item_names.npy. From these, we build the products
file like so,

import numpy as np
import pickle

N = 24
ci = np.load("item_counts.npy")
ni = np.load("item_names.npy")
ci = ci[::2]
ni = ni[::2]
ci = ci[:N]
ni = ni[:N]

t = np.random.beta(3.5,1,size=10000000)
h = np.array(np.histogram(t, bins=len(ci))[0])
h = h / h.sum()
pv = 10.0*h + 1

p = [ci,ni,pv]
pickle.dump(p, open("products.pkl","wb"))

CHAPTER 13. GROCERY STORE SIMULATION 215

Figure 13.1: Product costs ($) and likelihood of purchase (x20).

We load the full list of counts (ci) and names (ni). We then keep every other, so our subsample is
evenly distributed throughout the list of products. The item count file is already sorted by decreasing
frequency of purchase. Finally, we keep the first 24 of these items.

Next, we need to determine a price for each item. The monetary unit is irrelevant; the code will
output “dollars”, but it doesn’t have any actual meaning. What matters is the relative value of each
item.

We have the items in decreasing order by purchase frequency. We want the cost to be just the
opposite, so rarely purchased items cost more. Therefore, we want to select prices from a distribution
biased towards higher costs. We’ll do this by setting up a beta distribution, sampling from it many
times, though we could have used the probability distribution function as well, and then arrange a
histogram with 24 bins as the price for each item.

Therefore, we set t to 10 million samples from Beta(3.5, 1) and make a histogram of 24 bins (h).
Next, we scale h by the sum to convert the histogram to a probability distribution, multiply each
bin count by 10 and add one to avoid any item cost of zero. The result is in pv. A plot of pv is in
Figure 13.1 showing increasing cost for items as the probability of selecting the item decreases. We
store ci, ni, and pv in products.pkl. This is our inventory file.

13.1.2 Stores

We seek to learn an arrangement of products for a store. Conceptually, we might think of each
arrangement as a separate store, one per particle where the particle’s position in the 24-dimensional
search space maps to a product order.

Each store is abstracted to its bare minimum. A real store has a specific physical layout. Our
conceptual stores are linear. The shopper walks in on the left, moves from product to product along
the store until finding the desired product, purchases the product, and departs. Simulating this
process is as straightforward as can be: the shopper looks at the list of products, in order, via a
simple loop.

CHAPTER 13. GROCERY STORE SIMULATION 216

Figure 13.2: Two shoppers traversing the one-dimensional store. (Art credit: Joseph
Kneusel)

13.1.3 Shoppers

We’ve mentioned shoppers several times already, and we’ve indicated that the shopper’s actions
based on product arrangement is what we’re trying to simulate. Let’s be more specific.

For us, a shopper is an instance of the Shopper class, which we define in detail in Section 13.2.
Conceptually, a shopper is an agent initialized to purchase a randomly selected target product. The
randomly selected product is the main reason the shopper is at the store. However, the shopper will
also buy three other randomly chosen products if encountered while looking for the target product.
These are impulse buys, and they are the key to learning the proper arrangement of products.
Without the impulse buy possibility, the shoppers will always find their target, and the arrangement
of products will be unimportant.

The target product must be selected appropriately. If the target product was chosen purely at
random, we shouldn’t expect to be able to learn the best ordering as there is nothing to drive the
swarm towards it, even accounting for the impulse buys. However, we have the actual frequency of
purchase information for our products, so when we select the target product, we use this information
to choose items where those most frequently purchased are most likely to be chosen as the target.

If the products are arranged so the most commonly selected product is the first one encountered,
shoppers will often find their target almost immediately and will, therefore, have little opportunity
to find their impulse products. To maximize the revenue for a given shopper, we want the target
product to be near the rightmost part of the store, the back of the store. That way, the shopper
will also hit the impulse buy items and purchase them, too. As we’ll see, the swarms figure this out
as well. And, as Figure 13.1 demonstrates, impulse products are less often purchased but generate
more revenue when they are.

Figure 13.2 presents a cartoon of a store and two shoppers. Shoppers enter the store on the left
and walk left to right, examining products to find their target product. Each shopper is thinking
of a target product (exclamation point) and one of their impulse products (question mark). The
shopper on the left has found his impulse purchase before his target, so he’ll purchase it along with
the target. The shopper on the right has found her target product, but not her impulse product, as
it’s further still to the right. She’ll buy her target but not the impulse product.

The total revenue from a full set of shoppers becomes the objective function value. We have no
idea what the maximum can be, so we’ll use the negative of the revenue and seek to minimize it.

13.1.4 Running the Simulation

Let’s walk through the simulation process. At the start, a swarm is initialized. Each particle of the
swarm represents a possible arrangement of products, or, conceptually, a store. We also initialize a

CHAPTER 13. GROCERY STORE SIMULATION 217

random set of shoppers and pass them to the objective function class instance. This population is
used for the entire search.

With initial stores and shoppers in place, each iteration of the swarm lets the shoppers shop at
the stores and keeps a tally of the amount of money spent. This is the objective function value for the
particles. When all stores have been visited, the swarm updates according to the selected algorithm,
and the process repeats until all iterations have been exhausted. Finally, the best arrangement of
products found is returned as the result of the search.

We have the design, now let’s implement it starting with the Shopper class.

13.2 The Shopper

We intend to use a random collection of shoppers as the means by which we’ll evaluate a particular
store’s arrangement of products. Each shopper is an instance of the Shopper class. Let’s start with
the constructor,

def __init__(self, fi, pv):
self.item_freq = fi
self.item_values = pv
self.target = Select(fi)
self.impulse = np.argsort(np.random.random(len(fi)))[:3]
while (self.target in self.impulse):

self.impulse = np.argsort(np.random.random(len(fi)))[:3]

The constructor accepts fi and pv, the list of products sorted by actual purchase frequency
(highest to lowest) and the cost of each product generated from the code in Section 13.1.1. We’ll
see below when we define the Objective class how we convert purchase counts to frequencies.

The shopper needs a target product, so that is selected next via Select,

def Select(fi):
t = np.random.random()
c = 0.0
for i in range(len(fi)):

c += fi[i]
if (c >= t):

return i

Select returns an index into the list of products using the product frequencies in decreasing order
and a random value in [0, 1). The index is the product number the shopper will look for. By
summing the frequencies until we match or exceed the random value (t), we are more likely to select
commonly purchased items instead of rarely purchased items.

With the target product chosen, we now select three impulse products at random. To do that,
we use this programming idiom,

self.impulse = np.argsort(np.random.random(len(fi)))[:3]

where a random set of values matching the number of products is generated and the sort order
determined (np.argsort). Notice, it’s the set of indices that would sort the random list we need,
and only the first three, hence [:3].

For example, assume np.random has returned,

0.4033, 0.6909, 0.9607, 0.1794, 0.1629, 0.6424

then np.argsort will return,

4, 3, 0, 5, 1, 2

CHAPTER 13. GROCERY STORE SIMULATION 218

as reordering the random values this way will sort them from smallest to largest.
For our purposes, we use the first three of these as product numbers, meaning this shopper

would consider products 4, 3, and 0 to be impulse purchases. The while loop in the constructor for
the Shopper class is there to ensure the target product is not also selected as an impulse purchase
option.

The only other method in Shopper is GoShopping,

def GoShopping(self, products):
spent = 0.0
for p in products:

if (p == self.target):
spent += self.item_values[p]
break

if (p in self.impulse):
spent += self.item_values[p]

return spent

This method is called by Evaluate in the Objective class. Products is a list of product
items in order where the order is generated from the particle position.

The shopper examines the list, item by item, in order, seeking the target. When the target item
is found, its value is added to spent and the loop ends. While looking for the target, if the current
item number (p) is in the set of impulse items list, the shopper buys it as well. When the target
is found, and it always is for our simulation, the total amount spent by the shopper is returned.

The Shopper class is used exclusively by the objective function, so this is the appropriate time
to detail it. The code is straightforward,

class Objective:
def __init__(self, nshoppers, ci, pv):

self.nshoppers = nshoppers
self.item_freq = ci / ci.sum()
self.item_values = pv
self.fcount = 0
self.shoppers = []
for i in range(nshoppers):

shopper = Shopper(self.item_freq, pv)
self.shoppers.append(shopper)

def Evaluate(self, p):
self.fcount += 1
order = np.argsort(p)
revenue = 0.0
for i in range(self.nshoppers):

revenue += self.shoppers[i].GoShopping(order)
return -revenue

where we have only two methods, the constructor and Evaluate.
The constructor accepts the number of shoppers to generate, the item purchase list (counts or-

dered by decreasing purchase frequencies), and each item’s assigned price. The counts are converted
to frequencies (item_freq), thereby mapping them to [0, 1]. The number of shoppers, frequencies,
values, and call counter (fcount) are stored and initialized.

Next, the set of shoppers is created. Recall, this collection is used for the entire simulation. A
simple loop appending new Shopper instances to shoppers is all that’s required.

During the search, calls to Evaluate pass in the particle position, as always (p). We bump the
call counter and then map the particle position to the order of products with,

order = np.argsort(p)

As we’ll see, particle positions are continuous vectors in [0, 1) with one element for each product.
We have 24 products, so our particle positions are 24-dimensional vectors. The actual elements

CHAPTER 13. GROCERY STORE SIMULATION 219

of the position are not themselves the product numbers. Instead, the sort order generated by the
continuous values creates the item numbers. We saw above how np.argsort gives us the set of
indices into a vector that will sort it in order.

Why did we do this? We did this because if we wanted the particle positions to be the actual
item numbers, we’d need to search a space bounded by [0, 23] with discrete values for each element.
It’s simpler to let the swarms operate on their natural inputs, namely floating-point values. We’ve
seen other cases where we have enforced discrete values via the Validate method of some subclass
of Bounds, but for this task, it seemed less cumbersome to use the sort order instead. This level of
indirection, as it were, from what the particle position represents to what we want to manipulate,
works rather well. Also, we’ve stated previously that one power of swarm techniques is how we map
the swarm particles to a solution to our problem. Using the sort order of a continuous vector is just
one more example of that.

The Evaluate method passes the order list to each of the shoppers and tallies the revenue
generated by this ordering of products. When done, it returns the negative of this value.

13.3 The Store

Section 13.2 above detailed how we’ll implement shoppers. Let’s now look at the main portion
of store.py which implements the store simulation. The layout is quite similar to our previous
experiments.

To tailor the simulation to our task, we need only implement the Objective class, described
above. We’re using particle positions in [0, 1], so the boundaries are straightforward; no subclass of
Bounds is needed.

The store.py script starts like all our experiments: it loads the necessary modules, including
those of the framework, and expects a command line like this,

> python3 store.py products.pkl 50 30 4000 GA RI

where products.pkl is our product list. See Section 13.1.1 for details on how this file was created.
We use the same file for all simulations. Next, we’ll use 50 shoppers, a swarm of 30 particles run for
4000 iterations. The selected algorithm is GA with random initialization. We’ll examine the script
output in the next section; for now, let’s look at the relevant code.

First, we parse the command line and load the products file,

products = pickle.load(open(sys.argv[1],"rb"))
nshoppers = int(sys.argv[2])
npart = int(sys.argv[3])
niter = int(sys.argv[4])
alg = sys.argv[5].upper()
itype = sys.argv[6].upper()

Next, we set up the framework components,

ci = products[0] # product counts
ni = products[1] # product names
pv = products[2] # product values
pci = ci / ci.sum() # probability of being purchased
N = len(ci) # number of products

ndim = len(ci)
b = Bounds([0]*ndim, [1]*ndim, enforce="resample")

if (itype == "QI"):
i = QuasirandomInitializer(npart, ndim, bounds=b)

elif (itype == "SI"):
i = SphereInitializer(npart, ndim, bounds=b)

CHAPTER 13. GROCERY STORE SIMULATION 220

else:
i = RandomInitializer(npart, ndim, bounds=b)

obj = Objective(nshoppers, ci, pv)

We split the products input into counts (ci), names (ni), and costs (pv). We set pci to the
frequency of purchase and N to the number of products. We’ll use pci and ni below. All the swarm
cares about is ci and pv.

The number of products in the store fixes the dimensionality of the swarm (ndim). Bounds are
[0, 1] in all dimensions with resampling on boundary violations. In this case, using clipping makes
no sense as the particle position’s sorted order is what we are after. Fixing elements at zero or one
would break that mapping.

The proper initialization object is created, followed by an instance of the Objective class
passing in the number of shoppers, the list of product counts, and product costs.

Initialization of the swarm means a random [0, 1) vector for each particle, implying a random
ordering of products.

The proper swarm object is next. We’ll skip the code here; we’ve seen it many times before. For
our experiments, we’re using each algorithm in its default configuration. For PSO we use a default
instance of LinearInertia.

With all this preparation, running the search is anticlimactic,

swarm.Optimize()
res = swarm.Results()

where everything interesting happens after the run and is contained in the results, res.
This script creates no output files. Instead, it generates a report dumped to the screen. We’ll

capture this output during the experiments of Section 13.4 and parse it to extract the values used
to generate the plots, etc.

The output includes statistics like the number of updates, function evaluations, and search time.
We also output the maximum revenue and the product ordering that led to it,

print()
print("Maximum daily revenue %0.2f (time %0.3f seconds)" %

(-res["gbest"][-1], en-st))
print("(%d best updates, %d function evaluations)" %

(len(res["gbest"]), obj.fcount))
print()
print("Product order:")
order = np.argsort(res["gpos"][-1])
ni = ni[order]
pci= pci[order]
pv = pv[order]
for p in range(len(pv)):

print("%25s (%4.1f%%) ($%0.2f)" % (ni[p], 100.0*pci[p], pv[p]))
if (ni[p] == "whole milk"):

milk_rank = p
if (ni[p] == "candy"):

candy_rank = p
print()
print("milk rank = %d" % milk_rank)
print("candy rank = %d" % candy_rank)
print()

We know physical grocery stores often put the milk at the back of the store. It’s a frequently
purchased item, so making people walk through the store to get to it maximizes the likelihood they
will make impulse purchases. Likewise, candy is often near the front of the store to maximize an
impulse purchase probability. Therefore, if our simulation is working and sufficiently sophisticated,

CHAPTER 13. GROCERY STORE SIMULATION 221

it should generate product sequences that place candy near the front of the store and milk near the
back. This is why the code above reports the milk and candy rankings.

To conclude the script, we split the products, in the selected order, into two halves and report
the median probability of being selected and the median product cost,

print("Upper half median probability of being selected = %4.1f" %
(100.0*np.median(pci[:N//2]),))

print(" median product value = %4.2f" %
(np.median(pv[:N//2]),))

print("Lower half median probability of being selected = %4.1f" %
(100.0*np.median(pci[N//2:]),))

print(" median product value = %4.2f" %
(np.median(pv[N//2:]),))

print()

Again, knowing how actual stores are typically arranged, we hope that the swarm generates a product
list where less often purchased but more expensive items are near the front of the store (the top half
of the product list) while less costly but more frequently purchased items migrate to the back of the
store (the bottom half of the list).

13.4 The Simulation

A typical run of store.py using the command line given in Section 13.3 produces

Maximum daily revenue 252.18 (time 809.094 seconds)
(33 best updates, 120030 function evaluations)

Product order:
canned beer (4.4%) ($1.08)

candy (1.7%) ($2.23)
butter (3.1%) ($1.29)

dessert (2.1%) ($1.76)
chicken (2.4%) ($1.49)

chocolate (2.8%) ($1.42)
UHT-milk (1.9%) ($1.87)
berries (1.9%) ($1.98)

salty snack (2.1%) ($1.66)
pastry (5.1%) ($1.04)
coffee (3.3%) ($1.23)

misc. beverages (1.6%) ($2.37)
cream cheese (2.3%) ($1.57)
brown bread (3.7%) ($1.15)
frankfurter (3.4%) ($1.19)

fruit/vegetable juice (4.1%) ($1.11)
beef (3.0%) ($1.35)

root vegetables (6.2%) ($1.01)
bottled beer (4.6%) ($1.06)

yogurt (7.9%) ($1.01)
whole milk (14.5%) ($1.00)

onions (1.8%) ($2.10)
shopping bags (5.6%) ($1.02)

rolls/buns (10.5%) ($1.00)

milk rank = 20
candy rank = 1

Upper half median probability of being selected = 2.3
median product value = 1.58

CHAPTER 13. GROCERY STORE SIMULATION 222

Lower half median probability of being selected = 4.3
median product value = 1.09

At the top, we’re told the best arrangement found generated $252.18 for 50 shoppers. We see the
run time as well, not optimized, as always. We’re also told there were 33 times the best arrangement
was updated and a total of 120,030 objective function evaluations. The first number in parentheses
is the actual probability of purchase for the item from our list of products. The next number is the
cost we assigned to the item.

We’re using milk and candy and proxies to tell if our ordering it a good one or not. The lower
milk’s ranking and the higher candy’s, the better we believe the ranking to be. For this run, milk
was ranked 21st out of 24 products. Candy was ranked second (counting the top item as rank zero).
Therefore, from this alone, we might think we have a good result.

The bottom portion of the report gives us the median selection probabilities, as percents, for the
top half of the list and then the bottom half. This is the median of the actual purchase probability.
We expect that the lower half probability of being purchased will be higher than the upper half, and
it is in this case.

Finally, we get the median value of the top and bottom half of the list. Like the probability of
purchase, we expect the top portion of the list to be more expensive than the bottom, and in this
case, it is.

Let’s configure and run a series of experiments testing each algorithm multiple times to gain a
broad picture of how well they do on this task.

13.4.1 Testing the Algorithms

A simple shell script, store_experiments, contains instructions for twenty runs of each algorithm
with the output of each run piped to a file.

Each run uses a swarm of 30 particles and 4000 iterations. We cannot stop early; we don’t
know what a good score is, but we hope that 4000 iterations of the swarm will move us in the right
direction.

We’ve used the algorithms extensively to get to this point in the book. We have developed some
intuition about them. Let’s make predictions on what we expect to see based on that intuition.

As the order of the products changes during the search, we do think pushing more commonly
purchased, but cheaper items to the bottom of the list (the back of the store) will lead to improved
revenue, so this isn’t a blind search for one, magic arrangement of products. As the swarm moves
in a specific direction, we expect it to pull other particles with it as the various update rules are
followed.

Therefore, we anticipate algorithms with strong interactions between particles will do well. This
means DE, PSO, Jaya, and GWO. We’ve seen Jaya converge slowly in some cases, and we’ve seen
inconsistent performance from GWO, so we’ll keep an eye out for those effects.

What about GA and RO? The space we’re searching is 24 dimensional and bounded uniformly,
so there is a good chance evolution with crossover and mutation might lead to good results. Plus,
4000 iterations is more than we’ve typically worked with, and we know GA likes to take its time
exploring.

RO, on the other hand, is a parallel, local-oriented search with no interaction between particles.
Like the proverbial monkeys at their keyboards, RO will explore and explore and find a satisfactory
arrangement with enough time. Will 4000 iterations be enough? Might we need to adjust RO’s one
parameter a bit to cover the space more rapidly? We’ll see.

We’ll run store_experiments as specified above. When the script is done, we’ll have six
output directories, one for each algorithm, and inside of those directories, we’ll have twenty output
file like the one above. Running store_analysis.py parses the output files, generates an overall
summary, and produces a series of plots showing the milk and candy rankings per algorithm.

The mean ± SE milk and candy rankings across all twenty runs and algorithms are,

PSO : milk: 20.60 +/- 0.59 (23, 15), candy: 6.85 +/- 1.22 (18, 0)
DE : milk: 21.25 +/- 0.35 (23, 18), candy: 5.50 +/- 1.21 (23, 0)

CHAPTER 13. GROCERY STORE SIMULATION 223

RO : milk: 19.65 +/- 0.84 (23, 11), candy: 6.70 +/- 0.98 (15, 2)
GWO : milk: 20.30 +/- 0.75 (23, 10), candy: 5.45 +/- 0.88 (13, 0)
Jaya: milk: 20.65 +/- 0.61 (23, 14), candy: 6.50 +/- 1.28 (16, 0)
GA : milk: 21.05 +/- 0.75 (23, 9), candy: 5.80 +/- 1.21 (15, 0)

The minimum and maximums are also given in parentheses.
If we believe the rankings of milk and candy indicate a good ordering, then we can order the

results by the difference in the means, treating larger as better. Doing so gives

DE 15.75
GA 15.25
GWO 14.85
Jaya 14.15
PSO 13.75
RO 12.95

handing the top rank to DE, followed by GA with a strong showing from GWO.
Of course, daily revenue is the objective function we seek to maximize. The mean daily revenue

(± SE) leads to the following ordering,

DE $247.16 ± 1.35
PSO $246.93 ± 1.25
Jaya $245.41 ± 1.37
GWO $245.14 ± 1.63
GA $245.09 ± 1.93
RO $220.59 ± 2.09

which again gives the nod to DE followed closely by PSO. However, the standard errors are large.
A t-test between DE and GA returns p = 0.39 indicating there is likely no meaningful difference
between DE, PSO, Jaya, GWO, and GA in terms of maximizing revenue. However, a t-test between
DE and RO leads to p < 0.0001, so it is fair to say that RO is not doing as well as we might hope.

Figure 13.3: Per run rankings of milk (circle) and candy (square) by algorithm.

Figure 13.3 presents the per-run milk (circle) and candy (square) ranks by algorithm. In general,
the algorithms do learn to separate the two. Only once, run 18 of DE, sees milk and candy trade
places, though GA run 9 comes close. So, the searches are separating our proxy products as we

CHAPTER 13. GROCERY STORE SIMULATION 224

expect, even RO, but the remaining ordering of the products leads to increased revenue, and here,
RO seems to be doing poorly.

The store_convergence.py script analyzes a single run of each algorithm using 50 shoppers,
30 particles, and 4000 iterations. We want to see how the swarms converge, and we’ll do so by
tracking the best revenue found as a function of iteration. The result is Figure 13.4.

Figure 13.4: Best revenue found by iteration and algorithm type.

All the algorithms, except RO, show a rapid increase in revenue early on, which we might expect
given random initialization. However, after about 100 iterations, most algorithms slow dramatically
except GA and PSO, though the latter has a long period of little improvement followed by several
jumps at later iterations. Jaya plateaus quickly and shows little change after that. GWO makes one
jump around iteration 1500, and DE takes small steps throughout the search. Figure 13.4 is a single
snapshot of the overall performance of the algorithms. We saw above that repeated applications
lead to virtually equivalent performance between all the algorithms except RO. RO’s performance
in Figure 13.4 is definitely lackluster.

13.4.2 Working with RO

What makes RO do poorly on this task? We can look at the ordering of products generated by RO
and, for comparison, DE, to see if anything pops out at us.

Figure 13.6 shows the final product order generated by a single search each for RO and DE.
The swarm was slightly larger than what we’ve used above, 40 particles, and the search ran for
16,000 iterations. The final revenue generated, recalling that revenue is dependent somewhat on
the randomly generated set of shoppers for each search, was $245.32 for RO and $254.67 for DE,
following the typical ordering we saw above, though the RO revenue was higher. We’ll explore this
effect shortly.

The plots of Figure 13.6 show us what we hoped to see. On the left, for both algorithms, more
expensive items were near the front of the store (shoppers view products from left to right), though
DE had more such items than RO. For RO, the middle part of the store contained most of the
expensive items. And, for both, the back of the store (right) contained cheaper items, on average,
as we hypothesized.

The right side of Figure 13.6 shows the same product ordering, but the y-axis is now the cost
of the product times the probability of it being purchased. Here, we expect to see less frequently

CHAPTER 13. GROCERY STORE SIMULATION 225

Figure 13.5: (Left) Product order and cost. (Right) Product order and cost times probability
of selecting the product.

purchased items on the left and more regularly purchased items on the right. In a sense, the cost
times the probability is an expectation of the amount of revenue generated by the product given
its current placement. Again, overall, the less frequently purchased items ended up where expected,
as did the more regularly purchased items. Notice, for DE, one item near the front of the store
has a higher probability of being purchased than the others. This item is bread rolls with an actual
purchase frequency of about 10%. Would this sort of ordering repeat itself? Is DE, and by extension
the other algorithms except for RO, capturing something more beyond the straightforward product
order we anticipated we’d see? Repeated experiments might show something, but it’s also likely that
the placement of bread rolls was due to the particular set of shoppers generated for the DE search.

We saw above that RO performed poorly relative to the other algorithms. The product ordering
run for 16,000 iterations, instead of only 4000, showed a marked improvement in RO’s results. We
know RO is slow and will not converge quickly; its movement through the search space is controlled
by the value of η, the scale factor. Let’s explore RO’s performance as a function of η.

The script store_eta_experiments uses store_ro.py, a slight variation of store.py,
to run a series of experiments where η is varied from 0.01 to 2.0. The store_eta_analysis.py
script generates a summary of the experiments for six runs at each η value. For all experiments, we
persist in using 50 shoppers, 30 particles, and 4000 iterations.

Figure 13.6: (Left) Milk and candy positions as a function of η. (Right) Revenue as a
function of η.

Figure 13.6 shows us the results. On the left, we see the maximum separation between milk and
candy positions occurs when η = 1.0. Likewise, at η = 1.0, we get the largest revenue of $252.87,
in line with the results found by the other algorithms. Therefore, in this case, it pays to adjust the
swarm’s parameters.

CHAPTER 13. GROCERY STORE SIMULATION 226

13.4.3 Varying the Number of Shoppers

All of our experiments fixed the number of shoppers at 50. What effect might we see if we vary the
number of shoppers?

Let’s use Jaya as a representative algorithm. We’ll fix the random number seed when selecting
the initial swarm configuration and again after setting up the Objective instance. Therefore, the
only variation between runs will be the random configuration of the N shoppers. We’ll vary N from
a low of 10 to a high of 1000.

The code is in store_shoppers.py and it makes use of a slight variation of store.py to fix
the random number seed, see store_shop.py.

Running store_shoppers.py creates multiple output files in the shoppers directory. We’ll
create two NumPy files by hand using the .txt output to capture the best revenue (revenue.npy)
and another with the corresponding number of shoppers (nshoppers.npy). As the number of
shoppers increases, so does the revenue per day, so we’ll look at the revenue per shopper.

Figure 13.7: (Left) Revenue per shopper. (Right) Distance between product order found
and order implied by the actual purchase frequency.

The left side of Figure 13.7 presents the revenue per shopper for the best product ordering
as a function of the number of shoppers. We might expect the revenue per shopper to be roughly
constant; however, this is not the case. As the number of shoppers increases, the revenue per shopper
decreases. Why?

The swarms seem to be finding product arrangements tailored to the particular set of shoppers,
one that is fitted to the “peculiarities” of their buying habits and therefore leads to a specific
arrangement that maximizes revenue. In a sense, this is much like the overfitting that can happen
when training a neural network – the network becomes very good at the minutiae of the training set
but loses the ability to generalized to new data.

To test this idea, we’ll examine the order of the products as a function of the number of shoppers.
As our one-dimensional store is simple, we might expect over time that the product order will become
closer and closer to the product order found when arranging the products from least likely to be
purchased to most likely.

Each search generated a product order found by applying np.argsort to the best swarm gpos
vector. We also know that the products are arranged in products.pkl from most frequently
purchased to least purchased. Therefore, if we calculate a distance between the product order found
by the swarm and the reverse of the product order, we’ll have a measure of how far the swarm order
is from the “ideal.” We’re using integers as product identifiers, so the previous sentence boils down
to measuring a distance between the swarm product order and the vector

(0, 1, 2, 3, . . . , 22, 23)

since we have 24 products. We’ll use the absolute value of the difference between components and
sum to get a single number. If the swarm’s product order matches the reverse of the product purchase

CHAPTER 13. GROCERY STORE SIMULATION 227

frequencies, the distance is zero. So, smaller distance implies an order more like the expected “ideal”
order. The code we need is in the product_order.py script. The distance calculation is

def dist(b):
a = np.arange(len(b))[::-1]
w = np.arange(len(b))
n = np.argsort(b)
z = np.abs(w-a).sum()
return np.abs(a-n).sum() / z

where b is the best gpos found by the swarm, a is the ideal order, and w is the worst possible order,
the flip of a. First, sort b to get n, the swarm product order, then calculate z, the largest possible
distance, and return the distance between n and a as a fraction of this largest possible distance.
The result is the right side of Figure 13.7.

The distance decreases as a function of the number of shoppers. By the time we have 1000
shoppers, any benefit to maximizing revenue by tailoring product arrangement to the particulars of
the crowd has been washed out and the resulting product order is quite close to the ideal.

In this chapter, we developed a grocery store simulation. We showed it was sufficiently realistic
to capture the essential tenet of grocery store product layout: put the most frequently purchased
items in the back. We learned that all of our swarm algorithms were capable of discovering this fact,
though we needed to tweak RO’s η parameter a bit to get it to work well.

Optimizing characteristics of a system with swarms using simulation opens up to us a wide range
of possible applications. It seems likely that swarms would work well even with very sophisticated
simulation environments and multiple agents. We might want to optimize some characteristics of
the environment, as we did here with product placement, or the agents themselves.

Chapter 14

Discussion

We covered a lot of ground in this book, both figuratively and (quasi)-literally via the cell tower
experiment. In this final chapter, let’s pull everything together with a brief discussion. Specifically,
let’s conclude the book by offering some final thoughts on each of the algorithms, followed by some
thoughts on the book as a whole.

Of the dozens and dozens of potential metaheuristic algorithms out there, six were selected for
our framework and experiments. The selection process was not scientific but based on experience,
diversity of approach, and a desire to include the tried-and-true with the up-and-coming. Addi-
tionally, and particularly for the newer algorithms, ease of use and implementation were essential
criteria. After all, the point of building the framework was to illustrate in code how the algorithms
function and to provide a core set of basic implementations for you to use when developing your
own versions for various projects.

Perhaps the most valuable lesson from this book is that the “no free lunch” theorem is true. It is
necessary to be familiar with many different approaches to metaheuristics to select a good algorithm
for a particular task, or, at least, to have something else to try should your favorite algorithm fail,
as it most assuredly will at some point.

Differential Evolution

Differential evolution has been around for some time and is the topic of many research papers
and books. Like seemingly all metaheuristics, variations abound. Our implementation focused on
two standard approaches with slight tweaks, such as adding the “toggle” option to shift between
“random” and “best” modes.

It’s plain that DE is a robust algorithm. However, DE was a terrible option for the 0-1 knapsack
experiment and performed relatively poorly at image segmentation.

Differential evolution seems to operate best when the search space is continuous and the objective
function is more mathematical. For example, the 0-1 knapsack problem is discrete, binary, and
combinatorial. DE’s penchant for rapid convergence, seen repeatedly in our convergence plots,
indicates exploitation trumps exploration more often than not. All the same, differential evolution
should be a prominent tool in your swarm optimization toolbox – well-worn and frequently applied.

Particle Swarm Optimization

Particle Swarm Optimization is another go-to algorithm, one that I have used frequently over the
years.

There exist a legion’s worth of PSO variants. We used canonical PSO for most of our experiments
even though the code supports the bare-bones variant. Similarly, we did not use neighborhoods,
though the ring topology is an option. To keep the code simple, we ignored more complex but
arguably better neighborhood topologies like von Neumann, which I’ve found particularly helpful

228

CHAPTER 14. DISCUSSION 229

at times. Therefore, we shouldn’t be too critical of PSO’s performance in our experiments. PSO
is a robust, general-purpose algorithm. I think it is suitable for both highly numerical tasks with
a continuous, smooth search space and more abstract search spaces. However, the latter case is
likely best served by PSO variants tailored to discrete spaces or which emphasize exploration over
exploitation.

For the melody experiments, PSO generated pleasant melodies with variation. DE converged
strongly to a particular melody in the set of similar melodies and minimized variation. From a
creativity perspective, PSO might be the better algorithm in this case.

Particle swarm optimization should be a primary component of your swarm optimization toolbox.
At some point, do take time to explore some of the many variations, including the von Neumann
topology, and the literature, including books.

Grey Wolf Optimizer

As a newer algorithm, I had high hopes for the Grey Wolf Optimizer – doubly so because it has
(virtually) no adjustable parameters. While it did not entirely disappoint, there is a tendency to
behave erratically, with excellent results followed by complete failures. Granted, we seldom adjusted
the one parameter and saw that we needed to do so for our example problem in Part I of the book.

GWO did converge more rapidly than Jaya in many cases, which was helpful. I would continue
to work with this algorithm as the plethora of references implies suitability for many tasks. It is
worth noting that GWO, along with RO, was well-suited to the 0-1 knapsack experiment when other
algorithms like DE, Jaya, and GA were complete failures. Additionally, GWO performed reasonably
well for most of the other experiments, occasional erratic outbursts aside.

Jaya

Our other new algorithm, Jaya, has no tunable parameters. The simplicity of the algorithm is a
strength. Many algorithms, like PSO, focus on the best position the swarm has found, but Jaya also
considers the worst and tries to move away from it. The candidate position tried for each particle
is a straightforward blending of the two, of the best and the worst. Additionally, unlike PSO, the
candidate position is only selected should it result in an improved objective function value.

However, we saw several instances where Jaya took many iterations to converge or failed to
converge at all. With no tunable parameters, Jaya either works well for a task, or it doesn’t.

The CandidatePositions method in Jaya.py uses two uniform [0, 1) random vectors to
scale the difference between the current particle position and the swarm best and worst. Might it be
possible to add a tuning parameter here to balance the two terms? We do not have space to explore
that option, but it isn’t hard to do, should a curious reader wish to try it.

The elegance of Jaya makes it an algorithm to be aware of and try. Jaya performed best on image
segmentation and enhancement. It was least-suited to the 0-1 knapsack and, somewhat surprisingly,
the merging of melodies. Many have been victorious with Jaya, so it’s worth keeping in your back
pocket to pull out from time to time.

Genetic Algorithm

The genetic algorithm functions differently from the other algorithms, though it has a passing
similarity to differential evolution and random optimization. GA is similar to DE as both use
genetic crossover and mutation concepts, though DE’s version is more sophisticated. GA is similar
to RO in that there is only an implicit rule favoring better positions in the search space for the entire
swarm. RO is simpler still, but in GA, the increased likelihood of selecting a more fit candidate
for crossover is all that drives the swarm towards better positions in the search space. There is no
intention, only a hopeful percolation of reasonable solutions via breeding and random mutation.

CHAPTER 14. DISCUSSION 230

The convergence rate for GA is known to be slow at times. This makes sense as in place of an
update rule using important positions known from the entire swarm, like PSO, GWO, or Jaya, GA
relies on improving positions by breeding with the more fit members of the swarm.

GA performed well on image segmentation, cell tower placement, and the grocery store sim-
ulation experiments. Conversely, GA performed poorly on the 0-1 knapsack, curve fitting, image
registration, and image enhancement tasks. We know GA evolves the swarm by random mixing
and mutation and not by directly accounting for the objective function values. Instead, objective
function values are used implicitly by increasing the probability of selecting a more suitable breeding
partner. Therefore, we might expect GA to work well for tasks where the search space is not smooth.
For example, suppose the task is such that one position in the search space has a very different ob-
jective function value than a position close to it. In that case, GA might be able to accomplish the
goal where other algorithms fail as the other algorithms will, by design, attempt to use knowledge
about the positions of the other particles to generate a new set of positions. For example, I’ve been
successfully applying this GA algorithm to the problem of genetic programming, of evolving code
to solve a particular task.

The thought above might be an explanation for GA’s overall performance. For example, the
grocery store simulation might be such that a minor tweak to the arrangement leads to a very
different daily revenue. Additionally, the experiments where GA performed poorly are primarily
ones where the objective function is continuous and might be expected to be smooth. Thus, a slight
change in position results in a similar small change in the objective function value. It is easy to
believe this of curve fitting, image registration, and our approach to image enhancement, as all of
these need carefully tuned positions to return an acceptable result.

However, GA performed poorly on the 0-1 knapsack, a likely counter-example to the notion
of working well in search spaces that are not smooth. Similarly, GA performed well on image
segmentation via fitting multiple Gaussians to the image histogram. Again, this might be thought
of as a smooth search space. So, the thought above is to be taken with a grain of salt as a possible
contributing factor and not a definitive explanation. Regardless, GA is widely used, typically in
another form, and worth including in your optimization toolbox to be a light to you in dark places,
when all other lights go out.

Random Optimization

Random optimization is perhaps the oldest and most obvious approach to derivative-free optimiza-
tion. Barring any auxiliary knowledge of the search domain, it makes sense to start somewhere and
move to a new position when somewhere still better is found. If starting somewhere, why not start
many “somewheres” and use a swarm of non-interacting particles with an overseer tracking the best
position found overall? The extreme simplicity of the algorithm invites modification. We used a
reasonable method of selecting new candidate positions: a random position based on a Gaussian
distribution. Other selection methods, perhaps a Levy flight, might make sense as well. Or, what
about tracking the number of candidate positions tried by iteration and, if little or no improvement
happens for some number of iterations, jump to a new, random point in the search space any-
way? Such modifications are straightforward to experiment with, adjust CandidatePositions
in RO.py to reflect whatever you have in mind and give it a go.

Random optimization performed well on the 0-1 knapsack problem. One reason might be that
RO is all about exploration and has no swarm-wide mechanism to force exploitation. Therefore,
becoming trapped in a local minimum might be more challenging for RO, even if it takes longer to
find a good solution.

Random optimization was also reasonably good at segmenting grayscale images via fitting the
histogram as a sum of Gaussians. This was somewhat unexpected since RO was not good at curve
fitting. The difference might lie in the level of precision necessary. A reasonable set of Gaussians,
whose center positions set the partitioning of the histogram, might be something random exploration
can find. However, falling into a deep minimum to get parameters to many significant figures requires
a level of exploitation beyond what RO can typically provide.

CHAPTER 14. DISCUSSION 231

Random optimization might be suitable for tasks where “good enough” is a valid solution, but
if the goal is to fine-tune a solution to several digits of accuracy, whatever that phrase means for
the task, then RO might not be the best option.

Denouement

If you are still with me at the end of the book, congratulations. I hope you enjoyed your journey and
have already discovered places where you can apply the techniques and algorithms we explored. After
all, the book’s point is to introduce you to metaheuristics so that you might use them elsewhere. This
book has been a direct attempt at proselytization to spread awareness of metaheuristic algorithms
and their diverse utility. Hopefully, you have been converted.

We started the book by introducing the idea of metaheuristic algorithms. We selected a represen-
tative set of algorithms from among the masses and built a Python framework for our experiments.
This was Part I of the book. In Part II, we explored the algorithms by conducting a series of ex-
periments. The experiments were selected to be diverse in their goals, interesting enough to read
through, and simple enough to implement, thereby giving the algorithms and their performance
center place at all times.

I had considerable fun developing this book, and I’ve wanted to write this book for some time
as I feel swarm approaches are underappreciated. I also wrote this book because I get a kick out of
using randomness for constructive purposes. After all, randomness generating something useful is
precisely how we, i.e., humanity, got here in the first place.

To move on from this book, I suggest falling down the rabbit hole before you when entering
”metaheuristics” or “swarm optimization” into any Internet search engine. Additionally, there are
many technical books on swarm algorithms, books far more detailed than this one.

The idea that most nature-inspired algorithms capture some similar essence (a quintessence?)
is supported by the fact that, however loosely, and sometimes very loosely, the algorithms are
“nature-inspired.” Evolution has solved the optimization problem in many different ways. Always
the tinkerer, evolution uses what is at hand to generate multiple, yet similar, solutions to a set of
frequently encountered problems. Eventually, humans came along, hijacked those solutions, refined
them, and set them loose to do our bidding – randomness generating order, which then used random-
ness to generate subordinate order. This analogy also indicates that it’s likely most nature-inspired
algorithms are highly similar, even to the point of being largely interchangeable, and there is little
reason to prefer one over another. It’s perhaps best to stick with the tried-and-true classics, at least
at first.

This book presented a powerful approach to problem-solving, one that is widely applicable,
highly generic, and often elegant. It implemented and discussed the algorithms giving you a code
template for your use. Please do use it, and if you arrive at a brilliant solution to an otherwise
intractable problem, fantastic.
Keep calm and swarm on!

Bibliography

[1] Kenneth Sorensen, Marc Sevaux, and Fred Glover. A history of metaheuristics. arXiv preprint
arXiv:1704.00853, 2017.

[2] Jörg Stork, Agoston E Eiben, and Thomas Bartz-Beielstein. A new taxonomy of continuous
global optimization algorithms. arXiv preprint arXiv:1808.08818, 2018.

[3] Krishna Gopal Dhal, Swarnajit Ray, Arunita Das, and Sanjoy Das. A survey on nature-
inspired optimization algorithms and their application in image enhancement domain. Archives
of Computational Methods in Engineering, 26(5):1607–1638, 2019.

[4] Ümit Can and Bilal Alataş. Physics based metaheuristic algorithms for global optimization.
2015.

[5] Kenneth Sörensen. Metaheuristicsthe metaphor exposed. International Transactions in Oper-
ational Research, 22(1):3–18, 2015.

[6] Fouad Bennis and Rajib Kumar Bhattacharjya. Nature-Inspired Methods for Metaheuristics
Optimization: Algorithms and Applications in Science and Engineering, volume 16. Springer,
2020.

[7] Xin-She Yang. Nature-inspired algorithms and applied optimization, volume 744. Springer,
2017.

[8] Modestus O Okwu and Lagouge K Tartibu. Metaheuristic Optimization: Nature-Inspired Algo-
rithms Swarm and Computational Intelligence, Theory and Applications, volume 927. Springer
Nature, 2020.

[9] Patricia Melin, Oscar Castillo, and Janusz Kacprzyk. Nature-inspired design of hybrid intelligent
systems. Springer, 2017.

[10] Xin-She Yang. Nature-inspired optimization algorithms. Academic Press, 2020.

[11] Michael A Lones. Mitigating metaphors: A comprehensible guide to recent nature-inspired
algorithms. SN Computer Science, 1(1):49, 2020.

[12] Albert Y Zomaya. Handbook of nature-inspired and innovative computing: integrating classical
models with emerging technologies. Springer Science & Business Media, 2006.

[13] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-
International Conference on Neural Networks, volume 4, pages 1942–1948. IEEE, 1995.

[14] James Kennedy. Bare bones particle swarms. In Proceedings of the 2003 IEEE Swarm Intelli-
gence Symposium. SIS’03 (Cat. No. 03EX706), pages 80–87. IEEE, 2003.

[15] Maurice Clerc and James Kennedy. The particle swarm-explosion, stability, and convergence in
a multidimensional complex space. IEEE transactions on Evolutionary Computation, 6(1):58–
73, 2002.

[16] Frans Van Den Bergh and Andries Petrus Engelbrecht. A study of particle swarm optimization
particle trajectories. Information sciences, 176(8):937–971, 2006.

232

BIBLIOGRAPHY 233

[17] R Rao. Jaya: A simple and new optimization algorithm for solving constrained and uncon-
strained optimization problems. International Journal of Industrial Engineering Computations,
7(1):19–34, 2016.

[18] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey wolf optimizer. Ad-
vances in engineering software, 69:46–61, 2014.

[19] Ravipudi Venkata Rao. Jaya: an advanced optimization algorithm and its engineering applica-
tions. Springer, 2019.

[20] Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization, 11(4):341–359, 1997.

[21] David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67–82, 1997.

[22] Daniela Zaharie. Parameter adaptation in differential evolution by controlling the population
diversity. In Proceedings of the international workshop on symbolic and numeric algorithms for
scientific computing, pages 385–397, 2002.

[23] Josef Tvrd́ık. Differential evolution with competitive setting of control parameters. Task quar-
terly, 11(1-2):169–179, 2007.

[24] Philip R Bevington and D Keith Robinson. Data reduction and error analysis for the physical
sciences mcgraw-hill. New York, 19692:235–242, 1969.

[25] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

[26] Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural net-
works through neuroevolution. Nature Machine Intelligence, 1(1):24–35, 2019.

[27] Apurba Gorai and Ashish Ghosh. Gray-level image enhancement by particle swarm optimiza-
tion. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pages
72–77. IEEE, 2009.

[28] Tahereh Hassanzadeh, Hakimeh Vojodi, and Fariborz Mahmoudi. Non-linear grayscale image
enhancement based on firefly algorithm. In International Conference on Swarm, Evolutionary,
and Memetic Computing, pages 174–181. Springer, 2011.

[29] Sanjay Agrawal and Rutuparna Panda. An efficient algorithm for gray level image enhance-
ment using cuckoo search. In International Conference on Swarm, Evolutionary, and Memetic
Computing, pages 82–89. Springer, 2012.

[30] PP Sarangi, BSP Mishra, Banshidhar Majhi, and S Dehuri. Gray-level image enhancement
using differential evolution optimization algorithm. In 2014 international conference on signal
processing and integrated networks (SPIN), pages 95–100. IEEE, 2014.

[31] Swagat Kumar Behera, Satyasis Mishra, and Debaraj Rana. Image enhancement using acceler-
ated particle swarm optimization. International Journal of Engineering Research & Technology,
4(03):1049–1054, 2015.

[32] Lalit Maurya, Prasant Kumar Mahapatra, and Garima Saini. Modified cuckoo search-based im-
age enhancement. In Proceedings of the 4th International Conference on Frontiers in Intelligent
Computing: Theory and Applications (FICTA) 2015, pages 625–634. Springer, 2016.

[33] Ammar Mansoor Kamoona and Jagdish Chandra Patra. A novel enhanced cuckoo search
algorithm for contrast enhancement of gray scale images. Applied Soft Computing, 85:105749,
2019.

[34] Supriya Dhabal and Dip Kumar Saha. Image enhancement using differential evolution based
whale optimization algorithm. In Emerging Technology in Modelling and Graphics, pages 619–
628. Springer, 2020.

BIBLIOGRAPHY 234

[35] Marco Locatelli and Ulrich Raber. Packing equal circles in a square: a deterministic global
optimization approach. Discrete Applied Mathematics, 122(1-3):139–166, 2002.

[36] HT Croft, KJ Falconer, and RK Guy. Unsolved problems in geometry, 1991. A26.

Index

0-1 knapsack, 120
results, 125

bryozoa, 162

cell towers, 197
results, 203

circles, 204
discussion, 210
results, 209

coin, 162
crane fly, 162
curve fitting, 128

results, 134

differential evolution
Candidate method, 100
CandidatePositions method, 99
class skeleton, 97
configuring, 97
discussion, 228
nomenclature, 96
Step method, 98
update equations, 95

experiments
0-1 knapsack, 120
cell towers, 197
circles, 204
curve fitting, 128
grocery store, 213
image enhancement, 171
image registration (3 parameter), 159
image registration (4 parameter), 161
image segmentation, 164
merging melodies, 180
music, 179
neural network, 139
novel melodies, 187
similar melodies, 185
standard test functions, 116

framework
Bounds class, 17
components, 15
Done class, 23

general approach, 13
LinearInertia class, 23
Objective function class, 16
QuasirandomInitializer class, 19
RandomInertia class, 23
RandomInitializer class, 19
SphereInitializer class, 21

gaussian test equation (2D), 39
gaussian test equation (5D), 91

algorithm results, 108
genetic algorithm

algorithm, 80
class skeleton, 82
crossover, 80
Crossover method, 84
discussion, 229
Evolve method, 83
Mutate method, 84
mutation, 81
Step method, 83

global optimization, 4
Grey Wolf Optimizer

class skeleton, 66
criticism, 75
discussion, 229
Initialize method, 67
Step method, 68
update equations, 65

grid search, 4
grocery store, 213

adjusting random optimization, 224
number of shoppers, 226
products, 214
results, 222, 223
shoppers, 216
simulation, 219

image enhancement, 153, 171
results, 175

image registration, 153
image registration (3 parameter), 159

results, 160
image registration (4 parameter), 161

results, 163

235

INDEX 236

image segmentation, 153, 164
results, 169

Jaya
CandidatePositions method, 64
class skeleton, 63
discussion, 229
update equation, 63

metaheuristics, 4
music

Bach chorales, 179
merging melodies, 180
merging melodies (results), 183
novel melodies, 187
novel melodies (discussion), 196
novel melodies (results), 193
similar melodies, 185
similar melodies (results), 187
slip jig melodies, 180
tools, 179

musical modes, 188

neural network, 139
results, 148

NIST standard curve fit functions, 133
normalized mutual information, 155

implementation, 156

particle swarm optimization
algorithm, 44
bare bones, 48
BareBonesUpdate method, 55
class structure, 49
Constructor, 50, 51
defaults, 50
discussion, 228
Initialize method, 52
inspiration, 44
neighborhood, 45
NeighborhoodBest method, 54
Optimize method, 51
parameter relationship, 49
position equation, 47
RingNeighborhood method, 55
Step method, 53
velocity equation, 46

random optimization
algorithm, 28
CandidatePositions method, 37
class structure, 33
Constructor, 34
discussion, 230
Done method, 36

Evaluate method, 37
Initialize method, 35
Optimize method, 34
Results method, 38
Step method, 36
update equation, 30

scikit-image, 173
scikit-learn, 142
script

add.py, 162, 163
analysis.py, 204
analysis maker.py, 194, 195
analysis points.py, 209
beale.py, 111
brute force.py, 122, 126
cell.py, 198, 200, 202, 207
curves.py, 130–134
curves plot.py, 134
DE.py, 97
de gaussian.py, 100, 102
de gaussian 5d.py, 106
de gaussian 5d plot.py, 105
de gaussian cr.py, 103
de gaussian f.py, 104
dispersion plot.py, 70
download dataset.py, 143
easom.py, 111
enhance.py, 173, 174
experiment match.py, 186
experiments.py, 203, 204
experiments maker.py, 193
experiments points.py, 208, 209
extract frames.py, 159
fxy.py, 24
fxy convergence.py, 71
fxy failures.py, 69, 70
fxy gaussian.py, 39, 40, 56, 58, 60, 68, 70,

72, 84
fxy gaussian algs.py, 90
fxy gaussian ga cr.py, 86, 87
fxy gaussian ga eta.py, 89
fxy gaussian ga f.py, 88
fxy gaussian ga multi.py, 92
fxy precision.py, 72
fxy precision2.py, 72, 73
fxy pso precision.py, 73
fxy runtime.py, 74
GA.py, 82
GWO.py, 66
Jaya.py, 63, 229
jaya 5d.py, 108
kmeans.py, 168
knapsack.py, 121, 123–125

INDEX 237

make sample plot.py, 129
melody maker.py, 188, 192, 193, 196
melody match.py, 185, 186
melody merge.py, 180–182, 185, 186
merge test images.py, 169
midi dump.py, 180
nn.py, 144, 145, 148
points.py, 207–209
points plot.py, 71
problem generator.py, 122, 126
process images.py, 175
product order.py, 227
PSO.py, 49, 56
rastrigin.py, 111
rigid.py, 156, 158–163
rigid pairs.py, 159
rigid scale.py, 159, 161, 163
RO.py, 33, 38, 230
rosenbrock.py, 111, 117
rosenbrock de.py, 118
score test images.py, 169
segment.py, 165, 167–169
segment test images.py, 168
sharpness.py, 163
sphere.py, 111
store.py, 219, 221, 225, 226
store analysis.py, 222
store convergence.py, 224
store eta analysis.py, 225
store eta experiments, 225
store experiments, 222
store ro.py, 225
store shop.py, 226
store shoppers.py, 226
test functions.py, 115, 116, 133

standard test functions, 111
swarm algorithms

nature-inspired, 9
nature-inspired (list), 11
random optimization, 28
taxonomy, 8

swarm optimization
agent (definition), 5
algorithm (definition), 5
essence, 4
general algorithm, 6
objective function (definition), 6
particle (definition), 5
representing, 3
search space (definition), 5
swarm (definition), 5

	Slide 1
	I Algorithms
	Swarm Algorithms
	What is Swarm Optimization?
	A High-Level Taxonomy
	A Brief Visit To The Zoo

	Setting The Stage
	Our General Approach
	Objectives
	Boundaries
	Initializers
	Are We Done Yet?
	Inertia
	Setting Up An Optimization

	Random Optimization
	Good Enough For Now
	The RO Class
	Optimize
	Initialize
	Step
	Done
	CandidatePositions
	Evaluate
	Results

	Testing the RO Class

	Particle Swarm Optimization
	Making Sense of the World
	Canonical PSO
	Bare Bones PSO
	Configuring a Particle Swarm

	The PSO Class
	Optimize
	Initialize
	Step
	Done
	NeighborhoodBest
	RingNeighborhood
	BareBonesUpdate
	Evaluate
	Results

	Testing the PSO Class

	New Kids On The Block
	Jaya
	Description
	Implementation

	The Grey Wolf Optimizer
	Description
	Implementation

	Testing Jaya and GWO
	Success or Failure?
	Dispersion
	Convergence
	Precision
	Runtime
	Evaluation

	Genetic Algorithm
	Making Darwin Proud
	The GA Class
	Step
	Evolve
	Mutate
	Crossover

	Testing the GA Class
	Modifying Population Size and Generations
	Modifying CR, F, and
	Comparison with Other Algorithms
	Higher-Dimensional Searches

	Differential Evolution
	Unnatural Mutation
	Configuring DE

	The DE Class
	Step
	CandidatePositions
	Candidate

	Testing the DE Class
	Experiments with a 2D Gaussian
	Modifying CR and F
	Comparing DE to Other Algorithms

	II Experiments
	Initial Experiments
	Standard Test Functions
	The 0-1 Knapsack
	The Problem
	The Setup
	The Results

	Curve Fitting
	The Problem
	The Setup
	The Results

	Training a Neural Network
	The Problem
	The Setup
	The Results

	Images
	Image Registration
	The Problem
	The Setup
	The Results

	Image Segmentation
	The Problem
	The Setup
	The Results

	Image Enhancement
	The Problem
	The Setup
	The Results

	Music
	Setting the Stage
	Tools
	Building Melodies

	Learning and Merging Melodies
	Learning Similar Melodies
	Learning Melodies from Scratch
	The Code
	The Experiments

	Cell Towers and Circles
	Cell Towers
	The Setup
	The Code
	The Experiments

	Packing Circles
	The Code
	The Experiments

	Summary

	Grocery Store Simulation
	The Design
	Inventory
	Stores
	Shoppers
	Running the Simulation

	The Shopper
	The Store
	The Simulation
	Testing the Algorithms
	Working with RO
	Varying the Number of Shoppers

	Discussion

