


The	Wireshark	Field	Guide

Analyzing	and	Troubleshooting
Network	Traffic

Robert	Shimonski



Table	of	Contents

Cover	image

Title	page

Copyright

Dedication

Preface

About	the	Author

Acknowledgment

Introduction

About	Wireshark

Installing	Wireshark

Configuring	A	System

Capturing	Packets

Color	Codes

Filters

Sample	Captures

Inspecting	Packets

Deep	Analysis



Saving	Captures

Chapter	1.	About	Wireshark

1.1	Introduction

1.2	What	Is	Wireshark?

1.3	What	Is	Network	And	Protocol	Analysis?

1.4	The	History	Of	Wireshark

1.5	Troubleshooting	Problems

1.6	Using	Wireshark	To	Analyze	Data

1.7	The	OSI	Model

1.8	Summary

Chapter	2.	Installing	Wireshark

2.1	Introduction

2.2	Getting	Started

2.3	Requirements

2.4	Installation	Preparation

2.5	Installing	Wireshark

2.6	Summary

Chapter	3.	Configuring	a	System

3.1	Introduction

3.2	Getting	Started

3.3	Configuring	A	Cisco	Port	Monitor

3.4	Other	Tools	And	Methodologies

3.5	Summary



Chapter	4.	Capturing	Packets

4.1	Introduction

4.2	Getting	Started

4.3	Summary

Chapter	5.	Color	Codes

5.1	Getting	Started

5.2	Creating	Color	Code	Lists

5.3	Adding	And	Removing	Filters

5.4	Other	Coloring	Options

5.5	Summary

Chapter	6.	Filters

6.1	Getting	Started

6.2	Applying	A	Filter

6.3	Advanced	Filter	Creation

6.4	Other	Filtering	Techniques

6.5	Customized	Filtering	And	Troubleshooting

6.6	Conversation	Filters

6.7	Summary

Chapter	7.	Sample	Captures

7.1	Getting	Started

7.2	Sample	Captures

7.3	Expert	Analysis

7.4	Flow	Graphs

7.5	Summary



Chapter	8.	Inspecting	Packets

8.1	Getting	Started

8.2	Understanding	The	Technology

8.3	Capturing	And	Filtering	Data

8.4	Inspection	Of	The	Data

8.5	Analysis	Tools

8.6	Summary

Chapter	9.	Deep	Analysis

9.1	Getting	Started

9.2	Deep	Analysis

9.3	Analyzing	Flow

9.4	Troubleshooting	Phones

9.5	Security	Analysis

9.6	Network	Performance	Analysis	And	Optimization

9.7	Using	Wireshark	Online

9.8	Summary

Chapter	10.	Saving	Captures

10.1	Getting	Started

10.2	Saving	Captures

10.3	Saving	Captures	(Multiple	Files)

10.4	Saving	In	Other	Formats

10.5	Importing	And	Exporting	Data

10.6	Merging	Data

10.7	Summary



Copyright
Acquiring	Editor:	Chris	Katsaropoulos	Development	Editor:	Benjamin	Rearick
Project	Manager:	Mohana	Natarajan

Syngress	is	an	imprint	of	Elsevier	225	Wyman	Street,	Waltham,	MA	02451,
USA

First	published	2013

Copyright	©	2013	Elsevier	Inc.	All	rights	reserved.

No	part	of	this	publication	may	be	reproduced	or	transmitted	in	any	form	or	by
any	means,	electronic	or	mechanical,	including	photocopying,	recording,	or	any
information	storage	and	retrieval	system,	without	permission	in	writing	from	the
publisher.	Details	on	how	to	seek	permission,	further	information	about	the
Publisher’s	permissions	policies	and	our	arrangement	with	organizations	such	as
the	Copyright	Clearance	Center	and	the	Copyright	Licensing	Agency,	can	be
found	at	our	website:	www.elsevier.com/permissions.

This	book	and	the	individual	contributions	contained	in	it	are	protected	under
copyright	by	the	Publisher	(other	than	as	may	be	noted	herein).

Notices
Knowledge	and	best	practice	in	this	field	are	constantly	changing.
As	new	research	and	experience	broaden	our	understanding,
changes	in	research	methods,	professional	practices,	or	medical
treatment	may	become	necessary.

Practitioners	and	researchers	must	always	rely	on	their	own
experience	and	knowledge	in	evaluating	and	using	any	information,
methods,	compounds,	or	experiments	described	herein.	In	using
such	information	or	methods	they	should	be	mindful	of	their	own
safety	and	the	safety	of	others,	including	parties	for	whom	they	have

http://www.elsevier.com/permissions


safety	and	the	safety	of	others,	including	parties	for	whom	they	have
a	professional	responsibility.

To	the	fullest	extent	of	the	law,	neither	the	Publisher	nor	the
authors,	contributors,	or	editors,	assume	any	liability	for	any	injury
and/or	damage	to	persons	or	property	as	a	matter	of	products
liability,	negligence	or	otherwise,	or	from	any	use	or	operation	of
any	methods,	products,	instructions,	or	ideas	contained	in	the
material	herein.

British	Library	Cataloguing	in	Publication	Data
A	catalogue	record	for	this	book	is	available	from	the	British	Library	Library	of
Congress	Cataloging-in-Publication	Data
A	catalog	record	for	this	book	is	available	from	the	Library	of	Congress	ISBN:
978-0-12410413-6

For	information	on	all	Syngress	publications	visit	our	website	at
www.syngress.com

http://www.syngress.com


Dedication

This	book	is	dedicated	to	my	wonderful	children,	Dylan	Shimonski
and	Vienna	Shimonski.	I	love	you!



Preface
Welcome	 to	 The	 Wireshark	 Field	 Guide:	 Analyzing	 and	 Troubleshooting
Network	Traffic	book,	your	guide	to	get	up	to	speed	using	Wireshark	in	a	quick
and	 efficient	 manner.	 This	 book	 provides	 hackers,	 pen	 testers,	 and	 network
administrators	with	 practical	 guidance	 on	 capturing	 and	 interactively	 browsing
the	 traffic	 running	 on	 a	 computer	 network.	Wireshark	 is	 the	world’s	 foremost
network	protocol	analyzer,	with	a	rich	feature	set	 that	 includes	deep	inspection
of	hundreds	of	protocols,	live	capture,	offline	analysis,	and	many	other	features.
Wireshark	is	a	multiplatform	application	that	can	be	set	up	and	put	to	work	in

minutes	 to	 help	 analyze	 and	 troubleshoot	 some	 of	 the	 most	 complex	 security
problems	found	today.	This	book	covers	the	installation,	configuration,	and	use
of	 this	 powerful	 tool.	 It	 provides	 readers	 with	 the	 hands-on	 skills	 to	 be	more
productive	with	Wireshark	as	they	drill	down	into	the	information	contained	in
real-time	network	traffic.
•	Learn	the	fundamentals	of	using	Wireshark	in	a	concise	field	manual.
•	Quickly	create	functional	filters	that	will	allow	you	to	get	to	work	quickly	on
solving	problems.

•	Understand	the	myriad	of	options	and	the	deep	functionality	of	Wireshark	to
get	working	quicker.

•	Solve	common	problems	seen	in	networks	today	with	what	is	taught	in	this
guide.

•	Learn	some	advanced	features,	methods,	and	helpful	ways	to	work	quicker
and	more	efficient.
The	 goal	 of	 this	 book	 is	 to	 teach	 the	 basics	 quickly	 in	 a	 very	 short	 format

publication.	Use	 the	 following	 link	 and	 similar	 other	 links	 found	 at	 the	 books
companion	website	www.learnwireshark.com.

http://www.learnwireshark.com


About	the	Author
Robert	Shimonski	(www.shimonski.com)	is	a	best-selling	author	and	editor	with
over	15	years	experience	developing,	producing,	and	distributing	print	media	in
the	 form	 of	 books,	magazines,	 and	 periodicals.	 To	 date,	 Rob	 has	 successfully
created	 over	 100	 books	 that	 are	 currently	 in	 circulation.	 Rob	 has	 worked	 for
countless	 companies	 including	 CompTIA,	 Entrepreneur	 Magazine,	 Microsoft,
McGraw-Hill	Education,	Cisco,	the	National	Security	Agency,	and	Digidesign.
Rob	 also	 has	 over	 15	 years	 experience	 in	 direct	 support	 of	 network

infrastructures	and	systems	and	has	spent	a	considerable	amount	of	that	time	in
leading	teams	in	operational	support	and	engineering	architecture.	Rob	authored
the	 award-winning	 Syngress	 book	 Sniffer	 Pro	 Network	 Optimization	 and
Troubleshooting	Handbook	back	in	2002.	He	has	also	contributed	to	many	other
network	 and	 security-related	 publications	 on	 penetration,	 security	 design,
network	 analysis,	 and	 systems	 engineering.	 He	 can	 be	 reached	 online	 at
www.shimonski.com	or	at	www.learnwireshark.com.

http://www.shimonski.com
http://www.shimonski.com
http://www.learnwireshark.com


Acknowledgment

I	would	 like	 to	 thank	 all	who	made	 this	 book	possible.	Special	 thanks	 to	Pete
Cheung	for	his	technical	help	in	creating	this	book	and	to	Chris	and	Ben	for	their
assistance	in	producing	this	book.



Introduction
Welcome	 to	 the	 Syngress	 “Wireshark	 Field	 Guide,”	 your	 indispensable
companion	 to	 using	Wireshark	 successfully	 and	 solving	 problems	with	 one	 of
the	most	 commonly	 used	 tools	 in	 the	 networking	 arena	 today.	 In	 this	 concise
text,	I	will	cover	how	to	acquire	Wireshark,	what	you	need	to	know	about	it	to
get	it	up	and	running	and	then	using	it	to	help	solve	problems.
For	over	two	decades,	the	need	for	an	understanding	of	protocol	analysis	has

grown	as	the	networks	we	rely	on	to	connect	our	computers,	mobile	devices,	and
systems	 to	 use	 the	 Internet,	 access	 the	 cloud,	 and	 work	 within	 our	 corporate
networks	have	also	grown.	As	more	reliance	on	using	the	network	becomes	the
norm,	solving	problems	quickly	is	also	becoming	increasingly	more	important.
As	we	will	 learn	 in	 this	book,	Wireshark	 (as	well	 as	other	protocol	analysis

tools)	 is	 used	 often	 to	 help	 find	 and	 solve	 problems	 on	 internetworks	 for	 all
sizes.	In	this	book,	we	will	cover	the	following	sections:

About	Wireshark
Experienced	network	technicians,	operators,	and	engineers	across	the	globe	use
Wireshark	and	tools	of	its	kind	to	solve	problems	and	we	will	cover	not	only	the
nuts	and	bolts	of	using	it	but	also	why	we	do.	In	this	section,	we	will	briefly	go
over	the	history	of	Wireshark	as	well	as	to	discuss	the	use	of	packet	capture	and
analysis	 in	 the	 field	of	networking.	First,	we	need	 to	understand	 the	history	of
Wireshark	 and	 packet	 capture	 and	 analysis	 to	 get	 a	 solid	 understanding	 of	 the
purpose	of	using	 this	 tool.	An	 in-depth	 look	at	Wireshark,	 its	 features,	and	 the
toolset	 are	 covered	 as	well	 as	 a	granular	 look	 at	 the	 specifics	of	why	protocol
capture	and	analysis	is	so	critical	to	solving	problems.

Installing	Wireshark
In	this	chapter	of	the	book,	we	will	cover	how	to	get	Wireshark,	install	it,	and	set
it	up	for	use	on	a	computer.	We	will	cover	how	the	tool	changes	your	network
interface	card	 (NIC)	so	 that	 it	 can	capture	data,	 specifically	what	 requirements
would	be	needed	in	order	to	not	only	install	but	also	use	Wireshark	in	production
as	well	as	many	other	tidbits	of	information	to	make	your	troubleshooting	time



painless	and	productive.	We	will	briefly	go	over	the	interface	and	how	to	launch
and	use	the	tool.

Configuring	a	System
Once	your	computer	is	ready	to	go,	you	will	need	to	learn	how	to	use	Wireshark
on	a	network.	This	is	not	a	simple	task	because	there	are	specific	configuration
changes	 you	 will	 need	 to	 make	 not	 only	 on	 your	 computer	 system	 but	 also
components	on	the	network	in	order	to	capture	and	analyze	data.	In	this	chapter,
we	will	cover	not	only	configuration	of	network	devices	but	also	teach	you	how
to	consider	the	specific	placement	of	the	tool	in	order	to	use	it	correctly.	We	will
learn	how	preparing	to	capture	data	may	require	making	adjustments	on	network
devices,	 network	 cabling,	 or	 configuration	 specifics	 necessary	 to	 capture	 data.
We	will	learn	how	to	configure	a	network	device	to	send	data	to	Wireshark,	the
correct	placement	and	staging	of	the	capture	device(s)	as	well	as	the	strategy	you
must	plan	with	two	end-to-end	systems	when	more	than	one	Wireshark	capture
is	needed.

Capturing	Packets
In	 this	 chapter,	 we	 will	 learn	 the	 art	 of	 capturing	 packets	 in	 order	 to	 decode
them,	analyze	them,	and	inspect	what	is	traversing	your	network.	Once	you	have
started	to	capture	packets,	the	rest	of	the	chapters	leading	up	to	the	last	chapter
(saving	 captures	 and	 saving	 files)	 you	will	 be	 learning	 about	 the	 interface	 and
how	 to	 manipulate	 it	 to	 troubleshoot	 problems.	 This	 chapter	 covers	 the	 three
panes	 and	 all	 details	 within	 them,	 running	 captures,	 how	 to	 start	 and	 stop
Wireshark	as	well	as	be	given	a	sample	problem	to	work	with.

Color	Codes
Deeper	 inspection	within	 the	capture	 is	 required.	 In	 this	chapter,	we	will	 learn
how	Wireshark	color	codes	the	captures	and	how	to	quickly	look	for	problems.
In	this	chapter,	we	will	also	learn	more	about	protocols,	ports,	and	other	critical
network-based	information	that	will	help	you	solve	problems.

Filters
How	to	filter	captures	correctly	is	 the	key	to	finding	problems	especially	when



running	Wireshark	on	networks	where	a	lot	of	data	traverses.	Consider	capturing
data	 from	 one	 system	 communicating	 with	 another	 …	 what	 would	 you
specifically	 search	 for	 to	 help	 solve	 a	 problem?	 Filtering	 on	 protocols,	 IP
addresses	 and	 using	 specific	 Boolean	 arguments	 commonly	 used	 today	 are
covered	as	well	as	specific	example	of	filters	that	you	can	use	right	away	to	help
get	you	up	and	running	with	Wireshark	immediately.

Sample	Captures
In	 this	 chapter,	 we	 will	 expand	 on	 what	 we	 learned	 in	 the	 Filters	 chapter	 by
covering	some	advanced	problems,	how	to	solve	them	using	Wireshark,	and	the
more	 complex	 use	 of	 analysis	 by	 applying	 more	 filters	 and	 reviewing	 expert
analysis	reports.

Inspecting	Packets
As	 we	 learn	 more	 about	 Wireshark,	 we	 will	 discuss	 problems	 found	 on	 a
network	and	specifically	why	they	occur	from	the	packet	 level.	In	this	chapter,
we	will	take	an	in-depth	look	at	a	few	common	(and	not	so	common)	problems
and	what	you	are	looking	for	in	the	packets,	how	to	use	the	tool	to	get	and	view
this	information,	and	how	to	use	Wireshark	to	solve	them.	We	will	also	look	at
other	 tools	 you	 can	 use	 to	 augment	 the	 use	 of	 Wireshark	 to	 solve	 complex
network	and	system	issues.

Deep	Analysis
In	this	chapter,	we	take	a	deeper	look	into	the	packets	in	order	to	define	and	find
root	 cause	 of	 problems	 as	 well	 as	 how	 to	 use	Wireshark	 and	 other	 enterprise
tools	 to	solve	problems	that	occur	over	wide	area	network	links.	We	will	 learn
about	probes,	 taps,	 and	how	all	of	 these	 tools	 can	be	used	 together	 to	create	a
complete	picture	to	help	you	not	only	understand	why	data	traverses	a	network	a
certain	 way	 but	 also	 why	 it	 chooses	 specific	 paths,	 how	 it	 interacts	 with
destination	 systems,	 and	what	 could	go	wrong	within	 those	 conversations.	We
will	 look	 at	 voice	 over	 IP	 (VoIP)	 problems,	 malicious	 software	 issues,	 how
intrusion	 detection/prevention,	 scanning,	 and	 many	 other	 services	 work	 on	 a
network	and	how	Wireshark	can	help	you	work	with	them	when	solving	issues.

Saving	Captures



Saving	Captures
Once	you	are	completed	with	your	analysis,	you	may	want	to	save	and	archive
your	 files	 for	 future	 use.	 This	 chapter	 covers	 file	 formats,	 how	 to	 use	 capture
files	with	other	protocol	analysis	systems,	how	to	generate	reports	and	more.
Now,	let	us	get	our	hands	dirty	and	starting	inspecting	data	to	solve	problems!



CHAPTER	1

About	Wireshark

1.1	Introduction

1.2	What	Is	Wireshark?

1.3	What	Is	Network	and	Protocol	Analysis?

1.4	The	History	of	Wireshark

1.5	Troubleshooting	Problems

1.6	Using	Wireshark	to	Analyze	Data

1.7	The	OSI	Model

1.8	Summary

1.1	Introduction
Experienced	network	technicians,	operators,	and	engineers	across	the	globe	use
Wireshark	and	tools	of	its	kind	to	solve	problems	and	we	will	cover	the	how	and
why.	In	this	section,	we	will	briefly	go	over	the	history	of	Wireshark	as	well	as
to	discuss	the	use	of	packet	capture	and	analysis	in	the	field	of	networking.	First,
we	need	to	understand	the	history	of	Wireshark	and	packet	capture,	and	analysis
to	 get	 a	 solid	 understanding	 of	 the	 purpose	 of	 using	 this	 tool.	Once	we	 cover
Wireshark’s	historical	background,	we	will	cover	the	most	current	release,	how
to	get	it	and	what	you	need	to	prepare	for	an	install	and	setup	of	the	product.	We
will	also	cover	the	fundamentals	of	packet	capture	and	analysis	so	that	you	are
aware	of	what	the	tool	is	inherently	used	for.

This	book	can	be	used	by	beginners	and	those	new	to	networking,
however,	 having	 a	 background	 and	 solid	 knowledge	 on	 the	 topic



will	make	 reading,	 understanding,	 and	 absorbing	 this	 book	much
easier.

1.2	What	Is	Wireshark?
Protocol	 capture	 and	 analysis	 is	 nothing	 new,	 it	 is	 actually	 been	 around	 for
decades.	With	the	release	of	UNIX	systems,	many	tools	contained	directly	in	the
operating	system	allowed	for	the	capture	and	review	of	packet	level	data	for	the
purpose	 of	 solving	 problems.	 As	 data	 moves	 across	 a	 network	 from	 client	 to
server	 or	 to	 printers,	 across	 wireless	 access	 points,	 and	 across	 the	 Internet,	 it
moves	 in	 the	 form	of	 electrical	 signals	 and	 frequencies.	A	packet	 capture	 tool
(also	called	a	network	analyzer)	can	be	used	to	capture	this	data	for	analysis.	A
network	analyzer	is	a	troubleshooting	tool	that	is	used	to	find	and	solve	network
communication	 problems,	 plan	 network	 capacity,	 and	 perform	 network
optimization.	Network	analyzers	can	capture	all	 the	 traffic	 that	 is	going	across
your	 network	 and	 interpret	 the	 captured	 traffic	 to	 decode	 and	 interpret	 the
different	protocols	in	use.	The	decoded	data	is	shown	in	a	format	that	makes	it
easy	to	understand,	peeling	away	the	layers	of	encapsulated	data	that	is	used	to
identify	 it	or	enable	 it	 to	be	used	on	the	network.	A	network	analyzer	can	also
capture	only	traffic	that	matches	the	selection	criteria	as	defined	by	a	filter.	This
allows	a	technician	to	capture	only	traffic	that	is	relevant	to	the	problem	at	hand.
A	typical	network	analyzer	displays	the	decoded	data	in	three	panes:
•	Summary:	Displays	a	one-line	summary	of	the	highest	layer	protocol
contained	in	the	frame,	as	well	as	the	time	of	the	capture	and	the	source	and
destination	addresses.

•	Detail:	Provides	details	on	all	the	layers	inside	the	frame.
•	Hex:	Displays	the	raw	captured	data	in	hexadecimal	format.
Figure	1.1	shows	the	Wireshark	tool	with	captured	data	ready	for	inspection.

In	the	figure,	we	can	see	all	three	panes	in	use.	From	top	to	bottom,	you	can	see
the	Summary,	Detail,	and	Hex	panes.	The	Summary	pane	shows	the	high-level
detail,	 such	 as	 sequence	 numbering	 of	 captured	 packets,	 the	 time	 captured,
source	and	destination	address,	protocol	used,	 length,	and	other	 information.	 If
you	select	a	packet	in	the	summary	pane,	you	can	see	more	granular	detail	in	the
detail	pane.	By	drilling	down	even	 further,	you	can	 select	details	 in	 the	Detail
pane	and	see	the	specific	hex	data	captured	in	the	Hex	pane.



FIGURE	1.1 	Using	Wireshark.

As	we	work	through	this	guide,	we	will	dig	deeper	 into	each	pane	and	learn
exact	 specifics	 on	 how	 to	 use	 it,	 interpret	 what	 is	 in	 it,	 and	 troubleshoot
problems.	Network	analyzers	further	provide	the	ability	to	create	display	filters
so	that	a	network	professional	can	quickly	find	what	he	or	she	is	looking	for.
Advanced	 network	 analyzers	 provide	 pattern	 analysis	 capabilities.	 This

feature	 allows	 the	 network	 analyzer	 to	 go	 through	 thousands	 of	 packets	 and
identify	 problems.	 The	 network	 analyzer	 can	 also	 provide	 possible	 causes	 for
these	problems	and	hints	on	how	to	resolve	them.

1.3	What	Is	Network	and	Protocol	Analysis?
Electronic	 distribution	 of	 information	 is	 becoming	 increasingly	 important,	 and
the	complexity	of	 the	data	exchanged	between	systems	 is	 increasing	at	a	 rapid
pace.	Computer	networks	today	carry	all	kinds	of	data,	voice,	and	video	traffic.
Network	applications	require	full	availability	without	interruption	or	congestion.
As	 the	 information	systems	 in	a	company	grow	and	develop,	more	networking
devices	 are	 deployed,	 resulting	 in	 large	 physical	 ranges	 covered	 by	 the
networked	system.	It	is	crucial	that	this	networked	system	operates	as	effectively
as	possible,	because	downtime	is	both	costly	and	an	inefficient	use	of	available



resources.	 Network	 and/or	 protocol	 analysis	 is	 a	 range	 of	 techniques	 that
network	 engineers	 and	 technicians	 use	 to	 study	 the	 properties	 of	 networks,
including	connectivity,	capacity,	and	performance.	Network	analysis	can	be	used
to	 estimate	 the	 capacity	 of	 an	 existing	 network,	 look	 at	 performance
characteristics,	or	plan	for	future	applications	and	upgrades.
One	of	 the	best	 tools	 for	performing	network	analysis	 is	a	network	analyzer

like	Wireshark.	A	network	analyzer	is	a	device	that	gives	you	a	very	good	idea
of	what	is	happening	on	a	network	by	allowing	you	to	look	at	the	actual	data	that
travels	over	it,	packet	by	packet.	A	typical	network	analyzer	understands	many
protocols,	which	enables	it	 to	display	conversations	taking	place	between	hosts
on	a	network.	Wireshark	can	be	used	in	this	capacity.
Network	analyzers	typically	provide	the	following	capabilities:
•	Capture	and	decode	data	on	a	network
•	Analyze	network	activity	involving	specific	protocols
•	Generate	and	display	statistics	about	the	network	activity
•	Perform	pattern	analysis	of	the	network	activity.

Packet	 capture	 and	 protocol	 decoding	 is	 sometimes	 referred	 to	 as
“sniffing.”	 This	 term	 came	 about	 because	 of	 the	 nature	 of	 the
network	 analyzers	 ability	 to	 “sniff”	 traffic	 on	 the	 network	 and
capture	it.

Figures	1.1	and	1.2	show	the	Wireshark	tool	with	captured	data	with	a	typical
problem	 seen	 on	 network	 today—an	 address	 resolution	 protocol	 (ARP)	 storm.
Figure	1.2	allows	you	 to	 look	deeper	 into	 the	data	 in	order	 to	 troubleshoot	 the
issue.	 Although	 we	 will	 get	 more	 involved	 in	 later	 chapters	 covering	 how	 to
inspect	 traffic	 in	 detail,	 here	 you	 can	 see	 how	 a	 network	 analyzer	 performs
“protocol	analysis.”



FIGURE	1.2 	Performing	protocol	analysis.

When	decoding	the	capture	of	ARP	packets,	we	can	drill	down	into	 the	 tool
(and	the	packets)	to	find	the	source	and	destination	addresses	of	the	storm.	Now,
Wireshark	cannot	solve	all	of	your	problems	without	some	help!	First,	 it	 takes
you	 the	 technician	with	 the	 inquisitive	mind	 to	 first	understand	where	 to	place
Wireshark	to	capture	this	data.	It	 then	takes	some	inspect	and	analysis	work	to
review	what	was	captured	and	at	minimum	a	basic	understanding	on	how	data
works	on	a	network.	It	also	takes	detective	work	on	your	part…	you	will	need	to
know	 how	 to	 trace	 this	ARP	 problem	 (in	 the	 form	 of	 a	MAC	 address)	 to	 the
offending	client	causing	the	storm.	You	will	then	need	to	know	how	to	fix	said
problem.	As	you	can	see,	protocol	capture	and	analysis	with	a	network	analyzer
tool	like	Wireshark	only	helps	you	begin	to	paint	a	picture	of	a	problem,	it	does
not	always	solve	it	directly	for	you.

Beware	 of	 false	 positives.	 What	 this	 means	 is,	 you	 may	 see	 a
problem,	however,	it	is	in	fact	not	a	problem	but	normal	behavior.
You	may	 get	 a	 capture	 or	 a	 report	 from	 a	 network	 analyzer	 that
may	 instruct	 you	 that	 a	 problem	 exists	 when	 it	 in	 fact	 does	 not.
Using	 a	 network	 analyzer	 and	 performing	 network	 analysis	 is	 a
function	of	a	scientific	mind.	You	not	only	need	 to	question	what
you	 see	 but	 you	 may	 also	 need	 to	 conduct	 further	 testing	 and
analysis	 to	 find	 root	 cause	 of	 a	 problem.	 Do	 not	 jump	 to
conclusions,	 scientifically	 sort	 out	 the	 data,	 analyze	 and	 conduct
research,	discuss	possibilities	with	peers	and	colleagues	 if	you	are
not	sure	of	your	findings.



1.4	The	History	of	Wireshark
Wireshark	(http://www.wireshark.org/)	is	a	software	application	used	to	capture
and	 inspect	 protocol	 level	 data.	 As	 data	 traverses	 a	 network	 from	 clients	 to
servers	(as	an	example),	the	data	is	sent	and	although	there	are	many	tools	of	its
kind,	 it	 is	 a	 tool	 that	 can	be	 freely	downloaded	on	 the	 Internet.	The	history	of
Wireshark	 is	one	of	many	 twists	and	 turns.	Although	 the	 tool	has	always	been
for	 the	most	part	very	reliable	and	incredibly	useful,	 it	has	changed	names	and
hands	quite	a	few	times.
One	 of	 the	 first	 well-known	 versions	 of	 Wireshark	 came	 in	 the	 form	 of

Ethereal.	Due	to	copyright	issues	and	legal	problems,	the	name	was	changed	to
Wireshark.	We	 can,	 however,	 start	 this	 tools	 history	 back	when	 it	was	 named
Ethereal.	 Ethereal	 (and	 its	 new	 form	 Wireshark)	 is	 an	 open-source	 freeware
network	 analyzer	 available	 freely	 for	 download	 and	 can	 be	 used	 on	 many
computer	system	platforms.	In	its	 infancy,	 tools	such	as	Sniffer	Pro	were	more
robust	and	somewhat	costly.	Other	tools	like	those	sold	by	Fluke	Networks	were
not	only	costly	but	also	distributed	with	hardware	raising	its	cost.	Ethereal	when
released	 was	 not	 as	 robust	 and	 provided	 protocol	 decode	 features,	 however,
lacked	a	number	of	features	that	 the	other	tools	available	provided,	such	as	the
ability	to	monitor	applications,	expert	analysis,	advanced	reporting	tools,	and	the
ability	 to	 capture	 mangled	 frames.	 Wireshark	 is	 the	 current	 version	 of	 the
Ethereal	tool,	which	now	handles	expert	analysis	and	many	of	the	other	features
that	were	missing	from	previous	versions.
WinPcap	 (http://www.winpcap.org/)	 is	 the	 “other”	 application	 that	 must	 be

used	 with	Wireshark.	WinPcap	 is	 nothing	more	 than	 a	 library	 that	Wireshark
pulls	 from	 within	 a	Windows	 system.	 Non-Windows	 based	 systems	 may	 use
libcap.	Either	one	used	supplies	a	driver	that	allows	for	the	capture	of	packets	at
the	 system	 and	 hardware	 level.	 We	 will	 learn	 in	 the	 next	 chapter	 that	 your
network	 interface	 card	 (NIC)	 must	 be	 used	 in	 promiscuous	 mode	 in	 order	 to
capture	packets,	and	Wireshark	uses	these	libraries	to	facilitate	that	functionality.
When	you	download	and	use	Wireshark,	 this	set	of	 libraries	comes	with	 it	and
must	 be	 installed	with	Wireshark	 in	 order	 to	 use	 it.	 This	 library	 set	 has	 been
produced	 and	 distributed	 by	 a	 company	 named	 CACE
(http://www.cacetech.com/).
A	 few	 years	 ago,	 CACE	 was	 purchased	 by	 a	 company	 named	 Riverbed

(http://www.riverbed.com/),	 which	 is	 also	 a	 provider	 of	 network	 analysis	 and
reporting	 tools,	 software,	 and	 hardware.	 With	 Riverbed	 behind	 CACE	 and

http://www.wireshark.org/
http://www.winpcap.org/
http://www.cacetech.com/
http://www.riverbed.com/


supporting	Wireshark,	 it	 is	 likely	 that	 this	 powerhouse	 trio	 of	 groups	 can	 not
only	bring	network	analysis	to	a	new	level	but	also	give	Wireshark	more	steam
to	grow	into	an	even	more	robust	application	than	it	is	today.

Using	tcpdump
Tcpdump	 (http://www.tcpdump.org/)	 is	 a	 protocol	 capture/packet
analyzer	 that	 is	 used	 at	 the	 command	 line.	Much	 like	Wireshark
[which	 uses	 a	 graphical	 user	 interface	 (GUI)],	 it	 captures	 packets
and	 shows	 specific	 details	 about	 them	 which	 can	 be	 used	 for
granular	analysis	of	a	problem.	It	also	worked	with	libcap	and	puts
the	 NIC	 in	 promiscuous	 mode	 allowing	 for	 the	 capturing	 of
packets.	 It	 shows	 at	 the	 command	 line	 details	 and	 can	 be	 tailors
with	switches	 to	show	more	or	 less	specific	detail.	 It	 is	extremely
helpful	when	you	need	to	capture	data	at	the	time	of	problem	as	it	is
normally	 always	 installed	 and	 ready	 on	 most	 systems,	 primarily
UNIX	based.	 It	 is	 also	 freely	 available	with	 the	 operating	 system
you	install.
Figure	1.3	 shows	 the	use	of	 tcpdump	on	a	UNIX	system.	Here

we	 can	 view	 the	 conversations	 between	 two	 hosts,	 the	 one	 it	 is
installed	 on	 (the	 source)	 and	 the	 destination	 address	 it	 is
communicating	with.

FIGURE	1.3 	Using	tcpdump.

http://www.tcpdump.org/


As	you	can	see	here,	it	is	very	easy	to	use	and	manipulate.	You
can	 get	 much	 of	 the	 same	 data	 out	 of	 tcpdump	 as	 you	 can	 with
Wireshark,	 however,	Wireshark	will	 provide	 you	with	more	 bells
and	whistles,	 such	as	an	easy	 to	use	GUI,	an	expert	analysis	 tool,
and	reporting	tools.
You	can	also	find	tcpdump	on	many	of	the	UNIX-based	firewalls

deployed	today.	Firewalls,	such	as	those	from	McAfee	and	Juniper,
have	 tcpdump	 integrated	 into	 their	 toolsets	 so	 that	 they	 can	 be
quickly	invoked	to	solve	or	report	on	a	problem.

For	those	who	use	Windows	based	systems,	you	can	download	and
install	WinDump,	which	is	the	Windows	version	of	tcpdump.	Like
tcpdump	uses	 libcap,	WinDump	 like	Wireshark	on	Windows	uses
WinPcap.	For	Windows	7,	Windows	8,	and	Server	2008	SP2,	 the
“netsh	 trace	 start	 capture=yes”	 command	 is	 a	 good	 alternative	 to
tcpdump.	No	installation	is	required	to	capture	packets.

1.5	Troubleshooting	Problems
Now	 that	 we	 have	 learned	 about	 protocol	 capture	 and	 analysis,	 and	 how
Wireshark	fits	into	the	picture,	let	us	continue	to	expand	on	its	use	by	discussing
how	Wireshark	 can	be	used	 to	 analyze	data.	Although	we	will	 go	 into	 greater
detail	as	we	progress	through	this	book,	it	is	worthwhile	to	introduce	the	topic	so
we	can	begin	to	build	on	it.
When	 you	 work	 with	 a	 network	 or	 are	 directly	 responsible	 for	 it,	 you	 will

often	hear	that	there	are	problems	with	it.	Some	are	common	help	desk	requests
from	users	who	have	problems	remembering	their	system	passwords,	and	others
are	calls	from	users	who	cannot	login	because	their	network	cable	got	unplugged
again.	Although	 these	 are	 common	 problems,	 and	 annoying	 at	 times,	 they	 are
easily	fixed	through	a	quick	series	of	troubleshooting	steps	and	usually	require	a
simple	solution.
Next	on	the	complaint	list	are	the	calls	from	users	who	say	that	the	network	is



too	 slow.	That	 is	 a	 common	complaint,	 but	what	 happens	when	 almost	 all	 the
users	on	your	network	call	en	masse	to	complain	about	the	speed	of	their	logins,
hanging	 applications,	 or	 timed	 out	 sessions?	 Obviously,	 there	 could	 be	 a
problem	 with	 network	 performance	 if	 the	 majority	 of	 your	 users	 call	 to
complain.	Where	 do	 you	 begin	 to	 look	 for	 the	 source	 of	 this	 problem?	With
enterprise	 networks	 growing	 and	 connecting	 to	 other	 companies’	 networks
increasingly	 rapidly,	 monitoring	 network	 performance	 can	 become	 a
cumbersome	task.
To	 investigate	problems	and	attempt	 to	 find	 root	 cause	you	need	 to	 initially

isolate	a	problem,	monitor	the	network’s	performance	using	Wireshark,	and	then
work	to	correct	the	issues.	If	performance	is	the	issue,	what	are	the	many	things
we	can	look	at	in	the	map	to	troubleshoot	where	the	problems	are	occurring	and
how	 to	diagnose	 them	correctly?	Questions	you	need	 to	ask	 immediately	upon
starting	performance	analysis	are:
•	Is	poor	network	performance	affecting	one	user,	several	users,	or	the	entire
network?

•	Is	the	poor	performance	centered	at	a	particular	location	or	the	entire
network?

•	When	exactly	did	you	start	noticing	poor	performance	or	has	it	always	been
bad?

•	Have	any	recent	changes	taken	place—no	matter	how	large	or	small?
•	Are	all	applications	at	a	particular	location	experiencing	problems,	or	are
problems	localized	to	a	specific	application?

•	Do	you	have	any	network	documentation	or	topology	maps?
These	are	but	a	sampling	of	the	questions	that	could	be	asked	but	some	of	the

most	 common.	Ultimately,	we	will	want	 to	 use	Wireshark	 to	 troubleshoot	 and
solve	 problems	 but	 it	must	 be	manipulated	 by	 someone	 such	 as	 yourself	who
knows	how	to	uncover	problems.	Finding	the	root	cause	of	a	problem	is	what	we
can	use	this	tool	to	accomplish	at	a	granular	level	if	your	detective	work	is	done
correctly.	You	will	want	 to	 capture	 data	 from	 the	 network,	 analyze	 it	 and	 use
common	network	model,	 knowledge	 of	 protocols	 and	 specific	methodology	 to
assist	in	analyzing	the	problem	and	the	data	captured.

1.6	Using	Wireshark	to	Analyze	Data
The	 key	 to	 successful	 troubleshooting	 is	 knowing	 how	 the	 network	 functions
under	normal	conditions.	This	knowledge	allows	a	network	engineer	to	quickly



recognize	 abnormal	 operations.	 Using	 a	 strategy	 for	 network	 troubleshooting,
the	 problem	 can	 be	 approached	 methodically	 and	 resolved	 with	 minimum
disruption	 to	customers.	Unfortunately,	many	network	professionals	with	years
of	 experience	 have	 not	 mastered	 the	 basic	 concept	 of	 troubleshooting;	 a	 few
minutes	spent	evaluating	the	symptoms	can	save	hours	of	time	lost	chasing	the
wrong	problem.
A	good	approach	to	problem	resolution	involves	these	steps:
•	Recognizing	symptoms	and	defining	the	problem
•	Isolating	and	understanding	the	problem
•	Identifying	and	testing	the	cause	of	the	problem
•	Solving	the	problem
•	Verifying	that	the	problem	has	been	resolved
•	If	the	problem	is	not	found,	reiterate	until	resolved	or	use	to	find	more	data	to
analyze.
The	 first	 step	 toward	 trying	 to	 solve	 a	 network	 issue	 is	 to	 recognize	 the

symptoms.	You	might	hear	about	a	problem	in	one	of	many	ways:	an	end	user
might	 complain	 that	 he	 or	 she	 is	 experiencing	 performance	 or	 connectivity
issues,	or	a	network	management	station	might	notify	you	about	it.	Compare	the
problem	to	normal	operation.	Determine	whether	something	was	changed	on	the
network	just	before	the	problem	started.	In	addition,	check	to	make	sure	you	are
not	troubleshooting	something	that	has	never	worked	before.	Write	down	a	clear
definition	of	the	problem.
Once	the	problem	has	been	confirmed	and	the	symptoms	identified,	 the	next

step	 is	 to	 isolate	 and	understand	 the	problem.	When	 the	 symptoms	occur,	 it	 is
your	responsibility	to	gather	data	for	analysis	and	to	narrow	down	the	location	of
the	problem.	The	best	approach	to	reduce	the	problem’s	scope	is	to	use	divide-
and-conquer	methods.	Try	to	figure	out	if	the	problem	is	related	to	a	segment	of
the	 network	 or	 a	 single	 station.	 Determine	 if	 the	 problem	 can	 be	 duplicated
elsewhere	on	the	network.
The	 third	 step	 in	 problem	 resolution	 is	 to	 identify	 and	 test	 the	 cause	 of	 the

problem.	You	can	use	network	analyzers	and	other	 tools	 to	analyze	 the	 traffic.
After	you	develop	a	theory	about	the	cause	of	the	problem,	you	must	test	it.
Once	 a	 resolution	 to	 the	 problem	 has	 been	 determined,	 it	 should	 be	 put	 in

place.	The	solution	might	 involve	upgrading	hardware	or	 software.	 It	may	call
for	increasing	LAN	segmentation	or	upgrading	hardware	to	increase	capacity.
The	final	step	is	to	ensure	that	the	entire	problem	has	been	resolved	by	having

the	end	customer	test	for	the	problem.	Sometimes	a	fix	for	one	problem	creates	a



new	 problem.	 At	 other	 times,	 the	 problem	 you	 repaired	 turns	 out	 to	 be	 a
symptom	of	a	deeper	underlying	problem.	If	the	problem	is	indeed	resolved,	you
should	document	the	steps	you	took	to	resolve	it.	If,	however,	the	problem	still
exists,	the	problem-solving	process	must	be	repeated	from	the	beginning.
To	understand	network	analysis,	it	is	very	important	to	learn	the	theory	behind

how	networks	operate.	For	a	network	to	work,	the	computers	running	on	it	need
to	agree	on	a	set	of	rules.	Such	a	set	of	rules	is	known	as	a	protocol.	A	protocol
in	 networking	 terms	 is	 very	 similar	 to	 a	 language	 in	 human	 terms.	 Two
computers	using	different	protocols	to	talk	to	each	other	would	be	like	someone
trying	to	communicate	in	Japanese	to	another	person	who	did	not	understand	that
language.	It	simply	would	not	work!
Many	protocols	exist	in	today’s	world	of	network	communication.	In	the	early

days	of	networking,	each	networking	vendor	wrote	its	own	protocol.	Eventually,
standards	 were	 developed	 so	 that	 devices	 from	 multiple	 vendors	 could
communicate	with	 each	 other	 using	 a	 common	 protocol.	 The	most	 commonly
used	protocol	is	the	transmission	control	protocol/Internet	protocol	(TCP/IP).

We	will	cover	the	granular	details	of	TCP/IP	in	later	chapters	when
we	begin	digging	into	the	packets	we	captured.

To	 use	 Wireshark	 to	 solve	 problems,	 you	 will	 capture	 data	 from	 specific
strategic	 points	 that	 encompass	 the	 problem	 area	 and	 review	 that	 data.	 As	 an
example,	 you	 can	 see	 specific	 detail	 in	 the	Wireshark	 summary	 as	 shown	 in
Figure	 1.4.	 Here	 you	 can	 see	 specifics	 on	 the	 time	 of	 capture.	 Why	 this	 is
relevant	 is	 because	 you	 have	 to	 capture	 data	 at	 the	 time	 of	 problem	 to	 find	 a
problem.	Data	captured	outside	of	this	time	can	be	used	to	baseline	your	network
or	 its	 performance	 during	 normal	 use,	 but	 you	 will	 have	 to	 “hope”	 that	 the
problem	occurred	at	that	time	and/or	filter	the	data	to	find	it	if	it	did	in	fact	take
place.



FIGURE	1.4 	Wireshark	capture	summary.

In	Figure	1.4,	we	can	see	how	many	packets	were	captured	(unfiltered),	how
long	other	specifics	commonly	used	to	identify	the	capture.
Figure	1.5	shows	another	tool	you	can	use	within	the	Wireshark	program.	For

example,	let	us	say	you	had	an	issue	and	wanted	to	get	Wireshark’s	opinion	as	to
what	 it	 thinks	 the	 problem	 could	 be.	 You	 can	 ask	 the	 Expert	 and	 find	 out.
Although	this	is	not	always	accurate	information	due	to	false	positives,	you	can
start	to	gain	clues.	Data	traversing	your	network	may	be	flagged	as	problematic,
but	 it	 may	 be	 the	 way	 the	 data	 functions	 normally	 so	 therefore	 it	 may	 not
indicate	a	problem,	or	point	out	the	specific	problem	that	was	reported.

FIGURE	1.5 	Using	the	Wireshark	expert	analysis	tabs.

Figure	1.6	 shows	more	granular	data	 that	 can	be	obtained	 from	Wireshark’s
Expert.	Here	we	can	review	more	“hints,”	but	more	so	we	can	drill	down	further



from	this	tool	back	into	Wireshark’s	Summary	pane	to	go	directly	to	the	packet
that	was	flagged	in	order	to	generate	an	Expert	message	or	alert.

FIGURE	1.6 	Viewing	problems	with	Wireshark	expert.

In	 Figure	 1.6,	 we	 can	 see	 specific	 problems	 that	 may	 be	 occurring	 in
sequencing.	Another	helpful	tip	would	be	to	expand	the	sequence	data	that	was
flagged	and	double	click	the	packet	flagged	to	inspect	that	specific	packet	in	the
Summary,	Detail,	and	Hex	panes.

Do	not	always	 trust	what	Wireshark	 tells	you.	False	positives	can
mislead	you.	It	may	steer	you	in	the	wrong	direction.	It	is,	however,
a	 good	 way	 for	 you	 to	 begin	 using	 the	 tool	 in	 order	 to	 better
understand	 your	 network,	 the	 data	 traversing	 it,	 and	 the	 TCP/IP
stack.

1.7	The	OSI	Model
The	open	systems	interconnection	(OSI)	model	is	used	to	provide	a	methodical
way	 to	 approach	 how	 data	 traverses	 networks,	 systems,	 and	 operates	 with
application	used	on	those	computers	and	networks.	It	is	a	helpful	tool	that	seems
to	be	timeless	as	it	is	continuously	referenced	and	used	today	since	its	inception
many	 years	 ago.	 Founded	 from	 the	 Department	 of	 Defense	 (DoD)	 four-layer
model	back	when	the	Internet	(ARPAnet)	was	first	conceived,	it	serves	as	a	way
to	help	not	only	describe	how	data	 traverses	systems	and	networks	but	also	an
outstanding	tool	that	can	be	used	to	help	troubleshoot	problems.



When	the	data	arrives	at	its	destination,	the	receiving	station’s	physical	layer
picks	it	up	and	performs	the	reverse	process	(also	known	as	decapsulation).	The
physical	layer	converts	the	bits	back	into	frames	to	pass	on	to	the	data	link	layer.
The	data	link	layer	removes	its	header	and	trailer	and	passes	the	data	on	to	the
network	 layer.	Once	 again,	 this	 process	 repeats	 itself	 until	 the	data	 reaches	 all
the	 way	 to	 the	 application	 layer.	 In	 Figure	 1.7,	 we	 see	 the	 layers	 of	 the	 OSI
model.

FIGURE	1.7 	The	OSI	model.

The	layers	of	the	OSI	model	are	described	as	follows:
Application	layer:	This	topmost	layer	of	the	OSI	model	is	responsible	for
managing	communications	between	network	applications.	This	layer	is	not
the	application	itself,	although	some	applications	may	perform	application
layer	functions.	Examples	of	application	layer	protocols	include	file
transfer	protocol	(FTP),	hypertext	transfer	protocol	(HTTP),	simple	mail
transfer	protocol	(SMTP),	and	Telnet.

Presentation	layer:	This	layer	is	responsible	for	data	presentation,	encryption,
and	compression.

Session	layer:	The	session	layer	is	responsible	for	creating	and	managing
sessions	between	end	systems.	The	session	layer	protocol	is	often	unused
in	many	protocols.	Examples	of	protocols	at	the	session	layer	include
NetBIOS	and	remote	procedure	call	(RPC).

Transport	layer:	This	layer	is	responsible	for	communication	between



programs	or	processes.	Port	or	socket	numbers	are	used	to	identify	these
unique	processes.	Examples	of	transport	layer	protocols	include	TCP,	user
datagram	protocol	(UDP),	and	SPX.

Network	layer:	This	layer	is	responsible	for	addressing	and	delivering
packets	from	the	source	node	to	the	destination	node.	The	network	layer
takes	data	from	the	transport	layer	and	wraps	it	inside	a	packet	or
datagram.	Logical	network	addresses	are	generally	assigned	to	nodes	at
this	layer.	Examples	of	network	layer	protocols	include	IP	and	IPX.

Data	link	layer:	This	layer	is	responsible	for	delivering	frames	between	NICs
on	the	same	physical	segment.	It	is	subdivided	into	the	media	access
control	(MAC)	layer	and	the	logical	link	control	(LLC)	layer.
Communication	at	the	data	link	layer	is	generally	based	on	hardware
addresses.	The	data	link	layer	wraps	data	from	the	network	layer	inside	a
frame.	Examples	of	data	link	layer	protocols	include	Ethernet,	the	now
almost	defunct	token	ring,	and	point-to-point	protocol	(PPP).	Devices	that
operate	at	this	layer	include	bridges	and	switches.

Physical	layer:	This	layer	defines	connectors,	wiring,	and	the	specifications
on	how	voltage	and	bits	pass	over	the	wired	(or	wireless)	media.	Devices
at	this	layer	include	repeaters,	concentrators,	and	hubs.	Devices	that
operate	at	the	physical	layer	do	not	have	an	understanding	of	paths.

When	 using	 Wireshark,	 you	 must	 consider	 the	 methodologies	 used	 to
troubleshoot	 with	 as	 well	 as	 how	 the	 data	 works	 on	 networks	 and	 systems.
Knowing	how	to	launch	and	run	the	tool	is	not	enough!	You	need	to	specifically
know	where	to	place	it,	when	to	run	it,	and	what	it	is	you	will	capture.	You	will
then	 need	 to	 analyze	 which	 tests	 your	 knowledge	 of	 networks,	 computers,
applications,	and	systems.

1.8	Summary
In	this	chapter,	we	have	learned	about	protocol	capture	and	analysis,	learned	the
fundamentals	of	Wireshark	as	well	as	the	fundamentals	of	troubleshooting	with
it.	In	the	next	chapter,	we	will	learn	how	to	install	and	setup	Wireshark	so	that
you	can	begin	to	use	and	work	with	it.



CHAPTER	2

Installing	Wireshark

2.1	Introduction

2.2	Getting	Started

2.3	Requirements

2.4	Installation	Preparation

2.5	Installing	Wireshark

2.6	Summary

2.1	Introduction
Understanding	a	network,	how	it	works	and	why	we	use	tools	such	as	Wireshark
is	only	the	beginning	…	now	we	must	build	our	toolkit	in	order	to	get	to	work.
In	this	chapter	of	the	book	we	will	cover	how	to	get	Wireshark,	install	it,	and	set
it	up	 for	use	on	a	computer.	We	will	cover	how	the	 tool	changes	your	NIC	so
that	it	can	capture	data,	specifically	what	requirements	would	be	needed	in	order
to	not	only	install	but	use	Wireshark	in	production	as	well	as	many	other	tidbits
of	 information	 to	make	your	 troubleshooting	 time	painless	and	productive.	We
will	briefly	go	over	the	interface	and	how	to	launch	and	use	the	tool.

To	 use	 this	 field	 guide	 to	 its	 fullest	 potential,	 you	 must	 have	 a
working	Wireshark	 instance	 running	on	a	computer	system	that	 is
stable	and	virus-free.	It	is	assumed	that	before	you	begin	installing
Wireshark	for	use,	that	your	computer	is	network-capable	and	fully
operational.	Wireshark	uses	a	lot	of	system	resources,	so	make	sure
that	 whatever	 system	 you	 choose	 to	 work	 with	 is	 one	 you	 can
preferably	dedicate	 to	 this	 task	alone.	 It	 is	also	recommended	 that



any	computer	system	you	use	for	the	purpose	of	packet	capture	and
analysis	be	one	that	is	portable	whenever	possible.

2.2	Getting	Started
Now	that	we	have	covered	the	basics	and	have	an	overview	of	what	Wireshark
can	do	for	you	and	where	you	are	going	to	apply	this	technology,	next	we	need
to	get	the	product	installed	and	running	on	a	computer	system	so	we	can	use	it.
In	this	chapter,	you	will	learn	how	to	acquire,	prep,	and	install	Wireshark.
First,	 you	will	 need	 to	 consider	where	you	will	 install	Wireshark.	There	 are

many	options	for	placement.	For	example,	if	you	were	troubleshooting	a	client	to
server	connection	problem	on	your	network,	you	can	simply	install	Wireshark	on
the	 offending	 client	 and	 problematic	 server.	 Since	 you	 don’t	 know	where	 the
problem	 is	 and/or	 if	 it’s	 the	 client	 or	 server	 itself,	 you	 need	 to	 do	 some
investigation	 work.	 Once	 you	 figure	 out	 your	 placement	 points,	 download	 or
copy	the	Wireshark	executable	program	to	each	system	and	run	the	installation
until	completed.	This	 is	 typical	of	how	to	use	Wireshark	and	common	practice
for	most	network	engineers.	Figure	2.1	shows	a	very	simplistic	network	segment
with	 two	 client	 computer	 systems	 and	 two	 server	 systems	 connected	 together
with	a	network	switch.

FIGURE	2.1 	Planning	Wireshark	placement.



Although	this	is	a	simplistic	diagram	and	the	network	seems	small,	it	doesn’t
change	 much	 when	 planning	 the	 installation	 of	 Wireshark	 on	 a	 large-scale
enterprise	 network.	 Even	 if	 you	 had	wide	 area	 network	 connections,	 firewalls
and	layers	of	network	components	between	the	client	and	the	server,	you	would
still	want	to	place	Wireshark	on	the	same	systems	you	are	having	problems	with.
What	changes	is	how	you	will	read	the	captures	taking	into	consideration	all	of
the	complexity	found	between	the	problem	hosts.
Another	common	option	and	the	one	we	will	model	our	installation	after	here

in	this	chapter	is	the	preparation	of	a	mobile	computer	(such	as	a	laptop)	that	you
can	 take	 with	 you	 and	 configure	 on	 the	 network	 for	 use.	 This	 is	 a	 more
complicated	way	to	use	Wireshark,	however,	the	least	intrusive	to	your	systems.
Figure	 2.2	 shows	 a	 very	 simplistic	 network	 segment	with	 two	 client	 computer
systems	 and	 two	 server	 systems	 connected	 together	with	 a	 network	 switch.	 In
this	 scenario,	 we	 will	 not	 install	 Wireshark	 on	 the	 client	 system	 having	 a
problem	 found	 on	 port	 1/1	 of	 the	 network	 switch	 and	 instead	 use	Wireshark
connected	on	port	1/3.	The	server	on	port	1/2	for	purposes	of	this	discussion	will
have	Wireshark	installed	on	it.

FIGURE	2.2 	Planning	Wireshark	placement.

In	 this	 scenario,	 you	would	 have	 to	 apply	 a	 secondary	 configuration	 on	 the
network	switch	to	send	traffic	from	port	1/1	to	port	1/3	for	Wireshark	to	capture.
This	is	called	port	spanning	and/or	port	mirroring.	We	will	cover	this	in	depth	in
Chapter	3.



Not	all	network	switches	support	port	spanning	or	mirroring.	There
are	other	ways	to	perform	analysis	and	we	will	cover	these	steps	in
Chapter	3.

The	point	to	be	made	here	is	this	…	you	will	need	to	know	how	to	install	and
configure	Wireshark	for	use	in	and	around	your	network	(or	a	client’s	network)
without	fail	and	configure	it	as	well	on	adjacent	systems	for	you	to	get	the	most
out	of	it.	Let’s	take	a	look	at	what	requirements	are	needed	to	get	Wireshark	up
and	running	anywhere	on	the	network.

If	 you	 do	 not	 set	 up	 the	 software	 correctly,	 you	 might	 not	 get
accurate	data.	 If	you	do	not	 span	a	port,	you	may	not	 capture	 the
traffic	you	intend	to	see,	 if	you	install	Wireshark	on	a	system	that
cannot	use	Wireshark	you	might	not	see	accurate	data;	if	this	data	is
not	picked	up	with	a	promiscuously	set	NIC,	you	will	not	 receive
accurate	data	to	help	solve	a	problem.	If	you	do	not	span	a	port	you
may	 not	 capture	 network	 traffic	 destined	 for	 a	 specific	 host.
Although	we	will	continue	to	learn	the	specifics	of	this	throughout
the	book	it	is	important	to	reinforce	these	facts	before	installing	and
using	Wireshark.

2.3	Requirements
As	we	just	learned,	you	may	be	tasked	with	installing	Wireshark	more	than	just
once.	Therefore,	it’s	imperative	to	learn	what	you	need	to	get	it	running	quickly
and	 how	 much	 pressure	 it	 puts	 on	 your	 system.	 Let’s	 cover	 a	 few	 important
pieces	of	information	that	are	vital	to	your	successful	use	of	Wireshark.
•	If	your	system	does	not	have	proper	hardware	resources	it	will	not	be	able	to
run	Wireshark.

•	If	your	system	is	not	stable	it	may	crash	while	running	Wireshark.
•	If	your	system	is	not	compatible	(software	and	hardware)	you	will	not	be	able



to	install	or	have	problems	after	installation.
•	You	need	administrative	rights	to	the	system	in	which	you	will	install
Wireshark	on.

Make	sure	you	have	a	large	disk	drive	and	plenty	of	memory	to	run
Wireshark	 and	 capture	 data.	 A	 large	 disk	 drive	 is	 needed	 for
running	and	storing	large	captures	that	take	up	a	lot	of	disk	space.

When	running	a	capture	using	Wireshark,	 try	 to	shut	down	and/or
not	 use	 any	 other	 nonessential	 applications	 to	 conserve	 hardware
resources	such	as	memory,	disk	space,	and	CPU.

2.4	Installation	Preparation
When	 using	 Wireshark,	 you	 need	 to	 know	 which	 operating	 systems	 it	 can
function	 on.	 If	 the	 operating	 system	 is	 not	 compatible,	 Wireshark	 might	 not
function	properly.	Luckily	since	Wireshark	is	an	open-source-based	application,
finding	 a	 compatible	 system	 is	 not	 difficult.	 Check	 the	Wireshark	web	 site	 to
find	compatibility	for	your	operating	system	platform.	Go	to	3rd	Party	Packages
on	the	download	page	for	more	information.
http://www.wireshark.org/download.html

If	 you	 do	 not	 set	 up	 the	 software	 correctly,	 you	 might	 not	 get
accurate	 data.	 If	 you	 use	 the	 wrong	 drivers,	 you	 might	 not	 see
collisions;	 if	 these	 collisions	 are	 not	 picked	 up	 with	 a
promiscuously	 set	 NIC,	 you	 will	 not	 receive	 accurate	 reporting
data.	Make	sure	you	are	using	the	appropriate	hardware	verified	by
the	Wireshark	web	site.
http://www.wireshark.org/docs/wsug_html_chunked/ChIntroPlatforms.html
http://wiki.wireshark.org/CaptureSetup/NetworkMedia

http://www.wireshark.org/download.html
http://www.wireshark.org/docs/wsug_html_chunked/ChIntroPlatforms.html
http://wiki.wireshark.org/CaptureSetup/NetworkMedia


In	the	previous	section,	the	download	link	was	provided	for	Wireshark.	Once
you	have	selected	the	appropriate	download	for	your	system	and	your	system	has
been	verified	for	proper	resources,	download	Wireshark	and	let’s	get	started.

2.5	Installing	Wireshark
In	 this	 example,	Wireshark	will	 be	 installed	 on	 a	 32-bit	 version	 of	Windows.
Although	you	can	install	it	on	other	systems,	we	will	focus	on	the	most	common,
the	Windows	operating	system.	Once	you	have	downloaded	 the	executable	 for
the	Wireshark	installation	procedure,	simply	double-click	on	it	to	execute	it.

Some	 versions	 of	 operating	 systems	 may	 have	 incompatibility
issues.	A	workaround	that	can	be	used	in	the	case	of	Windows	8	is
to	install	WinPcap	prior	to	installing	Wireshark	because	of	possible
incompatibility	issue.

Figure	 2.3	 shows	 that	 once	 executed,	 you	 will	 be	 provided	 with	 a	 security
warning	 from	 Windows	 about	 the	 installation.	 Here	 we	 will	 see	 that	 the
publisher	 is	 the	Wireshark	 Foundation	 and	 that	 the	 file	 is	 digitally	 signed	 and
safe.	You	can	always	scan	your	files	with	an	antivirus	program	first.



FIGURE	2.3 	Starting	the	Wireshark	installation.

In	this	example,	we	will	be	installing	the	most	current	version	of	Wireshark	as
of	the	writing	of	this	book	which	is	1.8.4.	This	is	 the	most	current	(and	stable)
version	of	the	program.

You	can	also	download	and	test	newer	versions;	however,	it	is	safer
to	use	a	stable	version	so	that	you	can	ensure	that	you	are	working
with	the	more	reliable	version	when	capturing	and	analyzing	data.

You	 may	 run	 into	 an	 issue	 when	 installing	 if	 you	 already	 have	Wireshark
installed.	We	will	 discuss	 this	 briefly.	 In	Figure	 2.4,	 you	 can	 see	 that	 because
Wireshark	 is	 already	 installed	 on	 the	 host	 system,	 Wireshark	 is	 asking	 for
permission	 to	 uninstall	 the	 older	 version	 before	 proceeding.	 By	 accepting	 and
clicking	on	Yes,	Wireshark	will	uninstall	the	older	version	before	installing	the
current	version.



FIGURE	2.4 	Updating	Wireshark.

After	you	agree,	Wireshark	will	start	the	uninstall	wizard	which	will	walk	you
through	 removing	 the	 older	 version	 as	 seen	 in	 Figure	 2.5.	 Although	 some
programs	“upgrade”	the	current	system,	Wireshark	does	a	clean	removal	process
and	reinstallation	of	the	new	package.

FIGURE	2.5 	Wireshark	uninstall	wizard.

Once	you	click	Next,	you	will	be	shown	the	directory	in	which	Wireshark	will
be	 removed	 from	 on	 your	 system.	Normally	 this	 is	 found	 in	 the	 program	 file
folder	on	your	 root	drive.	Next,	you	will	be	given	options	on	 the	 features	you
would	 like	 to	 uninstall.	 Figure	 2.6	 shows	 the	 options	 in	which	 you	 can	 select
from.



FIGURE	2.6 	Choosing	uninstall	options.

Here	you	can	choose	to	keep	specific	components,	such	as	WinPcap,	personal
settings	or	plug-ins.	By	choosing	default	options,	you	will	keep	personal	settings
and	WinPcap	as	an	example.
Take	note	of	the	drop-down	menu	where	you	can	select	the	type	of	uninstall.

This	 sets	 up	 specific	 options	 that	 are	 preset	 into	 the	 uninstall	 routine.	 For
example,	 in	 Figure	 2.7,	 you	 can	 select	Default,	All,	 or	Custom.	Quite	 simply,
select	the	type	of	uninstall	routine	you	want	and	you	can	always	customize	the
options	regardless.	This	just	makes	it	easier	for	you	to	select	when	you	uninstall
Wireshark.



FIGURE	2.7 	Selecting	the	type	of	uninstall.

Once	you	click	on	Uninstall,	you	will	be	shown	a	dialog	box	where	you	see
the	 files	 and	 directories	 being	 removed	 from	 your	 system.	Once	 it	 completes,
select	Next	 and	 you	will	 be	 shown	 the	 dialog	 box	 that	 closes	 the	Wizard	 and
completes	the	Uninstall.	Click	Finish	to	close	the	wizard.
Once	 you	 have	 finished	 the	 uninstall,	 you	 will	 then	 invoke	 the	 Wizard	 to

install	Wireshark	on	your	system.	Figure	2.8	shows	the	Wireshark	Setup	Wizard.
The	current	version	of	Wireshark	(1.8.4)	will	be	installed	on	the	target	host	once
you	click	Next.



FIGURE	2.8 	Installing	Wireshark.

Once	 you	 click	Next,	 you	will	 be	 shown	 a	 license	 agreement	 in	which	 you
need	 to	select	 I	Agree	 if	you	do	 to	continue	 the	 installation	process.	Once	you
agree,	 you	 will	 then	 be	 brought	 the	 choosing	 components	 portion	 of	 the
installation	process.	Here	as	seen	in	Figure	2.9,	you	can	select	specifically	what
components	you	would	like	to	install.

FIGURE	2.9 	Choosing	components.



In	Figure	2.9,	you	are	presented	with	 the	 following	components:	Wireshark,
TShark,	plug-ins	and	extensions,	tools	and	a	user’s	guide.	You	can	also	see	that
you	can	expand	 the	options	 in	 the	plug-ins	and	extensions	as	well	 as	 the	 tools
components.

TShark	is	a	terminal	emulation	program	that	you	work	with	via	the
command	line,	much	like	tcpdump.	To	learn	more	about	how	to	use
TShark	and	the	commands	and	switches	you	can	use	with	it,	please
visit	the	Wireshark	documentation	for	more	info.
http://www.wireshark.org/docs/man-pages/tshark.html

The	plug-ins	component	has	multiple	options	within	it.	You	can	install	Simple
Network	Management	Protocol	(SNMP)	Management	information	bases	(MIBs)
as	well,	which	 are	 used	with	management	 software	 solutions	 that	 capture	 and
alert	on	 specific	criteria.	This	can	be	helpful	 if	you	want	 to	use	Wireshark	via
SNMP	 to	 accomplish	 management	 and	 alerting	 tasks.	 Plug-in	 options	 can	 be
seen	 in	Figure	 2.10.	Select	which	plug-ins	 you	would	 like	 to	 use	 and	deselect
those	you	do	not	want	to	use	when	preparing	to	install.

http://www.wireshark.org/docs/man-pages/tshark.html


FIGURE	2.10 	Viewing	plug-in	options.

You	 can	 also	 select	 options	 within	 the	 Tools	 component	 as	 seen	 in	 Figure
2.11.

FIGURE	2.11 	Selecting	tools	options.

You	 can	 use	 tools,	 such	 as	 Editcap,	 Text2Pcap,	 and	 others	 for	 more.	 For



example,	 Editcap	 is	 another	 command	 line	 tool	 that	 works	 much	 like	 a	 Unix
input–output	function	where	you	can	pipe	data	to	files.	Some	technicians	really
enjoy	the	use	of	command	line	tools	for	many	reasons;	however,	one	of	the	most
common	of	those	reasons	is	that	they	can	be	used	in	scripting	files	that	help	to
automate	processes.
Please	make	 sure	 you	 check	 your	 space	 required	 field	 in	 the	 dialog	 box	 to

ensure	 that	 you	 have	 allotted	 for	 this	 space.	 If	 you	 select	 everything	 that
Wireshark	 has	 to	 offer,	 you	 will	 only	 need	 approximately	 85	 MB	 for	 the
installation	to	take	place.
Once	you	have	decided	what	components	you	would	like	to	install,	click	Next

to	continue.	Once	you	do,	you	will	be	asked	to	check	what	additional	tasks	you
would	like	the	Wireshark	wizard	to	perform	when	installing	the	program.	Figure
2.11	 shows	 these	 specific	 tasks.	 In	 Figure	 2.12	 you	 can	 tell	 Wireshark	 upon
completing	 installation	 that	you	want	Start	Menu	Item’s	created	and	if	specific
file	extensions	should	always	be	tied	to	Wireshark	when	accessed	by	default.

FIGURE	2.12 	Wireshark	installation	tasks.

Once	 you	 click	 on	Next,	 you	will	 have	 to	 choose	 the	 directory	 in	which	 to
install	Wireshark.	By	default	(much	like	uninstall),	the	program	file	folder	in	the
root	drive	will	be	selected.	You	can	also	see	in	this	dialog	box	how	much	space
is	 required	 and	 how	much	 space	 you	 have	 available	 on	 the	 drive	 you	wish	 to



install	it	on	to.	Click	Next	to	continue.

To	 install	 WinPcap	 on	 Windows	 8	 systems,	 download	 the
executable	 file	 from
http://www.winpcap.org/install/bin/WinPcap_4_1_2.exe	 first.
Before	 running	 the	 file,	 modify	 the	 Compatibility	 Mode	 to
Windows	 7	 within	 Properties.	 Otherwise	 the	 installation	 for	 both
WinPcap	and	Wireshark	will	fail.

In	Figure	2.13,	we	can	verify	if	we	want	to	install	WinPcap	if	and	only	if	it’s	a
different	version.	For	example,	since	we	did	an	uninstall	and	WinPcap	remained
on	 the	 computer	 we	 are	 installing	 Wireshark	 on	 to,	 we	 have	 an	 option.	 For
example,	if	this	was	an	older	version,	we	may	be	given	an	option	to	upgrade	to
the	new	version	which	at	the	time	of	this	writing	is	version	4.1.2.	Click	on	Install
to	install	the	latest	version	of	WinPcap	or	upgrade	it.

FIGURE	2.13 	WinPcap	installation.

Next,	 you	 will	 be	 shown	 the	 extraction	 and	 installation	 of	 Wireshark	 and

http://www.winpcap.org/install/bin/WinPcap_4_1_2.exe


WinPcap	on	your	Windows	system.	Once	the	installation	is	completed,	you	will
be	 shown	 the	 final	 dialog	 box	 as	 seen	 in	 Figure	 2.14.	 Here	 you	 can	 click	 on
Finish	 to	 complete	 the	 install.	 If	you	 select	 the	Run	Wireshark	or	Show	News
check	boxes,	you	can	immediately	start	Wireshark	as	well	as	be	shown	a	list	of
the	 updates	 and	 new	 features	 of	Wireshark.	 If	 you	 are	 new	 to	Wireshark,	 this
page	will	be	helpful	to	read.

FIGURE	2.14 	Completing	the	Wireshark	installation.

Once	 you	 have	 completed	 the	 installation,	 reboot	 and	 then	 you	 can	 run	 the
application.	Figure	2.15	shows	 the	desktop	 icon	 that	 is	created	postinstallation.
Double-click	this	icon	to	complete	the	launch	Wireshark	if	you	did	not	select	it
to	be	run	postinstallation.

FIGURE	2.15 	Wireshark	desktop	icon.



You	 have	 officially	 installed	 Wireshark	 and	 have	 it	 ready	 to	 use	 on	 your
computer.	Now,	in	our	next	chapter,	we	will	cover	 the	specifics	of	configuring
your	system	to	prepare	it	for	captures,	filtering,	and	analysis	of	network	traffic.

2.6	Summary
In	this	chapter,	we	have	learned	about	how	to	acquire,	prepare	for	an	installation,
and	conduct	an	installation	of	Wireshark.	In	the	next	chapter,	we	will	learn	how
to	prepare	your	system	with	Wireshark	installed	to	capture	data	and	conduct	the
appropriate	analysis	needed	to	solve	problems.



CHAPTER	3

Configuring	a	System

3.1	Introduction

3.2	Getting	Started

3.3	Configuring	a	Cisco	Port	Monitor

3.4	Other	Tools	and	Methodologies

3.5	Summary

3.1	Introduction
Now	that	we	know	what	Wireshark	does	and	how	to	get	and	install	it,	we	now
need	to	prepare	it	for	use.	Using	Wireshark	is	not	impossible,	but	there	needs	to
be	an	understanding	of	what	you	will	use	it	for	in	order	to	get	the	most	out	of	it.
For	example,	simply	 installing	 it	on	a	computer	and	running	 it,	capturing	data,
and	analyzing	 it	may	help	you	 learn	more	about	your	network	 the	computer	 is
connected	to.	You	may	find	some	protocols	being	used	that	you	did	not	realize
were	 in	 use,	 or	 verify	 the	 correct	 usage	 of	 the	 ones	 that	 you	 did	 know	 about.
However,	 how	 would	 you	 solve	 a	 problem	 such	 as	 “slow	 response	 time	 to	 a
server”	as	an	example?
In	 this	 chapter,	 we	 will	 learn	 how	 to	 configure	 a	 system	 to	 use	Wireshark

correctly.	 This	 chapter	will	 also	 learn	 how	 to	 correctly	 position	 it	 for	 use	 and
provide	 you	 with	 sample	 scenarios	 in	 which	 Wireshark	 may	 be	 handy.	 This
chapter	will	also	cover	the	specifics	of	how	to	get	all	of	the	components	of	the
network	either	working	 for	you	and	Wireshark,	or	show	you	how	to	 rule	 them
out	of	the	possible	problem	you	may	be	encountering.

3.2	Getting	Started
Once	 your	 computer	 is	 ready	 to	 go,	 you	 will	 need	 to	 learn	 where	 to	 place



Wireshark	on	a	network.	As	mentioned	in	the	last	chapter,	this	is	no	simple	task.
In	this	chapter,	we	will	cover	not	only	configuration	of	network	devices	but	also
teach	you	how	 to	consider	 the	 specific	placement	of	 the	 tool	 in	order	 to	use	 it
correctly.	 We	 will	 learn	 how	 preparing	 to	 capture	 data	 may	 require	 making
adjustments	 on	 network	 devices,	 network	 cabling	 or	 configuration	 specifics
necessary	to	capture	data.	We	will	learn	how	about	configuring	a	network	device
to	 send	 data	 to	 Wireshark,	 the	 correct	 placement	 and	 staging	 of	 the	 capture
device(s)	 as	 well	 as	 the	 strategy	 you	 must	 plan	 with	 two	 end-to-end	 systems
when	 more	 than	 one	 Wireshark	 capture	 is	 needed.	 Figure	 3.1	 shows	 a	 very
simplistic	 network	 segment	with	 two	 client	 computer	 systems	 connected	 via	 a
network	switch.

FIGURE	3.1 	Planning	Wireshark	placement.

Although	this	is	a	simplistic	diagram	and	the	network	seems	small,	this	is	the
same	methodology	that	we	will	use	when	working	on	an	enterprise	network.	For
example,	 if	 you	 had	 to	 use	 a	 laptop	with	Wireshark	 to	 analyze	 a	 connectivity
problem	on	a	server,	instead	of	the	server	being	connected	via	the	same	network
switch	as	seen	in	Figure	3.1,	imagine	that	server	is	connected	across	the	world,
across	10	router	connections	and	20	switches	in	a	remote	data	center.	It	does	not
change	 the	 fact	 you	 still	 need	 to	 configure	 the	 switch	 the	 same	 way	 to	 send
traffic	to	Wireshark	in	order	for	you	to	analyze	it	for	any	issues.
In	 this	 scenario,	 you	would	 have	 to	 apply	 a	 secondary	 configuration	 on	 the

network	switch	to	send	traffic	from	port	1/1	to	port	1/3	for	Wireshark	to	capture.



This	 is	 called	 port	 spanning	 and/or	 port	 mirroring.	 You	 can	 capture	 an	 entire
conversation	 without	 impacting	 the	 systems	 as	 they	 work	 on	 the	 network	 by
conducting	this	type	of	analysis.
Before	we	get	into	the	details	on	how	to	configure	mirroring,	let’s	make	sure

we	 understand	why	we	would	 do	 this.	 Let’s	 say	we	wanted	 to	 troubleshoot	 a
conversation	between	Computer	A	and	Computer	B	as	 seen	 in	Figure	3.2.	For
example,	Computer	A	had	a	slow	login	to	Computer	B	and	there	were	no	clue	in
obtained	 logs	 or	 any	 other	 method	 of	 analysis	 to	 prove	 why.	 This	 is	 where
Wireshark	 makes	 its	 money.	 Connecting	 Wireshark	 to	 a	 network	 switch	 and
spanning	the	traffic	over	to	the	computer	with	Wireshark	installed	will	allow	for
the	capture	and	analysis	of	the	entire	conversation	in	order	for	you	to	analyze	it.
Yes,	 you	 could	 install	Wireshark	 directly	 on	 the	 system	 itself;	 however,	 there
may	be	reasons	why	you	may	not	want	to	or	be	able	to.	Incompatibility	may	be
one	reason.	Policy	may	be	another	(your	company	does	not	allow	it).	You	may
not	have	access	to	install	it	on	the	system;	therefore,	mirroring	and	spanning	may
be	 your	 only	 alternative.	 Regardless,	 this	 chapter	 covers	 the	 final	 items	 you
would	 need	 to	 get	 Wireshark	 up	 and	 running	 to	 use	 it	 for	 data	 capture	 and
analysis.

Although	this	chapter	covers	Cisco	Systems	switches	in	detail,	you
can	in	fact	install	mirroring	and/or	spanning	on	other	systems	such
as	a	Nortel	 switch	and	many	others.	Cisco	 is	 the	most	 commonly
used	 switch	 today,	 therefore,	 we	 will	 cover	 Cisco	 in	 detail;
however,	 if	you	need	 to	configure	Wireshark	on	a	Juniper,	Nortel
or	HP	switch,	please	look	up	the	configurations	online	as	they	will
be	similar	to	what	is	discussed	here	in	theory.



FIGURE	3.2 	Planning	Wireshark	placement.

3.3	Configuring	a	Cisco	Port	Monitor
In	this	chapter,	we	will	configure	a	Cisco	switch	to	mirror	traffic	from	one	port
to	another	for	capture	and	data	analysis.	As	we	mentioned	before,	although	other
switches	 can	 be	 used	 in	 the	 same	 fashion,	 the	 same	 holds	 true	 for	 the	 packet
capture	and	analysis	tool	itself.	For	example,	when	configure	Netflow,	you	can
use	 similar	 functions.	When	 sending	 traffic,	 you	can	 send	 it	 to	 a	Fluke	Packet
capture	device,	or	a	Netscout	repository.	There	are	many	ways	you	can	use	what
is	learned	in	this	chapter	as	a	network	engineer	so	take	note.
To	configure	port	monitoring	(also	called	Switched	Port	Analyzer	or	SPAN)

on	a	Cisco	Catalyst	switch,	first	you	need	to	know	what	model	of	switch	you	are
using.	For	example,	using	a	2940,	2950,	2955,	2970,	3550,	or	3750	series	switch
is	different	 than	using	a	 switch	 from	 the	Nexus	 line.	Rest	assured	 that	 there	 is
plenty	of	documentation	available	to	aid	you	in	the	configuration	of	any	device
in	Cisco’s	product	 line;	however,	 it’s	 important	 to	note	 that	 the	commands	are
not	completely	universal.
So	what	does	SPAN	do?	SPAN	when	configured	correctly	(as	seen	in	Figure

3.2)	will	send	a	copy	of	the	data	traversing	a	port	to	another	port	for	copy.	If	you
have	 a	 computer	 system	with	 a	NIC	 set	 in	 promiscuous	mode	 and	 a	 protocol



analyzer	configured,	you	can	capture	the	data	and	filter	and	analyze	it.

Remote	Monitoring	(RMON)	probes	and	other	devices	such	as	IPS
units	 to	 provide	 secure	 also	 function	 this	 way.	 As	we	will	 learn,
there	 are	 many	 ways	 to	 configure	 a	 SPAN	 port,	 not	 only	 for
Wireshark	 but	many	 other	 tools	 and	 systems	 that	 need	 to	 capture
and	use	a	copy	of	data	traversing	links	for	the	purposes	of	analysis.
This	chapter	is	extremely	valuable	to	not	only	learning	how	to	use
Wireshark,	but	to	become	a	network	engineer	or	security	engineer
in	general.

SPAN	mirrors	can	receive	or	transmit	traffic	on	one	or	more	source	ports	to	a
destination	port	for	analysis.	You	can	SPAN	multiple	ports	to	one	destination.	It
does	this	without	 impacting	the	network	or	 interfering	with	the	transmission	of
data.	There	are	special	cases,	however,	when	running	a	span	of	a	trunk	port	(or
port	 channel)	 on	 overutilized	 systems	 you	 may	 encounter	 resource	 depletion
such	as	high	CPU	as	an	example.
Other	 functions	of	SPAN	include	Remote	SPAN	(RSPAN)	which	 is	used	 to

extend	 SPAN	 by	 enabling	 RMON	 on	 multiple	 switches	 over	 an	 enterprise
network.	 This	 can	 also	 be	 configured	 over	 an	 RSPAN	 Virtual	 Local	 Area
Network	(VLAN)	used	only	for	these	types	of	sessions	and	copied	via	specified
reflector	 ports.	 Although	 this	 is	 somewhat	 complex,	 it	 really	 isn’t	 in	 theory,
however	can	get	a	slightly	complicated	in	application.	Once	configured	however,
also	note	that	a	network	is	a	living	entity	whereas	if	you	need	to	“troubleshoot”	a
problem	somewhere	on	your	network,	you	may	need	 to	move	a	probe,	move	a
monitor	or	move	a	packet	capture	device	to	the	problem	which	means	that	you
will	 need	 to	 conduct	 configurations	 at	 that	 time.	 That	 being	 said,	 let’s	 walk
through	the	most	common	you	will	do:

1.	First	find	where	your	connections	map	to	on	the	network.	For	example,	a
computer	or	server	network	connection	may	disappear	into	the	distance,
an	Intermediate	Distribution	Facility	(IDF)	or	a	patch	panel.	What	you
need	to	know	is	what	switch	port	the	device	connects	into	in	order	to
SPAN	it.



2.	You	can	always	look	in	the	switches	ARP	cache	for	the	MAC	address	and
what	port	it’s	associated	to.	This	is	extremely	helpful	in	cases	where	you
cannot	map	the	connection.	You	may	need	the	IP	address	of	the	source
(and	or	destination)	computer	in	order	to	map	the	device	to	a	port	in	this
fashion.

3.	Once	you	find	this	information,	you	need	to	find	a	free	port	on	the
network	to	connect	your	analyzer	(Wireshark)	to	in	order	to	configure	it
for	promiscuous	capture.

Next,	you	will	want	 to	 log	into	 the	device	 in	which	you	want	 to	configure	a
SPAN	session.	Once	logged	in,	you	will	need	to	make	administrative	changes	to
the	switch.

Before	 making	 any	 changes	 to	 a	 production	 network,	 make	 sure
that	you	are	 authorized	 to	do	 so.	 If	 you	are	 reading	a	book	about
capturing	data	and	analyzing	it	at	the	packet	level,	it’s	assumed	you
know	 a	 thing	 or	 two	 about	 working	 on	 a	 production	 network;
however,	this	is	not	always	the	case.	If	you	do	not	have	experience
working	 on	 a	 production	 network	 professionally,	 please	 do	 not
make	any	of	these	configuration	changes	without	first	running	them
in	a	controlled	lab	environment	first.

You	first	configuration	is	to	turn	off	any	current	session	monitoring	if	session
monitoring	is	already	in	place.	If	you	want	to	turn	off	monitoring	on	a	particular
session,	simply	list	it	by	its	session	number.

LabSwitch1(config)#	no	monitor	session	all
LabSwitch1(config)#	no	monitor	session	1
Next,	you	will	want	to	configure	session	monitoring	to	and	from	the	specific

ports	you	mapped	out	earlier.	In	Figure	3.3,	we	see	a	current	example	of	what	we
will	be	configuring	on	this	lab	switch.	We	will	install	Wireshark	on	Computer	A
(Chapter	 2)	 and	we	will	 SPAN	 a	 port	 from	 port	 2	 to	 port	 3	 for	 a	 production
server	where	we	cannot	install	Wireshark.



FIGURE	3.3 	Planning	Wireshark	placement.

This	example	shows	how	to	set	up	a	SPAN	session	(session	1)	for	monitoring
source	port	 traffic	 to	a	destination	port.	First,	any	existing	SPAN	configuration
for	session	1	is	cleared	and	then	bidirectional	traffic	is	mirrored	from	source	port
1/2	to	destination	port	1/3:

LabSwitch1(config)#	monitor	session	1	source	interface	fastEthernet1/2
LabSwitch1	(config)#	monitor	session	1	destination	interface	fastEthernet1/3
LabSwitch1	(config)#	end
Now	you	will	be	able	to	capture	data	from	source	to	destination	for	analysis.

When	 you	 run	 a	 capture,	 make	 sure	 that	 you	 capture	 both	 ends	 of	 the
communication	real	 time	at	 the	same	 time.	For	example,	 if	you	wanted	 to	 find
out	why	it	takes	a	long	time	for	the	client	(Computer	A)	to	login	to	a	server,	you
can	run	Wireshark	on	Computer	A	and	the	monitoring	device	while	attempting
to	login	and	then	analyzing	both	sets	of	data	to	find	root	cause.

Do	not	forget	the	basics.	Although	Wireshark	is	extremely	handy	in
finding	problems,	 it	 is	best	used	when	 leveraged	with	other	 tools.
For	example,	you	may	want	to	parse	the	event	logs	on	the	Windows
server	 as	 well	 as	 the	 client	 computer	 while	 examining	 the



Wireshark	 data.	 You	 may	 see	 that	 a	 slow	 login	 problem	 can	 be
identified	 in	 the	 event	 logs;	 however,	 the	 specific	 reasons
(congested	 switch)	 may	 only	 show	 up	 in	 the	 Wireshark	 detail.
Remember,	 even	 though	 you	 are	 troubleshooting	 and	 using
Wireshark	as	a	tool,	it’s	not	the	only	tool	in	your	toolbelt.	The	best
technicians,	 analysts,	 and	 engineers	 use	 server	 logs,	 infrastructure
device	logs,	packet	analysis,	and	many	other	tools	to	solve	the	most
complex	problems.

Once	you	have	 set	Wireshark	up	correctly,	you	need	 to	consider	placement.
We	touched	on	this	earlier	in	the	book.	Placement	is	something	that	takes	a	little
time,	 patience,	 and	 experience	 to	 get	 right.	 For	 example,	 if	 someone	 said	 that
they	had	a	problem	accessing	data.	Consider	all	of	the	areas	in	which	you	may
have	to	consider:
•	Client:	The	client	is	the	most	common	place	to	start	…	that’s	where	most
problems	are	reported	from.	The	end	user	could	not	do	something	like	surf
the	Internet,	use	a	specific	application	or	having	a	hard	time	logging	into	a
server.	This	is	where	you	get	most	of	your	clues.

•	Application:	Could	the	application	be	having	issues?	When	moving	between
services	in	the	application,	is	the	application	passing	multiple	tiers?	Is	there
an	application	layer?	Would	installing	Wireshark	on	the	application	tier
make	more	sense	than	installing	it	on	the	web	services	portion?	What	if	the
application	is	delivered	using	a	solution	such	as	Citrix?	Do	we	install
Wireshark	on	the	Citrix	server?	Why	would	we?

•	Database:	Is	the	Database	server	the	cause	of	the	issue?	What	gives	us	this
impression?	Was	the	user	doing	something	that	caused	a	lock?	Why	would
we	install	Wireshark	on	the	Database	server?

•	Web	services:	Was	the	front	end	the	cause	of	the	problem?
•	Cluster:	Are	the	systems	clustered?	What	is	the	active	node	in	the	cluster?
•	Server:	Is	the	server	the	cause	of	the	issue?	Running	low	on	resources?
•	Virtualization:	Is	the	server	a	virtualized	system?	Is	the	Virtual	server	causing
issues?	Where	do	you	install	Wireshark?

•	Network:	Is	the	path	congested?	Is	it	a	LAN	connection	problem,	WAN	link,
or	the	Internet	that	is	slow?	Is	the	connection	via	a	virtual	private	network
(VPN)?	Where	do	we	install	Wireshark?



•	Load	balancer:	Are	the	applications	or	services	load	balanced	and	running
through	a	load	balancer?	Where	would	we	install	Wireshark?

•	Proxy	services:	Is	the	client	directed	to	a	proxy	service?	Is	this	the	problem?
Do	we	install	Wireshark	on	the	proxy?

•	Firewall:	Is	the	traffic	running	through	a	firewall	or	some	other	inspection
device	such	as	Intrusion	Prevention	System	(IPS)/Intrusion	Detection	System
(IDS)?

•	Name	resolution:	Is	name	resolution	a	cause	of	the	issue?	How	would	we
know?	Where	do	we	install	Wireshark?

•	Would	we	use	Wireshark	to	find	out	why	RADIUS	is	problematic?
Mind	you,	these	are	just	“some”	of	the	areas	in	which	to	consider.	This	is	why

as	mentioned	 earlier	Wireshark	 is	 but	 a	 tool	 to	 be	 used	 as	 an	 extension	 of	 an
experienced	technicians	brain.	This	is	why	using	other	tools	such	as	system	logs
is	so	important.	By	finding	clues	in	these	logs	you	can	narrow	down	where	you
want	and	may	need	to	install	and	capture	data	with	Wireshark.	As	you	can	see,
it’s	not	as	easy	as	it	may	seem.	It’s	not	about	how	to	install	and	use	this	tool,	but
specifically	why	and	where.

We	are	almost	done	with	Chapter	3.	Chapters	1–3	simply	covered
what	Wireshark	does,	how	to	get	and	install	it	and	how	to	use	it	in
the	most	basic	format.	The	most	important	thing	to	consider	before
moving	to	Chapter	4	is	that	if	you	do	not	grasp	what	is	covered	in
the	 first	 three	 chapters,	 then	 using	 it	 in	 chapters	 4–10	 will	 be
useless.	Unless	you	know	where	to	place	it	and	know	what	you	are
doing	 to	 capture	 data,	 analyzing	 the	 captured	 data	 is	 useless.	 For
example,	 I	 have	 personally	 received	 one	 Wireshark	 data	 capture
from	a	workstation	asking	me	to	find	a	problem.	Not	knowing	what
the	 problem	 is	 why	 it	 happened,	 when	 it	 happened	 and	what	 the
problem	was	specifically,	it	will	prove	fruitless.	Sometimes	you	can
glean	 clues,	 however,	 to	 truly	use	 this	 tool	 correctly,	 you	need	 to
plan	to	use	it	correctly.

3.4	Other	Tools	and	Methodologies



When	troubleshooting	with	Wireshark,	it’s	recommended	that	you	take	the	time
to	use	other	tools	and	methodologies	while	you	are	analyzing	the	problem.	For
example,	in	the	same	switches	and	routers	you	are	piping	the	information	from,
you	 can	 use	 commands	 on	 them	 to	 help	 find	 the	 problem.	Although	 there	 are
books	and	many	online	articles	that	cover	these	in	more	detail,	for	the	purposes
of	 this	 field	 guide	 we	 will	 help	 you	 develop	 the	 methodology	 instead	 of
specifically	stating	what	those	commands	may	be.	For	example,	if	you	find	you
have	 a	 user	 complaining	 of	 an	 application	 that	 seems	 to	 freeze	 up	 or	 appear
sluggish,	you	can	do	the	following	tests	in	phases	of	complexity:

Phase	1	Testing	(quick	checks,	somewhat	nonintrusive)
1.	First	try	to	understand	what	the	problem	is	by	framing	it.	Ask	as	many

questions	as	needed.	Put	on	the	private	investigator	hat	and	attempt	to
capture	the	end	user’s	experience.

2.	Next	verify	that	no	changes	were	made	that	could	impact.
3.	Verify	path	and	check	all	devices	in	the	path.	Check	logs.
4.	You	can	then	look	over	the	basics.	Ping,	traceroute,	advanced	ping

commands	where	you	can	specific	packet	sizes	will	help	you	to	provide	a
load	(to	test	fragmentation)	as	an	example.

5.	Checking	performance.	Bandwidth,	CPU,	it	can	get	as	deep	as	checking
performance	on	a	storage	area	network	(SAN).

6.	You	could	install	and	use	Wireshark	at	this	point,	however.
7.	You	can	run	checks	on	the	network	devices	and	infrastructure—look	at

the	logs,	run	basic	checks	with	specific	commands	that	highlight—run
nonintrusive	debugs

Phase	2	Testing	(deeper	level	of	inspection	and	more	time	consuming	and
may	be	intrusive)

1.	Wireshark	set	up	on	both	ends	from	source	to	destination,	checking	the
timing	of	the	packets	from	source	to	destination.	This	is	more	difficult	to
perform	because	you	need	access	to	both	systems	(as	an	example)	and
will	have	to	run	the	tests	in	tandem.	You	will	have	to	analyze	both
captures	using	timestamps	in	order	to	verify	when	data	was	sent	and
when	it	was	received	and	any	errors	or	anomalies	that	took	place	during
that	period	of	time.	When	analyzing	timestamps	a	recommended
procedure	would	be	to	ensure	that	all	devices	you	run	Wireshark	on	have
the	correct	time	which	can	be	done	through	configuring	Network	Time
Protocol	(NTP),	or	the	Windows	Time	Service	(W32Time).

2.	Real-time	analysis	of	traffic	and	deep	inspection	by	looking	into	packet



headers	will	uncover	a	more	granular	level	of	detail,	however,	will	take
more	time	to	review	and	analyze.

3.	Run	intrusive	tests	such	as	performance	test	on	network	links	that	will
verify	the	validity	of	the	bandwidth	and	size	however	will	inadvertently
shut	down	the	link	for	use	thus	causing	an	outage.

4.	Run	heavy	debugs	on	infrastructure	devices.	This	may	cause	the	device	to
process	heavily	therefore	spike	the	CPU	and	cause	the	device	to	perform
poorly	(if	at	all)	to	process	production	traffic.

5.	Other	tests	to	conduct	would	be	to	reboot	physical	servers,	move	cluster
nodes	from	primary	to	secondary,	moving	virtual	machine	(VM
instances)	from	one	host	to	another	and	other	“server-related”	testing	that
may	help	isolate	the	issue.

6.	Cabling	testing	where	cables	need	to	be	replaced	or	verified	may	cause	a
disruption	or	an	outage	if	not	redundant.

Although	 I	 created	 a	 framework	 for	 this	 methodology	 and	 called	 it	 phased
testing,	it’s	nothing	more	than	how	normal	network	engineers	perform	their	jobs
every	day.	As	you	can	see	 from	 this	example,	using	Wireshark	 is	not	 the	only
tool	 used	 to	 solve	 problems,	 its	 only	 one	 of	 the	 many	 different	 tools	 (or
processes)	used	to	solve	simple	to	complex	problems	every	day.	Figures	3.4	and
3.5	show	examples	of	other	 testing	methods	you	can	deploy	with	Wireshark	to
solve	a	problem.



FIGURE	3.4 	Using	the	ping	command.



FIGURE	3.5 	SolarWinds	engineer’s	toolset.

In	 Figure	 3.4,	 we	 see	 an	 example	 of	 using	 the	 ping	 command	 to	 test
connectivity	as	well	as	the	stability	of	a	network	connection.	This	can	be	used	to
help	 assess	 if	 bandwidth	 or	 latency	 can	 be	 an	 issue	with	 for	 example,	 a	 slow
application	response	time.	If	the	application	is	slow	to	respond	and	the	network
is	suspect,	by	running	a	quick	ping	from	the	source	to	the	destination	can	quickly
help	rule	out	what	the	network	looks	like	and	is	performing	in	seconds.
In	Figure	3.5	we	see	an	example	of	another	helpful	tool	called	the	SolarWinds

Engineer’s	Toolset.	This	tool	much	like	the	rest	of	the	SolarWinds	product	line
make	network	management	and	troubleshooting	easier;	for	example,	you	can	run
a	ping	 sweep	of	a	 subnet	 to	verify	connectivity	of	a	device	or	devices	quickly
and	easily	through	the	GUI.
In	sum,	remember	that	Wireshark	is	but	one	tool—and	using	it	alone	can	be

helpful	but	when	used	 in	conjunction	with	other	 tools	can	help	solve	problems
quicker.	 It	 should	 also	 be	 considered	 that	 when	 troubleshooting,	 you	 have	 to
learn	“where”	to	place	your	packet	analyzers	so	that	you	can	collect	the	correct
data.	You	also	have	to	time	the	problem	correctly	and	sometimes	collect	baseline
data	 to	 ensure	 you	 can	 understand	 how	 the	 network	 performs	 normally	 before
you	can	suspect	a	problem.



3.5	Summary
In	this	chapter,	we	have	learned	about	protocol	capture	and	analysis	learned	the
fundamentals	of	Wireshark	as	well	as	the	fundamentals	of	troubleshooting	with
it.	In	the	next	chapter,	we	will	learn	how	to	use	Wireshark	once	data	is	captured
and	how	to	analyze	specific	data.



CHAPTER	4

Capturing	Packets

4.1	Introduction

4.2	Getting	Started

4.3	Summary

4.1	Introduction
In	the	last	 three	chapters,	we	covered	the	fundamental	basics	of	Wireshark	and
how	to	get	it	up	and	running	on	a	computer	system	and/or	network.	We	covered
how	to	set	 it	up	so	 that	you	can	capture	packets	and	begin	 to	analyze	 them.	In
this	 chapter,	 we	 will	 start	 to	 use	 Wireshark	 to	 capture	 those	 packets	 to
troubleshoot	problems.	Capturing	packets	is	a	fairly	easy	concept	to	digest	once
your	 system	 is	 up	 and	 running	 correctly	 and	 you	 understand	 what	Wireshark
does.
In	 this	chapter,	we	will	 learn	how	to	capture	data	and	how	to	view	it	within

Wireshark	so	that	you	can	start	solving	problems.	Packet	analysis	starts	with	the
inspection	of	packets,	however,	if	you	do	not	capture	the	data	correctly	you	will
have	 a	 tough	 time	understanding	what	 you	 are	 looking	 at	 or	 finding	what	 you
need.	There	are	also	many	ways	you	can	approach	the	capturing	of	this	data.

Wireshark	can	be	used	 to	 capture	packets	on	a	 computer	network
via	 the	 NIC	 in	 promiscuous	 mode.	 This	 means	 that	 all	 data
traversing	 the	network	and	 touching	 this	 interface	can	and	will	be
recorded.	 As	 we	 mentioned	 with	 spanned	 ports	 in	 the	 previous
chapter,	 you	 can	 also	 set	 up	 Wireshark	 to	 collect	 data	 from	 a
particular	port.	That	being	said,	make	sure	you	have	permission	to
do	 so.	 You	 could	 be	 doing	 this	 against	 policy	 if	 you	 are	 not



authorized	to	do	so.

4.2	Getting	Started
In	 this	 chapter,	 we	 will	 learn	 the	 art	 of	 capturing	 packets	 in	 order	 to	 decode
them,	analyze	them,	and	inspect	what	is	traversing	your	network.	Once	you	have
started	to	capture	packets,	the	rest	of	the	chapters	leading	up	to	the	last	chapter
(saving	captures	and	saving	files),	you	will	be	 learning	about	 the	 interface	and
how	to	manipulate	it	to	troubleshoot	problems.	This	chapter	covers	more	of	what
you	learnt	in	Chapter	1	about	the	three	panes	and	all	details	within	them,	running
captures	 as	 well	 as	 how	 to	 start	 and	 stop	 Wireshark.	 We	 will	 also	 review	 a
sample	problem.
To	start	capturing	packets,	simply	open	Wireshark	on	your	computer	as	shown

in	Figure	4.1.	 In	 the	window,	you	will	 find	 the	Capture	 section	 in	 the	 top	 left
pane.	 You	 can	 view	 the	 Interface	 List,	 Start	 a	 capture	 based	 on	 a	 particular
interface	and	set	Capture	Options.

FIGURE	4.1 	Opening	Wireshark	to	capture	packets.



As	we	have	learned,	there	are	many	things	you	can	do	with	Wireshark	and	in
this	chapter,	we	will	expand	on	all	the	ways	you	can	capture	packets.	It	should
be	 noted	 that	 you	 can	 also	 use	 the	Files	 pane	 in	 the	middle	 of	 the	window	as
shown	 in	Figure	4.1	 to	open	previously	 saved	captures	or	click	on	 the	Sample
Captures	link	to	go	online	and	view	the	saved	repository	of	samples.

If	 you	 are	 very	 interested	 in	 learning	 about	 Wireshark,	 protocol
analysis,	 or	 networking	 in	 general,	 it	 is	 highly	 advisable	 that	 you
visit	this	online	repository	of	samples.	Here	you	can	see	a	large	set
of	 captures	 that	 show	 specific	 types	 of	 protocol	 behavior:
http://wiki.wireshark.org/CaptureFilters.
As	 an	 example,	 if	 you	want	 to	 learn	more	 about	 how	dynamic

host	 configuration	 protocol	 (DHCP)	 operates	 (and	 looks	 like	 in	 a
capture),	 simply	download	 the	capture	 files	and	open	 them	within
the	Files	pane	link.	Since	this	 is	only	a	field	guide,	we	cannot	get
too	deep	 into	every	 little	detail,	 so	 this	 is	a	great	way	 to	augment
your	studies	and	learn	more	about	the	Wireshark	tool.

Once	you	have	opened	Wireshark	and	want	to	start	to	run	a	capture,	the	first
step	would	be	to	select	an	interface	(NIC)	in	which	you	want	to	capture	on.	As
shown	in	Figure	4.1,	there	are	commonly	more	than	one	interface	on	any	given
machine	you	may	work	with.	For	example,	on	the	system	where	captures	will	be
taken	 here,	 there	 is	 a	 physical	 NIC,	 a	 virtual	 NIC	 (VPN	 connection)	 and	 a
Wireless	NIC.	You	can	click	on	the	Interface	List	link	to	produce	the	Wireshark
Capture	Interfaces	dialog	box	as	shown	in	Figure	4.2.

FIGURE	4.2 	The	Wireshark	Capture	Interfaces	dialog	box.

http://wiki.wireshark.org/CaptureFilters


Once	 you	 open	 this	 dialog	 box,	 you	 will	 be	 presented	 with	 a	 full	 set	 of
functional	 network	 connections	 configured	 on	 your	 computer.	 You	 can	 put	 a
checkbox	into	the	interface	you	would	like	to	select.	For	this	example,	we	will
select	 the	 physical	 NIC	 which	 is	 an	 Intel	 Gigabit	 NIC.	 You	 can	 further	 drill
down	into	the	interface	specifics	by	clicking	on	the	Details	button	found	within
the	Wireshark	Capture	Interfaces	dialog	box	to	produce	the	Wireshark	Interface
Details	dialog	box	as	shown	in	Figure	4.3.

FIGURE	4.3 	The	Wireshark	Interface	Details	dialog	box.

This	dialog	box	can	be	very	helpful	if	you	need	to	check	specific	information
about	your	NIC	card.	For	example,	if	you	want	to	verify	information	about	your
NIC	that	may	be	relevant	to	the	capture	data,	such	as	the	maximum	transmission
unit	(MTU)	size,	the	MAC	address,	or	the	vendor	specifics,	this	information	can
be	 found	 here	 as	 well	 as	 a	 series	 of	 other	 relevant	 data,	 such	 as	 real-time
statistics	and	so	on.	You	can	close	out	this	dialog	box	once	you	have	reviewed	it.
Figure	 4.4	 shows	 the	 Wireshark	 Capture	 Options	 dialog	 box.	 This	 can	 be

found	by	clicking	on	 the	Wireshark	Capture	Options	 link	found	 in	 the	Capture
pane	of	the	Wireshark	landing	page	as	shown	in	Figure	4.1.



FIGURE	4.4 	Wireshark	capture	options.

This	dialog	box	is	also	very	helpful	when	it	comes	to	starting	(and	stopping)	a
packet	capture.	For	example,	you	can	not	only	select	the	interfaces	and	manage
them	(such	as	configuring	local	and	remote	interfaces	as	well	as	pipes)	but	also
set	Wireshark	to	capture	on	all	interfaces,	specific	files	in	which	to	capture,	set	a
limit	on	how	much	data	you	want	to	capture	in	each	file	and	so	on.

As	was	mentioned	earlier	in	the	book,	capture	files	can	grow	quite
large.	They	can	not	only	grow	 to	 the	 size	of	your	hard	disk	 (as	 a
concern)	 but	 also	 grow	 too	 large	 to	 adequately	 inspect	 without
specific	filtering.	The	“Use	Multiple	Files”	option	is	a	great	way	to
control	 the	 size	 of	 the	 captures	 in	 a	 way	 that	 you	 can	 limit	 and
control	these	factors.

While	in	the	Wireshark	Capture	Options	dialog	box	(as	shown	in	Figure	4.4),
you	can	also	double	click	on	one	of	the	interfaces	themselves	in	the	top	pane	to
make	 additional	 settings	 adjustments.	 In	 Figure	 4.5,	 you	 will	 find	 the	 Edit
Interface	Settings	dialog	box.	Here	you	can	change	the	Link-layer	header	 type,
set	buffering	options,	or	configure	a	capture	filter	on	that	particular	interface.



FIGURE	4.5 	The	Edit	Interface	Settings	dialog	box.

We	will	 learn	more	 about	 capture	 filters	 in	 a	 future	 chapter,	 however,	 as	 a
general	explanation	here,	a	capture	filter	is	nothing	more	than	a	configured	filter
that	will	allow	you	to	refine	your	capture	details.	As	an	example	seen	in	Figure
4.5,	we	will	only	allow	for	 the	IP	to	be	captured	on	this	particular	 interface.	 If
you	 click	 on	 the	 Capture	 Filter	 button,	 you	 will	 open	 the	Wireshark	 Capture
Filter	 (Profile	 Default)	 dialog	 box	 as	 shown	 in	 Figure	 4.6.	 In	 this	 specific
example,	I	am	setting	a	specific	Filter	Name	and	Filter	String	in	the	fields	found
within	Properties.	This	means	I	am	going	to	set	a	specific	capture	of	a	system	(IP
address	10.1.1.2)	using	Telnet.

FIGURE	4.6 	The	Wireshark	Capture	Filter	Profile	dialog	box.

Click	OK	or	Cancel	to	save	your	filter.	Click	OK	to	save	your	choices,	and/or
click	 Cancel	 to	 close	 the	 Edit	 Interface	 Settings	 dialog	 box	which	 brings	 you
back	 to	 the	 Wireshark	 Capture	 Options	 dialog	 box.	 You	 can	 make	 settings
changes	here	or	 leave	everything	as	default	and	click	Close	 to	 leave	the	dialog
box,	or	you	can	click	the	Start	button	to	begin	your	capture.
Once	you	start	your	capture,	Wireshark	will	open	the	Interface	you	specified

using	the	Wireshark	capture	window	as	shown	in	Figure	4.7.	As	we	reviewed	in



Chapter	1,	there	are	three	panes:	Summary,	Detail,	and	Hex.

FIGURE	4.7 	Starting	a	capture	in	Wireshark.

Once	 you	 start	 the	 capture,	 you	 will	 see	 some	 specific	 behavior,	 such	 as
packets	being	timestamped	and	captured	in	order	as	seen	in	the	capture	window.
A	timestamp	(found	 in	 the	Time	column)	denotes	when	specifically	 the	packet
was	 captured	 in	 succession.	 You	 will	 also	 find	 the	 source	 and	 destination
addresses	of	each	packet	captured	in	the	Source	and	Destination	columns.
Next,	you	will	find	the	specific	protocol	in	use	in	the	Protocol	column,	such	as

IP	(and	version),	TCP,	UDP,	and	DHCP.	Beyond	the	protocol	designation	is	the
Length	 column,	 which	 shows	 you	 the	 specific	 packet	 length.	 Earlier	 we
mentioned	MTU,	 which	 denotes	 the	maximum	 size	 that	 a	 packet	 can	 be	 sent
before	it	fragments.

The	 size	 of	 the	 packets	 can	 also	 be	 problematic.	 If	 you	 find	 that
most	 of	 your	 packets	 traversing	 your	 interface	 are	 small	 packets,
which	means	that	the	interface	itself	has	more	to	do	to	process	each



packet	(usually	for	reassembly)	and	handle	encapsulation.
Fragmented	 packets	 can	 become	 a	 problem.	 IP	 packets	 can	 be

fragmented	 from	 their	 original	 size	 into	 smaller	 chunks	 for
transmission	over	 a	 network.	They	need	 to	be	 reassembled	which
causes	more	work	for	the	device	handling	this	task.
It	 is	 also	 recommended	 that	 you	 learn	 more	 about	 the	 actual

packets	you	will	capture	and	inspect,	and	there	is	no	better	starting
point	 than	 Internet	RFCs	or	Request	 for	Comment	 files.	This	one
covers	 IP	 and	 details	 the	 issues	 behind	 fragmentation:
http://tools.ietf.org/html/rfc791.

The	 Info	 column	 highlights	 particular	 information	 you	 may	 need	 to	 know
about	the	packet	that	was	captured.	For	example,	in	the	case	of	the	captured	ARP
packets,	it	was	helpful	to	learn	that	it	was	a	gratuitous	ARP	and	simply	a	request.
This	 covers	 the	 details	 of	 the	Summary	 pane.	The	Details	 pane	 simply	 breaks
down	each	packet	 into	more	granular	data	 (which	we	will	 review	 in	upcoming
chapters)	and	the	Hex	pane	does	the	same	with	each	section	of	the	Details	pane.
Since	we	 started	 the	 capture	 via	 the	 landing	 page,	 you	 can	 stop	 the	 capture

within	 the	Wireshark	capture	window.	To	operate	 the	capture	 from	within	 this
window,	there	is	a	toolbar	at	the	top	of	the	screen	as	well	as	a	menu	system.	You
can	select	the	Capture	menu	option	to	start	and	stop	captures.	You	can	also	use
the	 capture	 icons	 to	 start	 and	 stop	 the	 capture	 on	 the	 toolbar.	 There	 are	 other
options	in	this	menu	and	the	toolbar	to	review.	Some	of	them	are	“restarting”	a
capture	after	you	initially	stop	it.	You	can	also	start	a	new	capture	if	needed.
We	will	cover	the	saving	of	a	file	in	the	last	chapter	as	there	are	many	options

that	 revolve	 around	 it,	 however	 for	purposes	here,	 simply	go	 to	 the	File	menu
and	select	Save.
To	open	a	saved	capture,	you	will	find	the	last	capture	you	took	in	the	landing

page	under	Files.	Once	you	click	on	the	link,	the	Wireshark	Open	Capture	File
dialog	box	will	open	as	shown	in	Figure	4.8.

http://tools.ietf.org/html/rfc791


FIGURE	4.8 	The	Wireshark	Open	Capture	File	dialog	box.

In	 the	 example	 shown	 in	 Figure	 4.9,	 I	 have	 downloaded	 a	 sample	 NTP
synchronization	 sample	 to	 open	 within	 the	 Wireshark	 capture	 window	 for
review.

FIGURE	4.9 	Viewing	an	NTP	capture	file.



In	 the	example,	we	will	 review	how	an	NTP	(time	synchronization)	 transfer
between	source	and	destination	should	look	like	and	analyze	why	there	may	be	a
problem,	or	if	it	is	working	as	it	should.
In	the	example,	we	see	no	problems	in	this	synchronization	of	a	clock	on	the

192.168.50.x	network	using	a	public	Internet	time	source.	It	is	using	port	123	as
seen	 in	 the	 Details	 pane	 data	 (source	 and	 destination	 port).	What	 could	 have
gone	 wrong?	 The	 connection	 to	 the	 network	 could	 have	 been	 local	 with	 no
Internet	access	 therefore	not	allowing	 the	sync	 to	 take	place.	A	firewall	 (either
locally	or	 remote)	could	have	been	blocking	 this	 IP	range	and/or	 the	NTP	port
123.

4.3	Summary
In	 this	 chapter,	 we	 covered	 how	 to	 get	 start	 with	 Wireshark—to	 launch	 it,
configure	 it	 to	 capture	 and	 start	 capturing	 data.	Now	we	 have	 learned	 how	 to
capture	protocol	data	within	Wireshark.	Next,	we	will	cover	how	to	start	to	view,
manipulate,	filter,	and	analyze	what	you	are	capturing.



CHAPTER	5

Color	Codes

5.1	Getting	Started

5.2	Creating	Color	Code	Lists

5.3	Adding	and	Removing	Filters

5.4	Other	Coloring	Options

5.5	Summary

In	this	chapter,	we	will	learn	how	to	customize	your	captures.	This	chapter	will
be	a	segue	into	the	next	chapter,	which	will	cover	creating	filters.	In	Chapter	4,
we	have	covered	the	basics	of	performing	a	capture	and	learned	how	to	set	up	a
quick	filter	on	your	profile’s	default	configuration.	In	this	chapter,	we	will	learn
how	 to	 further	 your	 captures	 in	 a	 visual	 representation	 for	 quick	 and	 easy
viewing	purposes.
Wireshark	is	a	very	visual	tool.	The	tool	includes	prebuilt	filters	and	coloring

codes,	and	it	lets	you	create	new	ones	or	edit	the	ones	already	in	place.	As	you
will	 see,	 it	 is	 extremely	 flexible.	When	working	with	Wireshark,	 you	will	 see
that	 when	 capturing	 packets,	 the	 amount	 of	 data	 can	 become	 unwieldy	 most
times.	A	quick	and	easy	way	to	interpret	what	you	are	viewing	is	to	view	(and
understand)	 how	Wireshark	 color	 codes	 packets.	Once	 you	 have	 used	 the	 tool
long	enough,	you	will	find	that	by	simply	seeing	a	color,	you	will	already	know
specific	details	 about	 the	packets	you	are	capturing	without	having	 to	 read	 the
contents	of	each	one	 to	get	a	general	understanding	of	what	 is	 taking	place	on
your	network.

5.1	Getting	Started
Deeper	 inspection	within	 the	capture	 is	 required.	 In	 this	chapter,	we	will	 learn



how	 Wireshark	 color	 codes	 the	 captures	 and	 how	 we	 can	 quickly	 look	 for
problems.	 We	 will	 also	 learn	 more	 about	 protocols,	 ports,	 and	 other	 critical
network-based	information	that	help	solve	problems.
First,	we	have	 to	understand	why	we	color	 code.	The	 easiest	 answer	 to	 this

question	 is	 to	 make	 it	 easier	 for	 use	 as	 problem	 solvers	 and	 to	 more	 quickly
visualize	problems	on	our	network.	That	being	said,	Wireshark	allows	us	to	do
this	by	expanding	what	is	already	available	by	default	using	custom	color	coding
schemes.	 There	 are	 two	 types	 of	 color	 coding	 profiles	 you	 can	 use	 with
Wireshark.	One	is	temporary	and	the	other	is	one	that	can	be	kept	by	Wireshark
to	be	used	each	and	every	time	you	use	the	system.

Do	not	worry	about	making	changes	 to	 the	defaults	of	Wireshark;
you	 can	 always	 reset	 your	 work	 and	 remove	 any	 of	 the	 custom
color	coding	profile	data	you	insert	by	clearing	any	and	all	changes.
You	will	learn	how	to	do	this	in	this	chapter.

5.2	Creating	Color	Code	Lists
To	get	started,	open	the	last	capture	you	took	or	create	a	new	capture	file.	Once
you	 are	 done	 capturing	 data,	 go	 to	 the	 View	 menu	 in	 the	Wireshark	 capture
window.	 Select	 the	 Coloring	 Rules	 option	 from	 the	menu.	 You	will	 open	 the
Wireshark	Coloring	Rules	(Profile	Default)	dialog	box	as	shown	in	Figure	5.1.

FIGURE	5.1 	The	Wireshark	Coloring	Rules	dialog	box.



Here,	you	will	find	many	predefined	filter	sets	as	shown	in	Figure	5.1.	In	the
middle	window,	you	will	 see	a	 list	of	 filters	denoted	as	Name	and	String.	The
string	is	the	“action”	that	Wireshark	is	taking	when	it	applies	this	filter.	It	should
also	be	noted	that	the	list	is	processed	from	top	to	down	and	goes	in	that	order
until	a	match	is	made	and	processed.
On	the	left	side	of	the	dialog	box	is	the	Edit	area.	Here,	you	can	create	a	new

color	 code	 filter,	 edit	 a	 preexisting	 one,	 enable	 or	 disable	 one,	 or	 remove	 one
completely.	 If	 you	 choose	 to	 create	 a	 new	 color	 code	 filter,	 click	 on	 the	New
button	 as	 shown	 in	Figure	5.1.	This	will	 open	 the	Wireshark	Edit	Color	Filter
dialog	box	as	shown	in	Figure	5.2.

FIGURE	5.2 	The	Wireshark	Edit	Color	Filter	dialog	box.

In	 this	example,	a	 filter	 that	specifically	highlights	a	particular	 IP	address	 in
yellow	 font	 with	 a	 blue	 background	 was	 created	 for	 quick	 and	 easy	 viewing.
Before	we	get	into	how	we	created	this	filter,	it	should	be	apparent	as	to	why	and
how	 this	 could	 be	 extremely	 helpful.	 In	 this	 instance,	 let	 us	 say	 you	 were
troubleshooting	 a	 specific	 IP	 address	 that	 you	wanted	 to	 view	 in	 your	 capture
and	isolate.	Now,	visually	you	can	see	when	that	IP	address	is	found	in	a	packet
that	Wireshark	captures	by	viewing	the	Summary	Pane	in	the	Wireshark	capture
window.	How	was	this	created?	Simple,	here	is	how	it	was	done.

When	 making	 filters,	 try	 to	 use	 a	 color	 coding	 scheme	 that	 is
visible	to	you	as	well;	try	not	to	duplicate	anything	else	already	in
use.

Open	 the	 Display	 Colors	 by	 selecting	 either	 the	 Foreground	 Color	 or



Background	 Color	 buttons	 as	 shown	 in	 Figure	 5.2.	 In	 Figure	 5.2,	 we	 see	 the
Wireshark	Choose	Foreground	Color	dialog	box	open	where	you	can	select	the
written	font	color;	here	yellow	color	was	chosen.	Click	on	the	eyedropper	icon
and	then	on	the	color	map	in	the	left-hand	side	of	the	dialog	box	and	select	the
color,	or	if	you	know	Hex	coloring	schemes	(Figure	5.3),	you	can	configure	it	in
the	color	“name”	field	within	the	dialog	box.

FIGURE	5.3 	The	Wireshark	Choose	Foreground	Color	dialog	box.

Follow	the	same	method	for	the	background	color	and	then	choose	OK.
Once	you	have	completed	these	steps,	you	need	to	configure	the	actual	filter

in	which	 you	will	 capture	 data.	You	 can	 do	 this	 by	 clicking	 on	Expression	 as
shown	in	Figure	5.2.	This	will	open	the	dialog	box	as	shown	in	Figure	5.4.	Here,
you	will	find	the	Wireshark	Filter	Expression	dialog	box.

FIGURE	5.4 	The	Wireshark	Filter	Expression	dialog	box.

If	 you	know	how	 to	 enter	 the	 string	manually,	 you	do	not	need	 to	open	 the
dialog	box;	however,	if	you	are	new	to	Wireshark	and	to	applying	filters,	there	is



no	better	way	to	learn	than	to	using	this	dialog	box.	Here,	you	can	select	the	field
name	and	then	the	relation	which	is	nothing	more	than	applying	Boolean	math	to
your	 selection	 criteria.	 For	 example,	 if	 you	want	 to	 capture	 an	 address	 that	 is
equal	to	a	specific	value,	it	would	look	similar	to
ip==192.168.50.50
Once	 you	 have	 finished,	 you	 can	 click	 on	OK	 two	 times	 to	 get	 back	 to	 the

Wireshark	Coloring	Rule	dialog	box	as	shown	in	Figure	5.5.	Here,	you	will	find
the	new	filter	applied	to	the	rules	filter	list.

FIGURE	5.5 	The	Wireshark	Coloring	Rules	dialog	box.

Now,	you	can	see	the	new	rule	applied	which,	when	you	run	a	new	capture,
can	be	used	to	color	code	that	specific	data	in	the	Wireshark	capture	window	for
easy	viewing.

You	can	use	the	Order	section	on	the	right	side	of	the	dialog	box	to
move	 rules	 up	 or	 down	 in	 the	 list	 if	 you	 want	 to	 decrease	 the
processing	 that	Wireshark	will	 have	 to	do	 in	order	 to	match	your
data	against	the	filter	list.

5.3	Adding	and	Removing	Filters
You	can	disable	a	filter	by	selecting	it	with	your	mouse	and	then	clicking	on	the
Disable	 button	 in	 the	 Edit	 section.	 Once	 you	 have	 done	 so,	 the	 filter	 will	 be



crossed	 out	 and	 disabled	 (but	 not	 removed)	 from	 the	 processing	 list,	which	 is
shown	in	Figure	5.6.

FIGURE	5.6 	Disabling	a	Wireshark	color	code	filter.

You	can	select	Enable	to	enable	it,	or	Delete	to	remove	it	from	the	list.	One
last	feature	we	review	here	is	the	importing	and	exporting	of	color	code	lists	that
were	already	made	and	found	on	the	Wireshark	Wiki.	This	 is	 incredibly	handy
when	you	want	to	build	lists,	where	it	would	take	you	a	lot	of	time	in	minutes.
You	can	also	export	your	custom	lists	to	either	submit	to	the	Wiki	and/or	use	in
your	own	groups,	give	to	peers,	or	use	to	help	others	as	needed.	To	import	a	list,
you	first	need	to	get	the	list	you	will	import.
To	 do	 this,	 you	 can	 visit	 the	 online	 list	 repository	 where	 there	 are	 many

capture	filters	available:
http://wiki.wireshark.org/ColoringRules
Once	you	download	a	 list	 that	you	 find	may	be	helpful,	 simply	click	on	 the

Import	button	and	browse	to	the	import	list	file.	Once	completed	and	imported,
you	will	see	it	in	your	Wireshark	Coloring	Rules	dialog	box	as	shown	in	Figure
5.7.

http://wiki.wireshark.org/ColoringRules


FIGURE	5.7 	Viewing	an	imported	color	code	list.

In	this	example,	we	have	configured	Wireshark	to	capture	data	and	color	code
it	specifically	as	seen	in	the	filter	list.	Now,	if	you	have	an	e-mail	problem	and
you	are	trying	to	view	packets	using	SMTP	or	POP,	they	will	show	up	colored
pink	with	white	font	or	black	font.
Again,	 this	 is	 just	a	way	for	you	 to	quickly	visualize	a	problem	and	make	 it

easier	 to	 troubleshoot.	 This	 book	 intends	 on	 getting	 you	 up	 to	 run	 and	 use
Wireshark	quickly	for	the	purpose	of	solving	problems.	The	keywords	here	are
“quick”	and	“easy.”	There	is	nothing	simple	about	 this	program;	however,	 it	 is
designed	very	well	 to	make	 using	 it	 very	 digestible.	Color	 coding	 is	 one	 such
way	where	this	is	accomplished.
Once	you	have	 test	driven	your	new	color	code	filters,	you	can	always	reset

Wireshark	 back	 to	 custom	 defaults	 easily.	 To	 do	 this,	 you	 can	 open	 the
Wireshark	Coloring	Rules	dialog	box	backup	and	click	on	the	Clear	button	in	the
Manage	section,	which	will	allow	you	to	clear	all	your	rules	as	shown	in	Figure
5.8.	Click	Clear	to	remove	all	settings	from	the	global	default	profile.

FIGURE	5.8 	Removing	all	personal	color	settings	dialog	box.

5.4	Other	Coloring	Options
Wireshark	 also	 allows	 you	 to	 apply	 color	 in	 another	 way	 to	 help	 you	 isolate



problems.	 In	 this	 example,	 we	 will	 look	 at	 conversations	 such	 as	 source	 IP
address	 and	 destination	 IP	 address	 as	 shown	 in	 Figure	 5.9.	Here,	 click	 on	 the
View	menu	 option	 and	 scroll	 down	 to	 Colorize	 Conversation	 and	 expand	 the
menu	to	view	the	coloring	options.

FIGURE	5.9 	Coloring	Conversation	in	Wireshark.

What	 this	 helps	 you	 do	 is	 “mark”	 conversations	 in	 a	 capture	 file	 for	 easy
viewing.	 Now,	 to	 do	 this,	 simply	 click	 on	 a	 conversation	 pair	 found	 in	 one
packet	 in	 the	 Summary	 pane.	 Next,	 click	 on	 the	View	menu	 option,	 Colorize
Conversation,	and	select	Color	1.
This	will	then	mark	every	packet	in	the	capture	having	this	conversation	with

that	 specific	 color	 code	 you	 have	 chosen.	 This	 is	 very	 helpful	 when	 you	 are
trying	to	quickly	visualize	that	particular	conversation	in	a	large	capture	file.

5.5	Summary
In	this	chapter,	we	have	discussed	how	you	can	customize	Wireshark	with	color
coding	 in	 order	 to	mark	 specific	 data	 you	 are	 capturing	 and/or	 have	 captured.
This	is	essential	when	you	try	to	solve	problems	quickly	in	the	field	and	need	to



use	your	visual	skills	to	interpret	problems	while	working	in	the	Summary	pane
of	the	Wireshark	capture	window.	In	Chapter	6,	we	will	expand	our	discussion
on	filters	to	go	more	in	depth	on	using	filtering	options	to	capture	and	sort	your
captured	data	to	perform	protocol	analysis.



CHAPTER	6

Filters

6.1	Getting	Started

6.2	Applying	a	Filter

6.3	Advanced	Filter	Creation

6.4	Other	Filtering	Techniques

6.5	Customized	Filtering	and	Troubleshooting

6.6	Conversation	Filters

6.7	Summary

In	 this	 chapter,	 we	 will	 learn	 how	 to	 filter	 data	 in	Wireshark	 to	 troubleshoot
problems.	 How	 to	 filter	 captures	 correctly	 is	 the	 key	 to	 finding	 problems
especially	when	 running	Wireshark	 on	networks	where	 a	 lot	 of	 data	 traverses.
Consider	 capturing	data	 from	one	 system	communicating	with	 another…	what
would	 you	 specifically	 search	 for	 to	 help	 solve	 a	 problem?	 Filtering	 on
protocols,	 IP	 addresses,	 and	 using	 specific	 Boolean	 arguments	 are	 covered	 as
well	as	specific	example	of	filters	that	you	can	use	right	away	to	help	get	you	up
and	running	and	working	with	Wireshark	immediately.
When	 it	 comes	 to	 networks,	 you	 can	 separate	 out	 unnecessary	 data,	 data

irrelevant	to	the	problem	or	the	event	that	we	are	exploring.	The	most	important
and	the	most	difficult	thing	to	do	is	not	to	capture	data	but	to	find	out	which	of
the	 thousands	of	packets	 traversing	your	network	are	 related	 to	a	problem	you
are	working	on,	 diagnose	 the	problem	correctly,	 and	prove	out	 the	problem	 to
move	directly	to	eliminating	its	cause.	Wireshark	is	a	very	good	tool	to	perform
this	troubleshooting	as	long	as	you	choose	the	correct	filter	to	help	sort	through
(or	initially	capture)	the	relevant	data	needed.	Choosing	(or	creating)	the	correct
filter	will	make	your	life	easier	when	it	comes	to	scanning	the	data	and	analyzing



it	for	problems	and	that	is	what	we	will	cover	specifically	in	this	chapter.

If	you	incorrectly	define	a	filter,	you	may	in	adversely	omit	criteria
you	want	 to	search	for	 therefore	making	what	you	are	 looking	for
even	harder	to	find.

6.1	Getting	Started
In	the	data	transmission	environment,	filtering	becomes	very	important	when	it
comes	 to	 the	 search	 and	 use	 of	 specific	 information	 hidden	 in	 the	 midst	 of
unimportant	 data.	 One	 of	 the	 most	 difficult	 and	 significant	 task	 involved	 in
working	with	Wireshark	 is	 to	 define	 the	 right	 filter.	 Having	 defined	 a	 correct
filter,	you	will	be	able	to	save	a	great	deal	of	time	when	it	comes	to	detecting	a
problem	on	your	network	or	analyzing	data	you	have	captured	using	a	particular
filter.	Different	 types	 of	 filtering	 are	 available:	You	 can	 filter	 traffic	 based	 on
Layer	2	and	Layer	3	addresses,	protocol	types,	and/or	data	patterns.

To	learn	more	about	the	specifics	of	filtering	above	and	beyond
this	 field	 guide’s	 capacity,	 it	 is	 recommended	 that	 you	 read	 the
filtering	 section	 on	 the	 Wireshark	 Wiki:
http://wiki.wireshark.org/CaptureFilters
Here	 you	will	 find	 useful	 information	 that	 can	 help	 you	 create

filters	 as	 well	 as	 find	 a	 repository	 of	 already	 predefined	 capture
filters	that	can	assist	you	in	your	studies	or	work.

6.2	Applying	a	Filter
Applying	a	filter	can	be	done	in	many	ways.	First,	we	learnt	in	earlier	chapters
that	when	running	a	capture	you	can	simply	apply	a	filter	to	the	profile’s	default
configuration.	This	will	 apply	once	you	begin	your	 relevant	captures.	You	can
also	apply	a	filter	before	running	a	capture	and/or	apply	a	filter	after	you	run	a

http://wiki.wireshark.org/CaptureFilters


capture.	We	already	covered	the	profile	default	in	Chapter	4.
In	this	chapter,	we	will	learn	how	to	apply	a	filter	before	and	after	running	a

capture.	You	can	apply	a	filter	prior	to	running	a	capture	and	after	as	we	learnt	in
Chapters	4	and	5.	In	this	chapter,	we	will	focus	primarily	on	how	to	apply	a	filter
to	a	capture	after	it	has	been	running	to	sort	out	unwanted	data.	An	example	of	a
capture	that	needs	filtering	is	shown	in	Figure	6.1.

FIGURE	6.1 	The	Wireshark	capture	window.

There	are	multiple	ways	you	can	go	about	 filtering	 for	data;	however,	 since
this	is	a	field	guide	there	is	an	important	step	you	should	take	prior	to	applying
any	filter.	Before	you	consider	a	filter,	first	consider	why	you	need	any	filtering
in	 particular	 so	 that	 you	 can	 assess	which	 filter	 you	 need	 to	 build	 and	 apply.
Here	is	an	example:

1.	You	get	a	report	that	you	believe	a	problem	exists	on	a	network	where
you	may	need	to	do	protocol	analysis	in	order	to	solve	it.	You	first	ask
specific	questions	so	that	you	know	where	you	need	to	place	Wireshark
in	order	to	capture	this	relevant	data.	The	problem	is	reported	that	an
Apple	wireless	device	cannot	connect	to	the	network.

2.	You	find	a	network	device	in	which	you	can	mirror	a	port	and	collect



SPAN	data	from	a	Cisco	switchport	to	collect	the	relevant	data	needed	to
solve	the	problem	into	Wireshark.

3.	You	collect	30	minutes	worth	of	capture	data	and	save	it	to	your	disk	in	a
capture	file.	You	revisit	the	capture	file	and	open	it	to	inspect	and
analyze	it.	You	want	to	narrow	down	what	you	are	looking	for,	so	you
can	either	filter	by	IP	address	(suspect	system)	and/or	protocol	used
(Apple-based).

This	 is	what	 needs	 to	 be	 done	 before	 you	 place	Wireshark	 in	 a	 location	 to
collect	the	data,	prior	to	collecting	data	and	essentially	before	doing	any	filtering
or	analysis	of	said	data.	You	will	then	want	to	look	for	the	problems	by	filtering
out	 any	data	 that	 is	not	 relevant	 to	 the	problem	and	 inspecting	 the	data	 that	 is
relevant.
So,	how	do	we	apply	a	filter?	The	most	basic	way	to	apply	a	filter	is	by	typing

it	 into	 the	 filter	 box	 at	 the	 top	 of	 the	Wireshark	 capture	window	 and	 clicking
Apply	(or	pressing	Enter).	For	example,	type	“arp”	and	you	can	only	view	ARP
packets.	 When	 you	 start	 typing,	 Wireshark	 will	 help	 you	 autocomplete	 your
filter	and	you	may	not	have	to	click	on	Apply;	however,	to	remove	the	filter,	you
need	 to	 click	 on	 Clear.	 You	 can	 Save	 the	 filter	 by	 clicking	 on	 Save.	 In	 the
example	 in	 Figure	 6.2,	 we	 were	 able	 to	 narrow	 down	 that	 we	 have	 multiple
devices	using	Address	Resolution	Protocol	 (ARP)	broadcasting	on	 the	network
segment.



FIGURE	6.2 	Viewing	ARP	packets.

In	this	example,	we	were	able	to	narrow	down	our	view	of	the	problem	area
and	quickly	isolate	relevant	data	that	maybe	part	of	the	problem.

6.3	Advanced	Filter	Creation
In	 some	 cases	 you	 can	 always	 create	 a	 filter	 by	 using	 the	 Wireshark	 Filter
Expression	 dialog	 box	 as	 shown	 in	 Figure	 6.3.	By	 doing	 so,	 you	 can	 get	 into
more	advanced	level	filter	creation	techniques	such	as	picking	a	Filter	name,	its
Relation,	Value,	Predefined	values,	 and	Range	 as	 seen	 in	Figure	6.3.	You	 can
find	 the	Expression	Filter	by	clicking	on	 the	Expression	 link	next	 to	 the	Filter
field	in	the	Wireshark	capture	window.

Using	 the	advanced	 filters	you	build	 in	 the	expression	 filter	 teach
you	 how	 to	 write	 out	 advanced	 filter	 strings	 in	 the	 Wireshark
capture	 window	 Filter	 field.	 Once	 you	 create	 enough	 filters,	 you
will	 learn	how	to	type	them	directly	into	the	Filter	field.	By	using
autocomplete,	 you	 can	 speed	up	your	 ability	 to	 quickly	build	 and
apply	filters	and	search	for	relevant	data.



FIGURE	6.3 	The	Wireshark	Filter	Expression	dialog	box.

Another	advanced	level	tip	you	can	apply	when	creating	filters	is	to	simply	let
autocomplete	assist	you	in	your	journey.	In	Figure	6.4,	you	can	see	an	example
of	autocomplete	in	use.	In	this	example,	 if	you	want	to	search	for	an	arp	filter,
simply	type	the	letter	“a”	into	the	field	and	a	dropdown	box	will	appear	showing
you	all	options	starting	with	“a”	(arp	included).	You	can	further	develop	this	by
learning	 the	Boolean	arguments	and	 they	will	 also	appear	 in	 the	Filter	 field	as
well	as	ranges	and	so	on.

You	can	also	click	the	Analyze	menu	and	select	Display	Filters	to
create	a	new	filter.



FIGURE	6.4 	Using	autocomplete.

6.4	Other	Filtering	Techniques
Once	you	have	built	a	number	of	filters	and	applied	them	to	captured	data,	you
can	also	build	capture	filters	by	clicking	on	the	Analyze	menu	where	a	myriad	of
options	will	present	themselves—all	of	which	will	be	covered	in	this	section.
By	clicking	on	Analyze,	you	can	select	Display	Filters	and	you	will	open	the

Wireshark	Capture	Filter	dialog	box	as	shown	in	Figure	6.5.	In	this	dialog	box,
you	 can	 click	 on	New	 to	 create	 a	 new	 filter,	 or	 select	 a	 predefined	 filter	 and
delete	or	edit	it	further.	This	is	a	quick	way	to	access	the	most	commonly	used
filters	 used	 to	 solve	 problems	 today.	Most	 problems	 result	 in	 IP,	 ARP,	 TCP,
HTTP,	 and	 other	 commonly	 used	 protocols	 on	 networks.	 If	 you	 click	 on	 the
Capture	Filter	 field	 in	Figure	6.5	and	 look	at	 the	Properties	fields,	you	can	see
exactly	how	the	filter	is	created.



FIGURE	6.5 	The	Wireshark	Capture	Filter	dialog	box.

You	can	also	Add	the	Filter	name	and	Filter	string	data	and	click	on	New	to
add	the	filter	you	just	created	to	the	Display	Filter	field.

In	Chapter	 3,	we	 learnt	 how	 to	 apply	 filters	 to	 the	 profile	 default
prior	 to	 opening	 and	 running	 an	 actual	 capture	 in	 the	Wireshark
capture	 window.	 The	 Wireshark	 Capture	 Filter	 dialog	 box
discussed	here	is	identical	to	that	same	filter	discussed	in	Chapter	3.

Another	 helpful	 tip	 to	 set	 up	 filter	 expressions	 is	 to	 go	 into	 the	Wireshark
capture	window	menu	system.	Under	Analyze	select	Display	Filter	Macros.	You
can	build	a	complete	macro	set	to	apply	when	you	select	filters.	For	those	of	you
have	done	C	programming	in	the	past,	macros	are	basically	creating	a	function
with	 one	 or	more	 variables.	 Yet	 another	way	 to	 build	 filter	 expressions	 to	 be
added	to	the	predefined	set	is	to	go	into	Wireshark	Preferences	in	the	Edit	menu.
This	will	open	the	dialog	box	as	shown	in	Figure	6.6.



FIGURE	6.6 	Setting	Filter	Expressions	in	preferences.

In	the	Filter	Expressions	menu	option,	you	can	click	on	Add	and	build	a	new
filter	expression	as	well	as	enable	and	disable	it	as	needed.

6.5	Customized	Filtering	and	Troubleshooting
In	 the	 previous	 sections,	 we	 covered	 the	 basic	 configuration	 of	 creating	 and
applying	filters	to	captured	traffic	in	hopes	that	by	doing	so	it	will	be	easier	and
quicker	for	you	as	a	technician	to	solve	network	problems.	That	being	said,	let	us
take	 a	 deeper	 dive	 into	 filter	 creation	 to	 troubleshoot	 common	 problems.	 In
Figure	6.7,	we	will	analyze	a	TCP-based	conversation	to	assess	it	for	problems.



FIGURE	6.7 	Configuring	a	filter	on	TCP	traffic.

In	this	example,	we	can	select	a	packet	in	the	Wireshark	capture	window	and
apply	a	filter	directly	to	that	packet.	By	right	clicking	on	a	particular	packet	you
can	produce	a	menu	as	seen	in	Figure	6.7,	where	you	can	apply	as	a	Filter,	set	up
a	Conversation	Filter,	apply	a	Color	Filter,	or	follow	streams.	We	have	already
focused	 on	 applying	 specific	 filters,	 so	 for	 this	 example	we	will	 learn	 how	 to
follow	streams.
The	next	logical	questions	that	may	come	to	mind	are	what	is	a	traffic	stream

and	why	would	we	want	 to	 filter	 it	 out?	 The	 answers	 are	 simple.	 The	 stream
dialog	window	as	seen	in	Figure	6.8	is	going	to	filter	out	the	Application	layer
details	 and	 show	you	what	 they	 are.	 In	Chapter	 1,	we	 covered	 the	OSI	model
which	is	extremely	important	in	the	field	of	networking	to	understand.	The	top
layer	which	is	the	Application	layer	is	at	times	very	important	to	analyze	when
troubleshooting	a	problem.	For	example,	 let	us	 say	we	had	a	problem	 to	 solve
that	resulted	in	a	web	browser	having	issues	accessing	a	Web	page.	We	would
want	to	inspect	HTTP	traffic.



FIGURE	6.8 	Following	a	TCP	stream.

The	 application	 stream	 would	 be	 from	 the	 TCP-based	 IP	 address	 and	 the
Details	pane	could	show	you	the	specifics	of	HTTP,	however	too	really	filter	and
see	 the	HTTP	traffic,	you	would	need	 to	apply	 the	stream	filter.	 In	Figure	6.8,
we	 can	 see	 the	 specifics	 of	 the	 communication	 with	 the	 web	 server	 and	 the
interaction	with	the	web	browser.
You	 could	 also	 apply	 this	 type	 of	 filter	 directly	 into	 the	 Filter	 field	 in	 the

Wireshark	capture	window	as	shown	in	Figure	6.9.



FIGURE	6.9 	Applying	a	TCP	stream	filter	in	the	Filter	Field.

You	could	type	the	following	into	the	Filter	field	to	get	the	same	result:
tcp.stream	eq	1
You	 can	 also	 apply	UDP	 stream	 filters	 as	 shown	 in	 Figure	 6.10,	where	 the

Follow	UDP	Stream	dialog	box	 shows	 the	UDP	protocol	 specifics	we	want	 to
analyze	at	the	Application	layer.



FIGURE	6.10 	Follow	UDP	stream.

Here	 in	 this	 conversation	we	 can	 see	XML-based	 information	 showing	how
UDP	is	interacting	at	the	Application	layer.	In	this	particular	stream,	we	can	see
that	 there	 may	 be	 an	 issue	 with	 the	 Microsoft	 defined	 Automatic	 Private	 IP
Addressing	(APIPA)	where	a	host	cannot	communicate	with	other	hosts	on	the
same	range.
In	Figure	6.11,	we	can	see	the	application	of	a	stream	filter	in	the	Filter	field

of	the	Wireshark	capture	window.	Here	we	see	that	APIPA	while	being	used	via
UDP	can	be	further	filtered	out	for	analysis.

FIGURE	6.11 	Filtering	a	UDP	stream	on	an	APIPA	range.

You	could	type	the	following	into	the	Filter	field	to	get	the	same	result:
(ip.addr	eq	169.254.1.143	and	ip.addr	eq	255.255.255.255)	and	(udp.port	eq
21302	and	udp.port	eq	21302)

It	should	be	mentioned	that	this	does	not	mean	that	you	will	 immediately	be
able	 to	 diagnose	 a	 problem	 with	 this	 information,	 remember	 that	 Wireshark
helps	you	uncover	the	data	in	packets	so	you	can	attempt	to	isolate	and	resolve
problems,	Wireshark	does	not	necessarily	point	out	problems	to	you,	you	have	to



understand	and	know	what	you	are	looking	for.
In	this	example,	we	would	have	a	computer	that	does	not	communicate	on	the

network	using	a	specific	IP	address.	We	could	go	to	that	workstation	and	open	a
command	prompt,	type	in	ipconfig/all	and	find	that	the	computer	is	in	fact	using
an	automatically	configured	IP	address	with	APIPA.	Is	the	computer	not	able	to
communicate	with	a	DHCP	server	thus	not	able	to	get	a	dynamically	assigned	IP
in	 order	 to	 communicate?	 Should	 the	 workstation	 be	 statically	 assigned?
Furthermore,	 can	 we	 ping	 other	 hosts	 on	 the	 APIPA	 range?	 Is	 this	 how	 the
workstation	is	supposed	to	be	set	up?
When	troubleshooting	problems,	it	is	important	to	remember	what	we	covered

before	in	this	book—you	need	to	use	Wireshark	as	a	tool	to	augment	other	tools
and	 your	 knowledge;	 otherwise,	 it	may	 not	 specifically	 point	 you	 in	 the	 right
direction.

6.6	Conversation	Filters
Lastly,	 we	will	 cover	 building	 conversation	 filters.	 This	 can	 be	 done	 by	 right
clicking	 on	 a	 specific	 packet	 conversation	 between	 source	 and	 destination
address	 and	 select	 Conversation	 Filter,	 then	 for	 this	 example	 select	 IP.	 An
example	of	this	can	be	seen	in	Figure	6.12.



FIGURE	6.12 	Building	conversation	filters.

Conversation	 filters	 are	 important	 when	 you	 want	 to	 troubleshoot
communications	between	two	specific	hosts	on	a	network.	Here	is	a	scenario	in
which	 you	 will	 want	 to	 build	 a	 conversation	 filter.	 Let	 us	 say	 you	 have	 a
computer	 on	 your	 network	 (source)	 communicating	 with	 another	 computer
(destination)	and	performance	 is	somewhat	slow.	You	may	want	 to	 inspect	 the
entire	conversation	between	these	two	hosts	carefully	and	look	for	clues	on	what
may	 be	 the	 delay	 by	 looking	 at	 what	 the	 conversation	 consists	 of,	 using
timestamps	to	see	how	long	specific	transmissions	take	place,	when	using	TCP	if
the	 traffic	 goes	 through	 the	 three-way	 handshake	 of	 SYN–SYN,	 ACK–ACK,
and	many	other	examples.
In	this	example,	we	simply	want	to	look	at	the	basics	of	IP	and	by	doing	so	we

can	uncover	these	problems.	Here	we	see	that	the	timing	between	the	hosts	are	in
milliseconds	and	that	there	are	no	clues	given	as	to	what	could	be	happening	in
the	conversation	to	cause	an	issue.	That	does	not	mean	there	is	no	issue,	nor	does
it	mean	that	Wireshark	proved	entirely	that	it	 is	not	a	network	issue;	it	 just	got
you	 closer	 to	 ruling	 out	what	may	 not	 be	 impacting	 this	 conversation.	 In	 this
example,	 the	 hosts	 are	 communicating	without	 issue;	 however,	 the	 problem	 is
that	 the	 network	 switch	 got	 disconnected	 from	 the	 gateway	 where	 the	 DHCP
server	was	sitting	and	the	hosts	moved	to	the	APIPA	range	therefore	they	are	not



able	 to	 communicate	 with	 a	 specific	 application;	 however,	 more	 filtering	 and
analysis	need	to	take	place	to	determine	why.
In	Figure	6.13,	we	can	use	the	Details	pane	of	the	Wireshark	capture	window

to	 uncover	 malformed	 packets	 when	 UDP/IP	 conversations	 are	 built	 via
Wireshark.

FIGURE	6.13 	Filtering	out	an	IP	conversation	via	UDP.

You	could	type	the	following	into	the	Filter	field	to	get	the	same	result:
ip.addr	eq	169.254.1.143	and	ip.addr	eq	169.254.1.255
In	this	example	and	previous	examples	in	the	chapter,	the	specifics	of	building

filters	 to	concisely	 list	out	what	 it	 is	you	need	to	 look	at	 (relevant	data).	There
are	literally	hundreds	if	not	thousands	of	examples	that	can	be	given	depending
on	what	the	problem	is,	how	big	your	network	is,	how	many	systems	are	being
used,	 and	 so	 on.	 Remember,	 it	 takes	 time	 to	 learn	 how	 to	 build	 filters	 so
hopefully	 this	 field	guide	gave	you	enough	 to	get	you	started	on	your	 journey.
Make	sure	you	visit	the	Wireshark	wiki	as	well	as	other	sources	of	information
to	learn	more.

6.7	Summary



6.7	Summary
In	this	chapter,	we	learnt	about	filtering	captured	data	in	hopes	to	give	you	the
ability	to	analyze	and	troubleshoot	your	problems	by	streamlining	the	data	you
will	view	and	find	relevant.	As	you	can	see	from	the	last	two	chapters,	filtering
data	can	be	done	in	many	ways	and	in	some	ways	can	be	confusing	if	you	do	not
know	what	 you	 are	 essentially	 looking	 for	 so	 understanding	 the	 problem	 at	 a
high	level	is	important	to	the	process.	In	the	next	chapter,	we	will	look	at	sample
captures	 and	 apply	 some	 of	 these	 filtering	 techniques	we	 learnt	 thus	 far.	 This
will	set	us	up	for	Chapter	8	where	we	will	start	inspecting	packets	for	problems,
looking	into	the	headers,	and	learning	about	the	deeper	analysis	we	need	to	do	to
solve	problems.



CHAPTER	7

Sample	Captures

7.1	Getting	Started

7.2	Sample	Captures

7.3	Expert	Analysis

7.4	Flow	Graphs

7.5	Summary

In	 the	 previous	 six	 chapters	 of	 this	 field	 guide,	 we	 have	 explored	 the
fundamental	steps	of	getting	Wireshark	downloaded,	 installed,	and	prepped	for
use.	 We	 have	 explored	 common	 problems	 and	 looked	 at	 how	 to	 get	 up	 and
running	 quickly	 with	 this	 packet	 capture	 and	 analysis	 tool.	 In	 the	 last	 three
chapters,	we	have	looked	at	how	to	capture	and	filter	data	as	well	as	the	common
problems	 associated	 with	 why	 you	 would	 need	 to	 use	 Wireshark	 in	 the	 first
place.	We	have	gone	 through	 troubleshooting	methodologies	and	given	you	an
understanding	 of	why	 knowing	when	 to	 use	Wireshark	 is	 essential	 to	 using	 it
effectively.	We	have	also	learned	tips	on	how	to	capture	and	filter	relevant	data.
In	this	chapter,	we	will	learn	more	about	captured	data	as	we	explore	sample

captures	and	discuss	problems	that	can	be	solved	with	Wireshark	in	conjunction
with	 the	 situation	 presented.	 For	 example,	 if	 you	 had	 a	 Dynamic	 Host
Configuration	 Protocol	 (DHCP)	 problem,	 what	 exactly	 would	 you	 do	 to	 set
Wireshark	up	to	help	you	isolate	the	problem?	What	exactly	does	the	tool	offer
you	to	help	baseline	what	the	problem	may	be?	Let	us	review	a	sample	capture
and	find	out.

This	 chapter	 of	 the	 field	 guide	 covers	 a	 few	 basic	 problems	 and
focuses	 on	 methodology,	 which	 is	 one	 of	 the	 most	 important



aspects	 to	 learn	 when	 trying	 to	 master	 Wireshark.	 Review	 each
problem	in	its	entirety	in	order	to	benefit	from	each	example.

7.1	Getting	Started
In	 this	chapter,	we	expand	on	what	we	 learned	 in	Chapter	6	by	covering	some
advanced	problems,	how	to	solve	them	using	Wireshark,	and	the	more	complex
use	of	 analysis	by	applying	more	 filters	 and	 reviewing	expert	 analysis	 reports.
Your	 learning	 of	Wireshark	 can	 be	 augmented	 by	 real-world	 examples,	which
we	will	cover	here.	You	can	run	your	own	captures	and	filter	for	relevant	data,
or	 you	 can	 download	 the	 sample	 captures	 highlighted	within	 the	 chapter.	You
can	also	use	this	chapter	as	a	way	to	build	a	methodology	you	can	use	each	time
you	are	presented	with	a	new	problem.	No	matter	how	you	approach	each	issue,
remember	that	methodology	is	the	key	to	unlocking	your	answers	to	root	cause.

7.2	Sample	Captures
Sample	 captures	 can	 be	 downloaded	 online.	 We	 will	 start	 with	 using	 a
predownloaded	 capture	 file	 so	 that	 you	 can	 learn	 the	 methodology.	 To	 view
capture	samples	on	the	Wireshark	Wiki,	simply	open	the	Wireshark	tool,	and	on
the	landing	page,	click	on	Sample	Captures.	Here,	you	will	 find	approximately
100	samples	of	previously	captured	data	that	you	can	review.	This	is	an	excellent
way	to	help	bolster	your	knowledge	on	packet	capture	and	analysis	and	network
protocols.	 For	 example,	 you	 can	 review	 the	many	 different	 protocols	 used	 on
networks	today	if	you	are	not	an	expert	in	protocol	analysis	and	can	perform	this
function	everyday.	You	can	also	capture	and	filter	your	own	data	if	you	prefer.

You	can	find	and	review	captured	data	on	the	Wireshark	Wiki.	You
can	find	the	data	to	review	in	the	following	pages:
http://wiki.wireshark.org/SampleCaptures
http://wiki.wireshark.org/CaptureFilters

http://wiki.wireshark.org/SampleCaptures
http://wiki.wireshark.org/CaptureFilters


You	can	contribute	to	the	capture	sample	repository	by	going	to	the
sample	 captures	 page	 and	 following	 the	 instructions	 listed	 on	 the
main	page.	It	will	explain	the	correct	process	and	format	for	you	to
follow	so	that	you	can	contribute.

In	 this	example,	we	will	 look	at	 the	DHCP,	which	 is	an	extremely	common
protocol	 used	 today.	 DHCP	 is	 used	 to	 dynamically	 assign	 IP	 addresses	 to
systems	that	request	them	so	they	can	connect	to	and	communicate	on	a	network.
What	you	may	know	already	is	how	the	basic	architecture	of	DHCP	is	laid	out;
however,	you	may	or	may	not	know	the	specifics	of	the	underlying	functions	of
the	 protocol	 and	what	may	go	wrong.	You	would	 use	Wireshark	 to	 determine
this.
Figure	 7.1	 shows	 the	 basic	 architecture	 that	 would	 be	 needed	 for	 DHCP

clients	 to	 get	 dynamically	 assigned	 addressing	 from	a	DHCP	 server.	Here,	we
have	put	the	clients	on	one	subnet	and	the	server	on	a	separate	subnet.	We	have
added	a	firewall	as	well.



FIGURE	7.1 	Understanding	how	DHCP	works.

How	is	it	supposed	to	work?
1.	DHCP	clients	will	communicate	with	a	server	using	UDP	port	67	to	send

data	to	the	DHCP	server,	and	UDP	port	68	to	send	data	to	the	DHCP
client.

2.	Since	DHCP	communicates	via	UDP,	they	can	communicate	on	the	same
subnet	without	issue;	however,	if	moving	across	a	router	to	a	separate
subnet,	a	DHCP	relay	will	be	needed	to	forward	the	communications	to
the	DHCP	server	for	communication	to	take	place.

3.	Once	the	path	has	been	verified	and	communication	is	possible,	the
clients	and	the	server	communicate	via	a	process	called	DORA:
Discovery,	Offer,	Request,	and	Acknowledgment.

4.	A	discovery	packet	is	sent	from	the	client	to	the	server.	The	server	then
makes	an	IP	lease	offer.	The	client	then	makes	an	IP	request,	and	the
server	acknowledges	with	an	IP	lease.

As	you	can	see,	there	are	many	things	that	could	go	wrong	and	many	reasons
why	it	would	be	important	to	perhaps	set	up	a	port	mirror	(or	Wireshark	on	the
host	directly)	to	solve	this	issue.	You	can	also	set	up	Wireshark	directly	on	the
DHCP	server	or	the	clients.

You	 can	 find	 more	 information	 on	 protocols,	 ports,	 and	 address
assignments	 by	 visiting	 this	 site:
http://www.iana.org/assignments/service-names-port-
numbers/service-names-port-numbers.xml.

To	 see	 this	 in	 Wireshark,	 you	 would	 need	 to	 capture	 the	 client	 (source)
communicating	with	the	DHCP	server	(destination)	and	filter	for	DHCP.	This	is
shown	in	Figure	7.2.

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml


FIGURE	7.2 	Viewing	DHCP	traffic	in	Wireshark.

Here,	we	can	 see	how	 the	communication	 takes	place	between	 the	client,	 to
the	server,	back	to	the	client	and	then	finally	with	the	server	responding	back	to
the	client	with	an	acknowledgment	and	IP	lease.
In	Wireshark,	we	can	see	the	specifics	of	this	communication	and	could	quite

potentially	verify	its	taking	place	and/or	find	where	the	problems	may	be	taking
place.	Here	are	some	examples:

1.	If	the	DHCP	relay	agent	(a	Cisco	IP	Helper	Address	commonly	found	on
Cisco	devices)	is	not	configured	properly	(or	at	all),	you	will	not	see	a
communication	back	from	the	server.

2.	If	a	firewall	in	place	does	not	allow	for	the	DHCP	protocol	to
communicate	bidirectional,	it	will	be	blocked.

3.	If	the	clients	are	sending	discovery	packets	to	an	IP	address,	but	a	rogue
DHCP	server	exists,	we	can	find	those	packets	in	the	trace.

4.	If	the	clients	have	a	firewall	configured	locally,	we	can	see	that	the
discovery	packets	are	not	getting	to	the	port	mirror	configured	to	capture
the	traffic.

This	 is	one	example	of	how	Wireshark	can	help	you	see	 the	details	of	what
may	 be	 causing	 a	 network	 issue,	 specifically	 with	 dynamic	 assignment	 of	 IP
addresses.	We	can	even	look	deeper	into	the	data	to	solve	problems.



DHCP	works	by	using	BOOTP,	also	known	as	the	Bootstrap	Protocol.	In	the
Wireshark	capture	window,	you	can	view	the	Discover	data	by	highlighting	that
specific	frame	and	expanding	the	Detail	pane’s	view	and	scrolling	down	to	the
BOOTP	data.	This	is	shown	in	Figure	7.3.

FIGURE	7.3 	Viewing	DHCP	discover	in	Wireshark.

Here,	we	can	isolate	specific	data.	Specifically,	we	can	see	that	the	data	is	sent
unicast	and	contains	no	relevant	IP	addressing	data	until	the	full	DORA	process
takes	 place.	 By	 jumping	 ahead	 and	 reviewing	 the	 final	 IP	 lease	 information
provided	by	the	DHCP	server,	you	can	see	that	an	IP	address	has	been	given	to
the	client	for	use:	192.168.0.10.	This	is	shown	in	Figure	7.4.



FIGURE	7.4 	Viewing	DHCP	acknowledgment	in	Wireshark.

This	 is	 only	 one	 simple	 example	 that	 you	 can	 view	 to	 understand	 why
methodology	 and	 knowledge	 of	 architecture	 and	 basic	 protocol	 will	 help	 you
solve	 problems	 using	Wireshark.	Without	 knowing	 the	 layout	 of	 the	 systems,
which	can	come	from	discovery	or	already	drawn	up	maps,	you	will	have	a	hard
time	isolating	what	the	problem	may	be	or	where	it	may	be	coming	from.
Having	basic	knowledge	of	protocols	is	also	important	for	you	to	successfully

troubleshoot	 the	 Wireshark.	 Without	 knowing	 that	 DHCP	 functions	 a	 certain
way,	 using	 certain	 ports	 and	 underlying	 protocols,	 you	 will	 have	 a	 hard	 time
isolating	a	break	in	the	system	with	Wireshark.

7.3	Expert	Analysis
A	 commonly	 used	 tool	 with	Wireshark	 is	 called	 Expert	 Info.	 It	 can	 help	 you
diagnose	serious	problems,	or	 sometimes	point	you	 to	a	problem	 that	does	not
really	exist.	This	is	called	a	“false	positive.”
As	 we	 mentioned	 in	 Chapter	 1,	 Wireshark	 is	 a	 tool	 that	 requires	 you	 to

understand	the	basics	of	networking,	know	how	computer	systems	operate,	and
even	know	details	down	into	the	hardware,	software,	and	NIC	card	drivers.
This	 is	 where	 troubleshooting	 can	 get	 tricky.	 In	 Figure	 7.5,	 the	Wireshark



Expert	Info	is	shown.	This	can	be	invoked	by	going	to	the	Analyze	menu	in	the
Wireshark	capture	window	and	selecting	Expert	Info	from	the	drop	down	menu.
Here,	 you	 can	 view	 the	 Errors,	 Warnings,	 Notes,	 Chats,	 Details,	 and	 Packet
Comments	tabs.

FIGURE	7.5 	Viewing	Expert	Info	in	Wireshark.

Each	tab	provides	specific	data	you	can	use	to	learn	more	about	your	current
capture	 data	 and	 get	 clues	 on	 possible	 issues.	 For	 example,	 in	 these	 tabs,	 you
may	find	 that	 these	are	malformed	packets	as	shown	in	Figure	7.5.	Commonly
found	problems	are	malformed	packets,	 checksum	errors,	out-of-order	packets,
Transmission	 Control	 Protocol	 (TCP)	 retransmissions,	 resets,	 and	 duplicate
acknowledgments,	to	name	a	few.
In	each	section,	you	can	find	specific	details	on	what	Wireshark	has	analyzed

from	the	captured	data.	What	the	Expert	Info	does	is	correlate	the	entire	capture
and	 come	 up	 with	 some	 basic	 assumptions	 of	 what	 is	 taking	 place	 on	 the
network.	For	example,	in	Figure	7.5,	Wireshark	has	found	a	series	of	malformed
packets	that	you	would	have	had	to	scan	through	each	packet	in	the	Details	pane
to	find.
As	we	reviewed	earlier	in	the	chapter	with	the	DHCP	acknowledge	packet	in

the	DORA	process,	we	found	an	error	in	the	packet	as	shown	in	Figure	7.6.



FIGURE	7.6 	Viewing	a	bad	checksum	in	Wireshark.

What	 this	means	 is	simple;	 there	 is	a	calculated	error	 found	on	 the	data	 that
Wireshark	 captured	 and	Wireshark	 flagged	 this	 data	 as	 “bad.”	 This	 does	 not
necessarily	mean	 that	 you	have	 a	 problem,	 however.	What	 this	 could	mean	 in
this	sequence	of	packets	is	that	the	checksum	may	not	have	been	calculated	prior
to	Wireshark	capturing	the	data.

To	troubleshoot	TCP	problems	with	a	high	degree	of	success,	you
will	need	to	understand	how	TCP	is	a	connection-based	technology
and	 UDP	 is	 connectionless.	 Understanding	 how	 the	 three-way-
handshake	 works	 and	 the	 inner	 workings	 of	 TCP	 is	 critical	 to
solving	problems	 in	 regards	 to	communications	on	data	networks.
We	will	learn	more	about	the	three-way-handshake	in	Chapter	8.

It	can	be	confusing	 to	some	 to	see	an	error	and	find	 that	 it	 is	not	always	an
error,	but	how	the	system	works	with	Wireshark,	hence	why	they	call	it	a	false
positive.	 The	 checksum	 is	 in	 fact	 bad	 to	Wireshark;	 however,	 because	 it	 was
captured	before	 it	was	calculated	simply	means	 that	 it	could	possibly	be	ok.	A



good	way	to	root	out	false	positives	 is	by	looking	at	 the	Expert	Info	window’s
“other”	 problems	 taking	 place	 at	 the	 same	 time.	 If	 there	 are	 dozens	 of
retransmissions,	out-of-order	packets,	and	so	on,	it	means,	it	is	possible	that	the
bad	 checksum	 may	 also	 be	 relevant.	 Figure	 7.7	 shows	 an	 example	 of	 a	 bad
checksum	problem	where	no	other	problems	exist,	 ruling	 that	 it	could	possibly
be	a	false	positive.

A	quick	way	to	find	a	problematic	packet	is	to	open	the	Expert	Info
dialog	 box	 and	 click	 on	 the	 error	 message	 in	 the	 tabs.	 This	 will
direct	you	to	the	problem	packet	in	the	Wireshark	capture	window
Summary	pane.

FIGURE	7.7 	Viewing	a	bad	checksum	in	Wireshark.

7.4	Flow	Graphs
Another	commonly	used	tool	with	Wireshark	is	a	flow	graph.	A	flow	graph	can
be	used	 to	 find	details	 about	 all	messages	used	 in	 a	 stream.	We	 learned	 about
TCP	 and	 UDP	 streams	 and	 what	 they	 can	 provide.	 In	 a	 flow	 graph,	 you	 can
show	all	of	them	(or	sections	of	them)	in	a	reportable	graph	tool.	By	opening	the
Wireshark	 capture	 window	 and	 clicking	 on	 the	 Statistics	menu,	 you	 will	 find
Flow	Graph.	Select	it,	and	open	the	Wireshark	Flow	Graph	dialog	box	as	shown
in	Figure	7.8



FIGURE	7.8 	Viewing	a	flow	graph	in	Wireshark.

Here,	we	want	to	view	the	TCP-based	communications	in	the	current	capture
to	see	what	 types	of	queries	are	 taking	place.	In	Figure	7.9,	 the	specific	output
from	the	Flow	Graph	is	shown.	Here,	we	see	the	Time	window	which	is	set	 to
show	us	 specifically	each	TCP	steam	 taking	place	at	 that	 time,	 from	source	 to
destination.

If	 you	 click	 on	 one	 of	 the	 arrows/flows	 within	 the	 graph,	 it	 will
highlight	the	relevant	packet	in	the	main	window.



FIGURE	7.9 	Viewing	a	flow	graph	in	Wireshark.

Flow	 graphs	 help	 in	 seeing	 how	 the	 traffic	 on	 the	 network	 looks	 like	 as	 a
whole,	not	just	from	single	source	and	destination	pairs.	You	can	see	how	many
hosts	 are	having	conversations	with	 a	 single	host	 and	 then	 can	 find	out	 if	 that
host	may	or	may	not	be	overwhelmed	with	connections.
You	 may	 have	 to	 adjust	 the	 time-stamping	 options	 in	 order	 to	 specifically

report	on	time.	In	order	to	do	this,	open	the	Wireshark	capture	window	and	click
on	the	View	menu,	select	Time	Display	Format,	and	then	adjust	the	time	settings
you	would	like	to	see,	which	is	shown	in	Figure	7.10.

To	learn	more	about	specific	problems,	a	great	place	to	learn	from,
discuss	 with	 all	 levels	 of	 expertise,	 and	 ask	 questions	 is	 the
Wireshark	Ask	forum.
http://ask.wireshark.org

http://ask.wireshark.org


FIGURE	7.10 	Adjusting	time	in	Wireshark.

7.5	Summary
In	 this	 chapter,	 we	 have	 learned	 more	 about	 how	 to	 solve	 problems	 with
captured	and	filtered	data.	So	far,	we	have	learned	how	to	get	Wireshark	up	and
running	and	use	it	to	capture	data	and	filter	it;	however,	we	have	now	expanded
into	 topics	 that	 show	 the	 real	 power	 of	 Wireshark	 and	 what	 it	 can	 help	 you
discover.	 In	Chapter	8,	we	will	 look	under	 the	hood	and	 learn	how	 to	conduct
more	detailed	analysis	with	Wireshark.



CHAPTER	8

Inspecting	Packets

8.1	Getting	Started

8.2	Understanding	the	Technology

8.3	Capturing	and	Filtering	Data

8.4	Inspection	of	the	Data

8.5	Analysis	Tools

8.6	Summary

In	this	chapter,	we	will	learn	how	to	use	Wireshark	to	inspect	packets	and	isolate
network	and	system	problems.	In	this	chapter,	we	will	look	at	a	single	problem
and	 show	 you	 how	 deeply	 you	 can	 dive	 into	 the	 data	 that	 is	 captured	 by
Wireshark	for	your	analysis.	We	will	cover	the	inspection	of	a	problem	posed	on
a	 switched	 Ethernet	 network,	 very	 common	 in	 today’s	 environments	 where
bridging	loops	create	storms	that	impact	the	network	in	adversely.
In	this	chapter’s	example,	we	will	cover	a	spanning	tree	protocol	(STP)	issue

and	go	deeper	 into	packet	analysis	and	what	Wireshark	can	do,	show	you,	and
help	you	analyze	in	hopes	to	solve	a	problem.

Make	sure	that	if	you	are	encouraged	to	test	any	of	the	theories	in
this	chapter,	you	do	 it	on	a	 test	network.	Spanning	 tree	 loops	and
the	 packet	 storms	 that	 follow	 it	 can	 cripple	 your	 network	 to	 the
point	where	it	cannot	be	used.

8.1	Getting	Started



8.1	Getting	Started
As	 we	 learn	 more	 about	 Wireshark,	 we	 will	 discuss	 problems	 found	 on	 a
network	 and	 specifically	why	 they	 occur	 from	 the	 packet	 level.	 Here	we	will
take	an	in	depth	look	at	a	few	common	(and	not	so	common)	problems	and	what
you	 are	 looking	 for	 in	 the	 packets,	 how	 to	 use	 the	 tool	 to	 get	 and	 view	 this
information	and	how	to	use	Wireshark	to	solve	them.	We	will	also	look	at	other
tools	you	can	use	to	augment	the	use	of	Wireshark	to	solve	complex	network	and
system	issues.

8.2	Understanding	the	Technology
STP	is	a	network	technology	that	helps	logically	manage	a	switched	(or	bridged)
network	 that	has	redundant	connections	so	 that	you	do	not	have	“loops”	 in	 the
network	topology.	It	is	a	protocol	that	runs	on	the	network	switches	and	can	be
configured	to	be	optimized,	however,	it	is	generally	operational	by	default.	STP
(which	we	will	call	Spanning	Tree	for	short	ongoing)	is	an	IEEE	standard.	It	is
known	by	the	identifier	802.1D.
The	way	it	works	is	simple.	It	will	allow	data	to	traverse	on	one	connection,

but	 will	 block	 the	 redundant	 connection	 to	 prevent	 a	 loop,	 which	 in	 turn	 can
cause	 a	 broadcast	 storm	 that	 floods	 the	 network	 with	 packets	 and	 causes	 all
devices	to	process	this	data	at	a	rapid	rate	thereby	causing	other	symptoms,	such
as	 high	CPU	 and	 I/O	 use.	When	 Spanning	Tree	 is	 put	 in	 place,	 it	 can	 keep	 a
network	 very	 stable	 and	 it	 recommended	 whenever	 you	 have	 more	 than	 one
connection	to	any	single	device.	A	Spanning	Tree	is	created	by	the	switches	on
the	network	and	can	be	configured.
A	device	called	a	 root	bridge	 (usually	 the	 system	with	 the	 lowest	bridge	 ID

computed	by	a	priority	number,	a	port	number,	and	a	MAC	address)	maintains
the	Spanning	Tree	for	that	particular	network	segment.
Figure	8.1	shows	an	example	of	a	very	simple	network	hierarchy	where	five

network	switches	are	connected	together	to	form	a	LAN.



FIGURE	8.1 	Typical	network	with	STP.

In	Figure	8.1,	we	see	ports	(where	connecting	links	uplink	to	other	switches)
configured	in	a	way	where	data	can	traverse	the	network	without	creating	a	loop.
The	root	port	(RP)	forwards	the	data	based	on	a	computation	of	least	cost	path
from	the	switch	 in	which	 it	 is	connected.	The	designated	port	 (DP)	 is	 the	 least
cost	path	for	that	segment	that	connects	each	switch.	This	creates	the	least	cost
path.	However,	if	a	loop	is	present	from	a	redundant	port,	that	port	is	put	into	a
blocked	state	and	becomes	a	blocked	port	(BP).

When	the	Spanning	Tree	is	configured,	running	and	optimal	and	all
ports	 are	 stable	 as	 well	 the	 Spanning	 Tree	 is	 considered
“converged.”

Ports	 become	a	RP,	DP,	 or	BP	by	going	 through	 a	 series	of	 states.	When	 a
connection	is	made	to	a	switch	the	port	(through	Spanning	Tree)	will	go	through
the	process	of	 listening,	 learning,	forwarding,	blocking,	or	disabling.	These	are
explained	as	follows:

1.	Listening:	When	a	port	is	listening,	it	does	not	pass	traffic.	It	does	not
populate	the	MAC	address	table	where	the	switch	makes	its	switching



decisions.
2.	Learning:	When	a	port	is	learning,	it	does	not	pass	traffic.	It	does

populate	the	MAC	address	table	where	the	switch	makes	its	switching
decisions.

3.	Forwarding:	When	a	port	is	forwarding,	it	is	sending	traffic	based	on	the
MAC	address	table	where	the	switch	makes	its	switching	decisions.

4.	Blocking:	If	a	port	is	identified	as	a	potential	for	a	loop,	the	port	is	put
into	blocking	state.	This	does	not	disable	the	port,	it	only	blocks	traffic	to
and	from	it.	The	reason	why	this	is	important	is	because	when	you	want
redundancy	this	port	becomes	part	of	the	redundancy.	For	example,	you
may	have	a	switch	to	fail	over	to	another	switch	if	it	fails.	If	one	switch
fails,	the	BP	switches	to	forwarding	and	data	continues	to	flow	through
the	network.

5.	Disabling:	Normally	a	port	is	in	disabling	state	when	it	is	manually
shutdown	or	disconnected	completely.

It	 is	 recommended	 that	 you	 use	 rapid	 spanning	 tree	 protocol
(RSTP)	 IEEE	 802.1w	 to	 limit	 the	 default	 timers	 used	 in	 order	 to
reach	 convergence.	 RSTP	 uses	 roles,	 such	 as	 root,	 designated,
alternate,	 backup,	 and	 disabled.	 It	 ports	 the	 port	 states	 learning,
forwarding,	and	discarding.

The	 states	 in	which	 the	 Spanning	Tree	 transform	 into	 and	 how	 it	maintains
convergence	is	done	by	information	sent	to	and	from	each	switch	through	bridge
protocol	data	units	(BPDUs).
A	BPDU	is	the	data	that	traverses	the	Spanning	Tree	topology	devices	through

the	network	to	control	how	the	Spanning	Tree	operates.	When	using	Wireshark,
this	is	specifically	what	you	will	capture	in	order	to	troubleshoot	Spanning	Tree
problems.	A	BPDU	frame	is	broken	down	into	12	fields	as	shown	in	Figure	8.2.



FIGURE	8.2 	BPDU	fields.

These	 fields	will	 become	 relevant	when	 you	 start	 to	 capture	 Spanning	Tree
data	and	review	within	the	Wireshark	capture	window.

8.3	Capturing	and	Filtering	Data
Now	that	we	understand	how	a	Spanning	Tree	is	supposed	to	operate,	let’s	look
at	 some	 common	 problems	 that	may	 occur	within	 it	 and	why	when	 capturing
data	 with	 Wireshark	 is	 equally	 important	 to	 understand.	 Some	 common
problems	you	may	encounter	are	(but	not	limited	to):
•	Spanning	Tree	802.1D	used	instead	of	802.1w
•	No	root	bridge	configured	or	a	root	bridge	configured	on	an	underpowered
device	not	centered	in	your	topology

•	Using	redundancy	[with	protocols	such	as	Cisco’s	hot	standby	router	protocol
(HSRP)]	and	designing	Spanning	Tree	incorrectly	when	using	it

•	Too	many	redundant	links	in	a	blocking	state
•	Not	using	STP	or	any	other	technology	of	its	kind.
In	this	example,	we	connected	to	a	switch	in	the	core	of	the	network	closest	to

the	center	of	 the	 topology.	Spanning	Tree	when	captured	by	Wireshark	can	be
filtered	by	using	the	Expression	Filter	as	shown	in	Figure	8.3.	As	you	review	the
filter	 expressions,	 it	 should	 clear	 that	 everything	 we	 just	 learned	 about	 is
something	 you	 could	 filter	 for	 within	 the	 captured	 data	 you	 collect.	 In	 this



example,	 we	 will	 look	 for	 the	 location	 of	 the	 root	 bridge	 using	 the	 captured
BPDU	frames.

FIGURE	8.3 	Filtering	STP.

Once	we	filter	the	data,	we	can	see	the	root	bridge	captured	in	Figure	8.4.	In
this	 example,	we	 filtered	 for	 the	STP.	BPDUs	 sent	 through	 the	 network	 every
2	seconds	are	sent	via	a	multicast	address.	The	address	is	01:80:C2:00:00:00.



FIGURE	8.4 	Wireshark	with	captured	data.

To	do	a	deep	dive	of	this,	we	need	to	select	a	frame	with	this	multicast	address
and	filter	deeper	for	the	root	bridge.	We	can	then	move	from	the	Summary	pane
into	the	Detail	pane	as	shown	in	Figure	8.5.



FIGURE	8.5 	Searching	for	the	root	bridge	in	the	Detail	pane.

The	 root	bridge	can	be	 found	within	 the	sections	of	 the	Details	pane,	which
we	will	dig	into	next.

8.4	Inspection	of	the	Data
Now	that	we	have	captured	and	filtered	for	the	relevant	data,	we	are	now	ready
to	do	a	deeper	inspect	of	the	data	within	the	frame.	We	need	to	recall	the	BPDU
frame	we	 learned	 about	 in	 Figure	 8.2.	 In	 the	Details	 pane,	we	 can	 review	 the
specifics	we	 learned	about	such	as	 first	 reviewing	 the	Frame	field	as	shown	 in
Figure	8.6.	Here	we	can	review	when	the	frame	was	captured	and	its	size.



FIGURE	8.6 	Inspecting	the	frame	field.

Next,	we	can	review	the	Ethernet	field	as	shown	in	Figure	8.7.	Here	we	can
review	the	source	and	destination	MAC	address.	We	can	see	 in	 the	destination
section	 the	multicast	 address	 01:80:C2:00:00:00.	We	 can	 see	 the	 source	MAC
address	comes	from	a	Cisco	switch.

FIGURE	8.7 	Inspecting	the	Ethernet	field.

Once	we	have	found	where	the	frame	is	coming	from	and	where	it	is	going	to,
we	 can	 inspect	 the	 LLC	 field.	 In	Chapter	 1,	we	 reviewed	 the	OSI	model	 and
learned	that	at	layer	2	of	the	model	we	see	its	split	into	two	layers,	one	being	the
LLC.	When	 frames	 operate	 at	 layer	 2	 (using	MAC	 addresses),	 the	 LLC	 field
maintains	specific	data	at	a	higher	level	in	the	model.	In	Figure	8.8,	we	can	see
that	data	as	the	BPDU	information.

FIGURE	8.8 	Inspecting	the	LLC	field.



Once	we	have	 reviewed	 that	data,	we	can	see	 in	 the	STP	field	 (as	shown	 in
Figure	 8.9)	 the	 specifics	 we	 were	 looking	 for,	 primarily	 the	 root	 bridge
assignment	as	well	as	the	MAC	address	associated	with	it.

FIGURE	8.9 	Inspecting	the	STP	field.

Now	we	know	what	system	holds	the	identity	of	the	root	bridge.	To	find	what
device	 this	 is	on	your	network,	you	can	either	 look	 in	 the	MAC	address	 tables
and	find	the	relevant	port,	then	map	the	ARP	tables	to	IP	addresses	if	a	layer	3
assignment	is	given.

8.5	Analysis	Tools
To	maintain	 a	 healthy	Spanning	Tree	 and	 be	 able	 to	monitor	 its	 stability,	 you
should	 consider	 not	 only	 designing	 it	 correctly,	 but	 also	 managing	 and
monitoring	it	the	best	you	can.	There	are	tools	available	to	help	you	to	do	this.
Two	notable	tools	that	can	help	you	manage	and	monitor	your	Spanning	Tree

network	is	 the	SolarWinds	(www.solarwinds.com)	network	monitoring	tools	or
the	Cisco	(www.cisco.com)	network	monitoring	tools	called	Cisco	Prime.
Other	 technologies	 you	 can	 put	 into	 place	 are	 configurations,	 such	 as

RootGuard,	 PortFast,	 UplinkFast,	 LoopGuard,	 BPDUGuard,	 BPDUFilter,	 and
BackboneFast	 from	 Cisco,	 which	 help	 you	 to	 further	 manage	 the	 stability	 of
your	Spanning	Tree	network.

8.6	Summary

http://www.solarwinds.com
http://www.cisco.com


8.6	Summary
In	this	chapter,	we	looked	at	the	specific	details	you	could	find	when	inspecting
packets	 using	 Wireshark.	 In	 the	 example	 given,	 we	 took	 a	 look	 at	 how
understanding	a	technology	like	Spanning	Tree	is	critical	to	the	process	before	a
capture	 is	 even	 taken.	Then,	 understanding	 the	 topology	 and	where	 to	 capture
data	from	equally	important	to	finding	specifically	what	you	are	looking	for.	We
then	 filtered	 the	data	 to	 find	what	we	needed	and	 inspected	 the	data	closely	 to
find	what	we	were	looking	for.	In	the	next	chapter,	we	will	look	deeper	into	the
data	to	find	out	ways	Wireshark	can	assist	you	with	finding	more	complex	issues
and	how	to	use	other	tools	to	help	find	a	problem’s	root	cause.



CHAPTER	9

Deep	Analysis

9.1	Getting	Started

9.2	Deep	Analysis

9.3	Analyzing	Flow

9.4	Troubleshooting	Phones

9.5	Security	Analysis

9.6	Network	Performance	Analysis	and	Optimization

9.7	Using	Wireshark	Online

9.8	Summary

In	this	chapter,	we	will	learn	how	to	use	Wireshark	to	go	deeper	into	inspecting
packets	 and	 isolating	 network	 and	 system	 problems.	 In	 this	 chapter,	 we	 will
expand	 on	 what	 we	 learned	 in	 the	 last	 chapter	 but	 look	 at	 other	 areas	 of	 the
network	 and	 the	 systems	 in	 use	 so	 that	 you	 can	 learn	 more	 about	 how	 to
troubleshoot	with	Wireshark	to	solve	problems	at	a	deeper	level.
In	 this	 chapter,	 we	 take	 a	 deeper	 look	 into	 the	 data,	 the	 systems	 and	 the

network	in	order	to	define	and	find	root	cause	of	problems	as	well	as	how	to	use
Wireshark	and	other	enterprise	tools	to	solve	issues	that	occur	over	WAN	links,
when	 using	 a	 softphone	 and	 to	 find	 security	 problems.	 We	 will	 learn	 about
probes,	taps,	and	how	all	of	these	tools	can	be	used	together	to	create	a	complete
picture	 to	help	you	not	only	understand	why	data	 traverses	a	network	a	certain
way	 but	 also	 why	 it	 chooses	 specific	 paths,	 how	 it	 interacts	 with	 destination
systems,	and	what	could	go	wrong	within	those	conversations.	We	will	 look	at
Voice	 over	 IP	 (VoIP)	 problems,	 malicious	 software	 issues,	 how	 intrusion
detection/prevention,	scanning,	and	many	other	services	work	on	a	network	and
how	Wireshark	can	help	you	work	with	them	when	solving	issues.



9.1	Getting	Started
When	you	work	with	a	network	or	are	directly	responsible	for	it,	you	will	often
hear	that	there	are	problems	with	it.	Some	are	common	help	desk	requests	from
users	who	have	problems	 remembering	 their	 system	passwords,	 and	others	 are
calls	 from	 users	who	 cannot	 login	 because	 their	 network	 cable	 got	 unplugged
again.	Although	 these	 are	 common	 problems,	 and	 annoying	 at	 times,	 they	 are
easily	fixed	through	a	quick	series	of	troubleshooting	steps	and	usually	require	a
simple	 solution.	 We	 learned	 about	 using	 a	 troubleshooting	 methodology
throughout	this	entire	field	guide.
End	users	constantly	call	the	help	desk	and	complain	about	the	network,	they

normally	say	that	the	network	is	too	slow.	On	the	complaint	list	is	a	steady	flow
of	 why	 the	 speed	 of	 their	 logins	 is	 slow,	 hanging	 or	 frozen	 applications,	 or
timed-out	 sessions?	 Obviously,	 there	 could	 be	 a	 problem	 with	 network
performance	if	the	majority	of	your	users	call	to	complain,	however,	sometimes
it	 is	 isolated	 to	 a	 single	 location,	 network	 segment,	 or	 even	 one	 or	 two	 users.
Where	 do	 you	 begin	 to	 look	 for	 the	 source	 of	 this	 problem?	With	 enterprise
networks	 growing	 and	 connecting	 to	 other	 companies’	 networks	 increasingly
rapidly,	monitoring	network	performance	can	become	a	cumbersome	task.
In	 this	 chapter,	 we	 look	 at	 how	 to	 initially	 isolate	 a	 problem,	 monitor	 the

network’s	performance	using	tools	like	Wireshark,	and	then	offer	tips	on	how	to
correct	the	issues.

9.2	Deep	Analysis
For	 our	 first	 discussion,	 we	will	 look	 at	 how	 to	 analyze	 a	 connection	 request
from	a	 source	 system	 to	a	destination	 system	and	analyzing	any	problems	 that
can	 occur	 in	 between.	 When	 connections	 are	 established	 using	 the	 TCP/IP
protocol	stack	the	“manager”	of	this	effort	is	handled	by	the	TCP.
Some	 of	 the	 problems	 that	 can	 occur	 to	 cause	 issues	 with	 TCP	 from

functioning	 correctly	 is	 ports	 being	 blocked	 by	 a	 firewall,	 a	 faulty	 network
connection	 (such	 as	 a	 NIC	 card	 or	 switch	 port),	 or	misconfigured	 settings	 on
network	and	system	devices.
TCP	handshake	 is	 how	 connection-oriented	 communication	 takes	 place.	 For

connectionless	UDP	 is	used.	When	TCP	 is	used	 (e.g.,	 to	visit	 a	website),	TCP
handles	 the	 connection	 establishment	 between	 the	 source	 and	 destination
devices.	When	 this	 connection	 establishment	 takes	 place,	 the	 first	 few	packets



sent	 back	 and	 forth	 are	 called	 the	 TCP	 handshake.	 How	 the	 TCP	 handshake
works	is	shown	in	Figure	9.1.	The	source	computer	will	request	a	connection	to
the	destination	by	sending	a	packet	with	a	SYN.	This	is	usually	initiated	if	you
are	going	 to	use	a	 resource	on	 the	 server	 from	 the	client	 such	as	 requesting	 to
view	or	use	a	web	page	as	an	example.

FIGURE	9.1 	The	TCP	handshake	sequence.

Once	 the	 request	 for	 connection	 has	 been	made,	 the	 destination	 system	 (the
server	with	the	web	page)	will	grant	the	connection	with	a	SYN,	ACK.	Then	the
source	 system	 acknowledges	 the	 destination	 system	 with	 an	 ACK.	 Once	 the
three-way	handshake	takes	place,	the	connection	is	deemed	established	and	data
can	pass.	The	result	is	that	the	source	system	(the	client)	can	view	the	web	page
on	the	destination	system	(the	server).
So	 now	 that	 we	 have	 an	 understanding	 on	 how	 TCP/IP	 works	 on	 your

network,	 what	 would	Wireshark	 show	 when	 you	 capture	 this	 communication
between	 the	source	and	destination?	To	view	 this	communication,	you	need	 to
capture	 data	 in	 between	 a	 source	 system	 and	 a	 destination	 and	 configure
Wireshark	 to	 capture	 it.	 You	 can	 perform	 the	 same	 test	 by	 having	 a	 client
connect	 to	 a	web	 page	 on	 a	 server	 and	 capture	 the	 communication	 as	 seen	 in
Figure	9.2.



FIGURE	9.2 	Viewing	the	TCP	handshake	in	Wireshark.

As	 you	 can	 see	 in	 Figure	 9.2,	 the	 client	 (192.168.1.4)	 is	making	 a	 connect
request	 to	 view	 a	web	page	on	 a	 server	 (72.21.81.253).	We	have	 captured	 the
communication	as	seen	in	the	Wireshark	capture	window	and	it	can	be	verified
by	 looking	 in	 the	 Summary	 pane.	Here	 you	 see	 the	 source	 and	 destination	 IP
addresses	 as	well	 as	 the	protocols	being	used	which	 are	TCP	and	HTTP.	This
maps	directly	to	our	discussion	and	example	on	a	client	visiting	a	web	page	on	a
server.	 You	 can	 use	 the	 Info	 section	 to	 derive	 the	 data	 such	 as	 the	 TCP
handshake	taking	place.
So	let	us	dive	into	reviewing	the	segments	and	review	the	finer	details	in	the

Details	pane	of	Wireshark.	In	Figure	9.3,	we	have	selected	the	first	portion	of	the
handshake	 to	 review.	 Here	 we	 see	 the	 client	 (source)	 sending	 a	 connection
request	 to	 the	 server	 (destination)	using	port	80	 (HTTP).	 In	 the	 flags	 field,	we
see	the	SYN	bit	set.



FIGURE	9.3 	Viewing	the	TCP	handshake	in	the	Detail	pane	(SYN).

Once	 the	 connection	 is	 underway,	 the	 destination	 system	 needs	 to	 send	 a
SYN,	ACK	back	to	the	source	as	seen	in	Figure	9.4.	In	Figure	9.4,	we	can	see
the	 source	 IP	 address	 as	 the	 server	 and	 then	destination	 switches	 to	 the	 client.
We	can	see	the	flags	set	to	SYN	and	ACK.



FIGURE	9.4 	Viewing	the	TCP	handshake	in	the	Detail	pane	(SYN,	ACK).

In	Figure	9.5,	we	see	the	completion	of	 the	handshake	by	the	source	(client)
sending	 an	 ACK	 to	 the	 destination	 (server)	 completing	 the	 handshake.	 In	 the
flags	section,	we	can	see	the	ACK	set.



FIGURE	9.5 	Viewing	the	TCP	handshake	in	the	Detail	pane	(ACK).

When	working	with	Wireshark	to	solve	a	network	problem,	you	could	attempt
to	capture	this	three-way	handshake	and	check	these	specific	sections	to	see	if,
for	example,	the	client	sends	a	connection	establishment	request	(SYN),	and	you
do	not	see	a	SYN,	ACK	in	return.	Or,	you	can	see	disconnects	in	the	established
connection.
The	 flags	 are	 important	 because	 this	 is	 where	 you	 can	 see	 specific	 data	 in

regards	to	what	bits	are	actually	turned	on.	TCP	Windowing	can	also	be	seen	in
the	 flags	 section.	Many	 applications	 rely	 on	 a	 network	 to	 be	 able	 to	 perform
adequately	 and	 if	 there	 is	 a	 large	 amount	 of	 small	 packets,	 fragmentation,
retransmissions,	 high	 buffering,	 or	 other	 problems	 associated	 with	 causing
performance	problems,	you	can	use	the	data	found	in	your	captures	to	find	and
then	resolve	them.
In	 Figure	 9.6,	 we	 can	 review	 the	 TCP	 windowing	 flag.	 TCP	 hosts	 when

communicating	need	to	agree	to	limit	or	amount	of	data	that	can	be	sent	at	any
given	time.	This	is	called	the	TCP	window	size	and	found	in	the	TCP	header.



FIGURE	9.6 	The	TCP	windowing	process.

In	 this	 example,	we	 can	 see	 that	 the	window	 size	 has	 been	 configured	 to	 a
predetermined	 (or	 agreed)	 size.	 This	 is	 determined	 on	 the	 initial	 SYN	 sent	 to
establish	the	connection	via	the	source	system.	In	this	example,	no	scaling	was
used	and	the	preset	or	predetermined	sizing	was	used.	If	a	problem	did	exist,	you
would	see	congestion	notifications	in	use	as	seen	in	Figure	9.6.

Some	 Windows	 systems	 (such	 as	 Vista	 as	 an	 example)	 used
autotuning	 features	 to	 adjust	 TCP	 flow.	 You	 can	 also	 find	 these
types	 of	 issues	 when	 working	 with	 Wireshark	 by	 reviewing	 the
details	pane	very	closely	and	monitoring	the	specific	sizing	details
noted	earlier.

9.3	Analyzing	Flow
There	are	other	ways	you	can	use	Wireshark	to	review	connections	from	source



to	destination.	As	we	covered	earlier	in	the	field	guide,	using	flow	graphs	can	be
a	 helpful	 way	 to	 review	 communications	 on	 your	 network.	 To	 set	 up	 a	 flow
graph,	go	 to	 the	Wireshark	 capture	window	and	 select	 the	Statistics	menu	and
choose	Flow	Graph	from	the	drop	down	menu.	In	Figure	9.7,	you	can	configure
the	flow	graph	how	you	would	like	to	see	it.	In	this	example,	choose	TCP	flow.

FIGURE	9.7 	Configuring	a	flow	graph.

In	Figure	9.8,	you	can	see	the	flow	graph	created	around	the	previous	example
of	the	TCP	handshake	sequence.	Here	you	can	see	specifically	how	long	it	took
and	what	sequence	numbers	were	being	used.	This	is	a	quick	way	to	see	if	you
have	latency	issues	where	or	problems	with	the	sequence.



FIGURE	9.8 	Viewing	the	TCP	handshake	in	a	flow	graph.

In	 sum,	 TCP	 communication	 is	 a	 critical	 component	 to	 TCP/IP	 network
communication.	 It	 manages	 the	 established	 connection	 and	 ensures	 that	 the
oriented	 connection	 remains	 established	 and	 data	 traverses	 the	 network	 from
source	to	destination	and	if	any	problems	occur,	Wireshark	can	help	find	exactly
what	may	have	caused	the	issue	when	you	review	and	analyze	the	captured	and
filtered	data.

9.4	Troubleshooting	Phones
In	this	example,	we	will	look	at	another	problem	and	take	a	deep	dive	into	how
to	solve	it	using	Wireshark.	Here	we	will	look	at	how	a	softphone	could	have	an
issue	 connecting	 to	 a	 destination	 and	 how	 Wireshark	 can	 help	 assist	 you	 in
finding	out	why.
In	 Figure	 9.9,	 we	 use	 a	 simple	 softphone	 loaded	 on	 a	 Windows	 client	 to

initiate	a	call	to	another	host.	In	this	example,	we	can	see	that	the	account	failed
to	enable	and	the	error	given	by	the	phone	is	that	the	network	data	needs	to	be
verified.	 This	 is	 something	 that	 Wireshark	 should	 be	 able	 to	 uncover	 rather
quickly.



FIGURE	9.9 	Using	a	network	softphone.

Our	next	step	would	be	to	use	Wireshark	to	capture	the	data	from	the	source
(the	softphone)	 to	 the	destination	(the	connecting	host).	 In	Figure	9.10,	we	see
the	data	captured	by	Wireshark	 indicating	 that	 the	phone	 is	 trying	 to	 register	a
connection	 to	 the	 connecting	 host.	 We	 can	 see	 the	 source	 and	 destination	 IP
addresses	as	well	as	 the	protocol	 in	use	which	is	 the	session	initiation	protocol
(SIP).



FIGURE	9.10 	Viewing	SIP	connections	in	Wireshark.

As	we	dig	deeper	into	the	Detail	pane,	we	can	see	specific	data	that	is	relevant
to	solving	the	problem.	In	this	case,	a	firewall	was	blocking	the	connection	and
causing	the	softphone	to	ring	but	no	one	is	able	to	answer	thus	not	being	able	to
register	to	the	unified	communications	system	where	it	needs	to	register	(Figure
9.11).

FIGURE	9.11 	Viewing	SIP	in	the	Detail	pane.

You	can	also	review	specific	SIP	statistics	as	seen	in	Figure	9.12	by	going	to
the	Wireshark	capture	window	and	selecting	the	Telephony	menu,	then	selecting
SIP.	Once	you	select	SIP	you	can	click	on	Create	Stat.	You	can	then	review	the
specific	statistics	such	as	how	many	packets	were	sent,	 resent,	and	specifically
get	an	average	baseline	for	how	long	it	takes	for	calls	to	setup.



FIGURE	9.12 	Reviewing	SIP	statistics.

9.5	Security	Analysis
In	 our	 next	 example,	 we	 will	 look	 at	 how	Wireshark	 can	 be	 used	 to	 identify
security	issues	on	your	network.	In	this	example,	we	have	used	sample	captures
found	in	the	Wireshark	online	capture	repository.
To	take	a	deep	dive	into	security	problems,	you	can	also	get	a	general	feel	for

what	 is	going	on	with	your	captured	data	by	 reviewing	 the	Expert	 Info.	 In	 the
DNS	Remoteshell	pcap	file,	we	can	review	the	Expert	Info	in	Figure	9.13.	Here
we	 see	 specific	 Denial	 of	 Service	 (DoS)	 attempts	 by	 constant	 connection
establishment	 requests.	 This	 also	 relates	 to	 the	 TCP	 handshake	 sequence	 we
learned	about	earlier.



FIGURE	9.13 	Using	the	expert	analysis	to	find	security	issues.

By	taking	a	quick	look	at	the	Expert,	we	can	see	constant	SYNs	until	a	RST
(reset)	takes	place.
We	 can	 also	 review	 the	 Teardrop	 pcap	 file.	 This	 is	 another	 form	 of	 a	DoS

attack.	 This	 type	 of	 attack	 takes	 place	 by	 a	 host	 sending	 “mangled”	 data	 (IP
fragments)	with	 problematic	 payload	 sizes	 to	 a	 destination	 (target)	 system.	By
doing	 so,	 they	 could	 potentially	 crash	 the	 destination	 system	 if	 it	 becomes
overwhelmed.
Figure	9.14	shows	the	detail	pane	where	you	can	see	the	payload	sizes	and	if

you	do	analysis	on	multiple	attempts	at	 the	destination,	you	could	find	that	 the
mangled	 data	 fragments	 occur	 at	 differing	 sizes	 which	 could	 potentially	 be
problematic	to	the	target	system.

FIGURE	9.14 	Using	the	Detail	pane	to	find	security	issues.



Wireshark	can	quickly	and	easily	help	you	identify	problems	with	security	on
your	network.	For	 example,	 if	 you	wanted	 to	 capture	 cleartext	passwords,	you
can	 do	 so	 with	Wireshark.	 TCP/IP	 version	 4	 protocols,	 such	 as	 FTP,	 Telnet,
SNMP,	 and	 others	 send	 data	 in	 cleartext	 and	 if	 captured,	 the	 credentials	 to	 a
system	could	be	read	and	compromised.

9.6	Network	Performance	Analysis	and
Optimization
Another	 problem	 you	may	 have	 to	 contend	with	 (and	 optimize)	 is	 application
traffic	crippling	your	WAN	connections.	Application	analysis	is	the	hallmark	of
an	 experienced	 technician.	 As	 the	 network	 or	 protocol	 analyst,	 it	 is	 your
organization’s	 responsibility	 to	 make	 sure	 that	 you	 know	 what	 protocols	 are
being	 introduced	 into	 the	network.	 It	 is	up	 to	you	 to	be	able	 to	use	a	 tool-like
Wireshark	 to	 capture	 and	 analyze	 them	 to	 solve	 problems.	 You	 can	 use
Timestamps	 in	 the	 Wireshark	 capture	 window	 Summary	 pane	 to	 analyze
response	times	through	time	stamp	analysis.	This	will	help	you	rule	out	latency
issues.	You	can	also	use	Wireshark	to	find	out	if	bandwidth	is	an	issue.
You	can	use	tools	and	analyze	the	bandwidth	being	used	over	a	WAN	link	(as

an	 example)	 to	 verify	 that	 you	 have	 enough	 so	 data	 can	 traverse	 a	 network
without	 issues.	 If	 you	 are	 using	 a	 100	Mbps	 connection	 and	 find	 that	 you	 are
maxing	 out	 the	 bandwidth,	 then	 you	 can	 use	 Wireshark	 to	 see	 if	 data	 is
retransmitting	because	of	it.	Figure	9.15	shows	how	this	solution	could	be	found
on	your	network.

FIGURE	9.15 	Finding	network	performance	issues.

Do	not	mistake	a	latency	problem	with	a	bandwidth	problem.	Do	not	increase



your	 bandwidth	 because	 an	 application	 responds	 slowly—	 the	 increased
bandwidth	 may	 not	 help.	 Work	 with	 your	 ISP	 to	 get	 statistics	 on	 overall
bandwidth	 and	 utilization	 so	 you	 can	 see	 if	 you	 are	 operating	 at	 poor	 levels.
Many	 times,	 it	 is	 simply	 that	 the	 server’s	 response	 time	 is	poor,	 the	buffers	 in
routing	devices	or	servers	are	inundated,	or	a	poorly	written	application	will	just
not	function	as	advertised.
Each	 suggestion	has	 its	 own	benefits	 and	problems,	 but	 a	 total	 optimization

standpoint,	you	can	use	these	as	ideas	to	figure	out	how	to	make	the	application
work	better	 on	your	 network.	Remember,	 it	 is	 not	 always	 the	 network’s	 fault!
Some	applications	were	just	not	made	to	function	well	over	a	WAN	link.	It	is	up
to	 you	 to	 use	 your	 skills	 and	Wireshark	 to	 help	 optimize	 the	 traffic	 that	 does
exist.

Implement	Quality	of	Service	(QoS)	on	your	networking	hardware
to	queue	up	that	application	first.	QoS	will	only	help	if	you	have	a
bandwidth	issue.

You	 can	 also	 use	 other	 tools	 to	 help	 solve	 problems.	 In	 this	 chapter,	 we
learned	about	a	system	having	an	issue	accessing	a	HTTP-based	web	page	on	a
web	 server.	 You	 can	 use	 tools	 like	HttpWatch	 as	 seen	 in	 Figure	 9.16	 to	 help
analyze	response	time	when	a	client	attempts	to	access	a	web	server.



FIGURE	9.16 	Finding	application	issues.

In	this	example,	we	can	see	how	using	other	tools	with	Wireshark	can	aid	in
helping	you	find	root	cause	of	an	issue,	or	help	you	rule	out	what	may	or	may
not	be	impacting	the	network	or	systems.

Beware	 of	 compounded	 issues.	 Sometimes	 you	 may	 encounter	 a
problem	 that	 manifests	 as	 a	 network	 problem	 but	 could	 be	 a
problematic	 system,	 an	 application	 problem,	 or	 a	 combination	 of
these	problems	that	when	load	is	added	to	the	systems	or	network
or	 application	 access	 causes	 a	 performance	 problem.	 Use
Wireshark	 and	 many	 of	 the	 other	 tools	 we	 covered	 in	 this	 field
guide	 to	 peel	 back	 the	 layers	 of	 the	 onion	 and	 attempt	 to	 move
towards	 finding	 root	 cause.	 Typically	 it	 makes	 sense	 to	 start	 the
troubleshooting	effort	at	the	client	(point	of	problem	or	complaint)
and	work	your	way	through	the	network	to	the	system	or	systems	in
which	they	are	trying	to	use.

Bottlenecks	 can	 also	 be	 a	 problem.	Choke	 points	 from	 improperly	 designed



networks	and	systems	can	cause	performance	issues.	Overwhelmed	devices	that
are	 undersized	 to	 handle	 the	 load	 can	 cause	 performance	 issues.	 If	 too	 much
traffic	is	going	through	any	one	source	of	communication,	it	may	overwhelm	the
device’s	 ability	 to	 process	 the	 traffic.	 This	will	 cause	 dropped	 packets,	 which
will	 require	 the	originating	system	to	 resend	 them,	 increasing	 the	 load	on	your
network.	 To	 optimize	 Ethernet-based	 networks,	 you	 can	 design	 your	 network
properly	with	 a	high-speed	backbone	and	high-speed	desktop	 switching.	Make
sure	your	servers,	routers,	desktops,	or	any	other	device	are	not	the	source	of	the
bottleneck.
Unnecessary	 protocols,	 which	 depend	 on	 broadcast	 traffic,	 can	 increase	 the

amount	 of	 traffic	 on	 your	 network.	 Also,	 multicast	 traffic	 such	 as	 name
resolution	 and	 switch	 and	 bridge	 updates	 can	 consume	 bandwidth	 needed	 for
other	traffic.	To	optimize	Ethernet,	you	can	do	the	following:
•	Eliminate	unneeded	protocols	from	your	network	hosts	(clients,	servers,
routers,	etc.).

•	Eliminate	unneeded	hosts	on	your	network	that	are	not	in	use	and	are	perhaps
sending	out	keepalives	or	some	other	traffic	on	the	wire	(make	the	collision
domain	smaller).

•	Use	Switching	instead	of	shared	access	hubs.
•	Implement	VLANs	if	possible	to	separate	broadcast	domains	or	use	a	router
to	block	broadcast	traffic.

•	Watch	for	high	percentages	of	network	utilization.	It	can	vary	from	network
to	network,	but	anything	over	40%	is	generally	too	high	on	an	Ethernet
network.	If	you	are	on	a	switched	network,	then	anything	over	70%	is	too
high.

•	Watch	for	hardware-related	errors.	Jabbers	or	failing	NICs	often	cause	long	or
short	frames	and	Cyclic	Redundancy	Check	(CRC)	errors.	Correct	these
problems	as	they	are	found.

•	Broadcasts	and	multicasts	should	be	no	more	than	20%	of	all	network	traffic.
•	On	Ethernet	networks	there	should	be	no	more	than	1	CRC	error	per	1	million
bytes	of	data.
You	can	also	ask	specific	questions	to	help	you	get	closer	to	an	answer:
•	Is	poor	network	performance	affecting	one	user,	several	users,	or	the	entire
network?

•	Is	the	poor	performance	centered	at	a	particular	location	or	the	entire
network?

•	When	exactly	did	you	start	noticing	poor	performance	or	has	it	always	been



bad?
•	Have	any	recent	changes	taken	place—no	matter	how	large	or	small?
•	Do	you	have	any	network	documentation	or	topology	maps?
Always	try	 to	see	 if	poor	network	performance	is	affecting	one	user,	several

users,	or	the	entire	network.	Isolate	your	problems	and	nail	them	down	one	at	a
time,	if	possible.
Always	view	network	documentation	and	topology	maps,	if	available,	to	try	to

find	out	whether	the	initial	design	itself	is	causing	performance	issues.	You	need
not	use	Wireshark	 immediately	 to	 formulate	a	clue	on	where	 the	problems	 lie;
detailed	 topology	maps	 speak	 for	 themselves,	 however,	 you	 can	 run	 a	 sample
capture	to	help	ascertain	a	clue	or	two.
When	you	are	initially	analyzing	performance	on	a	network,	it	is	important	to

interview	 the	 staff	 (both	 users	 and	 administrators)	 to	 get	 a	 solid	 picture	 of
network	health	from	a	“maintenance	performed”	point	of	view.	Involve	vendor
support	 if	 needed.	 Ask	 administrators	 about	 changes	 made	 to	 the	 network
recently,	 find	 out	 if	 things	 had	 gotten	 bad	 at	 a	 specific	 time,	 and	 use	 the
information	 you	 gather	 as	 part	 of	 your	 analysis.	 Often	 changes	 made	 to	 a
network	result	in	poor	performance,	and	the	staff	might	be	unaware	of	the	cause.
Always	 involve	 your	 ISP	 in	 your	 overall	 analysis	 if	 you	 cannot	 verify	 the

connecting	links.	Ask	for	service-level	agreements	(SLAs)	if	 they	are	available
and	bandwidth	 utilization	 charts	 if	 they	keep	 them.	This	 information	will	 help
you	get	a	bigger	picture	of	possible	performance	problems.

9.7	Using	Wireshark	Online
You	can	always	do	deeper	dives	into	captured	data	by	simply	using	Wireshark’s
ability	 to	 link	 to	 online	 documentation.	 In	 Figure	 9.17,	 you	 can	 see	 a	 specific
example	 of	 how	 to	 click	 and	 pull	 up	 a	menu	 from	 data	 in	 the	Detail	 pane	 to
produce	a	link	where	you	can	pull	up	the	Wireshark	Wiki	pages	to	help	explain
specific	data	you	may	or	may	not	understand.	This	 is	 a	great	way	 to	help	you
learn	more	and	dig	deeper	into	the	protocols	and	data	you	are	working	with.



FIGURE	9.17 	Finding	online	references	via	Wireshark.

9.8	Summary
In	this	chapter,	we	covered	the	specifics	of	digging	deeper.	With	a	deeper	look
into	the	data,	the	systems,	and	the	network,	we	saw	how	we	could	better	define
and	 find	 root	 cause	 of	 problems	 as	 well	 as	 how	 to	 use	 Wireshark	 and	 other
enterprise	 tools	 to	 solve	 issues	 that	 occur	 over	 WAN	 links,	 when	 using	 a
softphone	and	to	find	security	problems	and	so	on.	In	the	next	and	final	chapter,
we	will	look	at	the	myriad	of	ways	to	handle	the	data	you	captured	for	analysis
and	safekeeping.



CHAPTER	10

Saving	Captures

10.1	Getting	Started

10.2	Saving	Captures

10.3	Saving	Captures	(Multiple	Files)

10.4	Saving	in	Other	Formats

10.5	Importing	and	Exporting	Data

10.6	Merging	Data

10.7	Summary

Wireshark	can	be	used	to	isolate	and	troubleshoot	network	and	system	problems,
and	we	have	flipped	open	the	hood	and	taken	a	look	into	its	inner	workings.	In
this	field	guide,	we	have	learned	how	to	use	Wireshark	to	capture	and	filter	data
in	hopes	that	by	doing	so,	we	can	solve	problems.	We	have	learned	quite	a	bit	in
a	 short	 amount	 of	 time.	 In	 this	 chapter,	we	will	 cover	 how	 to	 save	 your	 files,
import	and	export	data,	and	other	key	information	on	how	to	store	your	captured
packets	for	further	analysis.
In	this	chapter,	we	will	learn	how	to	save	captured	data.	It	is	not	as	simple	as

saving	a	file;	there	are	many	options	that	you	can	select,	and	understanding	the
options	 available	 will	 help	 you	 in	 making	 the	 correct	 decisions	 on	 how	 and
where	you	want	to	save	your	data.

Make	sure	that	when	you	prepare	to	save	data,	you	have	plenty	of
disk	 space	 available,	 i.e.,	 a	 system	 with	 the	 proper	 resources	 to
handle	 this	 task.	 It	 is	 recommended	 that	 you	 also	 consider
encrypting	 this	 data	 if	 you	 consider	 it	 sensitive.	 You	 should	 also



make	 sure	 that	 you	 follow	 the	 practice	 of	 ensuring	 that	 you	 limit
who	can	access	the	data	by	securing	the	system	or	storage	device	in
which	 it	 is	 stored	 as	 filtered	 data	 can	 contain	 secure	 information
such	as	passwords.

10.1	Getting	Started
Once	you	have	completed	your	analysis,	you	may	want	to	save	and	archive	your
files	 for	 future	 use.	 This	 chapter	 covers	 file	 formats,	 how	 to	 use	 capture	 files
with	other	protocol	analysis	systems,	how	to	merge	files,	and	more.	 In	Section
10.2,	we	review	the	basics	of	saving	captured	data.
When	 working	 on	 a	 network,	 a	 running	 Wireshark	 with	 the	 intention	 of

capturing	and	saving	data,	there	are	times	where	you	may	want	to	know	how	you
will	save	it	before	you	even	start	the	capture.	In	the	sections	within	this	chapter,
we	will	cover	when	that	would	be	applicable.	For	now,	we	will	cover	the	basics
of	saving	a	capture	file	once	your	capture	is	completed.

10.2	Saving	Captures
Once	you	are	done	capturing	data,	 there	are	many	options	available	 to	you	 for
controlling	the	data	you	wish	to	store.	When	you	run	a	capture,	all	of	the	data	is
viewable	 in	 the	Wireshark	 capture	 window.	 You	may	want	 to	 save	 all	 of	 the
captured	data	or	a	subset	of	 it.	There	are	options	available	for	both.	Before	we
cover	these	options,	you	should	consider	the	following	essential	guidelines:

1.	If	you	are	going	to	be	running	captures	over	a	longer	period	of	time,	you
may	wish	to	break	them	up	into	more	manageable	chunks	to	store	and
review	from.	For	most	systems,	anything	more	than	a	256-megabyte	file
size	is	too	big.

2.	You	should	consider	how	you	will	label	your	stored	files.	This	way,	when
you	want	to	access	specific	portions	of	saved	data,	you	have	a	viewable
reference	by	viewing	just	the	file	name.	For	example,	if	you	are	capturing
data	to	and	from	a	specific	set	of	IP	addresses,	you	may	want	to	label
them	in	the	file	name.	You	should	also	consider	folderizing	your	saved
data	for	easy	reference.

3.	Always	consider	where	you	will	be	storing	this	data	(size,	security,



accessibility,	etc).
In	 Figure	 10.1,	 the	Wireshark	 main	 page	 shows	 options	 for	 viewing	 saved

files.	In	the	Open	section,	you	can	see	the	most	recently	saved	files	that	you	can
open.	They	will	be	colored	blue	(hyperlink),	and	by	clicking	on	them,	you	will
open	 that	 particular	 capture.	 You	 can	 also	 click	 directly	 on	 the	 Open	 link
denoted	by	the	image	of	the	folder	to	open	the	Open	Capture	File	dialog	box.

FIGURE	10.1 	Opening	capture	files.

To	save	data,	simply	open	Wireshark	and	run	a	capture.	Stop	the	capture	and
go	 to	 the	Wireshark	 capture	window’s	menu	 system.	By	 clicking	on	File,	 you
will	 see	 a	 drop-down	 menu	 of	 options	 in	 which	 you	 can	 save	 your	 data.	 By
selecting	Save	As,	you	can	then	name	your	file	and	store	it	in	a	location	of	your
choice.	 By	 clicking	 on	 Save,	 you	 will	 be	 presented	 with	 the	 same	 options;
however,	if	you	already	have	saved	the	file,	by	selecting	Save	you	can	update	the
currently	saved	file	with	the	newest	information,	e.g.,	when	you	want	to	continue
your	capture	and	collect	more	packets.	This	is	fairly	straightforward.	If	you	want
to	perhaps	save	data	in	groupings	of	files,	you	have	to	go	another	route.

10.3	Saving	Captures	(Multiple	Files)



There	may	come	a	time	where	you	want	to	save	a	capture	in	a	subset	of	files.	In
order	to	do	this,	you	need	to	configure	Wireshark	to	handle	this	task	before	you
start	the	capture	of	your	data.	To	do	this,	you	need	to	first	go	to	the	Wireshark
launch	page,	or	you	can	do	it	from	within	the	Wireshark	capture	window	if	you
are	 starting	 a	 new	 capture	 saving	 to	 multiple	 files.	 In	 the	 Wireshark	 capture
window,	 you	 can	 click	 on	 Capture	 menu	 option	 and	 select	 Options.	 On	 the
launch	page,	you	can	click	on	the	Capture	Options	link.
Once	you	select	either,	you	will	see	the	Wireshark	Capture	Options	dialog	box

as	shown	in	Figure	10.2.

FIGURE	10.2 	Configuring	Wireshark	capture	options.

Within	this	dialog	box,	you	see	many	options	you	can	select	and	choose	from.
The	relevant	area	in	the	dialog	box	where	you	will	configure	the	captured	data
for	population	into	multiple	files	is	in	the	Capture	File(s)	section.	Here,	you	can
choose	 the	 location	 in	 which	 you	 would	 like	 to	 store	 your	 data.	 Figure	 10.3
shows	the	location	of	where	you	would	set	your	capture	file	when	selecting	the
Browse	button.



FIGURE	10.3 	Wireshark	specific	a	capture	file	dialog	box.

Once	 you	 are	 done,	 you	 can	 click	OK.	Then,	 you	 can	 configure	 options	 on
where	you	will	 save	 the	 files	 as	well	 as	 how	 to	 size	 it,	 time	 it,	 and	 control	 it.
Once	you	have	selected	your	relevant	options,	click	Start	to	begin	the	capture.
Once	 the	 capture	 has	 started	 and	 run	 through	 its	 routine	 and	 stops,	 you	 can

view	 these	 files	within	 the	Wireshark	 capture	window	 by	 clicking	 on	 the	 File
menu	and	selecting	File	Set.	Expand	this	option	to	view	List	Files	as	shown	in
Figure	10.4.

FIGURE	10.4 	Wireshark	list	files	dialog	box.

To	view	the	same	files	where	they	are	stored,	you	can	go	to	the	File	menu	and
click	 Save	As	 and/or	 simply	 navigate	 to	 the	 location	 in	which	 you	 decided	 to
store	the	files.	As	shown	in	Figure	10.5	you	can	see	how	Wireshark	chunked	out
the	capture	into	multiple	files.



FIGURE	10.5 	Wireshark	saving	data	in	multiple	files.

10.4	Saving	in	Other	Formats
Once	 you	 have	 finished	 your	 capture,	 you	 can	 save	 the	 capture	 in	 many	 file
formats.	By	going	to	 the	File	menu	and	selecting	Save	As,	you	can	then	select
the	Save	as	type	as	shown	in	Figure	10.6



FIGURE	10.6 	Saving	files	in	multiple	formats.

There	may	 be	 times	where	 you	would	 like	 to	 save	 the	 captured	 data	 in	 the
native	format	of	the	tool	you	may	be	transferring	the	data	to,	e.g.,	if	you	want	to
send	captured	data	 to	another	associate	helping	you	 troubleshoot,	and	 they	use
Microsoft	Network	Monitor,	you	can	choose	to	save	in	the	native	format	for	that
specific	 tool.	You	can	see	 the	different	 file	extensions	 in	Figure	10.6	 from	 the
Save	as	type	menu.	Click	Save	to	complete	this	task.

10.5	Importing	and	Exporting	Data
When	saving	data,	there	may	be	times	where	you	simply	want	to	save	a	portion
of	this	data	for	use.	A	great	example	would	be	when	you	ran	a	large	capture	and
had	a	lot	of	data	in	your	window	that	you	did	not	want	to	save.	You	could	filter
out	this	data	and	export	the	relevant	data	to	a	new	file.	You	can	also	import	data
into	a	file.
To	 import	 data	 into	 a	 file,	 go	 to	 the	 File	menu	 and	 select	 Import	 from	 the

drop-down	menu.	You	will	 then	 open	 the	Wireshark	 Import	 from	Text	 dialog
box	as	shown	in	Figure	10.7.



FIGURE	10.7 	Import	from	text.

When	using	this	option,	you	will	need	to	select	a	preconfigured	text	file	with
the	relevant	data	already	configured	in	the	file	to	import.
To	 export	 data,	 simple	 click	 on	 the	 File	 menu	 again	 and	 select	 from	 the

multiple	 Export	 options	 listed.	Depending	 on	where	 you	 are	 in	 the	Wireshark
capture	window	and	what	data	you	have	captured	will	then	give	you	the	specific
options	 for	what	 you	 can	 export;	 otherwise,	 the	option	will	 be	grayed	out	 and
unusable.
In	Figure	10.8,	 the	option	to	Export	Specified	Packets	was	chosen.	This	was

predetermined	from	the	example	provided	earlier	where	we	wanted	to	filter	out
the	data	we	did	not	want	to	use	and	populate	a	new	file	for	reference.

You	will	not	be	able	 to	use	 the	 filter	option	 if	you	do	not	choose
“displayed”	in	the	export	options	for	Packet	Range.



FIGURE	10.8 	Exporting	specified	packets.

10.6	Merging	Data
Once	you	have	captured	multiple	files,	there	may	come	a	time	where	you	want
to	reassemble	the	data	into	one	file.	To	do	this,	you	can	choose	the	merge	option.
In	 the	 File	 menu,	 you	 can	 select	 Merge	 to	 open	 the	Merge	 with	 capture	 file
dialog	box	as	shown	in	Figure	10.9.



FIGURE	10.9 	Merging	capture	files.

To	merge	data,	you	will	need	to	select	a	file	name	where	you	will	merge	to.
You	 can	 also	 configure	 a	 Display	 filter	 as	 well	 as	 select	 other	 options	 for
prepending	and	appending.

10.7	Summary
Now	you	know	how	to	save	data	to	files	for	storage	and	future	analysis.	You	can
send	these	files	to	others	to	troubleshoot	as	a	team	or	get	help	from	others.
We	have	completed	 the	 final	steps	of	 learning	Wireshark	 in	 this	 field	guide.

This	is	written	in	the	hope	of	getting	you	up	to	speed	quickly	in	using	one	of	the
most	 common	network-based	 troubleshooting	 tools	 used	 in	 the	 industry	 today.
To	learn	more,	visit	the	websites	listed	in	this	book.


	Title page
	Table of Contents
	Copyright
	Dedication
	Preface
	About the Author
	Acknowledgment
	Introduction
	About Wireshark
	Installing Wireshark
	Configuring a System
	Capturing Packets
	Color Codes
	Filters
	Sample Captures
	Inspecting Packets
	Deep Analysis
	Saving Captures

	Chapter 1. About Wireshark
	1.1 Introduction
	1.2 What Is Wireshark?
	1.3 What Is Network and Protocol Analysis?
	1.4 The History of Wireshark
	1.5 Troubleshooting Problems
	1.6 Using Wireshark to Analyze Data
	1.7 The OSI Model
	1.8 Summary

	Chapter 2. Installing Wireshark
	2.1 Introduction
	2.2 Getting Started
	2.3 Requirements
	2.4 Installation Preparation
	2.5 Installing Wireshark
	2.6 Summary

	Chapter 3. Configuring a System
	3.1 Introduction
	3.2 Getting Started
	3.3 Configuring a Cisco Port Monitor
	3.4 Other Tools and Methodologies
	3.5 Summary

	Chapter 4. Capturing Packets
	4.1 Introduction
	4.2 Getting Started
	4.3 Summary

	Chapter 5. Color Codes
	5.1 Getting Started
	5.2 Creating Color Code Lists
	5.3 Adding and Removing Filters
	5.4 Other Coloring Options
	5.5 Summary

	Chapter 6. Filters
	6.1 Getting Started
	6.2 Applying a Filter
	6.3 Advanced Filter Creation
	6.4 Other Filtering Techniques
	6.5 Customized Filtering and Troubleshooting
	6.6 Conversation Filters
	6.7 Summary

	Chapter 7. Sample Captures
	7.1 Getting Started
	7.2 Sample Captures
	7.3 Expert Analysis
	7.4 Flow Graphs
	7.5 Summary

	Chapter 8. Inspecting Packets
	8.1 Getting Started
	8.2 Understanding the Technology
	8.3 Capturing and Filtering Data
	8.4 Inspection of the Data
	8.5 Analysis Tools
	8.6 Summary

	Chapter 9. Deep Analysis
	9.1 Getting Started
	9.2 Deep Analysis
	9.3 Analyzing Flow
	9.4 Troubleshooting Phones
	9.5 Security Analysis
	9.6 Network Performance Analysis and Optimization
	9.7 Using Wireshark Online
	9.8 Summary

	Chapter 10. Saving Captures
	10.1 Getting Started
	10.2 Saving Captures
	10.3 Saving Captures (Multiple Files)
	10.4 Saving in Other Formats
	10.5 Importing and Exporting Data
	10.6 Merging Data
	10.7 Summary


