SYNGRESS

The Wireshark
Field Guide

Analyzing and Troubleshooting

Network Traffic \"
)\

Robert Shimonski

The Wireshark Field Guide

Analyzing and Troubleshooting
Network Traffic

Robert Shimonski

AMSTERDAM + BOSTON + HEIDELBERG » LONDOMN
NEW YORK +» OXFORD » PARIS » SAN DIEGO
SAN FRANCISCO « SINGAPORE « SYDNEY « TOKYO
Syngress is an imprint of Elsevier

Table of Contents

Cover image
Title page
Copyright
Dedication
Preface

About the Author
Acknowledgment

Introduction
About Wireshark
Installing Wireshark
Configuring A System
Capturing Packets
Color Codes
Filters
Sample Captures
Inspecting Packets

Deep Analysis

Saving Captures

Chapter 1. About Wireshark
1.1 Introduction
1.2 What Is Wireshark?
1.3 What Is Network And Protocol Analysis?
1.4 The History Of Wireshark
1.5 Troubleshooting Problems
1.6 Using Wireshark To Analyze Data
1.7 The OSI Model

1.8 Summary

Chapter 2. Installing Wireshark
2.1 Introduction
2.2 Getting Started
2.3 Requirements
2.4 Installation Preparation
2.5 Installing Wireshark

2.6 Summary

Chapter 3. Configuring a System
3.1 Introduction
3.2 Getting Started
3.3 Configuring A Cisco Port Monitor
3.4 Other Tools And Methodologies

3.5 Summary

Chapter 4. Capturing Packets
4.1 Introduction
4.2 Getting Started

4.3 Summary

Chapter 5. Color Codes
5.1 Getting Started
5.2 Creating Color Code Lists
5.3 Adding And Removing Filters
5.4 Other Coloring Options

5.5 Summary

Chapter 6. Filters
6.1 Getting Started
6.2 Applying A Filter
6.3 Advanced Filter Creation
6.4 Other Filtering Techniques
6.5 Customized Filtering And Troubleshooting
6.6 Conversation Filters

6.7 Summary

Chapter 7. Sample Captures
7.1 Getting Started
7.2 Sample Captures
7.3 Expert Analysis
7.4 Flow Graphs

7.5 Summary

Chapter 8. Inspecting Packets
8.1 Getting Started
8.2 Understanding The Technology
8.3 Capturing And Filtering Data
8.4 Inspection Of The Data
8.5 Analysis Tools

8.6 Summary

Chapter 9. Deep Analysis
9.1 Getting Started
9.2 Deep Analysis
9.3 Analyzing Flow
9.4 Troubleshooting Phones
9.5 Security Analysis
9.6 Network Performance Analysis And Optimization
9.7 Using Wireshark Online

9.8 Summary

Chapter 10. Saving Captures
10.1 Getting Started
10.2 Saving Captures
10.3 Saving Captures (Multiple Files)
10.4 Saving In Other Formats
10.5 Importing And Exporting Data
10.6 Merging Data

10.7 Summary

Copyright

Acquiring Editor: Chris Katsaropoulos Development Editor: Benjamin Rearick
Project Manager: Mohana Natarajan

Syngress is an imprint of Elsevier 225 Wyman Street, Waltham, MA 02451,
USA

First published 2013
Copyright © 2013 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or any
information storage and retrieval system, without permission in writing from the
publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangement with organizations such as
the Copyright Clearance Center and the Copyright Licensing Agency, can be
found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under
copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing.
As new research and experience broaden our understanding,
changes in research methods, professional practices, or medical
treatment may become necessary.

Practitioners and researchers must always rely on their own
experience and knowledge in evaluating and using any information,
methods, compounds, or experiments described herein. In using
such information or methods they should be mindful of their own

cafetv and the cafatv nf nthere inchidino nartiae for whom thev have

http://www.elsevier.com/permissions

DLILIL LY GG LIS UBAL LY UL VLIS L Uy LA I UL ey UL LA LWL VYV LAULLL LI Y LIV

a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the
authors, contributors, or editors, assume any liability for any injury
and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of
any methods, products, instructions, or ideas contained in the
material herein.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library Library of
Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress ISBN:
978-0-12410413-6

For information on all Syngress publications visit our website at
Www.syngress.com

H Working together
44 _4MW (o grow libraries in
asviee | Book A4 Jeveloping countries

www.elsevier.com e www.bookaid.org

http://www.syngress.com

Dedication

This book is dedicated to my wonderful children, Dylan Shimonski
and Vienna Shimonski. I love you!

Preface

Welcome to The Wireshark Field Guide: Analyzing and Troubleshooting
Network Traffic book, your guide to get up to speed using Wireshark in a quick
and efficient manner. This book provides hackers, pen testers, and network
administrators with practical guidance on capturing and interactively browsing
the traffic running on a computer network. Wireshark is the world’s foremost
network protocol analyzer, with a rich feature set that includes deep inspection
of hundreds of protocols, live capture, offline analysis, and many other features.
Wireshark is a multiplatform application that can be set up and put to work in
minutes to help analyze and troubleshoot some of the most complex security
problems found today. This book covers the installation, configuration, and use
of this powerful tool. It provides readers with the hands-on skills to be more
productive with Wireshark as they drill down into the information contained in
real-time network traffic.
* Learn the fundamentals of using Wireshark in a concise field manual.
* Quickly create functional filters that will allow you to get to work quickly on
solving problems.
* Understand the myriad of options and the deep functionality of Wireshark to
get working quicker.
* Solve common problems seen in networks today with what is taught in this
guide.
* Learn some advanced features, methods, and helpful ways to work quicker
and more efficient.
The goal of this book is to teach the basics quickly in a very short format
publication. Use the following link and similar other links found at the books
companion website www.learnwireshark.com.

http://www.learnwireshark.com

About the Author

Robert Shimonski (www.shimonski.com) is a best-selling author and editor with
over 15 years experience developing, producing, and distributing print media in
the form of books, magazines, and periodicals. To date, Rob has successfully
created over 100 books that are currently in circulation. Rob has worked for
countless companies including CompTIA, Entrepreneur Magazine, Microsoft,
McGraw-Hill Education, Cisco, the National Security Agency, and Digidesign.

Rob also has over 15 years experience in direct support of network
infrastructures and systems and has spent a considerable amount of that time in
leading teams in operational support and engineering architecture. Rob authored
the award-winning Syngress book Sniffer Pro Network Optimization and
Troubleshooting Handbook back in 2002. He has also contributed to many other
network and security-related publications on penetration, security design,
network analysis, and systems engineering. He can be reached online at
www.shimonski.com or at www.learnwireshark.com.

http://www.shimonski.com
http://www.shimonski.com
http://www.learnwireshark.com

Acknowledgment

I would like to thank all who made this book possible. Special thanks to Pete
Cheung for his technical help in creating this book and to Chris and Ben for their
assistance in producing this book.

Introduction

Welcome to the Syngress “Wireshark Field Guide,” your indispensable
companion to using Wireshark successfully and solving problems with one of
the most commonly used tools in the networking arena today. In this concise
text, I will cover how to acquire Wireshark, what you need to know about it to
get it up and running and then using it to help solve problems.

For over two decades, the need for an understanding of protocol analysis has
grown as the networks we rely on to connect our computers, mobile devices, and
systems to use the Internet, access the cloud, and work within our corporate
networks have also grown. As more reliance on using the network becomes the
norm, solving problems quickly is also becoming increasingly more important.

As we will learn in this book, Wireshark (as well as other protocol analysis
tools) is used often to help find and solve problems on internetworks for all
sizes. In this book, we will cover the following sections:

About Wireshark

Experienced network technicians, operators, and engineers across the globe use
Wireshark and tools of its kind to solve problems and we will cover not only the
nuts and bolts of using it but also why we do. In this section, we will briefly go
over the history of Wireshark as well as to discuss the use of packet capture and
analysis in the field of networking. First, we need to understand the history of
Wireshark and packet capture and analysis to get a solid understanding of the
purpose of using this tool. An in-depth look at Wireshark, its features, and the
toolset are covered as well as a granular look at the specifics of why protocol
capture and analysis is so critical to solving problems.

Installing Wireshark

In this chapter of the book, we will cover how to get Wireshark, install it, and set
it up for use on a computer. We will cover how the tool changes your network
interface card (NIC) so that it can capture data, specifically what requirements
would be needed in order to not only install but also use Wireshark in production
as well as many other tidbits of information to make your troubleshooting time

painless and productive. We will briefly go over the interface and how to launch
and use the tool.

Configuring a System

Once your computer is ready to go, you will need to learn how to use Wireshark
on a network. This is not a simple task because there are specific configuration
changes you will need to make not only on your computer system but also
components on the network in order to capture and analyze data. In this chapter,
we will cover not only configuration of network devices but also teach you how
to consider the specific placement of the tool in order to use it correctly. We will
learn how preparing to capture data may require making adjustments on network
devices, network cabling, or configuration specifics necessary to capture data.
We will learn how to configure a network device to send data to Wireshark, the
correct placement and staging of the capture device(s) as well as the strategy you
must plan with two end-to-end systems when more than one Wireshark capture
is needed.

Capturing Packets

In this chapter, we will learn the art of capturing packets in order to decode
them, analyze them, and inspect what is traversing your network. Once you have
started to capture packets, the rest of the chapters leading up to the last chapter
(saving captures and saving files) you will be learning about the interface and
how to manipulate it to troubleshoot problems. This chapter covers the three
panes and all details within them, running captures, how to start and stop
Wireshark as well as be given a sample problem to work with.

Color Codes

Deeper inspection within the capture is required. In this chapter, we will learn
how Wireshark color codes the captures and how to quickly look for problems.
In this chapter, we will also learn more about protocols, ports, and other critical
network-based information that will help you solve problems.

Filters

How to filter captures correctly is the key to finding problems especially when

running Wireshark on networks where a lot of data traverses. Consider capturing
data from one system communicating with another ... what would you
specifically search for to help solve a problem? Filtering on protocols, IP
addresses and using specific Boolean arguments commonly used today are
covered as well as specific example of filters that you can use right away to help
get you up and running with Wireshark immediately.

Sample Captures

In this chapter, we will expand on what we learned in the Filters chapter by
covering some advanced problems, how to solve them using Wireshark, and the
more complex use of analysis by applying more filters and reviewing expert
analysis reports.

Inspecting Packets

As we learn more about Wireshark, we will discuss problems found on a
network and specifically why they occur from the packet level. In this chapter,
we will take an in-depth look at a few common (and not so common) problems
and what you are looking for in the packets, how to use the tool to get and view
this information, and how to use Wireshark to solve them. We will also look at
other tools you can use to augment the use of Wireshark to solve complex
network and system issues.

Deep Analysis

In this chapter, we take a deeper look into the packets in order to define and find
root cause of problems as well as how to use Wireshark and other enterprise
tools to solve problems that occur over wide area network links. We will learn
about probes, taps, and how all of these tools can be used together to create a
complete picture to help you not only understand why data traverses a network a
certain way but also why it chooses specific paths, how it interacts with
destination systems, and what could go wrong within those conversations. We
will look at voice over IP (VoIP) problems, malicious software issues, how
intrusion detection/prevention, scanning, and many other services work on a
network and how Wireshark can help you work with them when solving issues.

Caviinn Cantinivae

GAVIITY wapuuI©vo

Once you are completed with your analysis, you may want to save and archive

your files for future use. This chapter covers file formats, how to use capture

files with other protocol analysis systems, how to generate reports and more.
Now, let us get our hands dirty and starting inspecting data to solve problems!

CHAPTER 1

About Wireshark

1.1 Introduction

1.2 What Is Wireshark?

1.3 What Is Network and Protocol Analysis?
1.4 The History of Wireshark

1.5 Troubleshooting Problems

1.6 Using Wireshark to Analyze Data

1.7 The OSI Model

1.8 Summary

1.1 Introduction

Experienced network technicians, operators, and engineers across the globe use
Wireshark and tools of its kind to solve problems and we will cover the how and
why. In this section, we will briefly go over the history of Wireshark as well as
to discuss the use of packet capture and analysis in the field of networking. First,
we need to understand the history of Wireshark and packet capture, and analysis
to get a solid understanding of the purpose of using this tool. Once we cover
Wireshark’s historical background, we will cover the most current release, how
to get it and what you need to prepare for an install and setup of the product. We
will also cover the fundamentals of packet capture and analysis so that you are
aware of what the tool is inherently used for.

This book can be used by beginners and those new to networking,
however, having a background and solid knowledge on the topic

will make reading, understanding, and absorbing this book much
easier.

1.2 What Is Wireshark?

Protocol capture and analysis is nothing new, it is actually been around for
decades. With the release of UNIX systems, many tools contained directly in the
operating system allowed for the capture and review of packet level data for the
purpose of solving problems. As data moves across a network from client to
server or to printers, across wireless access points, and across the Internet, it
moves in the form of electrical signals and frequencies. A packet capture tool
(also called a network analyzer) can be used to capture this data for analysis. A
network analyzer is a troubleshooting tool that is used to find and solve network
communication problems, plan network capacity, and perform network
optimization. Network analyzers can capture all the traffic that is going across
your network and interpret the captured traffic to decode and interpret the
different protocols in use. The decoded data is shown in a format that makes it
easy to understand, peeling away the layers of encapsulated data that is used to
identify it or enable it to be used on the network. A network analyzer can also
capture only traffic that matches the selection criteria as defined by a filter. This
allows a technician to capture only traffic that is relevant to the problem at hand.
A typical network analyzer displays the decoded data in three panes:

» Summary: Displays a one-line summary of the highest layer protocol
contained in the frame, as well as the time of the capture and the source and
destination addresses.

* Detail: Provides details on all the layers inside the frame.

* Hex: Displays the raw captured data in hexadecimal format.

Figure 1.1 shows the Wireshark tool with captured data ready for inspection.
In the figure, we can see all three panes in use. From top to bottom, you can see
the Summary, Detail, and Hex panes. The Summary pane shows the high-level
detail, such as sequence numbering of captured packets, the time captured,
source and destination address, protocol used, length, and other information. If
you select a packet in the summary pane, you can see more granular detail in the
detail pane. By drilling down even further, you can select details in the Detail
pane and see the specific hex data captured in the Hex pane.

T ap Momplap [Wieeshark LA {59 By 45250 from ik L8] o=l
[&MB—@{!!HW?M‘HW‘I&WWM
e EX2s feeu T3 |DE QA0 EDRE B

Fi: | »] Eezersmon..

e e e —

T 0, 0 Cleco_atsTa i roadiat ARP S0 wha has 34, 1684,177. 1457 Tell M. 164,172.1

TG, 11061T Clgco_ar:fa:i Broadast ARP 0 who has 24,186,175, 2617 Tell 1.146,172.1
45,2117 Clsco_ar:=fd: 5 gt ARF &3 who has €5, 28, 78.T6T Tall 65 F6.T4.1
5 0. 216744 Clsco ar:fa:5d B oIS ARE &3 whi has 24,186,173 0637 Tall 24.188.172.1
&0, 30700 Elzcoaf:facse Broudoast ARp &3 who has 34, 1881750337 Tell 24 184,172.1
T 2333 Clzco_af:fa:5e broackcast ARP &2 who has M, 166.172. 0057 Tell 24.004,172.1
B o, ApBLEG Clico_af:fa % Eroadiait ARP 0 who his 314,188,175, 007 Tell 24.046,172.1
045500 Clgco_af:fa:i4 Broadsagn ARP &0 who has &5, T8, 2202007 Tall &0.76.218.1
10 O, 408886 Clsco_af:fdsid Broadoast ARP S0 who has 24.184.173. 0687 Tall 24.184.172.1
L &, S04 604 Clsco af:f4:5d Broadcast ARF B3 who has B9 TR 2FLLITT Tell 60.T6.318.1
LT 0, 510684 Clsco affa:5d Broudcast ann w3 who has 24,186,174, 1847 Tell 24.086,172.1
B3 Q. RTER Clrco_af:fi: 5 Broadcast ARP &0 who has 3,188,172, 0687 Tell M.168,172.1 |
I T4, AATEOR riscn affa:ta W raAs AL E ARP A0 whin had u.1iM 174007 TRTL MR TR Llj'
= Framp 1: 60 Dytes on wire (450 DIts), 60 OyTes cAprured (450 BITS) |
® Erhernet II; Src: Cisco.afifdri (00ro7:od:af:fa:sd), Ost: Sroadcast CFfaff:ffoffafrafe)
® address Resolution Frotocol (request)
e ST P IT TT ST BT R0 47 oo af 14 W 08 5 o0 01
DOLD 08 0O 06 ©4 OO 01 00 OF Od 4F 4 34 18 46 a4c 0L
0D O 00 0D O OO 00 1B 4 ad 9 06 Ol O 00 00 0D
0010 00 OF 02 00 OO 0F 00 00 ©F 01 0) G
[L[e T Sy v T Dty T Bl E ot e WY TS Eardla: M i

FIGURE 1.1 Using Wireshark.

As we work through this guide, we will dig deeper into each pane and learn
exact specifics on how to use it, interpret what is in it, and troubleshoot
problems. Network analyzers further provide the ability to create display filters
so that a network professional can quickly find what he or she is looking for.

Advanced network analyzers provide pattern analysis capabilities. This
feature allows the network analyzer to go through thousands of packets and
identify problems. The network analyzer can also provide possible causes for
these problems and hints on how to resolve them.

1.3 What Is Network and Protocol Analysis?

Electronic distribution of information is becoming increasingly important, and
the complexity of the data exchanged between systems is increasing at a rapid
pace. Computer networks today carry all kinds of data, voice, and video traffic.
Network applications require full availability without interruption or congestion.
As the information systems in a company grow and develop, more networking
devices are deployed, resulting in large physical ranges covered by the
networked system. It is crucial that this networked system operates as effectively
as possible, because downtime is both costly and an inefficient use of available

resources. Network and/or protocol analysis is a range of techniques that
network engineers and technicians use to study the properties of networks,
including connectivity, capacity, and performance. Network analysis can be used
to estimate the capacity of an existing network, look at performance
characteristics, or plan for future applications and upgrades.

One of the best tools for performing network analysis is a network analyzer
like Wireshark. A network analyzer is a device that gives you a very good idea
of what is happening on a network by allowing you to look at the actual data that
travels over it, packet by packet. A typical network analyzer understands many
protocols, which enables it to display conversations taking place between hosts
on a network. Wireshark can be used in this capacity.

Network analyzers typically provide the following capabilities:

* Capture and decode data on a network

» Analyze network activity involving specific protocols

* Generate and display statistics about the network activity
* Perform pattern analysis of the network activity.

Packet capture and protocol decoding is sometimes referred to as
“sniffing.” This term came about because of the nature of the
network analyzers ability to “sniff” traffic on the network and
capture it.

Figures 1.1 and 1.2 show the Wireshark tool with captured data with a typical
problem seen on network today—an address resolution protocol (ARP) storm.
Figure 1.2 allows you to look deeper into the data in order to troubleshoot the
issue. Although we will get more involved in later chapters covering how to
inspect traffic in detail, here you can see how a network analyzer performs
“protocol analysis.”

TR 1N P Lo a0 Byl ARP L0 Wi burk 200651 151230 Toll 240001720 = =18 =
+ Frame f; G0 byies on wire (480 bits), &0 Wytes capsured (480 Bies)
= EXharnat TI, Sre: Cleco af Rl (00507 0d:af 50, DIT: Broadoant (FF PR rrarrrffe
= st ination: Broadcast (FF (PP FPrafffrire)
address: Broadcast OFRRiroreofee)
T Group address (maloicast/oroadcast)
ti wonally sdministered address (Thiz 15 moT the factory

.............. = LG bl u'lﬂf:-i Ty unigue address (factory default
GO

el PO ne il L 0D 3 0] o H D L

Lt etosel (requEst)

AP GwhFE TP
Prococol Tiper
mirdwars size;
protoce] sine; 4

opeode: Fegeis (1] =

/:-13 5-"'(':-("’ 0D 0L o OV T4 =;-:-i u:" 1a e oaaata

BUZ0 00 60 00 0 OO 00 16 26 AT b OF OX 08 00 06 00 Loeionn. I NPy
KOk O0 O 01 00 OF 00 0 00 98 21 0 0900090000 saaserer sesa

FIGURE 1.2 Performing protocol analysis.

When decoding the capture of ARP packets, we can drill down into the tool
(and the packets) to find the source and destination addresses of the storm. Now,
Wireshark cannot solve all of your problems without some help! First, it takes
you the technician with the inquisitive mind to first understand where to place
Wireshark to capture this data. It then takes some inspect and analysis work to
review what was captured and at minimum a basic understanding on how data
works on a network. It also takes detective work on your part... you will need to
know how to trace this ARP problem (in the form of a MAC address) to the
offending client causing the storm. You will then need to know how to fix said
problem. As you can see, protocol capture and analysis with a network analyzer
tool like Wireshark only helps you begin to paint a picture of a problem, it does
not always solve it directly for you.

Beware of false positives. What this means is, you may see a
problem, however, it is in fact not a problem but normal behavior.
You may get a capture or a report from a network analyzer that
may instruct you that a problem exists when it in fact does not.
Using a network analyzer and performing network analysis is a
function of a scientific mind. You not only need to question what
you see but you may also need to conduct further testing and
analysis to find root cause of a problem. Do not jump to
conclusions, scientifically sort out the data, analyze and conduct
research, discuss possibilities with peers and colleagues if you are
not sure of your findings.

1.4 The History of Wireshark

Wireshark (http://www.wireshark.org/) is a software application used to capture
and inspect protocol level data. As data traverses a network from clients to
servers (as an example), the data is sent and although there are many tools of its
kind, it is a tool that can be freely downloaded on the Internet. The history of
Wireshark is one of many twists and turns. Although the tool has always been
for the most part very reliable and incredibly useful, it has changed names and
hands quite a few times.

One of the first well-known versions of Wireshark came in the form of
Ethereal. Due to copyright issues and legal problems, the name was changed to
Wireshark. We can, however, start this tools history back when it was named
Ethereal. Ethereal (and its new form Wireshark) is an open-source freeware
network analyzer available freely for download and can be used on many
computer system platforms. In its infancy, tools such as Sniffer Pro were more
robust and somewhat costly. Other tools like those sold by Fluke Networks were
not only costly but also distributed with hardware raising its cost. Ethereal when
released was not as robust and provided protocol decode features, however,
lacked a number of features that the other tools available provided, such as the
ability to monitor applications, expert analysis, advanced reporting tools, and the
ability to capture mangled frames. Wireshark is the current version of the
Ethereal tool, which now handles expert analysis and many of the other features
that were missing from previous versions.

WinPcap (http://www.winpcap.org/) is the “other” application that must be
used with Wireshark. WinPcap is nothing more than a library that Wireshark
pulls from within a Windows system. Non-Windows based systems may use
libcap. Either one used supplies a driver that allows for the capture of packets at
the system and hardware level. We will learn in the next chapter that your
network interface card (NIC) must be used in promiscuous mode in order to
capture packets, and Wireshark uses these libraries to facilitate that functionality.
When you download and use Wireshark, this set of libraries comes with it and
must be installed with Wireshark in order to use it. This library set has been
produced and distributed by a company named CACE
(http://www.cacetech.com/).

A few years ago, CACE was purchased by a company named Riverbed
(http://www.riverbed.com/), which is also a provider of network analysis and
reporting tools, software, and hardware. With Riverbed behind CACE and

http://www.wireshark.org/
http://www.winpcap.org/
http://www.cacetech.com/
http://www.riverbed.com/

supporting Wireshark, it is likely that this powerhouse trio of groups can not
only bring network analysis to a new level but also give Wireshark more steam
to grow into an even more robust application than it is today.

Using tcpdump

Tcpdump (http://www.tcpdump.org/) is a protocol capture/packet
analyzer that is used at the command line. Much like Wireshark
[which uses a graphical user interface (GUI)], it captures packets
and shows specific details about them which can be used for
granular analysis of a problem. It also worked with libcap and puts
the NIC in promiscuous mode allowing for the capturing of
packets. It shows at the command line details and can be tailors
with switches to show more or less specific detail. It is extremely
helpful when you need to capture data at the time of problem as it is
normally always installed and ready on most systems, primarily
UNIX based. It is also freely available with the operating system
you install.

Figure 1.3 shows the use of tcpdump on a UNIX system. Here
we can view the conversations between two hosts, the one it is
installed on (the source) and the destination address it is
communicating with.

- Hals) £ pecl — bash — 100225)

petacheurgER ooy~ pocl) sude topdusp -1 end L]
topdumpr verboss oetpot suppressed, use =y or <vv for full protoool decods

ligtaning on anl, |ink-Ryps ENIEME (Ethernel), coplure #15e O5535 byiled

23:80:12. 2711 ARP, Regeest vho-Foa TEfCpRjnb. Local tell wirelsss broodbord routsr. local, length 45
230040, 547 ABP, Peguadt wioelos LRCpR D, local tell wireless broodbond router. local, length 4§
22183216, J6ES14 1P 169 354 0 65 _ITE09 > 1692541 255 comep Lex-matn: LD, Bength 12

F0i00:16 5739 NP, Reguest whoohos fRfcpiinb. locol tell wirsless_broodbord_ routar. local, length 4&
T80T 500 1P petachaurgdaacioskpno ., (620 Jeded = 234 00,261 .800: B PTR ((P)7 265.1.254.169.4n0
-nadr .onpa. (M)

TA00:47 D640 PG el cadd BT fell s Med edng o TH0EC b adng: B PTR (ONYY 298,40.284 269, in-cddr

arpa, (#)
22383117 495493 ARP, Reguast whohos FEFCpRnb. local tell wireless brooadbord router. Local, Length 48
23:83:10.TH1 [P petacheurgiabookpsa. [oeoa] ednd > Z24.0.0, 260 .6d0 ! @ PTR ((F)7 205.1.204.169.0n
-0adr .ompa. (M)

230010, 06T [PE Fafl: ced AT (falf sTba.ming » TIOE: fbomings @ PTR (W)Y 255.0.054 060, Ln-addr
carpa. {#)

R840, 1TINT ARP, Beguest who-Fos TEfCphjnb. locol ell wireless broodbord router. local, length 44
23:83:19. 399651 TP 160254 .1.65. 20302 » brosiomtthost 21302: LOP, length 645

22183121 BT [P petacheurgseoctookpro. Loco] Jedns = 2800, 251 .edna 1 B PTR (OA)7 285.1.254.185.0n
=0y orpa. (44}

231831 B75R0E [P 180 selT AT Pl 1Mo iy > THDZ::Th mdng: @ PTR (QHYT 2550254 169, Ln-oddr
<arpa. {#}

FN83:21 AERITY AP, Regust vho-mon TRfopiind. lo2al tell wineless Broosdhord_router. locol, (ength 45
23180122 892626 [P petecheurgemoctookpro. Loco] Jedns 3 22480, 250 edna B PTR {OF1)7 55.1.254.169.1n-
oddy arpa. (43)

FIGURE 1.3 Using tcpdump.

http://www.tcpdump.org/

As you can see here, it is very easy to use and manipulate. You
can get much of the same data out of tcpdump as you can with
Wireshark, however, Wireshark will provide you with more bells
and whistles, such as an easy to use GUI, an expert analysis tool,
and reporting tools.

You can also find tcpdump on many of the UNIX-based firewalls
deployed today. Firewalls, such as those from McAfee and Juniper,
have tcpdump integrated into their toolsets so that they can be
quickly invoked to solve or report on a problem.

For those who use Windows based systems, you can download and
install WinDump, which is the Windows version of tcpdump. Like
tcpdump uses libcap, WinDump like Wireshark on Windows uses
WinPcap. For Windows 7, Windows 8, and Server 2008 SP2, the
“netsh trace start capture=yes” command is a good alternative to
tcpdump. No installation is required to capture packets.

1.5 Troubleshooting Problems

Now that we have learned about protocol capture and analysis, and how
Wireshark fits into the picture, let us continue to expand on its use by discussing
how Wireshark can be used to analyze data. Although we will go into greater
detail as we progress through this book, it is worthwhile to introduce the topic so
we can begin to build on it.

When you work with a network or are directly responsible for it, you will
often hear that there are problems with it. Some are common help desk requests
from users who have problems remembering their system passwords, and others
are calls from users who cannot login because their network cable got unplugged
again. Although these are common problems, and annoying at times, they are
easily fixed through a quick series of troubleshooting steps and usually require a
simple solution.

Next on the complaint list are the calls from users who say that the network is

too slow. That is a common complaint, but what happens when almost all the
users on your network call en masse to complain about the speed of their logins,
hanging applications, or timed out sessions? Obviously, there could be a
problem with network performance if the majority of your users call to
complain. Where do you begin to look for the source of this problem? With
enterprise networks growing and connecting to other companies’ networks
increasingly rapidly, monitoring network performance can become a
cumbersome task.

To investigate problems and attempt to find root cause you need to initially
isolate a problem, monitor the network’s performance using Wireshark, and then
work to correct the issues. If performance is the issue, what are the many things
we can look at in the map to troubleshoot where the problems are occurring and
how to diagnose them correctly? Questions you need to ask immediately upon
starting performance analysis are:

* Is poor network performance affecting one user, several users, or the entire
network?

* Is the poor performance centered at a particular location or the entire
network?

* When exactly did you start noticing poor performance or has it always been
bad?

» Have any recent changes taken place—no matter how large or small?

* Are all applications at a particular location experiencing problems, or are
problems localized to a specific application?

* Do you have any network documentation or topology maps?

These are but a sampling of the questions that could be asked but some of the
most common. Ultimately, we will want to use Wireshark to troubleshoot and
solve problems but it must be manipulated by someone such as yourself who
knows how to uncover problems. Finding the root cause of a problem is what we
can use this tool to accomplish at a granular level if your detective work is done
correctly. You will want to capture data from the network, analyze it and use
common network model, knowledge of protocols and specific methodology to
assist in analyzing the problem and the data captured.

1.6 Using Wireshark to Analyze Data

The key to successful troubleshooting is knowing how the network functions
under normal conditions. This knowledge allows a network engineer to quickly

recognize abnormal operations. Using a strategy for network troubleshooting,
the problem can be approached methodically and resolved with minimum
disruption to customers. Unfortunately, many network professionals with years
of experience have not mastered the basic concept of troubleshooting; a few
minutes spent evaluating the symptoms can save hours of time lost chasing the
wrong problem.

A good approach to problem resolution involves these steps:

* Recognizing symptoms and defining the problem

* Isolating and understanding the problem

* Identifying and testing the cause of the problem

* Solving the problem

* Verifying that the problem has been resolved

« If the problem is not found, reiterate until resolved or use to find more data to
analyze.

The first step toward trying to solve a network issue is to recognize the
symptoms. You might hear about a problem in one of many ways: an end user
might complain that he or she is experiencing performance or connectivity
issues, or a network management station might notify you about it. Compare the
problem to normal operation. Determine whether something was changed on the
network just before the problem started. In addition, check to make sure you are
not troubleshooting something that has never worked before. Write down a clear
definition of the problem.

Once the problem has been confirmed and the symptoms identified, the next
step is to isolate and understand the problem. When the symptoms occur, it is
your responsibility to gather data for analysis and to narrow down the location of
the problem. The best approach to reduce the problem’s scope is to use divide-
and-conquer methods. Try to figure out if the problem is related to a segment of
the network or a single station. Determine if the problem can be duplicated
elsewhere on the network.

The third step in problem resolution is to identify and test the cause of the
problem. You can use network analyzers and other tools to analyze the traffic.
After you develop a theory about the cause of the problem, you must test it.

Once a resolution to the problem has been determined, it should be put in
place. The solution might involve upgrading hardware or software. It may call
for increasing LAN segmentation or upgrading hardware to increase capacity.

The final step is to ensure that the entire problem has been resolved by having
the end customer test for the problem. Sometimes a fix for one problem creates a

new problem. At other times, the problem you repaired turns out to be a
symptom of a deeper underlying problem. If the problem is indeed resolved, you
should document the steps you took to resolve it. If, however, the problem still
exists, the problem-solving process must be repeated from the beginning.

To understand network analysis, it is very important to learn the theory behind
how networks operate. For a network to work, the computers running on it need
to agree on a set of rules. Such a set of rules is known as a protocol. A protocol
in networking terms is very similar to a language in human terms. Two
computers using different protocols to talk to each other would be like someone
trying to communicate in Japanese to another person who did not understand that
language. It simply would not work!

Many protocols exist in today’s world of network communication. In the early
days of networking, each networking vendor wrote its own protocol. Eventually,
standards were developed so that devices from multiple vendors could
communicate with each other using a common protocol. The most commonly
used protocol is the transmission control protocol/Internet protocol (TCP/IP).

We will cover the granular details of TCP/IP in later chapters when
we begin digging into the packets we captured.

To use Wireshark to solve problems, you will capture data from specific
strategic points that encompass the problem area and review that data. As an
example, you can see specific detail in the Wireshark summary as shown in
Figure 1.4. Here you can see specifics on the time of capture. Why this is
relevant is because you have to capture data at the time of problem to find a
problem. Data captured outside of this time can be used to baseline your network
or its performance during normal use, but you will have to “hope” that the
problem occurred at that time and/or filter the data to find it if it did in fact take
place.

g

M Cimtuments ot Sottrsiribwsrmkileitosl st ptap
(T2 TR s

Forml wesihab B - Reca

Tregppishor: [rhaenen

Pochet sioa It 49535 byvtes

First pacet 00+ D08, 100 08
Lt et fo s Bl LT
Dapad Lkl

FIGURE 1.4 Wireshark capture summary.

In Figure 1.4, we can see how many packets were captured (unfiltered), how
long other specifics commonly used to identify the capture.

Figure 1.5 shows another tool you can use within the Wireshark program. For
example, let us say you had an issue and wanted to get Wireshark’s opinion as to
what it thinks the problem could be. You can ask the Expert and find out.
Although this is not always accurate information due to false positives, you can
start to gain clues. Data traversing your network may be flagged as problematic,
but it may be the way the data functions normally so therefore it may not
indicate a problem, or point out the specific problem that was reported.

T wWarwhark: 19 Caprod dndus E =100 =l

P B0 Wwswgn 167 |nctee 3 017 | e o 090 | ka7 |
S ¥ |Fectoce v [y i Jcare

Pt o 1
Pt o
Plasclnt 22 1

_we | (o |

FIGURE 1.5 Using the Wireshark expert analysis tabs.

Figure 1.6 shows more granular data that can be obtained from Wireshark’s
Expert. Here we can review more “hints,” but more so we can drill down further

from this tool back into Wireshark’s Summary pane to go directly to the packet
that was flagged in order to generate an Expert message or alert.

T Waresharks 19 Lapert Iefos Al

Ervor: @ (00 | wwmnge: 1470 | Rctee 317y Ohats -u.(w:-|pu.u |
g 0 [pespocd # | srmmary 4 oot

= Soquerie HITH MOTIY T HTINL IR
® Seganos MO Ciowvunctoon Pt (P

O TS - Coneaction st bilh et (PR tsrver pon

o Ssqerce ICP Conrachion st abieh sdiramiedion (SH4ALI) 1
e e]
& Sepanos MITE MSEAROH * HTTRH, Th w
o Sepence IOP Corvation et (RET)

_we | (o |

FIGURE 1.6 Viewing problems with Wireshark expert.

In Figure 1.6, we can see specific problems that may be occurring in
sequencing. Another helpful tip would be to expand the sequence data that was
flagged and double click the packet flagged to inspect that specific packet in the
Summary, Detail, and Hex panes.

Do not always trust what Wireshark tells you. False positives can
mislead you. It may steer you in the wrong direction. It is, however,
a good way for you to begin using the tool in order to better
understand your network, the data traversing it, and the TCP/IP
stack.

1.7 The OSI Model

The open systems interconnection (OSI) model is used to provide a methodical
way to approach how data traverses networks, systems, and operates with
application used on those computers and networks. It is a helpful tool that seems
to be timeless as it is continuously referenced and used today since its inception
many years ago. Founded from the Department of Defense (DoD) four-layer
model back when the Internet (ARPAnRet) was first conceived, it serves as a way
to help not only describe how data traverses systems and networks but also an
outstanding tool that can be used to help troubleshoot problems.

When the data arrives at its destination, the receiving station’s physical layer
picks it up and performs the reverse process (also known as decapsulation). The
physical layer converts the bits back into frames to pass on to the data link layer.
The data link layer removes its header and trailer and passes the data on to the
network layer. Once again, this process repeats itself until the data reaches all
the way to the application layer. In Figure 1.7, we see the layers of the OSI
model.

OS] model

Layer 7
Application layer

Layer 6
Presentation layer

Layer 5
Session layer

Layer 4
Transport layer

Layer 3
MNetwark layer

Layer 2
Data link layer

Layer 1
Physical layer

FIGURE 1.7 The OSI model.

The layers of the OSI model are described as follows:

Application layer: This topmost layer of the OSI model is responsible for
managing communications between network applications. This layer is not
the application itself, although some applications may perform application
layer functions. Examples of application layer protocols include file
transfer protocol (FTP), hypertext transfer protocol (HTTP), simple mail
transfer protocol (SMTP), and Telnet.

Presentation layer: This layer is responsible for data presentation, encryption,
and compression.

Session layer: The session layer is responsible for creating and managing
sessions between end systems. The session layer protocol is often unused
in many protocols. Examples of protocols at the session layer include
NetBIOS and remote procedure call (RPC).

Transport layer: This layer is responsible for communication between

programs or processes. Port or socket numbers are used to identify these
unique processes. Examples of transport layer protocols include TCP, user
datagram protocol (UDP), and SPX.

Network layer: This layer is responsible for addressing and delivering
packets from the source node to the destination node. The network layer
takes data from the transport layer and wraps it inside a packet or
datagram. Logical network addresses are generally assigned to nodes at
this layer. Examples of network layer protocols include IP and IPX.

Data link layer: This layer is responsible for delivering frames between NICs
on the same physical segment. It is subdivided into the media access
control (MAC) layer and the logical link control (LLC) layer.
Communication at the data link layer is generally based on hardware
addresses. The data link layer wraps data from the network layer inside a
frame. Examples of data link layer protocols include Ethernet, the now
almost defunct token ring, and point-to-point protocol (PPP). Devices that
operate at this layer include bridges and switches.

Physical layer: This layer defines connectors, wiring, and the specifications
on how voltage and bits pass over the wired (or wireless) media. Devices
at this layer include repeaters, concentrators, and hubs. Devices that
operate at the physical layer do not have an understanding of paths.

When using Wireshark, you must consider the methodologies used to
troubleshoot with as well as how the data works on networks and systems.
Knowing how to launch and run the tool is not enough! You need to specifically
know where to place it, when to run it, and what it is you will capture. You will
then need to analyze which tests your knowledge of networks, computers,
applications, and systems.

1.8 Summary

In this chapter, we have learned about protocol capture and analysis, learned the
fundamentals of Wireshark as well as the fundamentals of troubleshooting with
it. In the next chapter, we will learn how to install and setup Wireshark so that
you can begin to use and work with it.

CHAPTER 2

Installing Wireshark

2.1 Introduction

2.2 Getting Started

2.3 Requirements

2.4 Installation Preparation
2.5 Installing Wireshark

2.6 Summary

2.1 Introduction

Understanding a network, how it works and why we use tools such as Wireshark
is only the beginning ... now we must build our toolkit in order to get to work.
In this chapter of the book we will cover how to get Wireshark, install it, and set
it up for use on a computer. We will cover how the tool changes your NIC so
that it can capture data, specifically what requirements would be needed in order
to not only install but use Wireshark in production as well as many other tidbits
of information to make your troubleshooting time painless and productive. We
will briefly go over the interface and how to launch and use the tool.

To use this field guide to its fullest potential, you must have a
working Wireshark instance running on a computer system that is
stable and virus-free. It is assumed that before you begin installing
Wireshark for use, that your computer is network-capable and fully
operational. Wireshark uses a lot of system resources, so make sure
that whatever system you choose to work with is one you can
preferably dedicate to this task alone. It is also recommended that

any computer system you use for the purpose of packet capture and
analysis be one that is portable whenever possible.

2.2 Getting Started

Now that we have covered the basics and have an overview of what Wireshark
can do for you and where you are going to apply this technology, next we need
to get the product installed and running on a computer system so we can use it.
In this chapter, you will learn how to acquire, prep, and install Wireshark.

First, you will need to consider where you will install Wireshark. There are
many options for placement. For example, if you were troubleshooting a client to
server connection problem on your network, you can simply install Wireshark on
the offending client and problematic server. Since you don’t know where the
problem is and/or if it’s the client or server itself, you need to do some
investigation work. Once you figure out your placement points, download or
copy the Wireshark executable program to each system and run the installation
until completed. This is typical of how to use Wireshark and common practice
for most network engineers. Figure 2.1 shows a very simplistic network segment
with two client computer systems and two server systems connected together
with a network switch.

Install Wireshark on the client

/"fl'I
B
S

FIGURE 2.1 Planning Wireshark placement.

Install Wireshark on the server

Although this is a simplistic diagram and the network seems small, it doesn’t
change much when planning the installation of Wireshark on a large-scale
enterprise network. Even if you had wide area network connections, firewalls
and layers of network components between the client and the server, you would
still want to place Wireshark on the same systems you are having problems with.
What changes is how you will read the captures taking into consideration all of
the complexity found between the problem hosts.

Another common option and the one we will model our installation after here
in this chapter is the preparation of a mobile computer (such as a laptop) that you
can take with you and configure on the network for use. This is a more
complicated way to use Wireshark, however, the least intrusive to your systems.
Figure 2.2 shows a very simplistic network segment with two client computer
systems and two server systems connected together with a network switch. In
this scenario, we will not install Wireshark on the client system having a
problem found on port 1/1 of the network switch and instead use Wireshark
connected on port 1/3. The server on port 1/2 for purposes of this discussion will
have Wireshark installed on it.

S |

Port 111

| Port 12\,
g — Port1/3 |
@

Wireshark installed on mobile system

FIGURE 2.2 Planning Wireshark placement.

In this scenario, you would have to apply a secondary configuration on the
network switch to send traffic from port 1/1 to port 1/3 for Wireshark to capture.
This is called port spanning and/or port mirroring. We will cover this in depth in
Chapter 3.

Not all network switches support port spanning or mirroring. There
are other ways to perform analysis and we will cover these steps in
Chapter 3.

The point to be made here is this ... you will need to know how to install and
configure Wireshark for use in and around your network (or a client’s network)
without fail and configure it as well on adjacent systems for you to get the most
out of it. Let’s take a look at what requirements are needed to get Wireshark up
and running anywhere on the network.

If you do not set up the software correctly, you might not get
accurate data. If you do not span a port, you may not capture the
traffic you intend to see, if you install Wireshark on a system that
cannot use Wireshark you might not see accurate data; if this data is
not picked up with a promiscuously set NIC, you will not receive
accurate data to help solve a problem. If you do not span a port you
may not capture network traffic destined for a specific host.
Although we will continue to learn the specifics of this throughout
the book it is important to reinforce these facts before installing and
using Wireshark.

2.3 Requirements

As we just learned, you may be tasked with installing Wireshark more than just
once. Therefore, it’s imperative to learn what you need to get it running quickly
and how much pressure it puts on your system. Let’s cover a few important
pieces of information that are vital to your successful use of Wireshark.

* If your system does not have proper hardware resources it will not be able to

run Wireshark.
« If your system is not stable it may crash while running Wireshark.
« If your system is not compatible (software and hardware) you will not be able

to install or have problems after installation.
* You need administrative rights to the system in which you will install
Wireshark on.

Make sure you have a large disk drive and plenty of memory to run
Wireshark and capture data. A large disk drive is needed for
running and storing large captures that take up a lot of disk space.

When running a capture using Wireshark, try to shut down and/or
not use any other nonessential applications to conserve hardware
resources such as memory, disk space, and CPU.

2.4 Installation Preparation

When using Wireshark, you need to know which operating systems it can
function on. If the operating system is not compatible, Wireshark might not
function properly. Luckily since Wireshark is an open-source-based application,
finding a compatible system is not difficult. Check the Wireshark web site to
find compatibility for your operating system platform. Go to 3rd Party Packages
on the download page for more information.
http://www.wireshark.org/download.html

If you do not set up the software correctly, you might not get
accurate data. If you use the wrong drivers, you might not see
collisions; if these collisions are not picked up with a
promiscuously set NIC, you will not receive accurate reporting
data. Make sure you are using the appropriate hardware verified by
the Wireshark web site.
http://www.wireshark.org/docs/wsug_html_chunked/ChIntroPlatfofms.ht
http://wiki.wireshark.org/CaptureSetup/NetworkMedia

http://www.wireshark.org/download.html
http://www.wireshark.org/docs/wsug_html_chunked/ChIntroPlatforms.html
http://wiki.wireshark.org/CaptureSetup/NetworkMedia

In the previous section, the download link was provided for Wireshark. Once
you have selected the appropriate download for your system and your system has
been verified for proper resources, download Wireshark and let’s get started.

2.5 Installing Wireshark

In this example, Wireshark will be installed on a 32-bit version of Windows.
Although you can install it on other systems, we will focus on the most common,
the Windows operating system. Once you have downloaded the executable for
the Wireshark installation procedure, simply double-click on it to execute it.

Some versions of operating systems may have incompatibility
issues. A workaround that can be used in the case of Windows 8 is
to install WinPcap prior to installing Wireshark because of possible
incompatibility issue.

Figure 2.3 shows that once executed, you will be provided with a security
warning from Windows about the installation. Here we will see that the
publisher is the Wireshark Foundation and that the file is digitally signed and
safe. You can always scan your files with an antivirus program first.

Open File - Security Warning x|

Do you want to run this file?

— Mame: Wireshark-win32-1.8.4.0x8
— Publisher Wireshatk Foundation
Typec Apphcstion
From: Ci\Documents and SettingsirshimonskiiDeskiopiCu. ..

¥ Always atk before opening this file

‘While files from the Inteinet can be wseful, this fle upe can
@ potentialy hatmn poie computer. Only run soibware from publishers
you tust. What's the risk?

FIGURE 2.3 Starting the Wireshark installation.

In this example, we will be installing the most current version of Wireshark as
of the writing of this book which is 1.8.4. This is the most current (and stable)
version of the program.

You can also download and test newer versions; however, it is safer
to use a stable version so that you can ensure that you are working
with the more reliable version when capturing and analyzing data.

You may run into an issue when installing if you already have Wireshark
installed. We will discuss this briefly. In Figure 2.4, you can see that because
Wireshark is already installed on the host system, Wireshark is asking for
permission to uninstall the older version before proceeding. By accepting and
clicking on Yes, Wireshark will uninstall the older version before installing the
current version.

Wireshark 1.8.4 {32-bit) Setup x|

&/

Wireshark 1.6.0 is akeady installed.
Would you blke to uninstall & first?

FIGURE 2.4 Updating Wireshark.

After you agree, Wireshark will start the uninstall wizard which will walk you
through removing the older version as seen in Figure 2.5. Although some
programs “upgrade” the current system, Wireshark does a clean removal process
and reinstallation of the new package.

T wireshark 1.6.0 {32-hit} Uninstall =15 |

Welcome to the Wireshark 1.6.0
(32-bit) Uninstall Wizard

This wizard will quide you through the uninstallation of
Wireshark 1.6.0 {32-b).

Befiore starting the uninstallation, make sure Wireshark 1.6.0
[32-bit) ks niot running.

Chick Next to continue,

Cancel

FIGURE 2.5 Wireshark uninstall wizard.

Once you click Next, you will be shown the directory in which Wireshark will
be removed from on your system. Normally this is found in the program file
folder on your root drive. Next, you will be given options on the features you
would like to uninstall. Figure 2.6 shows the options in which you can select
from.

T wireshark 1.6.0 {32-bit} Uninstall ' = [=] B3 |

Choose Components
Choose which Features of Wireshark 1.6.0 (32-bt) you want to uninstall, i

Check the components you want o uninstal and uncheck the components you don't want to
unirstall. Click Uninstall bo start the uninstallation,

Seleck the type of uninstal: Default (keep Personal Settings and WinPoap)
O, select the optional [w] Ursrest.sll
components you wish to ¥] Plugi
uninstall:
Global Settings
[C] Personal Settings
[] winPcap

- Description —
Space required: 0L0KE Prorsithan Vo femise over 8 component b see g

<gack [unnstal | cancal

FIGURE 2.6 Choosing uninstall options.

Here you can choose to keep specific components, such as WinPcap, personal
settings or plug-ins. By choosing default options, you will keep personal settings
and WinPcap as an example.

Take note of the drop-down menu where you can select the type of uninstall.
This sets up specific options that are preset into the uninstall routine. For
example, in Figure 2.7, you can select Default, All, or Custom. Quite simply,
select the type of uninstall routine you want and you can always customize the
options regardless. This just makes it easier for you to select when you uninstall
Wireshark.

T wireshark 1.6.0 {32-bit} Uninstall = [B

Choose Components
Choose which Features of Wireshark 1.6.0 (32-bt) you want to uninstall, i

Check the components you want o uninstal and uncheck the components you don't want to
unirstall. Click Uninstall ko start the uninstallation.

Select the type of uninstal: [Defaul (keep Personal Settings and WinPeap) Ed
Or, select the optional j o
COMPONSnts you wish ko All (remove alf)
uriristall; Cusbom
|+ GloDal Sethings
[C] Personal Settings
[] winPcap
Description
Space required: 0,085 S o T F i
ShsLEr
< Back | Uninstal | Cancel

FIGURE 2.7 Selecting the type of uninstall.

Once you click on Uninstall, you will be shown a dialog box where you see
the files and directories being removed from your system. Once it completes,
select Next and you will be shown the dialog box that closes the Wizard and
completes the Uninstall. Click Finish to close the wizard.

Once you have finished the uninstall, you will then invoke the Wizard to
install Wireshark on your system. Figure 2.8 shows the Wireshark Setup Wizard.

The current version of Wireshark (1.8.4) will be installed on the target host once
you click Next.

Welcome to the Wireshark 1.8.4
(32-bit) Setup Wizard

This wizard will quide you through the installation of
Wireshark.,

Before starting the installation, make sure Wireshark is not
LN,

Chck "Next' bo continue.

Cancel

T wireshark 1.8.4 {32-hit) Setup i =15 |

FIGURE 2.8 Installing Wireshark.

Once you click Next, you will be shown a license agreement in which you
need to select I Agree if you do to continue the installation process. Once you
agree, you will then be brought the choosing components portion of the
installation process. Here as seen in Figure 2.9, you can select specifically what

components you would like to install.

Choose Components .
Choose which Features of Wireshark 1.8.4 (32-bit) vou want to instal, w

The Followang components are available For installation.

Select components bo install: [¥]
[+] Tshark
L) E Plugins | Extensions
&[] Tooks

[+] User's Guide

< Back Pecct > Cancel

FIGURE 2.9 Choosing components.

In Figure 2.9, you are presented with the following components: Wireshark,
TShark, plug-ins and extensions, tools and a user’s guide. You can also see that
you can expand the options in the plug-ins and extensions as well as the tools
components.

TShark is a terminal emulation program that you work with via the
command line, much like tcpdump. To learn more about how to use
TShark and the commands and switches you can use with it, please
visit the Wireshark documentation for more info.
http://www.wireshark.org/docs/man-pages/tshark.html

The plug-ins component has multiple options within it. You can install Simple
Network Management Protocol (SNMP) Management information bases (MIBs)
as well, which are used with management software solutions that capture and
alert on specific criteria. This can be helpful if you want to use Wireshark via
SNMP to accomplish management and alerting tasks. Plug-in options can be
seen in Figure 2.10. Select which plug-ins you would like to use and deselect
those you do not want to use when preparing to install.

http://www.wireshark.org/docs/man-pages/tshark.html

T wireshark 1.8.4 (32-bit) Setup o] B3

Choose Components
Choose which Features of Wireshark 1.8.4 (32-bit) vou want to instal, i

The Following components are available For installation,

Select components to instal: [+] TShark -]
= [¥] Pluging | Extensions

[#] Dissector Plugins

[¥] Tree Statistics Plugin

[¥] Mate - Meta Anabysis and Tracing Engine

[+ sve mies -

— Fale

| ‘

Space required: 84.2MB Porstion o MEOuse aver & comoonent b see i
dhesorintion.

Feisoft Tnstall Syster v2 46

:MIM:IMI

FIGURE 2.10 Viewing plug-in options.

You can also select options within the Tools component as seen in Figure
2.11.

T wireshark 1.8.4 (32-bit) Setup o] B3

Choose Components
Choose which Features of Wireshark 1.8.4 (32-bit) vou want to instal, i

The Following components are available For installation,

Salect components tonstal: [5[] Tooks |

Space required: 84.2MB Install the user’s quide, 50 an Inkernet connection is not

Feisoft Tnstall Syster v2 46

FIGURE 2.11 Selecting tools options.

You can use tools, such as Editcap, Text2Pcap, and others for more. For

example, Editcap is another command line tool that works much like a Unix
input—output function where you can pipe data to files. Some technicians really
enjoy the use of command line tools for many reasons; however, one of the most
common of those reasons is that they can be used in scripting files that help to
automate processes.

Please make sure you check your space required field in the dialog box to
ensure that you have allotted for this space. If you select everything that
Wireshark has to offer, you will only need approximately 85 MB for the
installation to take place.

Once you have decided what components you would like to install, click Next
to continue. Once you do, you will be asked to check what additional tasks you
would like the Wireshark wizard to perform when installing the program. Figure
2.11 shows these specific tasks. In Figure 2.12 you can tell Wireshark upon
completing installation that you want Start Menu Item’s created and if specific
file extensions should always be tied to Wireshark when accessed by default.

T wireshark 1.8.4 (32-hit} Setup i o] 5
Select Additional Tasks
Whach addiional tasks shoudd be done? ﬁ

Creste Shortouts

[v Quick Launch Icon
[File Extensions —
[¥ Associate trace file sxtensions bo Wireshark {(Sww, acp, apc, atc, bfr,
cap, enc, erf, fdc, pcap, pcapng, pkt, snoop, syc, tpc, trl, trace, brc, wpc, woe,

< Back Meet > Cancel

FIGURE 2.12 Wireshark installation tasks.

Once you click on Next, you will have to choose the directory in which to
install Wireshark. By default (much like uninstall), the program file folder in the
root drive will be selected. You can also see in this dialog box how much space
is required and how much space you have available on the drive you wish to

install it on to. Click Next to continue.

To install WinPcap on Windows 8 systems, download the
executable file from
http://www.winpcap.org/install/bin/WinPcap_4_1_2.exe first.
Before running the file, modify the Compatibility Mode to
Windows 7 within Properties. Otherwise the installation for both
WinPcap and Wireshark will fail.

In Figure 2.13, we can verify if we want to install WinPcap if and only if it’s a
different version. For example, since we did an uninstall and WinPcap remained
on the computer we are installing Wireshark on to, we have an option. For
example, if this was an older version, we may be given an option to upgrade to
the new version which at the time of this writing is version 4.1.2. Click on Install
to install the latest version of WinPcap or upgrade it.

T wireshark 1.8.4 (32-hit) Setup E =15 |

Install WinPcap?
WinPoap is required bo capbure live network data, Should WinPeap be installed? ﬁ

[~ Currenthy inct sbed WinPcap version
WinPcap 4.1.2
L -
[~ Install
I Install WinFcan 4.1.2]
IF selected, the currently installed WinPcap 4.1.2 vl be unenstalad First,

What is WinPcap?

-:Ea:kl[rﬁbzll Cancel

FIGURE 2.13 WinPcap installation.

Next, you will be shown the extraction and installation of Wireshark and

http://www.winpcap.org/install/bin/WinPcap_4_1_2.exe

WinPcap on your Windows system. Once the installation is completed, you will
be shown the final dialog box as seen in Figure 2.14. Here you can click on
Finish to complete the install. If you select the Run Wireshark or Show News
check boxes, you can immediately start Wireshark as well as be shown a list of
the updates and new features of Wireshark. If you are new to Wireshark, this
page will be helpful to read.

T wireshark 1.8.4 (32-hit} Setup B [=E

Completing the Wireshark 1.8.4
(32-bit) Setup Wizard

Wireshark 1.8.4 (32-bt) has been installed on your
compuber.

Chck Finish bo close this wizard,
W Bun Wireshark 1,8.4 (32-bit)

EE

FIGURE 2.14 Completing the Wireshark installation.

Once you have completed the installation, reboot and then you can run the
application. Figure 2.15 shows the desktop icon that is created postinstallation.
Double-click this icon to complete the launch Wireshark if you did not select it
to be run postinstallation.

FIGURE 2.15 Wireshark desktop icon.

You have officially installed Wireshark and have it ready to use on your
computer. Now, in our next chapter, we will cover the specifics of configuring
your system to prepare it for captures, filtering, and analysis of network traffic.

2.6 Summary

In this chapter, we have learned about how to acquire, prepare for an installation,
and conduct an installation of Wireshark. In the next chapter, we will learn how
to prepare your system with Wireshark installed to capture data and conduct the
appropriate analysis needed to solve problems.

CHAPTER 3

Configuring a System

3.1 Introduction

3.2 Getting Started

3.3 Configuring a Cisco Port Monitor
3.4 Other Tools and Methodologies
3.5 Summary

3.1 Introduction

Now that we know what Wireshark does and how to get and install it, we now
need to prepare it for use. Using Wireshark is not impossible, but there needs to
be an understanding of what you will use it for in order to get the most out of it.
For example, simply installing it on a computer and running it, capturing data,
and analyzing it may help you learn more about your network the computer is
connected to. You may find some protocols being used that you did not realize
were in use, or verify the correct usage of the ones that you did know about.
However, how would you solve a problem such as “slow response time to a
server” as an example?

In this chapter, we will learn how to configure a system to use Wireshark
correctly. This chapter will also learn how to correctly position it for use and
provide you with sample scenarios in which Wireshark may be handy. This
chapter will also cover the specifics of how to get all of the components of the
network either working for you and Wireshark, or show you how to rule them
out of the possible problem you may be encountering.

3.2 Getting Started

Once your computer is ready to go, you will need to learn where to place

Wireshark on a network. As mentioned in the last chapter, this is no simple task.
In this chapter, we will cover not only configuration of network devices but also
teach you how to consider the specific placement of the tool in order to use it
correctly. We will learn how preparing to capture data may require making
adjustments on network devices, network cabling or configuration specifics
necessary to capture data. We will learn how about configuring a network device
to send data to Wireshark, the correct placement and staging of the capture
device(s) as well as the strategy you must plan with two end-to-end systems
when more than one Wireshark capture is needed. Figure 3.1 shows a very
simplistic network segment with two client computer systems connected via a
network switch.

AF AF AW A% AF A% AN AW A AW AW AW A% 4% &%

t ASAAAS AASASE ASAAGE AASEES:

FIGURE 3.1 Planning Wireshark placement.

Although this is a simplistic diagram and the network seems small, this is the
same methodology that we will use when working on an enterprise network. For
example, if you had to use a laptop with Wireshark to analyze a connectivity
problem on a server, instead of the server being connected via the same network
switch as seen in Figure 3.1, imagine that server is connected across the world,
across 10 router connections and 20 switches in a remote data center. It does not
change the fact you still need to configure the switch the same way to send
traffic to Wireshark in order for you to analyze it for any issues.

In this scenario, you would have to apply a secondary configuration on the
network switch to send traffic from port 1/1 to port 1/3 for Wireshark to capture.

This is called port spanning and/or port mirroring. You can capture an entire
conversation without impacting the systems as they work on the network by
conducting this type of analysis.

Before we get into the details on how to configure mirroring, let’s make sure
we understand why we would do this. Let’s say we wanted to troubleshoot a
conversation between Computer A and Computer B as seen in Figure 3.2. For
example, Computer A had a slow login to Computer B and there were no clue in
obtained logs or any other method of analysis to prove why. This is where
Wireshark makes its money. Connecting Wireshark to a network switch and
spanning the traffic over to the computer with Wireshark installed will allow for
the capture and analysis of the entire conversation in order for you to analyze it.
Yes, you could install Wireshark directly on the system itself; however, there
may be reasons why you may not want to or be able to. Incompatibility may be
one reason. Policy may be another (your company does not allow it). You may
not have access to install it on the system; therefore, mirroring and spanning may
be your only alternative. Regardless, this chapter covers the final items you
would need to get Wireshark up and running to use it for data capture and
analysis.

Although this chapter covers Cisco Systems switches in detail, you
can in fact install mirroring and/or spanning on other systems such
as a Nortel switch and many others. Cisco is the most commonly
used switch today, therefore, we will cover Cisco in detail;
however, if you need to configure Wireshark on a Juniper, Nortel
or HP switch, please look up the configurations online as they will
be similar to what is discussed here in theory.

Port 11 3 Computer A

| |ﬁ S8 SAAHSAHSS ASSSHSE SOSSSE!
?39999 YVPVVY VPPV IUIVee: {
—
1

\ . Port1/3
Port1/2\

Monitoring system
wireshark

Computer B

FIGURE 3.2 Planning Wireshark placement.

3.3 Configuring a Cisco Port Monitor

In this chapter, we will configure a Cisco switch to mirror traffic from one port
to another for capture and data analysis. As we mentioned before, although other
switches can be used in the same fashion, the same holds true for the packet
capture and analysis tool itself. For example, when configure Netflow, you can
use similar functions. When sending traffic, you can send it to a Fluke Packet
capture device, or a Netscout repository. There are many ways you can use what
is learned in this chapter as a network engineer so take note.

To configure port monitoring (also called Switched Port Analyzer or SPAN)
on a Cisco Catalyst switch, first you need to know what model of switch you are
using. For example, using a 2940, 2950, 2955, 2970, 3550, or 3750 series switch
is different than using a switch from the Nexus line. Rest assured that there is
plenty of documentation available to aid you in the configuration of any device
in Cisco’s product line; however, it’s important to note that the commands are
not completely universal.

So what does SPAN do? SPAN when configured correctly (as seen in Figure
3.2) will send a copy of the data traversing a port to another port for copy. If you
have a computer system with a NIC set in promiscuous mode and a protocol

analyzer configured, you can capture the data and filter and analyze it.

Remote Monitoring (RMON) probes and other devices such as IPS
units to provide secure also function this way. As we will learn,
there are many ways to configure a SPAN port, not only for
Wireshark but many other tools and systems that need to capture
and use a copy of data traversing links for the purposes of analysis.
This chapter is extremely valuable to not only learning how to use
Wireshark, but to become a network engineer or security engineer
in general.

SPAN mirrors can receive or transmit traffic on one or more source ports to a
destination port for analysis. You can SPAN multiple ports to one destination. It
does this without impacting the network or interfering with the transmission of
data. There are special cases, however, when running a span of a trunk port (or
port channel) on overutilized systems you may encounter resource depletion
such as high CPU as an example.

Other functions of SPAN include Remote SPAN (RSPAN) which is used to
extend SPAN by enabling RMON on multiple switches over an enterprise
network. This can also be configured over an RSPAN Virtual Local Area
Network (VLAN) used only for these types of sessions and copied via specified
reflector ports. Although this is somewhat complex, it really isn’t in theory,
however can get a slightly complicated in application. Once configured however,
also note that a network is a living entity whereas if you need to “troubleshoot” a
problem somewhere on your network, you may need to move a probe, move a
monitor or move a packet capture device to the problem which means that you
will need to conduct configurations at that time. That being said, let’s walk
through the most common you will do:

1. First find where your connections map to on the network. For example, a
computer or server network connection may disappear into the distance,
an Intermediate Distribution Facility (IDF) or a patch panel. What you
need to know is what switch port the device connects into in order to
SPAN it.

2. You can always look in the switches ARP cache for the MAC address and
what port it’s associated to. This is extremely helpful in cases where you
cannot map the connection. You may need the IP address of the source
(and or destination) computer in order to map the device to a port in this
fashion.

3. Once you find this information, you need to find a free port on the
network to connect your analyzer (Wireshark) to in order to configure it
for promiscuous capture.

Next, you will want to log into the device in which you want to configure a
SPAN session. Once logged in, you will need to make administrative changes to
the switch.

Before making any changes to a production network, make sure
that you are authorized to do so. If you are reading a book about
capturing data and analyzing it at the packet level, it’s assumed you
know a thing or two about working on a production network;
however, this is not always the case. If you do not have experience
working on a production network professionally, please do not
make any of these configuration changes without first running them
in a controlled lab environment first.

You first configuration is to turn off any current session monitoring if session
monitoring is already in place. If you want to turn off monitoring on a particular
session, simply list it by its session number.

LabSwitch1(config)# no monitor session all
LabSwitch1(config)# no monitor session 1

Next, you will want to configure session monitoring to and from the specific
ports you mapped out earlier. In Figure 3.3, we see a current example of what we
will be configuring on this lab switch. We will install Wireshark on Computer A
(Chapter 2) and we will SPAN a port from port 2 to port 3 for a production
server where we cannot install Wireshark.

Port1/1 -~
Computer A

“|asssas asasss ansnas asasns BN
PUPPPP PPUUPY PUPILP POUPOY TN

Port 1/3

ey

Part 1/2",

. Maonitoring system
e wireshark

FIGURE 3.3 Planning Wireshark placement.

This example shows how to set up a SPAN session (session 1) for monitoring
source port traffic to a destination port. First, any existing SPAN configuration
for session 1 is cleared and then bidirectional traffic is mirrored from source port
1/2 to destination port 1/3:

LabSwitch1(config)# monitor session 1 source interface fastEthernet1/2
LabSwitch1 (config)# monitor session 1 destination interface fastEthernet1/3
LabSwitch1 (config)# end

Now you will be able to capture data from source to destination for analysis.
When you run a capture, make sure that you capture both ends of the
communication real time at the same time. For example, if you wanted to find
out why it takes a long time for the client (Computer A) to login to a server, you
can run Wireshark on Computer A and the monitoring device while attempting
to login and then analyzing both sets of data to find root cause.

Do not forget the basics. Although Wireshark is extremely handy in
finding problems, it is best used when leveraged with other tools.
For example, you may want to parse the event logs on the Windows
server as well as the client computer while examining the

Wireshark data. You may see that a slow login problem can be
identified in the event logs; however, the specific reasons
(congested switch) may only show up in the Wireshark detail.
Remember, even though you are troubleshooting and using
Wireshark as a tool, it’s not the only tool in your toolbelt. The best
technicians, analysts, and engineers use server logs, infrastructure
device logs, packet analysis, and many other tools to solve the most
complex problems.

Once you have set Wireshark up correctly, you need to consider placement.
We touched on this earlier in the book. Placement is something that takes a little
time, patience, and experience to get right. For example, if someone said that
they had a problem accessing data. Consider all of the areas in which you may
have to consider:

* Client: The client is the most common place to start ... that’s where most
problems are reported from. The end user could not do something like surf
the Internet, use a specific application or having a hard time logging into a
server. This is where you get most of your clues.

* Application: Could the application be having issues? When moving between
services in the application, is the application passing multiple tiers? Is there
an application layer? Would installing Wireshark on the application tier
make more sense than installing it on the web services portion? What if the
application is delivered using a solution such as Citrix? Do we install
Wireshark on the Citrix server? Why would we?

* Database: Is the Database server the cause of the issue? What gives us this
impression? Was the user doing something that caused a lock? Why would
we install Wireshark on the Database server?

* Web services: Was the front end the cause of the problem?

* Cluster: Are the systems clustered? What is the active node in the cluster?

* Server: Is the server the cause of the issue? Running low on resources?

* Virtualization: Is the server a virtualized system? Is the Virtual server causing
issues? Where do you install Wireshark?

» Network: Is the path congested? Is it a LAN connection problem, WAN link,
or the Internet that is slow? Is the connection via a virtual private network
(VPN)? Where do we install Wireshark?

* Load balancer: Are the applications or services load balanced and running
through a load balancer? Where would we install Wireshark?

* Proxy services: Is the client directed to a proxy service? Is this the problem?
Do we install Wireshark on the proxy?

* Firewall: Is the traffic running through a firewall or some other inspection
device such as Intrusion Prevention System (IPS)/Intrusion Detection System
(IDS)?

» Name resolution: Is name resolution a cause of the issue? How would we
know? Where do we install Wireshark?

* Would we use Wireshark to find out why RADIUS is problematic?

Mind you, these are just “some” of the areas in which to consider. This is why
as mentioned earlier Wireshark is but a tool to be used as an extension of an
experienced technicians brain. This is why using other tools such as system logs
is so important. By finding clues in these logs you can narrow down where you
want and may need to install and capture data with Wireshark. As you can see,
it’s not as easy as it may seem. It’s not about how to install and use this tool, but
specifically why and where.

We are almost done with Chapter 3. Chapters 1-3 simply covered
what Wireshark does, how to get and install it and how to use it in
the most basic format. The most important thing to consider before
moving to Chapter 4 is that if you do not grasp what is covered in
the first three chapters, then using it in chapters 4-10 will be
useless. Unless you know where to place it and know what you are
doing to capture data, analyzing the captured data is useless. For
example, I have personally received one Wireshark data capture
from a workstation asking me to find a problem. Not knowing what
the problem is why it happened, when it happened and what the
problem was specifically, it will prove fruitless. Sometimes you can
glean clues, however, to truly use this tool correctly, you need to
plan to use it correctly.

3.4 Other Tools and Methodologies

When troubleshooting with Wireshark, it’s recommended that you take the time
to use other tools and methodologies while you are analyzing the problem. For
example, in the same switches and routers you are piping the information from,
you can use commands on them to help find the problem. Although there are
books and many online articles that cover these in more detail, for the purposes
of this field guide we will help you develop the methodology instead of
specifically stating what those commands may be. For example, if you find you
have a user complaining of an application that seems to freeze up or appear
sluggish, you can do the following tests in phases of complexity:
Phase 1 Testing (quick checks, somewhat nonintrusive)

1. First try to understand what the problem is by framing it. Ask as many
questions as needed. Put on the private investigator hat and attempt to
capture the end user’s experience.

2. Next verify that no changes were made that could impact.

3. Verify path and check all devices in the path. Check logs.

4. You can then look over the basics. Ping, traceroute, advanced ping
commands where you can specific packet sizes will help you to provide a
load (to test fragmentation) as an example.

5. Checking performance. Bandwidth, CPU, it can get as deep as checking
performance on a storage area network (SAN).

6. You could install and use Wireshark at this point, however.

7. You can run checks on the network devices and infrastructure—look at
the logs, run basic checks with specific commands that highlight—run
nonintrusive debugs

Phase 2 Testing (deeper level of inspection and more time consuming and
may be intrusive)

1. Wireshark set up on both ends from source to destination, checking the
timing of the packets from source to destination. This is more difficult to
perform because you need access to both systems (as an example) and
will have to run the tests in tandem. You will have to analyze both
captures using timestamps in order to verify when data was sent and
when it was received and any errors or anomalies that took place during
that period of time. When analyzing timestamps a recommended
procedure would be to ensure that all devices you run Wireshark on have
the correct time which can be done through configuring Network Time
Protocol (NTP), or the Windows Time Service (W32Time).

2. Real-time analysis of traffic and deep inspection by looking into packet

headers will uncover a more granular level of detail, however, will take
more time to review and analyze.

3. Run intrusive tests such as performance test on network links that will
verify the validity of the bandwidth and size however will inadvertently
shut down the link for use thus causing an outage.

4. Run heavy debugs on infrastructure devices. This may cause the device to
process heavily therefore spike the CPU and cause the device to perform
poorly (if at all) to process production traffic.

5. Other tests to conduct would be to reboot physical servers, move cluster
nodes from primary to secondary, moving virtual machine (VM
instances) from one host to another and other “server-related” testing that
may help isolate the issue.

6. Cabling testing where cables need to be replaced or verified may cause a
disruption or an outage if not redundant.

Although I created a framework for this methodology and called it phased
testing, it’s nothing more than how normal network engineers perform their jobs
every day. As you can see from this example, using Wireshark is not the only
tool used to solve problems, its only one of the many different tools (or
processes) used to solve simple to complex problems every day. Figures 3.4 and
3.5 show examples of other testing methods you can deploy with Wireshark to
solve a problem.

Fromn
from
From
From
Fron
Fromn
From
From
Ex

from
From
From
Fiom
fFrom
from
from

FIGURE 3.4 Using the ping command.

m SolarWends Engineer's Toolsel
Recentty Lised Tools
Maotwoik [covery DME b
Ristwork Mondoing TG P
Png & D akele
g & Deagrostk 1P Migtwrork B
P Agddrass WANSHHMENT
P Addeess Management
MAL Addeess Discovesy
Hioat Mstwiork Indo: b
- o
e Hitweosc Sona
Eid
Fing
Pirg Sweep
A =
ek [Gy |[Seweh TockmFonm =]

FIGURE 3.5 SolarWinds engineer’s toolset.

In Figure 3.4, we see an example of using the ping command to test
connectivity as well as the stability of a network connection. This can be used to
help assess if bandwidth or latency can be an issue with for example, a slow
application response time. If the application is slow to respond and the network
is suspect, by running a quick ping from the source to the destination can quickly
help rule out what the network looks like and is performing in seconds.

In Figure 3.5 we see an example of another helpful tool called the SolarWinds
Engineer’s Toolset. This tool much like the rest of the SolarWinds product line
make network management and troubleshooting easier; for example, you can run
a ping sweep of a subnet to verify connectivity of a device or devices quickly
and easily through the GUI.

In sum, remember that Wireshark is but one tool—and using it alone can be
helpful but when used in conjunction with other tools can help solve problems
quicker. It should also be considered that when troubleshooting, you have to
learn “where” to place your packet analyzers so that you can collect the correct
data. You also have to time the problem correctly and sometimes collect baseline
data to ensure you can understand how the network performs normally before
you can suspect a problem.

3.5 Summary

In this chapter, we have learned about protocol capture and analysis learned the
fundamentals of Wireshark as well as the fundamentals of troubleshooting with
it. In the next chapter, we will learn how to use Wireshark once data is captured
and how to analyze specific data.

CHAPTER 4

Capturing Packets

4.1 Introduction
4.2 Getting Started
4.3 Summary

4.1 Introduction

In the last three chapters, we covered the fundamental basics of Wireshark and
how to get it up and running on a computer system and/or network. We covered
how to set it up so that you can capture packets and begin to analyze them. In
this chapter, we will start to use Wireshark to capture those packets to
troubleshoot problems. Capturing packets is a fairly easy concept to digest once
your system is up and running correctly and you understand what Wireshark
does.

In this chapter, we will learn how to capture data and how to view it within
Wireshark so that you can start solving problems. Packet analysis starts with the
inspection of packets, however, if you do not capture the data correctly you will
have a tough time understanding what you are looking at or finding what you
need. There are also many ways you can approach the capturing of this data.

Wireshark can be used to capture packets on a computer network
via the NIC in promiscuous mode. This means that all data
traversing the network and touching this interface can and will be
recorded. As we mentioned with spanned ports in the previous
chapter, you can also set up Wireshark to collect data from a
particular port. That being said, make sure you have permission to
do so. You could be doing this against policy if you are not

authorized to do so.

4.2 Getting Started

In this chapter, we will learn the art of capturing packets in order to decode
them, analyze them, and inspect what is traversing your network. Once you have
started to capture packets, the rest of the chapters leading up to the last chapter
(saving captures and saving files), you will be learning about the interface and
how to manipulate it to troubleshoot problems. This chapter covers more of what
you learnt in Chapter 1 about the three panes and all details within them, running
captures as well as how to start and stop Wireshark. We will also review a
sample problem.

To start capturing packets, simply open Wireshark on your computer as shown
in Figure 4.1. In the window, you will find the Capture section in the top left
pane. You can view the Interface List, Start a capture based on a particular
interface and set Capture Options.

T The Wireshark Retwirk fnalyerr [Wieeshack 184 [S¥0 Rew 46250 from Truk-181) al#x
Be ER e G Conre b S latory luk st

e e EX24 fecQTLEE GO0 @O E H

E (G- | EE - snrpns

The Workd's Most I

A Rur

Interfmsce List - Open £y Webslte
| - Sdvilospin b AP g b

b] el

Start S v Ukser's Guide

i & y 17 4 = e

a i i - o i s CDmcumnty ard fat '\ﬂ"l-'-.l"ldc:?—mh:\pmtndlrp-up_}l 1 Byt Tha sy Gy o v, # wor e
P | bk) TR Gagabek Mptesceh, Conrection. [Microaal a SeciEity
o | s skt Convact el idapher (Mcrosofts P ok ek ek a1 e i pbls
b | InbelR | CarirorRt) Adeanced-H £308 Foeoult's Pacd
el +)

i Capture Optiens

i gt et detabd gt

@ How 1o Caplurs
[N Y R

FIGURE 4.1 Opening Wireshark to capture packets.

As we have learned, there are many things you can do with Wireshark and in
this chapter, we will expand on all the ways you can capture packets. It should
be noted that you can also use the Files pane in the middle of the window as
shown in Figure 4.1 to open previously saved captures or click on the Sample
Captures link to go online and view the saved repository of samples.

If you are very interested in learning about Wireshark, protocol
analysis, or networking in general, it is highly advisable that you
visit this online repository of samples. Here you can see a large set
of captures that show specific types of protocol behavior:
http://wiki.wireshark.org/CaptureFilters.

As an example, if you want to learn more about how dynamic
host configuration protocol (DHCP) operates (and looks like in a
capture), simply download the capture files and open them within
the Files pane link. Since this is only a field guide, we cannot get
too deep into every little detail, so this is a great way to augment
your studies and learn more about the Wireshark tool.

Once you have opened Wireshark and want to start to run a capture, the first
step would be to select an interface (NIC) in which you want to capture on. As
shown in Figure 4.1, there are commonly more than one interface on any given
machine you may work with. For example, on the system where captures will be
taken here, there is a physical NIC, a virtual NIC (VPN connection) and a
Wireless NIC. You can click on the Interface List link to produce the Wireshark
Capture Interfaces dialog box as shown in Figure 4.2.

T waeshark Lapliee beteifaies e

5SS —

I b bR AT Gagabd Rintveork Cornction (Mirosof s Bachst Schadio E

7 (2 Do Htenh Cipesct Virtusl st [Mrinaft's Padiet Sefadder) s |

I b IR} ContrmolF) Ao i 62085 PMcosolt's Packet Schaduer) 15 3680 4 Doty
i | | g |[0w]

FIGURE 4.2 The Wireshark Capture Interfaces dialog box.

http://wiki.wireshark.org/CaptureFilters

Once you open this dialog box, you will be presented with a full set of
functional network connections configured on your computer. You can put a
checkbox into the interface you would like to select. For this example, we will
select the physical NIC which is an Intel Gigabit NIC. You can further drill
down into the interface specifics by clicking on the Details button found within
the Wireshark Capture Interfaces dialog box to produce the Wireshark Interface
Details dialog box as shown in Figure 4.3.

T Wireshark: Indrelaic Drtads =10)

W actornbis)| statmtcs | w3 et [v cotiaa |

Charsctarabcy
arddor descroein IBetR) BIS UM Gigabit Metesirk Corrcten [Mieroscfts Pachat Schackular)
et e Vrion T (TR | P A B X E P
ik kb Deoremited
[LE] o bk
Py mpgaeted BE2.) [Crheera
Bachum 6 802} (Frbaerat)

Fhracal medon -

MRS Dviver eriicey 5.0

harder Driver Wersens 118 [Heo B}

arador 1D 00200 Pt} 100 00

AL gt B 1P Prowity] Suppoeted, BOE 14 VLA Supgarted
VAN X)
Trronk Bulfor 5o T7IEE
Ecaive Bt Soace 524780
Trauock Bock Sew 124
Bpoeve fiock Sow 150
Plaienm Ppchit S0a - 15
ok, SOOIy o o o Tt el reles only o The Tt Card et
AL
g Qen I

FIGURE 4.3 The Wireshark Interface Details dialog box.

This dialog box can be very helpful if you need to check specific information
about your NIC card. For example, if you want to verify information about your
NIC that may be relevant to the capture data, such as the maximum transmission
unit (MTU) size, the MAC address, or the vendor specifics, this information can
be found here as well as a series of other relevant data, such as real-time
statistics and so on. You can close out this dialog box once you have reviewed it.

Figure 4.4 shows the Wireshark Capture Options dialog box. This can be
found by clicking on the Wireshark Capture Options link found in the Capture
pane of the Wireshark landing page as shown in Figure 4.1.

T wireshark: L aplore Dplions = |
e

bl intmlece _______Kpkcles beeleros, Poddinaci [Rfoue e - 1
' skl 35T M Glgadel Rebwn. [therat wnibis] Gl i
r Juniper Nebwork Comnect Verboall.. Etharred wrabied el it

I) Ktk bt pitrat watied deludt

=

i | X

F captare ol in prosmooss sode
gty Fielr) Dvplay Cdwre

e | Brome | BT Gpedste it of secet in e line
I s ltiphs Pl F s posprreg st

F I_:”-_-_-_-_j F gt soovolieg in vt Copiars
| = '] e daptars il daking

o I—j Vit £ gl i

& j Dt P rosomt b
Trrp Cagture

LN o I Gkl getvrort s reschtion
[| =i =1

ot | j' J Dl (p aregast et s esbafains

'

LJLJ_

FIGURE 4.4 Wireshark capture options.

This dialog box is also very helpful when it comes to starting (and stopping) a
packet capture. For example, you can not only select the interfaces and manage
them (such as configuring local and remote interfaces as well as pipes) but also
set Wireshark to capture on all interfaces, specific files in which to capture, set a
limit on how much data you want to capture in each file and so on.

As was mentioned earlier in the book, capture files can grow quite
large. They can not only grow to the size of your hard disk (as a
concern) but also grow too large to adequately inspect without
specific filtering. The “Use Multiple Files” option is a great way to
control the size of the captures in a way that you can limit and
control these factors.

While in the Wireshark Capture Options dialog box (as shown in Figure 4.4),
you can also double click on one of the interfaces themselves in the top pane to
make additional settings adjustments. In Figure 4.5, you will find the Edit
Interface Settings dialog box. Here you can change the Link-layer header type,
set buffering options, or configure a capture filter on that particular interface.

T e . = =S

Cature
Teberfacn: iR} SISO Gjabd Notwrd Conrabemion [Micrncf's it Scheduon) | Wevite PR _{ SEDRF IF A0 A0 0022 ECE SO M08)

Faddesr o

dinkduper baade e |[rteeret =]

' Cophurs packet n promsosn.t mods
I sl geach kit 1 l_jbv":i
T o T

(Eeamnraa] [5 S
- o Lwrecn |

FIGURE 4.5 The Edit Interface Settings dialog box.

We will learn more about capture filters in a future chapter, however, as a
general explanation here, a capture filter is nothing more than a configured filter
that will allow you to refine your capture details. As an example seen in Figure
4.5, we will only allow for the IP to be captured on this particular interface. If
you click on the Capture Filter button, you will open the Wireshark Capture
Filter (Profile Default) dialog box as shown in Figure 4.6. In this specific
example, I am setting a specific Filter Name and Filter String in the fields found
within Properties. This means I am going to set a specific capture of a system (IP
address 10.1.1.2) using Telnet.

T wershake Lople Fller - Profie Gelelt = alB =l

B Capurs Fite

Iefrrreat ackinens 000 15000815 =1
[earrast by OO ()
A B et el s L

Lad F]
B oy
1P ke 19016800
iy
PP anky

O iy

W_'_'_[BF v LD post 80 {HTTF)

TR TR port (B0]|

o BB ard v DoE8
Vo HTTF arc reare SMEP by com e o w2 =

Tt
Filler ru [Capture Tadrat st (01,1,

Pt stvrae [1m peet 23 e host 520,031

- | (o] o

FIGURE 4.6 The Wireshark Capture Filter Profile dialog box.

Click OK or Cancel to save your filter. Click OK to save your choices, and/or
click Cancel to close the Edit Interface Settings dialog box which brings you
back to the Wireshark Capture Options dialog box. You can make settings
changes here or leave everything as default and click Close to leave the dialog
box, or you can click the Start button to begin your capture.

Once you start your capture, Wireshark will open the Interface you specified
using the Wireshark capture window as shown in Figure 4.7. As we reviewed in

Chapter 1, there are three panes: Summary, Detail, and Hex.

T ArkcHH] LontrmsslR) Ad anued B B208 (Hirosoit's Packed Schoder] ||\ Devioe 0T T sl
Bl DR Yew o Cwtue brabee Seteles Sekefory Dok fbemah el
Hoa e " BRERES SeasaF i BE Gl @8R E | R

[] m | I j:lul :I Mm. i
B 1%‘% %‘W’?ﬁ%&n—%m_%%w POrT: InMEcoR—pL G InAT 0N port: !W'GI

T TSR0 140254, 1. 143 255,255, 255,258 we 284 Source port: 21300 Destinationpore: FiMOY
4 FoATAE 5400 A60.254.1.118 160, 254,1.355 L1 B Sourch porT IE0SL DesvinatSon-poret S000DRATTY
5 3. TERRI 000 160,754,117 149, 254,1.355 L) B Source port: 39336 Gestination porcr J000[MATTY
oyl 5 0N G 0000 255255255255 (L] B2 DHOP ReguestT = Tranzaction I0 OeS116%808
T 6. FI8E3 8000 Wimtendo 32002 Broadoast Al S gratuitous AP for 197.068. 1.2 (Request)
B 8. SO0 e0000 Winterds _32:0c:02 Brosdeast ARP B0 Gratultous Aap for 197, 108.1,2 (Requast)
299316000 1499, 754,1,143 LG9, 154, 1, 255 L1 6 Source port: Intecom-pil Deitination port: SO0
10 10, M TIT000 Wintends 32:0<:08 Droadsant AR 80 Gratultous ARP For 107, 168.1,3 (Réquast)
17 A% OLETLOO0 160.294.1.143 T3 2R 209298 we 284 pource port: J1M02. pestination porel TiBOE
¥ 18,30 TLOS000 140, 354,1.118 1460, 354,1.755 e B Spurce port: 38051 pesrination pore: SO0ODMaIr
54 18, TISS02000 160.7254.1.178 1602541755 {1} B0 Source porTr 30335 DesTination pore ! S000[Ra1T
a pnn A~ A R uiim o e e |
i J EY
w Rrame 1i 00 DTS On wire (4500 DTS, W ODyTes CAPTUWed Ae00 DIty on INTerface O s
® Ethernet I1I, Src: Hotorola 7R:f2:80 {00:19:af: 72810, b3t Broadcast (FFFPIPFRRRER0
% Internet Protodol version 4, Sro: 169,284, 1.040 (169, 2%4.1.043), 08T 169, 29.2.2%5 (149, 104.1.255)
2 e DAteptEm Protocol, Sce Pt Intecom-pil (90940, D4R Pocg: P00 (10040 =]

A T 1 [:] L [ROERE]
00 OO0 25 de ¥1 00 00 4011 4% 10 ab fe oL &F a0 0.8 E.......
o030 oL fF 13 c0 13 B 00 14 dd Bd 43 Ad 8 00 00 00 .oiaiaan M, MY o
O30 O 1b a% fa o0l ©F &0 00 OG0 0B 00000000 Lloiiiie auas

B s DO VRSN RO iTe (Padkets] 9 Depleed | Frofle: Dotk

FIGURE 4.7 Starting a capture in Wireshark.

Once you start the capture, you will see some specific behavior, such as
packets being timestamped and captured in order as seen in the capture window.
A timestamp (found in the Time column) denotes when specifically the packet
was captured in succession. You will also find the source and destination
addresses of each packet captured in the Source and Destination columns.

Next, you will find the specific protocol in use in the Protocol column, such as
IP (and version), TCP, UDP, and DHCP. Beyond the protocol designation is the
Length column, which shows you the specific packet length. Earlier we
mentioned MTU, which denotes the maximum size that a packet can be sent
before it fragments.

The size of the packets can also be problematic. If you find that
most of your packets traversing your interface are small packets,
which means that the interface itself has more to do to process each

packet (usually for reassembly) and handle encapsulation.

Fragmented packets can become a problem. IP packets can be
fragmented from their original size into smaller chunks for
transmission over a network. They need to be reassembled which
causes more work for the device handling this task.

It is also recommended that you learn more about the actual
packets you will capture and inspect, and there is no better starting
point than Internet RFCs or Request for Comment files. This one
covers IP and details the issues behind fragmentation:
http://tools.ietf.org/html/rfc791.

The Info column highlights particular information you may need to know
about the packet that was captured. For example, in the case of the captured ARP
packets, it was helpful to learn that it was a gratuitous ARP and simply a request.
This covers the details of the Summary pane. The Details pane simply breaks
down each packet into more granular data (which we will review in upcoming
chapters) and the Hex pane does the same with each section of the Details pane.

Since we started the capture via the landing page, you can stop the capture
within the Wireshark capture window. To operate the capture from within this
window, there is a toolbar at the top of the screen as well as a menu system. You
can select the Capture menu option to start and stop captures. You can also use
the capture icons to start and stop the capture on the toolbar. There are other
options in this menu and the toolbar to review. Some of them are “restarting” a
capture after you initially stop it. You can also start a new capture if needed.

We will cover the saving of a file in the last chapter as there are many options
that revolve around it, however for purposes here, simply go to the File menu
and select Save.

To open a saved capture, you will find the last capture you took in the landing
page under Files. Once you click on the link, the Wireshark Open Capture File
dialog box will open as shown in Figure 4.8.

http://tools.ietf.org/html/rfc791

rcshark: pontastetie . T
Lok [13 Catses = o

Fil gt T =
Feioipoe [adfimr =

' MAL rama micksion S W by

T Histeath ruteess recokubeon: Paksiy X

F oarcpon mame wsiion FenPachet 20040576 211804
Elagrad fuelried

b

FIGURE 4.8 The Wireshark Open Capture File dialog box.

In the example shown in Figure 4.9, I have downloaded a sample NTP
synchronization sample to open within the Wireshark capture window for
review.

muh:mmmmmmm

BEdod cExes neveTioraaan @anngd
l'hrl _]m Cawr iigis Lo

O]l ¥ lor-l-\.'ﬂlurF Ir -r-Flr-u F ; v e,

s

10 i -- “‘
RN 107, 168, 50,90 NP

4 D0nea3s 102248, 5050 L

5 D.DuToES AR2.LEE. 5050 BOTI34, 2090181 MER
0. 0LTAES ARELEE, S0 500 . MR

T 0. 0LTH0S LRI LGS, S0 500 2T BN MR

B0 0LEI0E o S0 MTR

90 ETES LRI LG8, 10, 50 14,133,302, 250 L L

10 0.fasIL ST, B8, 50, 50 Bi.004, 62, 249 LLLd

11 0.l 201148, 90,00 L1128 Ll

13 0.000enl 102,148, 5090 65,223, 200 206 TP

13 000135 AR 16850050 B0, 1F, 108, 5 MTP

14 0. 00215 CANE L8 50U 50 ﬁ»ﬁ'm TP

) CmEem ameman e mam o ra T amoman. e
w Frama L7: %0 Dyies on wire (740 BUts), W0 Oyies cAptured (720 BITs)

% Ethernet 11, Src: asbiteic_tcidcde (00:d0:39:6c:4004e), Dit: S1500-LY_82:b2 33 (0D:I0C:a1:82:h2:33)
% Internet Protodel version 4, Src: 192.168.5%0, 590 (190,168, 50. 500, ©st: &5.12%. 135, 100 (65,129, 230,200}
= wier Dategram Protocol. 'I'-l‘{ Port: mip (138, DT Port: ntp (10}

FOUFCE BT ﬂ"‘i {125 _
Langrh:

& Chacisum: JuiSl1l [validanicn aisabled]
= meveork Time Protocol (WTP Version 3, symsetric acuived

J

MG 00 fc 0a db 00 00 B0 11 12 30 0 o 37 32 41 7d
30 &% ce 00 Th o0 38 5% 11 o9 OO Da fa 00 00
wale o0 00 00 M o0 00 00 00 00 00 OF 00 00 0O
M40 OD 00 00 00 00 OO OO 00 00 00 00 00 OO 00 00 00
W50 OO 00 cf 02 04 B2 @2 42 ew 01

TN etingtion Port D, Geinort, 3 intes TPadie . | Frofie Deled

FIGURE 4.9 Viewing an NTP capture file.

In the example, we will review how an NTP (time synchronization) transfer
between source and destination should look like and analyze why there may be a
problem, or if it is working as it should.

In the example, we see no problems in this synchronization of a clock on the
192.168.50.x network using a public Internet time source. It is using port 123 as
seen in the Details pane data (source and destination port). What could have
gone wrong? The connection to the network could have been local with no
Internet access therefore not allowing the sync to take place. A firewall (either
locally or remote) could have been blocking this IP range and/or the NTP port
123.

4.3 Summary

In this chapter, we covered how to get start with Wireshark—to launch it,
configure it to capture and start capturing data. Now we have learned how to
capture protocol data within Wireshark. Next, we will cover how to start to view,
manipulate, filter, and analyze what you are capturing.

CHAPTER 5

Color Codes

5.1 Getting Started

5.2 Creating Color Code Lists
5.3 Adding and Removing Filters
5.4 Other Coloring Options

5.5 Summary

In this chapter, we will learn how to customize your captures. This chapter will
be a segue into the next chapter, which will cover creating filters. In Chapter 4,
we have covered the basics of performing a capture and learned how to set up a
quick filter on your profile’s default configuration. In this chapter, we will learn
how to further your captures in a visual representation for quick and easy
viewing purposes.

Wireshark is a very visual tool. The tool includes prebuilt filters and coloring
codes, and it lets you create new ones or edit the ones already in place. As you
will see, it is extremely flexible. When working with Wireshark, you will see
that when capturing packets, the amount of data can become unwieldy most
times. A quick and easy way to interpret what you are viewing is to view (and
understand) how Wireshark color codes packets. Once you have used the tool
long enough, you will find that by simply seeing a color, you will already know
specific details about the packets you are capturing without having to read the
contents of each one to get a general understanding of what is taking place on
your network.

5.1 Getting Started

Deeper inspection within the capture is required. In this chapter, we will learn

how Wireshark color codes the captures and how we can quickly look for
problems. We will also learn more about protocols, ports, and other critical
network-based information that help solve problems.

First, we have to understand why we color code. The easiest answer to this
question is to make it easier for use as problem solvers and to more quickly
visualize problems on our network. That being said, Wireshark allows us to do
this by expanding what is already available by default using custom color coding
schemes. There are two types of color coding profiles you can use with
Wireshark. One is temporary and the other is one that can be kept by Wireshark
to be used each and every time you use the system.

Do not worry about making changes to the defaults of Wireshark;
you can always reset your work and remove any of the custom
color coding profile data you insert by clearing any and all changes.
You will learn how to do this in this chapter.

5.2 Creating Color Code Lists

To get started, open the last capture you took or create a new capture file. Once
you are done capturing data, go to the View menu in the Wireshark capture
window. Select the Coloring Rules option from the menu. You will open the
Wireshark Coloring Rules (Profile Default) dialog box as shown in Figure 5.1.

- S
Ede Fiter vder
A Mo
ok | g
L

e, | KON

Export...] s [i] rbrs) oo || ooy || retbics Canc |

e | [et | bt == 1 i Ill

i »
e |] e | o |

FIGURE 5.1 The Wireshark Coloring Rules dialog box.

Here, you will find many predefined filter sets as shown in Figure 5.1. In the
middle window, you will see a list of filters denoted as Name and String. The
string is the “action” that Wireshark is taking when it applies this filter. It should
also be noted that the list is processed from top to down and goes in that order
until a match is made and processed.

On the left side of the dialog box is the Edit area. Here, you can create a new
color code filter, edit a preexisting one, enable or disable one, or remove one
completely. If you choose to create a new color code filter, click on the New
button as shown in Figure 5.1. This will open the Wireshark Edit Color Filter
dialog box as shown in Figure 5.2.

T wWarvhark: 194 L olor Flter - Profile: Delel =]
Files
e [
s o == e em Egprwpon
Doy ke R
Foragraurd Gk | [wmcm I ™ Cinsbled
-

FIGURE 5.2 The Wireshark Edit Color Filter dialog box.

In this example, a filter that specifically highlights a particular IP address in
yellow font with a blue background was created for quick and easy viewing.
Before we get into how we created this filter, it should be apparent as to why and
how this could be extremely helpful. In this instance, let us say you were
troubleshooting a specific IP address that you wanted to view in your capture
and isolate. Now, visually you can see when that IP address is found in a packet
that Wireshark captures by viewing the Summary Pane in the Wireshark capture
window. How was this created? Simple, here is how it was done.

When making filters, try to use a color coding scheme that is
visible to you as well; try not to duplicate anything else already in
use.

Open the Display Colors by selecting either the Foreground Color or

Background Color buttons as shown in Figure 5.2. In Figure 5.2, we see the
Wireshark Choose Foreground Color dialog box open where you can select the
written font color; here yellow color was chosen. Click on the eyedropper icon
and then on the color map in the left-hand side of the dialog box and select the
color, or if you know Hex coloring schemes (Figure 5.3), you can configure it in
the color “name” field within the dialog box.

F

L P
I
o e =]

FIGURE 5.3 The Wireshark Choose Foreground Color dialog box.

Follow the same method for the background color and then choose OK.

Once you have completed these steps, you need to configure the actual filter
in which you will capture data. You can do this by clicking on Expression as
shown in Figure 5.2. This will open the dialog box as shown in Figure 5.4. Here,
you will find the Wireshark Filter Expression dialog box.

T Wirrshak | ey Bapreasion . Profie: Gelad E FAl=E: |

Fiodd s Fualation

W [0 - M AONT0-5-104-Aps
10Raids - B0 SORTO-E-1 Doy

= 2dpartyles « Bro-PPEG Code of Pracice #1 scieaie 2
. BOMS + N 100 Ercapedalion

= BT ALL - NPT ALL

5 LAl - Pk e [T 02154

W 80211 BGT - JEET B2 11 werplens LN maraguart
® 802,11 Eadotag - I00E 60211 Raditi Caplure ke
% 1023 S protocky < ow Pectacch

S P

B B O - 5N b 00

BALE - ATHAM Y
RN - ATHRAL YA

Bkt et 2_'1 e
(e] o= |

FIGURE 5.4 The Wireshark Filter Expression dialog box.

If you know how to enter the string manually, you do not need to open the
dialog box; however, if you are new to Wireshark and to applying filters, there is

no better way to learn than to using this dialog box. Here, you can select the field
name and then the relation which is nothing more than applying Boolean math to
your selection criteria. For example, if you want to capture an address that is
equal to a specific value, it would look similar to
ip==192.168.50.50

Once you have finished, you can click on OK two times to get back to the
Wireshark Coloring Rule dialog box as shown in Figure 5.5. Here, you will find
the new filter applied to the rules filter list.

£

weshark: Colering Rules « Prolie: Defall

AT

H

FIGURE 5.5 The Wireshark Coloring Rules dialog box.

Now, you can see the new rule applied which, when you run a new capture,
can be used to color code that specific data in the Wireshark capture window for
easy viewing.

You can use the Order section on the right side of the dialog box to
move rules up or down in the list if you want to decrease the
processing that Wireshark will have to do in order to match your
data against the filter list.

5.3 Adding and Removing Filters

You can disable a filter by selecting it with your mouse and then clicking on the
Disable button in the Edit section. Once you have done so, the filter will be

crossed out and disabled (but not removed) from the processing list, which is
shown in Figure 5.6.

T Wreshak: Lol Bules © Brolie: Dedsll

g

i

=

H

ELELE

d
i

FIGURE 5.6 Disabling a Wireshark color code filter.

You can select Enable to enable it, or Delete to remove it from the list. One
last feature we review here is the importing and exporting of color code lists that
were already made and found on the Wireshark Wiki. This is incredibly handy
when you want to build lists, where it would take you a lot of time in minutes.
You can also export your custom lists to either submit to the Wiki and/or use in
your own groups, give to peers, or use to help others as needed. To import a list,
you first need to get the list you will import.

To do this, you can visit the online list repository where there are many
capture filters available:

http://wiki.wireshark.org/ColoringRules

Once you download a list that you find may be helpful, simply click on the
Import button and browse to the import list file. Once completed and imported,
you will see it in your Wireshark Coloring Rules dialog box as shown in Figure
5.7.

http://wiki.wireshark.org/ColoringRules

FIGURE 5.7 Viewing an imported color code list.

In this example, we have configured Wireshark to capture data and color code
it specifically as seen in the filter list. Now, if you have an e-mail problem and
you are trying to view packets using SMTP or POP, they will show up colored
pink with white font or black font.

Again, this is just a way for you to quickly visualize a problem and make it
easier to troubleshoot. This book intends on getting you up to run and use
Wireshark quickly for the purpose of solving problems. The keywords here are
“quick” and “easy.” There is nothing simple about this program; however, it is
designed very well to make using it very digestible. Color coding is one such
way where this is accomplished.

Once you have test driven your new color code filters, you can always reset
Wireshark back to custom defaults easily. To do this, you can open the
Wireshark Coloring Rules dialog box backup and click on the Clear button in the
Manage section, which will allow you to clear all your rules as shown in Figure
5.8. Click Clear to remove all settings from the global default profile.

5 wereshark Al

Ry ol your porsonal color settings?
Tin il vt e ok saiorg o gicoal defmiks

Bre o nally rel

= =0

FIGURE 5.8 Removing all personal color settings dialog box.

5.4 Other Coloring Options

Wireshark also allows you to apply color in another way to help you isolate

problems. In this example, we will look at conversations such as source IP
address and destination IP address as shown in Figure 5.9. Here, click on the
View menu option and scroll down to Colorize Conversation and expand the
menu to view the coloring options.

TR ayreprap [Werdark DB (S9N Rew 453500 from /Lrusk: 18] mLIE]
B bt [Yew G0 Cutuw fhabvie Sewtes ldwhew Do ftemas ek
B ke s FL|BE GG @BRE | R
¥ e Tookar
Filta: |_ w Weeleit Toolbar 'F Expaamon. ..
X o Ejpra = o L
w Packst st Dt protical Raenaih bt =
w Pahel Dotk i .1 § g andird W e b A g & p, o |
W Puschat Bybe AR, LEE, 40, W0 [0 srandend GUiry FRFponis OoDill A BF.1I0.GH.§ &
BT LW, AR MTE BOONTR wersion 3, fyemanric aotive
T Cusplary Pt B LA ST R NTE BONTP Wersion 3, symmatric dcrive
Piwven B en v IOT.2I4L 2000181 wER PO NTE virsion 3, symmerric active
BOBI1IRATEA MTR B0 NTR virston 3, symmeuric sctive |
. Calorign Pt 1 =
R r 216,37, 155.42 NER 00 WTR version 3, symmetric active
e 4,34, T 42 HTE 90 WTP version 3, symmetric a<tive
T T Chia T4 123,002,230 NTR S0 WTE vierslon 3, syemetcc T ve
by 3,104, 62, 208 TR PONTP verslon 3, symmatelc wctive
i A Toom s 4,117,185, TR PONTR vrslen 3, dymmatelc active
© L el See il B 125,200 206 uTE BONTP viersden 3, symmatele active
: T TR B HTP werslon 3, syematric ctive
5) Psioe Al Cobumen S acE 3T 18011 MR S0 HTP Version 3, sysserric acrive =
R A 7 el i — e e ol
A T hytes cAptured 4600 DITs)
Lopard 5 ChEghE | 3R b d0cde), D3t: Clsco-Li 82:b2:%3 (0D:0c 182 b2:%3)
R Cubeant (68, 50, 30, (15,168, 50,300, Bst: 152.108.0.0 (153.188.0.1)
- 3 : i}
L T a7
. * Color 2 L=
. ek Ruled... * Colae el
e d et 1 T Wk S ey
B paioad e " Golor'§ farre
+ el ek
T 41 B BY 5T &5 &% 50U B A0 4 Color 7 et [v TN, K.
39 0a 41 00 00 BO 11 TE b <0 & lannil..
0l o4 02 00 35 00 20 0l ab go 2 el e EPLeTE
OO 0 OO0 00 00 Q2 FY 0 TR M M0 &7 e far ! 1. poal.n
7003 6F 72 67 0000 01 00 O]
* Color B3 ikl
Vo Cinkoring e,

o T, 7, e err o T e

FIGURE 5.9 Coloring Conversation in Wireshark.

What this helps you do is “mark” conversations in a capture file for easy
viewing. Now, to do this, simply click on a conversation pair found in one
packet in the Summary pane. Next, click on the View menu option, Colorize
Conversation, and select Color 1.

This will then mark every packet in the capture having this conversation with
that specific color code you have chosen. This is very helpful when you are
trying to quickly visualize that particular conversation in a large capture file.

5.5 Summary

In this chapter, we have discussed how you can customize Wireshark with color
coding in order to mark specific data you are capturing and/or have captured.
This is essential when you try to solve problems quickly in the field and need to

use your visual skills to interpret problems while working in the Summary pane
of the Wireshark capture window. In Chapter 6, we will expand our discussion
on filters to go more in depth on using filtering options to capture and sort your
captured data to perform protocol analysis.

CHAPTER 6

Filters

6.1 Getting Started

6.2 Applying a Filter

6.3 Advanced Filter Creation

6.4 Other Filtering Techniques

6.5 Customized Filtering and Troubleshooting
6.6 Conversation Filters

6.7 Summary

In this chapter, we will learn how to filter data in Wireshark to troubleshoot
problems. How to filter captures correctly is the key to finding problems
especially when running Wireshark on networks where a lot of data traverses.
Consider capturing data from one system communicating with another... what
would you specifically search for to help solve a problem? Filtering on
protocols, IP addresses, and using specific Boolean arguments are covered as
well as specific example of filters that you can use right away to help get you up
and running and working with Wireshark immediately.

When it comes to networks, you can separate out unnecessary data, data
irrelevant to the problem or the event that we are exploring. The most important
and the most difficult thing to do is not to capture data but to find out which of
the thousands of packets traversing your network are related to a problem you
are working on, diagnose the problem correctly, and prove out the problem to
move directly to eliminating its cause. Wireshark is a very good tool to perform
this troubleshooting as long as you choose the correct filter to help sort through
(or initially capture) the relevant data needed. Choosing (or creating) the correct
filter will make your life easier when it comes to scanning the data and analyzing

it for problems and that is what we will cover specifically in this chapter.

If you incorrectly define a filter, you may in adversely omit criteria
you want to search for therefore making what you are looking for
even harder to find.

6.1 Getting Started

In the data transmission environment, filtering becomes very important when it
comes to the search and use of specific information hidden in the midst of
unimportant data. One of the most difficult and significant task involved in
working with Wireshark is to define the right filter. Having defined a correct
filter, you will be able to save a great deal of time when it comes to detecting a
problem on your network or analyzing data you have captured using a particular
filter. Different types of filtering are available: You can filter traffic based on
Layer 2 and Layer 3 addresses, protocol types, and/or data patterns.

To learn more about the specifics of filtering above and beyond
this field guide’s capacity, it is recommended that you read the
filtering section on the Wireshark Wiki:
http://wiki.wireshark.org/CaptureFilters

Here you will find useful information that can help you create
filters as well as find a repository of already predefined capture
filters that can assist you in your studies or work.

6.2 Applying a Filter

Applying a filter can be done in many ways. First, we learnt in earlier chapters
that when running a capture you can simply apply a filter to the profile’s default
configuration. This will apply once you begin your relevant captures. You can
also apply a filter before running a capture and/or apply a filter after you run a

http://wiki.wireshark.org/CaptureFilters

capture. We already covered the profile default in Chapter 4.

In this chapter, we will learn how to apply a filter before and after running a
capture. You can apply a filter prior to running a capture and after as we learnt in
Chapters 4 and 5. In this chapter, we will focus primarily on how to apply a filter
to a capture after it has been running to sort out unwanted data. An example of a
capture that needs filtering is shown in Figure 6.1.

Tl el il B A o] S 8700 [Mrolt's ekt Soheduter] |\ Devio Y _(C T N00-E) 83T AR SOOI AN (Wl I IES]
B L0 few Go Cutes dnebve Sabuns Teephory [k prema el
e a e HBE2S A+ TF i B 0a0 0N & H
piw: | =] e
L s N S

I Inelom=-p31 DESTINATIoN porol

E¥FTIE NN, 200 T DHIP Reguedt - Trandaction 10 Cedefc

a4 1, WiRIF000 e

§ 3, 2R2HAF000 i FrOZ: i oriaf anct T npighber solicitation for PeB0:Selitanrr refi—
& 3. SEO0T 1000 165, 3%4,.1.118 160 311,254 (1.3 S0 Tourcw porr! BROSL CedrinaTion paer: S000[Malfy

T 2. PS03 5T000 Appla AT dezcl BrOMICAST aap 4T cratuitous ase for 192.188.1.7 (Requast)

8 2. 97007 TO00 Apple AT dectf Broadcast caw 4T wiho has 192.168.1.17 Tell 197 168.1.3

3. 0704000 16%. 280,174 165,754, 1,255 [&0 Sourcs porti 39334 Bestination porti. S000[Malfy
19 3, 07ITITOO0 Apple_ifde:cf Brosdoast Ak 47 Who Pt 168,29 T55,.2357 Tall 192.188.1.3

17 3. oaTeal000 160, 2%46.1, 143 95 TR 209,288 e T84 Shurce porti JRMQ Cedtindtlon pert: T1I02

L3 3. 2 Ta041000 Ty i asrTefad FrO2 221 = B uElghbor Aovert Tsesent . Feb0! Teiidarr e e
E4 3. TRALAT 000 Appla df e ol Brosdcast AR 47 who Ras 160024 255.2957 Tell L92.168.1.3

o]] X

% GLhernet LI, Sre: Motorola sPira:Hk (oo:1%:af:Tr:fa 8], DEt: Broidcast Ty i A
= Internet Protocol version 4, TORGE. I5A.10240 CLES. DRLLTAD), Rty 160 2R 1020 1A ML 250D
& USBr DATigram Prorecol, Sre Porr! inTecom-psl (3096), DIt porr: 5000 (5000

[Expert tnfo (Error/aiforsed): salforsed Packer (foception ocourred))
(Hessage: Malformed Packet (Exception occurred))
[Secerity level: Error)
[oroug: HaTrormed]

BT Frame el 80 tovtes T8 et Dt

FIGURE 6.1 The Wireshark capture window.

There are multiple ways you can go about filtering for data; however, since
this is a field guide there is an important step you should take prior to applying
any filter. Before you consider a filter, first consider why you need any filtering
in particular so that you can assess which filter you need to build and apply.
Here is an example:

1. You get a report that you believe a problem exists on a network where
you may need to do protocol analysis in order to solve it. You first ask
specific questions so that you know where you need to place Wireshark
in order to capture this relevant data. The problem is reported that an
Apple wireless device cannot connect to the network.

2. You find a network device in which you can mirror a port and collect

SPAN data from a Cisco switchport to collect the relevant data needed to
solve the problem into Wireshark.

3. You collect 30 minutes worth of capture data and save it to your disk in a
capture file. You revisit the capture file and open it to inspect and
analyze it. You want to narrow down what you are looking for, so you
can either filter by IP address (suspect system) and/or protocol used
(Apple-based).

This is what needs to be done before you place Wireshark in a location to
collect the data, prior to collecting data and essentially before doing any filtering
or analysis of said data. You will then want to look for the problems by filtering
out any data that is not relevant to the problem and inspecting the data that is
relevant.

So, how do we apply a filter? The most basic way to apply a filter is by typing
it into the filter box at the top of the Wireshark capture window and clicking
Apply (or pressing Enter). For example, type “arp” and you can only view ARP
packets. When you start typing, Wireshark will help you autocomplete your
filter and you may not have to click on Apply; however, to remove the filter, you
need to click on Clear. You can Save the filter by clicking on Save. In the
example in Figure 6.2, we were able to narrow down that we have multiple
devices using Address Resolution Protocol (ARP) broadcasting on the network
segment.

kD

S O e v o Sty Ty B et
e a e HEES A+ 4Tl |BE @Al a8 KB

[Himvee [oes T i oo

1%2 J.5$ 1.3

Broadcast 42 who Pus 192.168.1.17 Te

8 2. 970077000

1D 3, 07272 T000 Brosdoast ARP 47 who has 169, 29, 755,2557 Tell 152.188.1.3
B0, THLAI000 brosdoant AR A who Rud 169, 318,355, 2587 Tl 193.1688.1.5
16 1. P RTS000 Brasdeiit e AT wha hus 186, 552987 Tall A% 184.1. ;
18 4, 403074000 appla_d4f raeser BrOBOTELT P £F whin Bas 16003, 2552947 Tall 1RO.188.1.3
30 4, 40T UL4000 Appla s dezet Brogdcast Aap AF who Baz 192.168.1.17 Tall L107.163.1.3

33 14, 841426000 winTendo_ 32100102 Broadcast aaE 60 Gratuitous ARP for 192.1608.1.7 (Reqest)
34 1b, IBIFILO00 mWintendo 33:00502 Brosdoast AR 0 Sratuitous ARP for 192.108.1.F (Repeest)
38 18, 431858000 mintendo_37:0::00 Brosdcast anE 60 Gratultous ARP for 192,108.1.2 (Requast)

£]
= Frame T; 43 bGyies on wire (350 DIts), 40 bynes captwred LI00 DIis) on incerface o

= GUhernst II, Srod Apple_df deicl (lc:i9cdmidfide:cf), (90 Drosdcast (FF FE RFrP:ff re)
= Addreii Retolution Protosel (FequETT /eratultous AsF)

I=

e TE T ITITIT I e W0 dB AT da of OF o% 00 U1 .rires T . .or:
OIS 0F 00 06 04 00 01 5 FO 4B &F de of oD 2% 01 02 oouias WY B
R R T

18T e "CADOOUME | - VRO S TTe [P [Frofie: Dtk

FIGURE 6.2 Viewing ARP packets.

In this example, we were able to narrow down our view of the problem area
and quickly isolate relevant data that maybe part of the problem.

6.3 Advanced Filter Creation

In some cases you can always create a filter by using the Wireshark Filter
Expression dialog box as shown in Figure 6.3. By doing so, you can get into
more advanced level filter creation techniques such as picking a Filter name, its
Relation, Value, Predefined values, and Range as seen in Figure 6.3. You can
find the Expression Filter by clicking on the Expression link next to the Filter
field in the Wireshark capture window.

Using the advanced filters you build in the expression filter teach
you how to write out advanced filter strings in the Wireshark
capture window Filter field. Once you create enough filters, you
will learn how to type them directly into the Filter field. By using
autocomplete, you can speed up your ability to quickly build and
apply filters and search for relevant data.

T weshark i ey Luprranion - Probie: Dol st Ao x|

Faskabon
PSS —— T ——————— Y | _
= REPRARP - Aiders Pk Protool - ==
N S - ——
WP ot g - Probocal bype
b < Mt s
it heypm - Sardder ATH fumter e
e ot ey« Sarcer WTM e loeh
i e e el A1 D T ortars
WD . e - e ATH S buaddreis g e
W s, g - Brctocod e
wp opoade - Cposde
Mpgrabiboari - 1 grahuboun
g st b Sorder e ptouid ven

W e « Tid gt MM Fa b Tyik =
I —— L. PR ——n =

FIGURE 6.3 The Wireshark Filter Expression dialog box.

Another advanced level tip you can apply when creating filters is to simply let
autocomplete assist you in your journey. In Figure 6.4, you can see an example
of autocomplete in use. In this example, if you want to search for an arp filter,
simply type the letter “a” into the field and a dropdown box will appear showing
you all options starting with “a” (arp included). You can further develop this by
learning the Boolean arguments and they will also appear in the Filter field as
well as ranges and so on.

You can also click the Analyze menu and select Display Filters to
create a new filter.

T Anle) Ll il B Ay e e 005 (Mirenall's Pachel Schodaler) L Devios S99 (€TI0 T [TCOOURIAT) Wb | - RS
Bl 5O B A e ey TRty ek el & L
UEae e HEBS A+ eaeF i @ e aBR® B

Piltes: | e :!np-—;n O Aghy e
wonan
L - ’ Ecryphion K. .,

- e n_?ﬂﬂ'%m W Tor T00.160.5.3 (Reqmsiy
pureree 5t i A% who hus 192.168.1.17 Tell 192,168.1.3
ey s 1t aap A7 Who has 189, 28, 235.2557 Tel) 152.188.1.3

R e | B, amp A7 wWhe Rus 160, 38,355, 0957 Tell 25Q.168.1.3
14 B, P ETS000 g Brasdesit AP A wha Rl 185 3%, 305 204 Tall 143, 188.1.F
18 4, 403074000 Appla_df dezel Brogdoast anp A whvn Ba 1600294, 255 2547 Tall 1R2.188.1.%
10 4. A0THL4000 Appla_sf dazct Browdcast aap AT who has 102.168.1.17 Tell 100.168.1.3

33 14, 481426000 wintendo 32100002 Brosdcast AR B0 Sratuivous &BP for 192.168.1.F (Asqest)
3418, 383530000 wintendo_37i0Ci00 Brosdcast i G0 Gratuitous &P for 192.168.1,2 (Request)
38 18, 431858000 mintendo_37:0::00 Brosdcast anE 60 Gratultous ARP for 192,108.1.2 (Requast)

£]
= Frame T; 43 bGyies on wire (350 DIts), 40 bynes captwred LI00 DIis) on incerface o

= GUhernst II, Srod Apple_df deicl (lc:i9cdmidfide:cf), (90 Drosdcast (FF FE RFrP:ff re)
= Addreii Retolution Protosel (FequETT /eratultous AsF)

I=

e TE T ITITIT I e W0 dB AT da of OF o% 00 U1 .rires T . .or:
OIS 0F 00 06 04 00 01 5 FO 4B &F de of oD 2% 01 02 oouias WY B
R R T

5 sl P " B Tt Pk v a pestoced (P | Pactie: Dafait

FIGURE 6.4 Using autocomplete.

6.4 Other Filtering Techniques

Once you have built a number of filters and applied them to captured data, you
can also build capture filters by clicking on the Analyze menu where a myriad of
options will present themselves—all of which will be covered in this section.

By clicking on Analyze, you can select Display Filters and you will open the
Wireshark Capture Filter dialog box as shown in Figure 6.5. In this dialog box,
you can click on New to create a new filter, or select a predefined filter and
delete or edit it further. This is a quick way to access the most commonly used
filters used to solve problems today. Most problems result in IP, ARP, TCP,
HTTP, and other commonly used protocols on networks. If you click on the
Capture Filter field in Figure 6.5 and look at the Properties fields, you can see
exactly how the filter is created.

| 7 wrweshnt: Lol Flter » Frolile: Dl - |
B Caprng Pk

Trfurret et D0V08: LS m 18

Tyt Tpen OO0 (ARF)

o Broasck et el i MRt

&F. Mo AEP

* oy

1 adder 1918800
ot iy
TGP anky
D oy
PP o LD pert 81 HTTF)
TR TEP st (81
i AP g 1 DAER e

T I T Ter e—p——— =
Fropartar

Filler e |

Fies o [

= - E = i

FIGURE 6.5 The Wireshark Capture Filter dialog box.

You can also Add the Filter name and Filter string data and click on New to
add the filter you just created to the Display Filter field.

In Chapter 3, we learnt how to apply filters to the profile default
prior to opening and running an actual capture in the Wireshark
capture window. The Wireshark Capture Filter dialog box
discussed here is identical to that same filter discussed in Chapter 3.

Another helpful tip to set up filter expressions is to go into the Wireshark
capture window menu system. Under Analyze select Display Filter Macros. You
can build a complete macro set to apply when you select filters. For those of you
have done C programming in the past, macros are basically creating a function
with one or more variables. Yet another way to build filter expressions to be
added to the predefined set is to go into Wireshark Preferences in the Edit menu.
This will open the dialog box as shown in Figure 6.6.

foginhke Fo Euresun
e g b 0]

] e}
- =1 sw e

FIGURE 6.6 Setting Filter Expressions in preferences.

In the Filter Expressions menu option, you can click on Add and build a new
filter expression as well as enable and disable it as needed.

6.5 Customized Filtering and Troubleshooting

In the previous sections, we covered the basic configuration of creating and
applying filters to captured traffic in hopes that by doing so it will be easier and
quicker for you as a technician to solve network problems. That being said, let us
take a deeper dive into filter creation to troubleshoot common problems. In
Figure 6.7, we will analyze a TCP-based conversation to assess it for problems.

«% 14 {4 alBlE]

s O - e iy sy N — L
LN NN HYXBS S« Fl | 0E Qqal SR8 & 8B

S it Fsrre, Kntrstn FrotvcdLersth_linfo El
A6 35, SNATO00 192.168.1.4 7T BL TS Ter 4 oracle-vpl » hutp [AZK] Zeq=B0T Ack=37T3E Winedd
137 36, 635023000 157.168.1.4 197168, 1.25% e U Mame query Mb MILTIMS<lcr
L3837, IB03AL000 157.168.0.4 107068, 1. 238 satnct U Mame queery WD MSLTIMSclcs
LI IR AB0IMO0D 150.248.0.4 16973648, 1, 254 safrat. U Mame guary WO MILTIMEcles
AP0 bR, 22000 160.284.1.118 1ER.IH. L, 299 [&) Tourge port: BOIL pattination porrt $000[MTF:

e g | | PR P SOUFCR POt SCOm=pEl DESTINAT I0h pOrC!
133 AL;ZBIBI6000 Legy Veee Packet Dol e S0 Tource porty 3I3E Destination portr S000(Ma0f
{43, 24 1 S Tt B e s (e 1474 : =B
AFF AN TANIO0000 18R) tmem.., e 264 Tource porti TLI0T . Dettination portioILBOY
100 9, 29TIL000 169, o Al Pkt e - W j- T p-:ﬂ.. 1m¢fm-—pu peitinstion pore: 100
ATECSI ZROSIO000 T LB sty Basahen ikl we 166 Source port: MM peatination pertr X130}

139 3. 680977000 165 e : L &0 Source pory) BSOS pDestinavion porrp SODO{MATR = |
i] | "
Frame 13k: ™ bytes on wire terface o £
- 3 . L Ciof vy dahnn L] Semted
® GEhernet TI, Sroi Deteloor Lo ol ’": ¥ Iﬂﬁ! By de:bl (00;26:bA A4 sdeibld
= Internet Protocol versics 4, ok v L350 0T, 31 250D
R R L mwms PR L RE L LBt R
o Fe Semctod
Cogey »
T e A
ol e,
T6 Gi 44 of G: 4 i Pkt in S Wircioes ! . T— T
IS OO 28 49 La 40 00 B T = nry 4 70 TP T R
joors 51 Fd OF 10 &0 S0 db OF Sz S0 0F of e OF 5014 Q... P WP
B0 OF 00 B9 Td o0 00 won ke

B 57 TP OO IO L OCR S~ 1TTe [F_ [rolie: Dotk

FIGURE 6.7 Configuring a filter on TCP traffic.

In this example, we can select a packet in the Wireshark capture window and
apply a filter directly to that packet. By right clicking on a particular packet you
can produce a menu as seen in Figure 6.7, where you can apply as a Filter, set up
a Conversation Filter, apply a Color Filter, or follow streams. We have already
focused on applying specific filters, so for this example we will learn how to
follow streams.

The next logical questions that may come to mind are what is a traffic stream
and why would we want to filter it out? The answers are simple. The stream
dialog window as seen in Figure 6.8 is going to filter out the Application layer
details and show you what they are. In Chapter 1, we covered the OSI model
which is extremely important in the field of networking to understand. The top
layer which is the Application layer is at times very important to analyze when
troubleshooting a problem. For example, let us say we had a problem to solve
that resulted in a web browser having issues accessing a Web page. We would
want to inspect HTTP traffic.

EEEOTTTTE—— -

=BE% swabhpS At | orelasl 7250, FRIID, 4000116, 4000 165, S001 545, 4001059, 4001474, 4007207, 40021 =
2, 8002734, 4003000, AO0T1TH, 4003 IBT, 4003575, 4001438, S00IRHL, 400TLT, 400ALEL 400421, 4004
!5 A00HTE6, 4004 318, SO0 TR A0D 358, 00 308, 40044 T, S0044 D0, A004 853, 008 TR, 4004 DR, 4100
-:n ﬁ-.-l- Tes .m-u:«'.m-. e Ams sl inne bilop- 0 ddat ypetn 10adhebe teafa 1 5. 201, prt, 17
L AmT U7, xses. 250, Kisee. 455, ai5. 57E HETRALLL

far - Agant | Maz 111; o {-:r.rmu'la'u METE B0 wimdews WT 5.1p Trident/d.0: .MET CLR
CLod3d2; JHET LR 2,00 oS -\.LF 3 o400, 21521 LHET CUR 3,9, 300295 InPobath,2;
3-RTC LM BF .METS,0C] mua MU EBOL0T

Saept- :n-umh? il fg, daflate

STD Wi

reacion] KBeH-A11ve

ook e
'\:I.E ID-ichfth-:l-\. o8 U= TR S T b S GT 1 FF el 1 THa] 3 S TTER0NL 1M1 3 S TE2 52 B8 1 SeviaDa Ly

B -'r?vLuL-'h.l2'P i I uRcy FCDPEERC T 0T Y R 30Tl \-"H‘ﬂ.'l’r‘.-lm'i-fﬂr"djxiﬁh-ly\- P Bl Tk AL
T 03 TuT T TwDIET Vv b Evi FHPS VT IWe Vet o wiir G5 - T0 TH

FPPA. 1 204 Mo ContTens

Ater whd, 1 Jam 2004 10751130 M7
A che

che=ConTroll private,

apires: wed, 17 Sép 12:'1 i n 10 GMT

cerpction! close

[e

|I'1!l corsemriation (| 314 Bk

Bt | sewss | B Jrasm rmas Ceebes T taws F R

el Pt (kT e | o |

FIGURE 6.8 Following a TCP stream.

The application stream would be from the TCP-based IP address and the
Details pane could show you the specifics of HTTP, however too really filter and
see the HTTP traffic, you would need to apply the stream filter. In Figure 6.8,
we can see the specifics of the communication with the web server and the
interaction with the web browser.

You could also apply this type of filter directly into the Filter field in the
Wireshark capture window as shown in Figure 6.9.

rst's P bt S beribaber] | D S _{E FTIT 500 BHEL 807) AAS SO00FRIAT] [Wherihark L4 (R0 Hiy SRS M

hﬂhﬁwmmm“ﬂﬂ-“

BEMA CEXRE R¢+972 (06 QAAQA0D ENBE B

e [M.ﬁ— rat) o] b e o e
1 et D gl P Dl._ e Iu S jﬁ. jw-a—.:'.r'.-m. Eryphion K.,
e Kot L T - 3 =
.:. 33, 1084 00D 793.255,255. 253 1at] 1474 Frageanted I8 . proTooo (protos=ige 17, off=D, [
33, F1I200000 mmam C2REENS 295025 ee 264 Tource porti LI oestination porti 31301
137 36.03502M00 192,108,140 192.108,1.2%3 P VI Mime Guatry WB MELTIMIclcr
108 37 IIHA000 192.168.2.4 197.168,3. 253 pn 02 uamE Gudry WD MELTIMB<lCr
139 38, 130280000 162.166.1.4 103.3468.1. 294 T O MiS§ Guary WD MILLIWScles
- T e - - . g
'mm-'r-:.ﬁ: e
wmm '..lli-ﬂ}l-;i'l-‘l.l}l e
mma.-m :'mm hl’! we .
e e — - - T~
- ms& ’Iml'B ::mpilhimlﬁ e (IS SoOrTE wm Mmlﬂ'l “l" ﬂ“ﬂ‘- 5
18925415180 LG9 21258 e B0 BTl | m& “FH05L pervinacion H’ILW!‘I'

il

= Frame 110:; 40 bytes on wire (480 D1ts), W0 Dytes captured LAB0 GIts) on Inoerface o
= Grhernet IT, Srci Motorola Je:T0:88 (20w 3FiTe: 0080, Dot Braadoass (ProFrorfoff e fr)
= Internkt Protocel veriion 4, Srel 180 2RAL1LLIR CROGC DALLL0AE), ot 160 TR L. 20 (160. 3812980

= User Datagras Provocol, Sro Porr: JAOSL (3803510, oat PorE: 5000 (30007
.-m

[T FFTETF AT IF 0c Ta "n:uFTIWMN
OOLO 00 2B V0 44 OO 00 40 11 ca OF a9 fu 0L 76 a9 fu
020 0L FF Be ol 13 85 00 34 S 92 43 4d 44 00 00 00
010 00 b 4% fe L Ff 00 00 00 00 00 00

FIGURE 6.9 Applying a TCP stream filter in the Filter Field.

You could type the following into the Filter field to get the same result:
tcp.stream eq 1
You can also apply UDP stream filters as shown in Figure 6.10, where the
Follow UDP Stream dialog box shows the UDP protocol specifics we want to
analyze at the Application layer.

ERTYUEETE——— amim

“Rraam Corbank

ARt Cong T o
SMIgFRtREy > § <M gRat b
M5 muw.-wmﬁ?mm-n:

ST U O T SR
armatarl cey
DT A U O DY ST BT S
AL Ak > Q] QAR TFF T BR <, MAC Ak »
CEFAGIF» 160, T 5. 1. 14 T/ TRadir ¥
<Nﬂ-wl-l|-h"r*u!-t¢‘f.r'ﬂﬂvwimﬂv:
A e = 0L TR T 4 U T
<N‘5<IT?‘P1=-?'¢¢"N\-‘1HT)MJ
T5eT Tophode] Dol < St topaiodel i
AT ML T, Umcmct'rm;
<HoC avode] D0 Mot s L
Ao v 5 FOne0E. a!mwnsiom-
cmRLAL ho TR ST
iﬂncmﬁmrt:-u-nnw:ﬂnxmmpww
REIC (L S > 0 MU T S
PR STr e eETypeSuppor t sFEGTon by e St resmTypeioppor U
£ Pl
<Hmabav icer
AEA AT A LU SO DT
m:—hrmrm;em-:w»
L o ek LR S e R
ST asde 00 F 6T EF AD < lt.l.ﬁ':r
b caTypasI o Di | CoTypa
;mtnpt-uﬂmstvn:tm:w
<WMHTEP¢FI&MEM1TW7
0T A WO T D o MO AMOTE LY
aaa gt s ionsl. TleMaciver ions
SEmLAT ho ¥ s < Hm AR b

=
JErime corerss atuon A bovtes) =]
d | sp | em [rm rmax Chstes Gk FAm

_w | o owmomen [oow]

FIGURE 6.10 Follow UDP stream.

Here in this conversation we can see XML-based information showing how
UDP is interacting at the Application layer. In this particular stream, we can see
that there may be an issue with the Microsoft defined Automatic Private IP
Addressing (APIPA) where a host cannot communicate with other hosts on the
same range.

In Figure 6.11, we can see the application of a stream filter in the Filter field
of the Wireshark capture window. Here we see that APIPA while being used via
UDP can be further filtered out for analysis.

T Aol Lendrined B Advand i 48005 {MEornlL's Packel Scheduler) | Devior (€T 500 SE L4574 OOARIAT) [aimiz
Bl L few o Cutes Brabve Satetns Tekphoey [k feema el
Heaee HESS e su¥FiloEe 3gamn 0= %8

Pl |Ie:p.-eurwlwm.:.:q:mp.mqmmmuﬂwm :l Expremsorc.. Omar P
E] [| E s L e

L 73 =3 Ksrabn, Broted Rt bl =
ATF 35, 89300000 Ta.21.81.353 182.168, 1.4 TER M Ohttp * ocracle-vpl [FIN, &2¢] Seqe57TI7 Ack=BOT ¥
LG 55, SN IAATO00 1%2.108.3.4 Tl B 293 TER oo acle-vpl > bitp [A0x] SeqeB0T ALke3TTLE winedd
33T 34, 835023000 152.168.1.4 1G7. 168, 1, 294 s’ G Mame query W MELT IMEclex
L3 07, IEGRA1000 150, 168,04 10F. 1681, 248 T B Mame guary WO MILT IeScles
130 38, 130284000 1%2.188.4.4 10F.168.1.29% AT Bl Mame Ty MO MILTIMS<les

130 38, S20T0000 186 250 10118 AHDLTIACL 25 s B0 Source portl FROEL Gesvinarion porrn S000[RA0TY

60 Source porki Intecom-prl Destination port: SO0

137 49, 261920000 189, 234.3,143 169, H.1, 255 we
330 41, I05EF6000 189,143,174 1693 H. 1. 355 e 00 Source port: FIIIS Destination port: S000[NAlfi
we

~d- 14 ELLH 0 W'ﬂ‘ pore: AMecds-pdl DEITIAITAGN port: 5

135 53 BE0STTO00 186,28 1. 118 169 T L0255 L1 HI Source por) BEOSL pesvinavion portr S000{MTT -]
| ¥

= Frame 134:; 1474 Dytes on wire Ld e BIts), ld7d Dyias captured (1179 DIGs) on Interface ©

= GErhernet I, Srci Moterala TR FI:El (00019:a8:Tr:rl:ml), Doe; Broadiasy (PP rf fforefr)

= INCernET Provoce] virsion 4, Srer ROB. 2114 CReS. 2%.1I14F), oErc 295.TA0398.25Y 235 75002951540
= Dara (L4400 byves)

i f 6T R R R L ——————— T, .
o 0% bd B Od 20 00 40 11 Ta 9 ab fe Ol 5 PP wads oW Tanssuss :l
fF OFF 33 TR 53 B4 00 BB TP 0T 3o 48 6 &1 4 63 BATE, . . <HELME

& 43 GF Gbu 06 8% 67 Jm 04 20 20 Dc Ad 71 &7 46 toorfige . cHegE
B4 T4 3T &5 TE 3¢ 33 3c 2 JG 73 AT 46 &4 T4 12 ATAE 5-. Sz gfera
0 6576 KeGh 3020 dcad TN 6TA) OF Ge 4 3 4E we o4 hgcontas
O 78 3e 3D 39 !5 3G 38 J Fc 2f A I AT 43 &F B wrFRN0ET < Maglon
T4 SE6S 76 300y 20 30 A St N3T4ELM tame. cwnitit
5 73 be 30 Jc IF dm 6% TH 53 P4 BL TA TS5 T3 Be uioOc/we ESEAtuss
50 r.i 20 M) ¥c 4E B4 A1 44 &5 TE &9 63 A5 3!‘ a 20 o ol wvlcEe.
MO 30 20 70 Fc 44 6% T8 33 74 AL T4 75 7Y dw 30 3e DHYS TARuLsde
># dd A% TH 53 T R T4 TS T3 s Na M I I0 IR imectrar e =]

18 e DO RO PR DM TTe (P [eofie: Dkt

FIGURE 6.11 Filtering a UDP stream on an APIPA range.

You could type the following into the Filter field to get the same result:
(ip.addr eq 169.254.1.143 and ip.addr eq 255.255.255.255) and (udp.port eq
21302 and udp.port eq 21302)

It should be mentioned that this does not mean that you will immediately be
able to diagnose a problem with this information, remember that Wireshark
helps you uncover the data in packets so you can attempt to isolate and resolve
problems, Wireshark does not necessarily point out problems to you, you have to

understand and know what you are looking for.

In this example, we would have a computer that does not communicate on the
network using a specific IP address. We could go to that workstation and open a
command prompt, type in ipconfig/all and find that the computer is in fact using
an automatically configured IP address with APIPA. Is the computer not able to
communicate with a DHCP server thus not able to get a dynamically assigned IP
in order to communicate? Should the workstation be statically assigned?
Furthermore, can we ping other hosts on the APIPA range? Is this how the
workstation is supposed to be set up?

When troubleshooting problems, it is important to remember what we covered
before in this book—you need to use Wireshark as a tool to augment other tools
and your knowledge; otherwise, it may not specifically point you in the right
direction.

6.6 Conversation Filters

Lastly, we will cover building conversation filters. This can be done by right
clicking on a specific packet conversation between source and destination
address and select Conversation Filter, then for this example select IP. An
example of this can be seen in Figure 6.12.

T dedr b et ries B A arsied S BT0% {Muriadl's Packet Scheduer) | \Devie 9 _{E T 7 AAR- SEEO0ABIAT) [L]
B LW Pew o Catwe brabee Saboes Tesghony [k riemals el

e EEXgs Aesa¥iillopeg agan 0" % B
Fillr: | w| Erpremmor..
[= [| - = Dacryption i .

e i Eorce Ktratin, Proted - Raeath: o 2|
ih8 35, 853467000 1%2.168.1.4 T LEE. 253 1= 2 M oracle-vpl » http [ACK] Zen=B07 ack=57730 wini=d:
1T 38, 833023000 152,.168.1.4 197.168,1.25% nafort B dame guary Wb NILEJRI<lce
118 37, 3893401000 192, 168,34 197. 068, 1, 3%% hafe s I dame greary HB LT Jei<lor
139 0K, 150384000 192.168,.3.4 197 068,.1,29% S GO Mg gy WO MELT IMEclox

IO bR, G282 000 164, 24,1116 168, 2146, 1, 298 L G0 Stardl port: MO sastination port: SO00[MA1F:

Bk Pt (Regie]

233 41, 284636000 186, 2% 8. 0174 B0 Source porel FRIFE desvination porsi H000{Malfy

. Ygraoes Puches {togche | i
AR A S 20000 LR T g 5 Ve Refteerce (ooghe) 266-Tource por s TLI0T DAt NN on, per r TLI0E
AN 50, 20TIAR000 1SR 22340 O Toe @A 60 Bource port i frecos-pil Destination port: D00
- J R o A Packed Comment. 1
A8 532805500007 LEOUTS4 1 14T T84 Torge porm: HIOT pesmination poerr: ZIMOY L|
139 33;BB0OTTO00 1EGUISA. 1 NEE L T 60 Zource porT! FAOSL Desvinacion portr SOO0[MATRT|
2] Aoty 4 Filles e i
= Frame 1330: 40 bytes on wire L4B0 DIts), Fropars o Fie g on Tnterfaie o
= GEhernet I1, Sred Moterala_THiFI:dL (o0 Lt L
= pnEernet Protoco] version 4, Srel 389.2° Coleps Corveraiion
¥ USEF DATASEME PROTOSol, SPE POREY RTES
Pk LDW S piis
Copy v
R S .,
e TETF TT IT IF 00 07 a0 /7 Fo oy e ot 5
OO 00 28 Ff OC 00 00 40 11 T4 2e ab fi_ SomPxhenleswnde (L.
Eeoad 30 FF 33 o0 1) 85 00 34 49 80 43 40T OO 00 OO secceeen L I
oolo 00 1b af fe L FF 0000 SR OR OO DD Liiiiaes
18T e "CADOOUME PR A O TTe . (P [eofie: Dtk

FIGURE 6.12 Building conversation filters.

Conversation filters are important when you want to troubleshoot
communications between two specific hosts on a network. Here is a scenario in
which you will want to build a conversation filter. Let us say you have a
computer on your network (source) communicating with another computer
(destination) and performance is somewhat slow. You may want to inspect the
entire conversation between these two hosts carefully and look for clues on what
may be the delay by looking at what the conversation consists of, using
timestamps to see how long specific transmissions take place, when using TCP if
the traffic goes through the three-way handshake of SYN-SYN, ACK-ACK,
and many other examples.

In this example, we simply want to look at the basics of IP and by doing so we
can uncover these problems. Here we see that the timing between the hosts are in
milliseconds and that there are no clues given as to what could be happening in
the conversation to cause an issue. That does not mean there is no issue, nor does
it mean that Wireshark proved entirely that it is not a network issue; it just got
you closer to ruling out what may not be impacting this conversation. In this
example, the hosts are communicating without issue; however, the problem is
that the network switch got disconnected from the gateway where the DHCP
server was sitting and the hosts moved to the APIPA range therefore they are not

able to communicate with a specific application; however, more filtering and

analysis need to take place to determine why.
In Figure 6.13, we can use the Details pane of the Wireshark capture window
to uncover malformed packets when UDP/IP conversations are built via

Wireshark.

T Aol Lendrined B Advand i 48005 {MEornlL's Packel Scheduler) | Devior (€T 500 SE L4574 OOARIAT) [aimiz

Be DR e 0 Cates Mo Batenos Tewphey ok sk e
e BYEs nssaTdmeaaan gBRR &R

Fillos: |p.dn--qm::rl.|.mmpm-q1w=4.:.m :l Expressior.. Cmar man
= []resien] e Fia ot
T T e R T T D

35 10, 259034000 188, 2% 1,143 AGG. 21,255 e B0 Source porti intecom-prl Destination porc: 5000

A3 30 TS D00 189, 25,1143 109, 28,1, 258 e B0 Source port: Intecos-pil pestinaticn port: $000[

B3 30 226905000 168, 254, 1,243 AG9. 11,1, 258 L &) Source port; Intecos-pil Dastimation port; 30000
EIFELTI, -4 A e G0 SOur ol POFE! TNT&LOM-Ps et inatlon: pore: 1000

I=

£]

= Frame 137: 40 bytes on wire t4B0 DIts), S bytes captured CAB0 GIis) on Tnoeriace o

= Erhecnet 1T, Srci Motorala T F dl (0019 el Trfm), oot Braadoass (Prrrrffi e 1)

= InEernst Provocel veraion &, SPer R6R TSAL1L340 CReR. 2L LAF), oEt: 1800 1H.10395 (160.38.1.295)
T USBr DATAGRES PROTOCOT, SPc PoPr: ARTecom-psl (1096), CEv porr: 000 {0003

W] i T R R L ————— T,
IS O 2B Ff OC OO 00 40 1L T4 2& a9 Te 0L 5T a9 fa O LT
fots oo FF 1% ©0 1) AE 00 14 4 B 43 Ad 44 SO 00 00 L..i.... ML CMD. ..
OUi0 COlb AR Te Al P OO 00 SR CQOO DD 00000 Liiiiaas .

18T e "CADOOUME PR A O TTe . (P [eofie: Dtk

FIGURE 6.13 Filtering out an IP conversation via UDP.

You could type the following into the Filter field to get the same result:
ip.addr eq 169.254.1.143 and ip.addr eq 169.254.1.255

In this example and previous examples in the chapter, the specifics of building
filters to concisely list out what it is you need to look at (relevant data). There
are literally hundreds if not thousands of examples that can be given depending
on what the problem is, how big your network is, how many systems are being
used, and so on. Remember, it takes time to learn how to build filters so
hopefully this field guide gave you enough to get you started on your journey.
Make sure you visit the Wireshark wiki as well as other sources of information
to learn more.

6.7 Summary

4

In this chapter, we learnt about filtering captured data in hopes to give you the
ability to analyze and troubleshoot your problems by streamlining the data you
will view and find relevant. As you can see from the last two chapters, filtering
data can be done in many ways and in some ways can be confusing if you do not
know what you are essentially looking for so understanding the problem at a
high level is important to the process. In the next chapter, we will look at sample
captures and apply some of these filtering techniques we learnt thus far. This
will set us up for Chapter 8 where we will start inspecting packets for problems,
looking into the headers, and learning about the deeper analysis we need to do to
solve problems.

CHAPTER 7

Sample Captures

7.1 Getting Started
7.2 Sample Captures
7.3 Expert Analysis
7.4 Flow Graphs

7.5 Summary

In the previous six chapters of this field guide, we have explored the
fundamental steps of getting Wireshark downloaded, installed, and prepped for
use. We have explored common problems and looked at how to get up and
running quickly with this packet capture and analysis tool. In the last three
chapters, we have looked at how to capture and filter data as well as the common
problems associated with why you would need to use Wireshark in the first
place. We have gone through troubleshooting methodologies and given you an
understanding of why knowing when to use Wireshark is essential to using it
effectively. We have also learned tips on how to capture and filter relevant data.

In this chapter, we will learn more about captured data as we explore sample
captures and discuss problems that can be solved with Wireshark in conjunction
with the situation presented. For example, if you had a Dynamic Host
Configuration Protocol (DHCP) problem, what exactly would you do to set
Wireshark up to help you isolate the problem? What exactly does the tool offer
you to help baseline what the problem may be? Let us review a sample capture
and find out.

This chapter of the field guide covers a few basic problems and
focuses on methodology, which is one of the most important

aspects to learn when trying to master Wireshark. Review each
problem in its entirety in order to benefit from each example.

7.1 Getting Started

In this chapter, we expand on what we learned in Chapter 6 by covering some
advanced problems, how to solve them using Wireshark, and the more complex
use of analysis by applying more filters and reviewing expert analysis reports.
Your learning of Wireshark can be augmented by real-world examples, which
we will cover here. You can run your own captures and filter for relevant data,
or you can download the sample captures highlighted within the chapter. You
can also use this chapter as a way to build a methodology you can use each time
you are presented with a new problem. No matter how you approach each issue,
remember that methodology is the key to unlocking your answers to root cause.

7.2 Sample Captures

Sample captures can be downloaded online. We will start with using a
predownloaded capture file so that you can learn the methodology. To view
capture samples on the Wireshark Wiki, simply open the Wireshark tool, and on
the landing page, click on Sample Captures. Here, you will find approximately
100 samples of previously captured data that you can review. This is an excellent
way to help bolster your knowledge on packet capture and analysis and network
protocols. For example, you can review the many different protocols used on
networks today if you are not an expert in protocol analysis and can perform this
function everyday. You can also capture and filter your own data if you prefer.

You can find and review captured data on the Wireshark Wiki. You

can find the data to review in the following pages:
http://wiki.wireshark.org/SampleCaptures
http://wiki.wireshark.org/CaptureFilters

http://wiki.wireshark.org/SampleCaptures
http://wiki.wireshark.org/CaptureFilters

You can contribute to the capture sample repository by going to the
sample captures page and following the instructions listed on the
main page. It will explain the correct process and format for you to
follow so that you can contribute.

In this example, we will look at the DHCP, which is an extremely common
protocol used today. DHCP is used to dynamically assign IP addresses to
systems that request them so they can connect to and communicate on a network.
What you may know already is how the basic architecture of DHCP is laid out;
however, you may or may not know the specifics of the underlying functions of
the protocol and what may go wrong. You would use Wireshark to determine
this.

Figure 7.1 shows the basic architecture that would be needed for DHCP
clients to get dynamically assigned addressing from a DHCP server. Here, we
have put the clients on one subnet and the server on a separate subnet. We have
added a firewall as well.

=

DHCP server

)

DHCF clients

FIGURE 7.1 Understanding how DHCP works.

How is it supposed to work?

1. DHCP clients will communicate with a server using UDP port 67 to send
data to the DHCP server, and UDP port 68 to send data to the DHCP
client.

2. Since DHCP communicates via UDP, they can communicate on the same
subnet without issue; however, if moving across a router to a separate
subnet, a DHCP relay will be needed to forward the communications to
the DHCP server for communication to take place.

3. Once the path has been verified and communication is possible, the
clients and the server communicate via a process called DORA:
Discovery, Offer, Request, and Acknowledgment.

4. A discovery packet is sent from the client to the server. The server then
makes an IP lease offer. The client then makes an IP request, and the
server acknowledges with an IP lease.

As you can see, there are many things that could go wrong and many reasons
why it would be important to perhaps set up a port mirror (or Wireshark on the
host directly) to solve this issue. You can also set up Wireshark directly on the
DHCEP server or the clients.

You can find more information on protocols, ports, and address
assignments by visiting this site:
http://www.iana.org/assignments/service-names-port-
numbers/service-names-port-numbers.xml.

To see this in Wireshark, you would need to capture the client (source)
communicating with the DHCP server (destination) and filter for DHCP. This is
shown in Figure 7.2.

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml

T dhpmn [Wweshark LB (5% Brw 462340 [rem renk- L1 _.J,ﬂ_lﬁi
B DR Yew G0 Cihew brabme Gatabon Teephony [k fremes e

o I - v o F 4 i aaan efmng s
P | =] Egenemon
m m il] b Db K

3 GOTeal 2 B0 235755, 235,753 [l Fld [(#CF Regquest - Transaction IS Quidie

| J 2
= Frame 1: Jid Eytas on wire (2952 EAtiy, 014 Bytes capiured Laol: Gita)

5 Ethernat II, Sref Grandste ol r 42 (DO:0bcEZiOlforall, DLY Broadcast (FFIFPCRRIRrifrire]

® Inmernet Pr :ﬂ:-:-ct version &, Srcon o0o0.9 (oL0e0.8),; I:-sl: 255 255,755,255 (255.255.255.255)

% User Eatagram Protoco), Src Portr bootpe (883, bst Port: bootpr (67
¥ Bostatrap Protocn]

FETEIT FET IT OF [0 O 4 0% T< 42 0§ o0 4%
U1 3¢ 48 36 00 OO Ta 11 17 By 00 00 00 OO fF Y
FfTF 00 44 00 43 01 18 S AF ol Ol 06 O0 00 00
Fd 14 00 00 OO OO 00 OO0 OO0 00 00 00 00 .ll\.l\.l\.n.l
'\-'FUI:-J'N'-.'-\-(-IJ =l "hl-'l 00 OO0 0
'.'.l

]

L= _G-C
552

) G OO 0 G0 00 00 l.""b‘.'l L""GJ\"/IH

00 00 00 00 D0 00 00 OO OO Ob OO OO 00 DO

00 00 00 00 00 00 00 t.:..:-:-z:-t.-;.e:-::f.cw
00 D0 OO 00 00 00 00 00 00 00 DD O

00 OO B0 00 00 00 00 00 00 00 OO 00 00 \.-u.v.l

00 00 00 00 00 00 00 00 00 00 D0 69 00 00 B0 00 L.iaeoes sieeeses f

"l W.memmhmﬂ-‘m P Profi IH'#

—"

i
1]
SEEEE

Ty
S e i

L ER R
Q‘

FIGURE 7.2 Viewing DHCP traffic in Wireshark.

Here, we can see how the communication takes place between the client, to
the server, back to the client and then finally with the server responding back to
the client with an acknowledgment and IP lease.

In Wireshark, we can see the specifics of this communication and could quite
potentially verify its taking place and/or find where the problems may be taking
place. Here are some examples:

1. If the DHCP relay agent (a Cisco IP Helper Address commonly found on
Cisco devices) is not configured properly (or at all), you will not see a
communication back from the server.

2. If a firewall in place does not allow for the DHCP protocol to
communicate bidirectional, it will be blocked.

3. If the clients are sending discovery packets to an IP address, but a rogue
DHCEP server exists, we can find those packets in the trace.

4. If the clients have a firewall configured locally, we can see that the
discovery packets are not getting to the port mirror configured to capture
the traffic.

This is one example of how Wireshark can help you see the details of what
may be causing a network issue, specifically with dynamic assignment of IP
addresses. We can even look deeper into the data to solve problems.

DHCP works by using BOOTP, also known as the Bootstrap Protocol. In the
Wireshark capture window, you can view the Discover data by highlighting that
specific frame and expanding the Detail pane’s view and scrolling down to the
BOOTP data. This is shown in Figure 7.3.

T 1 1406c24.30 7453 DUOLOU0 255.255.255.255 DHICP 314 DHCP Discaves - Transaction I0 (eadid =101 x|
5 BoOtStrap Protocol Al

Message type: Boot Request (1)
Hardware type: Ethernet
Hirdware address length: &
Hops: O

Transacrion I0: Ox00003dld
seconds elapsed: 0

soorp flags: w0000 (unicast)
client 1P address: 0,0.0.0 {0.0.0.

vour (client) IP address: 0.0.0.0 (0.0.0.00

Next server IP address: 0.0.0.0 (0.0.0.00

Relay agent IP address: 0.0.0.0 (0.0.0.0

clignt MaC address: Grandstr_0Ll:Fo:42 (00:0b:82:01:Fc:42)
Clignt hardware addres:s padding: GOGGO000000000000000
serveér hoit name not given

+

@

Elﬁlﬂ

oot file name not given
Mmagic cookie: omce
s oprion: (5370 OmCP Message Type
Length: 1
pHoP: Oiscover (1)
= optfon: (&1) Client identifier
Length: 7 :l

FIGURE 7.3 Viewing DHCP discover in Wireshark.

Here, we can isolate specific data. Specifically, we can see that the data is sent
unicast and contains no relevant IP addressing data until the full DORA process
takes place. By jumping ahead and reviewing the final IP lease information
provided by the DHCP server, you can see that an IP address has been given to
the client for use: 192.168.0.10. This is shown in Figure 7.4.

T4 140624387796 192.168.0.1 192.168.0.10 DHCP 342 DHOP ACE - Transaction 10 Ba3die (=] 5

% Frame 4: 342 Dytes on wire (2736 DIts), 342 Dytes captured (2736 DI1ts) =]

Eti‘ltl‘ﬁtt II, Sre: N”Eﬂﬂp_#ﬂ F:I. b Wl:l -:IE 74: ad 'F1 'Bbj BS'I Gl‘dﬁﬂitl‘_ﬂl ff 42 (r}l:l m: 91

- U'E!l' E:-a.tagram Frﬂm:n'l. Sr-: POrt: hnotp-s. (G?J. [:-51: Purt buntpc {aa)
F BoDTsTrap Protocol
Message type: Boot Reply (22
Hardware Type! Ethernet
Hardware address length: &
Hops: O
Transaction I0: OGec00003dle
seconds elapsed: 0
Bootp flags: 0x0000 (unicast)
Dot e e e o = Broadcast flag: unfcast
L0000 0000 0000 0000 = Reserved Flags: 0wO000
r:'l'lent ID address l:l D l.‘r] (D 0. l:l l:')

Next server IP a-:.'dress 0. l:| u l:} l:| 1:| l:r l:|
au14y agent IF address: 0.0.0.0 (0.0.0.00
client MaC address: Grandstr_01:fc:d2 (00:0b:B2:00:fCid2)
Client hardware address padding: 00000000O00RC0GN00M0
terver host name not given
Boot file name not given
Magic cookie: OHCR
option: (53) DHCP Message Type
option: (58) menewal Tise value
option: (59) rebindimg Time wvalue
pption: (§1) 1P Address Lease Tima
= anTdnne (54% feets Sarver Tdenrifiee

i | JJ
Elﬂf} sd 1e 00 00 OO0 OO0 00 OO0 Qﬁﬁﬁmﬁﬁ 00 = rnee-. -
040 WDGDDDDDDGDOE 82 01 TC 4 1ol | e e B i

L

L L]

b
050 00 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 ceuveans
060 00 00 00 00 00 00 OO0 OO0 OO0 00 00 Q0 00 00 00 D0cs ccsroass

070 00 00 OO OO 00 OO0 OO0 OO0 OO0 OD O O 00 00 00 00 ..covves saswnans
AN A AS RS A0 A KR G0 A Bh B B AR AR B0 B0 S0

FIGURE 7.4 Viewing DHCP acknowledgment in Wireshark.

This is only one simple example that you can view to understand why
methodology and knowledge of architecture and basic protocol will help you
solve problems using Wireshark. Without knowing the layout of the systems,
which can come from discovery or already drawn up maps, you will have a hard
time isolating what the problem may be or where it may be coming from.

Having basic knowledge of protocols is also important for you to successfully
troubleshoot the Wireshark. Without knowing that DHCP functions a certain
way, using certain ports and underlying protocols, you will have a hard time
isolating a break in the system with Wireshark.

7.3 Expert Analysis

A commonly used tool with Wireshark is called Expert Info. It can help you
diagnose serious problems, or sometimes point you to a problem that does not
really exist. This is called a “false positive.”

As we mentioned in Chapter 1, Wireshark is a tool that requires you to
understand the basics of networking, know how computer systems operate, and
even know details down into the hardware, software, and NIC card drivers.

This is where troubleshooting can get tricky. In Figure 7.5, the Wireshark

Expert Info is shown. This can be invoked by going to the Analyze menu in the
Wireshark capture window and selecting Expert Info from the drop down menu.
Here, you can view the Errors, Warnings, Notes, Chats, Details, and Packet
Comments tabs.

[T wiresharkc 21 Evpert Infos =10] x]

Errors: 1{13) | Waerings: 0 (0) | otes: 0.(0) | chats: 7(8) Detas: 21 | Packet Comments: o |

FIGURE 7.5 Viewing Expert Info in Wireshark.

Each tab provides specific data you can use to learn more about your current
capture data and get clues on possible issues. For example, in these tabs, you
may find that these are malformed packets as shown in Figure 7.5. Commonly
found problems are malformed packets, checksum errors, out-of-order packets,
Transmission Control Protocol (TCP) retransmissions, resets, and duplicate
acknowledgments, to name a few.

In each section, you can find specific details on what Wireshark has analyzed
from the captured data. What the Expert Info does is correlate the entire capture
and come up with some basic assumptions of what is taking place on the
network. For example, in Figure 7.5, Wireshark has found a series of malformed
packets that you would have had to scan through each packet in the Details pane
to find.

As we reviewed earlier in the chapter with the DHCP acknowledge packet in
the DORA process, we found an error in the packet as shown in Figure 7.6.

T4 101 20,307 798 192, 160,0.1 192.168,0.10 DHCP 342 DHER AC

% EUMErnet II, Src

version: 4
Header Tength: 20 bytes

= Differentiated services Field: O0x00 (oscP Ox00: Default; ECH: Owdd: MOE-ECT (MOT ECH-Capsblé Tra
Toral Length: 328
tdentificarion: OwOd46 (1094)

@ Flags: oo

Fragment offset: O

Time to 1ive: 128

Protocol: uoe (A7)

[Good: False]
= [Expert Info (Error/checksum): Bad checksum]
[Message: Bad checksum]
[severity Tevel: Error)
[Group: checksum]
Source: 192.168.0.1 (192.168.0.1)
pestination: 192.168.0.10 (192.168.0.10)
[Source GeoIP: unknown]
[cestination GeolP: Unknown]

User Datagram Protocol, Src Port: bootps (67), Dst Port: bootpc (68)
BoOTSTrap Protocol

FIGURE 7.6 Viewing a bad checksum in Wireshark.

What this means is simple; there is a calculated error found on the data that
Wireshark captured and Wireshark flagged this data as “bad.” This does not
necessarily mean that you have a problem, however. What this could mean in
this sequence of packets is that the checksum may not have been calculated prior
to Wireshark capturing the data.

To troubleshoot TCP problems with a high degree of success, you
will need to understand how TCP is a connection-based technology
and UDP is connectionless. Understanding how the three-way-
handshake works and the inner workings of TCP is critical to
solving problems in regards to communications on data networks.
We will learn more about the three-way-handshake in Chapter 8.

It can be confusing to some to see an error and find that it is not always an
error, but how the system works with Wireshark, hence why they call it a false
positive. The checksum is in fact bad to Wireshark; however, because it was
captured before it was calculated simply means that it could possibly be ok. A

good way to root out false positives is by looking at the Expert Info window’s
“other” problems taking place at the same time. If there are dozens of
retransmissions, out-of-order packets, and so on, it means, it is possible that the
bad checksum may also be relevant. Figure 7.7 shows an example of a bad
checksum problem where no other problems exist, ruling that it could possibly
be a false positive.

A quick way to find a problematic packet is to open the Expert Info
dialog box and click on the error message in the tabs. This will
direct you to the problem packet in the Wireshark capture window
Summary pane.

1! Wireshark: 2 Expert Infos : =10 x|

Ervers: 1 (2) | Warmngs: 01(0) | Mobes: 01(0) | Chats: 01 (1) Dotk 2 | Packet Commerts: 0 |

_ e | [o= |

FIGURE 7.7 Viewing a bad checksum in Wireshark.

7.4 Flow Graphs

Another commonly used tool with Wireshark is a flow graph. A flow graph can
be used to find details about all messages used in a stream. We learned about
TCP and UDP streams and what they can provide. In a flow graph, you can
show all of them (or sections of them) in a reportable graph tool. By opening the
Wireshark capture window and clicking on the Statistics menu, you will find
Flow Graph. Select it, and open the Wireshark Flow Graph dialog box as shown
in Figure 7.8

RI-TEY
Choose packets

" Al packsts

{o Displayed packets

Choose flow type
% General flow
" TCP Flow

[Choose node addrass type-
(% Standard sourcefdestination addresses
" Metwork source/destination addresses

(0 4 Cancel

FIGURE 7.8 Viewing a flow graph in Wireshark.

Here, we want to view the TCP-based communications in the current capture
to see what types of queries are taking place. In Figure 7.9, the specific output
from the Flow Graph is shown. Here, we see the Time window which is set to
show us specifically each TCP steam taking place at that time, from source to
destination.

If you click on one of the arrows/flows within the graph, it will
highlight the relevant packet in the main window.

tmrrend capfure |pslapreg - Grash Anahysis

i

i LT R 189, 254.1.143 1921681298 Sctorne_Hdebd :'
VR L8 [TR I Etwior_Ly
WRTLMATENE | nauioed e Dl
1 2T TR0 T PR
126 AT | B0 son Pl e s
16 TN A00 -1 DL
16 M 2R TR0 ey RS e O
T8 B I dririzaiig
AT 100 v PR SR DA
163 3 ST LA s SRR
e i S TiR00 cruny, B e Bl
1 0 S T
1 A ATRO000 eory S DATLINR
1T SN0 - LT
130 PTG 1000 oy, bR] gty YRRE
1T 0 - H
1 T TIRRN0 K : . i
b % 4l) e ,—Inmmﬂ—.._ﬂ ¥
R ITE || i Dogl) . : : =]
dl | il
s | [Eosi]

FIGURE 7.9 Viewing a flow graph in Wireshark.

Flow graphs help in seeing how the traffic on the network looks like as a
whole, not just from single source and destination pairs. You can see how many
hosts are having conversations with a single host and then can find out if that
host may or may not be overwhelmed with connections.

You may have to adjust the time-stamping options in order to specifically
report on time. In order to do this, open the Wireshark capture window and click
on the View menu, select Time Display Format, and then adjust the time settings
you would like to see, which is shown in Figure 7.10.

To learn more about specific problems, a great place to learn from,
discuss with all levels of expertise, and ask questions is the
Wireshark Ask forum.

http://ask.wireshark.org

http://ask.wireshark.org

T amrend caplure Lpcapng [Wireshack B4 (S0 Rev 48350 freen Urunk-1.8)]

Bl Lok [aw Gy Cioeire grahos Jatutics Teschory ook [reemsls beb

B i Tk «s v T i |G aaabd/EenRx B
e W et Tooker - — Pl Ml
b, r ¥ Wil Todur *| Dapeesson.,, .
v S
| i | |hiore | Wil LB Detrypan Kevs..,
e L e | Y |-k i
¥ Pocket Detal 192.168.1.4 TR B2 htip » oracle-vp2 [SvN, ACx] Seq=0
‘v Packet Byt T2.¥1,81.2%3 TR 54 oracle=vp2 » http [ACK] Seqe=l Acks=]
TROM oM HTTR ARG AFT eric e ent fupToads A2002 400 Ael s
TR oo e cf Do STOOL-O1 00020002045 Ciirakar Fup2 [ACK] Seq=l Ackel
Mame Baschgtion * re] htp > oracle-
ok Packet 3 reassesbled POU
: s e Seconds Sros [poch (197000010 [ZMSATIR01ZHEE Chbedked be o poccconpqng m‘}
i Securets Srvn Bogrrarg of Caghure: 17L1EME Cibakes frrep [ACK} Seqe307 Ach
4 Zoom Gt Ooe Seconcs Secn Previous Cuclayed Pachet: 112058 cbeaki [ovr Lare] m_miul'],_
5, dpoeresl Sw Crlem UTCEwteand Ve of Day: 1ST00L00 DLASA0IZMES CubeAkeT b 3 reassembled Poul
d WUTC T of Dy - CH02000. 1 2456 Cirtaks7 BT 3 reassesbied POU]
o 7] Pasics Al Cora et Lo tp [ACK] Seq=807 ach
1 Taspiarped Colmng b e atomatic (Fhe Fomst Frecsion) = e
W Frame | el i ok
Ehar (Erpeaned &1 ChrhRught Decmeconds: 0.1 FEEEE CH v
= Tnters Colces) L e Centisacondhs .12 -
kumar b colres Comeesation L
Rl Colirn 1400 e Snpoe Meorimsconds: 0L 1F35E
" ok Fules., Manomecardi: 0.1ZHS6TER
Shiows Pkt in M Wincliess gy Tcaneds st hours and marubes
2 Reksd cubsh [
ﬁ U0 <% GO 44 Oe G2 a0 BF B4 14 v T P I
10 00 4¢ 48 bd 00 D 80 11 &0 5c <0 a8 01 04 <0 36 KH..... Ty

FIGURE 7.10 Adjusting time in Wireshark.

7.5 Summary

In this chapter, we have learned more about how to solve problems with
captured and filtered data. So far, we have learned how to get Wireshark up and
running and use it to capture data and filter it; however, we have now expanded
into topics that show the real power of Wireshark and what it can help you
discover. In Chapter 8, we will look under the hood and learn how to conduct
more detailed analysis with Wireshark.

CHAPTER 8

Inspecting Packets

8.1 Getting Started

8.2 Understanding the Technology
8.3 Capturing and Filtering Data
8.4 Inspection of the Data

8.5 Analysis Tools

8.6 Summary

In this chapter, we will learn how to use Wireshark to inspect packets and isolate
network and system problems. In this chapter, we will look at a single problem
and show you how deeply you can dive into the data that is captured by
Wireshark for your analysis. We will cover the inspection of a problem posed on
a switched Ethernet network, very common in today’s environments where
bridging loops create storms that impact the network in adversely.

In this chapter’s example, we will cover a spanning tree protocol (STP) issue
and go deeper into packet analysis and what Wireshark can do, show you, and
help you analyze in hopes to solve a problem.

Make sure that if you are encouraged to test any of the theories in
this chapter, you do it on a test network. Spanning tree loops and
the packet storms that follow it can cripple your network to the
point where it cannot be used.

MO 1 £ addiiace COhawd~l

O.1 ULy olareu

As we learn more about Wireshark, we will discuss problems found on a
network and specifically why they occur from the packet level. Here we will
take an in depth look at a few common (and not so common) problems and what
you are looking for in the packets, how to use the tool to get and view this
information and how to use Wireshark to solve them. We will also look at other
tools you can use to augment the use of Wireshark to solve complex network and
system issues.

8.2 Understanding the Technology

STP is a network technology that helps logically manage a switched (or bridged)
network that has redundant connections so that you do not have “loops” in the
network topology. It is a protocol that runs on the network switches and can be
configured to be optimized, however, it is generally operational by default. STP
(which we will call Spanning Tree for short ongoing) is an IEEE standard. It is
known by the identifier 802.1D.

The way it works is simple. It will allow data to traverse on one connection,
but will block the redundant connection to prevent a loop, which in turn can
cause a broadcast storm that floods the network with packets and causes all
devices to process this data at a rapid rate thereby causing other symptoms, such
as high CPU and I/0O use. When Spanning Tree is put in place, it can keep a
network very stable and it recommended whenever you have more than one
connection to any single device. A Spanning Tree is created by the switches on
the network and can be configured.

A device called a root bridge (usually the system with the lowest bridge ID
computed by a priority number, a port number, and a MAC address) maintains
the Spanning Tree for that particular network segment.

Figure 8.1 shows an example of a very simple network hierarchy where five
network switches are connected together to form a LAN.

Root bridge

FIGURE 8.1 Typical network with STP.

In Figure 8.1, we see ports (where connecting links uplink to other switches)
configured in a way where data can traverse the network without creating a loop.
The root port (RP) forwards the data based on a computation of least cost path
from the switch in which it is connected. The designated port (DP) is the least
cost path for that segment that connects each switch. This creates the least cost
path. However, if a loop is present from a redundant port, that port is put into a
blocked state and becomes a blocked port (BP).

When the Spanning Tree is configured, running and optimal and all
ports are stable as well the Spanning Tree is considered
“converged.”

Ports become a RP, DP, or BP by going through a series of states. When a
connection is made to a switch the port (through Spanning Tree) will go through
the process of listening, learning, forwarding, blocking, or disabling. These are
explained as follows:

1. Listening: When a port is listening, it does not pass traffic. It does not
populate the MAC address table where the switch makes its switching

decisions.

2. Learning: When a port is learning, it does not pass traffic. It does
populate the MAC address table where the switch makes its switching
decisions.

3. Forwarding: When a port is forwarding, it is sending traffic based on the
MAC address table where the switch makes its switching decisions.

4. Blocking: If a port is identified as a potential for a loop, the port is put
into blocking state. This does not disable the port, it only blocks traffic to
and from it. The reason why this is important is because when you want
redundancy this port becomes part of the redundancy. For example, you
may have a switch to fail over to another switch if it fails. If one switch
fails, the BP switches to forwarding and data continues to flow through
the network.

5. Disabling: Normally a port is in disabling state when it is manually
shutdown or disconnected completely.

It is recommended that you use rapid spanning tree protocol
(RSTP) IEEE 802.1w to limit the default timers used in order to
reach convergence. RSTP uses roles, such as root, designated,
alternate, backup, and disabled. It ports the port states learning,
forwarding, and discarding.

The states in which the Spanning Tree transform into and how it maintains
convergence is done by information sent to and from each switch through bridge
protocol data units (BPDUs).

A BPDU is the data that traverses the Spanning Tree topology devices through
the network to control how the Spanning Tree operates. When using Wireshark,
this is specifically what you will capture in order to troubleshoot Spanning Tree
problems. A BPDU frame is broken down into 12 fields as shown in Figure 8.2.

Protocol identifier

Protocol version identifier

BPDU type

Flags

Root identifier

Root path cost

Bridge identifier

Port identifier

Message age

Max age

Hello time

Forward delay

FIGURE 8.2 BPDU fields.

These fields will become relevant when you start to capture Spanning Tree
data and review within the Wireshark capture window.

8.3 Capturing and Filtering Data

Now that we understand how a Spanning Tree is supposed to operate, let’s look
at some common problems that may occur within it and why when capturing
data with Wireshark is equally important to understand. Some common
problems you may encounter are (but not limited to):
* Spanning Tree 802.1D used instead of 802.1w
* No root bridge configured or a root bridge configured on an underpowered
device not centered in your topology
* Using redundancy [with protocols such as Cisco’s hot standby router protocol
(HSRP)] and designing Spanning Tree incorrectly when using it
* Too many redundant links in a blocking state
* Not using STP or any other technology of its kind.

In this example, we connected to a switch in the core of the network closest to
the center of the topology. Spanning Tree when captured by Wireshark can be
filtered by using the Expression Filter as shown in Figure 8.3. As you review the
filter expressions, it should clear that everything we just learned about is
something you could filter for within the captured data you collect. In this

example, we will look for the location of the root bridge using the captured
BPDU frames.

T Waeshark fdter Leprension - Prolie: Delsoll 3 al0l=

Pk ruamer Bt

R e 2l s prwet |

g v - B o Ve e
¥ o - BPOLI Trpw

s Pl - B0 e b
i Pl eaech - Topogy Changs Acrowdedomen, -
Mgt scresmmrt « Acresant o=
g dermandnn « Formardeg

B et - Leatsw)

g et _pale - Pust oke

i Pap jropou - Progosl

5 Flag.tz - Topokoqy Thange

gtk pria - ook e Pty

ot « ook ek Syibem D Exbaraier,

5 ot P < Tt Brele Satems 1D

e 0o - Pk P Gt

v bricige prics - Brige Pricsiny

i Bricige st - Brickgs Syshem [0 Detmnion,

i Ericiga bes - Bridm System 1D

gt Port iderifier

i e - Mk A

e + M g

i s - sl T

g Parwid - Forard Daliry

g varnce,_ | gt - Verson § Langth -
s e ersgth « Verson 3 Lmgth

s ey flarmat_seictor + MET Gy B0 beried
et ey e - BT Confe) it
e e el - BT Config eiveen

[et A1 ot et _'I:I I—' :

FIGURE 8.3 Filtering STP.

Once we filter the data, we can see the root bridge captured in Figure 8.4. In
this example, we filtered for the STP. BPDUs sent through the network every
2 seconds are sent via a multicast address. The address is 01:80:C2:00:00:00.

B DR Y o Cnbre o fabm Reistor Teghon [k sk el

BEMdae EExas nesauFldon acaan @anmE B

Luji_u_m:eﬂ—m B = e o s s
[.-.:.-:-m.'-a-.- it E-. e I--:- = jl:un- 3-....-.-" ki, DTV

S Frame wr e T, 5 CADTLT oits -
WA _ERCAP; L
Arrfval Ties: 0t 3, 2007 09 90:11, 452030000 Eastern Daylight Tima
[Tiss ghift For thig packer: O, G00000000 fesondi]
Epch Time: L10E234A7E. 52120000 seconds
(= delea from previcss caprured frame: 2. 005037000 seconds]
[rime dalta from previcess dlsplayed frase: 2. 003032000 seconds]
[rima ginde raference o Flrst frame: 16, 00844000 sacondi]
FramE Wusher: §
FramE Lengrh: &3 byves (480 bits)
Capture Lengthc 50 bytes (480 birs) =B

i

3 [R EET - BB
Pole O 00 0 00 00 ©0 B0 B4 00 1o De BT TH 00 0D OO mreraad ey
020 00 O B bl 00 Lo Oa BT B5 00 BO D4 01 00 B4 00 walth, e
o3 0F OO OF 0O 00 05 00 00 OO 00 00 O3 ek

|Gﬁ:w1mum T8 [Prolie: Colinct

FIGURE 8.4 Wireshark with captured data.

To do a deep dive of this, we need to select a frame with this multicast address
and filter deeper for the root bridge. We can then move from the Summary pane
into the Detail pane as shown in Figure 8.5.

- Frame 13 w on wire D5 [13 ﬂpiur (0

arrival Thes: oCr 24, POOT OB:S5:83 413454000 astern Oaylight Tims

[Time skify for this pacier: O, 0000000 seconds]

Epoch Time: 1193234155, 4034 58000 secords

[Time delta From previous captured frame; 0. 000000000 sescrdi]

[Tias delts From pravious displayed Trase: 0000000000 fecondl]

[Tima simce reference or Flrar frame: 0. (00000000 seconds]

Frame musher: 1

Frime Lingthi &0 bytes (480 bits)

Capture Length; &0 byTas (A0 BAEs)

[Frime 15 marked: Faize]

[Frame 15 ignored: Fatss]

[Provocols in frass: evhillcosep)

[coloring Rula sass: Brosdcast)

[colering rule String: ethid) & 1]
= IEEE §0F.1 Evharnet

= pestination! Sparering=ores-(for-br 1oges]_ 00 (0L 280rc? 100100 0]
Agr ey o 1Pl.r\-"|'|ﬁ9 re=(for=hrdges), l}(‘.‘ (O @00 p00: D00
o o= UG BT Globally unigue address (Factory defaulc)
ol o = 06 BEE: Growp addrasd Ceslvicast Brcadeiit)
- "'Dq.n'r.,r c'm:n EJ‘ !-h -\.H- (.ﬁ:- *c O BT B 0]
Agdress: C1sco SFeaf ool (O0rlcioe:STeas ol)

B ware veas aree s = LG BAKS c.ln-'mﬂ;- unigue address (faczory defautc)
@ wene vres awee aeen = 06 BT Indivical sddress {unicast)

Lrngll 17
Patdng: GOOODDDIOIOGG0
Loghcal=Link Comral
DRkP; Spanning Tres BPDU (Owd2)
15 04t : Indvidus
SEAP: Spanning Tres BPpU [Onal) il
cr oBit: Cosmand
conoral fields u, funceul (3]
000, €3, = Command; unmosbered Inforsation (0000
seer 121l = Frame Type: Urrumbersd frase (0w0l)
< spaniing Trae Pratecs]
provoco] Ddengifier: Sparnirg Tree Protocol (Owodad)
provoco] version fdentifier: Spanning Tree £0)
BPDU Typa: Conflgeration (0egg)
= mepa Flagis Ou
R chinge ack il | ARANIE 1 M =

P el S,

FIGURE 8.5 Searching for the root bridge in the Detail pane.

The root bridge can be found within the sections of the Details pane, which
we will dig into next.

8.4 Inspection of the Data

Now that we have captured and filtered for the relevant data, we are now ready
to do a deeper inspect of the data within the frame. We need to recall the BPDU
frame we learned about in Figure 8.2. In the Details pane, we can review the
specifics we learned about such as first reviewing the Frame field as shown in
Figure 8.6. Here we can review when the frame was captured and its size.

B Frame 1: 80 bytes on wire (480 bits), 60 bytes captured (480 bits)
WTAP_ENCAP! 1
arrival Time: oct 24, 2007 09:55:55.413456000 Eastern Daylight Time
[Time shift for this packet: 0.000000000 seconds]
Epoch Time: 1193234155.413456000 seconds
[Time delta from previous captured frame: 0.000000000 seconds]
[Time delta from previous displayed frame: 0O.000000000 seconds]
[Time since reference or first frame: 0.000000000 seconds]
Frame Number: 1
Frame Length: &0 bytes (480 bits)
Capture Length: 60 bytes (480 bits)
[Frame 45 marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:11cistpl
[coloring Rule Mame: Broadcast]
[Coloring Rule String: eth[0] & 1]

FIGURE 8.6 Inspecting the frame field.

Next, we can review the Ethernet field as shown in Figure 8.7. Here we can
review the source and destination MAC address. We can see in the destination
section the multicast address 01:80:C2:00:00:00. We can see the source MAC
address comes from a Cisco switch.

= IEEE 802.3 Ethernet
= pestination: Spanning-tree-(for-bridges)_00 (01:80:c2:00:00:00)
Address: Spanning-tree (fur-hriﬂgesj 00 {0L:80:c2:00:00:00)
IR, T ceas = LG bit: Globally unique address (factory default)
....... 1 .ive cons sans wa-. = IG bit: Group address (multicast/broadcast)
= Source: CiSC0_87:85:04 (00:lc:Qe:B7:I85:04)
Address: Cisco B7:85:04 {l.’:ll:} 1c:0e:BT:B5:04)
L0, wess saee. = LG bit: Slobally unigue address (factory default)
....... © veen eee sees wen. ® 1G biT: Individual address (unicast)
Length: 38
Padding: 0000000000000000

FIGURE 8.7 Inspecting the Ethernet field.

Once we have found where the frame is coming from and where it is going to,
we can inspect the LLC field. In Chapter 1, we reviewed the OSI model and
learned that at layer 2 of the model we see its split into two layers, one being the
LLC. When frames operate at layer 2 (using MAC addresses), the LLC field
maintains specific data at a higher level in the model. In Figure 8.8, we can see
that data as the BPDU information.

= Logical-Link Control
psar: Spanning Tree BPDU (0x42)
16 git: Individual
SSAP: spanning Tree BPDU (0x42)
Ch Bit: Commarnd
= Control field: u, func=ul (Ox03)
000, 00.. = Command: Unnumbered Information (0x00)
...... 11 = Frame type: Unnumbered frame (0x03)

FIGURE 8.8 Inspecting the LLC field.

Once we have reviewed that data, we can see in the STP field (as shown in
Figure 8.9) the specifics we were looking for, primarily the root bridge
assignment as well as the MAC address associated with it.

= spanning Tree Protocol
Protocol Identifier: Spanning Tree Protocol (000007
protocol version Identifier: Spanning Tree (0)
BPDU Type: Configuration (0x00)
= BPDU flags: Ox00
. = Topology Change Acknow]edgment: NO
wese aaa = Topology Change: Mo
= root Identifier: 32768 / 100 / 00:1c:0e:87:78:00
root Bridge Priority: 32768
rRoot Bridge System ID Extensiom: 100
root eridge System ID: 00:1c:0e:87:78:00
Root Path Cost: 4
= Bridge Identifier: 32768 / 100 / 00:1c:0e:87:85:00
eridge Priority: 32768
Bridge System ID Extension: 100
eridge System ID: 00:1c:0e:37:85:00
port fdentifier: OxS004
Message Age: 1
Max Age: 20
Hello Time: 2
Forward Delay: 15

FIGURE 8.9 Inspecting the STP field.

Now we know what system holds the identity of the root bridge. To find what
device this is on your network, you can either look in the MAC address tables
and find the relevant port, then map the ARP tables to IP addresses if a layer 3
assignment is given.

8.5 Analysis Tools

To maintain a healthy Spanning Tree and be able to monitor its stability, you
should consider not only designing it correctly, but also managing and
monitoring it the best you can. There are tools available to help you to do this.

Two notable tools that can help you manage and monitor your Spanning Tree
network is the SolarWinds (www.solarwinds.com) network monitoring tools or
the Cisco (www.cisco.com) network monitoring tools called Cisco Prime.

Other technologies you can put into place are configurations, such as
RootGuard, PortFast, UplinkFast, LoopGuard, BPDUGuard, BPDUFilter, and
BackboneFast from Cisco, which help you to further manage the stability of
your Spanning Tree network.

8.6 Summary

http://www.solarwinds.com
http://www.cisco.com

In this chapter, we looked at the specific details you could find when inspecting
packets using Wireshark. In the example given, we took a look at how
understanding a technology like Spanning Tree is critical to the process before a
capture is even taken. Then, understanding the topology and where to capture
data from equally important to finding specifically what you are looking for. We
then filtered the data to find what we needed and inspected the data closely to
find what we were looking for. In the next chapter, we will look deeper into the
data to find out ways Wireshark can assist you with finding more complex issues
and how to use other tools to help find a problem’s root cause.

CHAPTER 9
Deep Analysis

9.1 Getting Started

9.2 Deep Analysis

9.3 Analyzing Flow

9.4 Troubleshooting Phones

9.5 Security Analysis

9.6 Network Performance Analysis and Optimization
9.7 Using Wireshark Online

9.8 Summary

In this chapter, we will learn how to use Wireshark to go deeper into inspecting
packets and isolating network and system problems. In this chapter, we will
expand on what we learned in the last chapter but look at other areas of the
network and the systems in use so that you can learn more about how to
troubleshoot with Wireshark to solve problems at a deeper level.

In this chapter, we take a deeper look into the data, the systems and the
network in order to define and find root cause of problems as well as how to use
Wireshark and other enterprise tools to solve issues that occur over WAN links,
when using a softphone and to find security problems. We will learn about
probes, taps, and how all of these tools can be used together to create a complete
picture to help you not only understand why data traverses a network a certain
way but also why it chooses specific paths, how it interacts with destination
systems, and what could go wrong within those conversations. We will look at
Voice over IP (VoIP) problems, malicious software issues, how intrusion
detection/prevention, scanning, and many other services work on a network and
how Wireshark can help you work with them when solving issues.

9.1 Getting Started

When you work with a network or are directly responsible for it, you will often
hear that there are problems with it. Some are common help desk requests from
users who have problems remembering their system passwords, and others are
calls from users who cannot login because their network cable got unplugged
again. Although these are common problems, and annoying at times, they are
easily fixed through a quick series of troubleshooting steps and usually require a
simple solution. We learned about using a troubleshooting methodology
throughout this entire field guide.

End users constantly call the help desk and complain about the network, they
normally say that the network is too slow. On the complaint list is a steady flow
of why the speed of their logins is slow, hanging or frozen applications, or
timed-out sessions? Obviously, there could be a problem with network
performance if the majority of your users call to complain, however, sometimes
it is isolated to a single location, network segment, or even one or two users.
Where do you begin to look for the source of this problem? With enterprise
networks growing and connecting to other companies’ networks increasingly
rapidly, monitoring network performance can become a cumbersome task.

In this chapter, we look at how to initially isolate a problem, monitor the
network’s performance using tools like Wireshark, and then offer tips on how to
correct the issues.

9.2 Deep Analysis

For our first discussion, we will look at how to analyze a connection request
from a source system to a destination system and analyzing any problems that
can occur in between. When connections are established using the TCP/IP
protocol stack the “manager” of this effort is handled by the TCP.

Some of the problems that can occur to cause issues with TCP from
functioning correctly is ports being blocked by a firewall, a faulty network
connection (such as a NIC card or switch port), or misconfigured settings on
network and system devices.

TCP handshake is how connection-oriented communication takes place. For
connectionless UDP is used. When TCP is used (e.g., to visit a website), TCP
handles the connection establishment between the source and destination
devices. When this connection establishment takes place, the first few packets

sent back and forth are called the TCP handshake. How the TCP handshake
works is shown in Figure 9.1. The source computer will request a connection to
the destination by sending a packet with a SYN. This is usually initiated if you
are going to use a resource on the server from the client such as requesting to
view or use a web page as an example.

Request for connection (SYM)

Source Destination

o~

[g Connection granted (SYN, ACK) R
<

S
% Connection acknowledged (ACK)

Established connection
passing data

L J

FIGURE 9.1 The TCP handshake sequence.

Once the request for connection has been made, the destination system (the
server with the web page) will grant the connection with a SYN, ACK. Then the
source system acknowledges the destination system with an ACK. Once the
three-way handshake takes place, the connection is deemed established and data
can pass. The result is that the source system (the client) can view the web page
on the destination system (the server).

So now that we have an understanding on how TCP/IP works on your
network, what would Wireshark show when you capture this communication
between the source and destination? To view this communication, you need to
capture data in between a source system and a destination and configure
Wireshark to capture it. You can perform the same test by having a client
connect to a web page on a server and capture the communication as seen in
Figure 9.2.

T e enet Caphure borapeg [Waeiiaek 104 (59 ey AA20 frem ek 1)) = 1 |
Bl [8 Pew o Qctuore feaboe JRaiwfcn Teleghony Took jrimnsr (fen

ﬂ_ﬁiﬁﬂ ExEa nesaT e &G aaap Emnm| g

Tt [= Eapreason..

3, 440713015, 168, 2,4 Tiyal. B, 2% TeR b GresIe-vpE Seq=0
A53BIB0TI. 21, 01250 152.168.1,4 TCP 52 PTG s GCACTENED (SN, ko] Braed Ack=d winatH
4330050240, 16834 72.72.91.283 Tee 1 praele-vp? > Mrep [ACK] Seqed Acksl wimss4312 L4

33454850052, 188.1. 4 T3 21.8R. 253 HTTH B0 GET fepecont 80 Aup Toads 2010 Aeirgshark T png B
ALATITOTE. 21, 81. 253 192.168,1.4 TR 5 http > oracle-vp? [A0] Segel Ack=BO7 wine3034 I.J
ARAN100 TS, 21,01, 230 AR2.108.1.4 TCR s [rop window Lpdite) MEIp > ofacle-vpl [ACk] Sege
ASPTHBOTE. 31, 5. 380 19216854 TCR 1X4 [1oF segeent of 4 relitesbiled Pou]
ARLEE0TE. 21810353 1%2.168.1.4 TR 1314 [TOF segment of & reassesbled Fou]
452470097, 188,14 Ti. 21,80, 253 TiE 58 orgcie-vpl » brop [&0] SeqeB07 Acke=2521 Whnefd!
35 A% 4BOTE, 11, 81210 172,108, 0.4 TP 1314 (TR gegment of & résizesbled Foiyl
AR TG T, 21, 01280 193, 168.1.4 TCR 1514 [ToF dagment of 4 reasddeshled Foul
H 4ARI0TI0A03. 188,34 T 21.E.25) TCR Hooricle-vpl > hg [ACK] Seq=B80T Ack=3041 win=f4!
£1] M J'i '!11 4'“6\?]'&?! F1.H1.253 192.158.5. 4 TCR 1314 [CI"' Sagment Gf a 'I'Ni'slﬂll-bd Pbujl- &
| | |

© Frasa 46: W Bytes on wire (452 DIT3), 4 bytés cAplurad (40 BITS) Gn IRTartace o

¥ ETherner 1T, Src: Ietelcor la:S0:L8 (a0:8:0dr1atBOTiE), OsT: actionresdd:de:b? (00:26:nE84 debl)
u Erpernet Protoco] wersion 4, Sroo 19Q.168.1.4 (152068, 1.4), st T0%.185.10.097 (20%. L85, 14.1%7)

- Traremlggion Contral Protodel, Sre Port: fhip (1807}, 0it Port: htnp (80D, Seqi I, Acki 1, Leni @

R o0 I B8 40 da BY a0 B9 I T IE G AT o A T 1)
Col0 ©0 28 A8 <F 40 00 B0 04 A1 S0 cO o Ol 04 od B n:nu
k00 40 ©5 07 oFf 00 S0 %a b <3 04 Th 57 91 31 S0 14 wneaaPaa ol 1P
ook SO yld W @0 Ll

|ﬁ 7 [P " Documents aned Settirairdwmonaies . [F [Feafbe Dol skt

FIGURE 9.2 Viewing the TCP handshake in Wireshark.

As you can see in Figure 9.2, the client (192.168.1.4) is making a connect
request to view a web page on a server (72.21.81.253). We have captured the
communication as seen in the Wireshark capture window and it can be verified
by looking in the Summary pane. Here you see the source and destination IP
addresses as well as the protocols being used which are TCP and HTTP. This
maps directly to our discussion and example on a client visiting a web page on a
server. You can use the Info section to derive the data such as the TCP
handshake taking place.

So let us dive into reviewing the segments and review the finer details in the
Details pane of Wireshark. In Figure 9.3, we have selected the first portion of the
handshake to review. Here we see the client (source) sending a connection
request to the server (destination) using port 80 (HTTP). In the flags field, we
see the SYN bit set.

T 47 16:39:53,4-40T1 5000 192.168.1.4 T2.21.81, 2!3“’.?5..0(&(&-!11.._ H{'p[ﬁ'msﬂﬂ r

ET ernet II Src Inte cur_.:la 30 13 aﬂ BB b-'l FEH ED 15 B Ds‘l: li:l: l:unI
Internat Prutucu‘l versfon 4, Src: 192.168.1.4 (192.168.1.4), Dst: 71.71.81, 253 (72.21.81. 2‘
- [Transmizsion Control Protocol, Src Port: oracle=vp? (1808}, DSt Port: hitp (800, Seq: 0, Le
Source porti oracle-vp2 (1808)
pestination port: http (600
[Stream index: 1]
Sequence nusber: O {relative seguence number)
Header length: 28 l]gl't!i
- Flags: Ou002 (SYH)
[- Resemed WOt ser
Sl ali = MOMNCE! HOT Set
s T = Congestion window Reduced (CwR): NOT Set
WO waw. = ECM-EchO! MOT SeT
vans salle wuew = UFQENT: MOT 8T
....... 0 oo = acknow]edgment @ MOT SeT
........ 0... = Push: Mot Zet
cans sass o, = RESETS WOt 1ot
D I DT HE 1 SR
........... 0 = Fin: Mot set
wWindow si2e valus: 64512
[Calculated window size; &4512]
= Chacksum: Oufdde [corract]
= options: (8 bytes), Waximum segment size. Wo-Operation (MOP), No=-Operation (MOP), SaCK pd

FIGURE 9.3 Viewing the TCP handshake in the Detail pane (SYN).

Once the connection is underway, the destination system needs to send a
SYN, ACK back to the source as seen in Figure 9.4. In Figure 9.4, we can see
the source IP address as the server and then destination switches to the client.
We can see the flags set to SYN and ACK.

Ethernet 1], Src AT um:e_,.l..l. [+ H H 26 L . .SD:IB agiagib4 1
Internet Protocol Version 4, Src: 72.21.81.253 (?2 21 Bl. 25\3)\1 Dst: 192.168.1.4 (192.168.1.
ssion control Protocol, Src Port: hetp (80, DSt Porti oracle-vpl (1808), Seq: 0. At

" Saurce port: http (800

pestination port: oracle-vp2 (18080

[Stream index: 1]

Sequence number: 0 {relative sequence number)

Acknow] edgment number: 1 (relative ack number)

Header length: 28 tq,n:es
= i?{ﬁdmm ;

ma

RESErved! MOT 8T
MOMNCE! MOT Set
Congestion window Reduced (OwRr): NOT Set
ECM-Echd: HOT Set
Urgent: MOT SEt
Acknow] edoment @ Set
Push: MOT Set
RESeT: MOT Set
R HI} = Syhiiosat
= Fin: mot set
window size v:ﬂue 5840
[Caloulated window siza: 5840]
® Checksum: Ox2abl [correct)
= options: (3 bytes), Maximum segment size, Wo-Operation (MOP), No-Operation (MOP), SACK pd
® [sEq etk analysis]

i | i |

FIGURE 9.4 Viewing the TCP handshake in the Detail pane (SYN, ACK).

In Figure 9.5, we see the completion of the handshake by the source (client)
sending an ACK to the destination (server) completing the handshake. In the
flags section, we can see the ACK set.

+ E'l:hEFI'IE'I: II, Src .m:eh:clr_l 1801 : i
Internat ﬂru:ltuccl'l version 4, Src: 192. 163 1 4 {J.'?Z J.E-B 1.4), Ost: 72.11. EI]. 253 (72.21.81.2¢%
= Transmission Control Protocol, Src Port: oracle-vp? (1808), Ost Port: hrtp (800, Seq: 1, &c
Sgurce porti oracle-vp2 (1806)
pestination port: http (600
[stream index: 1]
Sequence number: 1 (relative segquence number)
Acknoe] edgment number: 1 (relative ack number’)
Header length: 20 bytes
Flags: Omol0 (ack)
000, vuvs waen. = REServed! HOT SeT
MR IR = MOMCE! MOT SEt
o B e = Congestion window Aeduced (Cwr): Not set

s wies = ECH-EChD! HOT S8T
saws walls siee = UFQENTI MOT S8T
....... 1 = acknowledgment: Set
........ 0... = Puth: HOT Set

« 0., = RESST: MOT ST
A o0 = SyMI MNOT ST
........... 0 = Fifn: HOT S&T
window size value: 64512
[Calculated window size: 643512]
[window size scaling factor: =2 (o window scaling used)]
Checksum: Qu7244 [Correct])
[SEQ/ACE analysis]

FIGURE 9.5 Viewing the TCP handshake in the Detail pane (ACK).

When working with Wireshark to solve a network problem, you could attempt
to capture this three-way handshake and check these specific sections to see if,
for example, the client sends a connection establishment request (SYN), and you
do not see a SYN, ACK in return. Or, you can see disconnects in the established
connection.

The flags are important because this is where you can see specific data in
regards to what bits are actually turned on. TCP Windowing can also be seen in
the flags section. Many applications rely on a network to be able to perform
adequately and if there is a large amount of small packets, fragmentation,
retransmissions, high buffering, or other problems associated with causing
performance problems, you can use the data found in your captures to find and
then resolve them.

In Figure 9.6, we can review the TCP windowing flag. TCP hosts when
communicating need to agree to limit or amount of data that can be sent at any
given time. This is called the TCP window size and found in the TCP header.

T 52 16:39:53.46631 EOO0 T2.21.01.253 192.168.1.4 TOP 54 [TCP Window Update] it = onscle-vpe [ACK] S =100 =]
Frama 521 54 es on wire (432 bits), 54 bytes captured (432 bits) on interface O
Ethernet 11, Src: Actionte_dd:de:b2 (00:26:bE:44:de:b2), Dst: IntelCor_la:80:18 C(ad:83:b4:1
Internet Protocol Version 4, Src: 72.21.81.253 (72.21.81.253), Dst: 192.168.1.4 (192.168.1.
- mransmission Control Proteco), Src Port: heip (800, 0sT Porti oracle-wp2 (1808), Seq: 1, At
Source port: http (800
pestination port: oracle-wp2 (1B08)
[stream index: 1]
Sequence number: 1 {relative seguence number)
Acknow] edgment nusber: 807 (retative ack number)
Header Tength: 20 bytes
= Flags: 0000 (acw)
000, +ivo wa-. = RESErved: HOT SeT
VL e = MOMCE! MOT S&T
............. Congest ion window Reduced (
cBis re.. = ECM=ECKD: HOT 56T
srie ++li cses = UCQEIT: HOT 32T
....... 1 = acknowladgment : Sat
........ Q... = Push: HOT S@t
rer o0, = RESET: MOT Set
vivr wras ool = SyMI MOT 4T
........... G = Fin: Mot set
window size value; 18120
[Calculated window size: 16120]
[window size scaling factor: -2 (no window scaling used)]
® Checksum: Qw27 [correct]
+ [selack analysis]

| | A
E] B4 1a S0 15 U0 6 OO 44 G6 D2 UB DU 25 00es & .D....E.

QL0 00 28 33 10 40 00 fc 06 0 00 4B 15 51 fd c0 aB. .(3.0... ..H.O...

020 01 04 00 50 07 10 oF ¢4 0a 72 db OF Sc 50 SO M .. lP.... .roOPRR

030 3e F8 2¢ 27 00 0D e

FIGURE 9.6 The TCP windowing process.

In this example, we can see that the window size has been configured to a
predetermined (or agreed) size. This is determined on the initial SYN sent to
establish the connection via the source system. In this example, no scaling was
used and the preset or predetermined sizing was used. If a problem did exist, you
would see congestion notifications in use as seen in Figure 9.6.

Some Windows systems (such as Vista as an example) used
autotuning features to adjust TCP flow. You can also find these
types of issues when working with Wireshark by reviewing the
details pane very closely and monitoring the specific sizing details
noted earlier.

9.3 Analyzing Flow

There are other ways you can use Wireshark to review connections from source

to destination. As we covered earlier in the field guide, using flow graphs can be
a helpful way to review communications on your network. To set up a flow
graph, go to the Wireshark capture window and select the Statistics menu and
choose Flow Graph from the drop down menu. In Figure 9.7, you can configure
the flow graph how you would like to see it. In this example, choose TCP flow.

i wireshark: Flow Graph
Choose packets
(" all packets
(% Displayed packsts

=10l x]

Choose Flow type
[ganeral flow
% TCP Fow

Choosa node address type
% Standard source/destination addresses
" Mebwork source/destination addresses

sl |

FIGURE 9.7 Configuring a flow graph.

In Figure 9.8, you can see the flow graph created around the previous example
of the TCP handshake sequence. Here you can see specifically how long it took
and what sequence numbers were being used. This is a quick way to see if you
have latency issues where or problems with the sequence.

T inmrend capbure 1 paping - Graph Analysn — =10l
Tt 152, 168.1.4 s -
205, 188.15.197 Comment

AT, PR e BEL K. o Sagm Lk = 1

16: 3053, 440715000 e i | o Seqm b

TE: TG, A0 L b, A b G B ik

16: 3950, 4SR0N000 - s = Seym LAdim |

16 3FET ASHEH000 R, ¥ T T Botm k= |

16305, SAXN000 Sl ALK o) Saq i L ich w 800

16351, 56310000 —a EK [Saqm 1 Ack = 007

65T, ABTHA000 S St m | Ak m 890

A6 BOS00 i "_...._.ELI.ILL i ~ e 100 Ak w P

16395 AFLH2000 " £ i Baq = 897 Ak FEIE

RS | (PR T I Sod = 220 ek = DO

6 L, AT I0R000 m——— B Lp IR0 Saq = 1700 Ack = B0

16352 40T 1000 == -4 i Fod = B9 Ack = D04

WSl || L .._EK_'I.EL_IL.____ ag m S04 Ak m B

53D FHEE000 R Sl T Saqm 303 Ack = B

16 FHET AHPSE000 — K S Soq = 907 A m PAL

2D, S PE0A000 il Sex - L 260 L Saym FELY Ak BT =1

l J¥ix] B

Lo

FIGURE 9.8 Viewing the TCP handshake in a flow graph.

In sum, TCP communication is a critical component to TCP/IP network
communication. It manages the established connection and ensures that the
oriented connection remains established and data traverses the network from
source to destination and if any problems occur, Wireshark can help find exactly
what may have caused the issue when you review and analyze the captured and
filtered data.

9.4 Troubleshooting Phones

In this example, we will look at another problem and take a deep dive into how
to solve it using Wireshark. Here we will look at how a softphone could have an
issue connecting to a destination and how Wireshark can help assist you in
finding out why.

In Figure 9.9, we use a simple softphone loaded on a Windows client to
initiate a call to another host. In this example, we can see that the account failed
to enable and the error given by the phone is that the network data needs to be
verified. This is something that Wireshark should be able to uncover rather
quickly.

[X-Lite - Qe

Safiphone Heilp

Her name o number | |

Account failed 1o enable
Account: Account 1 could not be enabled
erity your nateork data (e.g. server addressas);
otherwise contact your administrator
Click here to retry

Enjoying your

X-Lite experience

‘fl-ita fﬁ?cau-ﬁ'nhm_:g

FIGURE 9.9 Using a network softphone.

Our next step would be to use Wireshark to capture the data from the source
(the softphone) to the destination (the connecting host). In Figure 9.10, we see
the data captured by Wireshark indicating that the phone is trying to register a
connection to the connecting host. We can see the source and destination IP
addresses as well as the protocol in use which is the session initiation protocol
(SIP).

T e el B bl BT (M ol s Pkt Stheduler) || Dewior (9F (I PIIT L0881 S£2TE
Bl o | et B, Tarory, cTaey - Jraasiati tin

P TE

L BESLS RevsaF lEE gaabD eannm g B
Faen [] s e trer
) St] i | peetas.
£ __l5mge W_l—hum_m?_ﬁr
® J1:00 00, 1100 01W] 168, 1. ¥ 199,100, 78, 20 £IP 10 Reqanst; EEGISTER 81piteat |
A TLEgR T ANIOTA0L02. 165, 1. % 1993400, 08, 10 EIP 410 RaquadT: EEGISTER tipitest |
26 21103127 SA21000002. 165,13 199,101, 28, 20) BL0 REgrst ! BEGISTER S1piTest |
27 21103176, 5321200192, 168,155 199,101, 28,20 e GLO Requast] BEGISTER sipitest |
30 71103330, 9320510052, 165, 1.5 199,101, 28, 20 il L0 Mequesti BIGISTER sipitest |
1 21:03504, 5319390207, 168,15 199,108, 78,20 EIP BA0 Reqait; BEGISTER $ip:test |
B I1:00: 00, SOLBA0000. 166, 1.5 199. 208, 38, 20 £IF #10 Requett EEGISTER slp:test |
44 21 r0BA4T MLARB0L0T. 1651, 199,108, 25. 30 51P 10 Ragest ! EEGISTER Slpitest |
57 2110547, COSTL20A0Y: 165, 1.8 1090108, 25,20 st L0 Reguast | BEGISTER S1ITesT |
58 Z1103 747, SOTE200002. 168, 1.5 199,101, 78,20 e L0 Request BOGISTER sipitest |
00 710348, 1079000157 . 148, 1. 5 199,100, 19, 210 sIF L0 Requst i BEGISTER sipitest |
&L 1300190, JTTOG0060. 168, 1. 4 199,208, 38,20 £IF 6RO Ragait BEGISTER slp:test | -
0 2100, I0AT0A0 102 168, 1. % 100,201, 28,20 SEP G610 AaGUEtE ! BEGISTER #1pitast |
73 211031 56, FOBTI20002. 168,18 169,141,258, 20 st HLD Apquest: AEGIITER S1DITEST | o)
T R e e LS UL ao- S e i s

S EUhGCTAT I, Sre: TATACOr_LAR0E1H (A0:ER:D ETHRIET] o DRE: Acxionta dd:oe: 00 655 44 g 107
s INEert Provocal werston 4, Seer 16206815 (102.188.1.53, oary 1000101038 0 CL00N00. 28, 20)
w USEr Dardgram Brotecol, Src Portn 406T6 (498563, 05T Forrr sip (50800
= Sevsion Inftiation Protocol (RESISTORY
3 heguest-Ling: BEGISTER nip:test SIR/T.Q

WEtRad: EEGISTER

S BRpAEL-URT! STpIEest
RAEAT=UNE HOST PErTI TEST

{esant Packer: False]

¥ Mesiage Hekder

3ol - § L rd r T
A (Prama a1 - - e S

FIGURE 9.10 Viewing SIP connections in Wireshark.

As we dig deeper into the Detail pane, we can see specific data that is relevant
to solving the problem. In this case, a firewall was blocking the connection and
causing the softphone to ring but no one is able to answer thus not being able to
register to the unified communications system where it needs to register (Figure
9.11).

@ User Datagram Protocol, Src Port: sip-tls (50613, Dst Port: sip (50600
= session Initiation Protocol (180D

@ status-Line: SIP/Z.0 180 ringing

[Message Header
sessfon Initiation Protocol (SIP as raw text)

FIGURE 9.11 Viewing SIP in the Detail pane.

You can also review specific SIP statistics as seen in Figure 9.12 by going to
the Wireshark capture window and selecting the Telephony menu, then selecting
SIP. Once you select SIP you can click on Create Stat. You can then review the
specific statistics such as how many packets were sent, resent, and specifically
get an average baseline for how long it takes for calls to setup.

77 1P statistics S[=TE
SIP stats (17 packets)
{14 resenk packets)

- Informational SIP 1xx
‘Success SIP 2xx-
(Redirection _SIP 3xx
rClient errors SIP 4xx-
Server errors SIP Sxx
[Global Failures SIP 6xx-
rList of request methods ——
| REGISTER : 17 packets
Average setup time 0 ms

Min 0 ms
Max 0 ms

FIGURE 9.12 Reviewing SIP statistics.

9.5 Security Analysis

In our next example, we will look at how Wireshark can be used to identify
security issues on your network. In this example, we have used sample captures
found in the Wireshark online capture repository.

To take a deep dive into security problems, you can also get a general feel for
what is going on with your captured data by reviewing the Expert Info. In the
DNS Remoteshell pcap file, we can review the Expert Info in Figure 9.13. Here
we see specific Denial of Service (DoS) attempts by constant connection
establishment requests. This also relates to the TCP handshake sequence we
learned about earlier.

77 wireshark: T7 Epertdnfos R (=
0 | Wiarnings: 01¢0) | Motes: 2 (303 | chats: 10 447 MH}WW:M
ek 1 Jaro

il okt

10

o

Sequence TR
22 Mote Sarpmnics TR Relrarmmission (fuspected)
4 Mobe Sorpmnon TCF Duuphbcabe ACK (#1)
26 Mobe Sequence TP Fatrardamission {puspected)
28 Note Sequence L Retrarsmiszion (suspected) -
0 MNobe SarpnoE TP Couphcate ACK (213
32 Mote 0 T TCR Festrarreniasion {suspectsd)
34 Mote Sequence TP Duplcabe ACK (#1)
Sequence <P

St

Retrarsmission {suspected])

FIGURE 9.13 Using the expert analysis to find security issues.

By taking a quick look at the Expert, we can see constant SYNs until a RST
(reset) takes place.

We can also review the Teardrop pcap file. This is another form of a DoS
attack. This type of attack takes place by a host sending “mangled” data (IP
fragments) with problematic payload sizes to a destination (target) system. By
doing so, they could potentially crash the destination system if it becomes
overwhelmed.

Figure 9.14 shows the detail pane where you can see the payload sizes and if
you do analysis on multiple attempts at the destination, you could find that the
mangled data fragments occur at differing sizes which could potentially be
problematic to the target system.

Source port: 31915 (3L915)
pestination port: 200197 (20197)
i3}
Checksum: 0x0000 (none)
@ Data (20 bytes)

FIGURE 9.14 Using the Detail pane to find security issues.

Wireshark can quickly and easily help you identify problems with security on
your network. For example, if you wanted to capture cleartext passwords, you
can do so with Wireshark. TCP/IP version 4 protocols, such as FTP, Telnet,
SNMP, and others send data in cleartext and if captured, the credentials to a
system could be read and compromised.

9.6 Network Performance Analysis and
Optimization

Another problem you may have to contend with (and optimize) is application
traffic crippling your WAN connections. Application analysis is the hallmark of
an experienced technician. As the network or protocol analyst, it is your
organization’s responsibility to make sure that you know what protocols are
being introduced into the network. It is up to you to be able to use a tool-like
Wireshark to capture and analyze them to solve problems. You can use
Timestamps in the Wireshark capture window Summary pane to analyze
response times through time stamp analysis. This will help you rule out latency
issues. You can also use Wireshark to find out if bandwidth is an issue.

You can use tools and analyze the bandwidth being used over a WAN link (as
an example) to verify that you have enough so data can traverse a network
without issues. If you are using a 100 Mbps connection and find that you are
maxing out the bandwidth, then you can use Wireshark to see if data is
retransmitting because of it. Figure 9.15 shows how this solution could be found
on your network.

100

.____.___.__-.'-'-' \h‘:\
a0 e U,
\‘\-.
g 60 — AN Direction
= o il \\ Fin
i 0wy _\ Ol
>
20
¢==,====_ = _'_'_'_,_,:5.;!": —_—

0
10:20 1035 1030 10235 10040 1045 10cBD 10c55 11:00

FIGURE 9.15 Finding network performance issues.

Do not mistake a latency problem with a bandwidth problem. Do not increase

your bandwidth because an application responds slowly— the increased
bandwidth may not help. Work with your ISP to get statistics on overall
bandwidth and utilization so you can see if you are operating at poor levels.
Many times, it is simply that the server’s response time is poor, the buffers in
routing devices or servers are inundated, or a poorly written application will just
not function as advertised.

Each suggestion has its own benefits and problems, but a total optimization
standpoint, you can use these as ideas to figure out how to make the application
work better on your network. Remember, it is not always the network’s fault!
Some applications were just not made to function well over a WAN link. It is up
to you to use your skills and Wireshark to help optimize the traffic that does
exist.

Implement Quality of Service (QoS) on your networking hardware
to queue up that application first. QoS will only help if you have a
bandwidth issue.

You can also use other tools to help solve problems. In this chapter, we
learned about a system having an issue accessing a HTTP-based web page on a
web server. You can use tools like HttpWatch as seen in Figure 9.16 to help
analyze response time when a client attempts to access a web server.

E N armpdel aptiares - The Wireshark Wiki - Sorils Trelos =ip =]

B L o= Hpoy Beckeats ook o
B ivcieantires « The Witk Wik +*
& TS T R -] > F|
e | D g)oes |7 e =i 0 soomary 4 P - T rme - o - - B Tl - | T - =
Swted - | e crart Delr[teel sere| moceved | pamted | pewa Proe [o
o COOGO0 00 Sanpke_aphure - The Wrashunl Wil
o] [] i G2 o B R o, g i aphr e
L340 1 [YT] o aft PR, Oy Beaclebwreihart. ongieer et | el
e] ¥ Grd em 197 a1] (0 o e v b, gm0 e menieiiod
+ LT =]] 157 & A i P ek e, G ST | b
+ |- wldl 1 L “r T Y x L4 B e ol it | e iy
+ 13 L] LI 1 G X 1 it bk verphat. cogyince,_shatic | mociaioy
e i [l oI T ;N -] L} Efplbec rernshurk rmk o fg-sli-aroen 201
& Lam i [oix wi e G x4 L] Epclben o srahark fk b el prink 200 2
LA L. | OEe 197 Gt] et b rar b, oo gy _phatal 1R e
w1927 Lyt B i FoRL) B b e if, bk ek B
+ LT : !] 1M G o B i ek b, G S | T
- ' oW el 173 G - W v e rathart cngfmor th | maduToy
&L - LEE e 1™ Y x4 0 ol sthirt onginor,_that L medamoy
» Lo B T 1™ G B B ool bekvrechant. orginor_thate | moderion
e B G sz I3 G x4 B rrbekiwrestet. crgieor_ale |y mederni
® i B] 1A et] W e ebirrrbeirt, g _ilae! sl fiod
LigT ple [b3 [Eo L] A B P b (g TS R B
+ 10w 12 s ™ L s B o e 0 W G R
= = o FX T) B | gt |
i 1 |
Pactvecrh. | Poge Everts | 100 | Stat o | | |
= | |
Diagned N M7 o
Sipbumieh Bionred P "
x| Gt ook e
|| Upkuded Cota S bwter
= | HTTP Comgresmon Saerge T btes
§ || oo Lockags 2
= || 5P Conract 2
&
E.

FIGURE 9.16 Finding application issues.

In this example, we can see how using other tools with Wireshark can aid in
helping you find root cause of an issue, or help you rule out what may or may
not be impacting the network or systems.

Beware of compounded issues. Sometimes you may encounter a
problem that manifests as a network problem but could be a
problematic system, an application problem, or a combination of
these problems that when load is added to the systems or network
or application access causes a performance problem. Use
Wireshark and many of the other tools we covered in this field
guide to peel back the layers of the onion and attempt to move
towards finding root cause. Typically it makes sense to start the
troubleshooting effort at the client (point of problem or complaint)
and work your way through the network to the system or systems in
which they are trying to use.

Bottlenecks can also be a problem. Choke points from improperly designed

networks and systems can cause performance issues. Overwhelmed devices that
are undersized to handle the load can cause performance issues. If too much
traffic is going through any one source of communication, it may overwhelm the
device’s ability to process the traffic. This will cause dropped packets, which
will require the originating system to resend them, increasing the load on your
network. To optimize Ethernet-based networks, you can design your network
properly with a high-speed backbone and high-speed desktop switching. Make
sure your servers, routers, desktops, or any other device are not the source of the
bottleneck.

Unnecessary protocols, which depend on broadcast traffic, can increase the
amount of traffic on your network. Also, multicast traffic such as name
resolution and switch and bridge updates can consume bandwidth needed for
other traffic. To optimize Ethernet, you can do the following:

* Eliminate unneeded protocols from your network hosts (clients, servers,
routers, etc.).

* Eliminate unneeded hosts on your network that are not in use and are perhaps
sending out keepalives or some other traffic on the wire (make the collision
domain smaller).

» Use Switching instead of shared access hubs.

* Implement VLAN:S if possible to separate broadcast domains or use a router
to block broadcast traffic.

» Watch for high percentages of network utilization. It can vary from network
to network, but anything over 40% is generally too high on an Ethernet
network. If you are on a switched network, then anything over 70% is too
high.

» Watch for hardware-related errors. Jabbers or failing NICs often cause long or
short frames and Cyclic Redundancy Check (CRC) errors. Correct these
problems as they are found.

* Broadcasts and multicasts should be no more than 20% of all network traffic.

* On Ethernet networks there should be no more than 1 CRC error per 1 million
bytes of data.

You can also ask specific questions to help you get closer to an answer:

* Is poor network performance affecting one user, several users, or the entire
network?

* Is the poor performance centered at a particular location or the entire
network?

* When exactly did you start noticing poor performance or has it always been

bad?
» Have any recent changes taken place—no matter how large or small?
* Do you have any network documentation or topology maps?

Always try to see if poor network performance is affecting one user, several
users, or the entire network. Isolate your problems and nail them down one at a
time, if possible.

Always view network documentation and topology maps, if available, to try to
find out whether the initial design itself is causing performance issues. You need
not use Wireshark immediately to formulate a clue on where the problems lie;
detailed topology maps speak for themselves, however, you can run a sample
capture to help ascertain a clue or two.

When you are initially analyzing performance on a network, it is important to
interview the staff (both users and administrators) to get a solid picture of
network health from a “maintenance performed” point of view. Involve vendor
support if needed. Ask administrators about changes made to the network
recently, find out if things had gotten bad at a specific time, and use the
information you gather as part of your analysis. Often changes made to a
network result in poor performance, and the staff might be unaware of the cause.

Always involve your ISP in your overall analysis if you cannot verify the
connecting links. Ask for service-level agreements (SLASs) if they are available
and bandwidth utilization charts if they keep them. This information will help
you get a bigger picture of possible performance problems.

9.7 Using Wireshark Online

You can always do deeper dives into captured data by simply using Wireshark’s
ability to link to online documentation. In Figure 9.17, you can see a specific
example of how to click and pull up a menu from data in the Detail pane to
produce a link where you can pull up the Wireshark Wiki pages to help explain
specific data you may or may not understand. This is a great way to help you
learn more and dig deeper into the protocols and data you are working with.

T tabteven .
BENEGN COxPa AceeTam o R ®
| _| ran,, et
Roghy wi ks
Pt] e s e 3o e :
Farpars 5Pl » =
1% 23110399, MOIIT0ACTISOTA_443d:B IntelCor la:Biln | SeSSENREm P07 Tel) 1500680001
I3 2301340, MO GTNTeCor 1a 8018 aceionme 44 daihd H'wn' AT A0TERzBE rlatBOLE
29 22112100, BRISS20049, 254110143 2552382550255 k307 pestinasion ports 21302
T4 2211270, 4598200149, 254,1,118: 169 P M2 e ¥ b1 pestination ports S000[MaTf
AFT I2EATI00, TLRGMOL40, 14, 1.1 1%, 74,1, 30 Evirn Stoctnd Fachit Sybri pakh pentination port: J000(Malfy
I9E 2212 OT, TETTTITO060, 204, 1. 240 169,294, 1, 20 = Mecom-pil cenination porn: $0N
00 22112 500; F2355B0L60; 204, 1, 143 235255, 255.255 02 pestinacion ports 21307
300 22112507, LS LA0LAR. 254. 1,143 149, 210255]
D03 15T D0 TAIAANT; .1 118 189,29, 3. 255 m""‘ , ot pestinacion peet: o00(Malfy
304 22110 TITIIT0LGH T34 14 RETASEAITIIIN % et me 02 DEstinaTion poet: 21307
305 22112130, TEALTION60. 254, 12174 169 791,255 36 pEsTiranion perTs S000[MaTre x|
il + Dsabie Protocol. i

= Frame 5;: o0 byten oo wire (A0 EGEs). 00 Bias capturad (400 &

S DEATAPMTION! BFGROZAST [PTETT SR LPT ITT 20T

Addrass! Broadoast {I‘F Freffoffoff: r'l']

& 1. aen vaaa o= UG BT Locally adeindstered address Cibds 4z w07 the factory defaulc)
« = 16 bit: Group address {multicast brosdoast)
= Sourde: Motorola 8184000 (74:f8120:00: 180000

Acbdr s ! WMOTOr oA 91 S6200 (Ta Pl opl s 580k

Viniar NI R T R coos = LG biT: Globally wnigue sddress (Facoory defaulc)

vo o= 08 bit: Inddvidua address (umdcasc)

8T it et 20 bvhes TP Trofie: Defmt

FIGURE 9.17 Finding online references via Wireshark.

9.8 Summary

In this chapter, we covered the specifics of digging deeper. With a deeper look
into the data, the systems, and the network, we saw how we could better define
and find root cause of problems as well as how to use Wireshark and other
enterprise tools to solve issues that occur over WAN links, when using a
softphone and to find security problems and so on. In the next and final chapter,
we will look at the myriad of ways to handle the data you captured for analysis
and safekeeping.

CHAPTER 10

Saving Captures

10.1 Getting Started

10.2 Saving Captures

10.3 Saving Captures (Multiple Files)
10.4 Saving in Other Formats

10.5 Importing and Exporting Data
10.6 Merging Data

10.7 Summary

Wireshark can be used to isolate and troubleshoot network and system problems,
and we have flipped open the hood and taken a look into its inner workings. In
this field guide, we have learned how to use Wireshark to capture and filter data
in hopes that by doing so, we can solve problems. We have learned quite a bit in
a short amount of time. In this chapter, we will cover how to save your files,
import and export data, and other key information on how to store your captured
packets for further analysis.

In this chapter, we will learn how to save captured data. It is not as simple as
saving a file; there are many options that you can select, and understanding the
options available will help you in making the correct decisions on how and
where you want to save your data.

Make sure that when you prepare to save data, you have plenty of
disk space available, i.e., a system with the proper resources to
handle this task. It is recommended that you also consider
encrypting this data if you consider it sensitive. You should also

make sure that you follow the practice of ensuring that you limit
who can access the data by securing the system or storage device in
which it is stored as filtered data can contain secure information
such as passwords.

10.1 Getting Started

Once you have completed your analysis, you may want to save and archive your
files for future use. This chapter covers file formats, how to use capture files
with other protocol analysis systems, how to merge files, and more. In Section
10.2, we review the basics of saving captured data.

When working on a network, a running Wireshark with the intention of
capturing and saving data, there are times where you may want to know how you
will save it before you even start the capture. In the sections within this chapter,
we will cover when that would be applicable. For now, we will cover the basics
of saving a capture file once your capture is completed.

10.2 Saving Captures

Once you are done capturing data, there are many options available to you for
controlling the data you wish to store. When you run a capture, all of the data is
viewable in the Wireshark capture window. You may want to save all of the
captured data or a subset of it. There are options available for both. Before we
cover these options, you should consider the following essential guidelines:

1. If you are going to be running captures over a longer period of time, you
may wish to break them up into more manageable chunks to store and
review from. For most systems, anything more than a 256-megabyte file
size is too big.

2. You should consider how you will label your stored files. This way, when
you want to access specific portions of saved data, you have a viewable
reference by viewing just the file name. For example, if you are capturing
data to and from a specific set of IP addresses, you may want to label
them in the file name. You should also consider folderizing your saved
data for easy reference.

3. Always consider where you will be storing this data (size, security,

accessibility, etc).

In Figure 10.1, the Wireshark main page shows options for viewing saved
files. In the Open section, you can see the most recently saved files that you can
open. They will be colored blue (hyperlink), and by clicking on them, you will
open that particular capture. You can also click directly on the Open link
denoted by the image of the folder to open the Open Capture File dialog box.

T ke e el Rtk Sesbyier [meeahark LR (S B 46250 I o 1LST] Al |
Be UR Yew G0 Coptue drome Retwio Tesphony [ook frbemals e |
Heaae HXPE& A+ aTE |6 R0 ERMKE B
Faw; | jtm--

e o e e e

Thee Werld's Most Popidar SMetwork Protocs] famalyses
i s A0 F o= k1 0

104 v

Enerfocs List] £y Websine
E [———— [— L I .
i Poasnng b
Start o iy '[4 Uker's Guilde
&l e —— ety wd St mgletetactunmiurrert Cagtune | getaceg [0 020 F o U e sl e, el
C/umants wad 5o olribark Complstel SRt sl (1408 Byies] ¥ I
[E= bk A Gyt ctwirk Corvcon Mool /Dooumanty wnd et (et CompletalyCaphareome pgng (V59 O8] [Security

[Baroged Rt v, Coeve] Wit dfapies M 'c . e]

Jo Ent=) ot Ak anond B AT (Mo Te Pact — Saenple Capihures
L & ek s of gy Lapears Bt o ke ks

L B 2

i Capture Options

L]

H How (o Caplure =

Foap by ap @ Tk e |

g Meetwork Media |

| | 3 |
ety i e Frifie Gl

FIGURE 10.1 Opening capture files.

To save data, simply open Wireshark and run a capture. Stop the capture and
go to the Wireshark capture window’s menu system. By clicking on File, you
will see a drop-down menu of options in which you can save your data. By
selecting Save As, you can then name your file and store it in a location of your
choice. By clicking on Save, you will be presented with the same options;
however, if you already have saved the file, by selecting Save you can update the
currently saved file with the newest information, e.g., when you want to continue
your capture and collect more packets. This is fairly straightforward. If you want
to perhaps save data in groupings of files, you have to go another route.

10.3 Saving Captures (Multiple Files)

There may come a time where you want to save a capture in a subset of files. In
order to do this, you need to configure Wireshark to handle this task before you
start the capture of your data. To do this, you need to first go to the Wireshark
launch page, or you can do it from within the Wireshark capture window if you
are starting a new capture saving to multiple files. In the Wireshark capture
window, you can click on Capture menu option and select Options. On the
launch page, you can click on the Capture Options link.

Once you select either, you will see the Wireshark Capture Options dialog box
as shown in Figure 10.2.

AT — Lo
Capture
(Capture] Irkerfage Ik byver hoadedProm, ModelZnaplen [Ej8uffer IMET: = |
I R T Metwo...
7 IOt Y AR TR Gl Ethernat enabled defaut 1
[T Juniper Network Connect Virtual.., Etfemet enabled defauk 1
[T Intel{R) Centrino(R) Advanced-... Ethernst enabled defauk 1
=]
i | _r]
™ Capturs on sl inerfaces Manage Interfaces
' Capturs 8l in promiscucus mode
Caphure File(s) Désplany Crptions:
Fie: ek Captures\Capture File_|_032613.peopngl | Browse... " Undats st of packats in raal Hme
F Usa gitiple files ¥ Use pesp-ng format _
F esthieevery |1 Hlmeptntetss =] & ZUSSCTRES 0
F Hestfsevery |0 2 frareneis) =l || tsde cxpruraindo oy
I~ Ringbufferwith [:| o o
' Stop capture after Iﬁ +| Flel(s)
e [Enabis MAC name resoltion
I ... adter ; Hesoats I~ Erals pentwork name resohakion
Pt |5 ﬂ!wﬁﬂ =] [+ Ensbils transport name resolution
Help art s

FIGURE 10.2 Configuring Wireshark capture options.

Within this dialog box, you see many options you can select and choose from.
The relevant area in the dialog box where you will configure the captured data
for population into multiple files is in the Capture File(s) section. Here, you can
choose the location in which you would like to store your data. Figure 10.3

shows the location of where you would set your capture file when selecting the
Browse button.

T Wireshark: Specily a Capture File = x|

[Fes [coprure_Fie_t 032613 poapng

rihimendkl | [Latsle Iwrﬂhdd:c.lpunﬂ Crovgte Folder

Swminfolder: 4 | |

- (0] Local Disk,

o (00:) DVD=RAM Dty

£ (5] M syossell,

== (7)) Sheredsts on

= () Sharadata on '

= (5] Sharedata on €

5 (T:) Infrasbnachure .
5 (L) Feturres gary EMC- :’

B | =

FIGURE 10.3 Wireshark specific a capture file dialog box.

Once you are done, you can click OK. Then, you can configure options on
where you will save the files as well as how to size it, time it, and control it.
Once you have selected your relevant options, click Start to begin the capture.

Once the capture has started and run through its routine and stops, you can
view these files within the Wireshark capture window by clicking on the File
menu and selecting File Set. Expand this option to view List Files as shown in
Figure 10.4.

[T wiresharkc 4 Flesinset =[olx|
Flensme Crested Last Modfied Size

| Caphure File_1 0132613 _00001_20130326091456 peapng 201503 26 03114:56 2015,03.26 0211556 139496 Bytes

(| Capture, Fle_| (132613 00002 20130326091556.0c800g 201503126 09:15/56 201R/03.26 02 16/56 355520 Bytes

(| Capture_Fis_1 (132613 00000 20130326091656.0c8p00 2013,03.26 04116156 201505 26 0917156 216056 Bybes

it |Capture_Fle_1_032613_D0004_20130326091756.pcapng| 2013,03.26 09:17:56 2013.00.26 09:16:56 143500 Bytes
.» I directory: CX\Documents and SettingsirshimonskiDesitoplWireshark Captures

I

FIGURE 10.4 Wireshark list files dialog box.

To view the same files where they are stored, you can go to the File menu and
click Save As and/or simply navigate to the location in which you decided to
store the files. As shown in Figure 10.5 you can see how Wireshark chunked out
the capture into multiple files.

2=l

Save e [I Wieshas: Caphses 2 (e s B e

= Capbure_Fie_t_032613.peagen

T Capture_File_i_DO2613_00001_201 30326001456, peapng
% Capture_Fie_1_032613_00002_201 0T26091556. peagsng
o Capturs_File_§_0K2613_D00CS 301 M0326091 656, peapng
=% Capbure_Fila_I_(2613_00004_201 30026091 7556 ptapeeg

My Htwauk
Place:

Sweasppe [Wasshak - poaorg [potora " posgmagr ol 7| Coxel |
Helo .él

FIGURE 10.5 Wireshark saving data in multiple files.

10.4 Saving in Other Formats

Once you have finished your capture, you can save the capture in many file
formats. By going to the File menu and selecting Save As, you can then select
the Save as type as shown in Figure 10.6

Wireshark: Save file as d -1 |

Seveint | 3 Wireshatk Caphures = QF ~m-

Modified topdump - bpcap [poap.” posp g2:" cap

- Mickia bepahump - Bhoca [pead.” peag ge” cap.
My Cooirpaited Feddat B 1 Iopdump - Ibpcap ™ posp.” poap. g2.”.d
begreti8 7 Srocs SUSE 6.3 bepddun - Bocio [peap.” peap gz oa

-‘ Infoista P caphune [S, Sow gz]

1o Evdace EAF captues [ed," erf. oz]

L HP-L nettd Bace [*boD;” cllge:" el "ol gz)
My Nebwesk: Microralt Methlon 1 % " cop” cap.gz)
Places Microuolt Meton 2% [.cap’. capgz|
M, e [0015] [* cap:" capugn.” enc.” mn g2." i
NA Sriles [Windows] 1.1 [".capc” cap]
M St Poindos] 200x [cop” e3¢
Miebweork, Iratruments Observes [bic" biv gz]
Mareal LAM-syrer ".80.% 10 g2
Sun snoop [2ro0p:” anoop. gr.” cap:” cap.gel
Wiriasl Metvodicn bt caphurs [7.7]
112 bt e [2" 1)
T axemant ot Comerifam [moch” el g2}

[wresthark. - peapng I peapng.” peapng g it =

i

FIGURE 10.6 Saving files in multiple formats.

There may be times where you would like to save the captured data in the
native format of the tool you may be transferring the data to, e.g., if you want to
send captured data to another associate helping you troubleshoot, and they use
Microsoft Network Monitor, you can choose to save in the native format for that
specific tool. You can see the different file extensions in Figure 10.6 from the
Save as type menu. Click Save to complete this task.

10.5 Importing and Exporting Data

When saving data, there may be times where you simply want to save a portion
of this data for use. A great example would be when you ran a large capture and
had a lot of data in your window that you did not want to save. You could filter
out this data and export the relevant data to a new file. You can also import data
into a file.

To import data into a file, go to the File menu and select Import from the
drop-down menu. You will then open the Wireshark Import from Text dialog
box as shown in Figure 10.7.

71 Wireshark: Import from Text

(5 Raxadeomal
Offsebs: Octal
" Decimal

[~ DstefTime Forme: |

Import
Encapsulation type: |Ethernet |

[Dummy header

Max, frame length: [

b | [o]| conce

FIGURE 10.7 Import from text.

When using this option, you will need to select a preconfigured text file with
the relevant data already configured in the file to import.

To export data, simple click on the File menu again and select from the
multiple Export options listed. Depending on where you are in the Wireshark
capture window and what data you have captured will then give you the specific
options for what you can export; otherwise, the option will be grayed out and
unusable.

In Figure 10.8, the option to Export Specified Packets was chosen. This was
predetermined from the example provided earlier where we wanted to filter out
the data we did not want to use and populate a new file for reference.

You will not be able to use the filter option if you do not choose
“displayed” in the export options for Packet Range.

iz

Wireshark: Enport Specified Packets

Saveire [Erpote o e B A e

T i] 2 [see |
Swmailhoe [Waethadk - poapng [poapng” pespng ga." n = Cancel
b |
~Packa Fargn — -
" Caphred % Diapiaped
% &1 packets | B2
" Splached packst 1
€ Markied pacioely
£ Fraf L Ll J (!
 Range [)]
e | proted padkiets i o

[

FIGURE 10.8 Exporting specified packets.

10.6 Merging Data

Once you have captured multiple files, there may come a time where you want
to reassemble the data into one file. To do this, you can choose the merge option.
In the File menu, you can select Merge to open the Merge with capture file
dialog box as shown in Figure 10.9.

Wireshark: Merge with capture file B =
Leak re. [5 Waethak Caphses =5 Q@

! | Exports
) Imports

RGN |7 Capturn_File_L_002613 poapeny
Docusments Copbure Fle | (02613 00000201 30325051456, poaprg
c_.‘ % Copture_File_{_002603_O000E_01 MR 556, peapng
™ Caphurs_File_1_002613_00003_200 X080 1656, pcapng
DEEEEEN |7 Copture_File_|_CN0013_ 00004 200 30500431 P56 pespne

bebaT2Z .
-
-
I-I::.l;::-lm
-, [Caphes_Fin_1_tzs13 o000 _emamazeosn =] [Ooen |
Firolbos [aiFies) =] Corcel
b= |

Diitplae Fber: Fisnare: Caphure_File_ 1002613 00007 _ 201 30005091 £
Foarnst ‘Wheethark - pcapng

1™ Paepend packets b esinting fls Size: 145 bytes

7 Menge packets chesnoogiosly Pachelz BT

1 Appand packsty b measing e Fred Packet 200 340006 09 1455
Elapaed (00053

FIGURE 10.9 Merging capture files.

To merge data, you will need to select a file name where you will merge to.
You can also configure a Display filter as well as select other options for
prepending and appending.

10.7 Summary

Now you know how to save data to files for storage and future analysis. You can
send these files to others to troubleshoot as a team or get help from others.

We have completed the final steps of learning Wireshark in this field guide.
This is written in the hope of getting you up to speed quickly in using one of the
most common network-based troubleshooting tools used in the industry today.
To learn more, visit the websites listed in this book.

	Title page
	Table of Contents
	Copyright
	Dedication
	Preface
	About the Author
	Acknowledgment
	Introduction
	About Wireshark
	Installing Wireshark
	Configuring a System
	Capturing Packets
	Color Codes
	Filters
	Sample Captures
	Inspecting Packets
	Deep Analysis
	Saving Captures

	Chapter 1. About Wireshark
	1.1 Introduction
	1.2 What Is Wireshark?
	1.3 What Is Network and Protocol Analysis?
	1.4 The History of Wireshark
	1.5 Troubleshooting Problems
	1.6 Using Wireshark to Analyze Data
	1.7 The OSI Model
	1.8 Summary

	Chapter 2. Installing Wireshark
	2.1 Introduction
	2.2 Getting Started
	2.3 Requirements
	2.4 Installation Preparation
	2.5 Installing Wireshark
	2.6 Summary

	Chapter 3. Configuring a System
	3.1 Introduction
	3.2 Getting Started
	3.3 Configuring a Cisco Port Monitor
	3.4 Other Tools and Methodologies
	3.5 Summary

	Chapter 4. Capturing Packets
	4.1 Introduction
	4.2 Getting Started
	4.3 Summary

	Chapter 5. Color Codes
	5.1 Getting Started
	5.2 Creating Color Code Lists
	5.3 Adding and Removing Filters
	5.4 Other Coloring Options
	5.5 Summary

	Chapter 6. Filters
	6.1 Getting Started
	6.2 Applying a Filter
	6.3 Advanced Filter Creation
	6.4 Other Filtering Techniques
	6.5 Customized Filtering and Troubleshooting
	6.6 Conversation Filters
	6.7 Summary

	Chapter 7. Sample Captures
	7.1 Getting Started
	7.2 Sample Captures
	7.3 Expert Analysis
	7.4 Flow Graphs
	7.5 Summary

	Chapter 8. Inspecting Packets
	8.1 Getting Started
	8.2 Understanding the Technology
	8.3 Capturing and Filtering Data
	8.4 Inspection of the Data
	8.5 Analysis Tools
	8.6 Summary

	Chapter 9. Deep Analysis
	9.1 Getting Started
	9.2 Deep Analysis
	9.3 Analyzing Flow
	9.4 Troubleshooting Phones
	9.5 Security Analysis
	9.6 Network Performance Analysis and Optimization
	9.7 Using Wireshark Online
	9.8 Summary

	Chapter 10. Saving Captures
	10.1 Getting Started
	10.2 Saving Captures
	10.3 Saving Captures (Multiple Files)
	10.4 Saving in Other Formats
	10.5 Importing and Exporting Data
	10.6 Merging Data
	10.7 Summary

