

http://www.dummies.com
http://www.dummies.com
http://www.dummies.com
http://www.dummies.com/cheatsheet/amazonwebservices

Amazon
Web Services™

by Bernard Golden

Amazon
Web Services™

Amazon Web Services™ For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permis-
sion of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.
Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. Amazon Web Services is a trademark of Amazon Technologies, Inc. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For tech-
nical support, please visit www.wiley.com/techsupport.
Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.
Library of Congress Control Number: 2013942773
ISBN 978-1-118-57183-5 (pbk); ISBN 978-1-118-65198-8 (ebk); ISBN 978-1-118-65226-8 (ebk)
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Praise for Amazon Web Services
For Dummies

 This is a great resource for anyone considering the jump into cloud
computing. Golden accurately explores the roster of AWS services while
clearly illustrating ways for developers to make applications easier to
build and manage. He manages to address both business requirements
and technical content in a way that will appeal to almost any audience.

 — Jeff Barr, Sr. Technology Evangelist,
Amazon Web Services

 One of the challenges Bitnami users face is understanding the breadth
and power of AWS. Amazon Web Services For Dummies helps our users
build a great foundation of AWS skills. Anyone who is new to AWS and
wants to be successful should start with this book.

 — Erica Brescia, COO and co-founder of Bitnami

 Netflix is all-in on AWS. We believe it is the richest, most scalable, most
innovative cloud platform in the industry. Building AWS skills is critical
for careers today — and Amazon Web Services For Dummies is the best
resource I know of to learn AWS from the ground up. Buy this book to
learn what your future will look like.

 — Adrian Cockcroft, Netflix Cloud Architect

Contents at a Glance
Introduction .. 1

Part I: Getting Started with AWS 5
Chapter 1: Amazon Web Services Philosophy and Design ... 7
Chapter 2: Introducing the AWS API ... 25
Chapter 3: Introducing the AWS Management Console .. 37

Part II: Diving into AWS Offerings 53
Chapter 4: Setting Up AWS Storage ... 55
Chapter 5: Stretching Out with Elastic Compute Cloud.. 101
Chapter 6: AWS Networking ... 135
Chapter 7: AWS Security ... 155
Chapter 8: Additional Core AWS Services .. 183

Part III: Using AWS ... 209
Chapter 9: AWS Platform Services ... 211
Chapter 10: AWS Management Services ... 241
Chapter 11: Managing AWS Costs .. 279
Chapter 12: Bringing It All Together: An AWS Application 289

Part IV: The Part of Tens .. 329
Chapter 13: Ten Reasons to Use Amazon Web Services... 331
Chapter 14: Ten Design Principles for Cloud Applications 339

Index .. 347

Table of Contents
Introduction ... 1

Part I: Getting Started with AWS 5

Chapter 1: Amazon Web Services Philosophy and Design 7
Cloud Computing Defined ... 8

IaaS, Paas, SaaS .. 8
Private-versus-public cloud computing .. 10

Understanding the Amazon Business Philosophy 10
Measuring the scale of AWS ... 12
Checking the bottom line .. 14

The AWS Infrastructure .. 14
Making hard hardware decisions .. 15
Examining Amazon’s software infrastructure strategy 16

The AWS Ecosystem .. 18
Counting Up the Network Effects Benefit ... 20
AWS versus Other Cloud Providers .. 22
Getting Ready for the 21st Century ... 24

Chapter 2: Introducing the AWS API . .25
APIs: Understanding the Basics ... 25
Benefiting from Web Services .. 27
An Overview of the AWS API .. 29

Web services: SOAP or REST? .. 30
The AWS API ... 31
The AWS API in real-world use ... 32

AWS API Security ... 34

Chapter 3: Introducing the AWS Management Console 37
Setting Up Your Amazon Web Services Account 38
Accessing Your First AWS Service .. 45
Loading Data into S3 Buckets ... 48
S3 URL Naming Conventions .. 51
Last Words on the AWS Management Console .. 52

Amazon Web Services For Dummies x
Part II: Diving into AWS Offerings 53

Chapter 4: Setting Up AWS Storage .55
Differentiating the Amazon Storage Options ... 56

Object storage .. 58
Distributed key-value storage .. 58

Storing Items in the Simple Storage Service (S3) Bucket 60
S3 storage basics.. 61

Managing Volumes of Information with Elastic Block Storage (EBS) 67
EBS reliability ... 69
EBS scope .. 69
EBS use .. 70
EBS performance.. 71
EBS snapshots .. 72
EBS pricing .. 73
An EBS example.. 75

Managing Archive Material with the Glacier Storage Service 78
Glacier in action ... 80
Glacier scoping ... 81
Glacier pricing .. 82

Scaling Key-Value Data with DynamoDB .. 85
Key-value versus relational databases .. 86
DynamoDB characteristics ... 87
Using DynamoDB ... 88
DynamoDB read consistency ... 90
DynamoDB scope and availability ... 90
DynamoDB cost .. 90
A DynamoDB example ... 91

Selecting an AWS Storage Service ... 96

Chapter 5: Stretching Out with Elastic Compute Cloud101
Introducing EC2 ... 101
Seeing EC2’s Unique Nature ... 103

Understanding images ... 104
S3-backed images ... 106
EBS-backed images .. 107
EC2 instance types ... 109
EC2 image sizes .. 111
EC2 scope .. 112
EC2 pricing and deployment options .. 113
Creating new EC2 images .. 121

Working with an EC2 Example ... 124

xi Table of Contents

Chapter 6: AWS Networking .135
Brushing Up on Networking Basics ... 136

Virtual LANS — keeping data private .. 137
The Amazon alternative to VLANs... 139

AWS Network IP Addressing .. 140
AWS IP Address Mapping ... 145
AWS Direct Connect .. 146
High-Performance AWS Networking .. 148
AWS Elastic IP Addresses ... 149

Elastic IP address pricing ... 150
Elastic IP addresses and AWS network scope................................ 151

AWS Instance Metadata .. 151
Instance IP Address Communication .. 152

Chapter 7: AWS Security .155
Clouds Can Have Boundaries, Too .. 156
The Deperimeterization of Security .. 158
AWS Security Groups .. 161

Security groups .. 162
Using Security Groups to Partition Applications 166

Security group scope... 168
Security group cost ... 169

Security Group Best Practices ... 169
AWS Virtual Private Cloud (VPC) .. 170

VPC overview ... 171
How VPC works .. 172
VPC scope ... 179
VPC cost .. 179
Using VPC .. 179

AWS Application Security ... 179

Chapter 8: Additional Core AWS Services .183
Understanding the Other AWS Services ... 183

Deciding whether it makes sense to use other AWS services...... 185
Working with Identity and Access Management (IAM)................. 188
Elastic Load Balancer (ELB) ... 190
Route 53 .. 193

CloudFront .. 196
Relational Database Service (RDS) .. 200
ElastiCache ... 202
Integrating Additional AWS Services into Your Application 205
Choosing the Right Additional AWS Service Integration Approach 207
Dealing with AWS Lock-in ... 207

Amazon Web Services For Dummies xii
Part III: Using AWS .. 209

Chapter 9: AWS Platform Services .211
Searching with CloudSearch .. 212
Managing Video Conversions with Elastic Transcoder 215
Simple Queue Service .. 219
Simple Notification Service .. 223
Simple E-Mail Service .. 228
Simple Workflow Service .. 231
Dealing with Big Data with the Help of Elastic MapReduce 233
Redshift ... 237

Chapter 10: AWS Management Services . .241
Managing Your AWS Applications ... 242

Watching the cloud with AWS CloudWatch 242
The wonders of AWS Auto Scaling... 247
Introducing AWS Elastic Beanstalk .. 251
Using Elastic Beanstalk ... 253
AWS CloudFormation .. 257
AWS OpsWorks .. 265

Which AWS Management Service Should I Use? 277

Chapter 11: Managing AWS Costs .279
AWS Costs — It’s Complicated .. 280
Taking Advantage of Cost and Utilization Tracking 281
Managing Your AWS Costs ... 287

Chapter 12: Bringing It All Together: An AWS Application 289
Putting the Pieces Together ... 290

Creating your own AWS account ... 290
Enabling access on your security group ... 291
Locating and launching an appropriate WordPress

Amazon Machine Image (AMI) .. 291
Vertically partitioning your WordPress application 303
Creating a new Amazon Machine Image (AMI)

from your WordPress application .. 316
Improving Application Robustness with Geographical Redundancy ... 318

Horizontally partitioning the RDS database 319
Launching a second WordPress application tier instance

in a separate availability zone .. 322
Creating an Elastic Load Balancer ... 323

xiii Table of Contents

Part IV: The Part of Tens ... 329

Chapter 13: Ten Reasons to Use Amazon Web Services 331
AWS Provides IT Agility .. 331
AWS Provides Business Agility .. 332
AWS Offers a Rich Services Ecosystem .. 332
AWS Simplifies IT Operations .. 333
AWS Spans the Globe .. 334
AWS Is the Leading Cloud-Computing Service Provider 334
AWS Enables Innovation ... 335
AWS Is Cost Effective .. 336
AWS Aligns Your Organization with the Future of Technology 336
AWS Is Good for Your Career ... 337

Chapter 14: Ten Design Principles for Cloud Applications 339
Everything Fails All the Time ... 339
Redundancy Protects Against Resource Failure 340
Geographic Distribution Protects Against Infrastructure Failure 340
Monitoring Prevents Problems .. 341
Utilization Review Prevents Waste .. 342
Application Management Automates Administration 343
Security Design Prevents Breaches and Data Loss 343
Encryption Ensures Privacy ... 344
Tier-Based Design Increases Efficiency .. 345
Good Application Architecture Prevents Technical Debt 346

Index ... 347

Amazon Web Services For Dummies xiv

Introduction

T
his book is designed with one purpose in mind: to make it easy for
you, the reader, to understand and begin using Amazon Web Services

(AWS) — an emerging technology platform that is profoundly disrupting
the technology industry and enabling hundreds of thousands of individuals,
businesses, and nonprofit organizations to gain easy access to on-demand
computing resources.

About This Book
In a sense, this book is an extension of my earlier book Virtualization For
Dummies (Wiley Publishing), which has a chapter describing “The Future
of Virtualization.” In my research to identify which direction virtualization
would take, I came across Amazon Web Services, a then-new offering was
referred to by Amazon employees as Infrastructure as a Service. To indicate
how briefly this new type of computing has been available, the term cloud
computing was still more than a year away when Virtualization For Dummies
was published.

As I spoke to Amazon representatives about the company’s new offering,
I experienced the same reaction I had when first exposed to open source
software — a visceral response that made me ask out loud: “If this service is
available to users, who will stick with the old way of doing things?”

Nothing in the subsequent years has changed my mind — in fact, that expe-
rience strengthens my conviction that cloud computing in general, and
Amazon Web Services in particular, will transform the way applications are
designed and built. I’ve worked with people from many companies who have
resigned themselves to the length of the usual IT resource provisioning
process — taking six weeks or more to obtain a virtual machine. When I
demonstrate the ability of AWS to provision an instance (Amazon’s term for
a virtual machine) in ten minutes or less, these people regard what they’re
seeing with disbelief, staggered that the conventional (lengthy) provisioning
process isn’t somehow set in stone.

Amazon continues to challenge the incumbent community of technology ven-
dors, releasing new services and cutting prices at an unrelenting pace.

2 Amazon Web Services For Dummies

I fully expect that a decade from now, AWS will be one of the top two or three
global technology vendors, and that a number of today’s giants will be gone,
driven out of business, or into forced mergers by their inability to compete
on Amazon’s terms.

But (there’s always a but, isn’t there?) how to get started is a challenge that
many people face when they consider using AWS. AWS documentation is
quite thorough, but you won’t find there a general guide for beginners to
start from scratch and develop new skills.

For this reason, I proposed this book to the publisher. I’ve heard from many
people who are excited about using AWS but frustrated about how to learn
about and use AWS. The Powers That Be at Wiley and I agreed that an intro-
ductory book about AWS that helps newbies begin using it productively
would be extremely useful — and so we set to work to create the book that
you now hold in your hands. I hope that you’ll find it a useful and helpful
roadmap for your AWS journey.

Using This Book
This book contains a mix of text, URLs, and terminal commands that you can
execute. Please note these stylistic tidbits:

 ✓ Text that you type just as it appears in the book is in bold. The excep-
tion is when you’re working through a step list: Because each step is
bold, the text to type is not in bold.

 ✓ Web addresses and programming code appear in monofont type. If
you’re reading a digital version of this book on a device connected to
the Internet, you can click the web address to visit that website, such as
this one: www.dummies.com.

Foolish Assumptions
This book is designed to address a range of readers. Part I is an overview
of AWS and an introduction to how the service works. It’s appropriate for
executives, project managers, and IT managers wanting to gain a basic under-
standing of the service so that they have a context for the benefits their
organization can realize by using AWS. No particular technical background is
assumed or necessary in Part I.

http://www.dummies.com

3 Introduction

If you plan to work with AWS in a hands-on manner, Parts II and III provide
a comprehensive review of all AWS offerings. I devote a full chapter to the
use of the AWS technology, with a set of exercises that begin with a simple
example and progressively build into a more complex application that lever-
ages a number of AWS products. A technical background is necessary to
comprehend Parts II and III; however, none of the information or exercises is
particularly difficult from a technology perspective.

Icons Used in This Book
 The Tip icon marks tips (duh!) and shortcuts that you can use to make using

Amazon Web Services easier.

 Remember icons mark information that’s especially important to know.
To siphon off the most important information in each chapter, just skim
these icons.

 The Technical Stuff icon marks information of a highly technical nature that
you can normally skip over.

 The Warning icon tells you to watch out! It marks important information that
may save you headaches.

Beyond the Book
The technology industry continues to invent and evolve rapidly — and that
goes double for cloud computing. It’s important to have up-to-the-minute
information on important new technology trends, and we’re committed to
providing new information as AWS evolves over time.

Here are three places you can look for information and help outside of this
book:

 ✓ Cheat Sheet: You can find the Cheat Sheet for this book at www.
dummies.com/cheatsheet/amazonwebservices. It describes the
family of AWS services and provides guidelines for using them. Given
how complex AWS is turning out to be, a general set of recommenda-
tions is useful indeed!

http://www.dummies.com/cheatsheet/amazonwebservices
http://www.dummies.com/cheatsheet/amazonwebservices

4 Amazon Web Services For Dummies

 ✓ Dummies.com online articles: Be sure to check out www.dummies.
com/extras/amazonwebservices for additional online content deal-
ing with AWS. Not everything I wanted to say could fit within the pages
of this book, so I parceled out some content for the World Wide Web.

 ✓ Updates: Amazon Web Services continues to evolve rapidly. Amazon
rolls out new services extremely quickly. I’ll post updates about new
AWS services at www.bernardgolden.com. Look there to learn the
latest about AWS.

Unlike a novel, which requires you to begin at the beginning and carry on
methodically throughout the book, Amazon Web Services For Dummies is
designed to support what I like to call “random access” — if you hear about
a particular AWS product and want to find out more, well, dig right in to that
section of the book. If you want to understand the phenomenon of AWS, read
the first part and then pick and choose among other areas that seem intrigu-
ing. This book supports your learning pattern and imposes no “official” read-
ing approach. Dive in anywhere that makes sense to you.

http://www.dummies.com/extras/amazonwebservices
http://www.dummies.com/extras/amazonwebservices
http://www.bernardgolden.com

Part I
Getting Started with AWS

 Visit www.dummies.com for great Dummies content online.

http://www.dummies.com

In this part . . .
 ✓ See how Amazon designed Amazon Web Services from the

beginning to be extremely scalable, modular in design, and
highly robust.

 ✓ Find out how AWS reflects Amazon’s unique approach to oper-
ating its business.

 ✓ Get an introduction to AWS, its business and technology under-
pinnings, and even get a small taste of hands-on use.

 ✓ Visit www.dummies.com for great Dummies content
online.

http://www.dummies.com

Chapter 1

Amazon Web Services
Philosophy and Design

In This Chapter
▶ Figuring out the cloud
▶ Watching Amazon grow from retailer to the world’s first cloud provider
▶ Understanding the foundation of Amazon Web Services
▶ Introducing the Amazon Web Services ecosystem
▶ Seeing how the network effect helps you
▶ Comparing Amazon Web Services to other cloud computing providers

Y
ou may be forgiven if you’re puzzled about how Amazon, which started
out as an online bookstore, has become the leading cloud computing

provider. This chapter solves that mystery by discussing the circumstances
that led Amazon into the cloud computing services arena and why Amazon
Web Services, far from being an oddly different offering from a retailer, is a
logical outgrowth of Amazon’s business.

This chapter also compares Amazon’s cloud offering to other competitors in
the market and explains how its approach differs. As part of this comparison,
I present some statistics on the size and growth of Amazon’s offering, while
describing why it’s difficult to get a handle on its exact size.

The chapter concludes with a brief discussion about the Amazon Web Services
ecosystem and why it is far richer than what Amazon itself provides —
and why it offers more value for users of Amazon’s cloud service.

But before I reveal all the answers to the Amazon mystery, I answer an even
more fundamental question: What is all this cloud computing stuff, anyway?

8 Part I: Getting Started with AWS

Cloud Computing Defined
I believe that skill is built on a foundation of knowledge. Anyone who wants
to work with Amazon Web Services (AWS, from now on) should have a firm
understanding of cloud computing — what it is and what it provides.

IaaS, Paas, SaaS
As a general overview, cloud computing refers to the delivery of computing
services from a remote location over a network. The National Institute of
Standards and Technology (NIST), a U.S. government agency, has a definition
of cloud computing that is generally considered the gold standard. Rather
than trying to create my own definition, I always defer to NIST’s definition.
The following information is drawn directly from it.

Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management
effort or service provider interaction.

This cloud model is composed of five essential characteristics:

 ✓ On-demand self-service: A consumer can unilaterally provision comput-
ing capabilities, such as server time and network storage, automatically as
needed without requiring human interaction with each service provider.

 ✓ Broad network access: Capabilities are available over the network and
accessed via standard mechanisms that promote use by heterogeneous
thin or thick client platforms (such as mobile phones, tablets, laptops,
and workstations).

 ✓ Resource pooling: The provider’s computing resources are pooled to
serve multiple consumers using a multi-tenant model, with different
physical and virtual resources dynamically assigned and reassigned
according to consumer demand. There’s a sense of so-called location
independence, in that the customer generally has no control or knowl-
edge over the exact location of the provided resources but may be able
to specify location at a higher level of abstraction (by country, state, or
data center, for example). Examples of resources are storage, process-
ing, memory, and network bandwidth.

 ✓ Rapid elasticity: Capabilities can be elastically provisioned and
released, in some cases automatically, to scale rapidly outward and
inward commensurate with demand. To the consumer, the capabili-
ties available for provisioning often appear to be unlimited and can be
appropriated in any quantity at any time.

9 Chapter 1: Amazon Web Services Philosophy and Design

 ✓ Measured service: Cloud systems automatically control and optimize
resource use by leveraging a metering capability at a level of abstraction
that’s appropriate to the type of service (storage, processing, band-
width, or active user accounts, for example). Resource usage can be
monitored, controlled, and reported, providing transparency for both
the provider and consumer of the utilized service.

Cloud computing is commonly characterized as providing three types of
functionality, referred to IaaS, PaaS, and SaaS, where aaS is shorthand for
“as a service” and service implies that the functionality isn’t local to the user
but rather originates elsewhere (a location in a remote location accessed via
a network). The letters I, P, and S in the acronyms refer to different types of
functionality, as the following list makes clear:

 ✓ Infrastructure as a Service (Iaas): Offers users the basic building blocks of
computing: processing, network connectivity, and storage. (Of course, you
also need other capabilities in order to fully support IaaS functionality —
such as user accounts, usage tracking, and security.) You would use an
IaaS cloud provider if you want to build an application from scratch and
need access to fairly low-level functionality within the operating system.

 ✓ Platform as a Service (PaaS): Instead of offering low-level functions
within the operating system, offers higher-level programming frame-
works that a developer interacts with to obtain computing services.
For example, rather than open a file and write a collection of bits to it,
in a PaaS environment the developer simply calls a function and then
provides the function with the collection of bits. The PaaS framework
then handles the grunt work, such as opening a file, writing the bits to
it, and ensuring that the bits have been successfully received by the file
system. The PaaS framework provider takes care of backing up the data
and managing the collection of backups, for example, thus relieving the
user of having to complete further burdensome administrative tasks.

 ✓ Software as a Service (SaaS): Has clambered to an even higher rung on
the evolutionary ladder than PaaS. With SaaS, all application functional-
ity is delivered over a network in a pretty package. The user need do
nothing more than use the application; the SaaS provider deals with the
hassle associated with creating and operating the application, segregat-
ing user data, providing security for each user as well as the overall SaaS
environment, and handling a myriad of other details.

 As with every model, this division into I, P, and S provides a certain explana-
tory leverage and seeks to make neat and clean an element that in real life can
be rather complicated. In the case of IPS, the model is presented as though
the types are cleanly defined though they no longer are. Many cloud providers
offer services of more than one type. Amazon, in particular, has begun to pro-
vide many platform-like services as it has built out its offerings, and has even
ventured into a few full-blown application services that you’d associate with
SaaS. You could say that Amazon provides all three types of cloud computing.

10 Part I: Getting Started with AWS

Private-versus-public cloud computing
If you find the mix of I, P, and S in the preceding section confusing, wait ’til
you hear about the whole private-versus-public cloud computing distinction.
Note the sequence of events:

 1. Amazon, as the first cloud computing provider, offers public cloud
computing — anyone can use it.

 2. Many IT organizations, when contemplating this new Amazon Web
Services creature, asked why they couldn’t create and offer a service
like AWS to their own users, hosted in their own data centers. This on-
premise version became known as private cloud computing.

 3. Continuing the trend, several hosting providers thought they could offer
their IT customers a segregated part of their data centers and let cus-
tomers build clouds there. This concept can also be considered private
cloud computing because it’s dedicated to one user. On the other hand,
because the data to and from this private cloud runs over a shared net-
work, is the cloud truly private?

 4. Finally, after one bright bulb noted that companies may not choose only
public or private, the term hybrid was coined to refer to companies using
both private and public cloud environments.

As you go further on your journey in the cloud, you’ll likely witness vocifer-
ous discussions devoted to which of these particular cloud environments is
the better option. My own position is that no matter where you stand on the
private/public/hybrid issue, public cloud computing will undoubtedly become
a significant part of every company’s IT environment. Moreover, Amazon will
almost certainly be the largest provider of public cloud computing, so it makes
sense to plan for a future that includes AWS. (Reading this book is part of that
planning effort, so you get a gold star for already being well on your way!)

 If you want to drill down further into cloud computing definitions, check out
NIST’s full description at http://csrc.nist.gov/publications/nist
pubs/800-145/SP800-145.pdf. The U.S. federal government has been
an early adopter of, and hard charger in, cloud adoption, and NIST has been
assigned to create this (excellent) government-wide cloud computing resource.

Understanding the Amazon
Business Philosophy

Amazon Web Services was officially revealed to the world on March 13, 2006.
On that day, AWS offered the Simple Storage Service, its first service. (As you
may imagine, Simple Storage Services was soon shortened to S3.) The idea

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

11 Chapter 1: Amazon Web Services Philosophy and Design

behind S3 was simple: It could offer the concept of object storage over the
web, a setup where anyone could put an object — essentially, any bunch of
bytes — into S3. Those bytes may comprise a digital photo or a file backup or
a software package or a video or audio recording or a spreadsheet file or —
well, you get the idea.

S3 was relatively limited when it first started out. Though objects could,
admittedly, be written or read from anywhere, they could be stored in only
one region: the United States. Moreover, objects could be no larger than 5
gigabytes — not tiny by any means, but certainly smaller than many files that
people may want to store in S3. The actions available for objects were also
quite limited: You could write, read, and delete them, and that was it.

In its first six years, S3 has grown in all dimensions. The service is now
offered throughout the world in a number of different regions. Objects can
now be as large as 5 terabytes. S3 can also offer many more capabilities
regarding objects. An object can now have a termination date, for example:
You can set a date and time after which an object is no longer available for
access. (This capability may be useful if you want to make a video available
for viewing for only a certain period, such as the next two weeks.) S3 can
now also be used to host websites — in other words, individual pages can
be stored as objects, and your domain name (say, www.example.com) can
point to S3, which serves up the pages.

S3 did not remain the lone AWS example for long. Just a few months after it
was launched, Amazon began offering Simple Queue Service (SQS), which
provides a way to pass messages between different programs. SQS can
accept or deliver messages within the AWS environment or outside the envi-
ronment to other programs (your web browser, for example) and can be
used to build highly scalable distributed applications.

Later in 2006 came Elastic Compute Cloud (known affectionately as EC2). As
the AWS computing service, EC2 offers computing capacity on demand, with
immediate availability and no set commitment to length of use.

 Don’t worry if this description of AWS seems overwhelming at first — in the
rest of this book, you can find out all about the various pieces of AWS, how
they work, and how you can use them to address your computing require-
ments. This chapter provides a framework in which to understand the genesis
of AWS, with details to follow. The important thing for you to understand is
how AWS got started, how big of a change it represents in the way computing
is done, and why it’s important to your future.

The overall pattern of AWS has been to add additional services steadily, and
then quickly improve each service over time. AWS is now composed of more
than 25 different services, many offered with different capabilities via dif-
ferent configurations or formats. This rich set of services can be mixed and
matched to create interesting and unique applications, limited only by your
imagination or needs.

http://www.example.com

12 Part I: Getting Started with AWS

So, from one simple service (S3) to more than 25 in just over six years, and
throughout the world — and growing and improving all the time! You’re
probably impressed by how fast all of this has happened. You’re not alone.
Within the industry, Amazon is regarded with a mixture of awe and envy
because of how rapidly it delivers new AWS functionality. If you’re interested,
you can keep up with changes to AWS via its What’s New web page on the
AWS site, at

http://aws.amazon.com/about-aws/whats-new

This torrid pace of improvement is great news for you because it means that
AWS continually presents new things you can do — things you probably
couldn’t do in the past because the AWS functionality would be too difficult
to implement or too expensive to afford even if you could implement it.

Measuring the scale of AWS
Amazon is the pioneer of cloud computing and, because you’d have to have
been living under a rock not to have heard about “the cloud,” being the pio-
neer in this area is a big deal. The obvious question is this: If AWS is the big
dog in the market and if cloud computing is the hottest thing since sliced
bread, how big are we talking about?

That’s an interesting question because Amazon reveals little about the extent
of its business. Rather than break out AWS revenues, the company lumps
them into an Other category in its financial reports.

Nevertheless, we have some clues to its size, based on information from the
company itself and on informed speculation by industry pundits.

Amazon itself provides a proxy for the growth of the AWS service. Every so
often, it announces how many objects are stored in the S3 service. Take a
peek at Figure 1-1, which shows how the number of objects stored in S3 has
increased at an enormous pace, jumping from 2.9 billion at the end of 2006
to over 2 trillion objects by the end of the second quarter of 2012. Given that
pace of growth, it’s obvious that the business of AWS is booming.

Other estimates of the size of the AWS service exist as well. A very clever
consultant named Huan Liu examined AWS IP addresses and projected the
total number of server racks held by AWS, based on an estimate of how many
servers reside in a rack. Table 1-1 breaks down the numbers by region.

http://aws.amazon.com/about-aws/whats-new/

13 Chapter 1: Amazon Web Services Philosophy and Design

Figure 1-1:
Counting S3
objects over

the years.

Table 1-1 Total AWS Servers
AWS Region Number of Server Racks Number of Servers
US East 5,030 321,920
US West (Oregon) 41 2,624
US West (California) 630 40,320
EU West (Ireland) 814 52,096
AP Northeast (Japan) 314 20,096
AP Southeast (Singapore) 246 15,744
SA East (Brazil) 25 1,600
Total 7,100 454,400

That’s a lot of servers. (To see the original document outlining Liu’s esti-
mates, along with his methodology, go to http://huanliu.wordpress.
com/2012/03/13/amazon-data-center-size). If you consider that each
server can support a number of virtual machines (the number would vary,
of course, according to the size of the virtual machines), AWS could support
several million running virtual machines.

http://huanliu.wordpress.com/2012/03/13/amazon-data-center-size/
http://huanliu.wordpress.com/2012/03/13/amazon-data-center-size/

14 Part I: Getting Started with AWS

Amazon publishes a list of public IP addresses; as of May 2013, there are
over four million available in AWS. This number is not inconsistent with Liu’s
estimated number of physical servers; it’s also a convenient place to look to
track how much AWS is growing. If you’re interested, you can look at the AWS
numbers at https://forums.aws.amazon.com/ann.jspa?annID=1701.

 If you’re not familiar with the term virtual machines, don’t worry: I describe
AWS technology in depth in Chapter 4. For an even more detailed discussion
of virtual machines and virtualization proper, check out Virtualization For
Dummies, by yours truly (published by John Wiley & Sons, Inc.).

Checking the bottom line
Though Amazon doesn’t announce how many dollars AWS pulls in, that
hasn’t stopped others from making their own estimates of the size of AWS
business — and their estimates make it clear that AWS is a very large
business indeed.

Early in 2012, several analysts from Morgan Stanley analyzed the AWS busi-
ness and judged that the service pulled in $1.19 billion in 2011. (You gotta
love the precision that these pundits come up with, eh?) Other analysts from
JP Morgan Chase and UBS have calculated that AWS will achieve 2015
revenues of around $2.5 billion.

The bottom line: AWS is big and getting bigger (and better) every day. It
really is no exaggeration to say that AWS represents a revolution in comput-
ing. People are doing amazing things with it, and this book shows you how
you can take advantage of it.

The AWS Infrastructure
If what Amazon is doing with AWS represents a revolution, as I describe in
the previous section, how is the company bringing it about? In other words,
how is it delivering this amazing service? Throughout this book, I go into
the specifics of how the service operates, but for now I outline the general
approach that Amazon has taken in building AWS.

First and foremost, Amazon has approached the job in a unique fashion,
befitting a company that changed the face of retail. Amazon specializes in a
low-margin approach to business, and it carries that perspective into AWS.
Unlike almost every other player in the cloud computing market, Amazon has
focused on creating a low-margin, highly efficient offering, and that offering
starts with the way Amazon has built out its infrastructure.

https://forums.aws.amazon.com/ann.jspa?annID=1701

15 Chapter 1: Amazon Web Services Philosophy and Design

Making hard hardware decisions
Unlike most of its competitors, Amazon builds its hardware infrastructure
from commodity components. Commodity, in this case, refers to using equip-
ment from lesser-known manufacturers who charge less than their brand-
name competitors. For components for which commodity offerings aren’t
available, Amazon (known as a ferocious negotiator) gets rock-bottom prices.

On the hardware side of the AWS offering, Amazon’s approach is clear: Buy
equipment as cheaply as possible. But wait, you may say, won’t the commod-
ity approach result in a less reliable infrastructure? After all, the brand-name
hardware providers assert that one benefit of paying premium prices is that
you get higher-quality gear. Well . . . yes and no. It may be true that premium-
priced equipment (traditionally called enterprise equipment because of the
assumption that large enterprises require more reliability and are willing to
pay extra to obtain it) is more reliable in an apples-to-apples comparison.
That is, an enterprise-grade server lasts longer and suffers fewer outages
than its commodity-class counterpart.

The issue, from Amazon’s perspective, is how much more reliable the enter-
prise gear is than the commodity version, and how much that improved
reliability is worth. In other words, it needs to know the cost-benefit ratio of
enterprise-versus-commodity.

Making this evaluation more challenging is a fundamental fact: At the scale on
which an Amazon operates (remember that it has nearly half a million serv-
ers running in its AWS service), equipment — no matter who provides it — is
breaking all the time.

If you’re a cloud provider with an infrastructure the size of Amazon’s, you
have to assume, for every type of hardware you use, an endless round of
crashed disk drives, fried motherboards, packet-dropping network switches,
and on and on.

Therefore, even if you buy the highest-quality, most expensive gear available,
you’ll still end up (if you’re fortunate enough to grow into a very large cloud
computing provider like, say, Amazon) with an unreliable infrastructure. Put
another way, at a very large scale, even highly reliable individual components
still result in an unreliable overall infrastructure because of the failure of
components, as rare as the failure of a specific piece of equipment may be.

 The scale at which Amazon operates affects other aspects of its hardware
infrastructure as well. Besides components such as servers, networks, and
storage, data centers also have power supplies, cooling, generators, and
backup batteries. Depending on the specific component, Amazon may have
to use custom-designed equipment to operate at the scale required.

16 Part I: Getting Started with AWS

Think of AWS hardware infrastructure this way: If you had to design and
operate data centers to deal with massive scale and in a way that aligns with
a corporate mandate to operate inexpensively, you’d probably end up with
a solution much like Amazon’s. You’d use commodity computing equipment
whenever possible, jawbone prices down when you couldn’t obtain commod-
ity offerings, and custom-design equipment to manage your unusually large-
scale operation.

 For more detail on Amazon’s data center approach, check out James
Hamilton’s blog at http://perspectives.mvdirona.com. (He’s one of
Amazon’s premier data center architects.) The blog includes links to videos of
his extremely interesting and educational presentations on how Amazon has
approached its hardware environment.

Examining Amazon’s software
infrastructure strategy
Because of Amazon’s low-margin, highly scaled requirements, you’d probably
expect it to have a unique approach to the cloud computing software infra-
structure running on top of its hardware environment, right?

You’d be correct.

Amazon has created a unique, highly specialized software environment in
order to provide its cloud computing services. I stress the word unique
because, at first glance, people often find AWS different and confusing — it is
unlike any other computing environment they’ve previously encountered.

After users understand how AWS operates, however, they generally find that
its design makes sense and that it’s appropriate for what it delivers — and,
more important, for how people use the service.

Though Amazon has an unusual approach to its hardware environment, it’s
in the software infrastructure that its uniqueness truly stands out. Let me
give you a quick overview of its features. The software infrastructure is

 ✓ Based on virtualization: Virtualization — a technology that abstracts
software components from dependence on their underlying hardware —
lies at the heart of AWS. Being able to create virtual machines, start
them, terminate them, and restart them quickly makes the AWS service
possible.

 As you might expect, Amazon has approached virtualization in a unique
fashion. Naturally, it wanted a low-cost way to use virtualization, so it
chose the open source Xen Hypervisor as its software foundation. Then

http://perspectives.mvdirona.com/

17 Chapter 1: Amazon Web Services Philosophy and Design

it made significant changes to the “vanilla” Xen product so that it could
fulfill the requirements of AWS.

 The result is that Amazon leverages virtualization, but the virtualization
solution it came up with is extended in ways that support vast scale and
a plethora of services built atop it.

 ✓ Operated as a service: I know what you’re going to say: “Of course it’s
operated as a service — that’s why it’s called Amazon Web Services!”

 That’s true, but Amazon had to create a tremendous software infrastruc-
ture in order to be able to offer its computing capability as a service.

 For example, Amazon had to create a way for users to operate their AWS
resources from a distance and with no requirement for local hands-on
interaction. And it had to segregate a user’s resources from everyone
else’s resources in a way that ensures security, because no one wants
other users to be able to see, access, or change his resources.

 Amazon had to provide a set of interfaces — an Application
Programming Interface (API) — to allow users to manage every aspect of
AWS. (I cover the AWS API in Chapter 5.)

 ✓ Designed for flexibility: Amazon designed AWS to address users like
itself — users that need rich computing services available at a moment’s
notice to support their application needs and constantly changing busi-
ness conditions.

 In other words, just as Amazon can’t predict what its computing require-
ments will be in a year or two, neither can the market for which Amazon
built AWS.

 In that situation, it makes sense to implement few constraints on the ser-
vice. Consequently, rather than offer a tightly integrated set of services
that provides only a few ways to use them, Amazon provides a highly
granular set of services that can be “mixed and matched” by the user to
create an application that meets its exact needs.

 By designing the service in a highly flexible fashion, Amazon enables its
customers to be creative, thereby supporting innovation. Throughout
the book, I’ll offer examples of some of the interesting things companies
are doing with AWS.

 Not only are the computing services themselves highly flexible, the con-
ditions of use of AWS are flexible as well. You need nothing more to get
started than an e-mail address and a credit card.

 ✓ Highly resilient: If you took the message from earlier in the chapter
about the inherent unreliability of hardware to heart, you now recognize
that there is no way to implement resiliency via hardware. The obvious
alternative is with software, and that is the path Amazon has chosen.

 Amazon makes AWS highly resilient by implementing resource redun-
dancy — essentially using multiple copies of a resource to ensure that

18 Part I: Getting Started with AWS

failure of a single resource does not cause the service to fail. For exam-
ple, if you were to store just one copy of each of your objects within its
S3 service, that object may sometimes be unavailable because the disk
drive on which it resides has broken down. Instead, AWS keeps mul-
tiple copies of an object, ensuring that even if one — or two! — objects
become unavailable because of hardware failure, users can still access
the object, thereby improving S3 reliability and durability.

In summary, Amazon has implemented a rich software infrastructure to
allow users access to large quantities of computing resources at rock-bottom
prices. And if you take another look at Figure 1-1 (the one outlining the
number of objects stored in S3), you’d have to draw the conclusion that a
large number of users are increasingly benefiting from AWS.

The AWS Ecosystem
Thus far, I haven’t delved too deeply into the various pieces of the AWS
puzzle, but it should be clear (if you’re reading this chapter from start to
finish) that Amazon offers a number of services to its users. However, AWS
hosts a far richer set of services than only the ones it provides. In fact, users
can find nearly everything they need within the confines of AWS to create
almost any application they may want to implement. These services are avail-
able via the AWS ecosystem — the offerings of Amazon partners and third
parties that host their offerings on AWS.

So, in addition to the 25+ services AWS itself offers, users can find services that

 ✓ Offer preconfigured virtual machines with software components already
installed and configured, to enable quick use

 ✓ Manipulate images

 ✓ Transmit or stream video

 ✓ Integrate applications with one another

 ✓ Monitor application performance

 ✓ Ensure application security

 ✓ Operate billing and subscriptions

 ✓ Manage healthcare claims

 ✓ Offer real estate for sale

 ✓ Analyze genomic data

19 Chapter 1: Amazon Web Services Philosophy and Design

 ✓ Host websites

 ✓ Provide customer support

And really, this list barely scratches the surface of what’s available within
AWS. In a way, AWS is a modern-day bazaar, providing an incredibly rich set
of computing capabilities from anyone who chooses to set up shop to anyone
who chooses to purchase what’s being offered.

On closer inspection, you can see that the AWS ecosystem is made up of
three distinct subsystems:

 ✓ AWS computing services provided by Amazon: As noted earlier,
Amazon currently provides more than 25 AWS services and is launching
more all the time. AWS provides a large range of cloud computing ser-
vices — you’ll be introduced to many of them over the course of
this book.

 ✓ Computing services provided by third parties that operate on AWS:
These services tend to offer functionality that enables you to build appli-
cations of a type that AWS doesn’t strictly offer. For example, AWS offers
some billing capability to enable users to build applications and charge
people to use them, but the AWS service doesn’t support many billing
use cases — user-specific discounts based on the size of the company,
for example. Many companies (and even individuals) offer services com-
plementary to AWS that then allow users to build richer applications
more quickly. (If you carry out the AWS exercises I set out for you later
in this book, you’ll use one such service offered by Bitnami.)

 ✓ Complete applications offered by third parties that run on AWS: You
can use these services, often referred to as SaaS (Software as a Service),
over a network without having to install them on your own hardware.
(Check out the “IaaS, Paas, SaaS” section, earlier in this chapter, for
more on SaaS.) Many, many companies host their applications on AWS,
drawn to it for the same reasons that end users are drawn to it: low cost,
easy access, and high scalability. An interesting trend within AWS is the
increasing move by traditional software vendors to migrate their appli-
cations to AWS and provide them as SaaS offerings rather than as appli-
cations that users install from a CD or DVD on their own machines.

 As you go forward with using AWS, be careful to recognize the differences
between these three offerings within the AWS ecosystem, especially Amazon’s
role (or lack thereof) in all three. Though third-party services or SaaS appli-
cations can be incredibly valuable to your computing efforts, Amazon, quite
reasonably, offers no support or guarantee about their functionality or perfor-
mance. It’s up to you to decide whether a given non-AWS service is fit for
your needs.

20 Part I: Getting Started with AWS

 Amazon, always working to make it ever easier to locate and integrate third-
party services into your application, has created the Amazon Marketplace as
your go-to place for finding AWS-enabled applications. Moreover, being part of
the Marketplace implies an endorsement by AWS, which will make you more
confident about using a Marketplace application. You can read more about the
Marketplace at

https://aws.amazon.com/marketplace

Counting Up the Network Effects Benefit
The reason the AWS ecosystem has become the computing marketplace for
all and sundry can be captured in the phrase network effect, which can be
thought of as the value derived from a network because other network par-
ticipants are part of the network. The classic case of a network effect is the
telephone: The more people who use telephones, the more value there is to
someone getting a telephone — because the larger the number of telephones
being used, the easier it is to communicate with a large number of people.
Conversely, if you’re the only person in town with a telephone, well, you’re
going to be pretty lonely — and not very talkative! Said another way, for a ser-
vice with network effects, the more people who use it, the more attractive it is
to potential users, and the more value they receive when they use the service.

From the AWS perspective, the network effect means that, if you’re providing
a new cloud-based service, it makes sense to offer it where lots of other cloud
users are located — someplace like AWS, for example. This network effect
benefits AWS greatly, simply because many people, when they start to think
about doing something with cloud computing, naturally gravitate to AWS
because it’s a brand name that they recognize.

However, with respect to AWS, there’s an even greater network effect than
the fact that lots of people are using it: The technical aspects of AWS play a
part as well.

When one service talks to another over the Internet, a certain amount of
time passes when the communication between the services travels over the
Internet network — even at the speed of light, information traveling long
distances takes a certain amount of time. Also, while information is traveling
across the Internet, it’s constantly being shunted through routers to ensure
that it’s being sent in the right direction. This combination of network length
and device interaction is called latency, a measure of how much of a delay is
imposed by network traffic distance.

https://aws.amazon.com/marketplace

21 Chapter 1: Amazon Web Services Philosophy and Design

In concrete terms, if you use a web browser to access data from a website
hosted within 50 miles of you, it will likely respond faster than if the same
website were hosted 7,000 miles away.

To continue this concept, using a service that’s located nearby makes your
application run faster — always a good thing. So if your service runs on AWS,
you’d like any services you depend on to also run on AWS — because the
latency affecting your application is much lower than if those services origi-
nated somewhere else.

Folks who build services tend to be smart, so they’ll notice that their poten-
tial customers like the idea of having services nearby. If you’re setting up a
new service, you’ll be attracted to AWS because lots of other services are
already located there. And if you’re considering using a cloud service, you’re
likely to choose AWS because the number of services there will make it easier
to build your application, from the perspective of service availability and low-
latency performance.

The network effects associated with AWS give you a rich set of services to
leverage as you create applications to run on Amazon’s cloud offering. They
can work to reduce your workload and speed your application development
delivery by relieving you of much of the burden traditionally associated with
integrating external software components and services into your application.

Here are some benefits of being able to leverage the network effects of the
AWS ecosystem in your application:

 ✓ The service is already up and running within AWS. You don’t have to
obtain the software, install it, configure it, test it, and then integrate it
into your application. Because it’s already operational in the AWS envi-
ronment, you can skip directly to the last step — perform the technical
integration.

 ✓ The services have a cloud-friendly licensing model. Vendors have
already figured out how to offer their software and charge for it in the
AWS environment. Vendors often align with the AWS billing methodol-
ogy, charging per hour of use or offering a subscription for monthly
access. But one thing you don’t have to do is approach a vendor that
has a large, upfront license fee and negotiate to operate in the AWS envi-
ronment — it’s already taken care of.

 ✓ Support is available for the service. You don’t have to figure out why a
software component you want to use doesn’t work properly in the AWS
environment — the vendor takes responsibility for it. In the parlance of
the world of support, you have, as the technology industry rather indeli-
cately puts it, a throat to choke.

22 Part I: Getting Started with AWS

 ✓ Performance improves. Because the service operates in the same envi-
ronment that your application runs in, it provides low latency and helps
your application perform better.

 Before you start thinking about finding a packaged software application to
integrate into your application, or about writing your own software compo-
nent to provide certain functionality, search the Marketplace to see whether
one or more applications already provide the necessary functionality.

AWS versus Other Cloud Providers
Nature abhors a vacuum, and markets abhor monopoly providers, so it
stands to reason that competitors always enter an attractive market. Cloud
computing is no different: There are a plethora of cloud computing providers.
Naturally, you’ll want to get the lowdown on how AWS measures up.

The most important difference between AWS and almost all other cloud pro-
viders revolves around what market they target. To understand that aspect,
you must understand the basis of the service they offer.

Now, AWS grew out of the capabilities that Amazon developed to enable its
developers to rapidly create and deploy applications. The service is focused
on making developers more productive and, in a word, happier.

By contrast, most other cloud providers have a hosting heritage: Their back-
grounds involve supporting infrastructure for IT operations groups responsi-
ble for maintaining system uptime. A significant part of the value proposition
for hosting providers has traditionally been the high quality of their infra-
structures — in other words, the enterprise nature of their servers, networks,
storage, and so on.

This heritage carries several implications about enterprise cloud providers:

 ✓ The focus is on the concerns of IT operations rather than on the con-
cerns of developers. Often, this concern translates as, “The service is
not easy to use.” For example, an enterprise cloud provider may require
a discussion with a sales representative before granting access to the
service and then impose a back-and-forth manual process as part of the
account setup. By contrast, AWS allows anyone with an e-mail address
and a credit card access to the service within ten minutes.

 ✓ The service itself reflects its hosting heritage, with its functionality
and use model mirroring how physical servers operate. Often, the only
storage an enterprise cloud service provider offers is associated with

23 Chapter 1: Amazon Web Services Philosophy and Design

individual virtual machines — no object storage, such as S3, is offered,
because it isn’t part of a typical hosting environment.

 ✓ Enterprise cloud service providers often require a multiyear com-
mitment to resource use with a specific level of computing capacity.
Though this strategy makes it easier for a cloud service provider to plan
its business, it’s much less convenient for users — and it imposes some
of the same issues that they’re trying to escape from!

 ✓ The use of enterprise equipment often means higher prices when com-
pared to AWS. I have seen enterprise cloud service providers charge
800 percent more than AWS. Depending on organization requirements
and the nature of the application, users may be willing to pay a premium
for these providers; on the other hand, higher prices and the long-term
commitment that often accompanies the use of an AWS competitor may
strike many users as unattractive or even unacceptable.

The rise of shadow IT
Frustration at being unable to get hold of server
resources in a timely fashion has led to the phe-
nomenon of shadow IT: developers bypassing
IT proper and obtaining resources themselves.
This phenomenon is powerful and growing —
at one conference, I heard a CIO state that he
had examined the expense reports submitted
to him for reimbursement and found more than
50 different AWS accounts being used by his
development staff!

Here’s something to consider: Shadow IT is
a pejorative term, implying stealth and a defi-
nite whiff of illicit behavior. On the other hand,
someone engaging in shadow IT might, rea-
sonably enough, think of it as “getting the job
done” in the face of existing processes that can
stretch out to several months the length of time
required to obtain resources.

This conflict is unlikely to subside in the near
future. Developers relish the freedom and
flexibility that AWS provides, though many IT

groups are engaged in a fruitless struggle to
go back to “the good old days,” where they set
the rules.

The conflict will ultimately be resolved in favor
of developers. The reason is simple: The appli-
cation is the way businesses gain value from
IT, and applications are often directly tied to
revenue-generating offerings (say, a mobile
phone app that enables users to order goods
or services online). Infrastructure, the province
of mainstream IT, is then seen as a necessary
evil — the plumbing that supports applications.

The advantage held by developers can be seen
in cloud computing market share. One technol-
ogy analyst told me that, by his estimate, AWS
represents 75 percent of the market for cloud
service providers. I expect pressure to build on
enterprise cloud providers to rapidly improve
their offerings to include more developer-
friendly services. Amazon’s six-year head start
may make it too elusive to overtake.

24 Part I: Getting Started with AWS

If you analyze how well Amazon matches up against the NIST definition of
cloud computing (discussed at the beginning if this chapter) when compared
with its competitors, AWS usually emerges victorious. In part, that’s because
AWS was the pioneer, and because the first entrant into a market typically
gets to define it. There’s more to it than that, though.

Amazon’s stroke of genius was to put together an innovative offering address-
ing a market poorly served by traditional IT practices. Though hosting com-
panies typically serve IT operations groups well, the emphasis on enterprise
equipment and high uptime availability frustrates developers trying to get
access to resources. Stories of waiting weeks or months for servers to be pro-
visioned are rife within the industry. As you might imagine, developers (and
the application managers and executives they work for) longed for a different
way of doing things — and that’s what AWS offers.

Getting Ready for the 21st Century
This chapter provides an overview of Amazon Web Services. It lets you see
how AWS has grown from Amazon’s own computing needs and infrastructure
to now represent Amazon’s response to this simple hypothesis: If we need a
flexible, cost-effective, and highly scalable infrastructure, a lot of other organi-
zations could probably use one as well.”

From that initial insight, Amazon created the computing platform of the 21st
century. Targeted at developers, and provided throughout the world, AWS
is undergoing explosive growth as more and more people explore how it can
enable them to solve problems that were unsolvable by the traditional meth-
ods of managing infrastructure.

I hope that you can’t wait to jump in to exploring AWS. This book aims to pro-
vide you with knowledge you need so that you, too, can leverage the amazing
AWS cloud computing offering.

Chapter 2

Introducing the AWS API
In This Chapter
▶ What APIs are and why they’re important
▶ Taking a closer look at the AWS API
▶ Knowing when to use the AWS API
▶ Explaining AWS API security

T
he AWS environment acts as an integrated collection of hardware and
software services designed to enable the easy, quick, and inexpensive

use of computing resources. (Chapter 1 gives all the details, if you’re curi-
ous.) Now, sitting atop this integrated collection is the AWS application
programming interface (API, for short): In essence, an API represents a way
to communicate with a computing resource. (I tell you more about this
topic later in this chapter.) With respect to AWS, nothing gets done without
using the AWS API. The AWS API is the sole way that external users inter-
act with AWS resources, and there’s literally no way to use AWS resources
without the API being involved. In fact, if you access AWS through the AWS
Management Console or the command line tools, you are actually using tools
that make calls to the AWS API.

In this chapter, I start by offering an introduction to the world of APIs and an
explanation of why they’ve become increasingly important in the world of
computing. I then discuss the AWS API and outline how it’s used. Along the
way, I discuss other, third-party services that you may want to use and tell
you how they interact with the AWS API. Finally, I describe the AWS API secu-
rity model, which is critical to understanding how Amazon ensures that only
the right people perform acceptable actions within the AWS environment.

APIs: Understanding the Basics
You may consider yourself the kind of person who’d never, ever have to use
an API. You’d be wrong. APIs have been important, they are important now,
and they’ll become even more important. More likely than not, you’ve been
using APIs for years without even knowing it.

26 Part I: Getting Started with AWS

 With respect to Amazon, the API is the sole external interface to computing
resources and services. Without API calls being made, nothing gets done.

API is short for application programming interface, as I mention elsewhere.
A good way to describe an API is to say that it represents a way for one
program to interact with another via a defined interface — in other words,
a mechanism by which any other program that communicates with the pro-
gram can be assured that it will fulfill its role. The idea is that if a calling
program provides the right information within the correct syntax, the pro-
gram with the API will respond in the requested manner.

Understanding APIs
The term API traditionally referred to the pro-
gramming interface offered by one or more
routines that were bundled into a library of
functions. Someone would supply a library that,
say, performs date-and-time manipulation func-
tions. A software engineer would bundle that
library into a program and could then call those
functions via the API that the library offers.

The API represents the “contract” that the
library offers. The API defines the functional
interface, the format of any information supplied
to the functions (commonly called arguments or
parameters) within the library, the operation to
be performed, and the output that each function
would return to the calling program.

One benefit of this “contractual” approach is
that it offers encapsulation within the library —
the actual code that implements the contract
is hidden from the calling function. The library
code can then be modified, updated, or even
replaced entirely with another set of code, all
without disturbing the calling function — as
long as the new library code fulfills the old con-
tract. Encapsulation allows much more flexibil-
ity in software environments, because different
parts of the overall environment evolve at differ-
ent rates; changing one part of the environment

doesn’t require changing everything. As long as
the contract is adhered to, every other part of
the environment can remain undisturbed.

The meaning of the term API has been extended:
Rather than be used solely to discuss libraries
that are directly attached to other programs,
it’s now used to refer to software environments
in which the different software programs run
on different servers and communicate across
a network. Furthermore, that network may be
contained within a single data center or, quite
commonly, extend across the Internet. This net-
work-based API approach is often referred to
as a web services environment — notice how
Amazon’s cloud computing offering is named
Amazon Web Services? It’s no accident.

One critical factor that web services require,
but traditional API libraries don’t, is the whole
notion of security. If two programs are com-
municating across the Internet, the one calling
the service must be able to provide information
regarding who it is (its identity), and the called
service must be able to validate that whoever
is doing the calling is allowed (authorized) to
access the service it has requested. I discuss
Amazon’s approach to its web services security
later in this chapter.

27 Chapter 2: Introducing the AWS API

Benefiting from Web Services
I’ve heard people say that we’re now living in a web services world, which,
on the face of it, seems like an odd thing to say — after all, you may be able
to go about much of your life today just as you did a decade ago without
giving a moment’s thought to something called “web services.” However,
even though you may not notice the fact, your everyday life is surrounded by
web services.

As more aspects of our lives move to the Internet — banking, shopping,
paying our taxes, collaborating at work, our social lives — people naturally
want to be able to combine two or more of them into a new creation. It’s the
technological equivalent of the musical mash-up that’s all the rage these
days — a combination of two elements to create a new one that reflects parts
of both. An early example of this phenomenon was an Internet application
that combined Google Maps with craigslist apartment listings to create a
map identifying the location of every available apartment. All the application
did was combine (mash up) two basic services, but from that union came an
extremely useful result — a guide to apartments in a particular area, making
the process of selecting some to view and getting driving directions to them
much more efficient.

The huge growth of mobile computing — the brave new world of smart-
phones and tablets — has worked to fuel the growth of APIs as well as mash-
up applications. The “app culture” of mobile computing is a natural place to
combine services, especially those tied to location. The apartment map appli-
cation I just described is even more useful when it can be accessed while
you’re out and about. Finished looking at one apartment? Pull up the app and
let it show you where the next nearest apartment for rent is located.

The next great frontier for web services is the so-called “Internet of Things,”
a term that refers to computing devices used not by humans, but by each
other — interacting to complete useful tasks (smart electric meters that com-
municate with power company billing systems, for example). Soon, however,
you’ll be surrounded by all manner of devices that constantly interact with
cloud-based applications. How big will the Internet of Things become? One
senior Cisco executive predicts that 1 trillion devices will soon be interacting
over the Internet.

As more proof (if more proof were needed) that today’s world is a web
services world, companies, government agencies, and nonprofit organiza-
tions are feverishly making their resources available as online services acces-
sible via APIs. Engineers are combining online web services to create new
applications that combine individual services and provide unique and useful
capabilities.

28 Part I: Getting Started with AWS

This web services revolution that I describe makes possible a number of
interesting benefits:

 ✓ Innovation: Just as musical mash-ups let people combine musical
resources into new creations, so, too, do web services foster innovation.
Though I may not be able to see the value in a combination of, say, vehicle
gas mileage ratings, local gas prices, and state park reviews, someone else
may conclude that an application allowing someone to enter the make
and model of her automobile to find out which parks she can visit for less
than $25 in gas costs would be just the ticket — and a whole lot of people
may agree. (In fact, I may put that app on my to-do list!)

 ✓ Niche market support: In a non-web-services world, the only people
who can develop applications are those working for organizations.
Only they have access to the computing resources or data — so the
only applications that are developed are ones that the company deems
useful. However, once those resources and data are made available via
web services, anyone can create an application, which allows the devel-
opment of applications targeted at niche markets. For example, someone
can combine Google Maps with a municipal bus schedule in a mobile
app to allow users to see when and where the next bus will be available
nearby.

 ✓ New sources of revenue: Companies can provide a web services inter-
face into their business transaction systems and allow outside entities
to sell their goods. For example, the large retailer Sears has made it
possible for mobile app developers and bloggers to sell Sears goods via
a Sears web service. These developers and bloggers reach audiences
that Sears may not be able to reach — but Sears can prosper without
having to be involved. As another example, Netflix has made its web
services interface to its video offerings available, and many device and
game manufacturers have used the interface to incorporate Netflix into
their products. Netflix can gain new revenues every time someone buys
a Wii or an Xbox and decides that it would be cool to use his new toy to
access online movies and television.

These examples should give you an understanding of why many people (and I
include myself in that number) regard the rise of web services as a true tech-
nology revolution.

This revolution is nowhere near the end, either. Mobile computing is still
growing extremely rapidly, and it’s just getting going in emerging econo-
mies. The journey of the Internet of Things has barely begun. But I hope that
you recognize just how important web services are to you — even if you’re
unaware of their presence.

29 Chapter 2: Introducing the AWS API

An Overview of the AWS API
I’ve said it before and I’ll say it again: The only way you can interact with
AWS is via its API. Every service you can ever use is called (and returns data)
via its API, so using the API is critical to working with AWS. However, don’t
worry about having to know the details of a low-level programming interface —
you’ll likely never have to interact directly with the API. Nevertheless, you
must understand at least the broad outline of how the AWS API functions, so
that’s what I describe in this section.

The myth of excess capacity
This is probably as good a place as any to
address a persistent myth about AWS. Many
people think that the AWS service represents
Amazon’s effort to rent its excess comput-
ing capacity during periods of low demand
throughout the year. They believe that because
Amazon has to have a lot of capacity on hand
to address the heavy load of retail shopping
during the Christmas season, it created AWS to
encourage people to use its infrastructure the
rest of the year.

There’s only one problem with that theory —
many AWS customers also have Christmas
seasonality, so if Amazon is selling its excess
capacity the rest of the year, what does it do
in December when those AWS customers want
access to computing capacity and Amazon
doesn’t have much excess capacity available?

The truth is that AWS doesn’t rely on excess
Amazon retail capacity. AWS has its own
capacity, thank you very much — and it’s a
good thing, given that Amazon retail’s entire
web server functionality now runs on AWS. If
AWS depended on excess Amazon retail com-
puting capacity but Amazon retail now runs on

AWS . . . well, trying to understand that scenario
is like trying to figure out an Escher drawing!

The bottom line: AWS has its own computing
capacity, and it is growing dramatically. Early
in 2010, I heard Werner Vogels, Amazon’s chief
technology officer (CTO), say that, because
of customer demand, AWS installs, each and
every day, as much computing capacity as all
of Amazon ran on in 2000, when it was a $2.7
billion company.

Vogels updated his statement in late 2012,
saying that, again because of customer
demand, AWS now installs as much comput-
ing capacity daily as all of Amazon ran on in the
year 2003, when it was a $5.2 billion company.

So the next time you hear someone say that
AWS is primarily a way for Amazon to rent its
off-season excess capacity, you’ll know better,
and you can @— if you dare! — set that person
straight. AWS is its own, significant business,
it has its own, significant computing infrastruc-
ture, and it is experiencing, by all evidence, very
rapid expansion.

30 Part I: Getting Started with AWS

Web services: SOAP or REST?
You can choose from a couple of different schools of thought for how web
services should be delivered. The older approach, SOAP (short for Simple
Object Access Protocol), had widespread industry support, complete with a
comprehensive set of standards. Those standards were too comprehensive,
unfortunately. The people designing SOAP set it up to be extremely flexible —
it can communicate across the web, e-mail, and private networks. To ensure
security and manageability, a number of supporting standards that integrate
with SOAP were also defined.

SOAP is based on a document encoding standard known as Extensible
Markup Language (XML, for short), and the SOAP service is defined in such a
way that users can then leverage XML no matter what the underlying commu-
nication network is. For this system to work, though, the data transferred by
SOAP (commonly referred to as the payload) also needs to be in XML format.
Notice a pattern here? The push to be comprehensive and flexible (or, to be
all things to all people) plus the XML payload requirement meant that SOAP
ended up being quite complex, making it a lot of work to use properly. As
you might guess, many IT people found SOAP daunting and, consequently,
resisted using it.

About a decade ago, a doctoral student defined another web services
approach as part of his thesis: REST, or Representational State Transfer.
(Frankly, I think he coined the term REST first, because it sounded easier and
more relaxing than SOAP, and then configured the name to fit the acronym.)

REST, which is far less comprehensive than SOAP, aspires to solve fewer
problems. It doesn’t address some aspects of SOAP that seemed important
but that, in retrospect, made it more complex to use — security, for example.

The most important aspect of REST is that it’s designed to integrate with
standard web protocols so that REST services can be called with standard
web verbs and URLs. For example, a valid REST call looks like this:

http://search.examplecompany.com/CompanyDirectory/Employee
Info?empname=BernardGolden

That’s all it takes to make a query to the REST service of examplecompany
to see my personnel information. The HTTP verb that accompanies this
request is GET, asking for information to be returned. To delete information,
you use the verb DELETE. To insert my information, you use the verb POST.
To update my information, you use the verb PUT.

For the POST and PUT actions, additional information would accompany the
empname and be separated by an ampersand (&) to indicate another argu-
ment to be used by the service.

31 Chapter 2: Introducing the AWS API

REST imposes no particular formatting requirements on the service payloads;
in this respect, it differs from SOAP, which requires XML. For simple inter-
actions, a string of bytes is all you need for the payload; for more complex
interactions (say, in addition to returning my employee information, I want to
place a request for the employee information of all employees whose names
start with G), the encoding convention JSON is used. (JSON, if you’re curious,
stands for Javascript Object Notation.)

As you might expect, REST’s simpler use model, its alignment with standard
web protocols and verbs, and its less restrictive payload formatting made it
catch on with developers like a house on fire.

 AWS originally launched with SOAP support for interactions with its API, but
it has steadily deprecated (reduced its support for, in other words) its SOAP
interface in favor of REST. My recommendation for any use of the AWS API
is that you focus on using REST. That way, you won’t end up with programs
that someday stop working — long after you’ve forgotten the details of the
interaction mechanisms. Unfortunately, I’ve experienced — many times — the
unpleasant task of having to go back into a system and attempt to reconstruct
my actions from months or years earlier. There’s no sense in tempting fate
with AWS — if you want to interact with the AWS API, use REST, which is
Amazon’s long-term direction.

The AWS API
As you might imagine, given the comprehensiveness of AWS services and the
way Amazon has been improving and extending them, the AWS API is one
large puppy — the AWS S3 API reference manual is 269 pages. (Think that’s a
lot of pages? The AWS EC2 API reference manual is 561 pages.)

However, if you take a quick look at the following example of an API call,
you’ll quickly see that it closely resembles the (quite simple) REST example
in the preceding section:

https://ec2.amazonaws.com/?Action=RunInstances
&ImageId=ami-60a54009
&MaxCount=3
&MinCount=1
&Placement.AvailabilityZone=us-east-1b
&Monitoring.Enabled=true
&AUTHPARAMS

The call, which is straightforward, instructs AWS to run between one and
three instances based on an Amazon machine image of ami-60a54009 and
to place them in the us-east-1b availability zone. AWS provides monitor-
ing capabilities, and this call instructs AWS to enable this monitoring. The
AUTHPARAMS part is a stand-in for the information that AWS uses to implement

32 Part I: Getting Started with AWS

security in its API. I discuss this topic later in this chapter, so just accept
for now that this call has the appropriate security mechanisms in place to
ensure its execution. (For more on instances and availability zones, check out
Chapter 4.)

The AWS API in real-world use
That’s it. That’s all there is to the AWS API. Easy, right? Well, even though
the concept is easily understood, in practice it can be extremely challenging
to use the AWS API properly — as you would expect, given the hundreds of
pages devoted to the reference guide.

At this point, you might not feel confident about your ability to successfully
use AWS. Understandably, you might feel that interacting with AWS is too
complicated and difficult for even the old college try.

Never fear. Though the down-and-dirty details of using the AWS API are quite
challenging, they’re unlikely to become stumbling blocks to achieving suc-
cess with AWS.

That’s because many clever people have recognized that the API is difficult to
use and have created tools to make AWS simpler to use. In Figure 2-1, you can
see the four major categories of AWS interaction mechanisms that spare you
from the burden of interacting with the AWS API directly.

Figure 2-1:
The AWS
interface

tools.

33 Chapter 2: Introducing the AWS API

 ✓ AWS management console: Amazon offers a graphical web interface
that allows you to interact with service (and your own) computing
resources. For many people, the AWS management console is the pri-
mary mechanism they use to operate AWS. Even people who use the
other two mechanisms to interact with AWS also make heavy use of
the management console. I use the management console to explain the
examples in this book, and I even focus a complete chapter on it to help
you get started with AWS.

 ✓ CLI/SDK: Many software engineers write applications that need to
interact with AWS services directly. Now, calling the web services API
directly is complicated and error-prone. Plumbing is a common way to
refer to this sort of underlying functionality, like the AWS API — just as
most of us wouldn’t want to have to install a whole new set of pipes only
to fill a teapot, most software engineers would prefer not to have to deal
with the details of the AWS API. To help them, Amazon and other com-
panies have created language libraries (commonly called SDKs, standing
for Software Development Kits) and a command line interface (com-
monly called a CLI), which allows commands to be entered in a terminal
connected to AWS. The idea here is to offer a simpler programmatic
interface to the set of functions that do the heavy lifting of interacting
with the AWS API. A software engineer can more easily incorporate
library routines into an application, making it easier and faster to build
AWS-based applications.

 ✓ Third-party tools: Many companies build tools that incorporate AWS.
Some of these tools extend or simplify AWS itself, similar to what the
language libraries do for software engineers. Other tools are products
that offer separate functionality or even entire applications. For exam-
ple, my company provides cloud management software that offers addi-
tional functionality not offered by the AWS management console. Other
examples include programming environments from companies like
Heroku and Engine Yard, data warehousing technology from Informatica
and JasperSoft, and load-testing services from SOASTA. What these tools
have in common is that they provide functionality to shield users from
interacting with the AWS API, making AWS easier and faster to use.

All four of these AWS API interaction mechanisms act as proxies on your
behalf — under the covers they make the necessary calls to the AWS API to
use the AWS functionality for actions you want to perform.

34 Part I: Getting Started with AWS

AWS API Security
Here’s an obvious question when dealing with third-party proxies: If these
tools act on your behalf, how does AWS know that the person on whose behalf
they’re acting is in fact you? In other words, how can AWS authenticate your
identity to ensure that the commands it receives are from you? In fact, the
same question is valid even if you interact with the AWS API directly. How can
AWS validate your identity to ensure that it executes commands only for you?

One way, of course, is for you to include your account username and password
in the API calls. Though some cloud providers take this approach, Amazon

Netflix runs on AWS
If you live in the United States (or, increasingly,
in many places throughout the world), there’s a
good chance that you subscribe to the online
video streaming service known as Netflix. If
you’re a Netflix subscriber, you also use AWS —
because the Netflix service runs on AWS.

Yes, that’s right: Every time you log on to Netflix,
browse its selections, read your personalized
recommendations, view your queue, or select
a video to watch, it’s all running on AWS. And
Netflix uses AWS for much more than these
functions. All the transcoding that Netflix must
perform (the process of converting one digital
format to another, or several others, because
Netflix must create separate versions for dif-
ferent mobile phones, tablets, TVs, and gaming
devices) is done using AWS.

All use of AWS by Netflix is via the AWS API.
Netflix runs tens of thousands of AWS EC2
instances, and trying to track and manage
that number of resources via the AWS
Management Console would be unworkable.
So Netflix created its own AWS management
tools to manage any of its applications running
in AWS. Netflix even offers the tools under
open source licenses so that other AWS users
can take advantage of its work. You can learn
more about Netflix and its open source efforts

at www.slideshare.net/adrianco/
netflix-and-open-source.

How broadly does Netflix use AWS? Well, con-
sider this: Netflix has over 29 million subscribers.
At peak viewing times (evenings, when hard-
working people generally “kick back” by watch-
ing videos), Netflix accounts for a staggering 30
percent of total Internet traffic. Of all Internet-
connected TVs, 40 percent are used to access
Netflix shows. And Netflix is growing — fast.

In fact, this level of growth is the reason that
Netflix has chosen to rely on AWS as its infra-
structure environment. Netflix realizes that it
doesn’t excel at building and operating data
centers (its core business is media and video
streaming, in case you didn’t notice), so offload-
ing the infrastructure work to AWS allows
Netflix to focus on its core business.

Many people find this decision strange. Doesn’t
the Amazon video streaming service compete
with Netflix? Yes, but Netflix has concluded that
AWS is now the most advanced cloud provider
and that Netflix support by AWS won’t be tainted
by the parent company’s own video offering. If
another cloud provider comes along and offers
the scale and functionality of AWS, Netflix might
reevaluate its commitment to AWS, but for now,
if you use Netflix, you use AWS.

http://www.slideshare.net/adrianco/netflix-and-open-source
http://www.slideshare.net/adrianco/netflix-and-open-source

35 Chapter 2: Introducing the AWS API

does not. Rather than rely on a username and password, it relies on two other
identifiers to authenticate its API service calls: the access key and the secret
access key. It uses these keys in service calls to implement security in a way
that’s much more secure than using only your username and password.

So how does it work? When you sign up for an account with AWS, you have the
opportunity to create an access key and to have a secret access key sent to
you. Each one is a lengthy string of random characters, and the secret access
key is the longer of the two. When you download the secret access key, you
should store it somewhere very secure because it is the key (sorry — bad pun)
to implementing secure service calls. After you do this, both you and Amazon
have a copy of the access key and the secret access key. Retaining a copy of
the secret access key is crucial because it’s used to encrypt information sent
back and forth between you and AWS, and if you don’t have the Secret Access
Key, you can’t execute any service calls on AWS.

The way the two keys are used is conceptually simple, although somewhat
challenging in detail.

Essentially, for every service call you want carried out, you (or a tool operat-
ing on your behalf) do the following:

 1. Create the service call payload.

 This is the data you need to send to AWS. It may be an object you want
to store in S3 or the image identifier of an image you want to launch.
(You’ll also attach other pieces of information to the payload, but
because they vary according to the specifics of the service call, I don’t
list them here. One piece of data is the current time.)

 2. Encrypt the payload using the secret access key.

 Doing so ensures that no one can examine the payload and discover
what’s in it.

 3. Digitally sign the encrypted payload by adding the secret access key to
the encrypted payload and performing a digital signature process using
the secret access key.

 Secret access keys are longer and more random than typical user pass-
words; the lengthy secret access key makes the encryption performed
with it more secure than it would be if it were performed with a typical
user password.

 4. Send the total encrypted payload, along with your access key, to AWS
via a service call.

 Amazon uses the access key to look up your secret access key, which it
uses to decrypt the payload. If the decrypted payload represents read-
able text that can be executed, AWS executes the service call. Otherwise,
it concludes that something is wrong with the service call (perhaps that
it was called by a malevolent actor) and doesn’t execute the service call.

36 Part I: Getting Started with AWS

In addition to the encryption just described, AWS has two other methods it
uses to ensure the legitimacy of the service call:

 ✓ The first is based on the date information included with the service call
payload, which it uses to determine whether the time associated with
the making of the service call is appropriate; if the date in the service
call is much different from what it should be (much earlier or later than
the current time, in other words), AWS concludes that it isn’t a legiti-
mate service call and discards it.

 ✓ The second additional security measure involves a checksum you cal-
culate for the payload. (A checksum is a number that represents the
content of a message.) AWS computes a checksum for the payload; if
its checksum doesn’t agree with yours, it disallows the service call and
doesn’t execute it. This checksum approach ensures that no one tam-
pers with the contents of a message and prevents a malevolent actor
from intercepting a legitimate service call and changing it to perform
an unacceptable action. If someone tampers with the message, when
AWS calculates a checksum, that checksum no longer matches the one
included in the message, and AWS refuses to execute the service call.

If, like most AWS users, you use a proxy method to interact with AWS — the
AWS management console, a language library, or a third-party tool — you
need to provide your access key and secret access key to the proxy. When
the proxy executes AWS service calls on your behalf, it includes the access
key in the call and use the secret access key to perform payload encryption.

Because of the critical role that these keys fulfill in AWS, you should share
them only with entities you trust. If you want to try out a new third-party tool
and you don’t know much about the company, set up an AWS test account
for the trial instead of using your production AWS account credentials. That
way, if you decide not to go forward with the tool, you can drop it, termi-
nate the test AWS account, and move forward, unconcerned about potential
security vulnerabilities in your main production accounts. Of course, you
can always create new access keys and secret access keys, but using your
production keys for tests and then changing the keys creates a lot of work,
because you need to update every place that makes reference to your exist-
ing keys. If you’re like many other AWS users, you’ll use a number of tools
and libraries, and going back to them to update your keys is a pain. You’re
better off using nonproduction accounts to test new tools.

 AWS offers a service to make managing keys/secret access keys easier. It’s
called IAM and is covered in Chapter 8. IAM allows you to assign keys and
secret access keys to individuals or to applications, making it much easier to
avoid wholesale changes when one person leaves an organization; it’s also a
great help when you need to give each application access to the AWS services
and resources that it needs.

Chapter 3

Introducing the AWS Management
Console

In This Chapter
▶ Understanding the role of the AWS Management Console
▶ Creating an AWS account
▶ Seeing how the Management Console is organized
▶ Using the Management Console for the first time

O
kay, so you’re ready to start working with Amazon Web Services (AWS)
and cloud computing. But how? Well, it turns out that the services part

of Amazon Web Services refers to the fact that all interaction with Amazon’s
cloud computing service is performed with the help of numerous Application
Programming Interface (API) calls over the Internet. These calls are accom-
plished by either SOAP or REST interfaces carrying data in XML or JSON
formats.

Whew! Sounds complicated.

Never fear. Amazon offers its own, web-based interface to enable users to
work with AWS. This interface, the AWS Management Console, hides all the
complex details of interacting with the AWS API. You interact with the con-
sole, and Amazon’s program deals with all the complexity under the hood.

In fact, many people never interact with AWS except through the Console —
it’s that powerful. This chapter introduces you to the Console, steps you
through setting up your very own AWS account, and even provides your first
taste of cloud computing. You get to interact with AWS’s S3 storage service,
upload a picture of your choice, and then connect to it over the Internet and
display it in your browser. How fun is that?

I provide screen shots of the various screens you see during your introduc-
tion to the Console so that you know exactly what you should see and do.

38 Part I: Getting Started with AWS

By the end of this chapter, you’ll be ready to interact with AWS and, more
importantly, to learn all about AWS’s great computing services.

 Amazon updates the Management Console screens fairly frequently, so the
screenshots in this book may look different than what you see displayed on
your terminal. Fortunately, it’s usually pretty easy to map functionality from
one screen version to another, but I wanted to provide a heads-up before
you get worried about seeing a display that looks different from what’s in the
book. The Management Console display changes are a side effect of the rapid
evolution and innovation within AWS.

Setting Up Your Amazon
Web Services Account

The first thing to do is to create your very own AWS account. In this multi-
step process, you sign up for the service, provide your billing information,
and then confirm your agreement with AWS to create your account. Ready?
Let’s jump right in:

 1. Point your favorite web browser to the main Amazon Web Services
page at http://aws.amazon.com.

 You should see a screen that looks something like Figure 3-1.

 2. Click the Sign Up button.

Figure 3-1:
The main

AWS land-
ing page.

 On the next screen (see Figure 3-2), you’re given the opportunity to sign
in with an existing AWS account or set up a new account. You’re setting
up a new account.

 Technically, you can also use your existing Amazon retail account if
you have one, although I don’t recommend that. Think about it — if you
share your AWS account and use a retail identifier for it, down the line
someone you’re sharing your AWS with may end up buying a nice big
flatscreen TV on your dime. So my recommendation is that you set up a
new AWS account.

http://aws.amazon.com

39 Chapter 3: Introducing the AWS Management Console

 3. Make sure that the I Am a New User radio button is selected, fill in an
appropriate e-mail address in the given field, and then click the Sign
In Using Our Secure Server button.

Figure 3-2:
The initial
account-
creation

page.

 AWS takes you to a new page (see Figure 3-3), where you’re asked to
enter your login credentials.

 4. Enter a username, your e-mail address (twice, just to be sure), and the
password you want to use (again, twice, just to be sure).

 5. Click Continue button.

 Doing so brings up the Account Information screen, asking for your
address and phone number information, as shown in Figure 3-4. You’re
asked to select the box confirming that you agree to the terms of the
AWS customer agreement.

 6. Enter the required personal information, confirm your acceptance
of the customer agreement, and then click the Create Account and
Continue button.

 The next page (see Figure 3-5) asks you for a credit card number and
your billing address information. Amazon has to be sure to get paid,
right?

40 Part I: Getting Started with AWS

 7. Enter the required payment information in the appropriate fields and
then Click Continue.

Figure 3-3:
Creating

your login
credentials.

Figure 3-4:
The contact

informa-
tion and

customer
agreement

page.

 The next page you see is a bit curious-looking. Amazon wants to confirm
your identity, so it asks for a phone number it can use to call you.

 8. Enter your telephone number in the appropriate field and click the
Call Me Now button, as shown in Figure 3-6.

 AWS displays a pin code on the screen and then calls you on the phone
number you supplied.

41 Chapter 3: Introducing the AWS Management Console

Figure 3-5:
Payment

information.

 9. Answer the phone and enter the displayed PIN code on the telephone
keypad.

 The AWS screen updates to look like Figure 3-7.

 10. Click the Continue button.

 You’re asked to wait a bit to have your account set up by AWS, but, in
my experience, this is no more than two or three minutes. You’ll then be
sent an e-mail confirming your account setup; you have to click on a link
in that e-mail to complete the account signup process.

 After setup is complete, you should see a screen that lists all the ser-
vices you’re already signed up for automatically, just by creating your
account. Quite an impressive list, eh?

42 Part I: Getting Started with AWS

Figure 3-6:
Verifying

your identity
using the

telephone.

Figure 3-7:
Identity

verification
complete.

43 Chapter 3: Introducing the AWS Management Console

Here are two important points to take away from this initial account setup:

 ✓ Your account is now set up as a general AWS account. You can use
AWS resources anywhere in the AWS system — the US East or either of
the two US West regions, Asia Pacific (Tokyo, Singapore, or Australia),
South America (Brazil), and Europe (Ireland). Put another way, your
account is scoped over the entirety of AWS, but resources are located
within a specific region.

 ✓ You have given AWS a credit card number to pay for the resources
you use. In effect, you have an open tab with AWS, so be careful about
how much computing resource you consume. For the purposes of this
book, you don’t have to worry much about costs — your initial sign-up
provides a free level of service for a year that should be sufficient for
you to perform the steps in this book as well as experiment on your own
without breaking your piggy bank.

 If you’re concerned about overspending on AWS, Amazon’s got your back.
You can set a billing alert with a specified amount you don’t want to go over;
if your AWS total use for a month approaches that number, Amazon will
send you an alert. You can enable billing alerts by clicking My Account in the
Management Console landing page and then clicking on Account Activity on
the subsequent page.

That’s it. You’re all set up in AWS and ready to begin cloud computing. If
you’re anything like me, you’re eager to go for a bit of a spin, just to see how
AWS works. So get ready to do one small task with AWS — store and retrieve
a photo from the AWS object storage service knows as S3.

You start by going to the AWS home page and placing the cursor over the
My Account/Console button in the upper-right corner of the screen. (Refer
to Figure 3-1.) You should see a menu displayed underneath the cursor. Click
the top item listed: AWS Management Console. You then see a page that pro-
vides access to all the services you’re signed up for (see Figure 3-8), including
S3. (You may have to enter your password again to access the Management
Console from the pull-down menu).

 The pull-down menu on the left side of the page allows you to define your AWS
Management Console start page. (It’s right there under the Set Start Page head-
ing.) The default is the general landing page, although you can choose any one
of the specific pages associated with a particular AWS service. For now, leave
your start page as is.

44 Part I: Getting Started with AWS

Figure 3-8:
The AWS

Management
Console
landing

page.

The Silicon Valley Education Foundation
runs on AWS

Do you have to be a huge company, like Netflix
or Amazon, to take advantage of AWS?

Not at all. Let me share a case study I was per-
sonally involved in: the Silicon Valley Education
Foundation (SVEF). Unlike Amazon.com or
Netflix, SVEF is a tiny organization — it has
fewer than 30 employees. And, unlike Amazon.
com or Netflix, SVEF isn’t a sophisticated tech-
nology user; though its mission focuses on
helping students with vital science, technol-
ogy, engineering, and math (STEM) skills, its
staff isn’t strong on IT skills.

SVEF engaged the technology consulting firm
I ran at the time to evaluate one of its most
critical applications, designed to let teachers
contribute, share, and improve lesson plans
for their classes. SVEF had engaged an outside
firm to design and build the application; it evalu-
ated whether the infrastructure on which the
application was running was robust enough to
avoid downtime and could support large growth
in traffic, which SVEF expected as more teach-
ers adopted the application.

45 Chapter 3: Introducing the AWS Management Console

Accessing Your First AWS Service
After you’re the proud owner of an AWS account, it’s time to do something
useful. Start by checking out your S3 resources. To do so, click the S3 link on
your AWS Management Console start page. (Refer to Figure 3-8.)

You’re taken to a page that lets you manage your S3 resources. (See Figure
3-9.) If you have sharp eyes, you’ll quickly notice that there’s nothing listed
on the page. So the first thing you have to do is create a storage resource
where you can place your first object.

Before I walk you through the step-by-step process of creating a storage
resource, though, I want to talk a bit about terminology. You’ll notice on the
left side of the S3 screen is a button labeled Create Buckets. Now, you may
wonder why something that sounds like you’d buy it at a hardware store is
prominently displayed in AWS. The answer is simple: AWS refers to all top-
level identifiers within S3 as buckets, signifying, you may presume, a place to
put stuff to store. (The term bucket is, perhaps, your first exposure to AWS’s
curious nomenclature, but I assure you it won’t be the last!)

That the entire application was hosted on a
single server in a colocation facility made the
answer obvious: The application wasn’t pro-
tected against hardware failure, had no redun-
dancy, and would face significant challenges if
application use scaled significantly.

We performed a study comparing three options:
Install additional hardware to implement redun-
dancy; implement virtualization to abstract the
application from specific hardware and make
it easy to migrate to new hardware in case of
failure; and use Amazon Web Services.

Our conclusion, based on both economics and
the shortage of IT skills within the SVEF organi-
zation, was that SVEF should move its applica-
tion to AWS. SVEF would save money running

on AWS, compared to its ongoing hosting fee.
It would also suffer no more than ten minutes
of downtime if the AWS hardware were to fail.
And, finally, if the application required more
resources as a result of heavy use, it would
be trivially easy to shut down one application
instance and start another, larger one.

Based on this recommendation, SVEF moved
its application to AWS, where it has run happily
ever since and with little downtime. Inspired by
the success of moving this application to AWS,
SVEF evaluated all the applications it was run-
ning, and within six months migrated all of them
to cloud environments.

So even if your organization isn’t a giant of tech-
nology, you can still use AWS and benefit from it.

46 Part I: Getting Started with AWS

Figure 3-9:
The S3

home page.

The first thing to do, therefore, is to create a bucket. Before you run out and
do so, however, keep a few AWS conditions in mind:

 ✓ Bucket names must be unique within the entire AWS system. The
names must be unique across all user accounts. So if I have a pet named
Star and decide to name one of my buckets Star in his honor, and some-
body else has already named one of her buckets Star, well, I’m out of
luck. This isn’t terribly convenient, but that’s the way it is.

 ✓ Although bucket names are global (unique across the entire AWS
system, in other words), buckets themselves are located in a particular
region. Let’s say you want a bucket to reflect your company’s name —
Corpname, for example. If you use Corpname to create a bucket, you’ll
isolate that name to a single region, even if you want to place objects
throughout the world in a bucket associated with your company’s name.
So, a better strategy is to use a common identifier with region-specific
information as part of the bucket name; for example, you can use
Corpname-US-East for a bucket in the eastern US region and Corpname-
US-West-Oregon for a bucket in the region associated with Oregon.

 ✓ Use all lowercase letters in creating a bucket. Even though the offi-
cial S3 naming rules let you use uppercase letters, the S3 Management

47 Chapter 3: Introducing the AWS Management Console

Console doesn’t allow them for buckets created in most AWS regions.
If you try to include uppercase letters in the bucket name, the Console
returns an error message. Keep in mind that, although AWS is a wonder-
ful service, it does have its quirks. You can always find a way around
them, but don’t be surprised when you run into things that don’t work
just the way AWS says they will.

Enough about terminology and naming conventions — it’s time to create
your first bucket:

 1. On the S3 home page (refer to Figure 3-9), click the Create Bucket
button.

 Doing so brings up a screen similar to the one you see in Figure 3-10.

 2. Enter a name for your bucket in the Bucket Name field.

 Because this is just an experiment, feel free to choose any name you
like — and don’t worry — if it’s a bucket name that’s already in use, AWS
lets you know.

 3. Choose a region from the Region pull-down menu.

 Choose the “Oregon” item.

 4. Click the Create button.

 AWS creates your new bucket and returns you to the S3 page for man-
aging your resources. There, you see something like Figure 3-11, which
now lists the bucket you just created.

Figure 3-10:
Name your

bucket.

Congratulations! You’ve now done your first bit of cloud computing. Of
course, it’s not useful yet — your bucket just sits there, like an empty
filing cabinet, so put something into it so that you can see how it all hangs
together.

48 Part I: Getting Started with AWS

Figure 3-11:
The S3

management
page, with

your first
bucket now

listed.

Loading Data into S3 Buckets
I suggest that for your first S3 experiment, you upload a picture that you can
then retrieve and see displayed in your browser.

You start out on the S3 page for managing your resources. (Refer to Figure
3-11.) Look for the bucket you just created. Found it? Good!

 1. Click to select the bucket you created.

 Doing so opens the bucket, and the right side of the screen lists a
number of actions you can take within the bucket.

 2. Click the Upload button.

 The Upload-Select Files dialog box appears, as shown in Figure 3-12.

 3. Click the Add Files button.

 4. Using the file selector widget that appears, browse your local file
system, select a file to upload, and then click Open at the bottom of
the widget.

 You return to the Upload-Select Files dialog box.

 5. Click the Start Upload button in the bottom-right corner of the
dialog box.

 After a few seconds, your bucket lists the file you just uploaded.

 If you click on the Properties button on the upper right, you’ll see infor-
mation on the file, as shown in Figure 3-13.

49 Chapter 3: Introducing the AWS Management Console

Figure 3-12:
The Upload
Files dialog

box.

Figure 3-13:
Your bucket
now shows

the file
you just

uploaded.

50 Part I: Getting Started with AWS

Uploading the file is half the battle. Now all you have to do, via a browser, is
access the picture you just uploaded. Before you can do that, however, you
need to set permissions on the object to make it available over the Internet
to someone other than the owner (that’s you, by the way). To do that, follow
these steps:

 1. In the listing of uploaded files (refer to Figure 3-12), click to select the
file you just uploaded.

 2. Click the Properties button in the upper-right corner of the screen.

 Doing so brings up a pane filled with all kinds of information about the
selected object.

 You can also access a file’s Properties information by right-clicking a
selected file and choosing Properties from the menu that appears.

 3. Click the arrow next to Permissions.

 The Permissions section expands to show the Permissions information.
You should see only yourself listed next to Grantee as someone able to
access the file. You need to add a permission so that others can access
the file as well.

 4. Click the Add More Permissions link.

 An additional drop-down menu (labeled Grantee as well) appears below
the first menu, as shown in Figure 3-14.

Figure 3-14:
Adding

permissions
to an S3

object.

 5. Choose Everyone from this second drop-down menu, select the associ-
ated Open/Download check box (refer to Figure 3-13), and then click
Save.

 The file is now accessible to everyone. To access it, you only have to
track down the URL you want to use.

51 Chapter 3: Introducing the AWS Management Console

 6. Go back to the Properties screen.

 Here you will see a panel of information on the object, including its URL.

 7. Copy the URL listed in the Link section, create a new tab in your
browser, enter the URL you just copied into the address line, and hit
Enter.

 You should see your picture appear in the browser, just like magic! (See
Figure 3-15 for proof.)

Figure 3-15:
A picture of

our cat Star,
snoozing

in a chair,
straight

from S3.

S3 URL Naming Conventions
If you take a closer look at the URL in Figure 3-14, you see that it follows an
unusual naming convention. The domain is amazonaws.com, but to the left
of the domain is s3-us-west-1. You can probably figure out that it repre-
sents the region in which you chose to create your bucket. AWS prepends
regional information to its domain in order to direct requests to access the
object. DNS can then efficiently and reliably locate the overall resource stor-
ing an S3 object.

To the right of the domain is the name of the bucket you created. (In Figure
3-15, that name is aws4dummies.) The bucket name is part of every request
to S3 and is included in the URL. Following the bucket name in the URL is
the filename of the actual object. In the case of my example, it’s the not-very-
clever name Cat Photo. (Note that S3 replaces spaces in a filename with plus
signs.)

 A bucket can contain only files. It’s possible to create folders within a bucket
to allow better organization of files. In fact, folders can contain folders them-
selves, thus allowing S3 to mimic the conventions of computer file systems.
AWS presents the organization of S3 as a set of buckets containing objects or
folders, which can contain other folders or objects.

52 Part I: Getting Started with AWS

Last Words on the AWS
Management Console

You’ve accomplished a lot in this chapter: You’ve become acquainted with
the AWS Management Console, set up your own AWS account, and even
chalked up your first AWS experience by experimenting with the S3 storage
service.

I hope that this information has helped you understand how easy it is to get
started with AWS. If you followed the step-by-step instructions in this chap-
ter, you probably spent no more than 30 minutes on them, from typing aws.
amazon.com in a browser address window to accessing your first cloud com-
puting resource. I also hope this first taste of AWS has whetted your appetite
to learn more about it, because I dive next into the full panoply of AWS
services.

Things are not what they seem
Keep in mind that although the S3 Management
Console presents files in a nice, neat folder
structure, there is in fact no hierarchical orga-
nization of objects within S3 buckets. It’s just
a collection of objects spread throughout S3,
with arbitrarily complex resource names that
contain conventions, like the slash (/), as part
of the resource name. S3 is referred to as a flat
storage system, which means that all objects
reside at the top level, with those resource
names appearing to reflect hierarchy, but in

fact being nothing but an S3 naming conven-
tion. It’s hard to wrap your head around this
concept, but it provides AWS with enormous
flexibility and scalability.

Because no hierarchical organization is truly
present, AWS can add storage capacity to a
nearly infinite degree and add it without dis-
rupting what’s already in the S3 system. This
clever arrangement takes some getting used
to, given how most people are familiar with file
systems reflecting hierarchical organization.

Part II
Diving into AWS Offerings

 Check out the article “Amazon.com Runs on AWS” (and more) online at
www.dummies.com/extras/amazonwebservices.

http://www.dummies.com/extras/amazonwebservices

In this part . . .
 ✓ Explore the universe of AWS offerings — and a large universe

it is!
 ✓ Find out how AWS differs from its competition.
 ✓ See how AWS offerings work in combination to enable devel-

opers to build powerful, scalable, and robust applications
easily.

 ✓ Check out the article “Amazon.com Runs on AWS” (and more)
online at www.dummies.com/extras/amazonweb
services.

http://www.dummies.com/extras/amazonwebservices
http://www.dummies.com/extras/amazonwebservices

Chapter 4

Setting Up AWS Storage
In This Chapter
▶ Introducing AWS storage
▶ Differentiating the five AWS storage types
▶ Determining which storage type is right for your application
▶ Managing storage types on the Management Console

T
hough Chapter 3 is all about AWS Management Console, this chapter
helps you tackle an entirely different task: diving in to the individual AWS

offerings — a bunch of them!

Every journey has a beginning. I strongly recommend that you start your jour-
ney through AWS by taking a long, hard look at storage, for several reasons:

 ✓ Storage is an increasingly important topic to IT because of the recent
staggering increase in the amount of data that businesses use in their
day-to-day operations. Though traditional structured data (the database)
is growing quite rapidly, the use of digital media (video) by businesses is
exploding. IT organizations are using more and more storage, and they
often look to communication service providers (CSPs) such as Amazon
to provide storage. Another driver of storage consumption is the recent
rise of big data, which refers to analyzing very large datasets.

 Companies are drowning in data, and many are finding it nearly impos-
sible to keep up with managing their own, on-premises storage systems.

 ✓ Storage is the first AWS offering that Amazon offered. Storage there-
fore holds a significant place in the AWS ecosystem, including some
extremely innovative uses of its storage services by AWS customers
over the years.

 ✓ A number of AWS offerings rely on AWS storage, especially Simple
Storage Service (S3). Understanding AWS storage services helps you
better understand the operation of the AWS offerings that rely on
AWS storage.

56 Part II: Diving into AWS Offerings

 ✓ AWS continues to innovate and deliver new storage services. Glacier,
for example, provides a fresh twist on addressing a historic IT issue:
archival storage. Glacier is discussed later in this chapter as well (in
case you need something to look forward to).

The term Amazon’s storage service (which may be the largest in the industry)
is a misnomer: The company offers four different storage services within
AWS. The scale of the overall storage service that subsumes all four specific
services is enormous. Chapter 1 presents information on the number of
objects stored in the AWS Simple Storage Service (known as S3); in just more
than six years, S3 has grown so rapidly that it now contains more than 2 tril-
lion objects. To put the staggering growth of S3 into perspective, the service
spent six years reaching 1 trillion objects, and less than ten months growing
from 1 to 2 trillion objects.

Despite the rock star status of S3, this chapter still covers all four AWS stor-
age services (drumroll, please):

 ✓ Simple Storage Service (S3): Provides highly scalable object storage in
the form of unstructured collections of bits

 ✓ Elastic Block Storage (EBS): Provides highly available and reliable data
volumes that can be attached to a virtual machine (VM), detached, and
then reattached to another VM

 ✓ Glacier: A data archiving solution; provides low-cost, highly robust
archival data storage and retrieval

 ✓ DynamoDB: Key-value storage; provides highly scalable, high-
performance storage based on tables indexed by data values referred
to as keys

 AWS also offers a managed database service called Relational Database
Service, or RDS. I talk more about RDS in Chapter 8.

This list presents the basics, but as you may expect, there’s more to this
topic. Let’s get down to business and examine the storage offerings
from Amazon.

Differentiating the Amazon
Storage Options

You may be forgiven for asking the obvious question: Why does Amazon offer
four different AWS storage services? This interesting question, which strikes
at the heart of Amazon’s unique cloud computing offering, addresses how
well it’s responding to the data deluge I mention earlier in this chapter.

57 Chapter 4: Setting Up AWS Storage

Put simply, the enormous growth of storage makes traditional approaches
(local storage, network-attached storage, storage-area networks, and the like)
no longer appropriate, for these three reasons:

 ✓ Scaling: Traditional methods simply can’t scale large enough to handle
the volume of data that companies now generate. The amounts of data
that companies must manage outstrip the capabilities of almost all stor-
age solutions.

 ✓ Speed: They can’t move data fast enough to respond to the demands
that companies are placing on their storage solutions. To be blunt, most
corporate networks cannot handle the level of traffic required to shunt
around all the bits that companies store.

 ✓ Cost: Given the volumes of data being addressed, the established solu-
tions aren’t economically viable — they’re unaffordable at the scale that
companies now require.

For these reasons, the issue of storage has long since moved beyond local
storage (for example, disk drives located within the server using the data).
Over the past couple decades, two other forms of traditional storage have
entered the market — network-attached storage (NAS) and storage-area
networks (SAN) — which move storage from the local server to within the
network on which the server sits. When the server requires data, rather than
search a local disk for it, it seeks it out over the network.

The two types of network-based storage differ significantly (notwithstanding
the similarity of their acronyms). NAS, which operates as an extension of the
server’s local file system, is used like local files: Reads and writes operate the
same as though the file were located on the server itself. In other words, NAS
makes storage look like it’s part of the local server. SANs operate quite differ-
ently. They offer remote storage that is separate from the local server; that
storage doesn’t appear as local to the server. Instead, the server must oper-
ate a special protocol to communicate with the SAN device; you can say that
the SAN device offers detached storage that the server must make special
arrangements to use.

Both types of storage continue to be widely used, but the much larger vol-
umes of data make neither NAS nor SAN storage able to support require-
ments. Consequently, newer storage types have come to the fore that
provide better functionality.

In particular, two new storage types are now available:

 ✓ Object: Reliably stores and retrieves unstructured digital objects

 ✓ Key-value: Manages structured data

58 Part II: Diving into AWS Offerings

The next couple sections unpack the meanings behind a few terms, such as
unstructured digital object, structured data, and key-value storage,” so don’t
worry if the vocabulary seems daunting.

Object storage
Object storage provides the ability to store, well, objects — which are essen-
tially collections of digital bits. Those bits may represent a digital photo, an
MRI scan, a structured document such as an XML file — or the video of your
cousin’s embarrassing attempt to ride a skateboard down the steps at the
public library (the one you premiered at his wedding).

Object storage offers the reliable (and highly scalable) storage of collections
of bits, but imposes no structure on the bits. The structure is chosen by the
user, who needs to know, for example, whether an object is a photo (which
can be edited), or an MRI scan (which requires a special application for view-
ing it). The user has to know both the format as well as the manipulation
methods of the object. The object storage service simply provides reliable
storage of the bits.

 Object storage differs from file storage, which you may be more familiar
with from using a PC. File storage offers update functionality, and object stor-
age does not. For example, suppose you are storing logging output from a
program. The program constantly adds new logging entries as events occur;
creating a new object each time an additional log record is created would be
incredibly inconvenient. By contrast, using file storage allows you to continu-
ously update the file by appending new information to it — in other words, you
update the file as the program creates new log records.

Object storage offers no such update ability. You can insert or retrieve an
object, but you can’t change it. Instead, you update the object in the local
application and then insert the object into the object store. To let the new
version retain the same name as the old version, delete the original object
before inserting the new object with the same name. The difference may
seem minor, but it requires different approaches to managing stored objects.

Distributed key-value storage
Distributed key-value storage, in contrast to object storage, provides struc-
tured storage that is somewhat akin to a database but different in important
ways in order to provide additional scalability and performance.

Perhaps you’ve already used a relational database management system — a
storage product that’s commonly referred to as RDBMS. Its rows of data have

59 Chapter 4: Setting Up AWS Storage

one or more keys (hence the name key-value storage) that support manipula-
tion of the data. Though RDBMS systems are fantastically useful, they typi-
cally face challenges in scaling beyond a single server. Newer distributed
key-value storage products are designed from the get-go to support huge
amounts of data by spreading across multiple (perhaps thousands of) servers.

 Key-value storage systems often make use of redundancy within hardware
resources to prevent outages; this concept is important when you’re running
thousands of servers, because they’re bound to suffer hardware breakdowns.
Without redundancy, the entire storage system can be knocked out of com-
mission by a single server; the use of redundancy makes the key-value system
always available — and, more importantly, your data is always available
because it’s protected from hardware outages.

Literally dozens of key-value storage products are available. Many of them
were first developed by so-called webscale companies, such as Facebook and
LinkedIn, to ensure that they can handle massive amounts of traffic. Those
companies then turned around and released the products under open source
licenses, so now you (or anyone else) can use them in other environments.

Though key-value storage systems vary in different ways, they have these
common characteristics:

 ✓ Data is structured with a single key that’s used to identify the record
in which all remaining data resides. The key is almost always unique —
such as a user number, a unique username (title_1795456, for example),
or a part number. This ensures that each record has a unique key, which
helps facilitate scale and performance.

 ✓ Retrieval is restricted to the key value. For example, to find all records
with a common address (where the address is not the key), every record
has to be examined.

 ✓ No support exists for performing searches across multiple datasets with
common data elements. RDBMS systems allow joins: For a given user-
name in a dataset, find all records in a second dataset that have the user-
name in individual records. For example, to find all books that a library
patron has checked out, perform a join of the user table (where the user’s
last name is used to identify her library ID) and the book checkout table
(where each book is listed along with the library IDs of everyone who has
checked it out). You can use the join functionality of an RDBMS system
to execute this query; by contrast, because key-value systems don’t sup-
port joins, the two tables would have to be matched at the application
level rather than by the storage systems. Using this concept, commonly
described as “The intelligence resides in the application,” executing joins
requires application “smarts” and lots of additional coding.

 Key-value storage represents a trade-off between ease of use and scalabil-
ity, and the trade-off is biased toward scalability (and less ease of use).

60 Part II: Diving into AWS Offerings

This proliferation of storage types gives users a much richer set of options to
manage the data associated with their applications. Though they gain much
more flexibility and can match the storage solution with functional require-
ments, they also face a challenge: A broader set of skills is required in order
to manage a larger number of storage solutions. Moreover, using a key-value
solution requires them to manage hundreds or thousands of servers.

Fortunately, Amazon recognizes that all these storage solutions are impor-
tant, even with the management challenges that they bring, and offers four
types of storage solutions. A user can select one that’s appropriate to her
requirements — rather than be forced to shoehorn into her application a
solution that doesn’t support the required functionality.

The need for storage flexibility is why Amazon offers four types of storage.
You may not need all four — many users manage with only one or two. You
should understand all options that AWS offers, because you may then choose
to pursue a new one rather than rely on the existing one.

Storing Items in the Simple Storage
Service (S3) Bucket

Simple Storage Service (fondly known as S3) is one of the richest, most flex-
ible, and, certainly, most widely used AWS offerings. It’s no exaggeration to
call S3 “the filing cabinet of the Internet.” Its object storage is used in an enor-
mous variety of applications by individuals and businesses, such as

 ✓ Dropbox: This file storage and syncing service uses S3 to store all of the
documents it stores on behalf of its users.

 ✓ Netflix: This popular online consumer video service uses S3 to store
videos before they go out to its Content Delivery Network. In fact, Netflix
operates almost 100 percent on AWS, making it somewhat of a poster
child for the service.

 ✓ Medcommons: This company stores customers’ health records online
in S3 — and, by the way, it complies with the strict requirements of the
Health Insurance Portability and Accountability Act (HIPAA).

Thousands of companies large and small (and individuals) use S3 to store the
information that’s used within their businesses.

The richness and flexibility of S3 are limited only by your imagination. The
variety of ways in which it’s used is mind-boggling. And Amazon continually
improves S3, adding functionality to make it even more useful.

61 Chapter 4: Setting Up AWS Storage

S3 has evolved into a highly functional, widely used storage service. How
widely used? Cedexis, a company that analyzed a large sample set of enter-
prise applications, found that 25 percent of them had accessed S3. The reason
is simple: S3 is so useful, so easy to use, and so inexpensive that it almost
seductively infiltrates applications.

S3 storage basics
Let me get down to brass tacks and talk about how S3 works. S3 objects are
treated as web objects — that is, they’re accessed via Internet protocols using
a URL identifier.

 ✓ Every S3 object has a unique URL, in this format:
http://s3.amazonaws.com/bucket/key

 ✓ An actual S3 object using this format looks like this:
http://s3-us-west-1.amazonaws.com/aws4dummies/Cat+

Photo.JPG

Now, you may ask, what are the bucket and key, listed in the first example?

A bucket in AWS is a group of objects. The bucket’s name is associated
with an account — for example, the bucket named aws4dummies is asso-
ciated with my aws4dummies account. The bucket name doesn’t need to
be the same as the account name; it can be anything. However, the bucket
namespace is completely flat: Every bucket name must be unique among all
users of AWS. If you try to create a bucket name of test within your account,
you’ll see an error message because you can bet your bottom dollar that
someone else has already claimed that name. (Just so you know, an account
is limited to 100 buckets.)

 Bucket names have a number of restrictions, as described at

http://docs.amazonwebservices.com/AmazonS3/latest/dev/
BucketRestrictions.html

My recommendation: Stick with simple names that are easily understood, to
simplify using S3 and avoid problems.

A key in AWS is the name of an object, and it acts as an identifier to locate
the data associated with the key. In AWS, a key can be either an object name
(as in Cat+Photo.JPG) or a more complex arrangement that imposes some
structure on the organization of objects within a bucket (as in bucketname/
photos/catphotos/Cat+Photo.JPG, where /photos/catphotos is part of the

62 Part II: Diving into AWS Offerings

object name). This convenient arrangement provides a familiar directory-like
or URL-like format for object names; however, it doesn’t represent the actual
structure of the S3 storage system — it’s merely a comfortable and memora-
ble method of naming objects, making it easy for humans to keep track. Even
though many tools present S3 storage as though it’s in a familiar file folder
organization (including the AWS Management Console itself), they imply
nothing about how the objects are stored within S3.

S3 object management
An S3 object isn’t a complicated creature — it’s simply a collection of bytes.
The service imposes no restrictions on the object format — it’s up to
you. The only limitation is on object size: An S3 object is limited to 5TB.
(That’s large.)

Managing objects in S3
Like all AWS offerings, S3 is accessed via an application programming inter-
face, or API, and it supports both SOAP and REST interfaces. (For more infor-
mation on the details of these interfaces, see Chapter 2.)

Of course, you probably won’t use the (not particularly user-friendly) API to
post (create), get (retrieve), or delete S3 objects. You may access them via a
programming library that encapsulates the API calls and offers higher-level
S3 functions that are easier to use. More likely, however, you’ll use an even
higher-level tool or application that provides a graphical interface to manage
S3 objects. You can be sure, however, that somewhere down in the depths of
the library or higher-level tool, are calls to the S3 API.

In addition to the most obvious and useful actions for objects (such as post,
get, and delete), S3 offers a wide range of object management actions — for
example, an API call to get the version number of an object. Earlier in this
chapter, I mention that object storage disallows updating an object (unlike a
file residing within a file system). S3 works around this issue by allowing ver-
sioning of S3 objects — you can modify version 2 of an S3 object, for example,
and store the modified version as version 3. This gets around the process to
update objects outlined earlier: Retrieve old object, modify object in applica-
tion, delete old object from S3, and then insert modified object with original
object name.

S3 bucket and object security
AWS offers fine-grained access controls to implement S3 security: You
can use these controls to explicitly control who-can-do-what with your S3
objects. The mechanism by which this access control is enforced is, naturally
enough, the Access Control List (ACL).

63 Chapter 4: Setting Up AWS Storage

These four types of people can access S3 objects:

 ✓ Owner: The person who created the object; he can also read or delete
the object.

 ✓ Specific users or groups: Particular users, or groups of users, within AWS.
(Access may be restricted to other members of the owner’s company.)

 ✓ Authenticated users: People who have accounts within AWS and have
been successfully authenticated.

 ✓ Everyone: Anyone on the Internet (as you may expect).

S3 provides a rich set of actions in the S3 API. Several functions, for example,
allow the manipulation of object versions to retrieve a certain version of an
object. And, of course, I mention elsewhere the expiration capability that was
added early in 2012 — it’s in the API as well.

The access controls specify who, and the actions specify what — who has
the right to do what with a given object. The interaction between the S3
access controls and the object actions gives S3 its fine-grained object man-
agement functionality.

S3 uses, large and small
Making specific recommendations about what you should do with S3 is dif-
ficult because it’s extremely flexible and capable. Individual (rather than
corporate) users tend to use S3 as secure, location-independent storage of
digital media. Another common personal use for S3 is to back up local files,
via either the AWS Management Console or one of the many consumer-
oriented backup services.

Companies use S3 for the same reasons as individuals, and for many more
use cases. For example, companies store content files used by their partners
in S3. Most consumer electronics and appliance manufacturers now offer
their user manuals in digital format; many of them store those files in S3.
Many companies place images and videos used in their corporate websites in
S3, which reduces their storage management headaches — and ensures that
in conditions of heavy web traffic, website performance isn’t hindered by
inadequate network bandwidth.

The most common S3 actions revolve, naturally enough, around creating,
retrieving, and deleting objects. Here’s the common lifecycle of an S3 object:
Create the object in preparation to use it; set permissions to control access
to the object; allow applications and people to retrieve the object as part
of an application’s functionality; and delete the object when the application
that uses the object no longer requires it. Of course, many objects are never
removed, because they’re evergreen: They have ongoing purpose over a long
time span.

64 Part II: Diving into AWS Offerings

As you get more familiar with S3, you’ll undoubtedly start exploring addi-
tional S3 functionality. S3 offers encryption of objects stored in the service,
securing your data from anyone attempting to access it inappropriately. You
can log requests made against S3 objects to audit when objects are accessed
and by whom. S3 can even be used to host static websites: They don’t dynam-
ically assemble data to create the pages served up as part of the website —
removing the need to run a web server.

Many online computing services that you use (or will use) as part of your
personal or business life make use of S3; it is increasingly being used as part
of the solutions delivered by both large and small technology companies.
The filing cabinet of the Internet, indeed!

S3 scope and availability
S3 functionality, and how you use it to access objects, is only a piece of the
puzzle; you also need to consider the overall organization of S3.

AWS as a whole is organized into regions, each of which contains one or
more availability zones, or AZs. Although S3 locates buckets within regions,
keep in mind that S3 bucket names are unique across all S3 regions, even
though buckets themselves reside in particular regions. For example, if you
create a bucket named after your company, you have to choose in which
region to locate the bucket.

In the cat photo example I mention earlier in this chapter

http://s3-us-west-1.amazonaws.com/aws4dummies/Cat+
Photo.JPG

you see that the bucket aws4dummies is located in the US West region. (Note
the s3-us-west-1 section of the URL.) All objects in the aws4dummies
bucket have to reside in US West. No big deal, right?

Well, it depends. When an AWS virtual machine (VM) needs to access an S3
object, and the VM and the object reside in the same AWS region, Amazon
imposes no charge for the network traffic that carries the object from S3 to
EC2. If the VM and the object are in different regions, however (the traffic is
carried over the Internet), AWS charges a few cents per gigabyte — which
can be costly for very large objects or heavy use.

One way around this problem is to locate multiple buckets with duplicate
objects in each region and tweak the bucket names to avoid conflicts — for
example, by renaming my aws4dummies to aws4dummies_us_west and cre-
ating similarly named buckets in all other regions. I can then create duplicate
objects in each of the similarly named buckets, to eliminate network traffic
charges no matter where I run an EC2 instance (albeit at somewhat greater

65 Chapter 4: Setting Up AWS Storage

complexity and somewhat higher charges to pay for storing all the duplicate
objects).

 Don’t worry about this need for duplicate objects and nearly identical buck-
ets. AWS has another, much easier solution: CloudFront (described in Chapter
9) lets you store only one copy of an object and have Amazon make it avail-
able in every region.

Given S3’s importance to many applications, an obvious question is how reli-
able is the service? The answer: It’s reliable. In fact, because AWS designed
the service for 99.99-percent availability, it should only be unavailable for
approximately 53 minutes per year. A complementary issue to availability is
durability — how reliable is S3 at never losing your object? The answer to
this question is even more exact — 99.999999999 percent.

How does AWS achieve this high level of availability and durability? In a
word, redundancy. Within each region, AWS stores multiple copies of every
S3 object, to prevent a hardware failure from making it impossible to access
an object, or, even worse, from destroying the only copy of it. Even if one
copy is unavailable because of hardware failure, another is always available
for access. If a hardware failure deletes a copy or makes it unavailable, AWS
automatically creates a new, third copy to ensure that the object remains
available and durable.

An S3 example
The nuts-and-bolts of how to set up an S3 bucket and upload and download
S3 objects are covered in Chapter 3. (If you want to see how it happens, head
on over there.) In this section, however, I walk you through a typical action
that would occur after you have an AWS account and have created an S3
bucket. Of course, you’re likely to use S3 from applications, so I show you an
example of the S3 API.

If you want to insert an object, the API call should look similar to this example:

PUT /my-image.jpg HTTP/1.1
Host: myBucket.s3.amazonaws.com
Date: Wed, 12 Oct 2009 17:50:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+

FIEXAMPLE=
Content-Type: text/plain
Content-Length: 11434
Expect: 100-continue
[11434 bytes of object data]

Of course, you may want a higher-level abstraction within your code. AWS
provides SDKs for several languages, including PHP. To perform the same
insert operation in PHP, follow this example:

66 Part II: Diving into AWS Offerings

require_once ‘sdk.class.php’;
$s3 = new AmazonS3();

$bucket = ‘*** Provide bucket name ***’;
$keyname1 = ‘*** Provide object key ***’;
$filepath = ‘*** Provide file name to upload ***’;

$response = $s3->create_object(
$bucket,
$keyname1,
array(
‘fileUpload’ => $filepath,
‘contentType’ => ‘text/plain’,
),

These actions are common to both code examples:

 ✓ Provide credentials to authorize actions: You can see this directly in
the API call in the line that begins with Authorization. In the PHP
program, you put the access key and secret access key in environment
variables that the SDK retrieves when it assembles the API call it will
perform on your behalf.

 ✓ Define the action: In the API, it’s the line beginning with PUT; in the
PHP SDK, it’s the create_object call.

 ✓ Identify the bucket: This step identifies where to insert the object.
In the API call, the bucket is identified in the host as myBucket.
s3.amazonaws.com. In the PHP example it’s $bucket, which would be
loaded with the bucket name.

 ✓ Identify the object key name: The object is identified by this index
within the bucket. In the API, it’s my-image.jpg; in the PHP example,
it’s $keyname1, which would have been set to the index name you
chose at the top of the code example.

 ✓ Identify the object: It’s the “thing” to be stored in the S3 bucket. The API
example has a placeholder labeled [11434 bytes of object data].
In a real-life API call, the actual bytes comprising the object would have
followed. In the PHP example, the code points to a file to be uploaded,
and the path to it is stored in $filepath.

 ✓ Identify the content type: It specifies the kind of data AWS is dealing
with in the bucket and uses an appropriate program to manage any
interaction with the object. (Note that my examples here use test/plain.)

 To understand the authentication mechanisms within the AWS API, see
Chapter 2.

67 Chapter 4: Setting Up AWS Storage

S3 cost
S3 has a simple cost structure: You pay per gigabyte of storage used by your
objects. You’re also charged for API calls to S3, which don’t vary by volume.
Finally, you pay for the network traffic caused by the delivery of S3 objects.

Storage costs start at $.095 per gigabyte per month for the first terabyte, and
they trend downward as total storage increases to $.055 per gigabyte per
month for more than 5000 terabytes of storage.

The API call costs vary from $.01 per 1,000 requests (for PUT, COPY, POST,
or LIST calls) to $.01 per 10,000 requests (for GET and all other requests).
DELETE requests are free.

Data transfer pricing — for transfers into or out of an AWS region — varies
(as you can surmise) by volume. Transferring data in is a gift — there’s no
charge for inbound network traffic placing data into S3 storage. For outbound
traffic, there’s no charge for the first gigabyte of traffic. Then the charge
becomes $.12 per gigabyte up to 10TB, with pricing lowered based on scale.
The price is reduced to $.05 per gigabyte for traffic between 150TB and 500TB.

Amazon also offers reduced redundancy for S3 storage, which retains fewer
copies of your data — and trades reliability for cost. Reduced redundancy
storage starts at $.076 per gigabyte of storage and decreases to $.037 per
gigabyte at volumes higher than 5,000TB.

 If S3 prices don’t seem low enough for you, well, just wait a bit. Amazon has
lowered prices on S3 storage consistently since launching the service, and it
continues to do so. The last price change before this book was published in
late 2012, when S3 prices dropped, on average, 25 percent.

 If S3 prices don’t seem low enough for you, well, just wait a bit. Amazon has
lowered prices on S3 storage consistently since launching the service, and it
continues to do so. The last price change before this book was published was
in late 2012, when S3 prices dropped, on average, 25 percent. For up-to-date
pricing on S3, see http://aws.amazon.com/s3/pricing/.

Managing Volumes of Information
with Elastic Block Storage (EBS)

Elastic Block Storage (EBS) is volume-based storage that isn’t associated
with any particular instance; rather, it’s attached to instances to provide
additional storage. A different way to say this is that an EBS volume is inde-
pendent and has a lifespan separate from EC2 instances. It can be attached

http://aws.amazon.com/s3/pricing/

68 Part II: Diving into AWS Offerings

to any instance to provide storage for that instance, but is detached from the
instance when it terminates. (If you’ve ever worked with SAN storage, you’re
familiar with the concept. If you haven’t worked with SAN storage, don’t
worry — EBS is simple to understand.) In any case, you’ll almost certainly
work with EBS, because it’s extremely useful and it addresses some signifi-
cant limitations in AWS.

The network-based EBS storage service is delivered in volumes, which can be
attached to an EC2 instance and used just like a disk drive. Because a volume
can become unformatted, it must have a file system installed (formatted) on
it before it can be used. For example, if you want to attach an EBS volume to
a Linux machine, you must first format the volume in one of the many Linux
file system formats and then mount it to the instance file system, which
allows the operating system to access the EBS volume and to read and write
to the volume.

Because an EBS volume is network-based, it can be longer-lived than any
specific instance. Consequently, an EBS volume offers persistent storage
that’s safe from being lost when an instance is terminated or crashes. The
most common (though certainly not only) EBS use case is the file system
for a database server. The database storage is placed on the EBS volume,
which must be attached to an instance that is running the database software
so that the software can read and write to the EBS-based database storage.
This process is a bit more complicated than using the instance’s own stor-
age, but it has a great virtue: By using EBS, the application owner can ensure
that data isn’t subject to loss caused by instance interruption. Even if the
instance crashes, the EBS volume is safe from data loss. A new instance can
be started, the EBS volume can be attached to it, and the instance can begin
database operations again.

The size of an EBS volume can be configured by the user and can range from
1GB to 1TB. Volumes are associated with accounts and limited by default to
20 per account.

 AWS commonly places default limits on different types of resources; it makes
sense to prevent users from reserving resources and then not using them.
In the case of EBS, Amazon avoids letting a customer claim 1,000 volumes
and never using 995 of them. AWS, though extremely large, isn’t infinite, and
rationing resources is one way that Amazon can provide its service to large
numbers of customers. However, should you need additional resources (of
any type, not just EBS), you can contact Amazon and tell it why you need
more resources. Typically, Amazon is very supportive of people who truly
need additional resources and is responsive to requests for them.

What if your very large database needs more than 1TB of storage? You can
attach multiple EBS volumes to the instance and stripe your file system
across the volumes. (Stripe here refers to placing portions of a file system

69 Chapter 4: Setting Up AWS Storage

onto multiple volumes to increase overall read and write speed, increasing
performance because all the reads and writes are spread across multiple
hard drives.)

EBS reliability
EBS can make your applications more reliable, because the storage is sepa-
rate from any specific instance (as mentioned in the previous section). No
matter what happens to an instance, your data stays nice and safe.

But how reliable is EBS itself? After all, why protect yourself against instance
failure if the EBS service itself is unreliable?

With EBS, Amazon has again used redundancy to increase reliability. Though
Amazon divulges few details about its service, it states that multiple copies of
every EBS volume are available at all times to protect against data loss from
hardware failure. If a disk drive containing an EBS volume goes bad, Amazon
makes a new drive available and copies the EBS volume data to the new drive
to ensure that it maintains appropriate redundancy.

 Though EBS is highly reliable, AWS has suffered several major outages,
and the culprit at least a couple times has turned out to be EBS. What’s up
with that?

The storage aspect of the EBS service isn’t at fault. Instead, the EBS manage-
ment layer (or control plane, a geeky term that means . . . EBS management
layer) has malfunctioned. The control plane is part of the intelligent AWS
infrastructure software (discussed in Chapter 2), and, unfortunately, prob-
lems can crop up.

Not to minimize the problems associated with the outages, but try to see
them as the inevitable by-products of the innovation that AWS represents.
(EBS has been around only since 2008, and, believe it or not, AWS is only
a couple years older.) In any new and different product, failure inevitably
occurs. If you’re concerned about outages, compare AWS reliability with that
of your own data center. This comparison usually helps put AWS outages into
perspective and portrays them as less alarming.

EBS scope
AWS as a whole is organized into regions, each of which contains one or
more availability zones (AZs). With EBS, volumes reside in a single AZ within
a particular region. When you create an EBS volume, you define which AZ to
locate (only) within a given region.

70 Part II: Diving into AWS Offerings

These statements imply, of course, that any EC2 instance that needs to
mount and use this EBS volume must be located within the same AZ.

Such a setup clearly presents a challenge. Even though Amazon retains
multiple copies of the EBS volume, they’re all located within the same AZ.
So doesn’t that conflict with the general advice to make applications more
robust by letting them operate in (or be able to operate in) multiple AZs, or
even across AWS regions?

The short answer is yes. If your application uses EBS volumes (and, frankly,
most do), it’s more difficult to follow AWS best practices and operate your
applications across multiple AZs. Fortunately, there’s a relatively straightfor-
ward way to address this issue — by using EBS snapshots. (I tell you more on
that topic later in this chapter — for now, take it on faith that the restriction
that EBS volumes reside in a single AZ isn’t insurmountable.)

EBS use
To use EBS, you simply create the volume with the help of the AWS API or
(more likely) by using either the AWS Management Console or a third-party
tool. As mentioned earlier in this chapter, before you can begin using the
volume, you must attach it to an appropriate operating system device on a
running EC2 instance and then format it with a file system that’s appropri-
ate for the operating system. The volume is then ready for use. It’s already
attached to a running EC2 instance as part of your prep work, and you can
start using it immediately.

When you decide to terminate the EC2 instance to which you’ve attached
the volume, you simply detach the volume (again, via the AWS API or
Management Console or a third-party tool you’re using). The EBS volume
moves into a quiescent state, ready to be attached to a new EC2 instance
whenever you choose. Actually, it’s even easier than that — AWS detaches
the volume for you when you terminate an EC2 instance, although best prac-
tices suggest not relying on the automatic detachment.

Many people avoid the manual attachment/detachment effort altogether
and implement an automated approach instead, by configuring the EC2 AMI
launch process to automate the EBS attachment process. (AMI refers to
Amazon Machine Image, which is the format EC2 stores instances in when
they are not actively running.) Alternatively, many tools (from Amazon or
from third parties) do this work and avoid the need to implement it within
the AMI. These tools start an AMI and then execute the API commands to
attach the volume.

71 Chapter 4: Setting Up AWS Storage

EBS performance
Obviously, if EBS volumes are used for important application resources, such
as databases, you may wonder whether their performance is critical. How do
they rank?

Typical EBS performance is around 100 IOPS (I/O operations per second) —
that’s what EBS is designed for. The question is, what is the real-world perfor-
mance of EBS?

Well, it depends. (You may not like that answer, but it’s true. Here’s why.) As I
note earlier in this chapter, EBS is network-based storage: It’s remote from the
instance that attaches to it. Therefore, all data reads and writes to the volume
must pass across the AWS network — and this is where things get tricky.

Any time data must pass across a shared resource like a network, it’s subject
to delays and interruptions caused by traffic from other applications. (This
is true, by the way, of all data center environments, not just AWS.) The tra-
ditional way to deal with this issue is to create a dedicated storage network
(thus the term storage-area network, or SAN).

Amazon, true to its roots as a low-cost company, did not implement a dedi-
cated network for its EBS service, leading to the major complaint about EBS —
spotty performance. Overall, EBS performance wasn’t that great, but even
worse, it tended to be extremely inconsistent because of the issue of network
congestion caused by other applications.

AWS addressed this shortcoming by extending the EBS service in mid-2012
with Provisioned IOPS for EBS — designed to provide fast, predictable EBS
performance.

Provisioned IOPS delivers between 500 IOPS and 4000 IOPS of guaranteed
throughput to EBS volumes. It requires the use of EBS-optimized instances,
which provide dedicated throughput, presumably via the use of a storage-
dedicated network. The same strategy of volume striping across multiple
EBS volumes can be used with Provisioned IOPS volumes to increase perfor-
mance well beyond the 4000 Mbps limit.

In keeping with AWS pricing, there’s an increased cost for Provisioned IOPS
use, which I describe later, in the section “EBS pricing.” You’ll need to deter-
mine whether the higher, more consistent EBS performance associated with
Provisioned IOPS is necessary and therefore worth paying for. The cost
of Provisioned IOPS isn’t that high, but you can always hold off for a while
and then move to Provisioned IOPS later, if necessary.

72 Part II: Diving into AWS Offerings

EBS snapshots
You may recall that EBS volumes are always associated with a single avail-
ability zone (AZ), which can present a challenge if a major goal is being able
to create highly available applications. You may also recall that I hinted at a
way to work around the challenge. I’ll let the other shoe drop here and tell
you all about the workaround.

In addition to EBS’s persistent storage, AWS offers another function within
EBS: the snapshot. It’s a point-in-time backup of the data within an EBS
volume. The snapshot is stored in S3 in the same region in which the EBS
volume resides.

After an initial snapshot of an EBS volume is created, subsequent snapshots
store only the modified bits of the volume. So if you have a 10GB volume and
create an initial snapshot, all of the data on the volume is in the snapshot.
Snapshots of the volume that are created later only store bits that have
changed since the previous snapshot. In this way, an EBS snapshot is a highly
efficient way to ensure the durability of EBS data, even if the EBS volume
itself were to somehow be lost or damaged.

 A snapshot can be used to create a new volume, so instead of starting with
an empty volume, you create a new volume via a snapshot, and when it’s
attached to a running instance, all of the data in the original volume is avail-
able to you.

The EBS snapshot provides the method by which you can ensure a higher
level of application availability even in the event of an outage in the entire
availability zone. You can create ongoing snapshots of the EBS volume that
reside in S3, which is scoped at the regional level. If the original availability
zone becomes unavailable, you can launch a new instance from the AMI
(which also is scoped at the regional level, and can therefore be launched
in another availability zone). When you create in the availability zone a new
EBS volume containing the newly launched instance and then attach the
volume to the new instance, the EBS volume data becomes available, ready
to be used by your application. Snapshots can also be transferred between
AWS regions so that you can easily create a new volume in an entirely differ-
ent region, attach it to an instance running in an availability zone within that
region, and run your application in a location completely different from the
original one.

By using EBS volumes and snapshots, you can make highly persistent data
available throughout the entire AWS environment.

73 Chapter 4: Setting Up AWS Storage

 A snapshot is, in effect, a picture of the EBS volume at a given time. The snap-
shot can be used to re-create an EBS volume. EBS snapshots aren’t backups of
the data residing on the volume. You must understand the difference between
snapshots and backups for dealing with databases (the most common uses of
EBS volumes). When an EBS volume is re-created, it reflects the bits that were
residing on it. A database backup, on the other hand, is a file dump of the data
residing in the database; the backup can be used to re-create the database on
AWS, but also on another cloud service or even in your own data center.

 EBS snapshots are useful if you want to re-create storage in AWS; database
backups are useful if you want to restore a database either in AWS or some-
where else.

A further twist on this topic is your restore time (or, if you need to re-create
a database, how long that takes). Creating a new database from a backup
can cost you an hour or more. (The process typically takes several hours
because the entire backup has to be read into the database before it’s ready.)
The EBS approach provides restoration more quickly. After you tell AWS to
create a new volume from a snapshot, it returns almost immediately with the
volume ID, which you can attach to an instance. The data is then loaded into
the volume in the background, and you can request data from anywhere in
the volume after it’s mounted. If the data isn’t yet available, AWS requests the
necessary blocks; when they’re available, it returns from the request. Though
extremely convenient, this process can negatively impact performance until
all the data is available on the volume.

So what can you do if you want high availability and you don’t want to endure
poor performance while you wait for a volume to be re-created? The most
common way to address this issue is to run databases on EBS volumes in
multiple AZs — a master database in one AZ and a slave database in another
AZ, with replication from the master to the slave so that the latter gets
updated bits when a change is made to the master database. The replication
offers good performance because (as mentioned earlier) AWS has dedicated,
high-performance connections between AZs within a region. The application
can be configured so that read requests from the database can originate from
either the master or the slave. And if an AZ becomes unavailable, all database
traffic can be sent to the database that’s running in the other AZ.

EBS pricing
EBS pricing follows the standard AWS practice of paying for what you use
and is relatively straightforward, although you should understand the “what
you use” part of the equation.

74 Part II: Diving into AWS Offerings

Keep in mind that new AWS accounts get a certain amount of EBS use at no
charge, making it easy (and cheap!) to get started. Also keep in mind that
you’ll encounter minor EBS pricing variations depending on which region the
EBS volume resides in. The variation is around 10 percent, so keep it in mind
when making plans. The prices described in this section reflect the AWS US
East region.

EBS storage is priced at $.10 per gigabyte per month. (By way of comparison,
in the Singapore region, the charge is $11 per GB per month, which gives you
a concrete example of the pricing variations associated with regional volume
location.)

AWS also charges for I/O requests to EBS volumes — $.10 per million I/O
requests.

Provisioned IOPS is a bit trickier. You pay a slightly higher rate for storage —
$.0125 per gigabyte per month (in the AWS US Eastern region). In addition,
you pay $.10 per IOPS month. Provisioned IOPS can measure as much as 4000
IOPS per volume. So if you use 1000 Provisioned IOPS for a full month, you
pay $.10 times 1000, or $100.

A snapshot costs $.095 per gigabyte per month. However, understanding
exactly how much storage a volume snapshot will require isn’t a straightfor-
ward calculation. AWS compresses snapshots, so a snapshot of a 10GB EBS
volume doesn’t fill 10GB. Moreover, subsequent snapshots of the volume
store only copies of the blocks that have changed in the volume since the
previous snapshot was taken, which further reduces the amount that’s
stored, and therefore how much you pay for that subsequent snapshot. So
the first snapshot of a 10GB EBS volume may (with compression) take only,
say, 5GB. If 10 percent (1GB) of the volume is changed before the next snap-
shot is taken, that snapshot will contain 1GB (or less, in fact, because com-
pression would be applied to this snapshot.)

As you can see, it’s not a simple matter to predict the exact cost of using an
EBS volume. On the other hand, it’s inexpensive per gigabyte. The bigger
issue for most organizations occurs when they start using a lot of AWS
resources. Even though the per-gigabyte cost of EBS isn’t too expensive, if
you use a lot of resources, it can add up — particularly if your personnel
create a bunch of volumes that aren’t used. You pay for the storage whether
it’s in use or not.

 Amazon offers a certain amount of free EBS use for one year for new AWS
accounts — a useful benefit. The free level of EBS is as much as 30GB of stor-
age, 1GB of snapshot storage, and 2 million IOs per month.

Obviously, this amount isn’t enough storage to run a company’s production
applications. It is, however, plenty for an individual developer to get started

75 Chapter 4: Setting Up AWS Storage

with AWS and experiment with its services. The amount is even enough to
prototype an application or two.

An EBS example
To continue the practice of delving into the nuts-and-bolts of using
AWS, check out the steps to create an EBS volume with the help of the
Management Console:

 1. Starting from your AWS account’s home page, click the EC2 link, as
shown in Figure 4-1.

 Doing so opens the EC2 Management Console.

 Despite EBS being a storage offering, all your management tasks take
place within EC2.

Figure 4-1:
The AWS

main land-
ing page.

 2. In the Navigation pane on the left, click the Elastic Block Store
Volumes heading, highlighted in Figure 4-2.

 Though this account has no volumes now, it will have some in a minute.

76 Part II: Diving into AWS Offerings

 3. Click the Create Volume button.

 The Create Volume Wizard launches, as shown in Figure 4-3.

 4. In the wizard, choose Standard from the Volume Type drop-down
menu, set the Size at 2GB, choose US East 1a from the Availability
Zone drop-down menu, and specify No Snapshot in the Snapshot drop-
down menu.

Figure 4-2:
The EBS

volume
page.

Figure 4-3:
The Create

Volume
Wizard.

77 Chapter 4: Setting Up AWS Storage

 You can create this volume from an existing snapshot, but for this exam-
ple, start afresh.

 5. Click the Yes, Create button.

 The volume is created, sporting a new volume ID. (In Figure 4-4, it’s vol-
e1da4892.)

Now, if you want to interact with the volume via the API, here’s an example of
a call you can use to create a snapshot:

https://ec2.amazonaws.com/
?Action=CreateSnapshot
&VolumeId=volume-id
&AUTHPARAMS

Note that this call follows the general pattern: a REST call with the “Create
Snapshot” action, along with a volume ID and a set of authentication
parameters.

Figure 4-4:
The created

volume.

78 Part II: Diving into AWS Offerings

Managing Archive Material with
the Glacier Storage Service

Glacier, released in August 2012, is a storage service targeted at a critical (yet
often poorly managed) IT requirement: archival storage.

Simply stated, archival storage is backup data of any sort. The best-known use
of archival storage involves server backups — complete dumps of all data on
the server’s drive. Today, of course, with the rise of NAS and SAN technology,
backups also include dumps of storage device data.

Glacier is designed to address the shortcomings of a number of traditional
archive solutions, none of which is completely satisfactory, as you’ll soon
find out.

The tape archive is the oldest solution for archive storage. Data is written
out to a device that stores the data on magnetic tapes, which are then sent
off-site to ensure that no on-premise disaster can wipe out all of a company’s
data, both live and archived. Tape archiving is burdened by these issues:

 ✓ It’s expensive: You usually have to use a commercial, off-site storage
facility, and it costs a lot — companies sometimes even trim the amount
of data they archive. That strategy is tempting, but it can become a big
problem if worse comes to worst and your on-premise data disappears.

 ✓ It’s inconvenient: You have to move the tapes to the off-site storage
location, and if you need to recover information from the archive, you
have to physically return tapes and restore from the tape.

 ✓ It’s slow: Obviously, sending and retrieving physical tapes is slow
because you have to transport them. A secondary aspect of slowness —
writing and reading tapes — is a very slow process. Removing data from
a tape can take hours (or even days, if your archive tapes are disorga-
nized and you need to pick through a number of tapes to find the data
you want).

 ✓ It’s insecure: Your tapes are located off-site. Somebody can obtain them
and read the data from the tape, putting your data security and privacy
at risk.

 ✓ It may not work: Tape archives are notorious for not working properly,
and the original write of the data to the tape can eventually deteriorate
in storage.

A newer form of archiving in the past few years is based on the ever-decreasing
cost of disk drives: In disk archiving, backups are written from live disk stor-
age to another set of disk-based storage. Disk archiving solves some of the

79 Chapter 4: Setting Up AWS Storage

problems associated with tape issues, like speed, but it has its own set of
(familiar) issues:

 ✓ Expense: Though tape archiving can be expensive, disk archiving is even
more expensive. If you have a lot of data, backing it up to other disks
can represent a huge cost, especially because an awful lot of archive
storage is redundant — you backed up this file yesterday, and you’re
backing it up today. Keeping multiple copies of files on an expensive
medium like disk can make costs skyrocket. Fortunately, solutions have
come along in the form of de-duplication, which uses clever software
and data layout to track which parts of files change so that you archive
only the changed bits. This approach can reduce the amount of storage
required to archive data by up to 90 percent.

 ✓ Speed: Though disks operate much quicker than tape, moving the
archived data across the network to the remote archive location can
be a problem when you encounter slow Internet network speeds and
(potentially) a high level of network latency.

 ✓ Reliability: It may not work — disks can fail, just like tapes do. Typically,
the remote disk backup is isolated to a single set of disks, and if one of
those disks fails, well . . . there goes your archive.

Glacier leverages the AWS infrastructure to provide archival storage that
addresses the shortcomings of both tape and disk solutions:

 ✓ It’s inexpensive: Glacier costs start at less than $.02 per gigabyte of
archival storage. That’s significantly less expensive than disk archive,
and even less expensive than tape archive, the previous low-cost
archive solution.

 ✓ It’s durable: Glacier uses the S3 infrastructure, which means it can offer
the same 99.999999999-percent durability as the S3 service. That’s a lot
more reliable than the previous archive solutions.

 ✓ It’s convenient: You just send and retrieve archive files over the
Internet, making it simple to extend your current backup solution to
Glacier. Many of today’s newer, commercial backup solutions provide
deduplication functionality, so if you use one of those, you can be sure
that it will soon have an Archive to Glacier option.

 ✓ It’s highly scalable: An archive file can be as large as 40TB, which
should be big — enough for anyone.

 ✓ It’s secure: Data is transmitted to and from Glacier over SSL encryption,
and the archives themselves are encrypted as well while in storage.

 ✓ It’s fast: Data can be pulled from Glacier in as little as five hours, making
it significantly faster than tape archive solutions, which require schlep-
ping out to the archive storage facility. And while Glacier confronts the

80 Part II: Diving into AWS Offerings

same issue as disk archive of having to send data over the Internet, AWS
has a couple solutions to this issue:

	 •	AWS	Import/Export	is	a	service	that	allows	lets	you	to	send	
Amazon physical disk drives with your data on them. At the
Amazon end, an Amazon employee downloads the data from the
drive and adds it into AWS.

	 •	AWS	Direct	Connect	is	a	service	offered	by	Amazon	in	partnership	
with network service providers that place a high bandwidth con-
nection between their facilities (or, indeed, your own data center)
and AWS. The connection can be 1 Gbps or 10 Gbps, making it pos-
sible to transmit or receive very large volumes of data quickly.

Glacier in action
Glacier is straightforward, conceptually. The idea is for you to create Glacier
vaults within your AWS account and then store archives in those vaults. The
conceptual similarity between this arrangement and S3 buckets and objects
is obvious.

Each AWS account can have 1,000 vaults, and each vault can contain an
unlimited number of archives. As previously noted, an archive can be as
large as 40TB.

Two ways exist to create an archive:

 ✓ Archive S3 objects into Glacier by setting S3 retention policies for the
object. You may, for example, set a retention period of 90 days; after 90
days were up, S3 would migrate the object into Glacier. To retrieve the
object, execute an S3 Restore command, and a few hours later the object
is back in S3, ready to be accessed. S3 maintains a mapping between S3
object IDs and Glacier archive IDs and takes care of all archiving man-
agement. In fact, you can’t even access S3-managed objects from Glacier
via the API.

 ✓ Use the Glacier API to manage the creation and retrieval of archives,
and let Glacier takes care of storing it securely and robustly. If you
need to retrieve an archive, you issue a command (again via the API),
specifying the file location you want the retrieved archive placed in, and
five hours or so later, the archive is available on the server on which the
file location exists. The server can be located in EC2 or in some another
non-AWS data center. You can set AWS to notify you when the archive
is available by using the Simple Notification Service (SNS), which is dis-
cussed in Chapter 9.

81 Chapter 4: Setting Up AWS Storage

 One potential sticking point for this second method of using Glacier is
the fact that a very large archive may not fit on the file system of the
server on which the archive is to be retrieved — if you have a 40TB
archive and are trying to download a 40TB archive to a small EC2
instance, for example, there aren’t enough file systems on the entire
server to store the archive. How would you handle this situation? The
answer takes advantage of Glacier’s ability to retrieve a portion of an
archive — so you would either retrieve the archive in pieces, or limit
your retrieval to a specified portion of the archive.

In the case of non-S3 managed archives, each archive has an AWS-assigned
identifier, which is a *very* long alphanumeric string. When you want to per-
form an activity on an archive, you must supply the archive identifier; there-
fore, it’s imperative that you keep track of archives, with a cross-reference
between your backup identifier (that is, backup_01_17_2013) and the AWS
archive identifier. AWS DynamoDB (described a bit further on later in this
chapter) would be an ideal way to store these mappings.

However (and it’s a big however), at the time of this writing, actually using
Glacier in non-S3 managed use is a bit complicated, because it isn’t fully
integrated into the AWS Management Console. The Management Console
only supports creating or deleting vaults; all other interaction with Glacier
must be done via the Glacier API or one of the two Glacier libraries, (one
Java-based and one .NET-based). I expect to see Glacier fully integrated into
the Management Console in the near future, and it may very well be the case
that, by the time you read this book, Amazon may have already implemented
this integration.

Nevertheless, Glacier is such a useful service that I believe people will use
the libraries to create Glacier interfaces and applications. Some of these
interfaces may be released under open source licenses so that anyone (and
by anyone, I mean you!) can leverage them to use Glacier.

Glacier scoping
Glacier vaults, the repositories for all your archives, are scoped by region.
You can, of course, create vaults in multiple regions, but each single vault is
located in (and thus limited to) a single region, and all archives within that
vault reside within the region as well.

At the time of this writing, Glacier is available in all three U.S. regions, in the
Asia Pacific region (Tokyo), and in the EU region; however, you can expect to
see Glacier extended to other regions.

82 Part II: Diving into AWS Offerings

Glacier pricing
Glacier storage pricing varies according to which region contains the vault.
Vaults in the US Eastern region cost $.01 per gigabyte per month; in the Asia
Pacific region (Tokyo), the cost is $.012 per gigabyte per month.

You pay a modest charge also for upload and retrieval requests: $.05 to $.06
per 1,000 requests. You may not immediately see how this price can add up
to much, even for a large company over the course of a year, but it’s there.

There’s no charge for transferring data into Glacier, whether the data comes
from an EC2 instance or from outside AWS altogether. The cost for retrieving
data is a bit more complicated — there’s no charge for

 ✓ The first gigabyte of data retrieval, whether the data is retrieved into
an EC2 instance or an outside data center.

 ✓ Retrieval of S3-managed objects from Glacier.

 ✓ Archives retrieved into EC2 instances within the same region in which
the archive is located.

For archives retrieved into other AWS regions or into non-AWS data centers,
there’s a charge based on total gigabytes of traffic. The charge per trans-
ferred gigabyte decreases as total traffic increases. The calculation of total
traffic is based on all outbound network traffic across all AWS offerings, so
the traffic fee associated with an archive retrieval may be different based on
how much total traffic the customer has incurred over the course of a month.

Glacier represents a typical Amazon AWS offering:

 1. Find a well-established technology market.

 2. Calculate how to make the service far more efficient and less expensive.

 3. Enable self-service.

 4. Avoid imposing complex pricing, and require negotiation before using
the service.

 5. Become the dominant player in the field, in typical Amazon fashion.

I predict that the new AWS offering named Glacier will become a popular
one, based on personal experience dealing with the hassles of off-site tape
archiving — and its far simpler ease of use.

83 Chapter 4: Setting Up AWS Storage

A Glacier example
In my Glacier example, you’ll use the Management Console to create a new
Glacier archive. As you can see from Figure 4-5, Glacier is listed under the
Storage and Content Delivery heading on the Management Console home
page. From this starting point, it’s really not complicated:

 1. Click the Glacier link.

 Doing so brings you to the Glacier main page. Notice that you don’t (yet)
have Glacier vaults in the account.

 2. Click the Create Vault button, as shown in Figure 4-6.

 This step brings up the Create Vault Wizard, as shown in Figure 4-7.

 3. Enter a name for the new vault in the Vault Name field.

 For now, type Trial Vault.

 4. Click the Create Vault Now button.

 Glacier goes off to do its magic.

Figure 4-5:
The

Manage-
ment

Console
home page,
with Glacier
highlighted

84 Part II: Diving into AWS Offerings

Figure 4-6:
Creating

the Glacier
vault.

Figure 4-7:
The Glacier

Vault
Creation
Wizard.

 After a few minutes, the new vault is ready, as shown in Figure 4-8.
You can see that the new vault has an Amazon Resource Name
(ARN): arn:aws:glacier:us-east-1:204956053165:vaults/
TrialVault.

85 Chapter 4: Setting Up AWS Storage

Figure 4-8:
The Glacier
Vault, at the

ready.

If you were to use the API to upload an archive to the new vault, here’s the
command you’d use:

POST /AccountId/vaults/VaultName/archives
Host: glacier.Region.amazonaws.com
x-amz-glacier-version: 2012-06-01
Date: Date
Authorization: SignatureValue
x-amz-archive-description: Description
x-amz-sha256-tree-hash: SHA256 tree hash
x-amz-content-sha256: SHA256 linear hash
Content-Length: Length
<Request body.>

Scaling Key-Value Data with DynamoDB
DynamoDB is Amazon’s latest AWS storage offering. This key-value stor-
age service is designed to provide very high scalability and performance
for the most demanding applications. The genius of DynamoDB is that even

86 Part II: Diving into AWS Offerings

though it’s quite challenging to deploy and operate a very large key-value
environment that may span (literally) hundreds (if not thousands) of servers,
Amazon has made DynamoDB extremely easy to use. In other words, Amazon
takes on all the heavy lifting of running the service, and you can focus on
using the service to make your application work better.

The concept of key-value storage should be familiar to anyone who has ever
created a Microsoft Word table — say, a table containing information about
people. A person’s last name is used to organize the overall table — as the
key term — and other information about the person (first name, address,
or perhaps a favorite TV show) is strung out to the right of the last name.
Conceptually, that’s how DynamoDB operates. Naturally, it’s a bit more com-
plex as AWS implements it, and it has much richer functionality, but from the
perspective of how to think about it, just think “Word tables.”

Key-value storage creates a hash (essentially, a random assignment of the
key into the storage pool), which makes data lookups extremely efficient
because data records are spread throughout the pool, thereby reducing
the likelihood that reads or writes will be concentrated on a single server
and reduce performance caused by resource contention. When you call
DynamoDB to insert a row of data, it hashes the index value (the data item
used to organize the table, such as the customer’s last name, used as the
index for the customer table) and places the row randomly throughout the
storage pool. When you request that row, DynamoDB again hashes the index
value, goes to the location that the hash identifies, retrieves the data, and
gives it back to you.

Key-value versus relational databases
Key-value storage can manage much larger data pools and operate with much
higher performance than traditional relational databases because it can span
larger number of servers to store its data. You face some trade-offs from
using it, however, because it doesn’t support the following features:

 ✓ Range retrieval: Using this feature, you can say, “Give me all records
from the customer table where the customer last name equals Jones.”
Relational databases excel at these kinds of queries.

 ✓ Joined queries: This type of query lets you say, “Give me a customer
name from the customer table and a corresponding address from the
address table where the customer name equals Jones and the address
city equals Los Angeles.” Joins can be extremely useful in applications,
but they harm database performance, particularly when overall storage
is very large.

Both key-value and relational databases have their uses, and in fact it’s not
uncommon for applications to use both, with each applied to the portions of
the application for which it’s best suited.

87 Chapter 4: Setting Up AWS Storage

DynamoDB characteristics
Amazon has designed DynamoDB to be high-performance, extremely flexible,
and with high availability, all based on these characteristics:

 ✓ The total amount of storage can be increased (or decreased) at any
time. You’re not forced to forecast how much storage is required for an
application. For many of the webscale applications that would have a
natural affinity for DynamoDB-type storage, this is a strong selling point.
Such applications are unpredictable in terms of how much storage they
will ultimately require, so the flexible scalability of DynamoDB can be a
real benefit.

 ✓ No downtime is required in order to resize a DynamoDB table. AWS
automatically adds additional servers to a DynamoDB table pool and
redistributes the table data across the pool. This task is performed in
the background and requires no application downtime, making it possi-
ble to continue running applications, even while resizing the underlying
DynamoDB table pool to support necessary throughput.

 ✓ The schema is flexible. Relational databases require you to define the
items you’ll manage, and their types (string or integer, for example) and
sizes, all before using the system; this definition is referred to as the
database schema. What happens if you need to store additional informa-
tion in your database? You have to alter the original database schema,
which, if a large amount of data is already in the database, can take (lit-
erally) days to execute. DynamoDB, by contrast, has a flexible schema —
you can add items to a record at any time without requiring an Alter
operation. Moreover, if you add, say, a second address to an individual
customer’s record, no other customer’s record needs to be changed,
and no additional storage needs to be allocated for all those other cus-
tomers’ potential second addresses. This makes DynamoDB very easy to
use, extremely flexible in the type of data that can be stored, and highly
efficient in its use of storage.

 ✓ Solid-state drives are used instead of disk drives. DynamoDB avoids
the dreaded latency of data lookups that require seeks across spin-
ning disks by using solid-state drives that incorporate flash storage, to
increase data throughput and increase DynamoDB performance.

 ✓ Performance levels can be changed dynamically while in operation.
If you realize that you need more (or less) performance capability from
your DynamoDB database, you can adjust it on the fly, without needing
to take DynamoDB down. This allows you to dynamically tune your data-
base performance while your application is still in production.

 ✓ Storage is redundant to ensure high availability. DynamoDB stores
multiple copies of each record, thereby avoiding outages caused by
hardware failure.

88 Part II: Diving into AWS Offerings

 ✓ Storage is dispersed across multiple availability zones. By dispers-
ing DynamoDB tables across multiple availability zones, AWS ensures
that even a large-scale outage, such as the loss of an entire data center,
doesn’t affect the availability of DynamoDB.

Using DynamoDB
You can easily create a DynamoDB table via the AWS Management Console,
by following this process (in broad terms):

 1. Define the table name.

 Note: When you name a table, your character pool is limited to a–z, A–Z,
0–9, and the underscore, hyphen, and period; no other characters are
allowed.

 2. Name and define the primary key — the index for the table.

 You can choose the type of data you’ll use as index: string, number, or
binary. (The Technical Stuff paragraph in this section further defines the
primary key.)

 3. Define how much read and write capacity you want for your DynamoDB
table.

 The amount of capacity affects your DynamoDB table performance, so
your choices here are important to overall application performance.
You can have up to ten read capacity units and five write capacity
units for free each month. (Read and write units are a measurement of
performance and represent throughput in these operations — see the
DynamoDB cost section below for details.) Don’t worry if you’re unsure
about how much you’ll ultimately need — you can dynamically adjust
these figures; DynamoDB supports performance levels from tens to hun-
dreds of thousands of capacity units per table.

 4. Decide whether to have throughput alarms sent to you.

 A throughput alarm indicates whether your table’s request rate is consis-
tently above a certain level for an hour. (The default level is 80 percent.)
It’s the mechanism that tells you when to increase your table’s read and
write capacity.

 5. Press the Create button to create the DynamoDB table.

A couple minutes later, your DynamoDB table is ready. Easy, eh? It’s easy,
especially in comparison with provisioning your own instances, loading a
key-value product onto each of them, arranging for redundancy, and so on.
DynamoDB hasn’t been around long, but I predict that it will be a huge hit
as more and more highly scaled webscale Internet sites adopt it as a more
attractive alternative to “rolling their own.”

89 Chapter 4: Setting Up AWS Storage

In addition to the REST/SOAP API interface, Amazon has made available four
client-side Software Development Kit (SDK) libraries: Java, .NET, Python and
PHP. It is also possible to access a DynamoDB table from the Management
Console, although that ability is more development- and testing-focused
rather than to be used as production functionality.

I expect that Amazon will eventually extend richer DynamoDB support to the
Management Console. I also expect that someone will release a commercial
or open source product that offers graphical interaction with DynamoDB.

 Here’s a deeper dive in to the “why and what” of DynamoDB indexes. First,
and vitally important, it’s crucial to use an appropriate index for key-value
storage. A key-value product performs a hash on the index value to determine
where in the storage pool to place the data associated with the index.

The hash implements an algorithm to create unique values for different
indexes, which places the data randomly throughout the storage pool. For
example, an index value of 1234 may go to machine 7, and 1235 may go to
machine 12.

It’s this randomness that provides the high-performance capability of key-
value storage; by randomly distributing the data around the resource pool,
the storage spreads reads and writes among all servers in the pool, thus
avoiding hammering a single server, which would reduce performance.

The key (excuse the pun) issue with an index is to define it with a highly vari-
able index. For example, if you have millions of customers, it’s a bad idea to
index them by zip code, because the amount of duplication would choke per-
formance. When creating a DynamoDB table, be sure to choose your index
carefully.

Amazon has also made interesting changes to DynamoDB indexes. In addition
to the standard hash index value I just mentioned, Amazon lets you define
the index as hash-and-range so that you can, so to speak, create a secondary
index associated with the table. The range can be used to retrieve data that
you might like to select by a list of some sort. For example, you may create
a customer table with the last name (or, even more hash-appropriate, a
sequential customer number) as the index. However, if you’re, say, an online
marketing company, you may want to be able to select customers located
in certain zip code areas (that is, all customers located in zip codes 30000
to 40000). You can create a customer table index using sequential customer
numbers with an associated range of zip code. That way, DynamoDB would
use the highly variable customer number to spread the data randomly across
the entire table resource pool but keep pointers to the zip code values that it
can use in queries on that range. With hash-and-range, users can gain the full
benefit of key-value storage along with a limited amount of the benefit avail-
able to relational database storage.

90 Part II: Diving into AWS Offerings

DynamoDB read consistency
One common drawback to using key-value storage that’s spread out across
many servers is read consistency: When a write to key-value storage is made,
the data must be written to multiple servers (because data is stored redun-
dantly). A bit of time elapses before the write is copied out to all necessary
servers. A read that closely follows a write may get a copy of the data that
reflects the old value, not the new.

Many developers face challenges when working with key-value storage
because of this issue of eventual consistency. More experienced with rela-
tional databases, which implement immediate consistency, these developers
struggle to design applications that can operate with uncertain consistency.

Amazon takes a different tack: Provide two types of reads — consistent and
eventually consistent. The former performs a read only after DynamoDB is
certain that it reflects the latest version of data, and the latter returns data
immediately with no guarantee that it reflects the latest-and-greatest ver-
sion. This choice offers a trade-off: The consistent method is simpler but may
provide lower performance, whereas the eventually consistent option is less
certain but offers the highest possible level of performance.

DynamoDB scope and availability
DynamoDB tables are AWS region-scoped. The servers that make up the table
resource pool are spread among availability zones within the region in which
the table lives.

Amazon publishes no projection of the expected level of DynamoDB avail-
ability. Given its use of redundancy, you should expect extremely high avail-
ability from DynamoDB.

DynamoDB cost
DynamoDB has three separate and distinct cost variables:

 ✓ The size of the server pool, defined as read and write capacity: As
you’d expect, larger read and write capacity requires spreading the
table across larger numbers of servers, with an accompanying increase
in cost. The first 10 units of read capacity and the first 5 units of write
capacity per month are free. Above that level, however, the cost is
$.01 per hour for every 10 units of write capacity, and $.01 per hour for
every 50 units of read capacity. 1 unit of write capacity enables you to
perform 1 write per second for items as large as 1KB. Similarly, 1 unit of

91 Chapter 4: Setting Up AWS Storage

read capacity enables you to perform one strongly consistent read per
second (or two eventually consistent reads per second) of items as large
as 1KB.

 ✓ The storage associated with the DynamoDB table: You get 100MB of
storage for free every month; above that level, storage is priced at $.25
per gigabyte. The total amount of storage within DynamoDB is a little
larger than the size of the data being stored; DynamoDB adds 100 bytes
of indexing information to each item stored in DynamoDB, which is
added to the total storage in DynamoDB.

 ✓ Data transfer, which is the same price and conditions as for all AWS
offerings: The first gigabyte of transfer per month is free, and above
that the cost of data transfer varies between $.12 and $.05 per gigabyte,
depending on total traffic.

A DynamoDB example
When it’s time for some hands-on DynamoDB-ing, follow these steps:

 1. Make your way to the Management Console main page, as shown in
Figure 4-9.

Figure 4-9:
The AWS
Manage-

ment
Console
landing

page.

92 Part II: Diving into AWS Offerings

 Note that DynamoDB is (no surprise here) listed under the Database
heading.

 2. Click the DynamoDB link.

 Doing so takes you to the DynamoDB administration page. Your account
doesn’t have a DynamoDB yet, so the page invites you (as shown in
Figure 4-10) to create one.

 3. Accept the invitation by clicking the Create Table button.

 This step brings up the Create DynamoDB Wizard.

 4. Enter a name for the table in the Table Name field, set the Primary
Key, as shown in Figure 4-11, select the Hash option, and then click
Continue.

 Type DynamoTrial for the name, and use a simple hash string for the
key (“CustomerID”).

Figure 4-10:
An invita-

tion to
create the first
DynamoDB.

93 Chapter 4: Setting Up AWS Storage

Figure 4-11:
Panel

1 in the
DynamoDB

Create
Wizard.

 Doing so takes you to the next page of the wizard, as shown in
Figure 4-12, where you set the read and write capacities.

 5. Enter a request of ten units for read capacity as well as ten units for
write capacity, and then click Continue.

 6. In the new page of the wizard that appears, select the Use Basic
Alarms check box (as shown in Figure 4-13), enter the e-mail address
where you want these notifications sent, and then click Continue.

 This will take you to a review screen.

 7. After reviewing your setup, click Create.

 After a few minutes, the new DynamoDB table is ready, as shown
in Figure 4-14. You can now begin inserting, retrieving, and deleting
records, which will be indexed by CustomerID.

94 Part II: Diving into AWS Offerings

Figure 4-12:
Defining the
DynamoDB

read and
write units.

Figure 4-13:
Creating the
DynamoDB

table.

95 Chapter 4: Setting Up AWS Storage

Figure 4-14:
The

DynamoDB
table is
ready.

After the DynamoDB table is ready for use, you’ll probably interact with it
within a program. Assuming that data is already in the table, here’s an exam-
ple of the kind of PHP code you use to retrieve data:

$dynamodb = new AmazonDynamoDB();
$get_response = $dynamodb->get_item(array(
‘TableName’ => ‘DynamoTrial’,
‘Key’ => array(
‘HashKeyElement’ => array(AmazonDynamoDB::CustomerID =>

‘104’)
)
));

This example retrieves the data for Customer 104 from DynamoTrial and
adds it to the $get_response variable, where other parts of the application
can then use the retrieved data.

96 Part II: Diving into AWS Offerings

Selecting an AWS Storage Service
AWS presents an embarrassment of riches to its users for deciding which
storage service to use as part of their applications. With such a broad range
of offerings and functionality, it may seem hard to know where to begin as
you choose whether to use these items:

 ✓ S3, the highly scalable object store: S3’s URL object addressing allows
data to be accessed from within AWS as well as externally from the
Internet. Though S3 objects are regionally scoped, you can access them
from anywhere.

Backupify runs on AWS
Backupify is, well, a data backup service. It
offers a secure storage service to consumers
and businesses, with a strong focus on backing
up data from popular consumer and Software as
a Service (SaaS) providers, such as Facebook,
Flickr, Gmail, and Salesforce. With over 200,000
customers, Backupify is a very large business,
with enormous storage requirements (multi-
petabytes), as you might imagine.

Backupify is totally AWS-based. For indexing
and tracking user data objects, the company
runs a 21-node Cassandra cluster. For storage,
Backupify originally relied on S3; however, with
the release of Glacier, the company has moved
large parts of its storage to the lower-cost
archive storage service. Because Backupify
can rely on the AWS infrastructure, it hasn’t
needed operations staff. Instead, its developers
manage all aspects of running the application,
including deploying code, monitoring availabil-
ity, and managing scale up and scale down. By
using AWS, Backupify can direct investment
that would have been used for operations per-
sonnel into additional user functionality and the
growth of its business.

Backupify represents one of the interest-
ing phenomenon made possible by AWS:

Entrepreneurs create new businesses based
on the easy availability of unlimited, cheap
infrastructure. For a company like Backupify
to have been created pre-AWS, it would have
had to invest hundreds of thousands of dollars
to create its own infrastructure just to test the
level of demand for a service like the one it
planned to offer.

Instead, Backupify launched for only a few
thousand dollars; moreover, it was able to get
started almost immediately, instead of having
to order, install, and configure racks of servers,
network switches, and storage.

Backupify was able to validate demand for its
service quickly and scale it rapidly, using the
resources of AWS. Because of Amazon’s pay-
as-you-go pricing, the company was able to
bootstrap-fund itself until it had grown a sig-
nificant business, whereupon it took on outside
financing.

Backupify illustrates how Amazon is enabling
entrepreneurs to create new types of busi-
nesses, leveraging the AWS technology to
develop innovative offerings that can be cre-
ated and validated with low investment and
then easily scaled up when the offering takes
off in the marketplace.

97 Chapter 4: Setting Up AWS Storage

 ✓ EBS, the volume storage offering: EBS allows highly persistent volumes
to be attached (and detached) from running EC instances, but keep in
mind that EBS volumes are accessible only within the availability zone
in which they’re created — and you can access them only by the EC2
instance to which they’re attached.

 ✓ DynamoDB, the highly scalable key-value service: DynamoDB provides
flexible, high-performance, and robust storage for webscale applications.

 ✓ Glacier, the inexpensive and highly durable archiving service:
Glacier’s job is to ensure that critical data is never lost, and it does its
job well.

In the time-honored (and infuriating!) words associated with most IT topics,
the question “which service should I use?” typically requires a response of
“It depends.” Many technology folks get familiar with a given technology, and
become comfortable using it, and then seek to apply it to nearly every situ-
ation — even ones to which the technology isn’t well suited. It’s the classic
story: If you only have a hammer, every problem looks like a nail.

You can certainly use more than one AWS storage service to address the
same need. For example, you can store objects in an EBS volume, using a
bucket/object scheme based on file system layout; you can also use S3 to
store objects.

You can also use more than one AWS storage service in an application, so
don’t feel that you have to choose one or limit your options. In fact, one key
Amazon strategy is to offer a rich set of complementary services that support
and reinforce one another, all with the goal of making it easier to develop and
deploy applications on AWS. Therefore, you can be sure that using one AWS
offering doesn’t preclude using another; and, of course, the more services
you use, the more money AWS makes!

When you choose among the AWS storage services, keep these guidelines
in mind:

 ✓ Become knowledgeable about all services. Develop a good understand-
ing of each service’s characteristics, strengths, and weaknesses. You’ll
stand in good stead during all your AWS work.

 ✓ Leverage service strengths so that AWS does the “heavy lifting” and
you avoid unnecessary work. Then you can avoid the typically repeti-
tive, boring, mistake-prone work — and focus on the high-value portions
of the application — the business functionality. For example, if you’ll
use object storage in the application, it makes sense to use S3 rather
than roll your own on an EBS volume. You don’t have to develop object
management and storage functionality; you don’t have to worry about
running out of storage space; and you don’t have to worry about backing
up the storage.

98 Part II: Diving into AWS Offerings

 ✓ Choose services that are appropriate and necessary for application
requirements. I recommend an approach that’s driven by application
functionality to evaluating AWS storage choices. By understanding the
functionality an application delivers, you can make wise choices about
which AWS storage service to use.

 ✓ Use the what-if approach to make service choices driven by function-
ality. Imagine which services you may use in these situations:

	 •	Your	application	grows	a	user	population	ten	times	larger	than	
you envision.

	 •	You	experience	the	“Facebook	effect,”	in	which	the	application	
gets recommended and you suddenly attract 100 times the traffic
you expect.

	 •	Your	company	decides	to	add	new	functionality,	and	you	need	
to extend the application to another type of storage. This guide-
line addresses application design as well as AWS storage service
choice, but remember that cloud computing, in general, presents
application developers with a much less predictable environment
and roadmap than did previous generation IT platforms.

 ✓ Be prepared to mix and match storage services. AWS instance opera-
tion makes EBS nearly mandatory for applications, so you almost always
need to use EBS within an application. For many applications, S3 is an
excellent complement to manage objects. (In fact, in Chapter 8, you can
read more about why S3 is a good complement to many applications
because of its S3-based CloudFront content distribution network func-
tionality). As DynamoDB becomes more widely understood, many more
applications will undoubtedly incorporate it for high-performance func-
tionality, whereas EBS-based databases will be used more for the trans-
actional functionality that’s necessary to capture financial interactions.

 ✓ Prepare for new storage offerings from Amazon. Amazon has filled
out the storage side of the AWS offering over the past few years, and it
should deliver new offerings over the next few years. Each new offering
will bring new capabilities — you should learn enough about them to
understand how they fit into the overall AWS storage picture and how
the application functionality may be better served by choosing a new
offering rather than an existing service.

 In fact, my recommendation to choose appropriate AWS storage services
according to what the application requires is generally good advice regarding
all AWS offerings — so many of them exist that it makes more sense to figure
out what the application needs and then map that need to what’s available.
Many people are unaware of the rich set of AWS offerings, but knowing about
them increases the overall application design flexibility — and makes it faster
and easier to develop applications.

99 Chapter 4: Setting Up AWS Storage

I hope that you’ll develop a good foundation for understanding how to
manage the AWS application’s storage and, more importantly, resolve to
fully explore how to leverage these services. People commonly use previ-
ously accepted limitations to inform future decisions, despite the removal of
the constraints of the previous available solutions; in other words, if it has
always been difficult to obtain sufficient volumes of storage, people typically
constrain their application design decisions based on those previous limita-
tions. True effort is required in order to remove these mental limitations and
consider what is possible with a much more expansive capability, but it can
pay real dividends in better applications and more satisfied users.

 Because Amazon offers a managed object service and a managed key-value
service, you may wonder where to find a managed relational database ser-
vice. Never fear: the managed RDBMS service does exist, and I talk about it
in Chapter 8. You’ll see that my recommendation about the AWS Relational
Database Service (RDS) service is the same as the one regarding AWS storage —
leverage it to reduce low-value repetitive work in order to free up time to
focus on customer-facing, high-value functionality.

100 Part II: Diving into AWS Offerings

Chapter 5

Stretching Out with Elastic
Compute Cloud

In This Chapter
▶ Introducing EC2, the AWS cloud computing component
▶ Understanding images and instances
▶ Exploring EC2’s infinite varieties
▶ Addressing key issues with EC2 instances
▶ Deciding which computing type is right for your application

T
his chapter discusses EC2 — the Elastic Compute Cloud, which is the
most widely used AWS service. Even the term “cloud computing” empha-

sizes computing — and its computing that EC2 delivers, at scale, in wide vari-
eties of types, and at ridiculously low prices. By the time this chapter ends,
you’ll have a knowledge foundation about EC2 and why it represents a true
revolution in information technology.

Introducing EC2
EC2 is the most revolutionary of the AWS services because it has trans-
formed a fundamental part of IT: the use of provisioning servers. EC2 pro-
vides virtual servers in a matter of minutes, all via self-service. It’s difficult to
overstate the shift that this strategy represents compared to how things used
to be done.

In earlier days when you needed a server, you had to scare up enough money
to buy one, complete the purchase process, and then have the server deliv-
ered, installed, and connected to the network. Finally (finally!), you gained
access to your server. It wasn’t uncommon for this process to take from
three to six months!

102 Part II: Diving into AWS Offerings

“But wait,” you may say, “what about virtualization? Didn’t that trim the
workload and reduce the time it takes to provision a (virtual) server?” As
the author of Virtualization For Dummies (John Wiley & Sons, Inc.), I’m per-
fectly willing to sing the praises of virtualization (the systemic use of virtual
machines that act like real computers, with an operating system and every-
thing). But virtualization isn’t the solution to all your problems. It’s true that
using virtualization may negate the need to order hardware, but many IT
organizations hedge their bets by choosing to maintain established manual
processes regarding provisioning. In other words, even though the provision-
ing process can be streamlined when in virtualization mode, it often isn’t
done. So instead of three to six months, the timeframe for obtaining a virtual
machine may be three to six weeks — better, but still not great.

Amazon, as is its wont, reevaluated the entire provisioning process and real-
ized that an enormous improvement was possible by automating the process.
Rather than continue the manual-gatekeeper approach, where requests for
virtual resources were still handled by living, breathing (and accident-prone)
humans, Amazon overlaid its virtualization layer with a sophisticated soft-
ware layer designed to obviate the need for human intervention in the provi-
sioning process.

With this innovation from Amazon, the perspective of the entire IT industry
shifted. Users now understand what is truly possible, and they’ve come to
expect resource availability to meet the benchmark achieved by Amazon
with its AWS offering. This perspective has certainly presented a challenge
to chief information officers (CIOs), who manage IT organizations that are
still geared to the rhythms and timeframes of the past. (But it has certainly
helped Amazon’s prospects!)

 In addition to this accelerated provisioning capability, EC2 requires no time
commitment to use its resources. The total commitment a user has to make is
one hour — the minimum billing period for an EC2 instance.

The accelerated provisioning access and the lack of required commitment
has driven wholesale EC2 adoption by all types of companies and organi-
zations, ranging from individuals to some of the largest institutions in the
world. This adoption reflects just how attractive the EC2 value proposition
is — and, after you’ve seen EC2 in action, how unattractive the traditional
approach to resource provisioning is.

That’s not to say that it’s all rainbows and ponies with regard to EC2. EC2
is a unique beast; its operation is dictated by the design approach taken by
Amazon while creating the service, and that design carries far-reaching impli-
cations for how EC2 applications should be architected and managed. The
difference between success and failure with EC2 is dictated by how well you
understand the service’s characteristics and how well you align your applica-
tions with those characteristics. I tell you more about that topic in later sec-
tions of this chapter.

103 Chapter 5: Stretching Out with Elastic Compute Cloud

Seeing EC2’s Unique Nature
EC2 is based on virtualization — the process of using software to create vir-
tual machines that then carry out all the tasks you’d associate with a “real”
computer using a “real” operating system. If you have any experience with
virtualization, you’ll understand the foundation of EC2.

The foundation isn’t everything to everyone, though. There are significant
differences between EC2 and traditional virtualization, typified by products
such as VMware ESX and Citrix XenServer — differences that you’ll recognize
quickly enough when you begin to use EC2. In a standard virtualization prod-
uct, a virtual machine is either running or quiescent (a fancy way of saying
“not running”). EC2 has come up with its own terminology: When a virtual
machine is running in EC2, it’s referred to as an instance; when an instance
isn’t running in EC2, it’s referred to as an image. Likewise, in virtualization, a
virtual machine is started, and in EC2 an instance is launched.

Terminology aside, a more significant difference between virtualization and
EC2 lies in how a nonrunning virtual machine/instance is stored when it isn’t
running. A virtualization product stores the entire virtual machine on disk;
the only difference in storage between a running virtual machine and a quies-
cent virtual machine is that the running machine is brought into the virtual
machine manager and made operational — the disk storage requirements are
exactly the same.

The implication is that you may have wasted disk storage. If you have, say, a
virtual machine with 1.7GB of disk space but the virtual machine operating
system and application software require only 300MB of disk space — you
have 1.4GB of unused storage and by extension, 1.4GB of wasted disk space.
EC2, by contrast, stores only the actual data necessary to provide the vir-
tual machine and operating system, so only 300MB is stored on disk when
the instance is not running — and, crucially, you don’t pay for the 1.4GB of
unused disk space that otherwise would sit empty. This arrangement reduces
your EC2 cost when your instances are not running.

 I’ve presented only a simplified version of what really happens. AWS actually
has two types of Amazon Machine Images (AMIs). I’ve just described what
happens when EC2 handles images that are stored in the Amazon Simple
Storage Service (known as S3). These S3-backed images are given the standard
treatment — a full file system while running as an instance but a stripped-
down image when not running. The other type of image, referred to as an EBS-
backed image (because of its links to the AWS product Elastic Block Storage),
operates more like traditional virtualization, with full storage of the entire
instance file system, even if much of it has no data. (I describe the two types
of images in more detail later in this chapter.)

104 Part II: Diving into AWS Offerings

 S3-backed instances don’t store changes made to the file system when the
instance is shut down (terminated). The next time the image is launched, the
running instance reflects the layout of the image as originally created. It’s simi-
lar to a gold image or a LiveCD (in case you’ve used a CD-based Linux system).

 Understanding the transient nature of the file system for S3-backed instances
is critical. No changes made to an instance are persistent post-termination —
unlike in any operating system you’ve ever used (except for LiveCD). If your
instance will process and save data, you must find a way to save the data out-
side of the instance. Simply put, S3-backed images don’t make data persistent.
This issue is so important that I mention it many times during this book, just
to hammer it home.

Understanding images
An image is the collection of bits needed to create a running instance. This
collection includes the elements described in this list:

 ✓ At minimum, the operating system that will run on the instance: That
means it can be Windows or Linux.

 ✓ Any software packages you’ve chosen to install: The package can be
software that you’ve written or a package from a third-party provider
(assuming, of course, that the software license supports this type of
use). For example, you may include the Apache web server along with
the load balancer HAProxy — both are open source products that can
be freely included in your image.

 ✓ Any configuration information needed for the instance to operate
properly: For example, in an image containing Linux, Apache, and
HAProxy, you may include configuration information for HAProxy to
communicate with the Apache server located on the same instance.
Adding this information to the image prevents having to configure the
packages every time you launch the image.

An image carries access rights: Someone owns it, and the owner can control
who may launch (or even see) the image. The following list describes the
image-ownership categories, which are listed on the drop-down menu (see
Figure 5-1):

 ✓ Owned by me: Images created by your account, whether you are its sole
user or you share it with others; may include both public and private
images

 ✓ Amazon images: Images created by Amazon and made available to
anyone who wants to use them

105 Chapter 5: Stretching Out with Elastic Compute Cloud

 ✓ Public images: Images owned by other accounts but made available to
anyone who wants to use them

 ✓ Private images: Images owned by you and made available only to you or
to other accounts you specify

 ✓ EBS images: Images that use Elastic Block Storage (EBS) as the storage
for the AMI

 ✓ Instance-store images: Images that are stored in Simple Storage Service (S3)

 ✓ 32-bit: Images built on 32-bit operating systems (can be either instance-
or EBS-backed)

 ✓ 64-bit: Images built on 64-bit operating systems (can be either instance-
or EBS-backed)

 ✓ AWS Marketplace: Images, created by third parties, that are available
for a fee

 Commercial software companies that offer images containing their soft-
ware commonly make this type available. Marketplace images address
the issue of commercial software licensing: If you’re a user, you don’t
want to pay a full perpetual license fee for an instance that you may run
for only a few hours or days; on the other hand, the software creator
wants to be paid for the value its software offers. Marketplace images
allow software companies to offer their software on a pay-per-use basis,
allowing both vendor and user a payment mode that aligns with the
overall AWS approach.

Figure 5-1:
The EC2
Amazon

Machine
Image
panel.

106 Part II: Diving into AWS Offerings

 Be extremely careful about which AMIs you use. When you launch an instance
from a public image, you’re launching whatever software packages the creator
placed on the image. It doesn’t take much imagination to envision the kinds of
malicious software that can end up on an AMI. For any task beyond prototyp-
ing, use images only from sources you trust. Even better, create your own
images so that you know exactly what’s on the AMI.

A closer look at Figure 5-1 reveals a cornucopia of other AMI information:

 ✓ AMI ID: Peeking out from the AMI Type drop-down menu to identify
every AMI, this AWS-assigned number is unique for every AMI.

 ✓ Source: The description of the AMI typically includes information about
the AMI creator’s name, the operating system, and the software compo-
nents installed on the AMI.

 ✓ Owner: This long number is the image owner’s AWS account number.

The following image information isn’t visible in the screenshot in Figure 5-1,
but if you scroll to the right, you can see it:

 ✓ Visibility: Tells you who can see the AMI

 ✓ Platform: Points out which operating system is installed on the AMI

 ✓ Root device: Indicates whether the image is an S3-backed instance or an
EBS-backed instance

 ✓ Virtualization: Specifies how the instance interacts with the virtualiza-
tion hypervisor in EC2 (information that you generally don’t need to be
concerned about or, indeed, have control of)

S3-backed images
S3 images are stored as multiple 10MB files, along with a special XML file
called a manifest. The manifest file is similar to the assembly instructions in
an Ikea flat-pack piece of furniture — it gives AWS the information it needs to
construct a running instance from the collection of 10MB S3 objects.

When you give AWS the command to launch an S3-backed image, the system
reads the manifest file and uses it to construct and launch the instance by
downloading it to the instance’s local drive. It then becomes an operational
instance and, depending on what was in the image when it was created, starts
executing the software that was part of the image.

107 Chapter 5: Stretching Out with Elastic Compute Cloud

S3-backed images come with limitations, and you should fully understand
what they are. The following list spells them out for you:

 ✓ Root device limitations: It’s crucial to understand precisely what’s
stored in the image proper. With S3-backed images, all you have is the
root device — the part of the system containing system files (including
the operating system) — plus, any other software that was installed
when the image was created.

 An S3-backed image is limited to 10GB in the root device. All other parts
of the file system are constructed at the time of launch; for example, in
a small instance with 170GB of disk space, 160GB of the instance stor-
age is created at launch-time, and only 10GB is persistent. If you want to
include a lot of software packages or data in the root device, you may
exceed this 10GB limit.

 ✓ Long launch times: Because the instance has to be created from the
various 10MB files making up a collection, it takes a while to assemble
them, which extends the launch times.

 Removing an S3-backed instance from production requires terminat-
ing it — no ifs, ands, or buts: Doing so discards all data written to its
file system since the launch.

 ✓ The AWS management console doesn’t support the creation of a new
image from an S3-backed instance. If you want to create a new image
from an S3-backed instance, first install AWS AMI tools on the instance,
and then run scripts to create the image. Though this task is perfectly
possible, it’s not a trivial matter, so it’s a definite limitation.

In summary, S3-backed images are widely used, but they carry operational
implications that you should be aware of if you plan to use them.

EBS-backed images
EBS-backed images have been available since late 2009. The primary dif-
ference between an EBS-backed image and an S3-backed image is that the
former uses a persistent EBS volume for instance storage — instances can
now be stopped and started after launch, in addition to being terminated.

Practically speaking, therefore, an EBS-backed image, when launched, can
create an instance that can then retain changes when it’s not running. For
example, if an EBS-backed image is launched and the resulting instance is
added to a pool of instances in an application, if the instance is no longer
required as part of the instance pool, it can be stopped and put into a quies-
cent mode. If the application pool later requires additional resources, rather
than launch a new instance from the EBS-backed image, the first instance can
be started up and added to the pool.

108 Part II: Diving into AWS Offerings

Starting a stopped instance is not only faster than a full launch, but any
changes made to the instance also persist across stops and starts — even
multiple stops and starts. Not bad.

In addition to the luxury of instance stops and starts and data persistence
across the stop/start cycle, EBS-backed images offer a number of advantages
versus S3-backed images:

 ✓ EBS-backed images allow for much larger root volumes than
S3-backed images. Instead of the mere 10GB root volumes found in
S3-backed images, EBS-backed images can have root volumes as large as
1TB, which allows more room for additional software packages or data
storage on the image.

 ✓ If an EBS-backed instance is stopped, you incur no EC2 charges:
Concern yourself only with the image storage costs on EBS, similar to
the storage cost you pay to store an S3 image in S3.

 ✓ If something goes wrong with an EBS-backed image, its root volume can
be mounted on another instance. You can then examine or even repair it.

 ✓ If you need to adjust the instance size of an EBS-backed instance, stop
it and then restart it at the new size. This method is a lot more flexible
and faster than S3-backed instances. (Don’t forget that the data in the
EBS-backed instance is persistent across that stop/start cycle.)

 ✓ Only an EBS-backed type supports the EC2 Micro instance type. The
Micro type is useful for testing and for certain use cases of low-volume
processing, and, crucially, it’s part of the Free Usage Tier that Amazon
makes available. If you want to work with EC2 at no charge, you must
use EBS-backed images.

Though Amazon continues to support both S3- and EBS-backed images, the
AWS user community has a clear — but not universal — preference for EBS-
backed images. The primary reservation appears to be related to the EBS
proper — namely, concerns about inconsistent EBS throughput performance
associated with network contention. This issue can be addressed by launch-
ing an EBS-backed instance with Provisioned IOPS, the relatively recent EBS
service extension that provides guaranteed levels of throughput. It doesn’t
necessarily satisfy critics of EBS-backed instances (they point out the addi-
tional cost it imposes), but then there’s no making some people happy,
is there? (For more on these concerns — and more on EBS in general and
Provisioned IOPS in particular — see Chapter 4.)

 Though EBS-backed images let you stop and start instances, with data persis-
tence across the stop/start cycle, they do not — I repeat, do not — persist
data in the event of a termination. Any data that isn’t present on the image is
discarded when an EBS-backed instance terminates. For that reason, you
should follow the same practice with EBS-backed instances that you follow
with S3-backed instances: Place all data that requires persistence on separate
EBS volumes that persist even if the instance they’re attached to terminates.

109 Chapter 5: Stretching Out with Elastic Compute Cloud

EC2 instance types
Image types are just one side of the EC2 coin. You also have to consider
instance types — the types of virtual machines you can run in AWS.

Instances vary by the amount of three types of compute resources:

 ✓ Processing power: Every instance has a certain number of EC2 compute
units (ECU), which is a benchmarked amount of processing power (the
equivalent of the CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007
Xeon processor). For example, the small instance in AWS has 1 EC2 com-
pute unit, or 1 ECU.

 ✓ Memory: Every instance contains a given amount of memory, measured
in gigabytes. A small instance has 1.7GB of memory.

 ✓ Storage: Every instance has a certain amount of disk storage. A small
instance has 170GB of disk storage.

 Depending on the instance type, some of the disk storage associated
with an instance may be provided in unformatted form — before it can
be used, it must be formatted with a file system that’s usable by the
operating system of the instance.

 ✓ Network connectivity: Every instance comes supplied with one vir-
tual network interface card (NIC), which it uses to communicate with
other devices or services. Every instance is given two IP addresses: one
private address that’s used solely within AWS and one public address
that’s used for Internet access to the instance. (For more on AWS net-
work connectivity, see Chapter 7.)

 Not all instance types get only one NIC. Instances within the AWS Virtual
Private Cloud (VPC) can have more than one NIC. I discuss the VPC in
Chapter 8.

A few years ago, choosing which instance to use for an application was a
straightforward affair. AWS provided a few instance types that varied in a
primarily linear fashion; that is, if you wanted more processing power, you
selected an instance type that contained more ECUs, and it came supplied
with larger amounts of memory and storage — a cakewalk.

It’s much more difficult now to decide which instance type to use, because
Amazon has launched (excuse the pun) several families of instances designed
to help you optimize for a certain type of functionality. For example, what if
your application is memory intensive, as certain analytics applications are?
You used to have to use an instance from the family of standard instance
types, and you had to use instances with large amounts of memory that car-
ried high numbers of ECUs, even if your application didn’t require much pro-
cessing power. That’s just the way it was.

110 Part II: Diving into AWS Offerings

Obviously, on one hand, this is a positive dilemma because you may find one
family that’s well-tuned for your application’s use profile; on the other hand
(and there’s always an other hand), you have to use due diligence in deciding
which instance family is most congenial to your application (which requires
understanding your application’s operating characteristics in detail).

 In the EC2 documentation, Amazon describes the offerings of EC2 instances
(High-CPU, for example) as families, and the different sizes of instances (M1,
where M stands for medium, for example), as types. In my experience, nearly
everyone else (including AWS employees whom I have heard speak) refers
to a family from the AWS documentation as a type (“That’s a High-CPU type
instance,” for example) and to type from the AWS documentation as size
(“That’s an M1 Large Size instance,” for example). In this discussion, I use the
more common approach because it’s the way you hear it discussed by nearly
everyone, but also because I think it’s more logical.

With that, let me jump in to a description of the instance types:

 ✓ Micro: Very, very small; provides a limited amount of both CPU and
memory, although Micro instance types can burst to 2 ECU for short
periods. Use this type for lower-throughput applications and low-traffic
websites. The Micro type is also available as part of the AWS Free Usage
Tier, which is useful for learning and experimentation.

 ✓ Standard: The “average” type and by far the most widely used; offers
a balance of CU, memory, and disk that’s suitable for mainstream
applications.

 ✓ High CPU: Goes for higher CUs rather than memory and is well suited
for processing-heavy applications. A number-crunching application is
the canonical use case for high-CPU instances.

 ✓ High Memory: Bumps up memory rather than CPU. This type is well
suited for database apps, analytics apps, and apps that rely on memory
caching. If you run a caching tier product like memcached, this instance
type is a good choice.

 ✓ High I/O: Provides high-throughput (input + output — I/O, in other
words) and is well suited for applications that move a lot of data. It’s
a good choice for running your own key-value storage service, like
Cassandra or MongoDB, rather than using AWS’s DynamoDB service.
High-I/O instances have high throughput connections (10 Gbps) and use
solid-state drives to provide high disk performance.

 ✓ Cluster Compute: Provides a large number of ECUs along with high-
performance networking (10 Gbps). This instance type, which is well
suited for high-performance computing tasks (very large applications
for specialized number crunching, like oil field seismic analysis), runs
on specialized hardware, with custom AMIs that use a different, more
efficient type of virtualization as well as closely connected machines for
better network performance.

111 Chapter 5: Stretching Out with Elastic Compute Cloud

 ✓ Cluster GPU: Analogous to Cluster Compute instances, but uses graphi-
cal processing units (think of the processor inside the graphics card
on your PC, if you’re a gamer) that are better suited for certain types
of applications, including certain variants of high-performance comput-
ing (HPC) network analysis. Cluster GPU instances operate similarly to
Cluster Compute instances, albeit with different CPU chips in the servers
these instances run on.

EC2 image sizes
If you think that the variety of instance types makes it difficult to decide what
to do, the variety of image sizes will make your mind reel. Suffice it to say
that AWS provides a wide range of image sizes, which should make it pos-
sible for you to meet your application performance needs by tuning the EC2
infrastructure it runs on.

The original instance type (Standard) aims for a good mixture of resources
to meet the requirements of, well, standard applications. The other instance
types contain a larger amount of one type of resource in terms of the other
resource types of the instance; one particular instance type can then better
support a particular set of application requirements than another.

Table 5-1 illustrates the range of resources available across the instance
types, just to give you an idea of the flexibility you have in choosing them for
your application.

Table 5-1 Size Range of AWS Instance Resources
Resource Minimum Maximum
Compute unit 1 (Standard M1.Small) 88 (Cluster Compute cc2.8 x Large)
Virtual core 1 (Micro, M1.Small,

M1.Medium)
16 (2 x Intel Zeon 8 core Sandy
Bridge architecture)

Memory 615MB (Micro) 68.4GB (High-Memory Quadruple
Extra Large)

Instance
store volume

None (Micro) 3360GB (Cluster Compute Eight
Extra Large)

Network I/O Low (Micro) 10 Gbps (High I/O Quadruple Extra
Large, Cluster Compute Quadruple
Extra Large, Cluster Compute Eight
Extra Large, Cluster GPU Quadruple
Extra Large)

112 Part II: Diving into AWS Offerings

Amazon documentation lists 18 instance sizes, spread across the 7 instance
types. That doesn’t mean each type has two sizes, however. There are 4 stan-
dard instance types, though several of the more exotic types (Cluster GPU,
for example) come in a single very large size. For exotic types with a single
size, Amazon’s thinking is that the type of computing you’re likely to do with
them requires such high resource capacity that they’ll go ahead and provide
the largest possible numbers of resources within its overall infrastructure
constraints. Another way to say it is that the users who are likely to use these
exotic instance types are so demanding of resources that they will want only
the largest possible type that can be delivered, so Amazon hasn’t bothered
creating smaller sizes of these instance types. If you find all of this mind-
boggling, there is an excellent third-party website that lists and compares
 all the different instance types and sizes. You can find it at http://ec2
instances.info.

 AWS defaults to delivering the M1.small version if you fail to explicitly choose
an instance type and size. The most common use case for most users is the
Standard instance types, but they end up moving to the Large instance sizes
after first beginning with sizes lower on the scale.

EC2 scope
EC2 images and instances contained within AWS regions, which can create
a challenge if you want your instances to be able to run in multiple regions.
Now, why would you want your instances to run in multiple regions? I’m glad
you asked:

 ✓ As protection against failure in an AWS availability zone (AZ) or
region: If AWS suffered an outage in one portion of its service area, you
can continue to operate your application in another availability zone or
region.

 ✓ To reduce latency when serving users located in specific geographic
regions: By placing instances in, say, the Australia-based Asia Pacific
region, you would reduce overall network transit time to users located
nearby.

 ✓ So that you can operate a multiregion application to ensure the best
possible performance to a user base spread throughout the world: In
addition to the need to manage images in multiple locations, you may
take advantage of two other AWS services:

 Route 53: Amazon’s distributed DNS service

 CloudFront: Amazon’s S3-based content delivery network

 Both services are discussed in greater detail in Chapter 8.

http://ec2instances.info
http://ec2instances.info

113 Chapter 5: Stretching Out with Elastic Compute Cloud

 ✓ To comply with national requirements for data privacy: Some coun-
tries impose restrictions on the locations where data related to their
citizens or businesses resides. You may choose to run your application
in multiple regions to comply with these restrictions.

EBS-backed images can be launched in any availability zone within the region
where the image resides; this is different from the general EBS scoping limita-
tion (as discussed in Chapter 5), which restricts the use of an EBS volume to
the availability zone in which it’s located.

EC2 pricing and deployment options
In addition to the different types and sizes of the EC2 offerings, EC2 offers
three deployment options. To say it another way, you can pay a different
hourly rate for the same type and size instance, depending on how you
choose to deploy it. Each deployment option affects pricing:

 ✓ On-demand: You start these instances when you choose. Here, you pay
the standard rate for every hour they run.

 ✓ Reserved: You pay an upfront fee for these instances and in return
receive a reduced rate for every hour they run. There are a few varia-
tions of reserved deployment options, which I discuss later in this
chapter.

 ✓ Spot: You offer a bid price for these instances — a price you’re willing
to pay for every hour they run. Amazon runs a reverse auction for spare
EC2 capacity and runs every spot instance for which bids have been
received that meet or exceed the spot instance “clearing” price.

In the following three sections, I dig in to each type so that you can under-
stand the differences.

On-demand instances
The on-demand instance is the most straightforward deployment option: You
choose when you want the instance to run, and AWS guarantees to run it at a
standard, documented rate per hour.

It’s important to understand what on-demand instances represent. As a cloud
service provider, Amazon asserts that it’s ready to offer computing resources
whenever a customer requests them; in effect, the store is always open for
business. The default limitation is 20 instances per account, but the company
provides an easy way to request additional instances and, to my knowledge,
has never failed to offer more, if requested.

114 Part II: Diving into AWS Offerings

The implications of this offer are quite important: Amazon must have capacity
available in every region whenever customers may request instances.

 As you probably recognize, this offer for on-demand instances and requir-
ing capacity to support customer demand isn’t limited to instances: Amazon
must have capacity available for all its services when someone requests them.
Whenever the company rolls out a new service or extends a service to a new
region, it must therefore be confident that it can respond to whatever demand
may arise. It’s obviously a significant challenge — how to provide enough
capacity to support potential demand, but not to overprovision capacity and
have idle hardware. I maintain that capacity planning is extremely difficult in
an on-demand world, where demand is quite hard to forecast; for Amazon,
which has to perform this capacity planning in an environment in which it’s
growing torridly, the challenge is doubly difficult.

Another element of note for on-demand pricing is that AWS must make this
capacity available while imposing no commitment whatsoever. The moment
that you decide you no longer want to use AWS resources, you terminate
them and walk away. This is in stark contrast, by the way, to almost all other
providers, who, as part of the agreement to provide you with resources at
a certain price, expect you to make a commitment (typically, three years).
These providers can then manage capacity at the cost of imposing a financial
burden on you.

On-demand pricing varies according to instance type, size, and region. Micro
instances, as I describe earlier in this chapter, are available for free to a cer-
tain usage level: for the first year of a new account, users receive 750 hours
of Linux/Unix and 750 hours of Windows Micro instance use per month. After
that, Micro instances cost $.02 to $.027 per hour, depending on which region
the instance runs in.

Other instance types and sizes range from M1.small, which runs from $.065
per hour (in the US East region) to $.115 per hour (South America São Paulo)
to High I/O, Quadruple Extra Large, which ranges from $3.10 per hour (US
East region) to $3.40 per hour (EU Ireland).

 As you look at the more exotic (larger or more hardware-dependent) instance
types, you see restrictions on region availability. Amazon commonly rolls out
new services in the US East region first, and then, over the course of a few
months, makes them available in other regions. Keep this point in mind as you
make your AWS plans, because using a service that’s bound to a single region
(or only a few regions) will impose data-transfer and network-latency costs on
your application.

 As with many of its services, Amazon has steadily reduced the prices of its on-
demand instances. A couple years ago, an M1.Small (US East region) was $.085
per hour; today, it’s $.065 per hour, a drop of 23 percent.

115 Chapter 5: Stretching Out with Elastic Compute Cloud

Reserved instances
Another instance-pricing option that Amazon provides is reserved instances.
In essence, in exchange for a customer making an upfront financial pay-
ment, Amazon offers a lower hourly rate for instances. The term for reserved
instance pricing can run either one or three years, with, as you may expect, a
larger up-front payment for the three-year term.

To see how this strategy works in practice, consider the M1.Small instance
type. On-demand instances cost (using US East region pricing) $.065 per
hour. For M1.Small reserved instances with a 1-year term, you pay $69 up
front, and the hourly rate is $.039, a 39-percent savings. For a 3-year term,
you pay $106.30 up front, and the hourly rate is $.031 per hour, a 53-percent
discount. AWS clearly isn’t a marketing-driven company, because an upfront
payment of $106.30 is strange — why tack on 30 cents?

 The overall discount you receive depends on how many hours you run the
instance, because you have to amortize the upfront payment across all the
hours that you run the reserved instance at the lower price.

AWS pricing across regions
When you’re considering EC2, this obvious
question crops up: Why do prices for its on-
demand instances vary across AWS regions?
Shouldn’t Amazon have consistent pricing?

In one sense, it may be more convenient
to charge the same price everywhere — it
would simplify your cost calculations, for sure.
Amazon’s philosophy, however, is to provide
the most cost-effective computing possible,
and part of that philosophy is to reduce prices
in line with its costs. Amazon experiences dif-
fering costs by region and aligns its prices to
its costs.

Which brings up the second question: Why
do AWS prices vary across regions? Amazon
has provided no official reason, but I’ll offer my
opinion: In the United States, Amazon owns
its own data centers, though in other regions
it rents space from data center providers, like

Equinix. Amazon probably cannot obtain pric-
ing from outside providers as low as it can
from its own data centers, so it passes those
higher costs along to users in the form of higher
regional pricing. In addition, Amazon’s operat-
ing costs vary throughout the world based on
electricity prices, real estate costs, employee
salaries, and so on. All of these factors affect
Amazon’s data center costs, and therefore the
prices Amazon charges for AWS services.

To understand the reason behind the pricing
differential across regions, you can look at it as
either paying higher prices in some regions or
getting an even better deal in regions in which
Amazon owns its own facilities. As you can
probably guess, I’m in the latter camp, which
perhaps makes me someone who sees the
glass as half-full rather than half-empty.

116 Part II: Diving into AWS Offerings

When reserved instances were first announced, the general wisdom was
that the tipping point at which using a reserved instance was less expensive
than using an on-demand instance was around 30 percent. In other words, if
you ran an instance more than eight hours a day, it was worthwhile to use a
reserved instance.

Choosing an instance type has become more complicated since then, as
Amazon has further refined its reserved instance pricing and introduced
two additional reserved instance-pricing levels. In addition to the original
reserved instance pricing (now called light utilization reserved instances),
Amazon now offers medium utilization and heavy utilization reserved
instances. For larger upfront payments, these reserved instance types offer
even deeper discounts. So if you expect to run your instance 24 (rather than
8) hours per day, you’re better off using heavy utilization reserved instances,
where you pay $195 up front and then pay $.016 per instance-hour (rather
than $69 for a 1-year discount to $.039 per hour).

These new reserved instance options give you more flexibility in trading off
your likely level of instance use versus the total cost of operation (TCO) for
your instances.

 Another benefit of reserved instances is that Amazon assures its customers
that capacity will be available to run their reserved instances. By contrast,
Amazon makes no such guarantees for on-demand instances, so it is pos-
sible you can attempt to launch an on-demand instance and find that Amazon
has no capacity available. In return for your upfront payment for a reserved
instance, Amazon promises that it will always have capacity available for you.
Think of it as your VIP status!

Most companies don’t take advantage of reserved instances as much as they
should. Usage analyses indicate that a large proportion of AWS users can save
money if they used reserved instances. Certainly, for the baseline resources
used in an application that’s required 24 hours per day (a company’s website,
for example), reserved instances are appropriate. Companies may be reluctant
to use reserved instances for several reasons, if they decide to

 ✓ Stop running the application and then worry that they’ll waste the
money they’ve spent on the upfront payment. Though this concern
may be valid, companies should look at the application characteristics
and decide how likely it is to be taken down. A company’s website is
an unlikely candidate for termination, and using reserved instances for
baseline resources that are never shut down is a reasonably safe invest-
ment. Moreover, if a reserved instance is no longer needed, you can sell
it within Amazon’s Reserved Instance Marketplace.

117 Chapter 5: Stretching Out with Elastic Compute Cloud

 ✓ Move the application using the reserved instances to another cloud
service provider to avoid being locked in to AWS: That’s a fair consid-
eration, but a reserved instance (even at the lowest level of reservation)
needs to run 24/7 for only three or four months to break even. I don’t
know about your company, but the management of most companies
couldn’t decide to move an application and then execute the move in a
similar timeframe — so the company would likely still save money using
reserved instances.

 ✓ Move to an instance of a different size, resulting in losing the money
they invested in buying a reserved instance: It’s a valid concern. If,
after a few weeks, you decide that you need to use an instance of a dif-
ferent size and you terminate the original instance, you have a stranded
investment. Fortunately, Amazon has created an exchange where you
can sell your reservation to another person or company that wants a
reserved instance the same size as your choice who then takes on your
reserved instance.

For more information on AWS utilization and cost management, see Chapter 12.

Spot-priced instances
Amazon also offers a deployment option called spot-priced instances, which
allows AWS users to bid on unused AWS capacity to run their applications.

An AWS user interested in using spot-pricing places a bid that represents the
amount the user is willing to pay to have the application run. For example,
though the on-demand price for an M1.small may be $.065 per hour, you may
bid $.02 per hour to run the application.

If the current price for spot-priced instances of the type and size you want
is at or below the current spot-price, AWS launches the instance you want
to run and runs it as long as you request it or until the spot-price increases
beyond your bid.

If the spot-price is below the amount you’ve bid, don’t worry: You pay only
the current spot-price. If the current spot-price for M1.Small is only $.01 per
hour, for example, you pay that rate, not your $.02 bid.

 Know the maximum price you’re willing to pay to run your spot-price
instance, and bid only that price. During the holiday season in 2011, a time
of high demand and low spot-price availability, a number of users who had
thoughtlessly placed maximum bids of $99 per hour were blindsided when the
spot-price matched their bids. Needless to say, most of them were unhappy
because their applications weren’t critical at that price. Be sure to only bid the
maximum amount you’re willing to pay for a spot instance.

118 Part II: Diving into AWS Offerings

When the spot-price increases beyond your bid, your instance is terminated
immediately, which raises some obvious flags:

 ✓ Your application may be in the middle of performing work, even a
transaction.

 ✓ If your spot-price instance is S3-backed, any data in the file system is
lost upon termination.

 ✓ If your spot-price instance is EBS-backed, it still loses any data that’s
placed in the file system post-launch. Put another way, EBS-backed spot
instances are terminated, not stopped, and are launched, not started.

 ✓ Even if your application is architected to manage this kind of pos-
sible interruption, it still needs to be the kind of application that can
handle having instances terminated at any time. Don’t run your com-
pany’s website running on spot-price instances.

On the other hand, according to Amazon, only about 4 percent of all spot-
price instances are ever terminated unexpectedly, so the odds of your appli-
cation running into problems because of termination are fairly low.

There are some powerful arguments in favor of using spot-price instances:

 ✓ They can be quite cost effective. They’re typically offered at 50-percent
to 66-percent discounts from the associated on-demand instance cost.

 ✓ For applications that don’t need to be always running, using them can
be a good approach. For example, if your application needs to process
images sometime during the next seven days, using spot-price instances
would be a cost-effective approach with little downside.

 ✓ They can make a great deal of sense when combined with other
instance payment options. You may want to have a certain amount of
image processing capacity at all times (which is a good use case for
reserved instances) but occasionally use additional capacity to work
through any possible backlog (which is a good use case for spot-price
instances).

Spot-price instances are undoubtedly the least-often-used of the three
instance deployment options, but this option provides real benefits because
it offers the financial savings associated with reserved instances, matched by
the lack of commitment associated with on-demand instances.

119 Chapter 5: Stretching Out with Elastic Compute Cloud

Why AWS has three deployment options
You may be curious about why Amazon offers three deployment options,
especially when two of the three options provide discounts on the already
low on-demand pricing that Amazon offers.

After all, AWS pricing is already lower than most users can achieve by other
means. For example, I’ve compared AWS pricing with other cloud providers
and found that AWS pricing can be as low as 12 percent of the amount that
other providers charge for a similar service. If you’re already 88-percent
less expensive than the alternatives, why provide ways to save even more
money? Is that just “leaving money on the table,” so to speak?

I believe there are two answers to this question — one AWS-focused and one
user-focused.

The AWS-focused answer has to do with what Amazon is selling: computing
capacity. The cost structure of computing capacity is largely fixed cost, with
very small amounts of variable cost. In other words, Amazon spends a lot of
money building data centers and funding the smart software it has created to
provide automated computing services in those data centers, but it doesn’t
spend much to run those services. Most of its costs are fixed, whether or not
any user work is going on within AWS.

In common with other industries that share these characteristics, the key
to maximum profitability is to drive the maximum use of capacity. This may
entail selling part of the capacity at a lower price than it may otherwise be
sold for.

Pinterest: Leveraging spot-price instances
Pinterest, the wildly popular sharing service,
runs entirely on Amazon. One challenge in using
free applications is finding ways to keep costs
down, given that no revenue is associated with
the use of the application.

Pinterest leverages spot-price instances heav-
ily and has saved a ton of money by doing so.
When it was using on-demand instances to
support its services, it was paying $1,200 per

day for AWS resources. By judiciously using
reserved and spot-price instances, Amazon has
reduced its daily cost to $440 — a 63-percent
savings.

As you can see from this example, it pays to pay
attention to your AWS use and to think about
whether the alternatives to on-demand prices
make sense for your application.

120 Part II: Diving into AWS Offerings

An easy analogy to help in understanding this concept is the airline industry.
It costs a lot to buy an airplane, fuel it, and staff it to fly to destinations. The
cost associated with placing an additional passenger on an airplane is quite
low — perhaps a couple sodas or a low-cost meal on an international flight.
Selling a seat that would otherwise remain unoccupied provides almost
pure additional profit, assuming that the fixed cost of flying the airplane has
been covered. And even if it hasn’t, it’s better to gain some revenue to apply
against the fixed cost than to suffer the loss associated with flying the air-
plane without that additional revenue.

Airline pricing is a curious case, however: Rather than sell unused capacity
at a low price near departure time to induce people to purchase an otherwise
unoccupied seat, airlines typically charge very high prices. The reason is
presumably that they believe they’re selling a last-minute ticket to someone
for whom the ability to go to the intended destination is highly valuable — a
businessperson for whom reaching that destination is quite important. This
situation is different from cruise ships, which typically sell last-minute capac-
ity quite cheaply in an effort to fill the vessel.

Amazon clearly considers itself more like the cruise industry than the airline
industry, in that it doesn’t attempt to sell excess capacity at a premium. In
some ways, it makes sense. After all, there’s commonly little time pressure
to run a job at a certain point, so it would be difficult to charge a premium.
In fact, in some ways, AWS is clearly like the cruise industry. Just as there
is little demand for cruises during certain months of the year (for example,
the Christmas holiday period, when people are engaged in family activities),
sometimes AWS experiences low use volumes — for example, during the
middle of the night, when few people are using applications that require AWS
resources, but clearly not during the Christmas holiday period, when AWS
customers probably experience very high usage because many of them are
e-commerce sites.

From the Amazon perspective, offering a mix of instance purchase options
is a way to drive capacity utilization upward, leading to the highest possible
revenue stream.

The question remains, though: Why is Amazon doing this for customers,
many of whom, presumably, would use on-demand instances in place of the
lower-cost options? Netflix and Pinterest, after all, aren’t likely to stop using
AWS, even if it were to cost more. Because AWS is much cheaper than the
alternatives, whether in a company’s own data center or in another cloud
provider’s capacity, these customers are captives to some degree and, would
presumably pay the full on-demand price.

So why should Amazon go out of its way to provide even lower-cost alterna-
tives? The answer, I feel, has to do with Amazon’s general approach to busi-
ness. It believes that if it provides great value to customers, even if it fails
to derive a maximum margin in the short term, it will prosper in the long

121 Chapter 5: Stretching Out with Elastic Compute Cloud

term. By offering a way to achieve lower-cost computing during times of low
demand, it reinforces its position of offering the best possible computing
prices and increases its long-term customer loyalty. Amazon’s approach in
all elements of its business is to offer the best possible value to customers,
with the belief that this approach will provide long-term dividends to the
company.

 By the way, an added benefit of Amazon’s options for instance pricing may not
be obvious to you if you haven’t worked much with cloud computing: trans-
parency in pricing. Amazon lists on-demand and reserved instance pricing on
its website and lets customers easily find current and historic spot-instance
pricing. Customers then know immediately how much an application costs to
run or how much it’s likely to cost if it’s run on spot-price instances.

This strategy is in stark contrast to most other cloud providers, who require
you to talk with a salesperson to find out service prices. That method costs
you time — you have to schedule the discussion, describe your use, esti-
mate how much capacity you’ll require, and specify the time commitment
you’re willing to make. And then, of course, you have to negotiate the price
and negotiate the terms of a contract. All of this is extremely annoying. It’s
as inconvenient as buying a car — and as painful as visiting a dentist. That
Amazon posts its prices publicly is much more revolutionary than it may
seem — and it’s a true benefit of using the service.

Creating new EC2 images
Until this point in the chapter, I’ve explained your options for managing
images that already exist. But what about creating your own images? Though
it’s certainly possible to use images that have been created by Amazon or
other third parties, you may at some point want to create your own images,
for two reasons:

 ✓ You have used an Amazon image, or another third-party image, and
you have extended it by installing your own software components, and
now you want to use the extended image as your baseline image going
forward rather than endure the launch image/install software cycle for
every instance you launch.

 ✓ You want to use your own system as the basis for the images you use
because of a general preference or a concern about the security of the
image.

Creating EBS-backed images
The image creation process varies based on whether you’re creating an EBS-
or an S3-backed image, and whether you’re creating a Linux- or Windows-
based image.

122 Part II: Diving into AWS Offerings

The EBS-backed image creation process is significantly simpler, though it’s
accompanied by limitations. Typically, you start with an already existing EBS-
backed instance that you have modified. However, it’s possible to create an
EBS-backed image from an S3-backed instance — though it’s possible only if
the instance is Linux-based. Creating an EBS-backed Windows image from an
S3-backed Windows instance isn’t possible.

You can easily create an EBS-backed image from the AWS management con-
sole by right-clicking the target instance in the instance listing. One item on
the contextual menu that appears is Create Image (EBS AMI). The AWS man-
agement console handles everything from there. During the image creation
process, AWS stops the instance from which you’re creating the image in
order to have a stable instance. If you have additional EBS volumes attached
to the instance, AWS creates (and attaches) fresh volumes to the new image;
however, there’s no data on those volumes. (For more on the AWS manage-
ment console, see Chapter 3.)

You can also use a set of AWS API tools to create an EBS-backed image. You
install the tools on the instance from which you want to create a new image
and then execute the ec2-create-image command. This is possible only
in Linux-based instances; Windows-based EBS-backed images can be cre-
ated only via the AWS management console. This command requires that the
access key and secret access key be available to confirm your right to create
the image. (For more on the role of the access key and secret access key, see
Chapter 3, where I discuss the AWS API.)

Creating S3-backed images
The process of creating S3-backed images can be more complex than creating
EBS-backed images, depending on whether you’re creating a Windows-based
or Linux-based image.

For Windows-based images, you follow a process similar to the one outlined
in the preceding section for Windows-based EBS-backed images. You start
with an S3-backed Windows instance, extend it by installing additional soft-
ware components, and then right-click the instance in the AWS management
console and select Bundle Instance (Instance Store AMI) from the menu
that appears. S3-backed images (Amazon refers to them as instance-stored
images) require a separate bucket — in fact, it can be a top-level, uniquely
named bucket in your account or a folder within a top-level bucket — in
your S3 account in which to store the Windows AMI, so you must create that
bucket before beginning the image creation process. After you select Bundle
Instance (Instance Store AMI) from the contextual menu, the AWS manage-
ment console completes the bundling process.

123 Chapter 5: Stretching Out with Elastic Compute Cloud

 What’s with this “bundle instance” stuff, eh? Though it sounds more like some-
thing you do with a baby, not with cloud computing, it’s one of those quirks
of AWS that you have to live with. Because an S3-backed instance is made up
of a number of 10MB files along with an XML manifest file, you can think of the
totality of the files as a “bundle” of files, which is where the term bundle comes
from.

After you upload the new image bundle into S3, you need to register the new
image with EC2 so that it appears in a listing of your images. (For EBS-backed
images, AWS takes care of this registration step.)

To register a new S3-backed image, start out in the AWS management console
and find the new AMI entry in the listing of your images. Now right-click the
entry and enter the path to the bucket in which the AMI manifest resides
(which should also be the bucket in which the collection of 10MB files that
make up the image reside). The S3-backed image is now registered!

Creating S3-backed Linux images is significantly more complicated than the
process I just outlined for S3-backed Windows images. The AWS management
console offers no support for the image creation process, so you have to use
AWS AMI tools on the instance from which you’ll create the new image.

The process (generally speaking) goes like this:

 1. Launch an S3-backed Linux instance.

 2. Modify the instance by adding software components.

 3. Install the AWS AMI tools.

 4. Copy your X.509 certificate and private key to the instance.

 Note: These items should be placed in a nonroot area of the file system
so that AWS doesn’t include them in the resulting AMI. They’re included
so that AWS can store them and use them in the AMI launch process,
but you don’t want to include the certificate and private key in an area
of the resulting AMI where someone can find them, which would com-
promise your account security.

 5. Run the ec2-bundle-vol command to create the collection of 10MB
files and the XML manifest file that describes the AMI.

 6. Upload the bundle to S3 using the ec2-upload-bundle command.

 7. Register the new AMI in EC2.

124 Part II: Diving into AWS Offerings

 The AMI registration process requires that you type the entire path to the
bucket holding the manifest file into the Image Registration dialog box; there’s
no file system wizard to point-and-click to the bucket, so you have to type
the entire path correctly. Otherwise, you see the Bucket Not Found error
message — one more reason for using easy-to-remember bucket names.

I’ve simplified the preceding step list because each of the AMI tool com-
mands is a long, complicated function with a number of arguments that must
be typed perfectly. Overall, however, dealing with S3-backed AMIs is much
more complex than dealing with EBS-backed AMIs, another likely reason that
Amazon recommends using EBS-backed images.

The final step is deciding who can use the AMI. Still in the AWS management
console, right-click the AMI entry; a pop-up window appears, offering the
Edit Permissions choice. Selecting that menu item brings up a screen where
you can set controls regarding who may access your AMI. You can choose
to leave the image with public availability, which is the default choice. If you
don’t want to enable everyone to access your image, you can change the AMI
availability to

 ✓ Private: Enables only your account to access it

 ✓ Private with Access: Available to specific accounts you identify in the
Edit Permissions screen

You can also make your AMI available publicly and charge for using it. AWS
provides two payment methods associated with the commercial use of AMIs:
DevPay and the AWS Marketplace. I don’t delve in to the details of creat-
ing commercial AMIs, because they’re typically specialized offerings from
software companies. Suffice it to say that setting up the AMI structure and
making payment arrangements with Amazon is fairly complicated, although,
if you have a popular AMI, it can also provide a revenue stream for your
applications.

Working with an EC2 Example
To end this chapter on a more concrete note, let me walk you through an
example of launching an actual EC2 instance, from beginning to end:

 1. Go to aws.amazon.com and click on My Account/Console in the
upper right-hand corner of the page.

 2. From the pull-down menu that appears, select AWS Management
Console.

http://aws.amazon.com

125 Chapter 5: Stretching Out with Elastic Compute Cloud

 3. (Optional) If you are not logged in to AWS, enter your login creden-
tials on the login page and click Continue to access the EC2 dash-
board, shown in Figure 5-2.

 NOTE: You must be in the US East region to access the AMI for this exer-
cise. Once you enter the EC2 dashboard, look at the upper right-hand
part of the page, where a region will be displayed. Click on the pull-down
menu and select US East (N. Virginia).

 Note that you have quite a number of options running down the left side
of the dashboard. Note also that, under the Resources heading near the
top-center area of the screen, I have one key pair and 14 security groups.
You see them addressed in this example.

 4. Under the Images heading on the left side of the dashboard, click the
AMIs link.

 A new screen appears, listing all available Amazon machine images.

Figure 5-2:
The EC2

dashboard.

 5. Choose Public Images from the Filter menu near the top of the new
screen, and then enter the word getting in to the Search field.

 The screen refreshes to show a screen similar to the one you see in
Figure 5-3.

 To keep things simple, I use an Amazon-supplied AMI — a Public Image,
in other words — that is extremely simple: All it does is launch and run
a stripped-down web page.

126 Part II: Diving into AWS Offerings

Figure 5-3:
The AMI
selection

screen.

 6. Select the check box next to Getting Started with EBS Boot — the last
AMI listed.

 Doing so enables the Launch button near the upper-left corner of the
screen.

 7. Click the Launch button.

 The first screen of the Request Instances Wizard appears, as shown in
Figure 5-4. You use the wizard to select values for items that will control
the type, size, and location of the instance you launch.

 8. On the wizard screen that appears, leave the Number of Instances and
the Instance Type options set to their defaults (1 and T1 Micro, respec-
tively).

127 Chapter 5: Stretching Out with Elastic Compute Cloud

Figure 5-4:
The Request

Instances
Wizard
details

screen.

 7. Make sure that the Launch Instances radio button is selected and
leave the EC2-Classic radio button selected.

 The VPC part of the EC2-VPC option stands for Virtual Private Cloud,
which is a more secure AWS environment. I discuss VPC in Chapter 7,
which focuses on security, so don’t worry — you’ll know all about VPC
shortly!

 8. Leave the Availability Zone option set to the default.

 Notice a pattern here? No Preference means that you let AWS choose
which availability zone (AZ) to use when launching the instance.

 9. Click Continue.

 The Launch Wizard now takes you to the next screen, as shown in Figure
5-5, which allows you to fine-tune the instance you’ll launch. You can
use the Kernel ID and RAM Disk ID fields to modify the operating system
code, or you can use the User Data section to enter information that will
be passed to the instance when it’s booting. You don’t want to do any of
these things for this exercise, so you change nothing on this panel and . . .

 10. Click Continue to move forward with the instance launch.

128 Part II: Diving into AWS Offerings

Figure 5-5:
The

advanced
instance
options.

 The wizard now moves on to another instance definition panel, this one
focused on storage devices — more specifically, how many EBS volumes
you want to attach to this instance. As you can see in Figure 5-6, you
already have one volume associated with this instance — the volume
the AMI resides on.

 For purposes of this example, the single AMI volume will suffice.

 11. Click Continue.

Figure 5-6:
The EBS

volume
screen.

129 Chapter 5: Stretching Out with Elastic Compute Cloud

 The wizard now displays a new screen, as shown in Figure 5-7, that lets
you define tags to be associated with the running instance. Tags can be
useful if you’re running a large number of instances and you want a con-
venient method to identify a subset of the instances; for example, if you
want to find all instances running on behalf of the sales department, you
would place sales as an instance tag to facilitate searching.

 In this example, tags aren’t necessary, so don’t enter anything on this
screen.

 12. Click Continue.

Figure 5-7:
The Tag
screen.

 A (very important) new screen appears, as shown in Figure 5-8. Here’s
where you identify which of your key pairs you want to use when the
new instance is launched. Key pair refers to two secure shell (ssh) keys —
one private and one public — which are used to enable secure admin-
istrative access to the running instance. If you refer to Figure 5-2, you’ll
notice that one key pair — aws4dummies — is listed. It’s the default key
pair shown in Figure 5-8, and you’ll want to stick with the default, so . . .

 13. Click Continue to move forward to the next panel in the Launch Wizard.

 NOTE: If this is your first use of AWS, you won’t have an existing
keypair, and AWS will put up a screen inviting you to create one. While
you won’t use the key for this exercise, it’s not a bad idea to create one.
However, and this is really important, when AWS creates a keypair, you
must download and store the private key — store it somewhere you
can find it, because if you launch an instance with a keypair for which
you can’t find the private key portion, you won’t be able to access the
instance, which is a big problem! So download and store the private key
somewhere you easily find it.

130 Part II: Diving into AWS Offerings

Figure 5-8:
The Key Pair

screen.

 Doing so brings up yet another screen where you’re asked to select a
security group to be associated with this instance, as shown in Figure
5-9. Security groups control network access to running instances and are
very important. You should use the default Security Group for this exam-
ple (and, unlike the screenshot from my account, you’ll probably only
have the default security group). AWS has already selected the default
as the suggested choice, and you should follow that suggestion.

 14. Click Continue.

Figure 5-9:
The Security

Groups
screen.

131 Chapter 5: Stretching Out with Elastic Compute Cloud

 You’re now nearing the end of the launch setup process. AWS puts up a
summary screen, as shown in Figure 5-10, that displays all the informa-
tion you’ve selected throughout the wizard. You can take one last look
at the instance information before launch and decide whether every-
thing is good to go.

 15. After reviewing the posted information, click the Launch button.

 AWS now starts the launch, and a panel notes that the launch process is
under way, as shown in Figure 5-11. As you can see in the figure, you’re
told that the instance is launching and the instance ID is displayed —
yours will be different than the screenshot, since all instance IDs are
unique.

 16. Click the Close button.

 It’s time to move on to the next stage.

When you close the final panel of the Launch Wizard, AWS automatically
takes you to the Instance section of the EC2 interface. As you can see in
Figure 5-12, the instance is already up and running. Note the information on
the bottom half of the screen. There, you’ll find the instance ID (which is the
same as on the final screen of the Launch Wizard) as well as the DNS name
of the instance: ec2-54-234-60-116.compute-1.amazonaws.com; again,
yours will be different because instance IDs are unique.

Figure 5-10:
The

Summary
screen.

132 Part II: Diving into AWS Offerings

Figure 5-11:
The

Conclusion
screen.

Below the DNS name is further information about this instance, including the
AMI name, the key pair that this instance holds, and the availability zone it’s
running in.

Out of view in Figure 5-12 is more information about the private DNS name
and private IP address associated with this instance. Every instance has both
a public IP address, for access from outside AWS, and a private IP address,
which can be used for access within AWS. These are also shown on the
instance information panel. (For more on IP addresses as they relate to AWS
networking, see Chapter 6.)

Figure 5-12:
The EC2
instance

page.

133 Chapter 5: Stretching Out with Elastic Compute Cloud

Of course, the AWS management console isn’t the only way to interact with
EC2. Here’s an API example of how to launch an EBS-backed server:

https://ec2.amazonaws.com/?Action=RunInstances
&ImageId=ami-60a54009
&MaxCount=3
&MinCount=1
&Placement.AvailabilityZone=us-east-1b
&Monitoring.Enabled=true
&AUTHPARAMS

This API example identifies an AMI that should be launched, and it instructs
AWS to launch up to three instances (set with the MaxCount parameter).
Note that this command also instructs AWS to launch the instance in the
us-east-1b availability zone, with monitoring enabled. A large number
of parameter options exist to control the characteristics of the launched
instance, including the ones you set using the Launch Wizard — which secu-
rity group(s) to use, which key pair, and so on.

There you go! You’ve successfully launched your first EC2 instance and are
now cloud computing. After basking in your glory, you’ll want to terminate
this instance, since it’s generally a bad practice to leave unneeded AWS
resources in operation, and you will be charged for it if your usage exceeds
that provided by the Free Usage Tier

To terminate the instance, click on the check box to the left of your instance
ID, and then click on the Instance Actions buttons above the instance list. As
shown in Figure 5-13, the pull-down menu has a Terminate option. Click on
that, and AWS will terminate your instance.

Figure 5-13:
The

Terminate
option.

134 Part II: Diving into AWS Offerings

Chapter 6

AWS Networking
In This Chapter
▶ Introducing the AWS approach to networking
▶ Understanding instance network addressing
▶ Working with Direct Connect
▶ Using AWS Elastic IPs

N
etworking is a big deal in the AWS scheme of things. Without it, none of
your AWS instances would be able to send and receive network traffic.

However, in networking, as in all other pieces of the AWS design, Amazon has
implemented a solution that’s clearly ingenious — but just as clearly different
from the traditional solutions that are familiar to most people. And AWS has
taken the path less traveled, for the same reasons it broke ground in other
aspects of its design: to increase scale and foster automation.

When Amazon set out to develop its AWS offering, it thought “big” — really
big. Actually, Amazon’s vision has always been focused on a future much
more expansive than it is now. Though it started out as an online bookseller,
it has always set its sights on becoming a general (and enormously profit-
able) online retailer. Its bookselling effort worked well because it was a con-
venient category that encountered relatively little consumer resistance in
using the (the then still unfamiliar) medium of Internet commerce. This strat-
egy of thinking ahead allowed the AWS designers to create an offering that
could scale way beyond anything then existing in the industry.

It may surprise you that networking emerged as a major stumbling block in
executing the Amazon plan. It shouldn’t surprise you, though, that Amazon
developed a unique approach to networking in a cloud computing environ-
ment that sidestepped that stumbling block quite handily.

In this chapter, I help you work through a few basic principles of networking
so that you can better understand the reasons Amazon came up with its net-
working design. With the fundamentals out of the way, you can then find out
how EC2 instances interact with the network. Finally, I introduce you to a typ-
ically clever AWS solution to some problems that arise when you try to use
the basic networking scheme to address the need for persistent IP addresses.

136 Part II: Diving into AWS Offerings

Brushing Up on Networking Basics
When computers talk to one another, they do so over a network. For the vast
majority of computing done throughout the world, this talking activity takes
place on a TCP/IP network. The TCP/IP network standard uses the concept of
layers to illustrate how communication takes place. In this model, the layers
are numbered 1, 2, and 3:

 ✓ The physical layer (Layer 1): Is associated with the cables that sit in
your office or how your wireless access point talks to the wireless card
in your computer.

 ✓ The data-link layer (Layer 2): Controls the flow of data between network
entities (Hosts, Domain Names, Subnets, whatever) residing on the same
network; this local-area network (LAN) is dedicated to a single organiza-
tion. These entities typically have a network interface card (NIC), each
of which carries a unique identifier — its Media Access Control (MAC)
address. Layer 2 specifies how two entities with MAC addresses can
send data to one another. (Note that this data is sent with the help of a
NIC, a handy piece of hardware that’s kept on a server.)

 ✓ The network layer (Layer 3): Controls the flow of data between network
entities residing on different networks. In this wide-area network (WAN),
users communicate across multiple LANS and cannot count on being
connected on the same local physical layer. Layer 3 most commonly
works by using the Internet Protocol (IP), which uses a logical address-
ing scheme (called, logically enough, IP addresses) to communicate.
IP addresses most commonly have four digits — say, 10.1.2.3 — where
each digit is represented by eight bit sets of data.

 The display uses periods to separate 8-bit segments, and the collection
of all four segments is supposed to represent a hierarchy; that is, the
10.1 part of the address is supposed to contain a collection of network
devices that reside below the 10.1 portion of the address. For example,
your ISP has a large range of addresses available to it because it may
control the set of addresses starting with, say, the number 16. Two spe-
cial cases, the high-level numbers 10 and 192, do not represent publicly
addressable IP addresses but are used for private addresses. (They
cannot be routed over the public Internet.) Multiple entities can there-
fore use these high-level numbers within their own data centers as sort
of a set of private identifiers.

There are other, higher layers in a TCP/IP network, but the important ones
in a cloud-computing network are Layers 2 and 3, where the challenges of
being a cloud-computing provider present themselves.

137 Chapter 6: AWS Networking

 You may ask, “How do virtual machines send and receive network traffic?”
After all, they’re virtual and have no hardware NIC. The answer, naturally
enough, is that they have a virtual NIC (sometimes referred to as a VNIC) — a
software construct through which the virtual machine sends and receives
network traffic. The virtualization hypervisor manages the job of mapping
these packets to and from the physical NIC that connects to (and communi-
cates with) the physical network in the data center.

Virtual LANS — keeping data private
In a shared networking environment (and don’t forget that that’s precisely
what a cloud-computing provider, at its core, is offering), how can you assure
one user that his or her data is not accessible to another user? Obviously,
one way is to create separate physical networks and let each user account
have its own local-area network; however, that would be a logistical night-
mare (and an extremely expensive one). Moreover, this method would
require that each user have his or her own router to the outside world to
communicate all its Layer 3 traffic to other, outside users.

Routers have been upgraded to provide virtual LANs (VLANs) that essentially
cordon off sections of larger, shared networks to specific users. Within that
VLAN, traffic flows via Layer 2; any traffic to other parts of the shared net-
work, or out on the Internet, flows via Layer 3.

 What’s the big deal about traffic flowing over Layer 2 or Layer 3? Why would
anyone care about which layer is doing the communicating? Well, for many
years, traffic at Layer 2 would run faster because the network switches han-
dling the traffic didn’t need to look at the packet to determine where to send
it; it could broadcast the initial packet to all devices on the LAN, note which
one responded and its MAC address, and thereafter directly route traffic to
that MAC address.

Layer 3, by contrast, required looking at the packet to determine which IP
address the packet was aimed at, looking up the address in an IP address/
MAC mapping table, and then sending the packet to that MAC address. The
lookup impaired network performance.

Switches are now robust enough that the overhead of the IP/MAC lookup
is trivial — not enough to truly address performance, in other words.
Consequently, the reason to have VLANs in a cloud environment is so that
you can separate user traffic, not improve performance.

138 Part II: Diving into AWS Offerings

Most hosting companies use VLAN technology to assign a VLAN to every
customer so that its computers are segregated from other customers’ com-
puters. This strategy, which provides a secure networking solution to cus-
tomers, communicates to them that their network traffic is immune from
interception.

Generally speaking, most hosting companies do all the work associated with
assigning and configuring VLANs manually, during account setup. A network
administrator accesses the provider’s router and configures a VLAN for the
new customer. The customer’s computers are then placed on the newly con-
figured VLAN, and network traffic to them flows over it.

As hosting companies have moved in to cloud computing, they have almost
universally continued this practice of creating a VLAN for every new cus-
tomer, with new virtual machines assigned into the address space of the
VLAN. This VLAN may be manually or automatically configured, depending
on the provider’s cloud infrastructure.

The continued use of VLANs within these environments makes sense, par-
ticularly because many providers offer both hosting and cloud computing
from the same facility; using a consistent VLAN approach enables the sharing
of resources and simplicity of infrastructure.

However (isn’t there always a however?), this use of VLANs for cloud comput-
ing carries some drawbacks:

 ✓ A delay in the account setup: Cloud computing providers that continue
to create and configure VLANs manually impose a delay on the initial
customer account setup. Many customers find this delay inconvenient;
others consider it a barrier to using that cloud computing provider.

 ✓ A limit on the number of VLANs that a router can manage: Though this
limitation can be addressed via the use of multiple routers, it imposes
complexity on the provider’s infrastructure.

 ✓ A limit on the number of computers that can be attached to a specific
VLAN: Though many customers are unaffected, this limit is an unaccept-
able problem for webscale applications that can require hundreds (if not
thousands) of computers.

139 Chapter 6: AWS Networking

The Amazon alternative to VLANs
Because Amazon wants to avoid the scaling limitations of VLAN technology
in its cloud service, the VLAN approach is obviously unacceptable, for these
reasons:

 ✓ The limitation on the number of VLANs would limit the number of
customers Amazon could support with its AWS service. When Amazon
first sketched out its plans for AWS, it expected hundreds of thousands
of different customers to eventually use AWS, so this limitation was too
constrictive.

 ✓ The limitation on the number of computers a customer could have
within a single VLAN would limit the number of instances that could
be used in its applications. Amazon itself had experience with its appli-
cations spanning hundreds, if not thousands, of instances, so it expected
that its customers would, too. A solution that constrains the number of
computers used by individual customers is clearly unacceptable.

Consequently, Amazon designed its network quite differently from conven-
tional approaches, and it implemented a networking design with these
features:

Criticisms (fair and unfair) of
VLANS and AWS security

You may have read articles about AWS where
IT people express their concern about AWS
security as well as skepticism that Amazon
can assure customers that their network traf-
fic is safe from access by other users. Usually,
these articles end with the IT folks saying that
they prefer to use another, “enterprise,” pro-
vider. Given that the other providers use VLAN
technology, which, by definition, uses shared
network devices, you may wonder why the IT
folks feel secure with these providers, but not
with Amazon? I can’t really answer this ques-
tion, especially in light of a Microsoft study
stating that the most common error made in

a data center is misconfiguring VLANs. At
bottom, I believe that these “concerns” about
AWS reflect little more than prejudice — an
(unfounded) belief that Amazon somehow isn’t
as capable as other providers. In my opinion,
if you’re leveraging a shared environment
because of efficiency or cost-effectiveness,
you have to recognize and acknowledge that
you’re sharing an environment, which presents
risk. Your choices: Accept that risk, along with
the benefits of leveraging the environment, or
conclude that the risk is too significant, even
though maintaining your own, dedicated envi-
ronment is more expensive and less convenient.

140 Part II: Diving into AWS Offerings

 ✓ The use of Layer 3 technology throughout the infrastructure: All traf-
fic is directed based on the IP address, with no reliance on Layer 2 MAC
addressing.

 ✓ The requirements that every instance is assigned an IP address and
all traffic to that instance must be directed by IP address: This is true
whether the traffic originates within AWS or externally — no exceptions.

 ✓ No use or support of VLAN technology: Within every region, Amazon
has one or more ranges of IP addresses, and customer instances are
assigned IP addresses randomly within those address ranges. A corol-
lary to this approach is that all AWS IP addresses are Amazon’s, not the
customer’s. So if a customer decides to move its website from its own
data center to AWS, the website will have a new IP address.

 AWS networking is often described as being completely flat — all traffic is
iPad-address-based, and no hierarchy is implied by the IP address assigned to
an instance. Undoubtedly, managing a completely flat network imposes chal-
lenges and complexity on Amazon, but it simplifies customer network use.

Because customers have no specific VLAN created or configured for them,
the account setup process is immensely simplified — so much so that the
entire process can be automated to a much greater extent than can other,
more traditional, cloud computing providers. Moreover, because customers
aren’t segregated into assigned VLANs, growing and shrinking the number
of instances a customer uses are much simpler — customers can simply
request additional instances, and Amazon can launch a new instance, assign
it an IP address from Amazon’s much larger overall IP address pool, and
return the instance’s IP address to the customer. The IP address may be
quite different from the others assigned to the customer, but because all traf-
fic is directed based on IP address, the discontinuity in address range causes
no issues.

 Many experienced network administrators, familiar with networking prac-
tices typically used by IT organizations and hosting providers, find Amazon’s
approach disquieting. They have commonly devoted intense effort to design-
ing and tuning network configurations to obtain maximum throughput, and
they feel that Amazon’s design, as clever as it is for achieving scale, must
suffer performance penalties.

AWS Network IP Addressing
Unlike other cloud-computing providers, which assign a fixed range of
addresses to virtual machines hosted within a customer’s assigned VLANs,
AWS dynamically assigns IP addresses from within its own IP address range.

141 Chapter 6: AWS Networking

No IP address is persistently assigned to a customer account, and a server
launched from a given image may be assigned one IP address today and a dif-
ferent IP address tomorrow.

This shifting about of IP addresses can seem confusing, so let me dive a bit
further into describing how AWS organizes its IP addressing.

To start off, every instance on the network has its own virtual network inter-
face card, or VNIC — a software construct that mimics the functionality of
a hardware NIC. The Xen hypervisor within AWS maps traffic between each
instance’s VNIC and the actual hardware NIC on the physical server on which
the Xen hypervisor runs.

AWS assigns two IP addresses to an instance’s VNIC: a public IP address
and a private IP address. The latter is within the 10.X.X.X address
range — a range designed to be unroutable over the public Internet and
to serve to enable private traffic within data centers. Figure 6-1 illustrates
this division by showing the public DNS and private IP address for a single
instance. The public IP address is contained in the AWS public DNS entry —
54.234.60.116, in this case.

Figure 6-1:
The public

DNS and
private IP

address
for a single

instance.

Private IP address

Public DNS addresses

142 Part II: Diving into AWS Offerings

Having two IP addresses means that each instance can send and receive traf-
fic from outside AWS on a public IP address that anyone can reach.

Within AWS, instances can communicate with one another using the private
IP address they’ve been assigned. In other words, if I have two servers, one
of which AWS has assigned 10.1.2.3 and one of which it has assigned
10.1.2.4, those servers can send traffic to one another via the 10.X.X.X
addresses rather than via the public IP address that AWS assigned. That traf-
fic isn’t routed by the public Internet; instead, it’s confined within AWS.

Figure 6-2 illustrates the IP addressing scheme and how traffic flows over the
public and private IP addresses.

Figure 6-2:
AWS IP

addresses
and network

traffic.

This division between private and public IP addresses may seem like an aca-
demic distinction — after all, if the traffic contains TCP packets, who cares
what address they’re sent to, as long as the instance receives them?

The difference between the two IP addresses is quite important, however, for
your AWS bill because traffic within the local AWS network (the 10.X.X.X
addresses, in other words) is at a much lower cost than traffic sent to public
IP addresses. To illustrate the difference, traffic between two availability
zones within the same region costs $.01 per GB, while traffic between two
availability zones that is sent to a public IP address (and thereby travels by
the public Internet) costs $.12 per GB — 12 times as much!

The key aspect of this concept relates to network traffic sent by an instance —
all inbound traffic (traffic that an instance receives) is free whether it comes
from inside AWS or via the public Internet. Outbound traffic (traffic that
an instance sends), on the other hand, is low cost if its destination resides

143 Chapter 6: AWS Networking

within the same AWS region and incurs a high network charge if the network
address resides outside AWS.

In Figure 6-2, you can see that the lower network path (traffic between
10.1.2.3 (Instance 1) and 10.1.2.4 (Instance 2) is considered internal to
AWS and is low cost, whereas traffic between 70.1.2.3 and 70.1.2.4 travels
outside AWS and incurs a higher fee for traffic that one instance sends to the
other. This is true even though the instances referenced by these addresses
are the same in both cases — it’s all a matter of how the traffic is sent.

A corollary to this economic rule is a throughput rule: For performance rea-
sons, traffic should, if possible, be sent between private IP addresses. The
reason is that traffic between private IP addresses, whether it’s an intra-avail-
ability zone or an inter-availability zone (within a single region) flows across
high-performance, Amazon-dedicated network connections, whereas traffic
that flows between public IP addresses flows across lower-performance,
public Internet networks.

Actually, the process is a bit more complex. Amazon considers any traffic
that crosses a regional boundary to be public Internet traffic, even though
both the sending and receiving instances reside within AWS, as shown in
Figure 6-3. You can see that traffic between instances that reside within the
same AWS region, even if they’re in different availability zones (AZs), is low
cost, whereas traffic between AWS instances that reside in different regions
is considered public Internet traffic and incurs a higher fee.

Figure 6-3:
Intraregional

and inter-
regional

AWS traffic.

 Every instance has a unique public IP address, whereas instances residing in
different regions may share private IP addresses. The reason is that private
IP addresses cannot be accessed from outside the local environment, and the
same address may be safely used in more than one region, because there’s no
way to access an instance with its private IP address from outside the region.
Therefore, instances in both Region 1 and Region 2 have the same private IP
address: 10.1.2.3.

144 Part II: Diving into AWS Offerings

And, as though this concept weren’t complicated enough, Amazon dropped
its charges for inter-AWS regional communication — quite dramatically and
literally while I wrote this chapter. For example, the cost of traffic between
the US East region and other AWS regions dropped from $.12 per gigabyte to
$.02 per gigabyte — an 83-percent reduction.

Users now have three choices for network traffic:

 ✓ Intraregional: Traffic between AWS resources within a given region (for
example, US East); free for sending and receiving traffic.

 ✓ Interregional: Traffic between AWS resources in different regions. For
each resource, any traffic it receives is free, but traffic it sends incurs a
fee (an admittedly low one).

 ✓ Extraregional: Traffic between an AWS resource and a non-AWS
resource; traffic to the AWS resource is free, and any traffic sent by the
resource incurs a full traffic fee.

 Network cost is based on total gigabytes of traffic sent during a month and is
based on the price per gigabyte. The first gigabyte of traffic per month is free;
traffic ranging from 2 gigabytes to 10 terabytes per month is $.12 per gigabyte.
As traffic increases beyond 10 terabytes per month, the cost per gigabyte
decreases; at 350 terabytes per month, a gigabyte is only $.05; above that
level, you’re asked to contact AWS to (presumably) strike a custom-pricing deal.

 Instance IP addresses aren’t persistent. Every instance that’s launched is
assigned an address from the general pool of IP addresses — clearly an issue,
for two reasons:

 ✓ People need to be able to find your site if they want to access your
application for an extended period. You want people to access your
corporate website (for example, for many years), yet every time you
launch an instance that runs your website, it is assigned a new public IP
address. In other words, how can you manage the DNS mapping for your
website when the IP address associated with your company website
(say, www.example.com) changes every time you launch the website’s
instance? The answer to this question is “Elastic IP addresses — and
you can find out all about them in the section titled (curiously enough)
“AWS Elastic IP Addresses,” later in this chapter.

 ✓ In a complex application topology, every instance is dynamically
assigned a private IP address at launch-time, and it needs to be able
to find other instances. For example, you may have several web serv-
ers, a couple application servers, and a couple database servers. If a
web server has just been launched and it needs to connect to the two
application servers, how can it find their IP addresses so that it can send
and receive network traffic to them? The answer to this question is more
complex, so you have to see my discussion of techniques for IP address
discovery, in the later section “Instance IP address communication.”

145 Chapter 6: AWS Networking

AWS IP Address Mapping
In AWS, all S3 addresses take on the public URL format. (Not sure of the finer
details of the S3 service? Check out Chapter 5.) However, even though an
AWS instance may use the public URL format, AWS cleverly redirects the traf-
fic to the internal AWS network — and imposes no fee for the traffic.

Likewise, if an instance uses the AWS-assigned public DNS name for another
instance, it redirects the DNS resolution to the second instance’s internal IP
address rather than to the public IP address. This is another example of the
clever (and complex) software infrastructure that Amazon uses to run AWS;
it intercepts the DNS resolution request with an internal AWS service and
returns the internal IP address rather than allow the DNS resolution to occur
outside of AWS, where the resolution would return the public IP address of
the second instance.

The benefit of this arrangement is that you can, from within AWS, use the
public URL of a resource, but, rather than route the traffic outside AWS, over

Reddit OpenClass runs on AWS
Want to know what scaling is? How about 4
billion pages per month? That’s what Reddit
serves up every single month. The site offers
a place for user-created content, along with
social sharing and commenting about content.

Reddit runs entirely on AWS. It uses EC2 to host
its web servers, EMR for its web traffic analyt-
ics, S3 for content hosting, Glacier for content
archiving, and CloudSearch to enable users to
find content on the sprawling Reddit site.

One of the most popular Reddit features is Ask
Me Anything (AMA). AMA sessions feature
someone with a particularly interesting back-
ground — diplomat, software engineer, hearse
driver — you name it — Reddit has hosted an
AMA, up to and including President of the United
States. That’s right: Barack Obama participated
in an AMA session, allowing anyone to pose a
question.

Among the questions President Obama
answered:

 ✓ What are the job prospects for a recent law
school graduate?

 ✓ What is the recipe for White House beer?

 ✓ What is the most difficult decision you’ve
been forced to make as President?

 ✓ And my favorite: Would you rather fight 100
duck-size horses or 1 horse-sized duck?

Reddit is able to leverage the infrastructure that
AWS offers to support enormous levels of traf-
fic. AWS handles Reddit’s 4 billion page views
with no problem. And when a special event, like
President Obama’s AMA, occurs, Reddit can
easily add additional resources to handle user
load and network traffic. During the President’s
AMA session, Reddit spun up an additional 30
EC2 instances in ten minutes to handle the extra
user load.

The biggest surprise? Reddit handles all that
traffic with a total company staff of 20 persons,
or, as Reddit puts it: 200 million page views per
employee per month!

146 Part II: Diving into AWS Offerings

the slower public Internet, and then back to the resource within AWS, AWS
maps the public URL to the internal private IP address of the resource and
uses it for your communication to the resource. Your interaction with the
resource is faster because it stays on the internal AWS network, and you
incur no fees for network traffic, for the same reason.

Amazon has rolled out the general DNS service Route 53. I believe that
the genesis of this service is its clever IP address mapping, along with
Amazon’s own internal services, required in order to run its other services
(the e-commerce services spread among a number of countries throughout
the world, for example). To run this robust and complex DNS capability
requires an extremely capable internal DNS service, which Amazon con-
cluded would be useful as a standalone service, launched as Route 53.

 Route 53 may seem like an odd name that’s perhaps reminiscent of French
national highways. The name actually refers to DNS itself — DNS is used to
route traffic requests, and DNS traffic communicates on port 53. (Thus the
rapier wit of technical types is illustrated!)

AWS Direct Connect
The fact that all network traffic between AWS and non-AWS resources travels
over the public Internet poses a significant problem: Even though Internet
connectivity is offered by very large service providers that have invested lots
of money in their networks, the bandwidth and latency levels available to end
users are highly variable and can be unacceptable.

The seeds for these types of problems existed at the birth of the Internet. By
its nature, the Internet is a shared network, in which millions of computers’
packets are intermingled as they’re sent over the network. Your computer’s
packets jostle with everyone else’s. The upside is that a shared network is
far cheaper (say Hello to e-mail and Facebook); the downside is that perfor-
mance and throughput in a shared network are much less predictable.

For you and me, that’s not a big deal. If a Netflix video runs a little slowly, it’s
not an earth-shattering problem, and many of the things we do aren’t affected
much by network issues. For example, e-mail generally works the same, with
network throughput varying by as much as 1,000 percent.

For companies, however, inconsistent network throughput can be a big prob-
lem. When you can’t watch a video, well, you go about your business and do
something else. When an employee can’t watch a safety video, however, it
may affect her ability to work, and paying someone who can’t work is a big
problem.

147 Chapter 6: AWS Networking

Another problem can occur, from the point of view of many companies:
Internet traffic flows over a shared network and can enable inappropriate
access to a company’s data. For certain companies or certain types of data,
sending traffic across a publicly accessible network is a no-no.

Amazon addresses the issue of traffic flowing across the public Internet with
Direct Connect: It lets a user put a private circuit between his data center and
AWS to enable traffic to flow across a dedicated network connection, with no
use of the public Internet.

Direct Connect dedicated network connections can be made from AWS to
either a company’s own data center or to a public carrier, like Equinix. The
company requesting the Direct Connect network connection may have its
servers located at the public carrier’s site or have a second network connec-
tion from the public carrier to the company’s own data center.

Obviously, a dedicated network connection addresses the issue of packet
privacy. A company that uses Direct Connect can be assured that its net-
work traffic is safe from prying eyes. In addition, it can implement a virtual
private network (VPN) between its AWS instances and its own data center
to further ensure data security. (Describing VPNs and how they work is
beyond the scope of this book, but suffice it to say that they use clever soft-
ware to encrypt data that travels across insecure networks — like the public
Internet.)

Amazon offers two levels of Direct Connect bandwidth: 1 Gbps and 10 Gbps.
The former should be sufficient for most connectivity needs; the latter is suf-
ficient for all but the most demanding high-performance computing, and it
matches the highest throughput level available within AWS itself.

Direct Connect comes with an AWS-like financial arrangement: You use Direct
Connect only when you need it, and you pay for it only while you use it.

Direct Connect costs $.30 per hour for the 1 Gbps variant, and $2.25 per hour
for the 10 Gbps variant. As you may expect, you don’t pay for inbound net-
work traffic, and outbound traffic runs from $.03 to $.11 per gigabyte, depend-
ing on region.

 Though Direct Connect bandwidth and pricing are extremely attractive, the
AWS connection has to be terminated at one of Amazon’s Direct Connect part-
ner locations. Your traffic has to reach one of those locations, which you can
accomplish by hosting your servers at a partner location or by paying for a
dedicated, high-bandwidth circuit from your data center to the partner loca-
tion. The extra cost you incur shouldn’t detract from the value (or cost effec-
tiveness) of the Direct Connect offering itself.

148 Part II: Diving into AWS Offerings

High-Performance AWS Networking
One complaint about AWS networking is related to its performance — in
my view, it’s the primary challenge of using the entire AWS service. Amazon
provides few details of its infrastructure, but I believe that the company has
1 Gbps networking equipment in place in its data centers, which could theo-
retically provide acceptable throughput for most applications, with higher
performance 10 Gbps networking equipment used for more demanding AWS
services like the high-throughput instances

However, you must keep in mind that AWS is a shared infrastructure and that
many of your fellow AWS customers use the service precisely because they
place demands on the infrastructure that are much greater than their own,
internal infrastructures can handle. In other words, you’re sharing the AWS
network with some true bandwidth hogs, and the competition for bandwidth
can definitely affect your application’s throughput.

Most AWS users generally see around 100 Mbps throughput in inter-instance
network traffic during their daily use of AWS. The problem is that, though
this average may be perfectly acceptable for many applications, the varying
network load can significantly alter that throughput. For some applications,
of course, 100 Mbps may be perfectly acceptable; however, even for them, 10
Mbps may be too low. The problem is that you can’t reliably predict the net-
work throughput for your application.

Many AWS users have vociferously complained about inconsistent AWS net-
work performance, and many AWS competitors have criticized the company,
citing their own network design and capability as superior to AWS’s, and
therefore providing a reason for users to switch services.

Certainly, Amazon could reconstruct its service to provide higher, more
consistent network throughput. A drawback, though, is that it would impose
higher costs on all AWS users, including the masses of users who have no
concerns about the typical performance of AWS networking.

Consequently, rather than reconstruct the networking service from the
ground up, Amazon has created an AWS-like response: an additional set of
offerings to address the needs of applications that require high-performance
networking. This option leaves the vast majority of AWS users happily using
the standard AWS offering while providing another option to the smaller por-
tion of users who need better networking performance.

The key phrase here, high-performance AWS networking, is built on three
specialized instance types: High I/O, Cluster Compute, and Cluster GPU. (If
these terms sound familiar, you’ve clearly read Chapter 5, where I mention
these instance types in my discussion of the Elastic Cloud Compute, or
EC2, service.)

149 Chapter 6: AWS Networking

These three types are connected to higher-bandwidth networking — 10
Gbps as opposed to the standard 1 Gbps — and experience more consistent
throughput. Fewer users contend for a given network segment by sending
traffic across it, and Amazon has (I surmise) deployed more network capacity
for these types of instances.

As you may expect, using instance types that carry greater network capacity
costs a bit more than using other instance types. The least expensive of the
instances with high network capacity is the Quadruple Extra Large Cluster
Compute type, which costs $1.30 per hour — significantly more expensive
than standard instance types. Note that you need to use instances with a lot
of horsepower — Amazon makes high-performance networking available only
to those who want to apply a lot of computing capacity to their applications.

This arrangement makes a lot of sense — after all, if you need a lot of net-
work capacity, you’re probably doing a lot of computing as well. It also makes
sense to not impose the higher cost of high-performance networking on users
with more modest computing requirements. This approach is consistent with
Amazon’s: Provide an inexpensive offering for those who don’t need more
than that, and extend the offering for those who want more and are willing to
pay for it. This strategy is in direct contrast with almost all other cloud com-
puting providers, who force all users to pay for expensive equipment, even if
a user wants to run only a small or non-mission-critical application.

AWS Elastic IP Addresses
Earlier in this chapter, in the “AWS Network IP Addressing” section, I note a
problem with AWS dynamic IP address assignment: If you have a long-lived
publicly accessible site (say, your company website), how do you handle the
frequent changes in the public IP address as you launch new instances to run
your website? In other words, what happens when all the DNS servers out
there have your old address and cannot find your site with the new server?

 You may be tempted to think that you won’t confront this issue and that you’ll
just leave your AWS instance up and never terminate it. After all, that’s what
you do with physical servers, right?

Don’t think this way. You will launch new instances to run your software,
and for several reasons, so you’re sure to confront the issue of changed IP
addresses at some point. First, sometimes instances crash, which is out of
your control. Second, you want to update your software. Third, you may
need to change the instance type because of the changing load.

How can you solve the problem of changing public IP addresses? I don’t
bother to cover a few inconvenient techniques here, because AWS itself pro-
vides an excellent mechanism to solve this problem: the Elastic IP address,

150 Part II: Diving into AWS Offerings

which is a public IP address assigned to your account that can be substi-
tuted for the temporary public IP address that’s assigned to your instance at
launch-time. You request an Elastic IP address from AWS, and it’s provided
to you so that you can assign a permanent IP address to your new instances.
You can then create a public DNS entry with your URL (say, www.example.
com) and the Elastic IP address AWS assigned to your account.

An Elastic IP address works in a straightforward manner:

 1. You request an Elastic IP from AWS. Within a couple minutes, you receive
a new Elastic IP. This address still comes from the general Amazon
public IP address range, but it’s assigned for your persistent use. By
default, you’re limited to five Elastic IP addresses. You can obtain more
from Amazon, but it generally rations Elastic IP addresses because
they’re part of Amazon’s fixed pool of public IP addresses, and it doesn’t
want to assign them to an account that won’t use them.

 2. You assign the Elastic IP address to an instance you run. You can make
the assignment at launch-time or request it after the launch. If it’s the
former, when the instance is available, it will have the Elastic IP address;
if it’s the latter, it may take five minutes for the substitution to take
place. Note that the formerly assigned general public IP address returns
to AWS and is subsequently assigned to a new instance.

 3. You run the instance with the Elastic IP address. Traffic flows to the
address and then to your instance.

That’s it! You’re running a persistent Elastic IP address. Keep a couple points
in mind:

 ✓ If, for some reason, you want to release the Elastic IP address from an
instance, AWS assigns a new public IP address to the instance from the
overall Amazon address pool. It almost certainly isn’t the same public IP
address that the instance was initially assigned.

 ✓ If you decide that you no longer want an Elastic IP address, it returns to
the unassigned Elastic IP address pool and is subsequently assigned to
another account.

Elastic IP address pricing
Amazon prices Elastic IP addresses oddly: It imposes no fee for using Elastic
IPs — they’re completely free. However, Amazon charges $.005 per hour for
unused Elastic IP addresses — addresses that aren’t actively assigned to run-
ning instances. This system motivates users to use the Elastic IP addresses
they request, because the addresses are limited commodities. Request only
the number of Elastic IP addresses that you need, and release them back to
AWS if you find that you don’t need them.

151 Chapter 6: AWS Networking

Elastic IP addresses and
AWS network scope
Essentially, AWS network scope conforms to the regional delimitations of
AWS. The public IP addresses assigned to your instance vary by region, but
are global in nature — which is to say, like all public IP addresses, they’re
unique and can be accessed by anyone around the world. For example, if you
launch an instance in the AWS US East region, it will have a public IP address
from one of the IP address ranges that Amazon maintains in US East. Anyone
in the world (including resources within AWS) can access your instance with
that public IP address.

Elastic IP addresses are region-scoped as well. You can, by default, have
five Elastic IP addresses per region, and the Elastic IP addresses are within
the ranges associated with the region in which the addresses are located.

Private IP addresses are also region-scoped. Instances within any availability
zone in a given region can communicate with one another using the private IP
address associated with the instances, and, of course, they incur no network
traffic fees for that traffic.

AWS Instance Metadata
Many circumstances exist in which an instance needs to know the IP address
associated with itself. The instance may want to insert its IP address into a
database that is used by a content management system to store information
about the application it’s running or, upon initial launch, the instance may
want to publish its IP address to other instances so that they can communi-
cate with it. The first issue is how an instance can find out its own IP address
when the address isn’t persistent.

Fortunately, AWS offers a convenient mechanism for instance self-discovery
of the instance metadata, as it’s referred to. AWS provides instance metadata
at the IP address 169.254.169.254. If you issue an HTTP GET command
from within the instance, it will retrieve its own metadata. (HTTP refers to
the protocol used by the Web, and GET is a command that can be transmit-
ted across HTTP to instruct a remote resource to execute the GET command
against the resource.)

A large amount of instance-specific data is available via the metadata IP
address, such as

 ✓ The instance’s private IP address: 10.1.2.3, for example.

 ✓ The instance’s public IP address: 70.1.2.3, for example.

152 Part II: Diving into AWS Offerings

 ✓ The instance’s instance ID

 ✓ The instance’s security groups: Used to control network traffic access
to instances. (For more on security groups, see Chapter 8.)

 ✓ The instance’s user data: Supplied to the instance when it’s launched
and reflects information that the account owner wants the instance to
have during its operation. User data, which is somewhat analogous to
command-line parameters, can be used to “pass in” information neces-
sary for the instance to do its work. An example is a URL from which the
instance should get data. User data can take the form of text (a string of
information, in other words) or a 16 kilobyte or less file from which text
can be read.

Instance IP Address Communication
Just as it can be important for an instance to know information about itself, it
can be important for other instances to know information about the instance.

The most obvious reason is that one instance may need to send traffic to
another; for example, a web server may need to communicate with a data-
base residing on another instance. How can the web server learn the data-
base instance’s IP address so that it can make a connection and send traffic?
(And, by the way, you would want the database instance’s private IP address
so that your traffic travels only within AWS.)

Obviously, one method is for the account user to start the database instance
via the AWS Management Console, get its IP address, start the web server
and log on to it, and manually make the connection to the database instance.
Just as obviously, that inconvenient method doesn’t align with the whole
automated aspect of cloud computing, does it?

Consequently, a number of techniques have been created to handle the
dynamic communication of instance information to other instances.

One method, used by some organizations, is the user data option, described
in the previous section of this chapter. For example, you may pass a file
with the database IP address in it into the web server when it’s launched. Of
course, the database IP address has to be inserted into the file, which the
database server can do by running a text-editing script to insert its own IP
address (discovered as metadata) into the file. Alternatively, the file can be
manually edited to insert the IP address, but that method only leads to the
manual-versus-automated issue again. Put simply, when most organizations
begin running fairly complex applications, they discover that manual configu-
ration is insufficient, via the Management Console and user data.

A different but common technique is to move to a configuration management
mechanism. One important element of this technique is to enable instances

153 Chapter 6: AWS Networking

to communicate their IP addresses to one another, but these techniques are
also used for other important information that an instance may need, such
as the username and password for connecting to a database or which code
packages should be loaded onto the instance. Some organizations use this
kind of technique to identify a set of scripts that should be loaded onto the
instance; these scripts, in turn, download software packages and configure
the packages, insert the instance-specific information into the application’s
configuration management mechanism, and then connect to other resources
within the application.

Figure 6-4 illustrates the flow of activities for an instance using this configura-
tion management mechanism:

 ✓ Launch: In Step 1, an instance is launched with user data supplied that
indicates what kind of role the instance should play in the application (a
web server, for example). At this point, it’s a bare instance — it has only
the bare operating system, but no application software or application
configuration information.

 ✓ Self-discover: In Step 2, the instance self-discovers its IP address (with
the help of the instance metadata IP) as well as any other information
it needs to communicate to other instances in the application. At this
point, it’s a self-aware instance — it has knowledge about its AWS con-
figuration.

 ✓ Self-configure: In Step 3, using the role information passed in on the
initial launch, the instance connects to the application configuration-
management mechanism and downloads software packages, installation
scripts, and configuration instructions. It then self-configures to become
a role-ready instance — in this case, one that’s fully configured to be a
web server for the application.

 ✓ Update configuration management: In Step 4, the instance then commu-
nicates information required by other instances in the application to the
configuration management mechanism. It would load its own IP address,
its role, and possibly other information to the configuration manage-
ment mechanism. It would then download from the configuration man-
agement mechanism information about other instances and resources
within the application that it needs to communicate with. It’s now an
application-ready instance.

 ✓ Connect to other application instances: In Step 5, the instance then
takes the information it retrieved from the configuration management
mechanism and sets up connections with other instances and resources
that are part of the application. For example, a web server would use
the IP address, username, and password information that it retrieved to
make a connection to a database instance and set up a connection to the
database itself. It may also retrieve information about a load balancer
that it needed to register with to begin accepting connections from the
Internet and then use that information to register with the load balancer.

154 Part II: Diving into AWS Offerings

At the end of this step, the instance is now an operational instance
within the application.

Figure 6-4:
Instance

activity flow
in a con-

figuration
management
mechanism
application.

This approach to instance configuration has a lot to recommend it. All appli-
cation configuration information is stored in one place. Little information is
necessary at launch-time to trigger a full instance configuration. The process
of full instance configuration ensures that other instances can learn what
they need to know about the newly launched instance to communicate with it
properly, and the newly launched instance can learn about all the resources
it needs to communicate with.

For a technology to support this mode of operation, you have a number of
options. Obviously, you can use text documents stored somewhere that’s
accessible to all instances — S3 comes to mind. The instances can even
access storage within your own data center, although that strategy runs the
risk, if your data center is inaccessible for some reason, of new instances not
being able to join your EC2 applications.

Another common approach to the storage of configuration information is to
leverage DynamoDB, AWS’s own key-value service. For configuration informa-
tion, it would be extremely easy to use, and the flexible key-value schema,
which allows for flexible records per key, would allow instances to store
instance-specific information — information required in order to access an
external service that supplies data needed by the instance while operating.
Though Dynamo hasn’t been available for long, I believe that it will be widely
used for these purposes. (For more on DynamoDB, see Chapter 4.)

Chapter 7

AWS Security
In This Chapter
▶ Understanding the cloud computing trust boundary
▶ Applying AWS security groups to secure your instance
▶ Introducing AWS Virtual Private Cloud
▶ Determining whether AWS security is sufficient for your needs
▶ Focusing on six key actions to secure your AWS application

C
ountless surveys have shown that security is the number-one concern
voiced by IT professionals about cloud computing. Deep down, many

IT people distrust cloud provider security and believe that they are the only
ones who can truly implement secure computing environments. And many
IT types are most skeptical about the security of AWS. Unspoken by many of
them, but part of their visceral reactions to AWS, is, I believe, a kind of dis-
dain for the service, based on a prejudice that a “bookseller” can’t possibly
offer the same kind of computing security that “real” professionals provide.

Needless to say, I disagree with that point of view. In fact, from my perspec-
tive, if you use AWS, you’re likely to improve many elements of your comput-
ing security. Nevertheless, like almost all other aspects of its approach to
computing, the way Amazon implements security is important to understand
because it’s likely different from yours.

This chapter starts off by covering the concept of the cloud computing trust
boundary — the demarcation between the security responsibility of the pro-
vider and the security responsibility that lies with you. After I establish those
parameters, I describe how AWS implements security. I discuss the AWS
Virtual Private Cloud offering, designed to offer greater levels of security than
are reflected in the standard AWS service. I also discuss how to determine
whether AWS security is sufficient for your requirements. I conclude
by discussing six key actions you can take to make your AWS application
more secure.

156 Part II: Diving into AWS Offerings

Clouds Can Have Boundaries, Too
The key to understanding the topic of cloud security is the concept of the
trust boundary. In on-premise computing environments that you may be famil-
iar with, the IT organization takes responsibility for all security throughout
the environment, no matter at what level or in which component a particular
security requirement resides. By contrast, in a public cloud computing envi-
ronment, the provider implements, and takes responsibility for, the security
of only a portion of the overall security situation.

Here’s a useful way to frame the discussion: The concept of a trust boundary
sets a clear dividing line between the service provider’s responsibilities and
your responsibilities. The provider handles security on one side of the trust
boundary, and you’re responsible for the corresponding security on your
side of the trust boundary.

This concept is by no means unique to AWS. For example, if your company
uses Salesforce to manage customer interactions, Salesforce is responsible
for a great deal of security for the entire application. In fact, any time you use
an external provider’s offering, you’re handing over some responsibility for
security to that provider. In those situations, the obvious concern is how to
divide the responsibility with the provider.

The key question then, relating to a cloud computing offering, is where does
the trust boundary sit? Intuitively, in a Software as a Service (SaaS) offering
like Salesforce, the trust boundary must be located on the spectrum at a spot
where more of the security responsibility lies with the provider; after all,
Salesforce not only runs the computing environment in which the application
runs but also develops, delivers, and takes responsibility for the application
itself.

With this logic as a starting point, you’d have to assume that because AWS
isn’t in the business of running “applications” for clients, the location of the
AWS trust boundary is likely a different one than for Salesforce — a place
where more of the responsibility lies with the user, to be more specific. So
where does the AWS trust boundary reside?

Figure 7-1 (which also appears in Chapter 2) shows the architecture of the
AWS computing environment. Given this architecture, you can determine
where to place the trust boundary.

For Amazon EC2, the location is simple: The trust boundary is located at
the hypervisor — the software layer that provides virtualization of AWS
instances. Security below the hypervisor is Amazon’s responsibility; every-
thing above the hypervisor is your responsibility.

157 Chapter 7: AWS Security

Figure 7-1:
The AWS

computing
environment
architecture.

To my mind, that’s generally true, but a bit glib. It does, however, accurately
make obvious a truth of cloud computing: Security is a shared responsibility,
and each party must do its job properly for an application running in a cloud
computing environment to be secure.

A more accurate description is that Amazon takes responsibility for the AWS
instance and everything that surrounds it, whereas you must take responsi-
bility for the security of all software and configuration that resides inside the
instance. You must also take responsibility for network traffic that moves in
and out of the instance. (I tell you more about this topic in the “AWS Security
Groups” section, later in this chapter.)

The placement of the trust boundary at the instance means that Amazon
takes responsibility for the security of these parts of the computing
environment:

 ✓ The physical facility: The data center; its access controls for people;
and all power, cooling, and Internet connectivity and networking from
the building’s perimeter to the rack containing computing equipment

 ✓ The computing hardware: All servers, storage, and networking devices

 ✓ The hypervisor: The instance manager and the virtual machines within
which instances run

158 Part II: Diving into AWS Offerings

 ✓ The surrounding software infrastructure: The software that manages
all AWS services and provides the automation that allows you to operate
your application without ever needing to interact with another human

 ✓ The Application Programming Interface (API): The true AWS interface,
where all outside interaction with AWS is controlled

If you think about it, this concept is fantastic: Amazon takes on a huge amount
of the security load that you’re ordinarily responsible for, which reduces the
amount of work you have to do — and the investment you need to make.

Of course, as noted, security is a shared responsibility, and some security
elements remain with you. Here’s a brief list:

 ✓ Your application’s software packages: They contain all the software
that makes up your application, including any software components you
write.

 ✓ Your application’s configuration: To maintain an application’s protec-
tion, it’s often critical to configure software packages correctly in order
to ensure that no malevolent actor can access them and cause havoc.

 ✓ Your application’s operating system (possibly): This one is a bit tricky —
and it relates directly to my earlier characterization of your security
responsibility as “starting with the hypervisor” as being “a bit glib.”
It all depends on who is responsible for the image you use. If you use
an image created by someone else (either Amazon or a third party),
the security for the operating system and operating system packages
resides with the image provider, including not only the general operat-
ing system (Windows 2008, for example, or Ubuntu Linux) but also all
patches to the operating system, system software (the identity manage-
ment system, for example), and, possibly, middleware (say, the Tomcat
Java application server).

 An Amazon Machine Image (AMI), or image for short, is the template from
which a running instance (also known as the virtual machine) is launched.
The image contains all of the information necessary for AWS to construct a
running instance: the operating system, any software components that are
contained within the image, and all configuration settings for the operating
system and software components that were set at the time of image creation.

The Deperimeterization of Security
When calculating your various security responsibilities, you may have to
consider the effects of a concept known as the deperimeterization of security.
(Of course, you may have to ask yourself how you’re supposed to consider a
concept that you can’t even pronounce?)

159 Chapter 7: AWS Security

Let me give you a little background: The concept of deperimeterization grows
out of work done by the industry research group Jericho Forum, which is
part of The Open Group. The core conviction of its founders is that tradi-
tional computing security measures, which are focused on stopping threats
at the perimeter of the data center, are insufficient in today’s computing
environments.

With the rise of repeated attacks by criminal and state actors, the covert
installation and ongoing monitoring by advanced persistent threats (APT),
and the constantly evolving viruses and malware that present zero-day dan-
gers (dangers that require immediate responses instead of letting you wait
for updates to virus scan databases or malware detection services), you can
no longer assume that security measures on the outside of your computing
resources are sufficient.

The Jericho Forum recommends that everyone recognize the successful
deperimeterization of security and acknowledge that, consequently:

 ✓ Security measures must be present on every computing resource.

 ✓ These measures must be capable of protecting the resource without
depending on external, perimeter-based security services.

 If you’re acquainted with the Old Testament, you may catch the reference in
the Jericho Forum’s name to the famous walls of Jericho that “came tumbling
down.” The walls were inadequate to protect the city; likewise, the usual pro-
tective security measures at the perimeter of a data center are inadequate
to protect the resources inside it. (It’s more evidence of technically minded
humor.)

I think it’s fair to say that conformance with the Jericho Forum’s recommen-
dations is “more honored in the breach than the observance.” Many organiza-
tions continue to rely on security measures “on the perimeter” (outside their
own computing resources) for reasons ranging from concern about resource
performance to general apathy.

Why is this topic relevant to AWS? Simply because, unlike many computing
environments where it’s possible to place security systems (commonly, hard-
ware appliances) within the data center’s network, in AWS it’s impossible
for a user to place specialized devices (or, indeed, any hardware) within the
AWS data centers. By default, any security measures you want to take have to
be located within your application and computing resources.

The prototypical example of the kinds of protection you can locate within
your application and computing resources is IDS/IPS (Intrusion Detection
Software/Intrusion Protection Software). Many organizations install IDS/IPS
hardware appliances as gatekeepers through which all outside network traf-
fic must pass before being sent on to specific servers or virtual machines.

160 Part II: Diving into AWS Offerings

The IDS/IPS security products scan the packets to see whether they appear
malevolent. If the packets don’t appear malevolent, they’re forwarded to
their destination; if they do, a variety of measures are taken, ranging from
logging the activity to blocking the packet and raising an alarm to alert opera-
tions personnel.

Amazon doesn’t let you install an IDS/IPS device in its network, because

 ✓ It would view that action as inappropriate for its service and for the con-
trol it requires in order to operate AWS properly.

 ✓ Even more important, other AWS customers would regard your security
device as a security threat to their applications. Any security appliance
that monitors traffic would be seen by other users as an intrusive device
that is attempting to examine their traffic, which they would find
unacceptable.

The way to address this problem is to install host-based intrusion detection
software, or HIDS, on your AWS instances. (The letters IDS also incorporate
IPS — even techie types couldn’t stomach a HIDS/HIPS acronym.) HIDS per-
forms exactly the same function as an IDS/IPS appliance, but doesn’t require
installing any hardware within the network.

How does deperimeterization affect that crucial trust boundary between
your zone of responsibility and Amazon’s zone? It doesn’t, to be honest.
The concept of deperimeterization provides the context for what’s going on,
but doesn’t truly change the fundamental nature of your partnership with
Amazon, because

 ✓ Amazon is still responsible for all security of the computing envi-
ronment, up to and including the hypervisor. Actually, as I point out
earlier, that’s not entirely accurate because Amazon is responsible for
creating and operating the virtual machine. Also, if you’re using an AWS-
supplied image, Amazon is also responsible for the security of the image.
It must ensure that it incorporates the correct version of the operating
system, all necessary patches, and appropriate configurations. Amazon
manages and configures all hardware and software, and you have to do
nothing (and, indeed, can do nothing) about AWS security.

 ✓ You’re still responsible for the security of the running instance
and the overall application. This includes all software running in
the instance, whether you (or your organization) developed it or it’s
sourced from a third-party supplier (commercial or open source com-
munity). You manage and configure all your software, and Amazon has
to do nothing. (Indeed, it should do nothing, because accessing your
resources would be a significant betrayal of trust and a valid reason for
customers to abandon the service.)

However, in one place, you and Amazon share some responsibility for secu-
rity: at the interface between Amazon’s area of responsibility and yours. That

161 Chapter 7: AWS Security

interface is, logically enough, the network interface — where network traffic
leaves Amazon’s environment and enters your instance.

AWS Security Groups
An AWS virtual network interface is located within each instance, and
Amazon installs a software firewall on every instance. The firewall is there to
manage traffic to and from the instance.

Every instance launches by default with a firewall that’s clamped shut — no
traffic can enter the instance. As you might imagine, that often makes it use-
less, unless it’s doing self-contained computing activities.

Consequently, you must deliberately enable network access to your instance.
(If you’ve ever had the misfortune of administering a software firewall on a
Linux machine, take heart: Amazon makes this task much easier by using
security groups.)

 Actually, you may have done enough work with Linux firewalls to believe that
managing a firewall isn’t a big deal; after all, after you know what you’re doing,
Linux firewalls can be managed logically and handily (via a set of rules known
as iptables). Of course, the same statement can be made about calculus: After
you understand it, it’s logical and useful. The challenge lies in reaching the
point of understanding. Fortunately, Amazon has recognized that expecting
users to build an understanding of Linux firewalls sufficient to be able to use
AWS would be, as they say, “non-revenue-enhancing,” so it developed security
groups, which are much easier to use — and they get the job done.

Security groups control network traffic associated with every instance, and
you must understand that only traffic associated with a specific instance is
directed to that instance. The mechanisms you use to define the security
rules that control this traffic involves security groups.

 Security groups are asymmetric, in that they apply to inbound traffic (traffic
being sent to the instance). At this time, no controls are placed on traffic sent
from the instance. (Note that this is not true with VPC; please see the VPC sec-
tion below to understand how it handles outbound network traffic.)

Security group rules control the following elements of network traffic access:

 ✓ Traffic protocol: Security groups support and apply to three types of
network traffic:

	 •	Transmission Control Protocol (TCP): I discuss it in Chapter 6.

	 •	User Datagram Program (UDP): This network protocol, less sophis-
ticated than TCP, is hardly used, so you can safely ignore it.

162 Part II: Diving into AWS Offerings

	 •	Internet Control Message Protocol (ICMP): This protocol is used to
support certain diagnostic network commands and for applica-
tions to send error messages. (My guess is that you probably won’t
use this protocol much, either.)

 ✓ Traffic source: The idea is to control those sources from which a secu-
rity group accepts traffic. The security group can be set to allow traf-
fic from everyone, from only a specific IP address, from a range of IP
addresses, or from other members of the security group. (I tell you more
about traffic sources in the next section of the chapter.)

 ✓ Traffic port: TCP traffic moves between ports, which can be thought of
as individual network connections within overall network connectivity.
Ports are typically associated with specific applications, and all traf-
fic to a specific port is directed toward that application. For example,
Port 80 is used to support web traffic (or, more precisely, HTTP traffic).
Everyone tries to confine a port’s traffic to a single application; other-
wise, you run into problems when two applications try to read network
traffic on a single port — where should the packet be sent?

 Security group traffic sources are extremely important and are certain to
occupy your attention when you design an application. When you understand
how traffic sources and security groups work, you can make your application
much more secure.

 The traffic protocol limitations discussed here apply to EC2 security groups.
In AWS’s Virtual Private Cloud (VPC), any protocol can be used. (VPC is dis-
cussed later in this chapter.)

Security groups
Every account has one predefined security group: default. Default starts out
with no traffic being allowed to access the instance, so whenever you launch
an instance with the initial default security group controlling what network
traffic is accepted, no traffic can reach the instance.

You can also create additional security groups and place rules within the new
security groups. An AWS account can have up to 500 security groups and 100
rules per security group.

Security group rules
To allow traffic into an instance, open one or more ports by creating a secu-
rity group rule for the default security group. For example, you can create a
rule to allow HTTP traffic to enter the instance.

163 Chapter 7: AWS Security

Obviously, you can use the AWS API to implement this rule. However,
most people use the AWS Management Console to define rules. Figure 7-2
shows you how rules are set. (For more on the basic operation of the AWS
Management Console, including how to access it and navigate its various fea-
tures, check out Chapter 3.)

Figure 7-2:
Setting

security
group rules.

The figure shows that I’ve selected the CFWordpress-WebServer security
group and clicked the Inbound tab, which brings up a dialog box listing a
number of common TCP protocols (including DNS, HTTP, and POP3, a popu-
lar e-mail protocol) that allow me to make rules for data access. You can
select a predefined protocol or create a custom rule based on either TCP,
UDP, or ICMP.

If you create a rule for a predefined TCP protocols, the Port Range field is
filled in with the port associated with that protocol. (Figure 7-3 gives you a
better view of the Port Range field.)

In the Source field, you can define the IP address or addresses from which to
accept traffic. (The next section discusses security group traffic sources.)

After you’re satisfied with the rule, click the Add Rule button to add the new
rule to whichever security group you’re targeting. You can then use this
security group as part of an instance launch definition, and traffic that fits
with this rule is accepted into the instance.

164 Part II: Diving into AWS Offerings

Figure 7-3:
The port

range field.

 You can add or remove rules from a security group at any time, and any
instances running with the security group will have the rule changed almost
immediately. You can then add a new rule, and the instance can accept new
traffic quickly. You cannot, however, add an entire security group to, or
remove it from, a running instance.

Security group traffic sources
The AWS Management Console lets you control where the instance accepts
traffic, which makes a lot of sense. For example, you may accept traffic from
anyone who visits your corporate website; as for administrative access to the
instance on which your corporate website runs, you may restrict such traffic
to your company’s own IP address.

Fortunately, AWS provides a lot of flexibility regarding traffic sources for
security group rules.

The most obvious source of traffic is from other instances in your application
or account. For two instances to communicate within AWS, they must either
belong to the same security group or you have to configure an instance’s
security group to receive traffic from another security group owned by the
same account. (The latter option allows you to set an instance’s security
group so that it can receive traffic from every instance that has the source
security group attached to it; if they do, they can automatically send and

165 Chapter 7: AWS Security

receive traffic to and from each other.) But what if the source of the traffic
isn’t another AWS instance? Then another set of rules comes into play — one
that uses IP addresses rather than security groups to identify the source of
acceptable network traffic.

If you want to accept network traffic from anywhere, simply enter
0.0.0.0/0 as the traffic source. If you want to accept traffic from a single
address — say, 123.45.67.89 — enter 123.45.67.89/32. Wait — why
does one end in /0 and one end in /32? The numbers following the slash (/)
refer to CIDR (Classless Inter-domain Routing, if you’re curious). IP addresses
always consist of 32 bits and are commonly segregated into four 32-bit seg-
ments. CIDR treats the 32 bits differently, using a mask placed on the 32 bits
to identify a range of addresses without needing to specify each address.
The mask, which is placed from the leftmost bit in the address, identifies
how many of the left-hand bits should be considered part of a general pool of
addresses; conversely, the remaining bits can be used to identify specific IP
addresses within that pool. CIDR notation is used to identify the size of the
common pool.

Clear as mud, right? An example will help.

Again, placing a mask on a range of the 32 bits affects the size of the pool —
the length of the mask reflects how many bits can be used to identify indi-
vidual IP addresses. If you place a mask consisting of the full 32 bits on the IP
address 123.45.67.89, it occupies the entire address; 32 bits covers the entire
IP address. Only the single IP address, therefore, can be defined by a CIDR
notation of 123.45.67.89. For AWS purposes, only traffic from that single
address is accepted by that group.

Conversely, in a CIDR mask of 0, all bits are accepted to comprise an IP
address from which traffic is accepted; combined with the 0.0.0.0 as the
address portion of the CIDR notation, traffic is accepted from any IP address.

When a CIDR mask of 24 bits is used, 8 bits remain for IP addresses to fall
within that CIDR group — a total of 256 IP separate addresses.

From the perspective of AWS security groups, if your company’s IP
address is 123.45.67.89 and you set a security group traffic source of
123.45.67.89/24, you allow 256 computers within your company’s IP
address range of 123.45.67.X (where X is the specific IP address) to access
your instance. Depending on how fine-grained the level at which you want to
control access, you can use more or fewer bits in the CIDR mask. And there’s
no requirement that the IP address be your company’s — you can set the IP
address as a partner’s, and then traffic from that address follows the CIDR
mask rule you define.

166 Part II: Diving into AWS Offerings

Using Security Groups to
Partition Applications

Security groups are used to control access to EC2 instances. Because AWS
uses flat Layer 3 networking, any instance within a user account can commu-
nicate with any other instance — unlike many corporate IT networks, which
are partitioned via VLANs so that many virtual machines can communicate
only with other virtual machines residing on their VLAN. In that particular
corporate world, communication with other virtual machines must pass
through a router or a gateway server that has two network interfaces and can
pass traffic back and forth.

The reason many organizations choose to implement this type of arrangement
is to prevent inappropriate access to computing resources. In particular, most
organizations consider it important to prevent outside access to servers pro-
viding data access, so they allow public network traffic to application web serv-
ers but prevent public network traffic to database servers. The web servers
and database servers reside on different virtual local-area networks (VLANs),
and traffic between them must flow over a router or a gateway server.

For a host of reasons, AWS doesn’t provide this kind of VLAN capability —
check out Chapter 6 for the specifics. For now, though, the challenge is what
you can do to improve network traffic security.

A common technique is to use multiple security groups to partition traffic.
Suppose that you have a three-tier application, along the lines of the one
shown in Figure 7-4: The Web tier offers web access to the web servers, the
Business Logic tier runs a Java application, and the Data tier manages data
in a MySQL database. Your goal is to prevent public access to the Business
Logic tier and the Database tier, and to ensure that the only way outside traf-
fic can interact with those two tiers is via the established routes of the appli-
cation itself. How would you accomplish that task?

HTTP traffic operates on Port 80. In this example, assume that the Java applica-
tion accepts traffic on Port 4555 and that MySQL accepts traffic on Port 3306.

Look at the steps you’d use to define how security groups can implement
application partitioning:

 1. Define a security group that’s open to TCP traffic on Port 80.

 Name it WebTierSecurityGroup.

 2. Define a security group that’s open to traffic on Port 4555.

 Name it BusinessLogicSecurityGroup. Configure this security
group to receive traffic from any instance that is a member of the
WebTierSecurityGroup.

167 Chapter 7: AWS Security

Figure 7-4:
Using secu-

rity groups
to partition

applica-
tions.

 3. Define a security group that’s open to traffic on Port 3306.

 Name it DatabaseSecurityGroup. Configure this security group
to receive traffic from any instance that is a member of the
BusinessLogicSecurityGroup.

 4. When launching a server in the Web tier, attach WebTierSecurityGroup
to it.

 This step ensures that the server can accept public HTTP traffic from
the Internet.

 5. When launching a server in the Business Logic tier, attach the
BusinessLogicSecurityGroup. Because this security group has been con-
figured to accept traffic from instances in the WebTierSecurityGroup, it
can send and receive traffic from the web instances in the application
without being exposed to port 80 traffic.

 6. When you launch a server in the Data tier, attach
DatabaseSecurityGroup to it.

 Because the DatabaseSecurityGroup was configured to accept traffic
from any instance that is a member of the BusinessLogicSecurityGroup,
any Data tier instance will be able to communicate with instances
in the Business Logic tier. Note that by not having made the
DatabaseSecurityGroup accept traffic from the WebTierSecurityGroup,
these instances aren’t accessible from the public Internet, even though
they have a public IP address; any attempt to send HTTP traffic to one of
these instances is rejected because it doesn’t have that port open.

As you can see from this arrangement, no web traffic from outside AWS can
access the database server without going through the Web and Business

168 Part II: Diving into AWS Offerings

Logic tiers. Often referred to as defense in depth, in this type of partitioning, a
security attack has to successfully penetrate several layers to obtain access
to critical resources.

 I’ve simplified this example to illustrate the concept of using security groups
to partition applications. For actual production use, you’d probably have
many more security groups (or more rules in the existing groups) for your
application. For example, you’d almost certainly have a dedicated security
group for Port 22 (SSH) access that would be IP-traffic delimited to allow Port
22 traffic only from your corporate offices; this strategy would prevent mali-
cious attacks from other traffic sources.

 Another activity that would be more complex in real life is running several
versions of an application: a development version where new code is being
worked on, a testing version for quality assurance, and a production version
for customers to interact with. You then subdivide the security groups and
have Development, Test, and Production versions for each tier and attach
the appropriate security group to the version you’re running. For example,
you’d use DevWebTierSecurityGroup, BusinessLogicSecurityGroup, and
DevDatabaseSecurityGroup so that only development traffic would access
these instances and, in particular, no development traffic can access produc-
tion instances.

Using security groups to partition applications is an excellent approach to
increasing application security, and I highly recommend it. It can significantly
increase the security of your applications. It’s not perfect, however.

You may have noticed one vulnerability that cannot be addressed by security
group partitioning. Each instance still retains a public IP address, making
it — at least theoretically — vulnerable to direct attack and penetration. For
all the cleverness of shielding the Data tier by ensuring that application traf-
fic has to flow through two other instances before accessing precious data
resources, a drawback is that another, much more direct method of attacking
instances in the Data tier exists: a direct attack against the public IP address
that every instance in AWS carries. That’s quite a shortcoming, isn’t it?

Fortunately, you can address this vulnerability, by using the AWS service
Virtual Private Cloud (VPC), which I discuss later in this chapter. For now, be
aware that security group partitioning, though important, doesn’t offer per-
fect protection of your applications.

Security group scope
Security groups are scoped regionally, so you need appropriate security
groups in every region in which you plan to operate applications.

169 Chapter 7: AWS Security

Security group cost
Hey, security groups are a bargain — they’re free! Go ahead — use as many
as you like.

Security Group Best Practices
The security group is a critical feature because it performs a vital function:
It controls traffic into your instances. Understanding and applying security
groups is important to ensure that your applications operate properly and
safely. Follow this set of best practices regarding security groups:

 ✓ Avoid using the Default security group. Though you can open ports on
the Default security group, avoid doing so — create separate security
groups instead for all network traffic rules. Using default configurations
is a sloppy technique and leads to poorly-thought-out design and
practices.

 ✓ Use meaningful names. It’s much easier to decide which security group
needs to be applied to which instance when you use names that provide
helpful information. This may not seem difficult, but, believe me —
when you start managing upward of 100 different security groups, you’ll
appreciate any help you can get.

 ✓ Open only the ports you need to open. This time-honored recommen-
dation has nothing to do with cloud computing. Reducing the number of
open ports reduces the attack opportunities for malevolent actors, so
open ports only for the services or applications you need.

 ✓ Partition applications. Using security groups to partition applications
is a good practice to implement defense in depth and reduce the pos-
sibility of malevolent actors being able to access important application
resources. Be sure to create versions of security groups to support the
different application versions that you’ll end up running. (For more
on defense in depth, check out the “Using Security Groups to Partition
Applications” section, earlier in this chapter.)

 ✓ Restrict system administrator access. By using CIDR masks, you can
restrict system administrator access to your instances to comput-
ers that are located in places you trust, like your corporate offices. If
employees are working from home or on the road, you can set up a
virtual private network (VPN) from their computers to the corporate
network and then forward AWS system administrator traffic via the cor-
porate network, where it conforms to the CIDR masking you’ve
implemented.

170 Part II: Diving into AWS Offerings

AWS Virtual Private Cloud (VPC)
As useful as EC2 undoubtedly is, many customers prefer a more secure offer-
ing. As I noted in the earlier section “Security Group Best Practices,” even
with the best security practices regarding security groups, a potential vul-
nerability in applications is present when each EC2 instance has a public IP
address.

Fortunately, AWS addresses this problem with its Virtual Private Cloud (VPC)
offering. In broad terms, VPC lets users segregate their instances and shield
them from direct Internet access. VPC makes it possible to implement AWS
applications that are more secure.

NASDAQ runs on AWS
You often hear it said about AWS that finan-
cial services companies are reluctant to use
it because of security concerns and consid-
erations. The theory is that financial data is
so important that a financial firm can’t rely on
AWS to treat it with appropriate controls and
processes.

The only thing wrong with this theory is that
it’s inaccurate. NASDAQ, one of the largest
financial exchanges in the world, runs the
FINQLOUD application on AWS; it’s a site for
NASDAQ customers to perform custom analyt-
ics on NASDAQ financial data.

It’s difficult to comprehend the scale of
NASDAQ: As the largest exchange company
in the world, it owns and operates 24 markets,
three clearing houses, and five central securi-
ties depositories spanning six continents. It
carries data for much of the world’s financial
transactions and clearly understands the com-
pliance and regulation requirements associated
with providing financial services. However,

even a gigantic institution like NASDAQ faces
the same challenges as many smaller compa-
nies: the lack of computing capacity, long pro-
visioning timelines, and high costs. For these
reasons, it turned to AWS when it moved for-
ward with FINQCLOUD.

But wait — what about the putative secu-
rity issues associated with cloud computing?
NASDAQ addresses them by encrypting data to
be stored in S3 at the company location; only the
encrypted version is stored in S3. And NASDAQ
ensures the security of the data during transmis-
sion by using secure connections to AWS so that
no possible intruder can access NASDAQ data
on its way to or from AWS.

NASDAQ characterizes AWS as super-secure,
easily meeting the best that NASDAQ could
implement on its own. And in addition to the
level of security that NASDAQ achieves with
AWS, the firm estimates that it saves 80 per-
cent compared to the costs of implementing a
system on its own.

171 Chapter 7: AWS Security

 Educate yourself about VPC. Amazon announced this change in early 2013:
From now on, new accounts don’t use “traditional” EC2, but instead are
assigned to use VPC. Existing accounts can continue to use EC2 within regions
they have already used, but when existing accounts access new regions, they
need to use VPC as well. Amazon’s long-term AWS direction is to make VPC
the foundation of its service, so it’s vital that you become familiar with it and
become comfortable with its characteristics.

VPC overview
VPC operates by providing you with a virtual network topology that’s sepa-
rate from the general AWS environment. Another way to say this is that via
the use of clever software, AWS provides you with a segregated computing
environment. Instances are located within your own, private VPC, with no
access to them other than via the VPC environment. In a certain sense, what
you end up with isn’t dissimilar from a VLAN environment.

Using a VPC, you can create a separate set of resources that carry private IP
addresses within a range you select. You set rules for how traffic enters and
leaves instances within the VPC. You can choose to make instances acces-
sible to the public Internet via Elastic IP addresses. Moreover, you can create
subnets (in effect, subdivisions of the overall VPC) and control access to and
from the subnets and between subnets. (Curious about Elastic IP addresses?
Check out Chapter 5.)

You can also make a VPN connection between your own data center and
your VPC running over a private circuit. You can use this capability to ensure
that no traffic between the two sites is exposed to public access, and you
can use your ability to select the private IP address range to align your VPC
addresses with your internal company address scheme. The VPC can then
act, in effect, as an extension of your corporate computing environment.

 There’s no question that VPC is an innovative offering and one that addresses
many of the concerns that people raise regarding AWS. To be clear, however,
your VPC still runs within AWS and is implemented via network partitioning
and packet routing — in other words, the security is based on clever software,
not on a physically separate environment. Some people undoubtedly find VPC
(attractive as it may be) insufficient for their security concerns. On the other
hand, VPC is based on techniques that aren’t enormously different from those
used by hosting companies and other cloud providers, so a refusal to find VPC
sufficiently secure consigns users to their own on-premises data centers.

172 Part II: Diving into AWS Offerings

How VPC works
VPC is straightforward conceptually, though a number of details make it
more challenging than “vanilla” EC2. As you make your way through my
explanation, keep Figure 7-5 in mind, which should make it easier for you
to follow along. (Note that Amazon goes out of its way to make managing
VPCs easier by including VPC administrative capabilities within the AWS
Management Console.)

You start by declaring a VPC within your account. You identify the address
you want to use and a CIDR mask to define how many IP addresses you want
within your VPC. (See the little cloud within the larger cloud in Figure 7-5?
That’s your VPC.) Traffic to and from your VPC is sent via a “virtual router”
(Amazon’s term), although a better way to describe it is as a set of rules used
to control traffic for your VPC.

Every VPC can have one or more subnets, which can then be used in these
four VPC scenarios, based on the types of subnets the VPC contains:

 ✓ VPC with public subnet: A public subnet is accessible to the public
Internet, and instances within a public subnet can directly access the
Internet with inbound or outbound traffic. By default, every VPC is cre-
ated with a public subnet.

 ✓ VPC with public and private subnet: A private subnet is located within
a VPC and cannot access the Internet. Instances within the subnet are
limited to sending traffic among themselves, unless an instance offering
NAT support is available in a public subnet within the VPC.

 NAT, which stands for network address translation, is a service com-
monly used to send and receive traffic from servers or virtual machines
(or, indeed, AWS instances, in this case). If an instance supporting NAT
is in the associated public subnet, instances within the private subnet
can route external traffic through it.

 ✓ VPC with public and private subnet and hardware VPN access: It’s
similar to the scenario in the preceding bullet, but a direct connect also
exists between the VPC and an external location (your corporate data
center, for example).

 ✓ VPC with only private subnet and hardware VPN access: This scenario
allows AWS resources to be completely isolated from public Internet
access but to be accessible from an external location, such as your cor-
porate data center.

173 Chapter 7: AWS Security

Figure 7-5:
The AWS

virtual pri-
vate cloud.

As with standard “vanilla” EC2, you must declare security groups to control
traffic for your instances. There’s a major difference between EC2 security
groups and VPC security groups, though: Whereas EC2 security groups con-
trol traffic into instances but allow all traffic from instances, VPC security
groups control traffic to and from instances. If you want your instance to be
able to download software updates from a particular site, you must put the
site’s IP address into a security group that’s attached to the instance. That is
for direct outbound traffic; for traffic that carries responses to inbound traffic
(traffic responding to an HTPP request on Port 80, for example), VPC auto-
matically allows traffic from a VPC instance to return traffic to the IP address
from which the request originated.

 VPC security groups are completely different from EC2 security groups, and
one type cannot be used with the other type of AWS computing environment.

Each VPC instance is assigned an IP address within the range you defined
when you created your VPC. AWS provides a DHCP service that provides the
specific private address for your instance from the range you defined when
you created the VPC. (DHCP, which stands for Dynamic Host Configuration
Protocol, is a service that assigns IP addresses on the fly.) In Figure 7-5, you
can see that the entire VPC has been assigned an address beginning with

174 Part II: Diving into AWS Offerings

10.0.0.0, with a CIDR mask of 16 bits, allowing 65,534 addresses within
the VPC. One subnet has been created, with the same beginning address
and a mask of 24 bits, allowing 255 addresses to reside within the subnet.
One instance has been created within the subnet, with an IP address of
10.0.0.6.

This particular instance has the given private IP address and no public IP
address. To make this instance accessible from the public Internet (and
reside within a public subnet), you can attach an Elastic IP address to it.
Elastic IP addresses are similar to security groups, in that VPC and EC2
Elastic IP addresses are different and cannot be applied to the other AWS
computing environment.

 Because VPC instances can have more than one Elastic IP, you can load mul-
tiple applications on a single server and have each application associated with
a given Elastic IP; then you can perform more useful work on a single instance.

VPC subnets
Even though VPC offers a virtual private cloud, all VPC computing is done
within a subnet of a VPC. In other words, your instances all reside within a
subnet of the VPC and interact with one another and to the Internet via the
subnet. (Your overall set of IP addresses must be partitioned into one or
more subnets; every instance in a VPC must reside within a subnet.)

AWS makes it easy to create subnets, in that the VPC wizard in the
Management Console provides a dialog box with choices that reflect the
subnet types I just discussed. However, your choices aren’t limited to the
default topologies listed in the dialog box, because you can add or delete
subnets on the subnet page associated with each VPC in your account.

Communication from instances within subnets
Although you can associate an Elastic IP address with an instance within a
public subnet, packets from the instance don’t move directly to the Internet.
They travel through an Internet gateway associated with the VPC. The
Internet gateway isn’t part of any subnet, but resides within the VPC, and
all subnet instances that want to send traffic to the Internet have to send it
through the Internet gateway. (Refer to the Internet gateway shown at the top
of Figure 7-5.)

The concept of communicating to the Internet from an instance in a public
subnet is simple: Because the instance has an Elastic IP, it can send and
receive traffic from the Internet. Note that an Elastic IP is required even if you
want to send traffic to the Internet only from a public subnet.

But what happens if you have a private subnet? Private subnets are shielded
from the Internet, and it’s impossible to attach an Elastic IP address to an

175 Chapter 7: AWS Security

instance within a private subnet. It probably isn’t a problem if the instance
can’t receive Internet traffic; if you wanted it to do so, you could have put
it in a public subnet. But what if you want it to be able to send traffic to the
Internet (to download software updates and patches, for example)? Is this
not possible if the instance resides in a private subnet?

The answer is that the instance can’t contact the Internet, though it can talk
to a NAT server that can, in turn, forward traffic to the Internet gateway,
which makes it possible for the instance to communicate with the Internet.
(A NAT server, by the way, is an instance that performs NAT — network
address translation; NAT is discussed near the beginning of this section of
the chapter.)

How do you configure the subnets to communicate with other instances and
the Internet? You do it with the help of an item called a routing table.

VPC routing tables
Each VPC comes with a virtual router — a (virtual) device that controls all
traffic to and from instances. Each subnet must have a specific routing table
associated with it to configure how instances within the subnet communicate
over the network. The ability to assign a specific routing table to each subnet
makes it easy for you to tailor your VPC operation to the needs of your appli-
cations. (In Figure 7-5, the routing table is depicted as a circle containing a
capital letter R.)

Naturally, each VPC comes with a default routing table; if you don’t explicitly
assign a routing table to a subnet, the default routing table is assigned to it.
Upon creation, the default routing table has a single rule; this rule enables
communication between instances within the subnet.

 Just as I recommend that you avoid using the default security group for your
security group rules, I also recommend that you avoid using the default rout-
ing table for your VPC subnets. You’re always better off creating your own
resources with respect to security, because it forces you to think things
through more thoroughly and enables better security partitioning.

If, after you’ve created your own routing table, you can — if your subnet is a
public subnet — include a rule to allow the subnet instances to communicate
with the Internet gateway and thereby communicate with the Internet.

Internet gateway
The Internet gateway is a resource that can be attached to a VPC to enable
all subnets to communicate with the Internet. If you use the Management
Console to create your VPC, an Internet gateway is automatically created and
associated with your VPC.

176 Part II: Diving into AWS Offerings

For any subnets that you want to communicate with the Internet, you must
add the Internet gateway to the subnet’s routing table. (Remember that you
must also attach an Elastic IP to every instance that you want to communi-
cate with the Internet; an instance with an Elastic IP attached to it can then
communicate with the Internet gateway, which in turn forwards traffic to the
general Internet.) Any time your instance makes a call to an address outside
the bounds of the subnet containing it, the traffic travels through the Internet
gateway and then on to the Internet. Likewise, any traffic directed toward
your Elastic IP must transit through the Internet gateway.

NAT servers
What if you’ve created a private subnet and want it to communicate with
another subnet or the Internet? Are you prevented from doing so because
you have a private subnet? Not at all, but you do have to use a special
instance that sends traffic back and forth between the two subnets — a NAT
instance. Figure 7-6 shows a more complex VPC configuration than the one
depicted earlier, in Figure 7-5. In Figure 7-6, you can see that a NAT instance
has been included in the public subnet 10.0.0.0, allowing for traffic from
the 10.0.1.0 subnet to transit to the Internet via the Internet gateway.

Figure 7-6:
A more

complex
VPC con-

figuration.

177 Chapter 7: AWS Security

A NAT instance is, in effect, a traffic cop that resides within a public subnet
and accepts traffic from instances on private subnets. As you may already
have guessed, for the NAT instance to do its job, you need to create a secu-
rity group for it. The security group includes which ports the NAT accepts
traffic on, but also the source — the private subnet address used to forward
traffic to the NAT instance. You need to add multiple rules for, say, Port 80
(web traffic) — one for each private subnet that the NAT instance will accept
traffic from.

NAT instances also require a bit of tweaking in that regular EC2 instances are
set up for source/destination checking. As Amazon states in its VPC docu-
mentation about source/destination checking: “This means the instance must
be the source or destination of any traffic it sends or receives. However, the
NAT instance needs to be able to send and receive traffic where the eventual
source or destination is not the NAT instance itself. To enable that behav-
ior, you must disable source/destination checking on the NAT instance.”
Essentially, EC2 instances always expect to generate or respond to traffic,
but never to act as a gateway that passes traffic along. They are configured
to accept only traffic that the instance sends or receives and respond to the
sending address directly. A NAT instance acts as a gateway and receives
traffic from an instance and sends it along to a server on the Internet, so it
“breaks” the source/destination checking. For that reason, after you launch
the NAT instance, you have to disable this checking: Select the instance
within the AWS Management Console, right-click, and then click the Change
Source/Destination Check option in dialog box.

The VPC configuration shown in Figure 7-6 illustrates the power of VPC. You
can see that the VPC contains two subnets: one public and one private. The
public subnet contains a number of instances, all of which are exposed to the
Internet. The application’s database servers, however, are segregated into a
private subnet, and none of them carries public IP addresses. No traffic from
the Internet, therefore, can directly access the database servers, thereby
increasing their security. This approach is an improvement over the security-
group-based tiering (which I outline earlier in this chapter) because with no
public IP address exposure, malicious traffic faces much more difficulty in
accessing a VPC private subnet instance. Note that in Figure 7-6, the public
subnet has a custom routing table that provides traffic routing rules for the
instances as well as the Internet Gateway, whereas the main routing table is
attached to the private subnet and includes the NAT instance information to
enable access to the public subnet and subsequently to the Internet itself.

VPC Network Access Control Lists (ACLs)
VPC offers another traffic controlling mechanism beyond security groups.
You can create a Network Access Control List (network ACL) to control traf-
fic flow for an entire subnet. You may use a network ACL to impose a strict
security regimen at the subnet level to ensure that, even if someone becomes
sloppy with instance-level security groups (say, by opening a wide range of

178 Part II: Diving into AWS Offerings

ports for public access from the Internet), you would ensure that no inappro-
priate traffic can access subnet instances, because the ACL prevents it from
even entering the subnet.

To manage an ACL, you create a set of rules that are evaluated in order
according to rules numbers you assign to each rule. An ACL essentially offers
a Linux-like firewall, with all the fun of managing rules, ensuring that they’re
applied in the correct order, and that a later rule doesn’t undo the work of an
earlier rule. Good times.

Elastic Network Interfaces
Unlike EC2, which restricts instances to a single virtual network interface
card (NIC), a single private IP address, and a single public IP address, VPC
allows multiple virtual NICs and multiple IP addresses. Each of these virtual
NICs (referred to as elastic network interfaces) can have its own security
groups, which enables you to allow public Internet access on one elastic net-
work interface, open on Port 80 to the world, with another elastic network
interface with a different security group that has Port 22 (ssh) open only to
your corporate network.

Another scenario is that you can have an instance that acts as a gateway
between two subnets and passes traffic back and forth. Though this may
seem like a NAT instance, a gateway instance with two Elastic Network
Interfaces may be used for an all-private subnet scenario in which instances
in one subnet (say, a sales group) sends data requests to a database server
in the other subnet, which belongs to the finance department. The finance
department doesn’t want to allow general access to servers from the sales
department, so it sets up a gateway server that shields the database server
from direct access.

 Elastic network interfaces can be used to partition subnets, and then should
be used in environments where the separation of computing resources is
important for security or compliance reasons.

VPC access to other AWS services
A theme of this book is that one of the great benefits of AWS is the range of
services it provides. Chapters 8 and 9 cover these services in greater detail,
but trust me for now: There are a lot of great AWS services. How can a VPC
instance access an AWS service such as Simple Queue Service (SQS)?

The answer is that access to other AWS services is routed through the
Internet gateway. However, your request to AWS services doesn’t go all the
way out to the Internet and back into AWS (which would incur network traffic
charges on traffic); instead, the Internet gateway recognizes that the traffic
destination is within AWS and takes a shortcut to the AWS service without
sending traffic outside of AWS. Cool, right?

179 Chapter 7: AWS Security

VPC scope
VPC is, like most other AWS services, region-scoped. You can have a VPC in
US East and a separate VPC in US West-Oregon. Traffic between them travels
over the public Internet and incurs a network charge (although it’s a much
lower charge than if the traffic were going to a non-AWS location).

VPC cost
The best thing about VPC is its cost: nothing. Amazon provides a way for you
to improve your AWS security and doesn’t charge you a cent for it. You pay a
fee for any unused VPC Elastic IPs, just as you do for EC2 Elastic IPs, but this
fee is nominal. And, of course, you pay normal fees for all AWS resources — an
instance running in VPC racks up instance charges. But for VPC itself? Nothing.

Using VPC
VPC is an excellent solution to an issue highlighted earlier in this chapter:
How to avoid exposing instances and data that you prefer to shield from out-
side Internet access when every EC2 instance has a public IP address.

Using VPC, you can implement a dual-subnet application topology, in which
the appropriate Internet-facing instances — the web servers — are placed
in a public subnet, whereas instances that you’d prefer to not be accessible
to the Internet — database servers, of course, but potentially other types of
instances as well, such as cache servers and the like — are placed in a pri-
vate subnet. A viable deployment strategy that you can pursue is to leverage
VPC heavily and use a private, subnet-focused application design, where you
place in a public subnet only those instances that need to be accessible to
outside traffic and you place all other application instances within a private
subnet, where they’re shielded from all outside traffic. Any Internet access
necessary for private subnet-based instances (to download software updates
and patches, for example) can take place via a NAT instance.

I believe that VPC use will increase significantly when people understand it
better. It’s more complex than vanilla EC2, but offers greater security.

AWS Application Security
AWS requires a shared security responsibility, with Amazon taking respon-
sibility below the trust boundary and users taking responsibility above the

180 Part II: Diving into AWS Offerings

trust boundary. In this chapter, I describe Amazon’s security offerings that
address its area of responsibility. But how about yours?

Many people are unsure what steps to take to improve security for their
applications. This uncertainty is troubling because Amazon (and every other
cloud provider in the world) rightly refuses to take on user security respon-
sibility. The company cannot possibly know what users do inside their appli-
cations, of course, so Amazon and other cloud providers leave application
security to the user.

Given this situation, follow my recommendations to increase your AWS appli-
cation security:

 ✓ Use security groups appropriately. Obviously, you should avoid using
the Default security group for applications. Every security group should
be identified explicitly with a name that indicates its purpose. This strat-
egy makes it easier to audit the security groups to ensure that they’re
appropriately configured. If you see a security group for web servers
and it has Port 21 (FTP service) listed in addition to Port 80 (HTTP ser-
vice) and 443 (HTTPS service), it’s probably incorrect. Earlier in this
chapter, I discuss the use of security groups to partition your applica-
tion to implement defense in depth, and I strongly urge you to follow
that strategy. Limiting traffic to appropriate IP address ranges is a good
practice to follow as well.

 ✓ Implement data encryption in transit. If you encrypt your network
traffic, both external to AWS and within AWS, you prevent anyone from
reading your packets. Though AWS’s record in maintaining packet secu-
rity is exemplary, you still may implement encryption — just to be cer-
tain. Trust but verify.

 ✓ Implement data encryption at rest. If you encrypt data that’s stored
within AWS, you protect it from being examined by other AWS users
as well as by AWS personnel. One of the strongest arguments against
encryption is the performance penalty it imposes, so evaluate your data
to see whether it has particularly sensitive portions for which a perfor-
mance hit would be acceptable.

 ✓ Manage security keys carefully. Administrative access to AWS Linux
instances is typically via shared key SSH. Stories abound about organiza-
tions in which keys are widely shared by many administrators, placed
on individual user’s drives, and never rotated. Even worse, many organi-
zations fail to change the keys they’re using when an employee quits (or,
even worse, is fired for a serious reason) and the former employee still
has a copy of the key used to administer AWS instances. This neglect
constitutes playing with fire, and any organization that fails to manage
its keys carefully deserves to have its fingers burned. Many key man-
agement solutions exist in the marketplace — and several open source
options — so implement a solution to manage your keys.

181 Chapter 7: AWS Security

 ✓ Install and configure your software packages correctly. It’s a cliché
that many IT organizations install software and leave default passwords
in place, leave unnecessary ports open, and fail to configure the soft-
ware packages to properly protect them against attack. Don’t make that
mistake. Evaluate every component of your application (including the
operating system in the image) and ensure that you’ve installed and con-
figured them correctly and securely.

 ✓ Implement on-instance security. The move to deperimeterized security
emphasizes the need for every resource to be appropriately protected
against security issues. It’s critical that you put Host-based Intrusion
Detection/Prevention Software (HIDS) in place to track and respond to
attacks. If you’re running Windows-based instances, you should also
ensure that you have antivirus and antimalware software operating as
well. Frankly, this area is the one where most organizations commonly
fail, and it often reflects the unwarranted assumption that AWS is respon-
sible for security. For its portion of the environment, it is responsible. For
your stuff, it isn’t. Be sure to have on-instance security in place.

 ✓ Manage your instance code properly. Too many organizations create an
image and then use it, untouched and unchanged, for months (or years!)
on end. That’s a huge problem. First, this level of carelessness neglects
the installation of important security patches and can leave your applica-
tion exposed to security holes. Second, if you don’t manage your applica-
tion code correctly, you can’t be sure what version of your application is
running, and that’s a big problem. Many organizations address it by creat-
ing new images, but that strategy poses a different problem: image sprawl.
A better approach is to implement the techniques described in Chapter 6
for managing instance code, to ensure that you have better security in
place and always know what you’re running.

182 Part II: Diving into AWS Offerings

Chapter 8

Additional Core AWS Services
In This Chapter
▶ Introducing other AWS services
▶ Integrating additional core services into your application
▶ Dealing with AWS lock-in

A
WS has its core services — S3, EC2, Amazon Glacier, and Amazon EBS,
for example — but that’s not the end of the story. Amazon operates

according to the principle “Variety is the spice of life,” so it offers quite a
range of services in addition to the big players. This chapter takes you on a
mini-tour of the rest of the AWS services. The idea is to help you understand
the breadth of products that Amazon provides and give you the confidence
of at least being acquainted with every product in the most comprehensive
cloud service offering in the industry.

As part of this tour, I address one key concern about AWS that many people
have: lock-in, or the extent to which your use of various AWS services can
prevent you from choosing to place your AWS applications in another cloud
environment. I evaluate how serious the issue is and then offer strategies for
dealing with any potential issues that may arise.

Finally, I pull back to offer some Big Picture advice about which AWS services
you should use as part of your application. I show you how to assess the
value you obtain from a given AWS service, how to measure your concern
about lock-in, and how potential plans for changing the location of your appli-
cation deployment should affect your AWS strategy.

Understanding the Other AWS Services
My take on AWS is that certain foundational services — EC2, S3, Amazon EBS,
and Amazon Glacier — are at the center of the AWS universe. I refer to them
as foundational for two reasons:

184 Part II: Diving into AWS Offerings

 ✓ They include the first AWS services introduced to the marketplace.
AWS launched with S3 and followed within the year with EC2. AWS net-
working and security were critical components of how the entire AWS
environment operates and were components of S3 and EC2. Several
storage options I cover weren’t part of the early AWS services, but were
included with S3 for the sake of consistency.

 ✓ These services represent the foundation of how you use AWS. Though
it’s certainly possible to leverage other AWS services without using
storage and computing, the vast majority of people use those services
in conjunction with storage and computing.

 Because I’m talking about other AWS services, this spot is as good as any to
tell you about www.bernardgolden.com. As you may expect from the name,
this is my website. It offers a section covering any new AWS services that may
be released after this book is published. Look at my site to find out about new
AWS services and how to apply them to build even better AWS applications.

The “additional” services — the focus of this chapter — integrate and make
the foundational services more useful. They help you build better applica-
tions by using the foundational storage and computing services offered by
AWS. For example, Elastic Load Balancer (ELB) is an additional service that
Amazon offers in order to distribute traffic to multiple web servers, enabling
your application to support more traffic than can be handled by a single web
server. You don’t need an ELB to deploy a basic AWS application, but the ser-
vice makes it much easier to run a high-traffic, AWS-based web application.

If you were to use a “traditional” PaaS solution, it would provide load balanc-
ing automatically — you probably wouldn’t even be aware of it being in place,
but the service would arrange for enough web server resources to support
your application’s traffic, and it would put in place a load-balancing mecha-
nism to distribute the traffic among those web servers. That’s all fine and
dandy, except that there are many choices for traffic distribution. Sometimes
it’s round-robin (each server receives traffic in turn), sometimes it’s based
on the processor load of the servers (lightly loaded servers receive more
traffic), and sometimes it’s based on which server has the least number of
active connections. In a traditional PaaS system, you’re stuck with whatever
distribution method the service offers, and if it doesn’t suit your application’s
needs, you’re out of luck.

So Amazon, in its desire to provide more services to its customers, offers
ELB, which provides a lot of functionality, is easy to use, and is cheap.
However, if it doesn’t suit your application’s requirements, that’s no prob-
lem — you’re free to implement your own solution (or to leverage one of the
many open source or commercial offerings that other organizations make
available within AWS). The key difference between Amazon’s platform

http://www.bernardgolden.com

185 Chapter 8: Additional Core AWS Services

offerings and what you may expect from the traditional Platform as a Service
(Paas) offerings is that Amazon provides a service designed to help you
develop and operate your application, but doesn’t force you to use it. You’re
free to address your application’s load-balancing needs in another way, if you
want. And this is true of all AWS services — they provide commonly needed
services, but you’re the in the driver’s seat. Feel free to use them or not.

This approach appears to be the right one for these kind of services — rather
than offer a set of handcuffs that constrain how you achieve your require-
ments, AWS offers a stepladder to make it easier for you to reach your
objectives. Hokey images aside, the bottom line is this: AWS has a number of
services that you can leverage to assist in building your application, but you
have complete control and choice regarding them — if they’re helpful, that’s
great, but if you want to do something else, that’s fine, too. Amazon doesn’t
dictate how you must achieve your goals.

Deciding whether it makes sense
to use other AWS services
It’s time for brass tacks: What are the advantages you can realize by using
what Amazon offers instead of implementing your own application function-
ality? Alternatively, what are that reasons that you wouldn’t use these ser-
vices? Listing all the pros and cons may help. First, here are some important
reasons that you’d use AWS core and extended services — because they can

 ✓ Offer needed functionality outside your area of expertise: The
extended services provide something you need for your application in
an area that you don’t know much about — and don’t have time to learn.
For example, you may need load balancing but have never implemented
it. (And believe me, operating load balancing properly is an arcane
art; one application performance expert told me that the number-one
performance bottleneck he sees is misconfigured load balancers.)
Rather than devote time to learning about load balancing, use Amazon’s
service — you know that it has world-class experts working on its Elastic
Load Balancer.

 ✓ Simplify application development: Using Amazon’s service makes it
easier to create your application. Leveraging AWS core and extended
services makes it easier to develop the whole application.

 ✓ Speed the time to market: Using AWS services means less work for you,
which enables you to deliver your application more quickly. There’s
always time pressure on application delivery, and using AWS services
makes it possible to deliver your applications sooner. In a sense, it’s

186 Part II: Diving into AWS Offerings

an extension of the general argument for using AWS — just as the AWS
foundation services speed the provisioning of fundamental computing
capability, the additional core and extended services speed the creation
of application capability.

 ✓ Achieve scalability: Managing scalability is difficult, and it can be even
more difficult to manage high load variability, which requires the con-
stant growing and shrinking of capacity. Amazon not only makes it easy
to consume just as much of a service as you need but also handles all
the plumbing details for you.

 ✓ Integrates with other AWS services you’re using: If you’re writing an
application in AWS, you can be sure that both core and extended AWS
services work well with not only AWS storage and EC2 compute but also
with one another. Not having to jury-rig different applications to get
them to work with one another is a definite benefit of using AWS ser-
vices.

 ✓ Save you money: AWS provides only the services it can deliver via auto-
mation, so no (expensive) manual interaction is required on the part of
Amazon personnel. The company is relentlessly focused on cost reduc-
tion. Consequently, the AWS service is likely to be less expensive than if
you were to implement it yourself.

 ✓ Allow you to focus on differentiated application functionality: Most
of the additional AWS services fall into the category of necessary-but-
unexciting-functionality. Put another way, AWS services comprise the
plumbing of your application — it’s critical but nothing that your applica-
tion users would ever view as something special associated with your
application. In Silicon Valley-speak, these services are undifferentiating —
they do nothing to make your application stand apart from any other
application. To extend this example, no application user has ever said,
“Boy, the reason I like this application is that it does an awesome job
of load balancing!” If you use AWS services to provide undifferentiating
functionality, it gives you more time to focus on functionality that differ-
entiates your application from others. This benefit is perhaps the most
important one of the additional AWS services — they free you up to
focus on the most important aspects of your application.

Of course, you may not choose to use AWS services, so it’s only fair to exam-
ine your reasons. You may choose not to use the core and extended AWS
services because they

 ✓ Lock you in to AWS: The topic of lock-in is significant enough that I deal
with it at the end of this chapter, but take the following as the thumbnail
version of the argument: Every additional AWS service you use makes it
that much more difficult to move your application to another cloud pro-
vider. In part, the reason is that every cloud provider does everything
somewhat differently, so using Amazon’s version of a service makes you
have to adjust your application if you move it elsewhere. The greater

187 Chapter 8: Additional Core AWS Services

issue is that most other cloud providers offer far fewer services than
Amazon, so if you take advantage of an AWS service and subsequently
decide to move to another environment, you have to figure out how to
implement the functionality yourself. It’s a concern, no doubt, but it’s
more of an indictment of the inadequacy of other cloud provider offer-
ings than a problem with AWS proper.

 ✓ Provide inadequate functionality: Amazon’s AWS technical strategy is
to offer basic functionality that satisfies the needs of the largest, least-
demanding part of the market. It may well be the case that you need
functionality that the AWS offering cannot provide, which precludes you
from using the service. Nothing in AWS forces you to use an AWS service
offering, so inadequate functionality means only that you have to imple-
ment the service yourself (or use another vendor offering that’s avail-
able in AWS).

 ✓ Cost too much: Sometimes people feel that a particular AWS offering
is too expensive. And it’s true that using multiple AWS services can
drive up your overall AWS cost. This concern is certainly valid, and you
should be aware of what a service costs you; on the other hand, you
should also evaluate what it would truly cost you to implement the ser-
vice yourself. People notoriously underestimate the time and expense
of implementing technical functionality themselves, and it’s easy to say,
for example, “Running a load balancer isn’t difficult — I run HAProxy,
an open source load balancer, and it’s free,” completely missing the
value of the investment of time required to install and configure a solu-
tion, operate it in production, and ensure that it’s scaling as necessary.
Simply put, while a cost comparison is appropriate, it’s important to
make sure you account for all of the components in your cost when you
compare it to AWS.

With all the pros and cons out of the way, it’s time to move on to an examina-
tion of all those “other” AWS products. I apologize in advance for the brev-
ity of the discussion for each of the following services, but in my defense,
addressing each of the AWS services in the depth it deserves in this book
would make War and Peace look like a pamphlet! The strategy I have followed
is to first describe the service in enough detail that you can understand its
high-level functionality and benefit, and then provide recommendations
regarding how you can apply it usefully.

If you need more detail on a particular offering, Amazon provides comprehen-
sive — at times, overly comprehensive — documentation on all its services.
The primary criticism of Amazon documentation is that although it provides
in-depth information, the descriptions of its services aren’t necessarily easy
to comprehend. My goal in this chapter is to make the incomprehensible
comprehensible — and to give you the context necessary to make sense of
the pages and pages (and pages) of information that Amazon provides for
specific services.

188 Part II: Diving into AWS Offerings

Working with Identity and Access
Management (IAM)
I’ve long argued that the genius of AWS is that it makes it simple to obtain
the resources to create and launch applications. Sometimes, however, the
blessing of simplicity brings with it a bit of curse — potentially, at least. It
turns out that when AWS was first launched, one way that AWS made its use
“simple” was in handling account and user management: For every account,
there was to be one (and only one) user, and that individual was assumed
to “own” the account and all resources associated with the account. Though
this setup seems logical, it presents a significant shortcoming to many com-
panies using AWS, particularly those referred to in the technology industry
as enterprise.

Enterprises typically have multiple organizations involved in the lifecycle of
applications — development, for one; operations, quality assurance, and test-
ing, for others. Within each of these organizations, multiple individuals may
perform administrative functions on the application. When AWS was origi-
nally launched, it meant that between 10 and 40 individuals may administer
the application and the AWS resources it ran in, but everyone had to share a
single identity.

Moreover, most organizations would use a single private key to control
administrative access to AWS instances and the software components incor-
porated in the instances. This single, private key would then have to be
shared among all users.

Are you beginning to see the problem? You have a situation where perhaps
40 people share a single user identity and that identity just happens to
allow the user full control over all AWS resources. There’s no way, in other
words, for you to restrict a specific user’s access to only certain resources.
Alarm bells may ring in many IT organizations because they may be perfectly
willing to provide developers with full administrative access to develop-
ment instances, but will want to forbid developers administrative access to
instances that are parts of a production deployment.

An even bigger problem for organizations is what to do when someone leaves
the organization. Clearly, a former employee shouldn’t be able to access
resources, yet denying access to him would require reissuing new credentials
and keys to all remaining employees. In an IT organization of dozens or hun-
dreds (or thousands!) of employees, having to reissue credentials every time
an individual leaves would be a nightmare.

Even worse is that all existing resources (running instances, for example)
would need to be terminated and relaunched with new credentials, which
would affect application uptime.

189 Chapter 8: Additional Core AWS Services

As you can see, the “simple’ way of doing things — going with a single user
identity and credential environment — brought with it a boatload of com-
plications. Luckily for us, to deal with these complexities, Amazon created
its Identity and Access Management (IAM) service, a way of tweaking access
control and the AWS credential environment in ways that made the system
more hospitable to enterprise users. IAM is automatically included with
every AWS account, and you don’t need to do anything to activate it.

IAM functionality
IAM offers these excellent features:

 ✓ User management: You can create multiple users within a single
account and provide them with different account resource access con-
trols. Users can also be assigned to groups, and access controls can be
assigned at the group level, which then implements those controls for
each person within the group.

 ✓ Centralized control of user identities and access credentials: IAM is
used to manage all user identities and access credentials, thereby cen-
tralizing and simplifying a complex and important control mechanism.

 ✓ AWS resource controls: You can control what users can access given
AWS resources by placing controls on specific AWS resources. You may,
for example, allow certain users within your organization to access com-
pany data stored in S3, while preventing other users who have no need
to access the data from being able to interact with the S3 object.

 ✓ AWS resource creation controls: You can restrict where users can
create AWS resources. If you want to ensure that only users in the US
West region launch new instances, for example, IAM can be used to
enforce that rule.

 ✓ AWS resource sharing across accounts: You can provide access to AWS
resources within your account to people in other accounts. This may be
useful if you want your organization to collaborate with a partner com-
pany or if your company uses different accounts for different depart-
ments.

 ✓ Consolidated billing: You can receive a single bill for all user activity
within AWS, rather than an individual bill for each user. Consolidating
billing simplifies your cost management because it allows easy examina-
tion of all AWS costs in a single billing statement. It also reduces your
overall AWS cost because you can take advantage of reduced pricing
associated with higher levels of AWS resource use and allows you to
take better advantage of reservation pricing.

When you implement IAM, each user gets a unique identity and password,
and a user-specific set of security credentials. You create IAM policies that are
applied as users attempt to access AWS resources. The policies define access
controls and can be written to apply to specific users or to groups of users.

190 Part II: Diving into AWS Offerings

Using IAM
IAM is a service that you may not see a need for until, all of a sudden, you real-
ize that you needed it yesterday, as your AWS use spirals out of control and
you don’t know who is doing what. Don’t implement IAM as you first begin
experimenting with AWS, however, but do closely track how your organization
continues to use AWS. When you begin to have multiple groups involved with
AWS, when you’re running multiple applications in AWS, or you’re deploying
production applications within AWS, you should strongly consider moving to
IAM. It’s definitely somewhat more complex than vanilla AWS identity manage-
ment, but it offers real enterprise functionality as your AWS use scales both in
volume and in numbers of users interacting with AWS.

IAM cost
IAM is free to users.

Elastic Load Balancer (ELB)
One useful benefit of cloud computing is that it supports scalability (the abil-
ity to provision large amounts of computing capacity) and elasticity (the abil-
ity to easily and rapidly grow and shrink the computing capacity assigned to
your application). And one benefit of AWS is that it supports these aforemen-
tioned benefits more than any other cloud provider in the market. You can
easily start and stop instances and add them to, or remove them from, your
application, paying only for the computing capacity you consume.

One key requirement for taking advantage of these benefits is the ability to
direct network traffic to these instances, and a load balancer is the solution
to this requirement. A load balancer spreads load across multiple computing
resources that offer the same functionality, improving the overall applica-
tion performance. If you have four instances that operate as web servers, for
example, a load balancer directs traffic to each of the four so that no web
server is overloaded and all users experience better performance.

One challenge of using AWS is that, because of its elasticity support, instances
may frequently join or leave a resource pool, so a load balancer needs to easily
allow both registration and deregistration. Registration refers to the process of
a computing resource (in this case, an AWS instance) making the load balancer
aware of the instance’s availability and setting up the network connection
between the load balancer and the instance so that traffic can flow between
them. Deregistration performs the process in reverse — it removes the instance
from the load balancer’s connection list, which causes the load balancer to
stop sending traffic to the instance.

191 Chapter 8: Additional Core AWS Services

Load balancing is a long-established technology, and many products, both
commercial and open source, are available on the market. However, using
these products requires user administration and may impose inconvenient
billing arrangements — separate billing distinct from AWS, in other words,
which can make it difficult to accurately track costs.

A larger problem is that load balancing itself can suffer from the same kinds
of scalability and elasticity constraints that load balancing is designed to
solve. As your application’s traffic grows and shrinks, you’ll need more or
less load-balancing capacity. So the problem becomes one of managing your
load-balancing capacity, and you’re back to the same issue — the same has-
sles — that drove you toward load balancing in the first place. In the name
of eliminating these hassles once and for all, AWS launched its own load bal-
ancing service, called Elastic Load Balancing (ELB), designed to offer these
benefits:

 ✓ Load balancing as a service: ELB is designed to make it easy to support
load balancing without requiring AWS users to manage load balancer
resource pools. As is typical of Amazon, it designed a service to simplify
important application functionality, thereby giving users an easier way
to use AWS.

 ✓ Automated load balancing scalability and elasticity: Instead of users
having to manage load balancer pools, requiring constant monitor-
ing and administration, Amazon designed its load balancing service to
automatically support more (or less) traffic with no user interaction
required.

 ✓ Easy registration and deregistration: ELB reduces the overhead of
getting an instance known to a load balancer so it can register and
deregister the instance. ELB automates that process, making setup and
teardown much faster and less error-prone.

 ✓ Low cost: Consistent with Amazon’s overall AWS philosophy, ELB isn’t
only inexpensive, but you also pay for only the ELB capacity you use.
For more details on ELB cost, see the later section about ELB costs.

 Amazon supports ELB via the AWS API and Management Console.

ELB functionality
ELB provides these features:

 ✓ Easy creation of ELBs: A simple API call or use of the AWS Management
Console allows users to automatically create an ELB. Upon creation, the
ELB is assigned a DNS identifier, such as LB1-26746260.us-east-1.
elb.amazonaws.com. Traffic sent to this DNS domain is automatically
spread among all instances registered to the ELB.

192 Part II: Diving into AWS Offerings

 ✓ Easy registration and deregistration of instances: AWS makes it easy
to connect an instance with an ELB or to remove the connection. This
makes leveraging AWS’s scalability and elasticity easier for users, which
is good for everyone.

 ✓ Support of multiple availability zones (AZs): The instances registered
with an ELB can be placed in multiple AZs, providing better application
robustness and protection against downtime in the event of an entire AZ
going offline.

 ELB distributes traffic evenly between AZs. If you decide to use the
ELB multi-AZ support, you should understand that each AZ will receive
roughly the same amount of traffic; therefore, you should plan to have
roughly equal numbers of instances running in each AZ to avoid one
AZ’s instances from being overwhelmed with traffic.

 ✓ Support of encryption via Secure Socket Layer (SSL) technology:
ELBs offer automated support of Secure Socket Layer (SSL) encryption,
which, if you’ve ever had to manage SSL certificates, you’ll know isn’t
trivial. If you have ELB encryption support, you can make your applica-
tions more secure while still achieving high scalability and elasticity.

 ✓ Support for session affinity: Session affinity (also known as sticky
sessions) refers to the ability to associate a user’s connection to a
particular instance, directing all subsequent user traffic back to the
same instance that the first connection from the user was sent to.
Applications can then store session state information (username and
ID, for example) in the instance, allowing easier application design and
better performance.

 ✓ Domain name assignment: Even though ELB assigns a DNS name to
your ELB, you wouldn’t want all of your customers who want to contact
your corporate website to have to enter LB1-26746260.us-east-1.
elb.amazonaws.com in their browsers. ELB makes it easy for you to
associate a more user-friendly domain name (www.yourcompanyname.
com) to the ELB DNS name, allowing user traffic automatically to be redi-
rected from your domain name to the highly scalable ELB.

 ✓ Instance health monitoring: AWS monitors instances registered with an
ELB; if an instance stops performing, the ELB automatically stops send-
ing traffic to it. This prevents traffic from being directed to an instance
that won’t respond and reduces the likelihood of having dissatisfied
application users.

 ✓ Support of autoscaling: AWS offers autoscaling, which uses application
load to automatically trigger additional instance launches to support
application traffic. If you configure your application to use autoscaling,
AWS automatically adds (or subtracts) instances as necessary.

193 Chapter 8: Additional Core AWS Services

 Instance IP addresses are ephemeral: AWS assigns each new instance an IP
address at random. If you stop and restart an instance that’s registered with
the ELB, therefore, the ELB is unaware of the new instance and, consequently,
doesn’t send traffic to it. The right way to handle this situation is to deregister
instances upon shutdown and to be sure to register new instances on start-up.
(The AWS Auto Scaling service also alleviates this issue; Auto Scaling is cov-
ered in Chapter 10.

ELB scope
ELBs are regional in scope. This concept is quite important to understand in
that an ELB cannot distribute an application’s traffic across multiple regions.
To distribute traffic across multiple regions, you should look at other solu-
tions, including the use of one of the load balancer products available as
images within AWS.

ELB cost
ELB cost varies by region, but, overall, the cost of ELB is quite reasonable.
An ELB costs, per hour (depending on region), between $.028 and $.034. There’s
also a traffic charge for ELBs, which runs between $.008 and $.011 per gigabyte.

Route 53
Route 53 is Amazon’s own Domain Name Service (DNS). A DNS pro-
vides a straightforward, yet crucial service by translating domain names
(www.example.com) to IP addresses of specific computing resources
(71.57.3.17). Computing resources communicate by sending packets to
specific IP addresses, so knowing the right IP address for a given computing
resource is critical. On the other hand, humans have difficulty remember-
ing — or even typing! — complicated sets of numbers, which makes an IP
address a poor choice for identifying computing resources. Humans easily
remember names, though, so DNS allows easily remembered names to be
mapped to difficult-to-remember IP addresses.

A domain name must be registered before you can use it, which makes sense.
It turns out that there are any number of DNS register services in the world;
you can go to any of them to register a specific domain name. Before you
can use a domain name you have registered, though, you must list it with a
DNS service that responds with an IP address whenever someone requests a
translation of the domain name.

DNS offers a hosted zone, which refers to the collection of definitions associ-
ated with a given domain name. For example, for the domain example.com,
www.example.com is a fully qualified domain name, or FQDN — it has a full
listing of the resource requested.

http://www.example.com

194 Part II: Diving into AWS Offerings

The hosted zone may have just the www record associated with the domain
name, but it’s more likely to have additional services as well. E-mail is a
common service and gets a mail.example.com FQDN record. Likewise,
additional services associated with the domain name would get additional
records as well. You can create a FQDN for your company documents called
documents.yourcompany.com, identify an IP address for that subdomain,
and place all your documents on a server at that address. Anyone who
entered documents.yourcompany.com in a browser would be directed to
that server to obtain any of your company’s documents.

As you may expect, a domain record can direct to a load balancer IP address,
which then distributes traffic meant for that subdomain to any number of
servers attached to the load balancer.

Every domain must have DNS name servers associated with it that serve as
the authoritative place to request the DNS lookup for a particular domain —
the process whereby a domain name gets translated to an IP address. Route
53 provides four DNS name servers that need to be identified to the domain
name register, so that requests for DNS lookup are sent to an appropriate
server to retrieve the right IP address.

So far, so good. As you can see, DNS is an incredibly useful service. If it didn’t
exist, the Internet as we know may not exist. But why does Amazon offer a
DNS product? After all, DNS existed before AWS, and it will certainly exist
long after AWS.

The answer is that, like so many other AWS products, Amazon wants to make
using DNS easier, and, by extension, make using AWS easier. Before Route
53, inexpensive (or even free) DNS products didn’t scale well, and scalable
DNS products cost a ton of money. With the rise of AWS and a whole new set
of webscale companies that have huge amounts of traffic but not that much
revenue (Pinterest, for example), there was a need for a highly scalable yet
inexpensive DNS product, especially because many of these webscale compa-
nies are hosted in AWS. After examining its global footprint of AWS regions,
Amazon recognized that it could step in and create a DNS offering to better
address these needs.

The critical aspect of Route 53 isn’t that it’s an innovative service — other
AWS offerings are far more clever, to be honest. Route 53’s selling point is
that it commoditizes an important building block of the Internet and makes
highly scalable DNS products available at a cost-effective price. DNS is the
type of service that typically is set up early in a company’s life or applica-
tion’s life and isn’t touched for months or years; it usually lurks in the back-
ground, quietly operating and resolving DNS requests with no problem. That
is, until a problem occurs, usually associated with insufficient scalability
or failed infrastructure (the name servers associated with a domain name
crash, for example), and then big-time problems pop up. Route 53 leverages
Amazon’s enormous infrastructure and resiliency to keep DNS humming
along.

195 Chapter 8: Additional Core AWS Services

 Saying Route 53 isn’t that innovative isn’t exactly right; by running its own
DNS service, Amazon is able to tune it to work better with the rest of its ser-
vices. For example, it can allow you to specify a load balancer for your FQDN
directly, rather than having to use a CNAME mapping; and, of course, that load
balancer can, yes, be an AWS Elastic Load Balancer.

Using Route 53
For the most part, using Route 53 is dead-simple. You register your domain
name with a domain registrar, list the name servers that your domain name
will use for address mapping, and then create subdomains and create zone
records that list your subdomains and the IP addresses you want serving the
subdomain service. Typically, this set-and-forget effort is completed early in
a company’s or application’s life and is rarely touched thereafter. You’ll most
likely use the AWS Management Console for this particular task.

 Amazon limits calls to the Route 53 API to five per second per account, so if you
have an application with many instances within it, you should have the instances
configured so that they retry their DNS calls in case of a failed response due to
such API limitations. (The technical term for these limitations is API throttling.)

Route 53 scope
Router 53 is a global service. Amazon uses its data centers spread through-
out the world to execute Route 53 calls so that when you perform a Route
53 action, it executes it so that the information is available throughout all
locations in which it hosts Route 53. One clever aspect of Route 53 is that
it tracks the location of requests to the Route 53 service and serves up the
response from the AWS data center that’s closest to the requestor. In this
way, Route 53 reduces to a minimum the network latency for DNS lookups.
You don’t have to do anything to leverage this geographic distribution; AWS
takes care of it for you.

 AWS offers a cool feature that extends its geographic distribution. You can
host your application in several regions, and DNS lookups for your application
automatically return an IP address associated with the region nearest to the
user. Amazon refers to this as latency-based routing, and it’s designed to mini-
mize network latency for your application’s users.

Route 53 cost
Route 53 is quite cost-effective:

 ✓ $.50 per hosted zone for the first 25 zones and $.10 per hosted zone
above 25 zones

 ✓ $.50 per million DNS queries for the first billion queries per month and
$.25 per million DNS queries above a billion

 ✓ $.75 per million latency-based queries for the first billion queries per
month and $.375 per million queries above that amount

196 Part II: Diving into AWS Offerings

CloudFront
The issue of latency — the length of time a network request takes to complete
its roundtrip — is always a big deal as it relates to network traffic. If it affects
minor elements, such as DNS queries, which are quite small and don’t even
require a great deal of bandwidth, you can imagine how much it affects actual
content — factors such as documents, images, and (heaven forbid) videos.
When the Internet first became popular, all content was served up from the cen-
tral web server; user requests were often served from locations halfway around
the world. The impact on latency by sending packets a long distance — and via
so many different routers — created a lag in user performance. It wasn’t long
before latency became a major issue because large websites that used traffic to
sell ads or perform e-commerce transactions found that people became frus-
trated by slow websites and simply abandoned them.

The solution to this problem occurred with the creation of the content deliv-
ery network (CDN), which places servers around the world and allows com-
panies to locate their data on the servers. For example, a company located
in the United States could use a CDN to place images in Australia; when an
Australia-based user accessed the U.S.-based website, the pages were sent
(provisionally) without images, and the images were then placed into the
pages on their arrival in Australia. This approach allows important or change-
able data to reside in the central location and allows static or infrequently
changed large content files to be located near the user.

Overall, the use of CDNs can reduce network latency enormously. As you may
expect, their use has grown significantly over time. A number of large CDN
providers now provide thousands of endpoint locations around the world.
These highly sophisticated solutions can be used to reduce latency for web
applications, with users able to specify exactly which geographic locations
should be the final destinations for distributed content. On the other hand,
one common challenge regarding CDNs is their complexity, which brings
these issues to the fore:

 ✓ CDNs require sophisticated configuration and tuning. These “high-
maintenance” needs tend to limit the use of CDNs to larger, more techni-
cally capable IT organizations that can devote a resource to learning the
ins and outs of the product.

 ✓ CDNs can be expensive to use. Sticker shock makes them difficult to
afford for small companies and even small groups or projects within
larger organizations.

 ✓ CDNs are typically sold in an enterprise fashion. By enterprise, I mean
that customers have to make a lengthy commitment to the service, esti-
mate total usage over the length of the contract, and interact over an
extended period before starting to use the service.

197 Chapter 8: Additional Core AWS Services

 ✓ CDNs can be overkill. If your organization wants improvement in
latency but isn’t looking to implement a highly sophisticated solution, a
CDN isn’t the best option.

In sum, CDNs are incredibly important and useful, but many who could
potentially benefit from the technology are prevented from leveraging them
because of cost and complexity issues.

Two years ago, Amazon launched its attempt to address this dispiriting
state of affairs: CloudFront. CloudFront is easy to use and inexpensive, and
it makes CDN technology available to entire new user bases that were previ-
ously unable to use existing CDN solutions.

CloudFront features these capabilities:

 ✓ It serves both static and dynamic content from CloudFront. Static
content is served by S3, whereas dynamic content is served from EC2
instances. Static content can be downloaded or streamed to the content
user.

 ✓ It supports three content protocols — HTTP, HTTPS, and RTMP. You’d
expect HTTP and HTTPS, but RTMP — the protocol used to stream
Adobe Flash–based videos — is a nice addition.

 ✓ Content can be made publicly available or restricted to certain users.
Content control is helpful in situations where you want to make content
available only to employees or company partners.

 In a further extension of this content-control feature, you can create
an Origin Access Identity (OAI) to restrict access to your CloudFront
objects so that only someone getting a special URL can access the
object. The access can be further restricted to only being available to
access from specific IP addresses and for a limited time to the special
URL. This controlled access is typically used by organizations for com-
mercial reasons to ensure that content access is restricted to subscrib-
ers or made available for a limited time.

 ✓ Content can be set with an expiration date. It’s an easy way to set
things up so that, after a certain date, the content is no longer available.
For short-lived content, such as certain kinds of marketing campaigns,
this enables control of how long the content is available or ensures that
content that is served up by CloudFront is the most recent version (or
“freshest,” in CDN-speak).

 ✓ Content access can be logged. The ability to log content access means
that the content owner can easily track how CloudFront data is being
used.

198 Part II: Diving into AWS Offerings

Using CloudFront
In contrast to the more established commercial CDN alternatives, using
CloudFront is straightforward. You merely use the AWS Management Console
or API to define a distribution. You then associate the distribution with the
origin of the content. The origin can be either S3 or EC2; I focus on S3 here. If
you want, you can set additional restrictions as discussed earlier, along with
an expiration period, which is 24 hours by default. You set permissions on
the origin to allow public access (unless you want to restrict permissions so
that only certain people can access the content). That’s it.

CloudFront returns an identifier URL for you to use to enable access to your
content. The identifier takes a form similar to this:

d111111abcdef8.cloudfront.net

You use this identifier along with the name of the specific object you want
served up to deliver it from CloudFront. So you may identify a JPEG image of
a cat on your website as d111111abcdef8.cloudfront.net/catimage.
jpg. When someone accesses your website and wants to see a picture of the
kitty, the call to that URL would return the image from the nearest location to
the requestor.

 You can create a CNAME alias to make the CloudFront identifier appear as
though it’s part of another URL. You can then map the CloudFront identifier I
just mentioned to mask your use of CloudFront:

www.yourcompanydomain.com/images

For more information on CNAME DNS records, check out Chapter 7.

That’s all that’s required to set up a CloudFront distribution. When some-
one accesses an object that’s part of a CloudFront distribution, CloudFront
checks to see whether the object is located in a CloudFront cache near the
requestor. If the object is in the cache, CloudFront serves it up from there.
If it isn’t in the local cache, CloudFront fetches it from the Origin S3 bucket
and brings it into the local cache and then serves it up to the requestor.
Thereafter, CloudFront returns the object from the local cache for requests
that are geographically nearby. If the expiration time on the object copy in
the local cache has passed, CloudFront checks to see whether the Origin
object has changed. If it has, it fetches the object into the local cache; if not,
it returns the object copy that’s in the local cache.

Amazon offers CloudFront from around 40 places (edge locations) around
the world, including North America, South America, Europe, and Asia. The
number of locations is fewer than some of the big-name competition, but
CloudFront performance appears to be satisfactory for most end users.

http://www.yourcompanydomain.com/images

199 Chapter 8: Additional Core AWS Services

CloudFront scope
CloudFront itself is a global service — using it automatically places content
around the world (excepting any edge locations that you identify as wishing
to not have your data placed in). The source of the CloudFront data is region-
ally scoped; so, for example, you may use CloudFront to distribute your video
content throughout the world, so it would be globally available; however, the
bucket that contains your video is located in a particular region.

CloudFront cost
The cost of network traffic from CloudFront is only slightly higher than the
cost to stream the same traffic directly from S3. For the first 10 terabytes
(TB) of network traffic per month, the cost ranges from $.12 (North America)
to $.25 (South America). This fee drops to as low as $.02 at volumes above 5
petabytes (PB).

In addition to network traffic, Amazon charges for access requests, on a per-
10,000 access request basis, ranging from $.0075 (North America) to $.016
(South America). Access requests are pretty much what they sound like —
requests to retrieve data managed by CloudFront.

You can reduce your network traffic costs if you restrict the number of edge
locations that your content is cached in, and you can save money by commit-
ting to a certain volume of traffic each month.

 Though CloudFront pricing is certainly attractive, Cloudfront’s true selling
point is its reputation for flexibility and ease of use when compared to the
established CDN providers.

Hudl runs on AWS
One of the most interesting aspects of AWS is
how it enables innovation and the development
of companies that leverage AWS to create new
businesses — and the new businesses often
take advantage of different services as their
basis.

The growth of inexpensive bandwidth and stor-
age has jump-started online video — as anyone
who has watched YouTube can testify. Though
YouTube mostly represents the world’s collec-
tion of consumer videos (all the cat videos you
could ever possibly want to watch, for example),

other companies use these factors as the basis
for commercial offerings, and many of them use
AWS extensively for their infrastructures.

One example of this kind of innovative start-up
is Hudl. You may not have heard of Hudl, but in
the world of high school football, it is a pow-
erhouse. Football uses video extensively, even
in high school, for player analysis, play review,
and opponent research. Traditionally, manag-
ing video at high schools is a pain — it’s expen-
sive, uncoordinated, and hard to access. Hudl
came along and changed all that.

(continued)

200 Part II: Diving into AWS Offerings

Relational Database Service (RDS)
The AWS relational database service (RDS) is set up for a single purpose:
to make it easier to run relational databases in AWS. Though that purpose
seems obvious, it’s important to understand Amazon’s motivation for creat-
ing the service.

Though the use of nonrelational databases (also known as NoSQL databases,
as witnessed by Amazon’s own DynamoDB service) is growing, an enormous
percentage of applications throughout the world rely on relational databases.

Traditionally, companies employed database administrators to handle the
administrative tasks associated with running a relational database: configur-
ing them, backing them up, and monitoring resource consumption and per-
formance, for example. This approach has only two problems: It’s expensive
and it’s error-prone. Nevertheless, companies continue using this approach
because, well, because that’s the way it’s always been done — and even
though the typical tasks of a typical database administrator are the same,
day in and day out.

It’s exactly the kind of opportunity that Amazon looks to address, so it
created RDS to help companies take advantage of a less-expensive way to
manage their database needs. Left unstated are two other reasons Amazon

(continued)

High school practices and games are now
recorded by local high school representatives,
who then upload their videos to Hudl. Hudl
stores all the video, tags it with player identi-
fication, and creates a database listing every
player with all his videos. Someone who wants
to scout a player or an upcoming opponent can
go to Hudl and easily access the appropriate
video from a centralized location rather than
root around in a dozen different sites.

Behind the scenes, Hudl is a completely
AWS-based application. It not only uses EC2
and S3 for compute and storage but also
bases its entire video streaming distribution
on CloudFront — every video is stored in a
CloudFront-enabled S3 bucket. When some-
one accesses a specific video, AWS identifies
the nearest Amazon edge location to the video

requestor and streams the video from that loca-
tion. In this way, Hudl achieves the best pos-
sible streaming performance.

The striking aspect of Hudl is how big it is. As I
said, you may not be familiar with the company,
but it’s a big deal in its domain. Every month,
Hudl serves up 600 million videos to its users
from its 500 terabytes of video, which totals 1. 8
petabytes of network traffic. To me, this scale of
operation is mind-boggling; perhaps most strik-
ing is that, despite Hudl’s scale, it isn’t even a
large AWS customer.

The easy access and low cost of AWS enables
thousands of innovative start-ups to get a foot
in the door. Though IT resources once repre-
sented a barrier to entrepreneurship, that bar-
rier has fallen, thanks to Amazon.

201 Chapter 8: Additional Core AWS Services

may offer RDS: Using automation to avoid errors stops people from making
mistakes and blaming Amazon for security problems with their poorly admin-
istered databases, and it helps AWS users consume more AWS — and makes
Amazon more money.

RDS is breathtaking in its simplicity, as this list of features points out:

 ✓ It supports MySQL, SQL Server, and Oracle. I’m talking about three
popular relational databases here.

 ✓ Any required patches and updates to the database software are made
by RDS.

 ✓ RDS makes backups of the database according to a schedule you set.
All backups are stored in S3, where they can be retrieved at any time.
(Amazon also performs EBS snapshots to enable database transference,
if you want.)

 ✓ RDS can be run on different instance types. This flexibility ensures that
you have sufficient processing power to support the database perfor-
mance that your application requires, and that you can scale up or scale
down as your needs change.

 ✓ RDS storage can be standard or Provisioned IOPS. You can choose the
latter storage type if low latency is a critical requirement for your appli-
cation.

 ✓ In the case of MySQL and Oracle, RDS lets you seamlessly increase the
amount of storage associated with your RDS service. Unlike traditional
database administration, where deploying additional storage to a data-
base is an extended, complex operation fraught with anxiety, RDS makes
the process pain-free.

 ✓ RDS supports multi-instance deployments with a master/slave arrange-
ment, increasing performance and system resiliency. The master and
slave can be placed in separate AZs to further increase resilience. If a data-
base instance crashes, Amazon automatically restarts a new RDS instance
and any associated read replicas configured for the RDS instance.

Using RDS
Using RDS is quite straightforward. You can use the AWS Management
Console or API to create a database security group, which identifies which IP
address (or addresses, which can be defined using a CIDR group) can access
the RDS database instance.

After configuring the instance by defining which kind of database you want
RDS to manage — along with instance size, licensing conditions, and backup
frequency, for example — you launch the database instance. Upon success-
ful launch, AWS provides a unique URL for your database instance that’s
used to communicate with it. From that point on, you use your RDS database
instance as you would a typical database.

202 Part II: Diving into AWS Offerings

RDS scope
Because RDS is a regionally scoped service, RDS databases run inside a given
region. Unless the multi-AZ option is selected, the database instance runs
inside a single AZ, which you can choose. Use of the database instance URL
within the region (from EC2 instances within the region, for example) keeps
network traffic within AWS, and you incur no traffic charges. Access from
outside the region incurs outbound traffic charges.

RDS cost
RDS imposes a few types of charges:

 ✓ Instance charges: You pay a charge for every RDS instance, just as you
pay for standard EC2 instances. AWS charges more for RDS instances
than the comparable EC2 instance; you can think of the difference
in cost as a surcharge for the convenience of RDS. A small, standard
MySQL instance costs $.09 per hour, whereas the comparable EC2
instance is $.065 per hour, indicating a $.025 “uplift” for the RDS service
itself. The uplift is higher for larger instances, as you may expect.

 You can reduce the overall cost of your RDS database instances by using
reserved database instances, which operate similarly to EC2 reserved
instances.

 Multi-availability zone deployments incur a larger charge, which makes
sense, given that you’re running multiple instances. If you use RDS with
a commercial database support option, there’s a further additional
charge to cover the database’s licensing fees.

 ✓ Storage: You pay for standard or Provisioned IOPS storage at normal
rates; normal storage is $.10 per gigabyte per month, whereas
Provisioned IOPS is $.125.

 ✓ Network traffic: You pay standard network traffic rates for data flowing
from the database instance. Inbound traffic incurs no charge, whereas
outbound traffic starts at $.12 per Gigabyte and declines with volume.

That’s it. Really, RDS is so simple and imposes so little extra expense that it
doesn’t seem worth it to manage your own database setup. RDS adoption is
skyrocketing as more and more companies gauge the value that RDS offers
versus the minimal incremental cost.

ElastiCache
The most common performance bottleneck for webscale applications is the
database. It’s really a reflection of the laws of physics — queries against
databases end up reading data from a spinning disk, which imposes delays

203 Chapter 8: Additional Core AWS Services

because of disk rotation speeds and data transfer speeds, not to mention
the overhead of relational database queries. Some tricks can be applied to
address this issue; for example, you can set up a master/slave database con-
figuration or set up more slave database servers. At a certain point, however,
the overhead of updating all those slave database servers outweighs the per-
formance gains they provide.

Amazon offers some solutions that can be used to mitigate database perfor-
mance issues. You can use the high-performance instances — the ones that
have solid-state storage rather than disks. You can also switch to using the
DynamoDB service, which offers a high-performance, key-value database that
runs on solid-state storage instances. But what if you want to stick with the
relational database model but need better performance than you can get with
master/slave-based systems?

The answer is caching — placing data in high-performance memory so that
frequent queries are served without having to go out to a spinning disk to be
retrieved. You may have seen the use of caching earlier in this chapter, in
my discussion of CloudFront. Database caching uses the same technique to
solve a different problem; whereas CDNs are designed to address the issue
of accessing data in widely dispersed locations, database caching is used to
address the issue of accessing data in centralized locations that require a
solution beyond hard drives.

A decade ago, an engineer working on an early webscale application recog-
nized the potential for caching to address his database performance issue;
his solution is called memcached.

What’s the secret to memcached? Essentially, rather than repeatedly query
a database to provide the same information to a specific user or to multiple
users who want the same data (a list of today’s blog entries on an industry
news site, for example), you use memcached to store data that’s repeatedly
accessed in a set of servers that are configured to store the data in memory.
(That’s the mem part of memcached.) After the initial retrieval of the data
from the database, subsequent queries go to memcached to retrieve the
data, thereby achieving much higher levels of performance.

The genius of memcached is that it can be used to accelerate application
performance dramatically but doesn’t require significant application changes
to be implemented — in other words, little application pain, much applica-
tion gain. The primary change is that database queries add a step before the
database query to see whether the necessary data is in memcached; if it is,
it’s retrieved from memcached; if not, it’s retrieved from the database and,
before being returned to the requesting application, is placed in memcached.
This enables subsequent queries to find the data in memcached and avoid
accessing the database.

204 Part II: Diving into AWS Offerings

Memcached is widely used in many applications to improve performance —
Wikipedia, Twitter, Flickr, and Craigslist all incorporate memcached in their
application architecture. For many of the webscale applications that run on
AWS, memcached would be an excellent performance tool.

As with so many other useful technologies that I discuss, even though it’s
extremely valuable, memcached can be a burden to install, configure, and
manage. Therefore, you shouldn’t be surprised that Amazon rolled out a ser-
vice it calls ElastiCache, designed to make using memcached easier.

 ElastiCache is protocol-compliant with memcached — it supports the same
commands as memcached, and existing language libraries that work with
memcached also work with ElastiCache. This benefit is important because it
means an application can be migrated to ElastiCache without modification.

Perhaps a good way to think about ElastiCache is that it’s similar to RDS: an
Amazon-managed, operations-simplified service to make services commonly
required by many applications both easy and inexpensive to use.

ElastiCache offloads the administrative overhead of running a caching ser-
vice by

 ✓ Creating the server pool based on commands issued via the AWS
Management Console or API: The server pool can be arbitrarily large,
composed of servers ranging from micro-instances (213MB of memory
per node) to High-Memory Quadruple Extra Large instances (68GB
of memory per node). The number of nodes is limited to 20 per AWS
account, but more can be requested if needed.

 ✓ Managing the pool to ensure caching server availability: If a server
crashes or becomes unavailable, it automatically starts another to
replace the failed server. . (Note that this service is available only with
caches contained in a single AZ; spreading a cache geographically is not
supported).

 ✓ Automatically patching servers with necessary software changes and
migrating your data from an unpatched version to a new, patched
version: This occurs at infrequent intervals, although at a time and
weekday you define, which should be during a low-load period. During
this maintenance window downtime, your application retrieves all data
directly from the database instead of from ElastiCache.

 ✓ Allowing you to grow or shrink the pool with a simple command: It
rebalances your data across the larger or smaller number of servers, all
without interrupting service.

205 Chapter 8: Additional Core AWS Services

Using ElastiCache
ElastiCache is straightforward to use. Using either the AWS Management
Console or API, you define the initial ElastiCache configuration, choosing
the type of servers you want (in terms of memory capacity) and the number
of servers you want in the ElastiCache pool. You then have to associate an
ElastiCache security group with one that’s associated with your account.
After you finish this configuration work, Amazon returns an endpoint iden-
tifier — a resource name that your applications use to interact with your
ElastiCache pool. Using this endpoint identifier, you can then create and
retrieve ElastiCache records using key-value techniques.

 Why do you have to create an ElastiCache security group and associate it
with an account security group? ElastiCache is a service that’s separate and
distinct from the account used by your applications. It has to be configured to
accept traffic from your account, which is why it has its own security group
that must be associated with a security group from your account — and pre-
venting your ElastiCache pool from being accessed by anyone else.

ElastiCache scope
ElastiCache is available in all AWS regions.

ElastiCache cost
ElastiCache imposes a cost per server for each server within an ElastiCache
pool, ranging from $.022 per hour (micro-instance type) to $2.02 per hour
(Quadruple Extra Large type — 64GB memory). Prices vary somewhat by
region.

In addition to the server charges, you face network traffic charges for traffic
between an EC2 instance in one AZ and an ElastiCache pool in another AZ.
The charge is $.01 per gigabyte of data transferred. Each account can transfer
15GB of traffic per month at no charge.

Integrating Additional AWS Services
into Your Application

One major benefit of Amazon’s approach to application services is that it
provides them on a use-if-you-choose basis. Nothing prevents you from
using another product or service to implement identical functionality to that
offered by one of Amazon’s services — even if you decide to run that product
or service in AWS.

206 Part II: Diving into AWS Offerings

Two tasks are present in using an AWS core services in your application:

 ✓ Create and configure the service itself.

 ✓ Use the service from within your application.

With respect to the first task, it’s typically much easier to use the Amazon
alternative for a given service compared to setting up your own. For example,
filling out a brief wizard to create, say, a large memcached pool and letting
Amazon take care of creating the instances, installing the memcached soft-
ware, configuring them to talk to one another, and managing their uptime, for
example, is far easier than performing all those tasks yourself.

I’m not even mentioning the fact (okay, I am) that your interest is in the func-
tionality of the service, not in managing the service per se. In other words,
if you do it yourself, to gain the benefits of the core service, you have to do
all the work yourself. By contrast, using the Amazon variant, you gain the
benefits of the service without needing to invest any of your precious time
administering it.

Depending on your valuation of your time, you can make an evaluation of the
financial benefits of allowing Amazon to take on responsibility compared to
the cost of the Amazon service. I believe that in most cases you’d be better
off using the Amazon service, financially speaking.

With regard to the second task — using the service from within your applica-
tion — Amazon’s approach to offering these services shows its intelligence.
Rather than create a different or comprehensive solution that requires you to
learn an offering-specific use model, Amazon has typically left the use model
undisturbed, or similar to the model used by the alternatives you would use
if you decided to implement the functionality yourself. For example, though
Amazon’s RDS service offers real benefits in terms of database administration
tasks, it imposes no change on you for interacting with the databases that are
managed by RDS.

It’s fair to say that the differences between the established products that
Amazon mirrors to create its core services and the Amazon variant is small
enough that using the core service isn’t especially difficult and doesn’t
impose a difficult learning curve.

This approach is quite different from the other one to these services, which
fall under the Platform-as-a-Service (PaaS) umbrella. In those offerings, simi-
lar functionality is offered, but it’s so tightly coupled to the PaaS offering
that using it requires learning a new approach and sometimes a completely
different method for achieving the same result as with established products.
As you can probably tell, I’m a strong proponent of the Amazon approach
because I feel that it offers the greatest productivity and financial benefits
while imposing the smallest disruption in application design and implementa-
tion or skill building.

207 Chapter 8: Additional Core AWS Services

Choosing the Right Additional AWS
Service Integration Approach

Taking the right approach to choosing AWS core services to leverage is
important. These services are enormous boosts to productivity, but integrat-
ing them into your application needlessly doesn’t make sense. Here are the
guidelines I recommend:

 ✓ If this service area is one in which you have no expertise, rely on the
AWS experts to run it. We all are pressed for time, and learning a new
skill while under the gun is inefficient and pointless. You’re unlikely to
be better at it than Amazon is, and you can invest your time more pro-
ductively in areas where you have the expertise.

 ✓ If this service area doesn’t provide unique functionality or differenti-
ate your application, rely on the AWS service. Though your applica-
tion may be much more satisfying to your users if you have its content
locally cached, nobody will buy your service because you personally
implemented a set of geographically distributed servers to support low-
latency access. You’ll be better served by focusing on what’s in the con-
tent, not on how the content is delivered. Rely on CloudFront for what
it’s good at, and direct your energies toward something that provides
user value.

 ✓ If this service is one that you aren’t certain you can provide signifi-
cantly less expensively than Amazon can, rely on Amazon to imple-
ment it. Most IT organizations are terrible at estimating their true costs
to deliver a service, and if there’s even a chance that Amazon may be
more cost-effective, you’re better served by leveraging AWS, because
Amazon likely runs it far less expensively than you can.

Dealing with AWS Lock-in
Some people are concerned that, by using some of the AWS core (or for that
matter, extended) services, they’re locked in to AWS for all eternity. That is
to say, it will be difficult to shift an application from AWS if they use other
AWS services.

Though lock-in is a fair concern — and one that’s a perennial worry for IT
organizations — I believe that, for most people, the benefits of using AWS far
outweigh the issues presented by the potential for lock-in. This statement is
true for these reasons:

 ✓ Acknowledge your concerns. When people use the term lock-in, most
are concerned that if they want to migrate their applications to another

208 Part II: Diving into AWS Offerings

location, they’ll be unable to do so. My first recommendation is to accu-
rately assess the extent to which your application is locked in — that
is, how much your use of AWS services forces your application to run
only in AWS. Several AWS services are useful no matter where your
application runs. For example, Route 53, the DNS service, can be useful
no matter where your application runs. Likewise, CloudFront, the AWS
CDN service, can be used even if your application runs elsewhere. In
fact, many applications that run in other cloud environments or within
on-premises data centers use CloudFront. Consequently, it’s important
to understand what and how much you’re truly locked in by your use of
specific AWS services.

 ✓ Design for portability. Make it easy to migrate your application. One
time-honored strategy for avoiding lock-in is to create and use an encap-
sulation layer rather than write directly to a provider API. That way, you
can place another set of API calls within the encapsulation layer without
disturbing the mainline code within your application. Given the fact that
Amazon’s services tend to mimic other functionality that you can obtain
by implementing software yourself (ElastiCache, for example), this strat-
egy is fairly easy to pursue within your application, and it’s certainly far
easier with AWS than with alternative PaaS offerings.

 ✓ Always understand both sides of the cost-benefit equation. People put
up with lock-in because of the benefits an offering provides compared to
the downside of a long-term commitment to the offering. Amazon offers
tremendous ease of use and cost effectiveness, so perhaps incurring
some lock-in is a trade-off that you’re willing to accept.

 ✓ Recognize the fear of financial gouging. The primary reason that
people avoid lock-in is a well-founded fear of being taken advantage of,
financially speaking. Traditionally, vendors, after achieving lock-in on
the part of their customers, inevitably and rather ruthlessly exploited
that commitment to increase their financial performance. Fees for forced
upgrades, application modules that the customers had no desire for
but were forced to pay for as part of a version upgrade, or arbitrarily
increased maintenance fees are part of the litany of customer com-
plaints about lock-in. Though there’s no way to predict what Amazon
may do, to this point its prices have always headed downward — people
now pay roughly one-half to two-thirds for an EC2 instance than they did
three years ago. Certainly, it’s always wise to be concerned about poten-
tial financial gouging, though it hasn’t been an issue with AWS.

Part III
Using AWS

 Check out the article “Pearson OpenClass Runs on AWS” (and more) online at www.
dummies.com/extras/amazonwebservices.

http://www.dummies.com/extras/amazonwebservices
http://www.dummies.com/extras/amazonwebservices

In this part . . .
You have an opportunity to explore AWS in a hands-on manner. You’ll
start with the basics — locating an AWS application that you will
use as the basis for your exploration. But you’ll move far beyond
that. You’ll learn about setting security, connecting to your running
application, and even how to easily modify it with additional AWS
services to improve its robustness and performance.

 ✓ Take advantage of opportunities to explore AWS in a hands-on
manner.

 ✓ Learn about setting security for your running application.
 ✓ See what’s what with AWS networking.
 ✓ Find out how easy it is to modify your application with addi-

tional AWS services to improve its robustness and
performance.

 ✓ Check out the article “Pearson OpenClass Runs on AWS” (and
more) online at www.dummies.com/extras/amazon
webservices.

http://www.dummies.com/extras/amazonwebservices
http://www.dummies.com/extras/amazonwebservices

Chapter 9

AWS Platform Services
In This Chapter
▶ Sorting out the AWS platform services
▶ Seeing what CloudSearch can offer
▶ Managing video formats with Elastic Transcoder
▶ Making your way through the Simple services
▶ Managing big data with Elastic MapReduce
▶ Data warehousing with Redshift

A
mazon Web Services (AWS) gives you the core services S3, EC2, and
Amazon EBS and then all the additional services I cover in Chapter 8,

such as IAM, ELB, and Route 53. The AWS platform services, however, are the
focus of this chapter — they dial up the level of sophistication, by concen-
trating on these three areas of functionality:

 ✓ Services that provide additional application functionality: For exam-
ple, Amazon’s Simple Queue Service (SQS) provides functionality to
enable asynchronous communication between your application and its
users or perhaps another application. I call them extended services.

 ✓ Additional applications that commoditize traditional software offer-
ings that are important but have typically been expensive and com-
plex: An example is the recently launched Redshift business intelligence
application. Many established vendors occupy this space, and their
applications have two characteristics in common: They cost a lot, and
they’re difficult to use. Redshift aims to simplify the building and run-
ning of a business intelligence application and to make it much less
expensive to operate.

 ✓ AWS management tools: The AWS API and Management Console are
useful for managing specific AWS services (individual EC2 instances, for
example), but they don’t provide much help in managing an aggrega-
tion of AWS resources that make up an application. How can you define
and manage the collection of resources that comprise your application?
Amazon offers three separate tools: Elastic Beanstalk, CloudFormation,
and OpsWorks. You should understand the differences between them so
that you can select the right one.

212 Part III: Using AWS

 AWS platform services offer the same benefits (and generate the same prob-
lems) as the core services. Though they provide useful, easy-to-use functional-
ity at a reasonable price, they present the potential for lock-in — the
investment of so many resources in a solution that changing course is almost
impossible. In fact, the lock-in potential is probably greater for platform ser-
vices because they’re more closely tied to the AWS environment than many of
the additional AWS services discussed in Chapter 8. Therefore, you must care-
fully evaluate whether the benefit you receive by embracing these services
outweighs any concerns you may have regarding AWS lock-in.

Searching with CloudSearch
Search is one of the most useful capabilities on the web, and huge businesses
have been built on search. (Ever hear of Google?) However, not all searches
need to cover the entire Internet, and some searches shouldn’t be public.
For example, you may want to make content on your company’s website
searchable — or limit who can see the results of a search.

The challenge for many companies that want to enable search on their web-
sites or other content repositories is that the quality of the typical search
tools associated with content management systems is, to put it bluntly,
awful. The situation is worse for companies that want to make a content
repository — a big collection of documents dropped down into a file system,
rather than an actual content management system — searchable. These envi-
ronments have no search mechanism (no matter how flawed) available.

Traditionally, if you wanted to make a sophisticated search capability avail-
able for your content, whether contained in a content management system
or plopped down in a disorganized content repository, your options were
unappealing:

 ✓ Buy expensive proprietary search software and use it to organize
search capabilities for your content. This option requires a large finan-
cial outlay and makes sense only for high-value content.

 ✓ Download and use open source search software, which is both capa-
ble and inexpensive. This option makes search financially viable for
content that isn’t necessarily high-value but can be made more useful
with search capabilities.

The downside is that you still have to

 ✓ Locate hardware on which to install the search software. You may
have to purchase equipment to support your search software.

213 Chapter 9: AWS Platform Services

 ✓ Install and configure the search software on the hardware you obtain.
You need to have detailed knowledge of the search software. Most
people have little expertise in this arcane area, but it can’t be avoided if
you want to enable search on your content.

 ✓ Manage the hardware and software to ensure that your search soft-
ware remains up and running. If your content repository grows to the
point that the indexes associated with it outgrow the hardware you
obtained originally, you’re back to the same (unappetizing!) buy-hard-
ware-and-configure-the-software routine you started with.

Obviously, this situation is unsatisfactory — and ripe for disruption. Amazon,
sensing an opportunity, launched CloudSearch early in 2012. CloudSearch
is based on technology that Amazon uses on its own website, which should
indicate its capability as well as its scalability.

 CloudSearch is based on A9, a search company that Amazon incubated a
number of years ago, when it realized that the ability to search — and search
accurately — would be important to its business. A9 is used for searching on
Amazon and its subsidiaries. Though the original A9 focused on text search
and relevant results, the A9 technology team has branched out to image
search and social search, a category that relies on user interaction to add con-
text to regular text search.

CloudSearch is capable of searching structured content, such as word pro-
cessing files, and unstructured content — commonly referred to as free text,
or unstructured collections of text-like web pages or forum posts.

Using CloudSearch is relatively straightforward, though a bit tricky to under-
stand. The content you want to search has to be indexed (the data within the
content is evaluated so that individual words can be located) so that indexes
about the word (as well as the documents associated with the word) can be
built. For example, if you want to be able to search a large number of docu-
ments about zoos, you need to build an index so that in a search for the word
elephant, the search software can return every document containing the
word elephant.

You upload the data you want to search into a CloudSearch domain, where
the given domain name is the name of a searchable documents database. For
data uploads, CloudSearch uses SDF (short for Search Data Format). Though
CloudSeach can create SDF on the fly for certain types of data, such as PDF
and Word files, for others you have to create the SDF documents yourself in
order to upload your data. SDF documents can be formatted in either XML
or JSON — two common standards for describing data collections. An SDF
record is nothing more than a formatted set of key-value items describing the
data you want to be able to search on.

214 Part III: Using AWS

After you upload the SDF documents, CloudSearch analyzes them and creates
indexes of all the items you’ve indicated you want to be able to search on.
For example, if you create a set of SDF documents outlining all players in a
sport for a given year, you may search on the position played or the number
of games played in the year. CloudSearch creates indexes on all fields you
identify as searchable. Then you can execute searches against your domain
on the fields you’ve identified as searchable.

You must also create access policies, which are analogous to EC2 secu-
rity groups. You define the IP addresses that you want to allow access to
CloudSearch, for both search access and domain administrative access.
(Typically, you’d allow all IP addresses to search via CloudSearch because
the most common use case is allowing visitors to a website to search infor-
mation on the website, but you may restrict search access to employees of
your company or a small number of partners.)

Though you can execute searches from the AWS management console,
the most common search is conducted via the CloudSearch API or the
CloudSearch CLI (command-line interface). If you’re adding search capa-
bilities to a website, you use the API method to perform searches on your
CloudSearch domain.

CloudSearch resources
CloudSearch maintains a high performance level by keeping all indexes
you’ve created within the memory of EC2 instances. Now, the obvious ques-
tion is exactly how many EC2 instances will the CloudSearch domain require?
This number, however, isn’t one that you control; AWS automatically cal-
culates how many instances your search domain requires and their size.
CloudSearch supports three instances sizes: Small, Large, and Extra Large. If
required, CloudSearch splits your domain indexes across multiple instances
in order to retain them in memory and support fast search performance.

CloudSearch scope
CloudSearch is regionally scoped, which affects where you deploy your
CloudSearch domain. If the website you’re enabling with CloudSearch is in
a particular region, there’s no fee for network traffic if your CloudSearch
domain resides in the same region. Of course, given that CloudSearch is
accessible via an AWS API, searches can be executed from anywhere on the
Internet, as well as within other AWS regions.

CloudSearch cost
Here are the hourly instance prices:

 ✓ Small search: $.10 per hour

 ✓ Large search: $.39 per hour

 ✓ Extra Large search: $.55 per hour

215 Chapter 9: AWS Platform Services

And here are the data transfer prices per month:

 ✓ First 10TB: $.12 per gigabyte

 ✓ Next 40TB: $.09 per gigabyte

 ✓ Next 100TB: $.07 per gigabyte

The issue of traffic prices may not be significant, because search results
return text documents (both XML and JSON are text-based), which do not
require much network traffic to send, so your traffic charges will probably
not be that high.

You face incidental charges for batch uploads and re-indexing, which
shouldn’t add significantly to your overall CloudSearch bill.

Managing Video Conversions
with Elastic Transcoder

Elastic Transcoder, a relatively new service (started in 2013), is conceptually
quite simple: It converts video files from one format to another.

PBS runs on AWS (CloudSearch)
If you’ve joined the Downton Abbey craze
on public television, you know how popular
PBS is. PBS presents quality programming on
public television stations throughout the United
States, and it’s renowned as the home of many
highbrow British dramatic series. Part of the
PBS strategy is to complement successful
series with additional material and video con-
tent so that it can build more loyal audiences
and increase viewership.

PBS offers streaming video on the web; in addi-
tion, over the past few years it has begun to
offer streaming video to portable devices like
mobile phones and tablets. For all the video PBS
serves up, it uses AWS. PBS not only uses EC2
and S3 for processing and hosting videos but

also leverages CloudFront to distribute video
content — up to a petabyte of content every
month.

More recently, as part of an initiative to more
deeply support mobile devices, PBS has placed
additional emphasis on creating mobile appli-
cations. Part of this mobile initiative requires
better-quality searching to enable users on lim-
ited form factors to still be able to find and enjoy
targeted video content. As part of this mobile
initiative, PBS uses ElasticSearch to enable
search. ElasticSearch offers greater scalability
and better performance, and it frees PBS per-
sonnel from having to manage search software
and infrastructure.

216 Part III: Using AWS

Video transcoding is a widely applied computing task. You’d have to have
been living under a rock not to have observed that video is everywhere.
Though people have used dedicated video-recording devices for more than
40 years, the rise of smartphones (initiated by the launch of the iPhone in
2007) has supercharged the video trend. Spurred on by the iPhone and, more
recently, the iPad, video-enabled smartphones and tablets have flooded the
market. Amazon even provides a family of tablets branded Kindle Fire. Every
one of them is now a video recording device.

The ease of sharing video via video-hosting services has skyrocketed as
well; at the time this book was written, 72 hours of video were uploaded to
YouTube every minute of the day. Though it may seem now and then that
all 72 of those hours feature cats in funny or heartwarming videos, the truth
is that video is now a communication medium used by all types of organiza-
tions for all kinds of purposes — entertainment, education, documentation,
evidence, and a thousand others.

For many video creators, this explosion of video presents an embarrassment
of riches — so many output devices are available, each of which has its own
preferred format, that making all the required versions of video to support
customer preferences is challenging. Thus, transcoding — the conversion of
one video format to another — is now a critical capability for video-produc-
ing entities. Being able to take a source video and prepare all the versions
required for widely used display devices is now critical for organizations that
want to leverage the power of visual communication.

AWS has been part of the transcoding mix for a long time. In fact, when
Netflix first started its video-streaming service, AWS was there as part of
its video-transcoding strategy. AWS combined with video transcoding is a
natural fit: S3 is a great choice to store the original and transcoded versions
of a video, and EC2 can naturally host the compute-intensive transformation
process. No statistics are available to indicate what percentage of total AWS
workload is represented by video transcoding, but it’s probably a significant
portion.

The workload associated with transcoding can be erratic — in fact, depend-
ing on the organization and the type of videos it creates, transcoding work-
loads may vary by as much as 1,000 percent over a given timeframe. If your
organization is using AWS for transcoding purposes, the service may be per-
fect from an ease-of-access point of view, but such highly variable workloads
impose significant management challenges. Translation? You’ll likely need
to grow and shrink your EC2 processing pool quite a bit to meet transcoding
requirements.

Given these facts, the launch of Elastic Transcoder was a foregone conclu-
sion: It helps organizations perform useful video transcoding in AWS but
removes the management overhead.

217 Chapter 9: AWS Platform Services

Elastic Transcoder, which is designed to simplify common transcoding tasks,
lets you designate videos that need to be transcoded and automatically pulls
individual videos from S3 storage, performs the transcoding operation, and
then places the transcoded versions into S3 storage.

Using Elastic Transcoder, you specify the characteristics of the output format
you want for your videos, though it also provides a number of preconfigured
popular output formats for iPhone, iPad, and, of course, Kindle Fire.

You can operate Elastic Transcoder from the AWS Management Console, but
it also offers a RESTful interface so that applications can call the service on
their own. The RESTful interface is likely to represent the majority of the ser-
vice’s use because many online video applications will transition to Elastic
Transcoder, given its ease of use. Amazon provides language SDKs (software
development kits) in a number of languages such as Python and PHP to
reduce the burden on developers; instead of having to call the RESTful ser-
vice directly.

Every transcoding job submitted to Elastic Transcoder is represented as a
JSON object, containing the name of the bucket that holds the file to be trans-
coded, a set of configurations that you want applied to the file (the output
formats you want, for example), and a location in which to place the trans-
coded video.

Elastic Transcoder operates quite simply:

 1. Identify the video(s) you want to convert.

 2. Create an Elastic Transcoder pipeline or use an existing pipeline.

 A pipeline in this context is simply a service endpoint to which jobs are
submitted. An AWS account can have several different pipelines, which
allows you to separate and prioritize transcoding tasks, if you want. You
can, however, have only one pipeline.

 3. Use AWS Identity and Access Management (IAM) to create a role for
Elastic Transcoder. (For more on IAM, check out Chapter 8.)

 This step enables Elastic Transcoder to access your resources (say,
video files in S3 buckets) to perform transcoding services. If Elastic
Transcoder isn’t given appropriate access rights, it cannot access your
resources and perform transcoding.

 4. (Optional) Create a preset containing the settings that you want Elastic
Transcoder to apply during the transcoding process. If you are using an
existing pipeline, you can use an existing preset or create a new preset.

 Amazon provides presets to support popular transcoding operations
such as formatting for the iPhone, which can be used instead of creating
your own preset.

218 Part III: Using AWS

 5. Create a job, which represents the transcoding operation for a specific
video.

 The job is submitted in JSON notation. When the service was originally
launched, each output format required a different job; today, you can
request multiple outputs in a single job, which reduces your network
transfer costs a bit.

 6. (Optional) Configure Elastic Transcoder to use AWS’s Simple
Notification Service (SNS) to provide you with status updates as the job
is executed.

 7. After the transcoding job is complete, do something with the output
videos stored in S3.

 You can retrieve the video objects from the S3 buckets in which they’ve
been placed, or you can allow access to them from the bucket (with
appropriate Access Control List [ACL] settings to allow access, of
course). You can even configure the S3 bucket to serve as a CloudFront
origin bucket, which then caches the video at the AWS CloudFront end-
points. (For more on CloudFront, see Chapter 8.)

That’s all there is to using Elastic Transcoder. Amazon takes care of manag-
ing the service, the instances on which the service runs, and the queues
(pipelines) associated with submitting jobs to the service. You’re only
responsible for managing the original video file, interacting with Elastic
Transcoder, and doing something with the output video files. In other words,
Elastic Transcoder enables you to benefit from the process of transcoding
videos without suffering the headache of having to manage its details.

Elastic Transcoder scope
Elastic Transcoder is regionally scoped: An individual pipeline resides in a
single region, although the service, because it has a RESTful interface, can
use S3 buckets associated with your account in other regions.

At the time this book was written, Elastic Transcoder wasn’t available in all
AWS regions, though you can expect that Amazon will soon make Elastic
Transcoder available throughout all AWS regions.

Elastic Transcoder cost
Elastic Transcoder offers quite a simple cost model: AWS charges a fixed
price per minute of transcoded video. For standard-definition (SD) video,
the cost is around $.015 per minute; for high-definition (HD) video, the cost
is around $.030 per minute. The cost is slightly higher in certain regions, but
no SD transcoding (as of this writing) costs more than $.018 per minute, nor
does HD transcoding cost more than $.036 per minute.

219 Chapter 9: AWS Platform Services

 Amazon offers a free tier of Elastic Transcoder use. Every month, the first 20
minutes of SD transcoding, or the first 10 minutes of HD transcoding, is pro-
vided for free.

Simple Queue Service
It’s time now for my favorite AWS service: Simple Queue Service. (It’s a geeky
choice, I know — but what can I say?) The queue is an awesome system capa-
bility, vastly underused by most application designers — which is unfortu-
nate because you end up with complicated, fragile applications that could be
improved if they were integrated with queue services.

Now that you’re undoubtedly excited about the queue, what exactly is it? The
queue concept is dead-easy to understand: It’s a communication mechanism
between two processing resources that allows them to collaborate on work
without needing to operate in a synchronous manner. This description may
seem complicated, but the fact is that you use queues in real-life all the time.

Say you need your shirts laundered. You can go to the laundry service, hand
over your shirts, wait around for the service to finish washing and pressing
them, and then take them home. That’s one way to do it, but I think you’ll
agree that it wastes a tremendous amount of your time. You can refer to this
mode of operation as synchronous: You call on the laundry service and then
wait for it to be complete.

A different way to get your shirts laundered — and the way this service gets
done universally throughout the world — is that you take your shirts to the
laundry, drop them off, get a claim ticket along with an estimate of when to
return to pick them up, go do other errands (which may include dropping off
your shoes at a shoe repair place to get new heels installed), and then return
on the estimated readiness date to pick up your nice, fresh, clean shirts.

This second mode is asynchronous. You aren’t forced to wait for your shirts
to be finished — you just put them into the laundry service’s work queue
and you get a ticket that is then used to track the job. You return at the given
time, having allowed the laundry to do its work while letting you go off and
do other (hopefully) productive work.

The queue is the ideal tool for a job that’s performed by one service and
doesn’t require the calling service to wait for the results. Elastic Transcoder,
the AWS service I discuss in the earlier section “Managing Video Conversions
with Elastic Transcoder,” is a good example. Many applications that can
use video transcoding don’t wait for the transcoding process to complete.
Imagine a community website that allows you to upload a video and then

220 Part III: Using AWS

makes it available to visitors in formats that are convenient to them, such
as iPhone, iPad, Kindle Fire, or a webpage. If you’re running the website, you
don’t want to force users to wait around while videos are transcoded, do
you? Especially because the videos being submitted for other people to view,
there’s no point in making people wait for the transcoding process to com-
plete. The video can be submitted and placed on the queue to be transcoded,
leaving the submitter free to do something else (such as explore the rest of
your website).

 Many, many processing tasks conform to the asynchronous use pattern; as
I hint in my Queue Love confession, there are undoubtedly more potential
queue use cases than aren’t taken advantage of by application designers,
which is too bad.

Simple Queue Service overview
SQS lets you create a queue in AWS and then place and retrieve messages
from that queue. However, you can also set permissions on a queue to allow
access to it that’s broader than your account. Being able to enable a broader
population to use your queue is useful when you want to allow outside enti-
ties, whether a restricted group (say, partners of your company) or the
general public, to access it — particularly, being able to submit tasks to
your application while not requiring the submitter to wait until the job is
complete.

Naturally enough, Amazon has designed SQS to be extremely robust with
very high uptime, which imposes some design constraints that, in turn, affect
the way SQS operates. You should understand the operation of SQS to ensure
that you aren’t taken by surprise by the service’s behavior.

SQS allows multiple message submitters and retrievers to share a queue,
which is a fancy way to say that you can allow your queue to have multiple
processes placing messages on the queue and removing them. You can, for
example, operate a number of AWS instances designed to retrieve uploads
of videos for Elastic Transcoder, ensuring that no transcoding request is
delayed by a large job ahead of it in the queue.

 One way that Amazon makes SQS robust is that it implements redundant
queues behind the scenes; if one queue fails, another, mirror queue can con-
tinue operating until the failed queue is restarted. This strategy ensures that
no resource failure can ever make SQS unavailable.

However, because messages may be spread across the redundant resources,
they may not be delivered in the order they were placed on the queue. Unlike
some other queue products, SQS doesn’t guarantee first-in, first-out (FIFO)
delivery. If a submitter splits a job into several messages, the receiver cannot
be sure that they will be retrieved in the proper order.

221 Chapter 9: AWS Platform Services

Though nonguaranteed delivery order isn’t a problem for many queue-based
applications, those that require an ordered sequence of messages need to
create a supra-queue coordination mechanism; a sequence order number
that’s part of the queue message would be appropriate. A message submit-
ter who places multiple messages that are part of a single overall job may
place a sequence order number of one in the first message and a total mes-
sage number of three in that message, indicating to the reader that it needs
to receive three messages to make up the entire submission. The receiving
application would read the total message number in the first message, rec-
ognize that it needs three messages to receive the complete submission, and
continue reading until it had retrieved messages two and three.

Despite the lack of a FIFO mechanism. Amazon guarantees that each message
is delivered at least once. Until the message is retrieved, it’s retained in the
queue, waiting to be read.

The potential for messages to be retained until they’re read can cause a
problem if no reader ever requests a message. If this situation occurs often
enough, the queue can become backed up with unread messages — and with
enough unread messages, even AWS can get overloaded. Therefore, SQS has
a message time-out period that defines how long a message is retained in the
queue. The default retention period, set at four days, can be adjusted to meet
the requirements of the application.

Another SQS characteristic to be aware of is that queue messages remain in
the queue until they’re deleted — even when they’ve been read. AWS does
this because, even if a message is read, it may not be fully acted on — the
reading application may crash or otherwise fail to complete the task associ-
ated with the message. To avoid situations in which the queue message is
read but not fully acted upon due to resource failure, AWS implements a
visibility time-out: While a message is being read, it’s locked for a period to
ensure that no other reader can access it. However, one key task for a reader
is to delete the message when the task associated with the message is com-
plete; if the reader fails to delete the message, another process can — when
the visibility time-out expires — read the message again and perform the task
associated with the message.

 Obviously, redundantly performing work isn’t a good idea (generally speak-
ing) and, depending on the application, may even cause problems. Therefore,
your reading applications must delete SQS messages after they have com-
pleted their tasks. The message size in SQS is restricted to 64KB — for many
applications, perhaps not a significant restriction; if the complete task is to
place someone’s name in a database, 256KB is probably more than ample.
On the other hand, you can easily envision queue-based tasks that can be far
larger. In the video transcoding example from earlier in this chapter, almost
every video submitted would be far larger than 64KB. The reason for this size
restriction is, again, to prevent SQS from being overloaded with requests —
too many overlarge messages can cause SQS to choke.

222 Part III: Using AWS

So what can you do to overcome this size restriction? It’s straightforward:
Rather than place the large data payload (in the example, the large video file)
in the message, you can, for example, put it in an S3 bucket. You then place
the S3 bucket name in the message and place the message in the queue. The
queue reader reads the message and retrieves the video from the S3 bucket
based on the information contained in the message. This indirect pointer
technique is well-established and commonly used with SQS.

SQS scope
SQS is regionally scoped. Each queue is associated with a particular region;
when you create an SQS queue, you define which AWS region will serve as
your queue’s home. However, because SQS is an AWS-provided service,
you don’t have to place it in a particular availability zone. In fact, Amazon
undoubtedly runs each SQS queue in multiple availability zones to ensure
robustness and to prevent failure in the unlikely event of an entire availability
zone going offline.

The restriction of an SQS queue to a particular region shouldn’t be viewed
as a problem; each queue comes with a URL to which users can submit jobs
from anywhere. Given that AWS doesn’t charge for inbound traffic — and
therefore no traffic charge is associated with submitting jobs to an SQS
queue — the region restriction of SQS has no significant repercussions.

On the other hand, if you’re planning to have an EC2 instance within your
own account submit messages to the SQS queue, you want the instances and
the queue to reside in the same region. Otherwise, the EC2 instances incur
charges for traffic sent interregionally — even if they’re at the smaller inter-
regional cost.

SQS cost
SQS costs $.50 per million SQS requests, where a request is any kind of SQS
API call. That means both message submission and retrieval, as well as set-
ting a queue attribute and the like would incur a charge. Naturally, message
submission and retrieval represent the vast preponderance of SQS API calls,
so those are the sources of most SQS costs. Up to ten messages (if they’re
less than the 64KB message limit) can be batched together to count as only
one submission.

 SQS also offers a free-use tier; you receive up to 1 million SQS requests per
month for free.

Don’t forget that you also pay for traffic sent out of AWS, starting at $.12 per
gigabyte and descending as more traffic is sent. The first gigabyte of out-
bound traffic is free each month.

223 Chapter 9: AWS Platform Services

SQS use
I hope that my introduction to SQS and my overview of the service piques
your interest in using it. Queues are extremely useful, and SQS is useful,
robust, and extremely cost-effective.

The most daunting challenge for most people in using queues is to think about
application design differently. Rather than picture a serial progression of tasks
within an application, with each task waiting on a previous task to be com-
pleted, you have to consider how to disconnect two tasks, make it possible for
them to communicate, and notify one another when work is to be done.

Using a queue allows an application to avoid all this waiting around and offer
a better user experience — which is important. I encourage you to experi-
ment with SQS to see how you can partition your applications into indepen-
dent entities that use queues to submit tasks to, and retrieve tasks from, one
another. After you get the hang of using queues, you’ll start to see lots of
opportunities to use them, and you’ll likely rethink many of your application
design decisions.

Simple Notification Service
As the saying goes, Simple Notification Service (SNS) does what it says on the
can: It sends notifications about an event via a convenient mechanism as a
way of alerting a person or a computer program that something interesting
just happened.

The simplicity of this description belies the power of notifications, however.
Consider the case of a system administrator who’s responsible for the proper
operation of an application within AWS. Clearly, if something stops working
properly, she needs to know immediately.

One way to make the administrator aware of application problems is to have
her be logged on to AWS at all times, to obsessively check the state of the
application every second (which is neither efficient nor fun).

Another way is to use a notification: After defining at least one condition that
the administrator needs to know about (and, presumably, respond to), you
create a mechanism to respond to the condition(s). When the mechanism
identifies one of these conditions — errors show up on database reads, for
example — it sends a notification to one or more people to evaluate the issue
and decide whether to take action.

224 Part III: Using AWS

 Notifications can be sent in a variety of ways — via e-mail or SMS messages,
for example. Moreover, notifications don’t even have to be sent to humans;
they can be sent (via e-mail) to a program that takes action whenever it
receives a message with a given subject.

 The notification is a simple concept but extremely powerful in use. System
administrators swear by them (and, occasionally, at them, such as when they
receive them at 3 in the morning or while on holiday).

You may notice a similarity between SNS and SQS — don’t both involve an entity
submitting a message to a service that then delivers it? Yes, but with SQS, the
entity receiving the message has to take action in order to receive it; with SNS,
the service sends the message to the receiving entity automatically, with no
action required on the part of the receiving entity. This concept is referred to
as pull versus push: With SQS, the receiving entity has to pull the information;
whereas with SNS, the information is pushed to the receiving entity.

The distinction between pull and push is useful in situations where the event
that the receiving entity is on the lookout for is infrequent but extremely
important. You wouldn’t want a receiving entity polling a message queue
every second for an event that occurs once a month; it would be extremely
expensive in terms of processing to pay for constant polling on the off chance
that this month’s event will happen in the next second. With a notification
service, receiving entities (which, again, can be either humans or computer
programs) can perform their other work, secure in the knowledge that they’ll
know almost immediately when the occasional event occurs.

SNS overview
I hope that the foregoing makes clear that notifications are extremely useful.
On the other hand, they’re a fair amount of work to set up and, if a large
volume of notifications are being sent, they can be a lot of work to manage.
Sounds like a perfect opportunity for AWS, right? You are correct.

SNS operates as an AWS service that you create within your account. After
you create the service, you’re ready to begin distributing notifications.

You can — and probably will — have multiple notification streams within
your notification service. You may have one stream for events and messages
from your application to system administrators to alert them to possible
problems with your application. You may have another notification stream
for your application to send messages to users of your application. You
almost certainly wouldn’t want to mingle messages for those two very differ-
ent audiences such that one could read notification messages intended for
the other.

225 Chapter 9: AWS Platform Services

SNS allows you to send messages to different audiences (or, indeed, to dif-
ferent individuals within the same audience) by setting up separate topics. A
topic, in this context, is a specified stream of notifications that one or more
entities can publish. I use the term entities because the topic publisher can
be a software component (say, a database that sends notifications whenever
certain conditions occur) or a person (someone who logs on to the AWS
Management Console and uses it to send a message, for example). Likewise,
the notification recipient can be either a human or a software component.

 Queue messages — like the messages in Amazon’s SQS service — can be
retrieved by only one entity; by contrast, notifications such as the ones sent
by SNS are sent to any entity that is signed up to receive notifications about a
particular topic.

Obviously, one key requirement for (successful) notifications is the ability to
control who can send or receive notifications — and just because someone
wants to receive notifications doesn’t mean he should.

The method that SNS uses to control who (or what) can send or receive noti-
fications on a given topic is the topic policy. As the owner of the topic, you
can create policies to control who can sign up to send or receive a topic’s
notifications. (The entities that do the sending or receiving are known within
SNS as principals.)

This list describes your choices for who receives topic notifications:

 ✓ Individual: You can identify by policy specific individuals within your
account who are permitted to send or receive notifications. SNS is inte-
grated with AWS Identity and Access Management (IAM) to manage the
individual identities that are SNS principals.

 ✓ Accounts: You can identify AWS accounts that can act as principals
with respect to a particular topic. The AWS account identifier is used to
denote an account that can act as a principal for the SNS topic.

 ✓ Public: You can allow anyone to act as a principal for your SNS topic. It’s
probably a bad idea for the public to be able to send notifications, but it
could very well make sense to allow anyone who is interested in a given
topic to receive notifications. Though my SNS examples thus far focus
on technical personnel who may need to receive notifications (such as
system administrators), you may like a large audience of individuals
who aren’t part of your account to be notified of an event. An obvious
example is to send an e-mail to all subscribers notifying them of a spe-
cial offer your company is making available — you would simply publish
the notification once, and then every person subscribed would receive a
notification.

226 Part III: Using AWS

Speaking of everyone getting a notification, you may ask exactly how notifica-
tions can be received. SNS is rich in notification protocol options:

 ✓ SMS messages sent to a phone number: The phone number has to be
registered with SNS, naturally enough, but SNS can send topic notifica-
tions via SMS. (Charges for receiving the SMS message apply, of course.)

 ✓ E-mail sent to an e-mail address: This is a common and popular method
of sending notifications. The person who registers to receive the notifi-
cation receives them via whatever e-mail application she uses.

 ✓ HTTP/HTTPS: A web application can receive notifications over the
general public Internet or via secure HTTP. The assumption is that you
have a web-based application receiving traffic directed to a URL that’s
listening on the appropriate port; when a notification is received, the
web application displays the message on a web page. Of course, the
web-based application doesn’t have to display it; it can do any number
of other things with the notification, including forwarding it via another
protocol or storing it in a database. A good use case for this notification
protocol is system administrators who want an ongoing and constantly
updated display of application and system events.

 ✓ Simple Queue Service (SQS): This hero of the previous section can also
be a notification recipient. You may wonder why you would want to use
SQS as an SNS recipient. It makes sense if you consider this scenario:
You need to be sure that you receive and act on important notifications.
If you have an application that must be sure that recipients receive
notification of events, how can you be sure that the notifications will
occur? After all, e-mail may not reach its destination; SMS (at least in
my experience) often seems flaky, and it’s not easy to be sure that a
web application is running at the right time to receive a notification.
Using SQS ensures that a notification is available and can be acted on no
matter what; the queue message remains in the queue (up to the mes-
sage discard time) for as long as it takes for a second entity to retrieve
the message. The use of SQS as the SNS delivery protocol increases SNS
robustness.

 One important requirement to keep in mind with regard to SNS is that any initial
recipient sign-ups have to be confirmed, to prevent malicious SNS sign-ups that
can flood the recipient with unwanted notifications or, worse, impose significant
costs (such as SMS fees). Each notification protocol requires confirmation from
the recipient that they (or it) want to receive notifications on the topic. This
strategy can be a bit challenging for nonhuman recipients. For example, a web
application still receives an initial confirmation message from SNS and must
be able to receive, decipher, and respond to the message before beginning to
receive notifications. The application’s code first must be able to differentiate
between the initial invitation and subsequent notifications and then respond
correctly to the invitation. Otherwise, SNS decides that the topic subscription
was a mistake and refuses to forward notifications to the application.

227 Chapter 9: AWS Platform Services

SNS scope
SNS is a regionally scoped service. However, SNS operates as an AWS service
and is accessible from outside the region; therefore, external programs can
use SNS. Each topic, upon creation, is assigned an Amazon Resource Name,
or ARN. An entity, either human or application, that wants to publish a noti-
fication calls the SNS service with the topic’s ARN as one of the arguments.
Likewise, notifications can be received outside of AWS; SNS forwards them
via the selected protocol to wherever the notification recipient is located.

SNS cost
SNS has probably the most unusual pricing of any AWS service because of
the various protocols it supports for notification delivery.

The basic service is cost-effective: $.50 per million SNS API requests and you
don’t pay for the first million SNS API requests per month. However, the cost
of the notifications themselves varies, depending on the protocol:

 ✓ HTTP/HTTPS ($.06 per 100,000 notifications): The first 100,000 notifica-
tions per month are free.

 ✓ E-mail/e-mail-JSON ($2.00 per 100,000 e-mail/e-mail-JSON requests):
The first 1,000 requests per month are free. You would use an e-mail-
JSON request to send an e-mail notification to an application rather than
to a person; the application parses the JSON text to evaluate the notifi-
cation and then takes an action in response.

 ✓ SMS ($.75 per 100 notifications): The first 100 notifications per month
are free.

 ✓ SQS: No charge.

Protocol Cost Note
HTTP/HTTPS $.06 per 100,000

notifications
The first 100,000 notifications
per month are free.

E-mail/E-mail-JSON $2.00 per 100,000
E-mail/E-mail-JSON
requests

The first 1,000 requests are free
each month. You would use an
E-mail-JSON request if you were
sending an e-mail notification
to an application rather than a
person; the application parses
the JSON to evaluate the notifica-
tion and then takes some action
in response.

SMS $.75 per 100
notifications

The first 100 notifications per
month are free.

SQS None

For notifications sent outside AWS, a typical outbound traffic charge applies.

228 Part III: Using AWS

Simple E-Mail Service
Let’s face it: E-mail is the hardest-working service on the Internet. Though
people complain endlessly about it and continually talk about the up-and-
comers that will make e-mail obsolete (Facebook, anyone?), e-mail continues
to flood the Internet — and it’s growing all the time.

E-mail is an extremely effective way to communicate. It excels at transmitting
large amounts of data (large as compared to Twitter, for example), and it has
the virtue of providing a long-lasting record of communication, making it easy
to refer to a communication from the past or to reinitiate a discussion by for-
warding a previous e-mail.

Beyond its virtues as a personal communication tool, e-mail is an excellent
vehicle for business communication. Many businesses use e-mail to send
information to their customers for many purposes — to acknowledge an
order, track a package, respond to a question, and so on.

When tied to recipient demographics, e-mail can be a powerful marketing
tool. You can carry out tightly targeted communication at a fraction of the
cost of traditional direct marketing mechanisms, with e-mail delivery almost
instantaneous compared to “snail mail” timeframes.

One fly remains in the e-mail ointment, though: managing the e-mail server
software. It’s finicky, it requires constant configuration and tinkering, and it’s
difficult to manage when e-mail traffic can fluctuate wildly. Companies can
use e-mail services, thereby avoiding the management headache, but the high
cost of such services can create other headaches.

So there you have it — a core service, one with high and highly variable loads
and one that is difficult to manage and costly to boot. It sounds like a job for
AWS. And Amazon has stepped up to tackle the job, providing an AWS-based
service that provides enormous scalability at a reasonable price: Simple
Email Service (SES).

SES provides an easy-to-use e-mail service that can support a high volume
of e-mail. It probably wouldn’t surprise you to learn that SES is based on
Amazon’s own internally developed e-mail application, because Amazon
sends out a ton of e-mail every day. Amazon merely polished up its existing
service so that it could be used as part of AWS.

SES overview
SES is straightforward, conceptually. E-mail is a well-established set of stan-
dards and protocols, so SES implements and supports established e-mail
practices. SES supports the Simple Mail Transfer Protocol (SMTP), a vener-
able protocol for sending e-mail. You submit your e-mail to SES, using one of

229 Chapter 9: AWS Platform Services

the supported integration mechanisms, and it sends the e-mail to the recipi-
ent — easy as pie.

Of course, this simple story has a few complications, all related to the seduc-
tive usefulness of e-mail. Just as companies have found e-mail to be an
incredibly easy way to engage with customers and prospects, so too have
malefactors who send endless amounts of spam. The potential for SES to be
used to distribute spam is quite high, with these potentially terrible conse-
quences for Amazon:

 ✓ SES can be perceived as a haven for spam, which can lead to customers
not wanting to use SES, or perhaps AWS itself.

 ✓ In an attempt to limit spam, outside parties, such as ISPs, may refuse to
accept e-mail from AWS on behalf of their customers.

 ✓ If an ISP’s refusal to accept e-mail makes SES unusable, honest users
of SES would be unfairly penalized for using the same AWS service as
spammers.

Obviously, none of these outcomes is acceptable to Amazon, so it has imple-
mented a number of SES requirements to avoid problems. Because of these
requirements, getting started and then using SES requires you to deal with
these constraints that are important to understand as you prepare to use SES:

 1. When you sign up to use SES, you must register the domain from which
you will send e-mail (say, example.com). Amazon approves your
domain registration in a day or two, so be prepared to work on some-
thing else while you’re waiting. Amazon refers to this process as verify-
ing your domain.

 2. After your domain is verified, the individual e-mail addresses from which
you’ll send e-mail must be verified as well. SES sets a limit of 1,000 veri-
fied addresses, so the service is more appropriate for marketing cam-
paigns and application output than for general corporate e-mail support.

 3. When you get started, Amazon places you in an SES sandbox, in which
you’re limited in what addresses you can send e-mail to — these
addresses need to be from within your own domain, which prevents
you from immediately spamming someone. During the sandbox period,
you’re limited to 200 e-mails per day, all of which have to be sent to
e-mail addresses that are verified by Amazon.

 4. When you have established your trustworthiness, Amazon will move
you to the Big Leagues: production SES.

 Even though you’re no longer rationed to the sandbox limits, you’re not
permitted full, unfettered SES use. As you begin, you’re limited in the
number of e-mails you can send in any single day, and you’re limited in
how many you can send in any single second. As Amazon gains more
confidence in your use of SES, it raises these limits.

230 Part III: Using AWS

AWS offers four ways to interact with SES and send e-mails:

 ✓ The AWS Management Console: The console allows you to create and
send e-mails. This method, which isn’t very efficient, is offered primarily
to let you test your SES setup and service.

 ✓ The SES API: You can write directly to the SES API in order to make web
service calls and interact with the SES API interface.

 ✓ Programming language SMTP modules: SMTP is a venerable protocol —
most programming languages have modules or libraries that enable the
sending of e-mail via SMTP. Note that the use of a programming language
SMTP module requires a special SES username and password (different
from the account username and password), which must be requested
via the AWS Management Console.

 ✓ AWS programming language SDKs: Amazon itself offers SDK libraries
encapsulating the SES API, which can be used in writing programs to
interact with SES.

No matter which interaction method you use, SES dutifully sends off however
many e-mails you tell it to. In addition to faithfully sending e-mail, SES collects
a number of statistics for you — the number of messages that were delivered,
bounced (both temporarily and permanently), or rejected and the number
of complaints (e-mail refused by a receiving ISP based on its perception of
your e-mail as spam). As for rejected e-mails, before sending your e-mail, SES
passes it through content filters designed to weed out spam and content that
may be perceived as spam; SES lets you know if any sent message is rejected.

Sending e-mails via a programming module or an AWS SDK is relatively easy.
It usually calls for setting some variables (the send-to e-mail address, sent-
from e-mail address, e-mail body content, and the like), and a call to “send”
the e-mail to the SMTP service.

Usually, the most difficult part of sending an e-mail is composing the message
body — deciding whether it should be plain text or HTML, or both, and how
to format the body so that the recipient finds it interesting enough to open.
SES doesn’t help you with that decision, although it supports both HTML and
plain text e-mail. On the other hand, people tend to futz around with e-mail a
lot, to get the formatting correct, and then don’t touch the formatting settings
for months (or years). This task is where the sandbox comes in handy — it’s a
place to experiment, to be sure that you nail the appropriate e-mail design.

SES scope
SES is regionally scoped and, like all platform services, is accessible from
anywhere on the Internet, so it’s quite conceivable to use SES as a stand-
alone service, with e-mails sent from an application residing in your own
data center.

231 Chapter 9: AWS Platform Services

SES cost
SES costs $.10 per 1,000 e-mails. If you use EC2 or Elastic Beanstalk, you can
send 2,000 e-mails free per day.

Standard outbound network traffic charges apply to SES messages, which
are based on total traffic size. If you send humongous e-mails, you’ll rack up
more of a charge than if you send tiny, one-line e-mails.

You’re also charged for sending e-mail attachments, at the rate of $.12 per
gigabyte.

 SES considers an e-mail message to be one message sent to one e-mail
address. So if you send one e-mail to 100 different recipients, it counts as 100
e-mail messages.

Simple Workflow Service
Simple Workflow Service (SWF) addresses a common challenge in large,
distributed applications: how to coordinate all the work between the com-
ponents of the application, especially when some of the work carried out by
a component may depend on the successful completion of work by another
component. SWF is the commercial offering of a service that Amazon imple-
mented for its own, internal operations. SWF is a powerful service, but I
would say that the initial letter in the acronym (S for Simple) isn’t accurate.
Unlike most AWS services, SWF isn’t simple to understand or use. On the
other hand, the problems that SWF was designed to address are fiendishly
complex and undoubtedly require a complex tool to master them.

One traditional way to manage complex workflows is to have a human do it. A
person kicks off one task, waits for it to complete, starts a second task, waits
for it to be done, and so on. This process has a couple very basic problems:
It’s slow, and it’s boring. It also doesn’t scale well.

Another method, used in the past, is to write a custom workflow via script-
ing or code. That approach definitely addresses the challenges of the previ-
ous method, but has its own set of challenges. It supports the workflow it’s
designed for, but as soon as you want another type of workflow, well, you’re
out of luck. Or you end up trying to generalize your custom workflow and
pretty soon you’re working full-time on trying to maintain your simple work-
flow product rather than on doing any . . . you know, work.

Of course, many commercial workflow engines are available to solve these
two problems. Though these engines are quite capable, they commonly carry
hefty price tags and, given their esoteric nature, aren’t easy to get funded.

232 Part III: Using AWS

SWF addresses this problem with a general workflow functionality that’s
offered and priced like all other AWS services: Use it when you want, and
pay for only what you use. If you have a complex workflow that you need to
execute, SWF can be a big help.

SWF overview
SWF is a generalizable workflow coordinator, commonly called a workflow
engine. To use it, you create these two elements:

 ✓ Decider: Defines the tasks that your workflow needs to coordinate

 ✓ Tasks: Do the work that the decider coordinates

Though SWF needs to run in AWS (after all, it’s an AWS service, right?),
the tasks aren’t limited to running within EC2. They can run anywhere. In
fact, they don’t even have to run — a task can be a human-powered thing.
For example, if you implement a printing workflow, one task can be Review
Proof with Client, which is a face-to-face task. After receiving positive feed-
back from the client, the printer’s employee can open a web page and click
the Approved button for the Review Proof task, and the remainder of the
workflow can proceed in an automated fashion. The workflow need not be a
sequential series of tasks, either; it can handle concurrent tasks that are run
in parallel. A workflow can also include task dependencies, in which a given
task cannot start until one or more previous tasks successfully complete.

An SWF decider can include logic to handle task errors and time-outs, for
example, enabling it to handle problems that occur within individual tasks.
Naturally, you can write workflows to accept input parameters that control
how the workflow executes. You can also incorporate timers, signals, and
markers in your workflow to help coordinate tasks.

Though SWF provides an API to interact with the service, Amazon has built
a fairly full-featured management capability into the AWS Management
Console. I think it’s fair to say that it expects most SWF users to manage their
workflows via the Management Console. SWF can manage workflows that are
arbitrarily complex and that may be quite long-running; therefore, it stores
the state of the workflow, which can be accessed from the AWS Management
Console or via the API so that you can determine where things stand with a
given workflow execution. Completed workflow information is also retained
and is available for inspection, although you may prefer to delete retained
information because AWS imposes a small charge for retaining completed
workflow information.

Workflows can be defined in programming languages or CloudFormation (an
AWS management tool discussed in Chapter 10).

233 Chapter 9: AWS Platform Services

 I must warn you: SWF isn’t for the faint of heart. However, the SWF section of
the AWS Management Console does have a simple application example that
demonstrates the power of SWF. This image processing application accepts an
input image and converts it to sepia or gray-tone, depending on input it
receives via a dialog box. To see SWF in action, check out the example.

SWF scope
SWF is regionally scoped, although it can access AWS resources in other
regions as well as non-AWS resources.

SWF cost
AWS imposes several types of charges for SWF, although the aggregate cost
is extremely low, unless you execute vast numbers of workflows.

For every executed workflow, AWS charges $0.0001. However, you receive
1,000 free workflows per month. If a workflow remains open beyond 24 hours,
AWS imposes a $0.000005 fee per day. If a workflow is retained beyond com-
pletion, AWS charges the same $0.000005 per day. AWS provides 30,000 open
or retained workdays for free.

AWS also imposes a fee for individual tasks, markers, timers, and signals —
$0.000025 per task, signal, timer, or marker. AWS provides 10,000 of these
items for free per month.

These costs vary slightly by region, but not significantly.

Dealing with Big Data with the
Help of Elastic MapReduce

You have to have been living under a rock not to have heard of the term big
data. It’s a deceptively simple term for an unnervingly difficult problem: how
to make sense of the torrents of data flooding into today’s applications.

Let me quote a couple factoids to outline the dimension of the big-data chal-
lenge. In 2010, Google’s chairman, Eric Schmidt, noted that humans now
create as much information in two days as all of humanity had created up to
the year 2003. Moreover, the research firm IDC projects that the digital uni-
verse will reach 40 zettabytes (ZB) by 2020, resulting in a 50-fold growth from
the beginning of 2010. In other words, there’s lots and lots of data, and its
growth is accelerating.

234 Part III: Using AWS

The challenge that big data presents is that most of the established data ana-
lytics tools can’t scale to manage datasets of the size that many companies
want to analyze. For one, traditional business intelligence or data warehous-
ing tools (the terms are used so interchangeably that they’re often referred
to as BI/DW) are extremely expensive; when applied to very large datasets,
you soon face national-debt-type numbers.

Humor aside, the established BI/DW tools have a more serious scalability
shortcoming: They’re architected with a central analytics engine that reads
data from disks, performs analysis, and spits out results. Today, data sizes
are so huge that simply sending the data to be analyzed across the network
takes too long to perform any useful work. By the time the data is transferred,
the insights that can be gleaned from it are obsolete.

Clearly, a new BI/DW analytics architecture and problem approach was
called for, and for inspiration the industry reached out to Google. Google
has implemented a different approach to gathering data. Its architecture,
MapReduce, is based on this simple insight: With so much data, it makes
sense to move the processing to the data rather than attempt to move the
data to the processing. MapReduce takes a very large datastore that may
be spread across hundreds or thousands of machines and formats the data
to structure it for the type of analysis you want to perform (that is, it maps
the data into an analyzable format), and then you filter the data (reduce the
mapped data, in other words) to isolate the information you want to examine.

Google treats its MapReduce implementation as proprietary, but, based on
a paper it published, one person implemented an open source version of
MapReduce called Hadoop. It’s no exaggeration to say that Hadoop has revo-
lutionized the BI/DW industry. In fact, an entire ecosystem of complementary
products exists to make Hadoop even more useful.

You’ve probably already cut to the chase and recognized a familiar refrain:
Hadoop is useful, but complex to install, configure, and manage. Gee,
wouldn’t it be useful if someone created an easy-to-use, cost-effective Hadoop
solution that integrates with the existing ecosystem, allowing established
tools that complement Hadoop to be used with this service?

Yes, it would, and Amazon calls its Hadoop solution Elastic MapReduce
(EMR). The concept is straightforward:

 1. Identify the data source you want to analyze.

 This is data located in S3. EMR can handle petabytes (a petabyte is 1,000
terabytes) of data with no problem.

 2. Tell EMR how many instances (and of what type) you want the EMR pool
to contain.

 EMR can use EC2 standard instances or one of the more exotic types,
such as High-IO or High-CPU. Each instance offers a certain amount of

235 Chapter 9: AWS Platform Services

disk storage for running the Hadoop Distributed File System (HDFS).
The total amount of data you want to analyze dictates the number of
instances you require.

 3. Set up an EMR job flow.

 A job flow can be either of two types:

	 •	Streaming: Programming language mappers and reducers are intro-
duced into EMR and processed across EC2 instances and the data
they include.

	 •	Query-oriented: A higher-level data warehouse tool, such as Hive
(which provides a Structured Query Language-like interface) can
be used to run interactive queries against the data. The output of
either type can be stored in S3 and then used for further analysis
without requiring an active job flow.

 4. Continue running the job flow, running MapReduce programs or higher-
level query languages against the data, until you’re finished using the
job flow.

 A job flow can be terminated, which terminates all instances that make
up the EMR pool.

Amazon manages the instances within the EMR pool. If an instance termi-
nates unexpectedly, Amazon starts a new instance and ensures that it has the
correct data on it to replace the terminated instance. And, of course, Amazon
takes care of starting the EMR pool, connecting the instances to one another,
and running MapReduce programs or providing higher-level tools for you to
use for analysis.

EMR supports these programming languages: Java, Ruby, Perl, Python, PHP,
R, Bash, and C++. With respect to these higher-level tools, Amazon provides
a wide variety. In addition to Hive (as just mentioned), Amazon also offers
Pig (a specialized Hadoop language). Finally, if you want, you can use EMR to
output data that can then be imported into a specialized analytics tool like
(the curiously named) R.

EMR is one service in which Amazon’s pay-only-for-what-you-use philosophy
may not be optimal, because transferring and formatting very large datasets
to the EMR EC2 instances may take a long time. When you end a job flow,
the instances on which the EMR pool is running are terminated and the data
discarded. The next time you want to run an analysis, you have to rebuild the
EMR pool. So you need to establish a trade-off, to balance the cost of keep-
ing your EMR pool up and running versus the cost of rebuilding it. Clearly, if
you plan to run multiple analyses over time against a data pool, it probably
makes sense to keep your job flow active.

236 Part III: Using AWS

One interesting characteristic of EMR is that it differs from the other platform
services I’ve already described. The others are “helper” services — useful
services that help you build better applications more quickly. By contrast,
EMR represents a stand-alone application that’s not intended to support an
application that the user is writing. Another example of this type of “non-
helper” stand-alone application is Redshift, covered next. I expect that you’ll
see more of these stand-alone applications, for these reasons:

 ✓ Its serious reputation: Amazon feels that AWS is now accepted as a seri-
ous IT player, and IT is willing to trust it with important use cases. The
company is now ready to branch out into areas that provide more direct
user benefit in addition to its established infrastructure components
that enable users to build their own applications.

 ✓ The opportunity to expand: Amazon perceives many application
domains as ripe for automation and commoditization. As it provides
offerings in these domains, its users increasingly benefit, and AWS can
become more useful to them, thereby cementing its place as a critical
part of their IT environments.

 ✓ Strategic pricing strategies: AWS recognizes that the high price of cur-
rent offerings in these application domains prevents many potential
users from taking advantage of them; its offerings democratize access to
these domains. I’ll let you decide whether Amazon is acting purely altru-
istically in this regard, or perhaps with an element of self-interest.

EMR scoping
EMR is regionally scoped. You should locate your EMR use in the same
region where your data resides, if you want to avoid data transfer fees.
(Given the kind of data volumes that EMR supports, avoiding these fees can
be a big deal.)

EMR cost
The primary cost of EMR is the cost of the EC2 instances on which your EMR
pool runs, as well as the S3 storage for your input data and results (assuming,
reasonably, that you output results to S3).

In addition, you pay an additional EMR fee per instance. Think of it as an
instance surcharge that Amazon imposes to manage the EMR service, install
and configure the EMR software on the instances within your EMR pool, and
transfer data between all the instances and S3. The EMR surcharge is approx-
imately 25 percent of the instance cost, making it (in my opinion, at least) a
modest cost for such a powerful application, compared to the cost of manag-
ing Hadoop on your own.

237 Chapter 9: AWS Platform Services

Redshift
Elastic MapReduce (EMR) is a useful analytics tool; however, SQL remains
the lingua franca of the IT world. EMR’s architecture requires writing filters
in a programming language, along with following the MapReduce approach to
data analysis. Though many engineers are comfortable moving from SQL to
the EMR approach, many others are less so. Less technical personnel such as
data analysts may not have the skills to take on the more technical require-
ments of creating EMR analyses. Moreover, many popular analytic tools are
designed to work with SQL databases and are unavailable for EMR. For all
these reasons, it makes sense that SQL-based data warehouse (DW) environ-
ments continue to be popular.

This isn’t to say that today’s SQL-based DW products don’t suffer from
the same problems accompanying the rise of big data (outlined earlier in
this chapter, in the section “Dealing with Big Data with the Help of Elastic
MapReduce”). In response to this cascade of data, SQL DWs have changed
significantly over the past decade. Rather than have data attached to a single
server and analyzed by a single DW software instance, new products where
analytics are performed on multiple data sources in parallel are now used.
Improved performance, via innovations such as bit-mapped columnar data-
bases, supports the much larger data pools that are managed by SQL DWs.

 A bit-mapped database groups a large number of entries into a small entry in
a column by using the individual bits of the storage for that entry to track and
point to data. The use of bits allows the “compression” of data and enables
far higher performance because the DW engine can analyze much smaller
amounts of data to identify rows that meet particular selection criteria. In
addition, the filtering can be achieved by simply looking at the compressed
bitmap rather than reading in each row that meets the filter criteria. Instead,
only the bitmap needs to be examined, and full rows read in only for those
values that fit the filter criteria.

The big-data explosion in SQL DW carries associated complexities, which
cause significant challenges for users:

 ✓ Data volume: The sheer volume of data mandates large amounts of
equipment for processing. In many companies, DW activities aren’t high
priorities, so obtaining sufficient resources is difficult.

 ✓ Resource management: Beyond obtaining resources, managing them
is difficult, too. Trying to administer a pool of dozens or hundreds of
machines can be more than a full-time job — one that, by the way, sup-
ports DW but doesn’t directly perform analytics work.

238 Part III: Using AWS

 ✓ Planning difficulties: It’s hard to predict how much data is likely to
reside in the DW, which causes problems in changing your DW environ-
ment down the road. And unloading and rebalancing parallel databases
is typically time- and labor-consuming (and you need to take the DW
offline while changes are made).

 ✓ Relatively high prices: Did I mention how much SQL DW software costs?
Well, let’s just say it’s not cheap — not by a long shot.

Any time an important IT use demonstrates these kinds of challenges, you
can expect Amazon to step forward with a service — and it has. Redshift is
the new service from AWS that addresses the SQL data warehouse market.
Though Redshift is a relatively new service, it’s attracting a lot of attention.

Redshift overview
Redshift, a columnar SQL DW service, can operate on DWs as small as a
single terabyte and can scale up to multipetabyte size. Standard SQL is used
to query Redshift, which makes its potential user base larger than what you’d
see for EMR.

 You may ask, if Redshift is SQL-based, why you have to use a special service
for analysis. Why can’t you use a regular SQL database, like MySQL or Oracle?

The reason to opt for a specialized DW database is that it’s biased to sup-
port DW use cases. I’ve already mentioned the bitmapping columnar feature,
which reduces the amount of data that needs to be read to perform a filtering
operation. Another difference between DW and standard databases is that
DW workloads have a higher proportion of queries versus updates or deletes,
and the queries are often more complex. Consequently, the SQL parser in
these products is focused on query optimization to accelerate data reads.
Though it’s not impossible to use a standard SQL database for this use case,
it’s not nearly as efficient as using an SQL DW database.

As described in the following list, Redshift is designed to address the SQL DW
challenges outlined earlier:

 ✓ It operates in Amazon’s virtually limitless infrastructure. Unlike on-
premise environments, there’s never a problem with obtaining sufficient
resources to support your DW. Redshift data is loaded from S3, which
can certainly scale to support any imaginable DW size.

 ✓ It’s robust, with each individual node in the Redshift cluster sup-
ported by EC2 instance redundancy. Even if an individual instance
within the collection of servers used to support your Redshift environ-
ment goes down, your DW continues operating.

 ✓ Its cluster can be resized at any time. If you decide to increase (or
decrease) the size of your Redshift cluster, you simply execute a resizing
command and Redshift takes care of it. It puts your DW into read-only

239 Chapter 9: AWS Platform Services

mode so that no changes are made to the data during the conversion
process. It then starts up a new cluster with the requested number of
nodes. When those nodes are operating, Redshift copies your data into
the new cluster and makes it available. After the new cluster is available,
Redshift shuts down the old cluster and releases its resources back into
the general EC2 resource pool.

 ✓ It automatically “snapshots” (makes a direct copy of) your DR into
S3 to ensure that Redshift can recover from any unanticipated situa-
tion. These snapshots aren’t available to users and cannot be used by
them. A user can also initiate a snapshot to create their own copy of
the Redshift data, and the snapshot can be used as the basis of a fresh
Redshift instantiation.

 ✓ You pay only for the resources you use. If you shut down your Redshift
cluster, you incur no further fees.

 ✓ Redshift is supported by a large ecosystem of DW tools that make
performing analytics easy. If you want to query your Redshift cluster
directly, you can execute SQL against it via ODBC or JDBC.

Here’s one potential drawback you may have thought about: If you create
this very large Redshift DW cluster, are you stuck running it all the time
because you’ll lose data if you shut it down? Doesn’t the overhead of loading
all the data prevent you from benefitting from the pay-for-only-what-you-use
feature in Redshift?

Yes and no. Just before terminating your Redshift cluster, you can execute a
snapshot. When you’re ready to run further analysis on your DW data, you
can create a new Redshift cluster from your snapshot. As soon as you launch
the new cluster, Redshift makes it possible to run queries. On the other hand,
the query performance will likely be quite low until the data is fully loaded
into the Redshift cluster. If you plan to use your cluster on an ongoing basis,
work out a plan to keep it up and running. In the later section “Redshift cost,”
I discuss the use of Redshift reserved instances to reduce the overall operat-
ing cost of the service.

The DW market has been ripe for disruption for a long time. Analytics are
hugely valuable, and most companies can usefully apply analytics much
more broadly than they do. Unfortunately, because the cost of current solu-
tions makes it difficult to justify using such products, analytics are typically
applied to only the highest-value domains.

The advent of Redshift reduces the cost of DW significantly, and makes the
power of analytics much more widely available, with the enormous potential
for organizations for which analytics was previously unaffordable. It’s too
early to see the impact of Redshift, but I predict that it will be a gigantic
success.

240 Part III: Using AWS

Redshift scope
Redshift is regionally scoped. Though it isn’t yet available in all regions, it’s
being rolled out rapidly Because Redshift data comes from S3; you should
attempt to locate Redshift in the same region as your data. However, many
users are likely to upload data from off-premises into S3; in those cases, they
should choose a region that’s convenient for their use.

Redshift cost
The price of Redshift is set by the cost of the node that’s used for the
Redshift cluster. Redshift supports two node types: XL (2TB of storage) and
8XL (16TB of storage). With on-demand pricing, the former costs $.85 per
hour; the latter, $6.80 per hour. You can also purchase reserved node pricing
by making an upfront payment, which creates a lower per-hour cost. Redshift
reserved nodes are available in one- and three-year commitment lengths.

The typical method of evaluating costs in the data warehouse industry is the
price per terabyte per year. By this measure, Redshift on-demand results in a
$3,621 cost per terabyte per year. With the use of three-year, reserved node
pricing, the cost per terabyte can be reduced to just under $1,000.

That price may seem to be significant. However, it’s important to evaluate
the price of Redshift in terms of the current vendors in the market. I have
seen DW pricing typically range between $12,000 and $57,000 per terabyte per
year. One vendor recently trumpeted a reduction of its annual cost to less
than the magic $10,000 price point. Shown in that light, Redshift obviously
represents an enormous cost advantage versus the incumbents.

Of course, the established vendors will raise the usual FUD (fear, uncertainty,
and doubt): “Can you trust Amazon? We have a long history in this market,
and Amazon is still wet behind the ears. We are a known brand and so on and
so forth.”

Notwithstanding this bluster, I predict that Redshift will disrupt this market
significantly and will divert significant market share from the established
players. More important, its much lower pricing will enable organizations
that previously were unable to afford analytics to take advantage of data
warehousing for the first time. I believe that the bigger impact of Redshift will
be to grow the DW market by a factor of 10, or even 100, as it democratizes
what has been a pricey, even clubby, vendor community.

Chapter 10

AWS Management Services
In This Chapter
▶ Meeting the challenge of managing AWS applications
▶ Understanding what an Elastic Beanstack is
▶ Lining up your applications with Cloud Formation
▶ Managing graphical applications with OpsWorks
▶ Deciding which AWS management service is right for you

T
he chapter title I’ve chosen should provoke an obvious question: Given
the richness of the AWS resources now available (a richness spelled out

in detail in the opening chapters of this book) and the AWS Management
Console (which I cover quite thoroughly in Chapter 3), why would you need
any additional management services?

That’s kind of a trick question, in that the answer lies in the question itself —
it’s because of the richness of the collection of the AWS offerings that more
capable management services are themselves necessary.

In the past, in order to create or run an application, you had to do a ton of
work, none of which was directly tied to application functionality: Install
software components, configure them, and then connect them to other soft-
ware components. After the application was up and running, you then had
to manage its components, keep them running, respond in the event of a
resource failure, back them up, and so on. It was as if every time you wanted
to drive to the grocery store, you had to build a new car and sweep the
road — just to get a quart of milk!

The revolutionary aspect of AWS is that it decouples the installation and
management of application components from the act of using those compo-
nents. Amazon’s bright idea was to automate the infrastructure administra-
tive overhead and free you to focus on functionality.

Why then do you need sophisticated AWS management services? Well,
because the administrative effort has now shifted up one level, that’s why.
Rather than manage software components and make sure that they play well

242 Part III: Using AWS

together, now you have to manage your AWS products and make sure that
they play well together. The rest of this chapter offers a few strategies for
accomplishing just that.

Managing Your AWS Applications
Just suppose you’ve written an application and now you want EC2 instances
to talk to an SQS queue and insert and retrieve S3 objects. Well, Amazon
makes it easy to create those resources, and it’s relatively straightforward
to connect an EC2 instance to the queue and to the S3 bucket it will use. But
(and it’s a big but) that’s for only the lone instance. What if you terminate
and restart the instance? Well, it needs to be connected to the queue and S3
bucket once more. And what if your application is hugely successful? Then
you’ve got to connect a bunch more instances, and as those instances ter-
minate and restart . . . well, you get the picture. It’s a lot like Mickey Mouse
as the Sorcerer’s Apprentice in the Disney movie Fantasia. Or, to use a more
classical allusion, it’s like Sisyphus endlessly rolling his rock to the top of the
hill and watching it tumble to the plain below. In other words, it’s a ton of
repetitious work. Humans don’t excel at performing repetitive manual work.
They make mistakes, which means that you’re likely to break your own appli-
cation as you try to keep up with what needs to be done.

So you have endless work, and in doing this work, you’re likely to cause new
problems. Wouldn’t it be great if you could find something to manage the
AWS side of it for you, making it easy to ensure that the applications have
the right code components, that the different services are automatically con-
nected to talk to one another, and that they were all scaled as necessary to
meet varying application load?

The good news is that this something exists — in fact, Amazon provides
three AWS management services, each designed to address a particular user
segment and to help it more effectively manage AWS applications.

In this section, I address all three of these services to help you understand
their characteristics and know when to use them. Before diving in to the indi-
vidual services, though, I want to introduce two AWS services that underpin
the others: CloudWatch and Auto Scaling.

Watching the cloud with AWS CloudWatch
CloudWatch is an AWS component that monitors your AWS resources. (Hot
tip: It can also be used to monitor AWS applications.) It watches — get the
allusion? — over AWS resources and provides information to users in the

243 Chapter 10: AWS Management Services

form of data and alerts. The data can be accessed directly, as text and numer-
ical output that can then be analyzed or manipulated, or viewed in more
mediated formats, such as graphs.

What kinds of monitoring am I talking about? A good example is the EC2
instance load. You can have CloudWatch keep an eye on the processor load
of an EC2 instance. The metric can be configured to generate an e-mail alert
if the processor load percentage rises above a certain level or even trigger
a programmatic action such as an Auto Scaling event. (Auto Scaling is dis-
cussed in the next section of this chapter.) Nice, right?

Need more metrics examples? Here’s a list of some other AWS characteristics
that CloudWatch can monitor. CloudWatch can track metrics across time —
notice that many of the preset metrics capture data at 5-minute intervals,
though you can choose another interval, if you like. All these metrics are free,
except for the first one; I discuss the whole CloudWatch pricing issue later in
the chapter. Anyway, here’s the list:

 ✓ EC2 instances: Ten preselected metrics at 5-minute intervals

 ✓ Amazon EBS volumes: Eight preselected metrics at 5-minute intervals

 ✓ Elastic Load Balancers: Ten preselected metrics at 1-minute intervals

 ✓ Amazon RDS DB instances: Thirteen preselected metrics at 1-minute
intervals

 ✓ Amazon SQS queues: Eight preselected metrics at 5-minute intervals

 ✓ Amazon SNS topics: Four preselected metrics at 5-minute intervals

 ✓ Amazon ElastiCache nodes: Twenty-nine preselected metrics at
1-minute intervals

 ✓ Amazon DynamoDB tables: Seven preselected metrics at 5-minute
intervals

 You can also set up custom metrics to be monitored by CloudWatch. In this
relatively straightforward process, you make a PUT API call with the metric to
be monitored, and CloudWatch begins monitoring it for you.

CloudWatch stores its data for two weeks, making it possible to track metrics
across an extended period. Of course, if you want to extend the period even
further for tracking purposes, you can extract CloudWatch data via the API
and store it elsewhere.

 CloudWatch is enabled when you create an account. Thereafter, you simply
select (or define) the metrics to track and then use the metrics that are gener-
ated as you choose. For example, you can

 ✓ Pull metric data via the CloudWatch API

 ✓ Pull metric data via the CloudWatch SDK

244 Part III: Using AWS

 ✓ Review metric data in the Management Console

 ✓ Notify someone (or something, as in an administrative process or a log)
of the metric

 ✓ Set an alarm that then causes something to happen (terminate a nonre-
sponsive instance and start another one, for example)

CloudWatch cost
CloudWatch provides a lot of monitoring for free. For example, for any EC2
instances you have, you get ten metrics at 5-minute intervals with no cost.

The following metrics impose no costs:

 ✓ Basic monitoring metrics (at 5-minute intervals) for Amazon EC2
instances are free, as are all metrics for Amazon EBS volumes, elastic
load balancers, and Amazon RDS DB instances.

 ✓ New and existing customers also receive ten metrics (applicable to
Detailed Monitoring for Amazon EC2 instances or Custom Metrics), ten
alarms, and 1 million API requests per month for no additional charge.

Metrics beyond the free tier just described impose the following costs:

 ✓ Amazon CloudWatch Detailed Monitoring for Amazon EC2 instances
(at 1-minute intervals): $3.50 per instance per month

 ✓ Amazon CloudWatch Custom Metrics: $0.50 per metric per month

 ✓ Amazon CloudWatch Alarms: $0.10 per alarm per month

 ✓ Amazon CloudWatch API Requests: $0.01 per 1,000 Get, List, or Put
requests

A CloudWatch example
It’s time for a concrete example of using CloudWatch, to see how it can work
with EC2, the pay-as-you-go compute capacity area of AWS. In this example,
I’ve started the launch process, and I want to enable CloudWatch for this
particular instance. Figure 10-1 shows the second panel of the EC2 Launch
Wizard; you can see that I’ve selected the Monitoring check box to enable
CloudWatch for this instance. (For more detail on EC2 and the launching of
instances, see Chapter 5.)

Figure 10-2 shows your options in the launch wizard for creating an alarm for
a particular instance. I’ll have CloudWatch trip an alarm any time the Status
Check Failed metric is true — that is, whenever the EC2 instance status check
reveals that something is wrong with the instance. Click the Create Alarm
button in the bottom-right corner of the screen, and you’ve got yourself an
alarm.

245 Chapter 10: AWS Management Services

Figure 10-1:
Enabling

CloudWatch
for an EC2
instance.

Figure 10-2:
Creating a

CloudWatch
alarm.

More often than not, one alarm isn’t enough. Trust me: You’ll want more.
For example, I want an alarm sent whenever the instance CPU utilization
increases to more than 80 percent. Figure 10-3 shows the CloudWatch
Management Console alarm panel, showing all alarms for my EC2 instance.
You can see both alarms listed.

246 Part III: Using AWS

Figure 10-3:
EC2

instance
CloudWatch

alarms.

The CloudWatch Management Console main page (accessed via the
Management Console main page) provides a dashboard showing the health
of the overall account resource. As you can see in Figure 10-4, the dashboard
lists both of my alarms, and a graphical display of both. You look at the dash-
board to gain a general sense of the health of your AWS resources.

For more comprehensive information or to create a more sophisticated dis-
play, leverage the CloudWatch API or SDK. As an example of how to pull the
data associated with the metrics of my account CloudWatch, here’s the
API call:

http://monitoring.us-east-1.amazonaws.
com/?Action=ListMetrics

&SignatureVersion=2
&SignatureMethod=HmacSHA256
&Timestamp=2010-11-17T05%3A13%3A00.000Z
&Signature=<URLEncode(Base64Encode(Signature))>
&Version=2010-08-01
&AWSAccessKeyId=<Your AWS Access Key Id>

 If you want to understand the ins and outs of this API call, please see
Chapter 2 — the one that covers the AWS API.

247 Chapter 10: AWS Management Services

Figure 10-4:
The AWS

Management
Console

CloudWatch
dashboard.

The wonders of AWS Auto Scaling
The Auto Scaling AWS feature is designed to solve a big problem: how to
have the correct number of EC2 instances available to support the load on an
application at a given time.

You actually have a number of options to ensure that you have the correct
number of instances running at any given time:

 ✓ Wait for user complaints. Performance issues often result from having
insufficient resources, and squawking from unhappy users of your appli-
cation can be an excellent way to identify a resource issue. Of course,
you run the risk of users then refusing to interact with your application,
which can be somewhat unfortunate if your company relies on the appli-
cation to generate revenue.

 ✓ Keep a hypervigilant system administrator on the payroll. This person
can then constantly monitor the application for acceptable performance.
This expensive strategy, plus the natural human tendency to lose inter-
est in infrequent though high-cost situations, is also unlikely to solve the
problem.

248 Part III: Using AWS

 ✓ Leverage monitoring of the application to notify you of performance
issues. You can either implement your own monitoring system or lever-
age AWS’s CloudWatch service, as just described. Though this method
resolves users’ complaints and any shortcomings in the solutions of
bored system administrators, it still leaves you in the position (after
you’ve been informed of the problem) of having to execute a bunch of
manual work to respond — all during a period when the application isn’t
working properly. Better, yes, but hardly optimal.

A far better solution is to have the application monitor itself and then,
when additional EC2 instances are necessary, automatically start additional
instances and have them join the computing pool immediately, all without
requiring human intervention.

Guess what? Such a solution exists — AWS Auto Scaling. In a nutshell, Auto
Scaling lets you define how your application should respond to changing load
conditions. The idea is that, by starting (or stopping) instances at the right
moments, you can ensure that only the correct number of instances are run-
ning to support the application load.

Auto Scaling works by adding instances to, or subtracting them from, a group
of running instances based on a factor that you define. Auto Scaling takes
care of all tasks associated with stopping or starting an instance, enabling
it to automatically create the right instance configuration and add it to the
pool.

Behind the simple concept of Auto Scaling lies a great deal of complexity.
Fortunately, Amazon takes care of most of it, allowing you to efficiently
manage your Auto Scaling configuration in a straightforward manner.

AWS uses the following elements to implement Auto Scaling:

 ✓ Launch Configuration: Your parameters here are what’s required to
start an instance properly. Think of this as the definition that’s applied
to a “blank” instance to make it into an instance that’s appropriate for
your application. Factors you’d define as part of a launch configura-
tion include AMI ID; security key pair(s); security groups; and the EBS
volume(s) to be attached to the instance.

 ✓ Auto Scaling Group: This definition gets applied to a collection of
instances launched under a particular launch configuration. An Auto
Scaling group defines items such as the minimum and maximum num-
bers of instances that the application should have. So you may always
want two instances running to ensure availability, but you may never
want to have more than five, so as to avoid excess cost.

249 Chapter 10: AWS Management Services

 ✓ Scaling Plan: The scaling plan defines how the Auto Scaling group
should respond to changing application workloads. The plan can be
dynamic (executed in response to a metric such as instance load levels
in the group) or predictable, which is appropriate if you want the group
to scale according to a specific expected event (such as a predictable
scaling plan designed to prepare the application to start three additional
instances every Sunday, when the week’s financial totals for the com-
pany are analyzed).

To achieve the best possible protection against application failure, let Auto
Scaling use multiple availability zones and spread the group across them.
This strategy ensures that even if an entire zone goes offline, your application
continues running.

Here’s an obvious question: If multiple instances are running within an appli-
cation, how do you coordinate them? An Auto Scaling group can be associ-
ated with an AWS Elastic Load Balancer, which would then spread traffic
across all instances in the group. As instances are stopped and started in
response to the scaling plan, the Auto Scaling service coordinates the details
of applying the launch configuration along with registering (or deregistering)
the instances with the load balancer.

For Auto Scaling groups that aren’t designed to manage instances that
receive web traffic, another mechanism to spread the application load across
all instances in the group must be used. For example, if a number of instances
are processing photos uploaded by users who are submitting them, you may
have all the image processing images read from a common queue; part of the
instance Launch Configuration is the queue ID, which would allow all Auto
Scaling Group members to know from where to read submitted images.

Actually using Auto Scaling
It’s not possible (at this time, at least) to manage Auto Scaling via the AWS
Management Console. You have to use the AWS API, SDK, or CLI instead.
When you create any of the Auto Scaling elements via one of these mecha-
nisms, AWS stores them in your account information and uses them to
respond to the conditions you define in your Auto Scaling plan. (For more on
the AWS API, see Chapter 2.)

The flow of interaction for creating and using one of these auto scaling ele-
ments is similar:

 1. Use an Auto Scaling command to define the element. (Define an Auto
Scaling group using the AWS API, for example.)

 2. Receive the AWS response to the command, which includes the AWS
identifier for the element.

250 Part III: Using AWS

 3. Use the element to execute an Auto Scaling command. (Start an Auto
Scaling group, for example.)

 4. Confirm that your command was executed properly.

 5. Sit back and enjoy as AWS manages your application!

Most of the work you do in Auto Scaling comes from planning and testing. Be
sure that the launch configuration is correct — with the right keys, for exam-
ple — because you won’t be the one doing the instance launch — AWS Auto
Scaling does it. So the Launch Configuration needs to be correctly defined (as
do the Auto Scaling Groups and Scaling Plan) so that they operate properly in
Hands-Off mode.

 Be sure that all aspects of your Auto Scaling arrangement operate properly,
and test it to ensure that it behaves as you wish. Run your application and
load it up with traffic to observe how Auto Scaling responds.

Your Auto Scaling costs
This section is the simplest one in this book. Auto Scaling costs nothing. Of
course, you’ll incur a cost for the resources Auto Scaling manages, but you’re
smart enough to know that already, right?

An Auto Scaling example
Because Auto Scaling isn’t supported by the AWS Management Console, I
cannot offer any handy screen shots. However, here are some examples of
the kinds of Auto Scaling API calls you’ll use:

To create a Launch Configuration:

https://autoscaling.amazonaws.
com/?LaunchConfigurationName=my-test-lc

&ImageId=ami-id
&InstanceType=m1.small
&Action=CreateLaunchConfiguration
&AUTHPARAMS

Note that you have assigned a configuration name: my-test-1c.

This example returns an XML document of this form:

<CreateLaunchConfigurationResponse xmlns=”http://
autoscaling.amazon

aws.com/doc/2011-01-01/”>
<ResponseMetadata>
<RequestId>7c6e177f-f082-11e1-ac58-3714bEXAMPLE</RequestId>
</ResponseMetadata>
</CreateLaunchConfigurationResponse>

251 Chapter 10: AWS Management Services

To create an Auto Scaling Group, you issue this API call:

https://autoscaling.amazonaws.
com/?AutoScalingGroupName=my-test-asg

&AvailabilityZones.member.1=us-east-1a
&MinSize=1
&MaxSize=10
&DesiredCapacity=1
&LaunchConfigurationName=my-test-lc
&Action=CreateAutoScalingGroup
&AUTHPARAMS

This chunk of code returns (if it’s successful, of course) an XML document of
this form:

<CreateAutoScalingGroupResponse xmlns=”http://autoscaling.
amazonaws.com/doc/2011-

01-01/”>
<ResponseMetadata>
<RequestId>8d798a29-f083-11e1-bdfb-cb223EXAMPLE</

RequestId>
</ResponseMetadata>
</CreateAutoScalingGroupResponse>

This command starts the Auto Scaling Group, which in turn launches
instances using the my-test-1c Launch Configuration.

Easy, eh?

Introducing AWS Elastic Beanstalk
In addition to low-level management services like CloudWatch and Auto
Scaling, AWS offers several higher-level management services. The remainder
of this chapter is devoted to these services, starting with a discussion of the
(oddly named) Elastic Beanstalk.

The developer-oriented Elastic Beanstalk service is designed to let you move
applications as easily as possible from the development environment to pro-
duction in AWS — such as moving code from a laptop to AWS in the shortest
possible time — and it’s specifically oriented to integrate AWS with com-
monly used development environments.

Elastic Beanstalk supports container-based environments like .NET, Java,
Python, PHP, Ruby, and Node.js. The basis of these languages is that your
code isn’t compiled into a standalone executable program that directly
interacts with operating system resources; rather, your code is run by an
executable program called a container, a virtual machine, or an interpreter

252 Part III: Using AWS

(depending on the language you use) that interacts with system resources on
your behalf. So, rather than make a call to an operating system file, your pro-
gram makes a call to a storage function offered by your language that inter-
acts in turn with the language virtual machine or interpreter, which interacts
in turn with the operating system resources on your behalf.

The traditional drawback to these noncompiled languages (often referred to
as dynamic or interpreted languages) is that their performance suffers in com-
parison to compiled languages, like COBOL or C. That’s a fair assessment,
but the improvement in server processing power and the flexibility of the
languages have led to enormous growth in their use during the past decade.
It’s no exaggeration to say that dynamic languages are the dominant way pro-
grams are built today.

As an offering, Elastic Beanstalk is most directly comparable to the Platform
as a Service (PaaS) development environment, like Heroku or CloudFoundry,
in that it provides the ability to run code in a container that takes care of
execution and resource management. Elastic Beanstalk is quite different
from them, though: Other PaaS environments let you use their programming
frameworks, and they handle details like managing storage, ensuring suf-
ficient computing resources, and directing network traffic. However, most
PaaS environments don’t “play nice” when you need to do something outside
their capabilities. In that case, you’re in trouble. This type of platform gener-
ally provides no way to access functionality outside of the services it offers.
Nor do you have a way to directly affect the management of the PaaS func-
tionality itself; if your application isn’t getting sufficient performance from
the default PaaS configuration, well, you’re going to have unhappy users.

Elastic Beanstalk, by contrast, does provide the appropriate language con-
tainer and manages it on behalf of your application code. It also lets you
access the full range of AWS services and manage the resources that Elastic
Beanstalk uses to execute your application. For example, if it’s suffering from
poor performance, you can direct Elastic Beanstalk to use larger instance
sizes to provide greater processing power. Moreover, you can interact with
computing resources outside the Elastic Beanstalk environment; for example,
you can interact with a relational database running on a separate instance in
AWS.

Elastic Beanstalk, launched in early 2011, is widely used to run web-oriented
applications. Just as AWS services, like its relational database service (RDS),
are designed to reduce the workload associated with managing necessary
computing resources, Elastic Beanstalk is designed to reduce the work-
load associated with managing the computing resources necessary to run
dynamic language applications.

253 Chapter 10: AWS Management Services

 You may wonder why this service is named Elastic Beanstalk. (Well, you and
me both.) In my opinion, it’s the single worst name for any AWS service. The
only explanation I can offer is that, when Elastic Beanstalk was first offered, it
supported only one language: Java. Java is associated with beans (of the
coffee variety), and the fable of Jack and the Beanstalk focuses on Jack’s pur-
chase of magic beans that grow to create an enormously tall beanstalk. Elastic
Beanstalk, of course, helps your applications grow to enormous size. Frankly,
it all seems like a stretch to me — a big stretch. Fortunately, its infelicitous
(unfortunate) name doesn’t get in the way of its excellent functionality, and
people seem to have adopted it, so all’s well that ends well, I guess!

In addition to the general capability of installing and running dynamic code,
Elastic Beanstalk seamlessly supports other capabilities:

 ✓ It automatically registers your application with an Elastic Load Balancer
to direct traffic to multiple instances running your code. In addition,
Elastic Beanstalk automatically assigns an AWS URL to enable access to it.

 ✓ It supports the use of Auto Scaling to dynamically manage the resources
used by your application.

 ✓ It supports application versioning by treating each new update to your
application code as a fresh version. When you trigger an update, Elastic
Beanstalk manages the installation of the new version on a set of AWS
instances, terminates the existing instances, and switches the Elastic Load
Balancer or AWS URL to the new instances. Elastic Beanstalk also sup-
ports rolling back your application to a previous version. In fact, Elastic
Beanstalk can support running multiple versions of your application
simultaneously, which can be useful for testing and support purposes.

Using Elastic Beanstalk
The specifics of moving code from a development environment to AWS vary,
but these four steps show the general pattern for using Elastic Beanstalk:

 1. Develop the application using your chosen local development
environment.

 For .NET, it’s Visual Studio. For Java, AWS supports the use of the
Eclipse interactive development environment (IDE). For other languages,
you can use the IDE of your choice.

 2. Create the Elastic Beanstalk environment via the Management Console,
AWS API, or AWS SDK.

254 Part III: Using AWS

 3. Upload the application code to the Elastic Beanstalk environment.

 For .NET and Java, you can do it via the IDE. For the other languages, it’s
done via Git, a distributed source code management system. AWS pro-
vides instructions to configure Git to work with Elastic Beanstalk.

 4. Manage your application, if you can’t use the default Elastic Beanstalk
configuration.

 For example, you may change the application’s instance size or the Auto
Scaling rules. Elastic Beanstalk is integrated with CloudWatch, so you
can view important metrics or even set CloudWatch to alert you when
those metrics trigger a specified condition.

Really, that’s all there is to it. Elastic Beanstalk is the easiest way to manage
applications built on dynamic code.

Elastic Beanstalk cost
There’s no charge to use Elastic Beanstalk, though you incur charges,
of course for the resources on which your application runs, like the EC2
instances used to run your code.

An Elastic Beanstalk example
Imagine creating a Tomcat-based application. Tomcat supports the Java lan-
guage and is widely used (especially in enterprise environments) to create
Internet applications that contain database-driven content — a parts catalog
that displays part information based on user input, for example.

If you click on Elastic Beanstalk from the main page of the Management
Console, you’ll see that Elastic Beanstalk has a number of prepopulated
language environments, including Tomcat 7, which is the environment I
will choose. (See Figure 10-5.) This environment is a sample application
that Amazon provides to show how Elastic Beanstalk operates. (Note: this
example uses Tomcat code that has been uploaded to Elastic Beanstalk; most
uses of Elastic Beanstalk begin with the upload set, in which you transfer the
application from your development environment up to Elastic Beanstalk.)

255 Chapter 10: AWS Management Services

Figure 10-5:
Creating

the Tomcat
environment.

A few minutes after choosing the Tomcat 7 option, the Elastic Beanstalk envi-
ronment is up and running, as shown in Figure 10-6. As you can see, about
halfway down, Elastic Beanstalk presents several tabs; the one displayed in
Figure 10-6 is the Overview tab.

To give you an idea of what the Elastic Beanstalk panel can potentially show
you regarding the environment, check out the Monitoring tab in Figure 10-7.
It shows a lot of CPU use and network traffic at instance start-up, which then
rapidly falls off after the application is up and running.

At this point, the application is available for use (which is why, for this exam-
ple, AWS puts up a big “Congratulations” page). Figure 10-8 shows what’s dis-
played in the browser when you click the URL shown in Figure 10-6.

If a great deal of traffic were being sent to this application, Elastic Beanstalk
would start new instances to handle the load. Also, if you decide at some
point to modify the application, you can simply upload the new version to
Elastic Beanstalk and notify it to start the new version and then terminate the
older version. Not bad, right?

256 Part III: Using AWS

Figure 10-6:
The Elastic
Beanstalk
operating

environment.

Figure 10-7:
Elastic

Beanstalk
application
monitoring.

To terminate the entire environment created via the API, use this command:

https://elasticbeanstalk.us-east-1.amazon.
com/?EnvironmentId=e-icsgecu3wf

&EnvironmentName=SampleApp
&TerminateResources=true
&Operation=TerminateEnvironment
&AuthParams

257 Chapter 10: AWS Management Services

Figure 10-8:
The Elastic
Beanstalk

application.

AWS CloudFormation
Elastic Beanstalk, is great for dynamic language applications that contain
no more than a web tier and a database tier — but what if your application
includes additional tiers to handle data caching and other application logic
processes, or uses non-dynamic languages? For applications like these,
CloudFormation is the right management solution.

 Horizontally scaled refers to the use of multiple computing instances sharing
the load in a single application tier. Horizontal scaling is a technique for appli-
cations to support load greater than a single instance can handle. A different
approach to solving this problem is referred to as vertical scaling — using a
higher-performance instance to support greater load. Vertical scaling is widely
used, but it isn’t the preferred solution for webscale applications, for multiple
reasons, including the fact that a single (very large) instance exposes you to
application failure instead of the redundancy that multiple smaller instances
provide. Also, at a certain point, no larger instance size is available. (And then
what do you do?) Consequently, horizontal scaling is the most commonly
implemented application design in cloud computing environments.

Auto Scaling Groups (described in detail in the section “The wonders of AWS
Auto Scaling,” earlier in this chapter) are excellent solutions to address the
requirements of horizontal scaling, but even Auto Scaling Groups need to

258 Part III: Using AWS

be managed in the context of the entire application. For example, an Elastic
Load Balancer needs to be created so that the Auto Scaling Group instances
can register. You might say that Auto Scaling Groups are important compo-
nents of a complex application management solution, but not the entire solu-
tion on their own.

Finally, of course, you face a final challenge in managing complex webscale
applications: human ineptitude, where you can see the downside of human
creativity and ingenuity. Humans excel at developing new creations, but
they’re terrible at repetitively executing complex tasks. They make mistakes.
And webscale applications bring out the worst in people, with lots of com-
plicated configuration settings, arcane installation instructions, and detailed
monitoring output that must be responded to.

In short, webscale applications are increasingly difficult beasts to manage,
and trying to do so via manual methods using the AWS Management
Console — as useful as it is — is fraught with danger.

Fortunately, Amazon has recognized this issue and developed a management
tool that converts the management of webscale applications from an ongo-
ing challenge to a process that leverages a template defining the components
of an application, coordinating their launch, and even managing its ongoing
response to changing workloads. That solution is CloudFormation.

CloudFormation operation is based on a template — in this particular case,
a JSON text document. The template, which is the key to CloudFormation,
serves as the basis for service creation and operation. The following list
describes the various sections in the template that you’ll use to define your
application:

 ✓ Format: Format refers to the CloudFormation template version (not the
file format or any other obvious term). Amazon clearly envisions evolv-
ing the service and wants the flexibility to change the template format to
incorporate future developments. The company is unlikely to deprecate
existing templates, so don’t worry that your carefully created template
will become obsolete. (Note: In CloudFormation terminology, the appli-
cation is referred to as a stack, so keep this term in mind.)

 ✓ Description: Use this (text) section to describe the template and the
application it manages. Think of it as a Comments section, where you
can provide information for others as they use or modify your template.

 ✓ Parameters: These values, which are passed into CloudFormation at
runtime, can be used to configure the application operated by the tem-
plate. You may, for example, want to run CloudFormation templates in
several Amazon regions; rather than create separate templates for each
region, you can use one template and pass in a parameter to define in
which region the template’s application should run.

259 Chapter 10: AWS Management Services

 ✓ Mappings: Here’s where you declare conditional values. Think of this
section as the one in which you set a variable used in the template to a
particular value. For example, you may change the AMI ID that the tem-
plate will launch, based on which region the “region” parameter is set to.

 ✓ Resources: This area describes the AWS resources used in the applica-
tion and specifies the configuration settings. If you want the application
to run all M1.Large instances, place that setting here. (For a description
of the various instance types, please see Chapter 5.) Of course, you can
adjust the setting based on parameters and mappings instead, if you so
choose.

 ✓ Outputs: These values are the ones you want returned in the event of a
request to describe the template. The output may return the name of a
template’s author or the date of creation, for example.

CloudFormation templates are simple . . . but not easy. It’s always that way
when you move from manual to automated administration. Organizing a
template to support all the different values and variables that are needed to
operate a complex application isn’t easy. It requires lots of iterative creation
and testing. The benefit is that when the template operates properly, you
save enormous amounts of time thereafter.

Using CloudFormation
Probably the best way to describe how to use CloudFormation is to walk
through an example. Fortunately, given the fact that it’s not especially easy
to create and test a template, AWS provides a number of templates to use as
examples.

 Actually, you should look at the AWS-sourced templates as more than just
examples. In the time-honored method used by engineers everywhere, you
can use a template as the foundation and hack it suit to your purposes.

Ready? Let’s go:

 1. From the AWS Management Console page, click CloudFormation.

 Doing so brings up the CloudFormation main page, as shown in
Figure 10-9.

 2. Click the Create New Stack button.

 The Template Wizard launches.

 AWS uses the term stack to refer to the application run by a
CloudFormation template.

260 Part III: Using AWS

Figure 10-9:
The Cloud-
Formation

main page.

 3. Using the wizard’s drop-down menu (see Figure 10-10), choose the
template you want to use and then click Continue.

 Now, AWS provides more than 20 templates. To make this example
interesting, go ahead and choose the template for the multizone LAMP
stack “Hello World” application. (You’ll see it near the bottom of the list,
above the Highly-Available, Multi-AZ section.)

 In case you’re not familiar with the term LAMP stack, it’s an acronym
that stands for Linux, Apache, MySQL, PHP (though the P can also stand
for Python or even Perl — other dynamic languages). LAMP is a com-
monly used collection of separate applications that, together, provide a
complete and rich application operating environment.

 4. In the new wizard panel that appears, set parameters for the applica-
tion and then click Continue.

 Figure 10-11 shows that I have set the DBPassword and DBUsername
values to enable the application tiers to communicate with each other.
You will also need to specify a SSH keypair name to use for this applica-
tion, so fill in the field with an existing keypair, or create a new keypair
and use its name here. The other fields can be used to create a more
failure-resistant application, but for this example, that’s not necessary,
so don’t worry about them now.

 A summary panel appears (see Figure 10-12), displaying relevant informa-
tion, along with the Create Stack button, near the bottom of the panel.

261 Chapter 10: AWS Management Services

Figure 10-10:
The Cloud-
Formation

template
selection

panel.

Figure 10-11:
Setting the

Cloud-
Formation

template
parameters.

262 Part III: Using AWS

Figure 10-12:
The stack’s

Summary
panel.

 5. Click Create Stack.

 CloudFormation begins the process of creating and running the stack.

 6. On the new screen that appears, select the check box associated with
the stack you created.

 Doing so brings up a section devoted to information about the selected
stack.

 7. Click the Resources tab.

 A listing of all stack resources appears, as shown in Figure 10-13.

 8. Click to select the Outputs tab, and then cut and paste into a browser
window the stack URL you find on the tab.

 Doing so brings up the stack landing page shown in Figure 10-14. This
page is equivalent to the instance page in EC2: It defines what you have
running in your CloudFormation-managed application.

263 Chapter 10: AWS Management Services

Figure 10-13:
The

Resources
tab in the

Stack
Resources

panel.

Figure 10-14:
The Running

Stack land-
ing page.

264 Part III: Using AWS

Of course, the driver of all this activity is the template. A discussion of the
Multi-AZ template is beyond the scope of this book (particularly because it’s
a more complex topology application), but Figure 10-15 shows a snippet of it,
from the template Resources section. As you can see, the snippet shows the
description of the WebServer tier, with the following information:

 ✓ Type: In this example, indicates that you’re dealing with an Auto Scaling
Group, with information to enable CloudFormation to set the execution
conditions for the group.

 ✓ Properties: Lets you see the properties associated with the
WebServerGroup. Four of the six properties use parameter or func-
tion substitution, precluding the need for hard-coding values here and
thereby enabling more flexibility in use of the template. The MinSize and
MaxSize parameters are defined in the Properties section, indicating the
smallest and largest number of web servers that can be run in this group.
These numbers probably shouldn’t be hard-coded here, but passed in as
parameters, making it easier to adjust deployment configurations.

Figure 10-15:
A template

snippet.

Keep in mind that this snippet is only 11 lines, out of a total of nearly 200,
so you can see the possible detail (and complexity) with CloudFormation. It
seems complicated — and, to be fair, it is complicated — but in the context
of running a complex multizone, multi-tier application that may be operated
by numerous groups and in multiple simultaneous versions (development,
testing, and production, in other words), the effort you spent in creating this
complex template will be repaid many times over during the course of the
application lifecycle.

To use the AWS API to manage CloudFormation, follow this example of a
CloudFormation call to create a stack:

https://cloudformation.us-east-1.amazonaws.com/
?Action=CreateStack
&StackName=MyStack
&TemplateBody=[Template Document]
&NotificationARNs.member.1=arn:aws:sns:us-east-

1:1234567890:my-topic
&Parameters.member.1.ParameterKey=AvailabilityZone
&Parameters.member.1.ParameterValue=us-east-1a
&Version=2010-05-15
&SignatureVersion=2

265 Chapter 10: AWS Management Services

&Timestamp=2010-07-27T22%3A26%3A28.000Z
&AWSAccessKeyId=[AWS Access KeyID]
&Signature=[Signature]

The API call requires a template document to be “handed in” (note the vari-
able Template Body=[Template Document] — this is where the template
defining the specific application is moved into CloudFormation) and that this
call is set up to use notifications to alert the application administrator of any
important information raised during the stack creation process. Again, I’m
illustrating that the power (and complexity) of CloudFormation lies in its tem-
plates, not in the API calls.

CloudFormation cost
As with Elastic Beanstalk, there’s no cost to using CloudFormation. Amazon
wants to make it easier to run large, complex applications, and free
management tools are attractive to users. These tools also increase user
satisfaction when users can avoid complicated, error-prone manual
application administration.

AWS OpsWorks
OpsWorks is Amazon’s latest addition to its management tool library,
released in March 2013. Though you can reasonably ask why AWS needs
another AWS-supplied management tool, I can think of three reasons:

 ✓ AWS customers want better support for the complete application
lifecycle. They want it especially for incremental development and
faster transitioning to production, both of which are now typical of
applications. The other AWS management tools (Elastic Beanstalk and
CloudFormation) tend to work on the assumption that the application
code to be deployed is static and complete.

 ✓ The demand for shorter application rollouts has developed a new IT
set of practices and tools. The practices are DevOps, a portmanteau
(combination) word — or mash-up, if you prefer — that indicates the
integration of development and operations in an effort to streamline the
entire application lifecycle and shorten the time it takes to convert an
application into a product. A couple open source products have become
core parts of the DevOps movement, and one of them, Chef, is part of
OpsWorks.

 ✓ Though many technology employees are perfectly happy to work with
text- and API-based tools, many would find complex tasks easier to
implement with a visual tool. Let’s face it — JSON (particularly, com-
plex JSON files like those required by CloudFormation) are challenging,
to say the least.

266 Part III: Using AWS

In the hope of meeting these demands, Amazon released OpsWorks — a man-
agement tool designed to support complex, multi-tier applications through-
out their deployment lifecycles (check!), integrate with Chef (check!), and
provide a visual management interface (check — and done!).

OpsWorks terminology
Some of the terminology used by OpsWorks
(stack, instance, application) may sound famil-
iar to you, but OpsWorks often puts its own twist
on a term’s meaning. Here’s a mini-dictionary of
its terms:

 ✓ Stack: A complete application that spans
multiple tiers and instances, which is con-
sistent with CloudFormation terminology.
Application-level elements, like instance
blueprints (which are definitions of what
software components are installed on a
specific instance within a stack), user per-
missions, and AWS resources (S3 buckets
and Elastic Load Balancers, for example)
are defined at the stack level.

 ✓ Layer: Layer defines how to create and
configure a set of instances and related
resources, such as EBS volumes. Most
people would refer to a layer as an applica-
tion tier — like an application tier, a layer
performs one well-defined set of function-
ality within the context of an application.
For example, a layer may operate a PHP
environment to run application logic. To
reduce the development burden on AWS
users, Amazon provides a number of pre-
configured layers — such as Ruby, PHP,
HAProxy (a load balancer), memcached,
and MySQL — that you can either use as

is or extend to suit your particular needs.
These layers can be combined to form a
complete OpsWorks application.

 ✓ Instance: Instances become members
of a layer and are configured to meet the
needs of the layer in which they operate.
Configuration includes setting its size and
the location of the availability zone in which
it operates. An instance can also be made
part of an Auto Scaling Group to support
erratic application workloads.

 ✓ Applications: The application-specific
code that you write to perform the func-
tionality you wish to implement. The other
portions of OpsWorks exist to support you
in deploying and running your application
code. To place your application code on
the instances within layers, you take advan-
tage of the wonder that is Chef. (In fact,
OpsWorks uses Chef to install its neces-
sary software, which it does before it turns
to installing your application code.)

 ✓ Monitoring, logging: To monitor the com-
plex collection of instances, components,
and configurations that is part of today’s
applications, OpsWorks implements
CloudWatch, performs extensive logging,
and also monitors application environ-
ments, using the open source tool Ganglia.

267 Chapter 10: AWS Management Services

 Chef is one of a new breed of tools used to automate code deployment and
configuration. Instead of a human installing software and then setting configu-
rations manually, Chef runs one or more scripts (known as recipes — clever,
right?) to perform the same tasks a human would, only much faster and much
more consistently. If you’re configuring only a single instance, it may seem like
too much work to set up Chef, but, believe me, if you’re setting up hundreds of
instances and doing it every time you deploy new code, all of a sudden Chef
makes a ton of sense.

One great benefit of using Chef is that recipes are commonly shared — in
fact, there’s a public repository you can use, which increases your productiv-
ity. OpsWorks is set up to leverage the public repository and make it easier
to operate complex applications.

You can operate OpsWorks via the Management Console, the API, or one of
several SDKs: Java, .NET, PHP, Ruby, or Node.js., for example.

After you have created an OpsWorks application, you can bring it to life or,
more prosaically, step it through its lifecycle:

 ✓ Setup: As each instance is booted, it needs to become ready to assume
its role within the layer that it’s part of and the application in which
it operates. On instance boot, the operating system is brought up. If
the layer definition requires system software (a MySQL database, for
example), OpsWorks executes Chef’s recipes to install and configure this
software.

 ✓ Deploy: This lifecycle stage occurs when the application code is
installed and configured on an instance that has completed the setup
stage. OpsWorks runs the Chef recipes associated with your application
code to ensure that the instance has all the code needed to perform its
function.

 ✓ Configure: This stage occurs if the application environment changes
during production. If, for example, an instance left an application layer
because of an Auto Scaling event, the application configuration would
need to be changed to deregister the instance from its load balancer,
and so on.

 ✓ Shutdown: This stage is triggered when you shut down the OpsWorks
application. In this stage, you may perform a database backup or write
user state information out to a file. Shutdown executes Chef’s recipes to
perform these tasks before terminating the instance.

268 Part III: Using AWS

Using OpsWorks
The correct way to wrap your mind around OpsWorks is to approach it from
the top down:

 1. Figure out the overall architecture of the application you want to
implement and operate.

 This “whiteboard design” stage presents a high-level overview of your
application.

 2. Drill down to the layer level and assign specific responsibilities to
each layer.

 For example, make sure that your application’s Memcached layer will be
responsible for caching user information to reduce database reads. To
do so, you define the functionality you’ll need.

 Don’t assume that you have to arrange for each layer and for all the
code needed for that layer. You can leverage AWS functionality so that if
you need, say, a key-value store as one layer in your application, you can
use DynamoDB for it.

 3. Determine what functionality needs to reside in an instance to per-
form its role within the layer.

 If part of your application transcodes images (transforms them from
one digital format to another, in other words), you would want to
incorporate a Chef recipe that defines and configures the appropriate
instance resources and connects to the AWS Elastic Transcode service
to perform the transcoding. You would also want to include a recipe to
install your own code that manages receiving the images, submits them
to Elastic Transcode, receives the bucket name in which the transcoded
image is stored, and returns that information to the image submitter.

 4. Create the OpsWork stack by defining the different layers, the
instance roles within the layers, and the necessary configuration for
each type of instance.

Just as CloudFormation requires a lot of iterative testing to evaluate whether
the application definition is correct and operates properly, so too does
OpsWorks. Recognize that getting an OpsWorks stack ready requires a fair
amount of work, which is repaid over time as you repeatedly create the stack
and run your application.

OpsWorks is so new that no one has a lot of experience with it “in the field,”
as they say, but I expect that most people will approach it like they approach
CloudFormation: Walk through a design process as just outlined; and then
use an existing AWS-supplied resource as a jumping-off point, and modify it
to support the requirements of the design.

269 Chapter 10: AWS Management Services

OpsWorks scope
OpsWorks has a curious scope: Because it’s a global service, it operates
without being tied to any particular region; but during stack creation, you’re
required to identify in which region you want your stack to operate — which
seems to imply that Amazon operates the OpsWorks infrastructure globally,
with service endpoints in each region to allow the lowest possible latency.
This may represent the first step in Amazon’s reducing its dependence on the
regional partitioning of resources and operations; however, Amazon has not
addressed this topic, so you’ll have to wait and see!

OpsWorks cost
Like Amazon’s other AWS management services, there’s no charge for using
OpsWorks. There is, of course, a charge for using any of the resources it
manages — instances and EBS volumes, for example.

An OpsWorks example
Working with OpsWorks is similar to working with CloudFormation. Follow
these steps:

 1. From the AWS Management Console page, click OpsWorks.

 Doing so brings up the OpsWorks initial landing page, as shown in
Figure 10-16.

Figure 10-16:
The

OpsWorks
landing

page.

270 Part III: Using AWS

 2. Click the Add Your First Stack button.

 Doing so brings up the Add Stack page, as shown in Figure 10-17.

Figure 10-17:
The stack

configura-
tion page.

 3. Enter the requested information into the fields of the Add Stack page.

 The requested information is pretty much what you’d expect:

	 •	Name: A name that you choose. I have decided to call my stack
MyStackApp.

	 •	Default operating system: Either Amazon Linux or Ubuntu, when
you’re using one of the sample AWS OpsWorks Stacks. I use
Amazon Linux.

	 •	Region: Where your stack runs. I run my stack in US East.

	 •	Default Availability Zone: The zone in which your stack instances
operate. AWS offers a single default zone, but if you choose, you
can configure your layers to use multiple zones. I leave this one as
is in this example.

	 •	Default SSH Key: The SSH key that’s used to access your stack
instances for administrative purposes. Again, it can be overrid-
den per instance, but I use a single SSH key, aws4dummies, in this
example. (For more on SSH keys, see Chapters 2 and 12.)

	 •	Hostname	Theme: A way to identify resources associated with a
given stack, because you may have multiple stacks running at a
single time. I’m keeping the default — Layer Dependent.

	 • Stack Color: Associates a color with all the stack resources so that
you can more easily identify what belongs where. I use the default
color, which is blue.

271 Chapter 10: AWS Management Services

 4. After entering the required information, click the Add Stack button.

 Your stack is added.

After my stack is created, I’m invited to define the resources associated with
it, as shown in Figure 10-18. Well, as long as OpsWorks is asking nicely. . . .

Here’s what I’d do:

 1. Click the Add a Layer link on the MyStackApp page. (Refer to
Figure 10-18.)

 Doing so brings up the Add Layer page.

Figure 10-18:
Configuring

the stack
itself.

 2. Choose a layer type from the Layer Type drop-down menu, and then
click Add Layer.

 OpsWorks provides a number of layer types; because I’m creating a PHP
app, I chose the PHP App Server type, as shown in Figure 10-19.

 3 Click the Add Layer button.

 Doing so creates an instance to operate within the web server layer just
created.

 4. On the new page that appears, click the Add an Instance link.

 5. When the (even newer) page displays. click the Advanced button to
show all the necessary fields.

 The page expands to reveal a new Add Instance section, as shown in
Figure 10-20.

272 Part III: Using AWS

Figure 10-19:
Creating a

stack layer.

Figure 10-20:
Creating

a stack
instance.

 Because I chose layer dependent as the hostname theme, OpsWorks
automatically assigns the name php-app1 to my instance — 1 because
it’s the first instance in the application. The wizard suggests c1.medium
as the instance type and sets 24/7 (24 hours a day, seven days a week)
as the Scaling type so that the instance runs immediately and is always
on. I will use the same ssh key as I defined for the overall stack, though I

273 Chapter 10: AWS Management Services

could do instance-specific keys, if I wanted to. I stick with Amazon Linux
as my operating system, and I’m ready to create the stack instance.

 6. Click the Add an Instance link.

After you define the instance, you’re invited to launch it, which I have done,
as you can see in Figure 10-21. It shows the instance after it has started and
OpsWorks has performed all its magic in connecting and configuring the
instance as part of the layer. OpsWorks displays the status Online to indi-
cate a successful instance start.

Figure 10-21:
The stack

instance as
it’s running.

Completing the previous step list prepares the underlying resources to begin
running the actual application code; it’s now time to deploy that code. To do
that, I do the following:

 1. Back on the MyStackApp page, click the Add an App button.

 Doing so brings up the App New page, as shown in Figure 10-22.

 2. Fill out the required fields with information that’s appropriate for
your application.

 No surprises here — a simple name, the app type (again — PHP, in this
case). Because I’m using a sample AWS application, I use the public
AWS Git repository with the URL displayed in the Repository URL box. If
you’re following along, it’s located at git://github.com/amazon
webservices/opsworks-demo-php-simple-app.git.

 This is the location of the repository, but I have to identify exactly which
code base I want that’s stored within the repository. I do so by typing
version1 in the Branch/Revision box.

274 Part III: Using AWS

Figure 10-22:
Adding the
application

code.

 3. Click the Continue button.

 You then see a page inviting you to deploy the app code, as shown in
Figure 10-23.

 4. Click Deploy.

 OpsWorks has Chef download the application code and then install and
configure it on the application’s instance.

At this point, OpsWorks downloads the code repository from the Git location
and installs it on the instance. In addition, OpsWorks executes any Chef reci-
pes to configure the application code and begin running it. At the end of this
process, an information screen appears and lets you know that the status of
application deployment is now successful, as shown in Figure 10-24.

 Of course, if the application code deployment failed, the status would be dif-
ferent. If you want to examine the details of the application deployment, you
can examine the logs for the deployment phase by clicking the link on the
right side of the hostname listing.

Naturally, you’ll want to see this application operating, so you can go back
to the instance page (refer to Figure 10-21) and click the IP address in the
Hostname listing. When you do that, another browser window opens, and a
connection is made to the OpsWorks PHP application. The window displays
the message Simple PHP App, as shown in Figure 10-25, indicating that the
application has been successfully installed and is operating normally.

275 Chapter 10: AWS Management Services

Figure 10-23:
Deploying

the applica-
tion code.

Figure 10-24:
A successful

application
deployment.

276 Part III: Using AWS

Wooga runs on AWS
The European-based social gaming company
Wooga offers Facebook-based games that run
on browsers, mobile devices, and tablets. The
very nature of its games produces very high
traffic loads and highly variable traffic patterns.

Early in its life, Wooga selected AWS as its
infrastructure, which removed concerns about
infrastructure availability — important for a
company whose games support more than 3
million players per day and more than 20,000
requests per second.

This high variability of load makes manag-
ing the application infrastructure challenging.

Launching and terminating instances when
user loads change greatly over the course of a
day or week is difficult, to say the least.

To address the manageability of its application
infrastructure, Wooga has turned to OpsWorks,
the AWS application management service. By
defining its applications in an OpsWorks defi-
nition, Wooga can depend on AWS to manage
deployment and resource management, with
OpsWorks automatically adjusting the number
of AWS instances to handle game traffic with-
out running (and paying for) unused resources.

Figure 10-25:
All

systems go.

277 Chapter 10: AWS Management Services

 Don’t let this simple application blind you to the power of OpsWorks. The
combination of AWS, Chef, and an application management platform that auto-
mates the installation and configuration process is extremely powerful; more-
over, the more complex the application and the more frequently it’s deployed,
the more benefit you receive from using OpsWorks.

Which AWS Management
Service Should I Use?

The fact that Amazon provides three application management solutions is,
as the saying goes, a blessing and a curse. That Amazon provides applica-
tion management solutions indicates that many of its users find it difficult to
administer complex applications, but the availability of multiple solutions
may make it difficult to decide which solution to use. Here are some guide-
lines for you to use in choosing which management solution to adopt:

 ✓ If your application is fairly simple and written in a dynamic language,
choose Elastic Beanstalk. By fairly simple, I refer to an application that
runs in a single tier and, if the database isn’t part of the application
instance proper, you’re at least using an AWS RDS service to manage
persistent storage. If your application uses dynamic languages but has
multiple tiers running software you have written, the application is too
complex for Elastic Beanstalk.

 ✓ If your application is fairly complex but uses Amazon Machine
Images that contain both system resources (operating system and
middleware, like databases or other servers) and application code,
CloudFormation is a good choice. It can manage multiple tiers and con-
nect those tiers, even when Auto Scaling is involved. CloudFormation
isn’t designed to manage applications in which middleware and applica-
tion code are dynamically installed on an instance. Of course, you have
to be comfortable with working with fairly complicated JSON scripts to
use CloudFormation, which may or may not be your cup of tea.

 ✓ If you use a DevOps application lifecycle discipline or you prefer to
dynamically install code on your application instances or you prefer
a graphical interface to the joys of JSON, OpsWorks is a good option.
You should become familiar with Chef because it is OpsWorks’ recom-
mended method of managing code. OpsWorks hasn’t been on the market
long (at least not at the time this book was written), but I expect it
to become a commonly used tool to manage complex application
deployment.

278 Part III: Using AWS

Chapter 11

Managing AWS Costs
In This Chapter
▶ Digging deeper into the complexities of AWS costs
▶ Keeping track of AWS costs and utilization
▶ Figuring out how to better manage your AWS costs

T
his chapter addresses two interrelated and vital issues for AWS users:

 ✓ How to ensure that your AWS applications operate efficiently and
effectively

 ✓ How to best manage your AWS costs

Amazon is justly famous for its ability to run AWS at scale, its effective use
of automation, and its track record in keeping costs extra low. However,
Amazon’s ability to run AWS efficiently and with low costs doesn’t automati-
cally mean that the resources you run in AWS are efficient and inexpensive.

In fact, using AWS inefficiently isn’t difficult — because you can easily obtain
AWS resources, there’s a danger that you may end up using AWS less effi-
ciently than on-premise computing resources. You may think, “Hey, it’s easy
to launch a server,” believing that it costs only $.06 per hour and forgetting
(or not bothering) to shut it down. Like a leaky tap, though, small amounts
can add up to a gusher of wasted resources.

This wastefulness can be a true problem at scale, when an organization may
have dozens of applications and hundreds of instances running in AWS. The
growth of AWS services exacerbates this issue, given how many more ser-
vices there are to keep track of.

Never fear, however: This chapter tells you about tools that are available
to address the issues of efficiency and costs. I also throw in some general
advice about how to keep your AWS usage both efficient and cost effective.

280 Part III: Using AWS

AWS Costs — It’s Complicated
Wait a sec. How dare I say that AWS costs are complicated? Hasn’t Amazon
made a virtue of cost transparency? Hasn’t it put the prices for each of its
services right there on its website, available for all and sundry to view?
Doesn’t it provide reduced prices for increased volume? Hasn’t it created
new services to better and more efficiently support user workloads, thereby
reducing their costs? Hasn’t it created discount programs in the form of
reserved resources that offer much lower costss in return for making a finan-
cial commitment upfront?

Yes, yes, yes, yes, and yes.

Amazon is completely transparent about charging for its services, unlike
many of its competitors who post statements such as these on their web-
sites: “For pricing, please contact a sales representative to review your
requirements.” (You’ll never find out what those providers charge unless you
subject yourself to a sales pitch.) Amazon is to be commended for breaking
from those customer-unfriendly practices and making it easier to find accu-
rate charges.

Amazon is also to be commended for its innovation in rolling out new ser-
vices. Just during the writing of this book , it rolled out two new major
services and a plethora of small improvements to its existing services.
The company should be further commended for creating its EC2 reserved
instances offering, which reduce the total cost of ownership (TCO). And, of
course, Amazon deserves praise for offering price breaks for volume use.

The challenge in tracking Amazon costs results from all this commendable
and praiseworthy behavior. Simply put, Amazon has rapidly developed such
a variety of services and pricing structures that trying to understand all the
costs that are being charged to your account is quite a challenge; it’s even
worse when you have complex applications that use many different AWS
resources spread across multiple tiers — not to mention trying to under-
stand how varying application load (which typically causes resource
scaling — the temporary use of additional resources to ensure adequate
application performance) affects costs.

Over its brief lifetime, AWS has evolved from a limited set of services offered
with a limited set of options to a rich mélange of services and options that is
much more difficult to track and that works against easy predictions of TCO.
Obviously, you should fully understand your resource utilization, figure out
its patterns, and analyze what you can do to ensure that your AWS costs are
as low as possible; on the other hand, you don’t want to reduce your costs to
the point that your application’s availability or performance suffers.

Feeling overwhelmed by this tug-of-war between costs and performance?
Fortunately, help is at hand. Read on.

281 Chapter 11: Managing AWS Costs

Taking Advantage of Cost
and Utilization Tracking

How important is it to manage your AWS utilization and costs? It’s very
important. Cloudyn, one of the leading companies in the area of AWS uti-
lization analysis, kindly shared some of its customer statistics in order to
highlight common patterns of AWS use — and, of course, to profile the chal-
lenges that can arise when users don’t manage their AWS use in a thoughtful
manner.

Cloudyn sampled 400 customers and analyzed these companies’ use of AWS
in January 2013. In a discussion about its findings, the company noted that
it had conducted a similar survey a year earlier and found similar results, so
the January 2013 results can be considered representative of how many com-
panies use (and misuse) AWS.

The companies primarily represent enterprise customers, which is to
say that the survey population represents end users of IT, not vendors.
Moreover, the companies tend to be larger, as opposed to small start-ups.
(Cloudyn primarily serves the enterprise market, so it makes sense that this
survey pool is composed primarily of mainstream companies.) Table 11-1
shows the breakdown (in terms of annual AWS expenditures) for the survey
pool.

Table 11-1 AWS Annual Expenditure Survey Pool
Expenditure Amount Percentage of Survey Pool Percentage of Total

Survey Expenditure
Less than $50,000 61 percent 4 percent
$50,000 to $100,000 11 percent 5 percent
$100,000 to $500,000 22 percent 30 percent
$500,000 to $1 million 2 percent 10 percent
More than $1 million 4 percent 52 percent

As you can see, a large percentage of the survey pool spends less than $50,000
per year, but of the total amount spent, this group represents only 4 percent.
At the other end of the spectrum, only 4 percent of the survey pool spends
more than $1 million per year on AWS, but those companies represent more
than half of total AWS spending by the entire survey pool. Curiously, a greater
percentage of the survey pool spends more than $1 million per year than the
percentage that spends between $500,000 and $1 million.

282 Part III: Using AWS

 I’ll bet that this “more than $1 million per year spent on AWS” statistic
grabbed your attention, right? It certainly grabbed mine. Any way you slice it,
more than a million dollars per year is a healthy chunk of change. Clearly, the
survey shows that a number of mainstream companies have adopted AWS as
a platform for significant amounts of computing — in other words, AWS is a
key part of their computing infrastructure. I hope you’ll remember this state-
ment the next time someone airily asserts, “AWS is mostly used by start-ups
and for testing and development.” It has moved way past that point.

To help you dig deeper into Cloudyn’s survey results, Table 11-2 shows the
breakdown of total spending on AWS services that the survey group uses.

Table 11-2 Distribution of Expenditure by AWS Service
Service Percentage of Spending
S3 6 percent
RDS 7 percent
EBS 8 percent
Other 17 percent
EC2 62 percent

In this breakdown, network traffic falls into the Other category, which is why
you don’t see it identified specifically.

Frankly, these numbers surprised me. I would have expected more of the
spending to be on S3, and I’m surprised that EC2 represents so much of the
total amount. Nevertheless, you should draw two main lessons from this table:

 ✓ EC2 will be a large proportion of your total spending. Pay close atten-
tion to your use of EC2 to ensure that you use it in the most efficient
fashion. I make some recommendations in this regard later in thing
chapter.

 ✓ Even though those AWS services listed as Other (SQS and SNS, for
example) don’t seem expensive, in sum they represent nearly 20
percent of total annual expenditure for the survey companies. These
services are likely to be more heavily used than generally recognized,
and their use can add up to serious costs. Individually, the “Other” AWS
services may not be expensive, but in aggregate they’re significant.

Turning to how survey members purchase their EC2 instances, Table 11-3
shows the popularity of the various pricing models.

283 Chapter 11: Managing AWS Costs

Table 11-3 Use of the EC2 Pricing Model
Pricing Model Percentage of Use
On-demand instances 71 percent
Reserved instances 26 percent
Spot-priced instances 3 percent

Which pricing model you choose is much more important than it may seem
at first glance. Many people believe that the hourly charge for a single on-
demand EC2 instance is so low not to be worth the bother involved in order-
ing a reserved instance. Moreover, many people aren’t sure how long they’ll
use a particular instance, so they shy away from reserved instances because
they feel that they would be making a long-term commitment without know-
ing that it will be worthwhile.

These feelings are perfectly understandable. However, you should at least
consider using reserved instances. Need convincing? Check out Figure 11-1,
which Cloudyn prepared in order to illustrate the total cost trade-off between
the EC2 pricing models.

Figure 11-1:
Comparing

the costs
of the AWS

pricing
models.

284 Part III: Using AWS

The chart reflects total time on the horizontal axis, with months as the units,
and a total time of three years (36 months). The vertical axis represents total
cost in dollars. The chart compares these five pricing models:

 ✓ On-demand

 ✓ One-year light use reserved

 ✓ One-year medium use reserved

 ✓ One-year heavy use reserved

 ✓ Three-year heavy use

As Chapter 5 makes perfectly clear, understanding the ins and outs of the
various benefits and commitments of the light, medium, and heavy use
reserved instances can be difficult. However, if you’re planning to use an
instance for at least three months, you’re better off doing so via a reserved
instance, no matter which type of reserved instance you choose. (Refer to
Figure 11-1.) Three months — that’s all. In the section on managing AWS
costs, I recommend how to apply reserved instances — the main point here
is that you should consider using reserved instances if you plan any kind of
significant AWS use.

 If you’re even more adventurous, evaluate using spot instances, where
AWS lets you place bids on unused resources. The drawback to using spot
instances is that you never can be sure whether you can obtain EC2 instances
at your bid price. On the other hand, you can attempt a spot price launch,
and if no instance is available at your bid price, go to an on-demand instance.
Pinterest, the wildly successful and often quirky service that lets you “collect
and organize the things you love,” is a heavy user of spot instances as a strat-
egy to reduce its total AWS spending. The site’s commitment to spot instances
is so strong that it’s built into its application code. The application always
tries to launch a spot instance first (via the AWS SDK), and if no spot instance
is available, its code fails over to a second launch call for an on-demand
instance. Cloudyn also analyzed how the survey pool used AWS resources and
identified two other important findings:

 ✓ Sixteen percent of Elastic Block Store volumes weren’t attached to an
instance. The volumes were created but weren’t in service at any point
during the month-long survey period. Though it’s possible that some
of these volumes would be used at times other than during this period,
the vast majority of them are likely formerly used, now-forgotten, aban-
doned volumes — even if they’re not being used, though, the client is
still being charged for them.

285 Chapter 11: Managing AWS Costs

 ✓ The average processor load across the entire pool of EC2 instances
was only 19 percent. In other words, more than 80 percent of the pro-
cessing capacity was wasted. It makes sense to have some headroom
for spiky load, but 80 percent represents an enormous amount of waste;
again, even though the capacity isn’t being used, it’s still being charged
for. That is, the AWS users are paying for something they’re not using.

This list explains the main points of this extremely interesting survey:

 ✓ AWS use is big. Even if you’re not a heavy user of AWS, you’re likely
to become one, especially if you follow what is, anecdotally, a common
pattern: starting small, with an almost offhand use of AWS — perhaps a
quick application prototype — and, after seeing how easy it is to obtain
resources and be productive, rapidly increasing your use to a point
where it’s a fairly significant portion of total infrastructure use.

 ✓ EC2 is likely to represent the vast majority of your expenditure. Many
organizations find that the easy availability of computing resources,
especially compared with the protracted provisioning cycle of their on-
premise infrastructure, makes EC2 almost seductively appealing. And
don’t forget that, for businesses under competitive pressure, the imme-
diate EC2 provisioning process enables market agility, which is highly
prized in today’s global economy.

 ✓ Despite EC2’s prominence, other AWS services are sure to represent a
significant portion of your total spending. Pay attention to how you use
any of the other AWS services. Just as important, work to understand
them (using a valuable resource like this book) so that you can better
evaluate how to use them to build better applications and further enable
agility.

 ✓ Watch your AWS use patterns to make sure that you’re benefitting
fully from what you’re paying for and not wasting AWS resources.
Historically, given the difficulty in obtaining resources, many IT orga-
nizations would overprovision, believing that it was better to buy too
much and avoid having to endure the tiresome process again rather
than risk being caught short and having to repeat a miserable experi-
ence again. In the AWS world, where the overhead of obtaining (or
releasing) computing resources is trivial, that “overbuying” behavior
isn’t necessary; worse, it imposes true costs given the fact that you
pay for AWS all the time, even if you’re not doing anything with the
resources.

286 Part III: Using AWS

Pinterest runs on AWS
You’re probably familiar with Pinterest, the
wildly successful application that lets people
share their interests via “pinning” theme-based
images. From sewing to cooking to muscle cars,
people are madly sharing items that they find
compelling relating to their personal interests.

You might even be aware that Pinterest runs
on AWS — lock, stock, and barrel. Its enor-
mous community of users and all their images
use AWS. But you likely aren’t surprised that a
hugely successful technical giant runs its entire
business on AWS.

What you might be surprised about, however,
is how cleverly Pinterest manages its AWS
resources and how much it reduces its AWS
spending by carefully choosing the kinds of EC2
instances it uses.

Like many online properties, Pinterest has wide
variability in user load — much greater use in
the evening than during working hours. When
it originally started, it used (as do most other
sites) on-demand EC2 instances, paying full
rates for their use. This presents two kinds of
wastefulness:

 ✓ Not using reserved instances: By simply
prepaying for instances, Pinterest could
save 30 percent or more in the hourly cost
of an EC2 instance.

 ✓ Variability of traffic: It doesn’t make sense
to pay for an instance that is running but not
being used, so an instance that’s very busy
at 8 p.m. might be idle most of the day while
the level of Pinterest traffic is low.

To keep its costs low, Pinterest

 ✓ Uses heavy reserved instances: To help
manage traffic at levels that are present at

all hours (in other words, the minimum level
of traffic that is always present no matter
what time of day it is). By making the larg-
est upfront payment, Pinterest receives the
lowest possible hourly price.

 ✓ Uses light reserved instances: To manage
traffic at levels that are predictably present
during portions of the day. These receive
less of a discount from the on-demand
price but require less upfront payment.

 ✓ Attempts to use spot priced instances,
making low bids for idle instances: To
manage unpredictable spikes in traffic.
The natural reaction would be to use on-
demand instances for spike traffic that
goes beyond what can be handled via
reserved instances. After all, this is for
short-lived instance use, and paying the
full on-demand price would be accept-
able for these short periods . Pinterest
doesn’t follow this approach, however.
(Remember that much of its heavy traffic
occurs during off-work hours, when AWS
likely has idle resources, rather than use
on-demand instances for its peak traffic.)
This strategy enables it to save as much as
89 percent off the on-demand price for the
same instance. Only if no spot instances
are available during peak traffic conditions
does Pinterest turn to standard on-demand
instances.

By combining these techniques, Pinterest saves
on the order of 60 percent off the cost of pure
on-demand instances. It takes some clever
planning, but achieving those kinds of financial
results makes the work highly profitable.

287 Chapter 11: Managing AWS Costs

Managing Your AWS Costs
Now that you know that AWS is a big deal, that you’re likely to use a lot of it,
and that it’s challenging to manage it in a cost-effective manner, you probably
want guidelines for ensuring that you’re getting your money’s worth from AWS.

You’ve come to the right place, because here are some best practice
recommendations:

 ✓ Design applications to be scalable — both up and down. Use multiple
smaller EC2 instances instead of a smaller number of larger instances.
Doing so ensures that you more closely match your total computing
capacity to application load so that you have just the right amount avail-
able at any given time.

 ✓ Follow a “down and off” application management strategy. This term,
coined by Forrester analyst James Staten, means that you should seek to
have only the right amount of computing resource available at any given
point, and that you should aggressively reduce computing resources
when the application load shrinks. The easy, immediate AWS provision-
ing capability supports this because, if the application load increases,
you can easily add resources to your application. And if you followed
the previous recommendation about making your application scal-
able, your application will easily accommodate a growing or shrinking
resource pool.

 ✓ Leverage Auto Scaling groups. One challenge of following the “down
and off” strategy (and the complementary “up and on” for responding to
growing application load) is the operations burden. For every instance
that needs to be launched or terminated, an operator has to perform
some work: adding or subtracting the instance to a resource pool, con-
necting it to other instances, and, perhaps, adding a load balancer to
the mix. To deal with this burden, use Auto Scaling groups, the AWS
answer to this challenge. Configure your application up front, and then
let Amazon take care of dynamically scaling your resource pool while
you sit back with a cup of coffee. (For more on Auto Scaling groups, see
Chapter 11.)

 ✓ Leverage an AWS management tool from Amazon or a third party.
Auto Scaling groups are fantastic for managing EC2, but as the survey
data indicates, you’ll use plenty of other AWS resources. AWS manage-
ment tools can reduce the operational overhead of managing those
other resources, such as SQS and RDS. (That’s less work and more
coffee break time for you!)

 ✓ Perform application load testing to help with your financial model-
ing. By loading up your application with simulated traffic, you can see

288 Part III: Using AWS

what resources it uses at higher volumes. Then you can see whether
you’re likely to expand your use of certain services enough to achieve
price breaks based on volume. Conversely, it also shows if, at larger
application loads, you use certain services wastefully and can redesign
your application to reduce the use of those services and save money. Of
course, I advocate performing load testing to ensure better application
robustness; it’s an additional benefit of load and performance testing.

 A number of open source and commercial load/performance testing
products and services are available. One I like is from the SOASTA
(www.soasta.com), a company that offers the CloudTest service.
It is, of course, an on-demand, cloud-based service that lets you use
(and pay) for only what you need. SOASTA also offers the free product
CloudTest Lite, which you can install on your local machine; it allows
you to simulate as many as 100 simultaneous users. Frankly, given that
it’s free, and how important it is to design and test an application to be
robust in the face of large and fluctuating load, you’d be foolish not to
use CloudTest Lite.

 ✓ Use analysis tools to ensure efficient, effective AWS use. As you can
see from the survey results at the beginning of this chapter, it’s easy
to use AWS. It’s so easy, in fact, that you can easily lose track of what
you’re using — or, to be more precise, what you’re provisioning, and
paying for, but not using. Believe me: It’s easy to forget all the resources
you’ve provisioned. It’s not a sign of forgetfulness or carelessness; it
just happens. The important thing is what you should do to address this
byproduct of AWS’s easy provisioning.

 Use an analysis tool like Cloudyn (www.cloudyn.com). Other third-
party analysis tools are in the marketplace, and Amazon has recently
launched the new service Trusted Advisor, which is free to use and
performs some of the same kinds of analyses. Most of the third-party
services also offer a free-use tier. Given the real cost of unused AWS
resources, and the availability of free-use levels of tools such as Trusted
Advisor and other, third-party tools, you should, at minimum, leverage
an analysis tool to give you a reading on where you stand with respect
to your AWS use. If the findings indicate some shortcomings in your use
patterns (and they probably will — trust me), you can look at doing a
more thorough analysis by moving to one of the paid options from third-
party tools like Cloudyn.

http://www.soasta.com/
http://www.cloudyn.com/

Chapter 12

Bringing It All Together:
An AWS Application

In This Chapter
▶ Building a simple blogging site
▶ Partitioning the site to enhance performance
▶ Improving application robustness with geographical redundancy

T
his chapter presents a complete application that allows you to do some
hands-on work with AWS. I present a step-by-step set of instructions for

you to follow as you start from a simple EC2 application and incrementally
increase its performance and robustness by taking advantage of additional
AWS services to improve it. Along the way, I discuss the reasons for selecting
these additional services and how they improve the application. If you follow
along, by the time you finish working through the example, you’ll be ready to
take on AWS singlehandedly!

 The example in this chapter focuses on AWS itself and on how to improve an
application by layering on additional AWS services. The idea is not to come up
with a whiz-bang application as well. That’s why I’m presenting a simple, pre-
packaged blogging application put out by WordPress. (Then you don’t have to
worry about writing any code. Big sigh of relief, eh?)

To get another confession out of the way, I do not discuss items critical to
running this application in production mode, such as error checking and han-
dling and version-control planning. Though they’re important topics, I want
you to experience the power of AWS and not get bogged down in unneces-
sary details.

Here’s an outline of how to get the project up and running:

 1. Create an AWS account.

 2. Update the Default security group to accept network traffic on Ports 80
(HTTP) and 22 (SSH).

290 Part III: Using AWS

 3. Locate and launch an appropriate WordPress Amazon Machine Image
(AMI) to use as the basis of the hands-on examples.

 4. Vertically partition your WordPress application by migrating its data-
base to the AWS Relational Database Service (RDS), discussed in
Chapter 8).

 5. Create your own WordPress website AMI from your vertically parti-
tioned WordPress application.

After you complete these five steps, you’ll have converted a simple applica-
tion into a highly robust one that’s ready to handle significant loads.

Sound like fun? Good. Let’s get started.

Putting the Pieces Together
The purpose of this section is to demonstrate how AWS is used in real-world
settings. You’ll start by launching a simple, pre-existing Wordpress AMI.
This illustrates AWS ease of use and quick resource availability. You’ll then
incrementally improve the functionality and robustness of your Wordpress
application, so you can see how additional AWS services can be used to build
out applications. Along the way, you’ll create a new Wordpress AMI, which
will help you understand the power of the AWS infrastructure. Overall, at the
end of this set of hands-on activities, you’ll have developed some AWS skills;
more importantly, you will (I hope) be convinced of the power of the AWS
offering.

Creating your own AWS account
I describe the nuts-and-bolts of creating your own AWS account in Chapter 3,
so you may want to review it now. To be honest, it’s quite easy to create an
account; all you need is an e-mail address, a credit card, and a phone. (You
use the phone’s keypad to enter a PIN number that AWS sends to you during
the sign-up process.)

Setting up an account, which takes no more than 10 minutes, is covered in
step-by-step detail in — you guessed it — Chapter 3, so if you don’t already
have an account, create one now. (Don’t hurry. I’ll go get a cup of tea while
you’re working through the process.)

291 Chapter 12: Bringing It All Together: An AWS Application

Enabling access on your security group
In Chapter 7, where I discuss AWS security, I mention that one keystone of
AWS security is the concept of a security group, which is, essentially, a soft-
ware firewall that AWS installs on every AWS instance to control traffic to the
instance. AWS supplies one security group — Default — to every account,
and allows you to create additional security groups as necessary. For this
exercise, you have to configure a security group to that traffic on two ports:
80 (for web HTTP traffic) and 22 (for SSH administrative access).

You can use the Default security group and open those ports on it for this
exercise. Chapter 7 contains information on adding rules to security groups,
so refer to that chapter in order to add ports 22 and 80 to the Default secu-
rity group. Because these ports are commonly used, AWS provides them in
a handy drop-down menu in the Create a New Rule selection box, so look
for SSH and HTTP in the list and add them. Leave the Source box alone (at
0.0.0.0/0), to indicate that the instance accepts access from anywhere on the
Internet.

Locating and launching an appropriate
WordPress Amazon Machine Image (AMI)
I could have begun this chapter’s exercise, of course, by having you write an
application from scratch. But that would be hard work, and bo-o-o-oring to
boot (in addition to asking you to do a lot of stuff before getting to the excit-
ing part of using AWS).

A better way to start is from an existing software package, which requires
much less work and allows you to focus on AWS itself, instead of on writing
the entire application on your own. (Much better, don’t you think?) Even this
approach requires a fair amount of work: You’d need to install the software
on a running EC2 instance, install the appropriate operating system and
middleware packages, verify the proper configuration, and then create a new
Amazon Machine Instance, or AMI. Whew! That’s still a lot of work, right?

Fortunately, you can choose a better way — a much better way. One strength
of AWS is its ability to leverage its ecosystem — the large number of users
and commercial organizations that offer online services that run in and/or
complement AWS itself. One way that the ecosystem helps people like you is
to provide prebuilt AMIs. Depending on who offers the AMI, it may integrate a
commercial software offering or open source software; if it’s the former, you

292 Part III: Using AWS

pay to use it; if it integrates open source, it’s probably free to use, although
the provider may provide additional commercial services, such as support
or monitoring, as paid offerings. (Doesn’t the free one sound like a good way
to go?)

When following my instructions in this chapter, your best bet is to use an
offering from one of the best of the breed: Bitnami. This company offers a
range of prebuilt AMIs, all containing open source applications that are com-
pletely free for you to use. As you may expect, the company also offers sup-
port and services for them. Bitnami isn’t limited to AWS, though — it offers
similar capabilities and services for a number of other cloud computing envi-
ronments. Your interest is AWS, of course, so I focus on Bitnami AWS AMIs.

Bitnami offers an amazing range of AMIs — ones that incorporate open
source applications such as SugarCRM and Moodle (an educational app),
technical configurations like the Java server Tomcat, and a selection of
content management solutions (website management applications, in other
words) such as Joomla, Plone, Alfresco, and WordPress. In this chapter, I’ve
selected WordPress because it’s an extremely popular content management
system, and you may have worked with it. (It probably wouldn’t surprise
you to learn that my own website, www.bernardgolden.com, runs on
WordPress.)

Go ahead and track down the Bitnami WordPress AMI. Start out by clicking
on EC2 on the Management Console landing page to get to the EC2 AMI dash-
board, but rather than sift through all the AMI offerings, take advantage of
the Search capability on the page, as shown in Figure 12-1.

 1. Using the Filter drop-down menus along the top of the page, narrow
your search by selecting Public Images, EBS Images, and Ubuntu as
the criteria for your search (see Figure 12-1).

 Bitnami images are designed to be publicly accessible; if I didn’t use
Public Images as the image type, I wouldn’t have been able to see
Bitnami’s WordPress image. I chose EBS Images because it simplifies
making new AMIs based on this AMI; I chose Ubuntu because it’s a con-
venient Linux version to use. I also used bitnami-wordpress as a search
term within the AMI description because I wanted to select only from
Bitnami-supplied WordPress images and not have to see the SugarCRM
or Moodle (or whatever) images.

 To understand why using EBS-backed images makes creating new AMIs
easier, see Chapter 4.

 Despite all the filters that are applied, notice that you still come up with
quite a number of entries — so many that the one I want you to use isn’t
even listed on the initial page of entries.

http://www.bernardgolden.com

293 Chapter 12: Bringing It All Together: An AWS Application

Figure 12-1:
Searching

for a Bitnami
WordPress

AMI.

 2. Make your way to the third page to locate the AMI: a 64-bit 3.2.1-5
WordPress version, as shown in Figure 12-2.

 Note that the AMI I want you to use carries the ID ami-1bbc7472.
However, I’m using AWS US East for this example. If you’re using a dif-
ferent AWS region, you’ll find that the Bitnami 64-bit Ubuntu EBS-backed
WordPress 3.2.1-5 AMI carries a different AMI ID because of Amazon’s
AWS regional structure. Don’t worry: The example still works the
same — just find the right AMI in your chosen region or stick with the
US-East region for your hands-on work to simplify your effort.

 The next step is to launch the WordPress AMI. You can see that the EC2
Dashboard puts up a striking blue Launch button for exactly this situa-
tion (refer to Figure 12-1).

 3. After selecting the 64-bit 3.2.1-5 WordPress AMI to work with, click
the Launch button.

 AWS starts the launch wizard, as you can see in Figure 12-3.

294 Part III: Using AWS

Figure 12-2:
The 64-bit

3.2.1-5
Ubuntu

WordPress
AMI.

Figure 12-3:
The AWS

Launch
Wizard.

295 Chapter 12: Bringing It All Together: An AWS Application

 4. Enter 1 in the Number of Instances field, and choose T1 Micro from
the Instance Type drop-down menu.

 To keep this example simple (and cheap), you start with only one
instance and use the T1 Micro instance type, which provides as many as
two EC2 compute units in Burst mode (but much less in normal opera-
tion) and only 613MB of memory. As small as it is, it’s completely suf-
ficient for this example; better yet, if you’re using a new AWS account in
this example, the T1 Micro instance is free for you to use.

 5. In the Launch Into section, keep the EC2-Classic radio button enabled
(the default) and then click Continue.

 AWS presents the next screen of the launch wizard, as shown in Figure
12-4, where you can choose to modify the instance’s kernel modules or
change its RAM disk, but in practice these options are rarely used, so
leave them alone. Also leave monitoring turned off for now. The User
Data box passes in information to the instance during the launch pro-
cess; you don’t have any launch information to communicate to the
instance, so leave this one empty. Neither do you need to worry about
termination protection in the example, and you aren’t using IAM, so
leave those options alone. (IAM, which refers to identity management
services, is described in Chapter 8, if you want more information.)

Figure 12-4:
Setting

advanced
instance

options —
Kernel, User

Data, and
IAM Roles.

296 Part III: Using AWS

 6. After leaving everything as is on this screen, click Continue.

 The next launch wizard screen appears, as shown in Figure 12-5,
which you can use to identify additional EBS volumes that you might
like to attach to this instance. The one listed in the Storage Device
Configuration box is the EBS root volume for this instance, and it’s nec-
essary for it to operate.

Figure 12-5:
Where to
configure
additional

EBS
volumes.

 7. You need no additional volumes in this example, so leave this screen
unchanged and click Continue.

 The new screen that appears, as shown in Figure 12-6, is used to enter
any tags that you want to associate with the instance while it’s running.

 Tags can be quite useful if you’re running large numbers of instances,
because you can search by tag and reduce the total number of instances
you need to look at to find the specific instance you need.

 8. Because you’re working with only a couple of instances in this exam-
ple, just click Continue.

 The next screen (see Figure 12-7) is one of the most important and, in
my experience, challenging for new AWS users. Keep in mind that the
method used to control administrative access to AWS Linux instances
is Secure Shell, known as SSH. Rather than have to fuss with usernames
and passwords, SSH uses cryptographic keys to control access to
instances and to encrypt data that’s transferred between an administra-
tor’s client machine and the instance being administered.

297 Chapter 12: Bringing It All Together: An AWS Application

Figure 12-6:
Entering

tags, if you
so desire.

Figure 12-7:
Creating

an SSH key
pair.

 SSH uses a combination of a public key and a private key. The adminis-
trator holds the private key on the client machine. The remote resource
(the AWS instance, in this case) holds the public key. The client machine
makes an SSH connection and presents the private key. The remote
resource uses the private key and confirms that it matches the public
key and then, assuming that they match, allows SSH access to the
remote resource.

298 Part III: Using AWS

 After you figure out how to use SSH, it’s straightforward, but if you’re
not familiar with it, it can take some getting used to. Linux/Mac clients
have an SSH client built in, accessible via the Terminal application.
Windows machines don’t have a native SSH client, but the free applica-
tion Putty offers SSH support.

 Showing you how to use SSH in all its infinite variety is beyond the scope
of this book, but a number of good resources are available, including
one at Bitnami’s website: http://wiki.bitnami.com/cloud/how_
to_connect_to_your_amazon_instance

 In this example, I show you how to use SSH via a Terminal application,
but Putty operates in much the same way.

 9. On the new screen that appears, select the Create a New Pair radio
button.

 This step is a bit tricky. AWS opens a screen offering to download the
private part of the key pair — you must download it somewhere on
your computer, and you can choose any location that’s secure, robust,
and convenient. On Linux or the Mac, a directory in your home
directory — .ssh — is the traditional place to put a private key pair.
In Windows, complete the key conversion process, as outlined on the
Bitnami web page in Step 8.

 10. After downloading the private part of the key pair to your computer,
click Continue.

 On the next screen (see Figure 12-8), you choose one or more security
groups to associate with your instance. If you followed the instructions
at the beginning of this chapter, the Default security group should spec-
ify that ports 22 and 80 are open.

Figure 12-8:
Specifying

your
security

group.

http://wiki.bitnami.com/cloud/how_to_connect_to_your_amazon_instance
http://wiki.bitnami.com/cloud/how_to_connect_to_your_amazon_instance

299 Chapter 12: Bringing It All Together: An AWS Application

 11. Select the Choose One or More of Your Existing Security Groups
radio button, select the Default option from the list, and then click
Continue.

 That’s it! The final confirmation screen lists all the choices you’ve made
while completing the wizard, and, assuming that you click the Launch
button on that screen, you see a confirmation panel like the one shown
in Figure 12-9, indicating that your new EC2 instance is on its way!

Figure 12-9:
Your EC2

instance is
launching.

Within a couple of minutes, if you click the Instances link (at the top of the
Navigation pane on the left side of the EC2 dashboard) and then select the
check box to the left of the running instance, you should see something like
Figure 12-10.

Note several items on this screen:

 ✓ An instance ID and the AMI ID you’ve been working with: In my exam-
ple, the AMI ID is ami-1bbc7472.

 ✓ The instance state, which is listed as Running: From AWS’s perspec-
tive, everything is operating normally.

 ✓ Information (below the gray bar) about your instance, including the
full name of the AMI and the AWS DNS entry for this instance: In this
case, the DNS entry is ec2-23-23-12-40.compute-1.amazonaws.
com.

 ✓ Additional information on the Description tab: Here you can find the
zone the instance is operating within, the type of instance that’s run-
ning, and the security group(s) associated with the instance.

300 Part III: Using AWS

Figure 12-10:
The

running EC2
instance.

As I mention in this list, from the perspective of AWS, this instance is operat-
ing normally. But that doesn’t mean the application code itself is also operat-
ing normally, so you have to check it. To do so, you need the instance’s URL.

Look for the URL right above the Description tab. (In Figure 12-10, the
instance URL is ec2-23-23-12-40.compute-1.amazonaws.com.) Copy
the URL that’s displayed in your browser in the same location as this exam-
ple. Then open a blank browser tab so that you can enter your instance’s
URL. Paste the URL into the browser tab and press Return.

You then see something like Figure 12-11, which is the initial landing page of
the Bitnami WordPress application.

When you click the Access My Application button, you should see the stan-
dard WordPress landing page, as shown in Figure 12-12.

301 Chapter 12: Bringing It All Together: An AWS Application

Figure 12-11:
The initial

landing
page in the

Bitnami
WordPress
application.

Figure 12-12:
The

WordPress
landing

page.

302 Part III: Using AWS

Bitnami provides full administrative access to the WordPress application,
and you can access the WordPress administrative interface by clicking the
Login link in the lower-right corner of the page. Doing so presents you with
the login panel, as shown in Figure 12-13.

Enter user as the username and bitnami as the password, and you instantly
see the WordPress administrative interface, as shown in Figure 12-14.

Take a step back and review what you’ve accomplished. You have

 ✓ Created an AWS account

 ✓ Modified the default security group for your account to allow web and
SSH access to any instance you launch

 ✓ Selected an AMI to work in this chapter’s exercise

 ✓ Launched the Bitnami WordPress AMI

 This AMI contains a full WordPress application and allows you, for the
purposes of this chapter, to focus on AWS itself and avoid having to
install any software.

 ✓ Accessed the Bitnami WordPress application and logged in to
WordPress as the site administrator

Figure 12-13:
The

WordPress
login panel.

303 Chapter 12: Bringing It All Together: An AWS Application

Figure 12-14:
The

WordPress
admin-

istrative
interface.

Well done! You’ve successfully used AWS to launch and run an application. I
hope that, in completing this exercise, you’ve seen why AWS represents a revo-
lution in computing. Even if you’re a first-timer, you probably spent no more
than 30 minutes moving from having no account to having a running applica-
tion. As you gain experience, you may spend no more than 5 minutes — a far
cry from the length of time that employees at many companies spend, where it
can take 6 weeks to get a virtual machine from IT.

Vertically partitioning your
WordPress application
After you’ve done all the work in the previous sections, you should have
a fully functioning WordPress application. You can use it as the basis of a
full-fledged website, leveraging all the power and plug-ins that WordPress is
known for.

On the other hand, your site is running within a single instance, which would
pose a problem if the site ever experiences heavy traffic — the throughput of
your WordPress application could suffer because the instance has to manage
all the web traffic while running the database that WordPress uses to store all
its data — including the data that WordPress uses to create its webpages. In
short, your WordPress application could suffer from performance overload.

304 Part III: Using AWS

Furthermore, running the database and the WordPress application on the
same instance presents danger as well — if the application crashes (an occur-
rence that is, unfortunately, too common, typically caused by misbehaving
plug-ins), any data entered in the database since the AMI was launched
would be lost. In the case of the WordPress example, any changes you made
to the base Bitnami AMI would disappear!

A common way to address this issue is to vertically partition the application —
a fancy way of saying that you split the application, leaving the front end (the
webpages part) on one instance and move the back end (the database part) to
a separate instance. This strategy ensures that the two parts of the application
don’t contend for the single instance’s processing resources.

However, vertical partitions don’t address the issue of crashes. Though the
likelihood of the database instance crashing is lower than if it were on the
same instance as the running application, the potential still exists for the
database instance to crash — your vertical partitioning would then be for
naught, and you’d be back at Square One with your Bitnami WordPress
application.

One way to address this whole crash business is to move the database from
the database instance to a separate EBS volume, which wouldn’t be affected
by instance crashes. On the other hand, you would still need to manage the
database instance and create snapshots and backups for data protection.
In other words, you’d still be stuck with the work of running the database
instance.

This situation is the type that Amazon’s own RDS service is designed for. RDS
operates and manages a database instance, taking care of creating snapshots
and backing it up. To make everyone happy then, let me show you how to
vertically partition your WordPress application by moving the database to
the RDS service.

Doing this requires two steps:

 1. Create the RDS service that will manage the WordPress application.

 2. Modify the WordPress application to interact with the RDS database.

In the following section, I walk you through these steps.

Creating the RDS service to manage the WordPress application
Your database now resides on the single instance of the WordPress applica-
tion. First, access that instance and use MySQL — a popular, open source
RDBMS (relational database management system) — to download the infor-
mation needed to create an RDS database that provides the same database

305 Chapter 12: Bringing It All Together: An AWS Application

and information that resides on the WordPress application. (Such downloads
are commonly referred to as performing a database dump.) Start by access-
ing the WordPress application instance via the Secure Shell (SSH) network
protocol. (For the sake of this example, remember that you use the Terminal
application, which ships with both Mac and Linux operating systems.)

 1. Using Terminal, enter the correct ssh command for your system.

 Figure 12-15 shows the ssh command I used to access the instance.
Your ssh command will vary according to the name of your private
key and the IP address of the instance. Note that you log on as user
Bitnami, not root, as is common with SSH. Also note that I have used
the IP address of the instance; be sure to use the IP address of your
instance, which you can find at the bottom of the instance information
page. (The IP address is contained in the DNS name of the instance —
it’s the four numbers in the middle of the DNS name.) You’ll also need to
change the permissions on the ssh key file for ssh to operate properly.
The command to change permissions is:
Chmod 700 aws4dummies.pem

 Of course, you’ll need to substitute the name of your .pem file for aws-
4dummies in the above example.

Figure 12-15:
The ssh

connection
command.

 2. During the connection process, you receive a message indicating that
the host you’re connecting to is unknown and asking whether you
want to add it to the list of known hosts. Answer Yes.

 Upon successful connection, you see the Bitnami instance terminal
splash screen, as shown in Figure 12-16.

 To perform the database dump, you provide the database password,
found in the WordPress configuration file.

 3. Go to the directory that contains the configuration file by typing this
line into Terminal:
cd /opt/bitnami/apps/wordpress/htdocs/

 To obtain the password, you edit the file.

306 Part III: Using AWS

Figure 12-16:
The Bitnami

Instance
terminal

splash
screen.

 4. Type sudo nano wp-config.php into Terminal.

 Doing so opens the WordPress configuration into the Nano text editor.
Sudo indicates that you’re executing the nano command as the adminis-
trator of the machine, superuser.

 5. After the configuration comes up, search it by moving the arrow key
until you find the line containing MySQL database password, as
shown in Figure 12-17.

Figure 12-17:
The

WordPress
configura-

tion file
database

section.

 6. Write down the password associated with the database. Also write
down the database name and username, which, as you can see in the
figure, are listed in lines by the line that contains the password.

 You need all this information when creating the RDS database.

 7. Close the Nano text editor by pressing control-x.

307 Chapter 12: Bringing It All Together: An AWS Application

 8. Perform the database dump by typing the following command into
Terminal, as shown in Figure 12-18:
mysqldump -u bn_wordpress -pyourpassword bitnami_

wordpress > backup.sql

 Substitute the database password you wrote down for yourpassword
following the -p parameter shown in the preceding command.

Figure 12-18:
The MySQL

database
dump

command.

Now you’re ready to create the RDS database that WordPress will connect to.
Follow these steps:

 1. Click the Management Console link to access the AWS Management
Console.

 2. Click the console’s RDS link.

 Doing so takes you to the main RDS page, which you can see in Figure 12-19.

Figure 12-19:
The main

RDS page.

308 Part III: Using AWS

 3. Click the Launch a DB Instance link.

 The RDS wizard launches, as shown in Figure 12-20.

Figure 12-20:
The first

panel of the
RDS wizard.

 For your WordPress application, you will add a MySQL database, which,
conveniently enough, is the first choice.

 4. Click the Select button associated with the wizard’s MySQL option.

 5. On the next screen that appears (see Figure 12-21) leave the defaults
in place for the options labeled DB Engine, DB Engine Version, and
Auto Minor Version Upgrade, select a Micro Instance for DB Instance
Class and No for Multi-AZ Deployment.

 Doing so creates a micro instance type that’s located in a single avail-
ability zone, with no provisioned IOPS.

 In a production environment, consider using a large instance along with
Provisioned IOPS option to guarantee high performance (but stick with
the defaults in this example).

 6. In the DB Instance Details section of the wizard panel (refer to Figure
12-21), create sufficient allocated storage for the instance by typing 5,
which will create 5GB of storage, and fill in the DB Instance Identifier,
Master Username, and Master Password fields.

 You gathered all that information about the DB Instance Identifier,
Master Username, and Master Password when you examined the
wp-config file using the Nano text editor.

 7. Click Continue.

 The next screen, shown in Figure 12-22, holds even more information
about the RDS DB instance configuration. On this panel, you can add a
database name and leave everything else in place.

309 Chapter 12: Bringing It All Together: An AWS Application

Figure 12-21:
The DB

Instance
Details

panel in the
wizard.

Figure 12-22:
Additional

configuration
information
in the RDS

wizard.

 8. Type the database name — bitnami_wordpress — into the Database
Name field, be sure to select the same Availability Zone that your
instance is running in, and then click Continue.

 The next panel of the wizard, labeled Management Options (see Figure
12-23) lets you configure your database management information speci-
fying whether you want to make automated backups and how long to
retain them. By default, automated backups are enabled with a backup
retention period of one day. In production systems, you may keep back-
ups for a longer period, but leave the defaults in place for now.

310 Part III: Using AWS

Figure 12-23:
The RDS

wizard
Manage-

ment
Options
screen.

 9. Leaving the defaults in place, click Continue.

 Doing so brings up another wizard screen (see Figure 12-24), where
you’re asked to confirm all the information you entered in the previous
panels.

Figure 12-24:
The RDS

Wizard
Confirmation

screen.

311 Chapter 12: Bringing It All Together: An AWS Application

 10. After double-checking the displayed information, click the Launch DB
Instance button.

 Go ahead and grab a cup of coffee or tea while AWS creates the RDS
instance. Eventually, the final wizard panel confirms that the instance is
being created, as shown in Figure 12-25.

 11. Click Close.

 Doing so brings you back to the main RDS panel.

 12. Click on the Instances link on the left hand side of the RDS main page.

 This will take you to the RDS instances page, which, in a few minutes will
show the new DB instance as Available, as shown in the status field in
Figure 12-26.

In the final step, ensure that your RDS DB instance is ready to interact with
your WordPress application: You must put your EC2 security group into the
DB security group so that your EC2 instance can receive traffic from your
RDS database.

Figure 12-25:
The final

panel in the
RDS wizard.

This sounds a bit confusing — you’d already filled out a security group for
RDS, so you may wonder why you need to add another security group to
your instance. These are two completely different types of security groups —
one associated with RDS and one associated with EC2 — and you need your
EC2 instance associated so that traffic can flow between the two services.

312 Part III: Using AWS

Here’s how to set up that association:

 1. In the main RDS panel, click the DB Security Groups link in the
Navigation pane on the left.

 Doing so brings up the RDS security groups.

 2. You have only the default RDS security group, so click on it.

 3. Click on the small magnifying glass to the right of the DB Instance
name.

 A new screen appears, as shown in Figure 12-27. Note the area at the
bottom of the list where you can configure information about the con-
nection type that your RDS instance can support.

Figure 12-26:
Your RDS

DB instance
is available.

 4. Select EC2 Security Group from the Connection Type pull-down menu
in the screen’s configuration area.

 You can leave the AWS Account ID unchanged. (This will list your
account ID here; if you want to allow other accounts to access your
RDS instance, you list them here.) Below the AWS account ID is the EC2
Security Group entry, where you select a security group that your RDS
instance will include to allow traffic from any instance with that security
group attached to it.

 5. Select the default EC2 security group from the EC2 Security Group
pull-down menu.

313 Chapter 12: Bringing It All Together: An AWS Application

 6. Click the Add button on the right side of the configuration area to con-
firm your choice.

 Your RDS instance can now send traffic to, and receive it from, your
WordPress application instance.

Figure 12-27:
RDS

security
groups.

Modifying the WordPress application to interact with the RDS database
Creating the RDS database is only half the battle — you also have to modify
your existing WordPress application so that it can communicate with it.
Remember: The existing application is already up and running, with both
the application and database co-located on the same instance. Given
WordPress’s architecture, that means even though it’s a newly created appli-
cation, the database already has information in it, such as which themes
(the WordPress look and feel) that the application has installed, which user
accounts are present (remember that the user account user has the
password bitnami already installed), and any content you may have
created. (My instructions don’t direct you to create any new content, but,
hey — WordPress makes it so easy to do that you may have gotten inspired
and done something on your own!)

What this means is that you have to move the existing database from the
WordPress application instance to the RDS database instance so that when

314 Part III: Using AWS

WordPress begins exchanging traffic with it, there’s something to communi-
cate to.

 After you move the database into the RDS database, you need to modify WordPress
so that it knows to talk to the RDS database rather than to the local one.

First, you transfer the existing database to your RDS database instance.
Fortunately, that task is straightforward. You’ve already created the database
dump, so it’s only a matter of uploading it into the remote MySQL database,
which requires only one command on the terminal:

 1. Go back to the SSH terminal and enter the following command:
mysql -u bn_wordpress -pyourpassword --database=bitnami_wordpress

--host=yourRDSdatabaseURL < backup.sql

 Of course, you need to modify this command in two places:

	 •	Replace	yourpassword with the password for your WordPress
application database — the same password you used when you
created the database dump.

	 •	Replace	yourRDSdatabaseURL with the URL of your RDS database
instance. You can cut and paste it from the RDS database instance
detail.

 This command tells MySQL to load the database dump into the database
that can be contacted at the URL of the RDS database instance. (You can
see in Figure 12-28 the version of the command that I executed.)

 Now that the database is present on the RDS database instance, you
need to modify your WordPress instance to talk to it, which involves
going back into the wp-config file and changing the database location
information so that WordPress connects to the RDS database instance
rather than to the local instance.

Figure 12-28:
Creating
the RDS

database
instance

WordPress
database.

 2. Execute the same sudo nano command that you executed in the previous
section (sudo nano wp-config.php). Go to the same location within the
configuration file, but scroll down until you see the MySQL hostname
entry.

315 Chapter 12: Bringing It All Together: An AWS Application

 3. Change the location from localhost (which tells WordPress to connect
to a database located on the same instance as WordPress itself) to the
RDS database location.

 Figure 12-29 shows you an example of how I changed my WordPress
application configuration file. (Don’t forget to save the file with crtl-x.)

Figure 12-29:
Modifying

the
WordPress
configura-

tion file.

At this point, you’ve successfully modified your WordPress installation to
talk to a remote database managed by AWS RDS — in other words, you’ve
now vertically partitioned your application. Open a new browser window and
connect to the WordPress instance URL. (Refer to Figure 12-10 if you’re not
sure how to find it.) You should see a screen like the shown in Figure 12-30.

Figure 12-30:
The verti-

cally
partitioned
WordPress
application.

316 Part III: Using AWS

Creating a new Amazon Machine Image
(AMI) from your WordPress application
If you’ve been making your way through this chapter step by step, by now
you’ve already made some discernible progress with your WordPress appli-
cation. However, you’re still using a Bitnami public image, which isn’t the
ideal plan. You probably should create your own AMI from the modified
Bitnami image. That way, any changes you make to the image will be persis-
tent, and you’re not dependent upon Bitnami’s management of its public AMI.

Fortunately, it’s quite easy to do. Follow these steps:

 1. In the EC2 Dashboard, select the check box for your running instance
and then right-click the mouse button.

 The drop-down menu that appears (see Figure 12-31) lists a number of
options; choose Create Image (EBS AMI) — the fourth one down the list.

Figure 12-31:
Starting
the AMI
creation
process.

 2. Select Create Image (EBS AMI) from the contextual menu that appears.

 Doing so brings up the AMI Create Image Wizard panel, as shown in
Figure 12-32.

317 Chapter 12: Bringing It All Together: An AWS Application

Figure 12-32:
Configuring

your AMI.

 3. Enter a name for your AMI in the Image Name field, and enter a
description in the Image Description field.

 4. (Optional) In the Volume Size field, modify the default size of the EBS
volume used to store the root file system.

 5. Click the Yes, Create button.

 AWS puts up a confirmation panel, as shown in Figure 12-33, telling you
that the image-creation process is under way, along with the ID of your
new AMI (ami-916f06f8, in my case).

Figure 12-33:
The AMI
creation

confirmation
panel.

 This process can take a number of minutes and causes the instance to
reboot partway through the process, so don’t be surprised if your appli-
cation stops responding briefly while the new AMI is created.

Figure 12-34 shows the new AMI listed in the AMI section of the EC2
Dashboard. Note that the AMI is listed as a private image (“Owned by Me,”
in other words). I (or anyone using my account), therefore, am the only one
authorized to perform any activities with this AMI.

318 Part III: Using AWS

Figure 12-34:
The new,

private AMI.

Improving Application Robustness
with Geographical Redundancy

If you’re following along with all the steps in this chapter, let me summarize
your progress: You’ve created a WordPress blogging site and then improved
its performance by vertically partitioning it — which is a fancy way of saying
that you moved the application database off the application instance. By sep-
arating the two parts of the application, you increase its total performance
because two instances, rather than just one, now support the application’s
processing.

You also made the application more robust by using the AWS RDS service to
manage the database instance. RDS takes care of managing the database and
the instance it runs on, not to mention ensuring that backups and snapshots
are performed.

However, both instances run in the same availability zone, which means that
the application is exposed to failure if the entire zone is affected by a power
outage or an Internet connectivity drop, for example.

319 Chapter 12: Bringing It All Together: An AWS Application

Wouldn’t it be great if you could make your application even more robust so
that it isn’t subject to an interruption even in the unlikely event of an avail-
ability zone outage?

Naturally, there’s a fancy term for this: Horizontal partitioning refers to imple-
menting redundancy at each tier of an application — in AWS terms, operating
at least two instances of each application tier so that if one fails, the other
stands ready to pick up the load and ensure that the application isn’t inter-
rupted. Horizontal partitioning can be taken a step further, with the redun-
dant instances placed in different availability zones to avoid application
failure caused by data center failure.

The good news is that not only is it possible to implement horizontal parti-
tioning in AWS, Amazon makes it easy to do so. I show you how right now.

Three actions are necessary to implement horizontal partitioning for the
WordPress application:

 ✓ Create a second instance of the RDS database and place it in a separate
availability zone from the original instance.

 ✓ Launch a second WordPress application tier instance in a separate avail-
ability zone from the original instance.

 ✓ Create an Elastic Load Balancer and connect it to the two WordPress
application instances so that it distributes traffic to them.

In the following section, I show you how to take on these tasks in order.

Horizontally partitioning the RDS database
AWS makes it ridiculously easy to place another instance of the RDS database
in another availability zone:

 1. Click the RDS link on the main Management Console page.

 The main RDS panel appears.

 2. Click Instance Actions along the top of the main RDS panel ((see
Figure 12-35), and then choose Create Read Replica from the menu
that appears.

 RDS then displays the Create Read Replica DB Instance wizard panel, as
shown in Figure 12-36.

320 Part III: Using AWS

Figure 12-35:
The RDS
Instance
Actions
options.

Figure 12-36:
The RDS

Read
Replica

panel in the
wizard.

 3. Select wpdatabase from the Read Replica Source drop-down menu.

 It’s the only RDS database I have, so it’s the obvious choice. If I had
more than one database, they would all be listed, and I could choose
among them.

 4. Enter a name for your replica instance in the DB Instance Identifier
field.

 I went with wpdatabasereplica.

321 Chapter 12: Bringing It All Together: An AWS Application

 5. Leave the rest of the fields unchanged from the wizard’s suggestions,
except for Availability Zone.

 The wizard suggests us-east-1b, but that’s where my main RDS database
runs, and putting the replica there would defeat the purpose of creating
this replica. Therefore, I chose another option and put the replica in us-
east-1d.

 6. Click the Yes, Create Read Replica button.

 After a few minutes, a second RDS instance is running; it will operate as
a replica of the main RDS database, as shown in Figure 12-37.

 This Read Replica instance is designed to provide robustness for the RDS
database. Any changes to the main database are replicated to it, but it’s used
only in the event of main database unavailability, which can occur as a result
of a technical problem (the availability zone is, well, unavailable for some
reason) or because of regular RDS maintenance. The Read Replica instance
doesn’t act as a secondary query resource for the application. It’s possible
to set up MySQL to spread reads across a master database and one or more
replicas, but RDS doesn’t provide that functionality. If you want that capabil-
ity, you have to manage MySQL directly. If you experience the need for higher
read performance than can be handled by a master MySQL instance, my rec-
ommendation is to set up an intervening cache server via ElastiCache.

Figure 12-37:
RDS Read

Replica Up
and Running

322 Part III: Using AWS

That’s it — you now have a horizontally scaled database tier. It took just a
few clicks and no more than 10 minutes to set up (not bad for a few minutes’
work).

Launching a second WordPress application
tier instance in a separate availability zone
Placing an instance of your RDS database in another availability zone is the
first step, but you still have to be able to launch a WordPress instance linked
to that database. Luckily for you, the launching part is just as easy as the
placing part. Essentially, you have to perform only the same steps you did
when you first launched the WordPress application, being sure to launch the
new AMI you created in the previous section of this chapter. Before starting
the launch process of your new instance, be sure to click on your currently
running instance in the Instance panel of the EC2 Management Console and
note the Availability Zone this instance is running in.

 I describe the launch process earlier in the chapter; use that section as a
guide to perform this launch process.

 Be sure to use the new AMI you created in the previous section of this chap-
ter, because it contains the database configuration information to connect
to your RDS instance. If you use the original AMI, it will attempt to do a new
install and use a local database, which isn’t at all what you want.

Also, choose an availability zone for your new instance that’s different from
the one used by your current WordPress instance. Otherwise, you get a hori-
zontally partitioned application, but you won’t have it spread across multiple
availability zones, thereby losing the full level of application robustness you
want. This means that when you come to the second panel of the launch
wizard (as shown in Figure 12-2), you must choose an availability zone differ-
ent from the one you noted by looking at the current instance’s information.

After you launch the second instance, you’ll have two instances, each run-
ning in a separate Availability Zone, as shown in Figure 12-38. From the figure
you can see I have two instances running, each with its own instance ID,
but both share a common AMI ID. They’re operating in different availability
zones; that’s not indicated in the figure, but — trust me — they are.

323 Chapter 12: Bringing It All Together: An AWS Application

Figure 12-38:
Multiple

WordPress
instances.

Creating an Elastic Load Balancer
After you have two instances of the application running, you should spread
traffic among them, using a mechanism that will ensure that, in case one of
the instances becomes unavailable, all traffic is sent to the instance that is
still operating properly.

The AWS Elastic Load Balancer is perfect for this task. It’s easy to set up, and
it performs health checks on the instances it’s connected to; if one becomes
unresponsive, the ELB discontinues sending traffic to it.

Setting up ELB is straightforward:

 1. Starting from the EC2 Dashboard, click the Load Balancers link near
the bottom of the Navigation pane on the lower-left side.

 Doing so brings up the ELB landing page, which you can see in
Figure 12-39.

 Because I have no existing ELB instances, the page invites me to create
a new load balancer.

324 Part III: Using AWS

Figure 12-39:
The Elastic

Load
Balancer

main page.

 2. Click the Create Load Balancer button.

 The first screen of the ELB wizard opens, as shown in Figure 12-40.

Figure 12-40:
Naming

your Elastic
Load

Balancer.

325 Chapter 12: Bringing It All Together: An AWS Application

 3. Enter a name for your load balancer in the Load Balancer Name field,
and leave the other defaults as is.

 AWS4DummiesLB is a good name. (It’s the one I went with.)

 To support additional load balancer protocols (port 443 to support SSL,
for example), you can select them from the Listener Configuration pull-
down menu or define your own, if you want to use a nonstandard port.

 4. Click Continue.

 Doing so brings you to the second screen of the ELB wizard, as shown in
Figure 12-41. On this screen, you configure the health-check information,
which defines how ELB assesses whether the instances attached to it
are operational. Leave the default settings in place in this example.

 5. Click Continue on the new screen.

 On the new screen that appears, you define which instances to attach to
the new load balancer. The wizard lists all instances you have running
and allows you to choose which ones you want to be managed by this
load balancer.

 6. Because you want to attach both instances to the load balancer, keep
both check boxes selected, as shown in Figure 12-42, and then click
Continue.

Figure 12-41:
Setting

the health-
check

criteria.

326 Part III: Using AWS

Figure 12-42:
Manually

adding
instances

to your
Elastic Load

Balancer.

 The wizard displays a review panel (see Figure 12-43) identifying all the
information entered on the previous screens and invites you to create
the Elastic Load Balancer.

Figure 12-43:
The wizard’s

Summary
panel.

327 Chapter 12: Bringing It All Together: An AWS Application

 7. Click Create and let ELB do its magic.

 It usually takes a few minutes (in this example, fewer than ten) for AWS
to set up the ELB, attach the running instances, and make the ELB avail-
able. However, after a bit you should see the screen shown in Figure
12-44, which shows that the ELB is now operational. If you look at the
Status line near the bottom of Figure 12-44, you can see that it shows 2
of 2 instances in service — two instances are attached to the
ELB and are responding properly to the ELB health check.

Figure 12-44:
The

operational
Elastic Load

Balancer.

The ELB has a DNS name that can be used to connect to it. Copy the top line
in the Summary panel’s DNS Name section and paste it into a new browser
window. This should show you the Bitnami WordPress landing page, as illus-
trated in Figure 12-45.

What’s happening, however, is quite different from the previous time you
saw this landing page. With the ELB in place, it receives all traffic from the
Internet and the ELB distributes each request according to the availability
of WordPress instances to receive the traffic. The distribution rule for this
ELB is “round robin,” which means that each instance receives 1/n of the traf-
fic, distributed sequentially, where n is the number of operational instances
connected to the ELB. In this example, because of the round robin rule, each
instance receives 1/2 of all traffic and receives every other traffic request.

328 Part III: Using AWS

That’s it. With just a few configuration tweaks and a little typing, you’ve
changed your application from one with little resilience to one that’s both
horizontally scaled and geographically distributed — one that is robust up to
and including complete failure of the availability zone.

Figure 12-45:
The Bitnami

landing
page.

Part IV
The Part of Tens

 Enjoy an additional AWS Part of Tens chapter online at www.dummies.com/
extras/amazonwebservices.

http://www.dummies.com/extras/amazonwebservices
http://www.dummies.com/extras/amazonwebservices

In this part . . .
 ✓ Check out my ten reasons to use Amazon Web Services.
 ✓ See the ten design principles to use when you create your

AWS applications so that they’ll be more scalable, robust,
secure, and cost-effective.

 ✓ Enjoy an additional AWS Part of Tens chapter online at www.
dummies.com/extras/amazonwebservices.

http://www.dummies.com/extras/amazonwebservices
http://www.dummies.com/extras/amazonwebservices

Chapter 13

Ten Reasons to Use Amazon
Web Services

T
here are many users of AWS who struggle to describe why they adopted
it. Still others are interested in AWS, but aren’t sure about exactly what it

is. And others who know what it is, and why they adopted it, but get tongue-
tied when asked to justify their decision by higher management. To solve all
those problems in one fell swoop, here is a list of the ten best reasons to
use AWS.

AWS Provides IT Agility
IT has a reputation as the “Department of No.” Though it’s true that some
IT organizations seem to revel in a Dilbert-like obstinacy, where innumer-
able and inexplicable roadblocks are placed in the way of anyone seeking
access to the wizardry of “infrastructure,” others are frustrated by the sheer
complexity of coordinating many different resources, each with its own
interface and configuration rules, all of which must be successfully stitched
together to provide access to computing resources. Most of these multide-
partment, manual, time-consuming efforts are the result of the years-long
build-up of established processes executed in serial fashion, resulting in IT
provisioning cycles that commonly require weeks to months to deliver com-
puting resources. The result of all this: It’s slower than molasses and widely
despised.

Amazon, as is its wont, rethought the provisioning process as though it were
being designed from scratch and implemented it as an integrated and auto-
mated service. Because every part of the infrastructure is managed via an
API, no human interaction is necessary for the installation or configuration of
resources. And, because the services are offered in a fine-grained fashion (IP
addresses are managed separately from storage, as one example), resources
can be defined and started in parallel, rather than having to be done one step
at a time. The result: IT resources are available in minutes, not in weeks or
months.

332 Part IV: The Part of Tens

Consequently, AWS enables the presence of IT agility — the ability of IT orga-
nizations to respond rapidly to resource requirements — and allows it to
stop being thought of as the “Department of No.”

AWS Provides Business Agility
Guess what? If you’re a business unit within a company — sales or human
resources, for example — you’re the one who calls IT the “Department of No.”
And being faced with a slow-moving IT organization today isn’t only inconve-
nient — it’s also dangerous to your business.

This danger results from the changing nature of IT applications. In the past,
IT applications primarily automated internal company processes @— pay-
roll, invoicing, document management — commonly referred to as systems
of record because they, well, recorded information. Applications are now far
more likely to be used to interact with customers or, indeed, to enable cus-
tomers to “self-service” their needs. These applications are often called sys-
tems of engagement because they foster engagement with parties outside the
organization. And the rise of smartphones, tablets, and sophisticated web-
sites raises the bar on customer expectations. When I realize that a company
I use offers me a way to check the status of my orders online, I quickly expect
the other companies I use to offer the same capability. And if those other
companies don’t provide it, I’m likely to look for other providers that do.

In other words, to satisfy today’s customers, businesses have to roll out new
applications quickly — to be agile, in other words. And AWS enables busi-
ness agility enormously. It’s no secret that a significant part of the AWS user
base is made up of business units that adopt AWS as a way around IT and its
protracted provisioning processes. This business unit adoption is sometimes
called shadow IT or, even more pejoratively, rogue IT. No matter what you
call it, this adoption occurs because business units feel the need to roll out
new applications quickly in order to respond to market demands — and AWS
helps businesses quicken their response time by being more agile.

AWS Offers a Rich Services Ecosystem
One drawback to other cloud service providers is how much work users have
to do to build applications using functionality like queues, administrative
alerting, dynamic scaling in response to user load, and the like. Though those
other services capably provide virtual machines on demand, the building out
of applications with software components and outside services is left as an
exercise to the student, so to speak.

333 Chapter 13: Ten Reasons to Use Amazon Web Services

Building an application can take a long time, therefore, because the devel-
oper needs to install and configure the software components, all of which
takes time. For components that require commercial licensing, you have to
arrange for payment — which can take a long time, given the complexities
of budget approval and contract negotiation. Online services (a tax calcula-
tion service, for example) may not be available on the chosen cloud service
provider, thereby requiring a call across the Internet to access the service at
another online location, which imposes network latency and hinders applica-
tion performance.

Amazon makes application development faster and less difficult with a rich
services ecosystem capable of offering your favorite search engine benefits:

 ✓ A range of services as part of its AWS offering: These services range
from foundation building blocks, such as object and volume storage, to
platform services, such as queues and e-mail, all the way to full applica-
tions, such as Elastic MapReduce and Redshift.

 ✓ Services hosted on AWS by many third-party companies: For example,
both Informatica and Dell Boomi offer application integration services
within AWS. AWS users can integrate applications running in AWS via
these services and never have network traffic exit AWS, causing lower
network latency and better application performance.

 ✓ All home-grown (and most third-party) AWS services are offered with
the same pricing model as AWS: Pricing is standardized with simplified
contracts that can be executed online. The result is that users can avoid
protracted contract negotiations and large upfront payments in favor of
on-demand payment, which aligns with the user of AWS itself.

The rich AWS ecosystem is one of the least trumpeted but most valuable
aspects of AWS. Quickness of response (agility, in other words) is critical
today, for business in general and IT in particular. The rich AWS ecosystem
fosters agility, and it’s an important reason to use AWS.

AWS Simplifies IT Operations
IT operations are thankless — and endless — tasks. In fact, the term
Sisyphean may have been coined to describe the eternal job of administering
IT resources. Earlier in this chapter, I outline how AWS makes resource provi-
sioning easier, but AWS also makes ongoing operations simpler.

First, because AWS takes responsibility for much of the traditional IT infra-
structure — buildings, power, network, and physical servers, for example — a
huge amount of work is taken off the IT plate, and the burden for IT operations
shrinks immediately.

334 Part IV: The Part of Tens

“But wait,” as the infomercials say, “there’s more!” Beyond taking respon-
sibility for the physical infrastructure, AWS also takes on much of the IT
administrative burden associated with systems operations. For example, the
relational database service (RDS) takes on responsibility for running data-
bases, backing them up, and restarting failed instances to ensure necessary
uptime. All these tasks are important, and all of them occupy people’s time
and attention.

By simplifying IT operations, AWS allows its users to focus on the truly
important part of IT: applications. In effect, AWS allows a user to devote more
of the IT budget to the qualities that differentiate the business while letting
users reduce investment in the important, but nondifferentiating tasks asso-
ciated with “keeping the lights on.”

AWS Spans the Globe
AWS is organized into regions, and Amazon has regions throughout the
world: the United States, Europe, South America, and a number of locations
in the Asia Pacific region.

Because AWS is a global service, users can take advantage of a service
located nearby, which results in lower network latency and better applica-
tion performance. The global nature of AWS also leads to local services eco-
systems, in the form of native consultancies and system integrators, making
it easy for users to obtain help delivered in native languages and with local
expertise.

Amazon continues to roll out new regional locations, so you’re likely to have
access to a nearby service location as well as to the rich AWS ecosystem.

AWS Is the Leading Cloud-Computing
Service Provider

Yogi Berra, the Hall of Fame baseball catcher, is a font of wisdom, expressed by
malaprops, in seemingly confused fashion. Once, when invited to a popular
restaurant, he politely declined, saying, “Nobody goes there any more — it’s
too crowded.” His insight, pithily stated, is based on the fact that most ser-
vices, once they gain popularity, inevitably decline based on overwhelmed
staff, resource shortages, and competition between users.

335 Chapter 13: Ten Reasons to Use Amazon Web Services

AWS, on the other hand, is incredibly popular, but its popularity has the
effect of making the service better. Today, Amazon has a reinforcing cycle
occurring:

 ✓ Having more users creates a greater volume of use, which increases the
amount of hardware Amazon buys, which reduces its costs via econo-
mies of scale, which are passed on to users in the form of lower prices.

 ✓ Because of the large number of users, companies that offer complemen-
tary services (online application integration, for example) decide to
place their services in AWS first, which makes the overall service better,
which attracts more users.

 ✓ As more people and companies use AWS, more knowledge is made avail-
able in the form of human capital and other resources (like this book!).
This knowledge makes it easier for new users to get started and to be
productive quickly, making AWS more attractive.

So, unlike Yogi, you should embrace AWS’s popularity and recognize that
its status as the largest cloud service provider brings enormous benefits to
you and that, moreover, those benefits will continue to grow as the service
expands. It’s another gift that keeps on giving.

AWS Enables Innovation
Everywhere you turn, the word innovation is a hot topic. People recognize
that innovation makes life better and that it can improve the future for gen-
erations to come. It probably won’t surprise you, given my excitement about
AWS, to know that I am firmly convinced that cloud computing wouldn’t exist
without the presence of Amazon. All of the incumbent technology market
leaders had no incentive to change the way they did business. It took an out-
sider like Amazon, which had no legacy business to protect, to rethink the
way technology is delivered.

AWS has transformed how technology is offered to customers and, as a
result, has enabled an explosion of innovation. The innovation and low cost
associated with AWS allow small and large companies alike to launch new
offerings quickly and inexpensively. As one innovation consultant put it:
“AWS has reduced the cost of failure. AWS lets you easily try out a new prod-
uct to see whether it “gets traction.” Moreover, if a new offering gets traction
and starts to accelerate, AWS lets you easily scale it up. On the other hand, if
the service doesn’t achieve adoption, that’s no problem — the ease of shut-
ting down AWS resources means that not much is lost if a potential innova-
tive offering doesn’t pan out.”

336 Part IV: The Part of Tens

The kinds of things that AWS enables range from the useful-but-not-life-chang-
ing (Netflix video streaming) to, well, life-changing (enhanced drug discovery
via genetic analysis from companies like Eli Lilly).

I predict that even more innovation will occur as more people and companies
become familiar with AWS and its capabilities. AWS will be to the information
age what Henry Ford’s mass production was to the industrial age — and we
all know how that turned out!

AWS Is Cost Effective
Commenters who analyze Silicon Valley trends note that the cost of start-
ing an Internet business is now less than 10 percent of what it cost a mere
decade ago. Much of that cost reduction is due to AWS: its on-demand low
pricing and easy termination with no penalties make it possible to use and
pay for exactly as much computing capacity as you need, when you need it.

The cost effectiveness of AWS isn’t limited to start-ups, though. Every com-
pany can benefit from access to inexpensive computing that doesn’t require
a lengthy commitment. It’s a sign of the powerful benefits of AWS that much
of the existing vendor community is terrified of what will happen when their
customers begin to demand AWS-like prices and convenience from them.

Amazon is a unique company. Unlike many companies that strive for effi-
ciency to raise their own profit margins, Amazon passes on the benefits of
efficiency in the form of lower prices. There’s no reason to expect that this
approach will change.

If you’re a part of any company small or large, Amazon can make your IT dol-
lars go further. It’s significantly more cost effective than the traditional mode
of obtaining IT resources: large up-front payments with little certainty about
whether the amount provisioned is too small (or too much).

AWS Aligns Your Organization
with the Future of Technology

Every 10 to 15 years, the IT industry is profoundly disrupted by the emer-
gence of a new platform — a new form of computing that changes the way
applications are built and used. In the 1980s, the rise of networked PCs (the
client-server architecture) transformed mainframes into a legacy environ-
ment — and led to Microsoft becoming the dominant player in the software

337 Chapter 13: Ten Reasons to Use Amazon Web Services

industry. Likewise, in the 1990s the Internet made the web (and the HTTP
protocol) the de facto architecture for all applications — and led to the domi-
nance of companies such as Google and, yes, Amazon.

Cloud computing is the next-generation platform for computing. Its charac-
teristics of highly scalable, on-demand computing services that are available
within minutes and carrying no requirement for long-term commitment will
become the foundation for all future applications. As the saying goes, resis-
tance is futile.

Amazon Web Services, by far the leading cloud computing provider in the
industry, is growing at rates of more than 100 percent. Its record of innova-
tion and price competitiveness is unmatched in the industry. I predict that,
ten years from now, AWS will be the Microsoft or Google of its era. Your
organization must become familiar with AWS and figure out how to use it
effectively — otherwise, it may find itself the IT equivalent of a buggy whip
manufacturer after Henry Ford invented the assembly line.

AWS Is Good for Your Career
Great careers are built on being the right person in the right place at the right
time. Being the right person is all about you — your capacity for hard work,
productive work relationships, and intelligence, for example. These charac-
teristics will help you be successful no matter which field or role you work in.

But being in the right place at the right time — that has a lot to do with
insight about where a new market, made possible by some type of innova-
tion, is emerging and planting your flag there. People who moved into the
automobile industry in the 1920s or into the television business in the 1950s
or into the Internet in the 1990s all encountered enormous opportunities as a
new market searched for expertise to enable great companies to be built.

Technology innovation creates huge skills gaps in the industry and makes
those with knowledge and experience invaluable. If you believe that AWS is
the next-generation platform, it too can represent “the right place at the right
time” for you.

338 Part IV: The Part of Tens

Chapter 14

Ten Design Principles for
Cloud Applications

T
hose in the know will tell you that you have to use the right tool for the
job. For the new generation of webscale applications like Pinterest, AWS

is the right tool. Overlooked in that truism is the undeniable fact that using a
tool effectively requires having the right skills. With respect to AWS, the right
skills involve aligning your application design with AWS’s operational char-
acteristics. It’s critical to get the application design right — so here are ten
design principles to help you get your alignment straight.

Everything Fails All the Time
The truism “Everything fails all the time” is adapted from Werner Vogels,
the chief technology officer of Amazon. IT departments have traditionally
attempted to render both infrastructure and applications impervious to fail-
ure: A hardware resource or an application component that “fell down on
the job” increased the urgency of the search for perfection in order to banish
failure. Unfortunately, that search was never successful — the failure of
resources and applications has been part of the IT world from the beginning.

Amazon starts from a different perspective, borne of its experience as the
world’s largest online retailer and as one of the largest webscale companies
worldwide. When you run data centers containing thousands of servers
and tens of thousands of disk drives, resource failure is a daily occurrence.
And when a hardware resource fails, the software or data residing on that
resource suddenly stops working or becomes unavailable.

Neither can you count on the smooth and continuous functioning of software
components or external services — they fail, too. An element of a software
package configuration or an unforeseen program execution path or an exces-
sive load on an external service means that, even if hardware continues oper-
ating properly, portions of an application can fail.

340 Part IV: The Part of Tens

Therefore, the single most important cloud application design principle is to
acknowledge that the perfect system doesn’t exist — that failure is a constant
companion. Rather than become frustrated by this state of affairs, you should
recognize this principle and embrace it. Having recognized that failure is
inevitable, be sure to adopt cloud application measures to mitigate circum-
stances and insulate yourself from failure. The rest of this chapter is all about
insulating yourself from failure — so read on!

Redundancy Protects Against
Resource Failure

If you can’t count on individual resources to always work properly, what
can you do? The best insurance against resource failure is to use redun-
dant resources, managed in such a way that if a single resource fails, the
remaining resource (or resources — you can have more than one additional
resource in a redundant design) can seamlessly pick up the workload and
continue operating with no interruption.

Amazon has adopted this principle in its AWS offering. Many of its services
use redundant resources. For example, every S3 object has three copies,
each stored on a single machine. Likewise, the AWS Queue service spreads
user queues across multiple machines, using redundancy to maintain
availability.

Design your applications to operate with two (or more!) instances at each
tier in the application. Every tier should be cross-connected to all instances
in any adjacent tier. In this way, if a resource (either hardware or software)
becomes unavailable, the remaining resources can accept all of the applica-
tion traffic and maintain application availability.

Of course, if resource failure brings your application to a state in which only
a single resource is still operating at a given tier, redundancy is no longer
protecting you — launch a new resource to ensure that redundancy is
retained. I address this state of affairs later in this chapter.

Geographic Distribution Protects
Against Infrastructure Failure

Okay, you recognize the need to protect yourself against resource failure,
whether it’s hardware or software, and you resolve to use multiple instances
to avoid application failure in the event of a server crash, disk breakdown,

341 Chapter 14: Ten Design Principles for Cloud Applications

or even software or service unresponsiveness. But that still doesn’t help if
a problem occurs at a higher level, such as the entire data center that your
application runs going dark from a power outage or natural disaster.

Well, just as you use redundancy at the individual-component level, you use
redundancy at the data-center level to avoid this problem. Rather than run
your application on multiple instances within a single data center, you run
those instances in different data centers. Fortunately, Amazon makes it easy
with its Regional Availability Zone architecture. Every region has at least two
availability zones, which are essentially separate data centers, to provide
higher-level redundancy for applications.

Availability zones are located far enough apart to be resistant to natural
disasters, so even if one is knocked off the air by a storm or an earthquake,
another one remains operating so that you can continue to run your applica-
tion. And availability zones are connected by high-speed network connec-
tions to ensure that your application’s performance doesn’t suffer if it spans
multiple availability zones.

Monitoring Prevents Problems
Redundancy is good, and it’s important to avoid a situation in which your
application, once neat and tidy with redundant resources, becomes nonre-
dundant through the failure of a redundant resource. The question then is,
how to know when the formerly neat-and-tidy redundant application is no
longer so because of failure?

The answer is that you keep an eye on the application to determine when
resource failure occurs. Now, one way to do this is to station someone at the
AWS Management Console to click a mouse button continually in order to
refresh the display. Of course, this method has two drawbacks:

 ✓ The button clicker will become incredibly bored.

 ✓ It’s a huge waste of money because you’ll pay an experienced (and
expensive) operations person to mindlessly click mouse buttons.

A much more efficient mode of operation is to have the system itself tell
you when something fails — a process known as monitoring. You set up an
automated resource to take the place of a human, and whenever something
important happens, it notifies you (alerts you, in other words). Automated
monitoring has two virtues:

 ✓ Computers don’t get bored, so watching over systems endlessly doesn’t
faze them in the least.

 ✓ It’s cheap! You don’t pay salaries to computers.

342 Part IV: The Part of Tens

Fortunately, AWS offers two excellent services to support automated
monitoring:

 ✓ CloudWatch: You can set it up to monitor many AWS resources, includ-
ing EC2 instances, EBS volumes, SQS queues, and more. CloudWatch is
free for certain capabilities, and it’s inexpensive for additional capabili-
ties. (For more on CloudWatch, see Chapter 10.)

 ✓ Simple Notification Service (SNS): It can deliver alerts to you via e-mail,
SMS, and even HTTP so that you can publish alerts to a web page. You
can easily wire CloudWatch into SNS so that alerts from CloudWatch are
automatically and immediately delivered to you, thereby enabling you to
take quick action to resolve system deficiencies, including resource fail-
ure resulting in a lack of redundancy. (For more on SNS, see Chapter 8.)

Monitoring is a critical companion to redundant application design, and I
encourage you to integrate it into your application from the get-go.

Utilization Review Prevents Waste
It’s an unfortunate fact that many, many AWS users fail to keep track of the
resources they use, which can lead to underused, or even unused, resources
running in AWS.

This problem is significant because AWS resources continue to run up
charges, even if the resources aren’t performing useful work. An entire chap-
ter of this book (Chapter 11) is devoted to discussing this problem and pro-
viding guidance about how to avoid it. Here’s the short version of my advice:

 ✓ Use the AWS Trusted Advisor service or a commercial utilization and
cost tracking services like Cloudyn (which kindly provided the fascinat-
ing utilization information discussed in Chapter 11).

 ✓ Design your application so that it can have individual resources added
or subtracted so that resource utilization rates stay high and resources
don’t sit around idle or lightly utilized.

 ✓ Use AWS EC2 reserved instances to reduce the cost of the computing
side of your application.

 ✓ Regularly review your AWS bills to see if there are resources or appli-
cations being used that you don’t know about — and then go find out
about them!

Again, for a more in depth look at how to effectively manage your resources,
check out Chapter 11.

343 Chapter 14: Ten Design Principles for Cloud Applications

Application Management Automates
Administration

In the earlier section “Monitoring Prevents Problems,” I point out that, rather
than dedicate a person’s efforts to monitoring an application 24/7, monitor-
ing and alerts allow the system to track an application’s behavior and then
notify a human that intervention is required.

The drawback to this setup is that you still need a human to implement the
intervention.

Wouldn’t it be cool if no human was required in order to take action, based on
the specific situation? The good news is that AWS management systems have
this capability. Amazon offers three: CloudWatch, Auto Scaling, and Elastic
Beanstalk, all discussed in Chapter 10. And commercial offerings have manage-
ment capability that extends beyond the type that Amazon itself offers.

Common to all these management systems is a set of monitoring capabilities,
along with the ability to execute AWS instructions to perform tasks such as
restarting resources when failure occurs or starting and adding resources to
an application when the user load increases to the extent of requiring more
computing capacity.

As applications become more complex, sophisticated management systems
are practically a prerequisite. Trying to track and respond to application
issues thrown up by a six- or seven-tiered application that uses a number of
AWS services is quite challenging. It makes sense to seek out tools to help
reduce the burden.

Security Design Prevents
Breaches and Data Loss

The number-one concern expressed about cloud computing in general, and
AWS in particular, is security. This area of concern focuses on AWS itself,
with common questions raised about how well Amazon manages its data
center security measures or to what extent Amazon can prevent its person-
nel from improperly accessing user systems. (Answers: very well, prob-
ably better than most IT organizations can do themselves, and nothing can
prevent someone from improperly using her administrative permissions,
although Amazon has measures in place to monitor improper access.)

344 Part IV: The Part of Tens

Unfortunately, the focus on Amazon’s security is misplaced. First, as just
noted, Amazon does a good job of securing its offering, at least as well as the
best in the industry and certainly better than most. Second (and this point is
crucial), users retain significant responsibility for their application’s security
when using AWS, and user security shortcomings account for by far the largest
percentage of security issues within the AWS environment.

You must recognize your security responsibility and take measures to imple-
ment and support it. Your application design can help prevent security
breaches and potential access to critical data. Though Chapter 7 covers
these issues quite thoroughly (and I encourage you to read it at your earliest
opportunity), here are some guidelines, boiled down to the basics:

 ✓ Use multiple security groups to partition your application. Doing so
ensures that malicious actors cannot gain direct access to application
logic and data. Methods to implement partitioned security groups are
discussed in Chapter 7, so look there for details.

 ✓ Use Amazon Virtual Private Cloud (VPC) to shield EC2 instances that
don’t require external access from the Internet. VPC is an outstanding
way to increase application security and will become the default operat-
ing environment for AWS, so learn how to use it.

 ✓ Implement the specific application security measures outlined in
Chapter 7. Patch software packages quickly, implement intrusion-
prevention software, and manage security keys carefully.

Encryption Ensures Privacy
One concern that potential users of AWS often raise centers around what can
be done to prevent inappropriate data access by AWS personnel. The answer
is “nothing.” The best-designed security systems in the world have too often
fallen vulnerable to malicious insiders. Amazon screens its employees, and
methodically tracks all employee access to AWS infrastructure, but the
simple truth is that it would always be possible — at least theoretically — for
an Amazon employee to access your data, whether on disk or during transit
across the AWS network.

Does this information imply that someone with a clear need to avoid even
a theoretically possible access breach is out of luck when it comes to using
AWS? No, not at all.

Rather than attempt to prevent access to the resources on which your impor-
tant data is stored or transmitted, follow this approach: Recognize the poten-
tial for such access, and make it useless if it occurs. The way to do this is to

345 Chapter 14: Ten Design Principles for Cloud Applications

make the data itself useless via encryption. With data privately encrypted
by the user and available only to those with the private key associated with
the data encryption, it doesn’t matter whether Amazon personnel attempt to
access the data — it looks like meaningless gobbledygook from the perspec-
tive of the intruder.

This approach to security — data encryption — can be applied in two ways
to protect data security:

 ✓ Encrypt network traffic. Network traffic — often referred to as “data in
transit” — can easily be encrypted using the Secure Sockets Layer (SSL).
SSL ensures that no one can gain useful information from accessing net-
work traffic. This approach can also be used for network traffic across the
Internet, preventing outside intruders from accessing network traffic.

 ✓ Encrypt data residing on storage. Data residing on storage is commonly
called data at rest — it refers to data that’s written to and read from disk
storage in encrypted fashion. The private keys to access disk data can
be held secure on your own premises, preventing access to your data by
any Amazon personnel.

With these two measures, along with the security-design measures men-
tioned in the previous section, you can make your application as secure
as possible, and certainly as secure as it will be running in your own data
center.

Tier-Based Design Increases Efficiency
I mention multi-tier application design several times throughout this book,
noting, for example, that a tiered design makes it possible to improve secu-
rity by partitioning security groups.

It may not be as obvious that using a tier-based application design, particu-
larly one that uses redundant, scalable tiers (tiers that can grow and shrink
by the addition or subtraction of instances to the tier) can also improve the
efficiency of your application.

The reason is that tiered, scalable applications can adjust the number of
computing resources assigned to an application, growing and shrinking
dynamically in response to user load. This approach ensures that all running
resources are being used to support user traffic and not sitting idle. The idea
is that these resources should be available for use in case the application
load grows sufficiently to require the processing of the idle instance.

346 Part IV: The Part of Tens

Moreover, partitioning your application into tiers allows you to work on
improving one portion of it while leaving the rest undisturbed. You can
improve the efficiency of the entire application while methodically moving
through the tiers, improving performance and reducing resource consump-
tion one tier at a time.

 Even if your application begins life as a single instance, with all software
packages contained in a single, integrated code base, you should design it so
that it may have portions removed and moved to other tiers. This approach
supports incremental, gradual improvement to ensure that high resource con-
sumption is reduced over time.

Good Application Architecture
Prevents Technical Debt

Technical debt refers to a concept in computer science in which software
code, having been implemented earlier in a project’s lifespan, ends up
poorly written and not efficient. Technical debt, like its financial counterpart,
imposes a cost and hampers efficiency.

The obvious way to reduce technical debt is to periodically revisit and
rethink application design and implementation, with an eye toward updating
the design and reimplementing important portions of the code.

The most effective method for completing this task is to have all portions of
the application designed with an input-and-output interface that defines how
an application portion (or package) is called by others and how it calls on
other application portions to fulfill their responsibilities. When you use this
design approach, different components or portions of an application can be
updated or replaced without disturbing the other portions of the application
or the overall application itself — as long as the interface “contracts” are
adhered to (in other words, the interface operates as advertised).

Updating the functionality of an application as needed is easier when the sec-
tion that the functionality resides in can be easily modified without disturb-
ing other portions of the application. Without this approach, an application
that consists of a large, mingled code base is nearly impossible to modify,
if for no other reason than no single software engineer is likely to be able to
understand all the different portions of the application design or code.

So when you move forward with your AWS applications (inspired and guided
by this book, I hope), concentrate on partitioning the application into tiers
and ensure that each partition has good input and output interfaces defined
to enable you to avoid the dreaded technical debt.

Index
Symbols and Numerics
& (ampersand), 30
/ (slash), 51
32-bit images, 105
64-bit images, 105

• A •
access credentials, centralized control of,

189
access policies, 214
access rights, 104–105
accessing AWS services, 45–48
account creation, 290
ACLs (Network Access Control Lists),

177–178
additional services

about, 183–185
choosing, 207
CloudFront

about, 196–197
cost of, 199
scope of, 199
using, 198

cost of, 195
Elastic Load Balancer (ELB)

about, 190–191
cost of, 193
functionality, 191–193
scope of, 193

ElastiCache
about, 202–204
cost of, 205
scope of, 205
using, 205

Identity and Access Management (IAM)
about, 188–189
cost of, 190
functionality, 189
using, 190

integrating into your application, 205–206
lock-in, 207–208
Relational Database Service (RDS)

about, 200–201
cost of, 202
scope of, 202
using, 201

Route 53
about, 193–195
scope of, 195
using, 195

whether to use, 185–187
administration, automating, 343
agility, of AWS, 331–332
AIM (Amazon Machine Image), 103
AMA (Ask Me Anything), 145
‘Amazon images’ rights, 104
Amazon Machine Image (AMI)

about, 70, 106, 158
creating, 316–318
types of, 103

Amazon Marketplace, 20
Amazon Web Services (AWS). See also

specific topics
about, 7
accessing, 45–48
compared with other cloud providers,

22–24
cost of, 115
ecosystem, 18–20, 332–333
growth of, 14
infrastructure, 14–18
network effects, 20–22
scale of, 12–14
website, 12

AMI (Amazon Machine Image)
about, 70, 106, 158
creating, 316–318
types of, 103

ampersand (&), 30
A9 search company, 213

348 Amazon Web Services For Dummies

API (Application Programming Interface),
158, 195

API (AWS)
about, 25, 29, 31–32
about APIs, 25–26
Netflix, 34
real-world use, 32–33
REST (Representational State Transfer),

30–31
security of, 34–36
for service management, 211
SOAP (Simple Object Access Protocol),

30–31
web services, 27–28

API throttling, 195
application (example)

about, 289–290
assembling an, 290–318
creating account, 290
creating Elastic Load Balancer, 323–328
enabling access on security group, 291
geographical redundancy, 318–328
launching WordPress Amazon Machine

Image (AMI), 291–303
locating WordPress Amazon Machine

Image (AMI), 291–303
vertically partitioning WordPress

application, 303–315
Application Programming Interface (API),

158, 195
applications

architecture of, 346
defined, 266
design principles for, 339–346
managing, 343
partitioning, 166–169
security of, 179–181

architecture, of applications, 346
archival storage, 78
Ask Me Anything (AMA), 145
Auto Scaling

about, 247–249
costs of, 250
example, 250–251
using, 249–250

auto scaling group, 248, 257–258

automating administration, 343
AutoShutdown, as step in OpsWorks

lifecycle, 267
availability

of DynamoDB, 90
of Simple Storage Service (S3), 64–65

availability zones (AZs), 69–70, 72–73, 192,
322

AWS (Amazon Web Services). See also
specific topics

about, 7
accessing, 45–48
compared with other cloud providers,

22–24
cost of, 115
ecosystem, 18–20, 332–333
growth of, 14
infrastructure, 14–18
network effects, 20–22
scale of, 12–14
website, 12

AWS API
about, 25, 29, 31–32
about APIs, 25–26
Netflix, 34
real-world use, 32–33
REST (Representational State Transfer),

30–31
security of, 34–36
for service management, 211
SOAP (Simple Object Access Protocol),

30–31
web services, 27–28

AWS application (example)
about, 289–290
assembling an, 290–318
creating account, 290
creating Elastic Load Balancer, 323–328
enabling access on security group, 291
geographical redundancy, 318–328
launching WordPress Amazon Machine

Image (AMI), 291–303
locating WordPress Amazon Machine

Image (AMI), 291–303
vertically partitioning WordPress

application, 303–315

349349 Index

AWS Management Console
about, 33, 37–38, 52
accessing first services, 45–48
loading data into S3 buckets, 48–51
S3 URL naming conventions, 51
for service management, 211
setting up account, 38–44

AWS management services
about, 241–242
Auto Scaling

about, 247–249
cost of, 250
example, 250–251
using, 249–250

AWS Management Console for, 211
choosing, 276–277
CloudFormation

about, 257–259
cost of, 265
using, 259–265

CloudWatch
about, 242–244
cost of, 244
example, 244–247

Elastic Beanstalk
about, 251–253
cost of, 254
example, 254–257
using, 253–254

OpsWorks
about, 265–267
cost of, 269
example, 269–276
scope of, 269
using, 268

‘AWS Marketplace’ images, 105
AWS networking

about, 135–137
Amazon alternative to VLANs, 139–140
Direct Connect, 146–147
Elastic IP addresses, 149–151
high-performance, 148–149
instance IP address communication,

152–154
instance metadata, 151–152
IP address mapping, 145–146

IP addressing, 140–144
Reddit OpenClass, 145
security, 137–139
virtual LANs, 137–139

AWS platform services
about, 211–212
CloudSearch

about, 212–215
cost of, 214–215
resources, 214
scope of, 214

Elastic MapReduce (EMR)
about, 233–236
cost of, 236
scope of, 236

Elastic Transcoder
about, 215–218
cost of, 218–219
scope of, 218

Redshift
about, 237–239
cost of, 240
scope of, 240

Simple Email Service (SES)
about, 228–230
cost of, 231
scope of, 230

Simple Notification Service (SNS)
about, 223–226
cost of, 227
scope of, 227

Simple Queue Service (SQS)
about, 219–222
cost of, 222
scope of, 222
using, 223

Simple Workflow Service
about, 231–233
cost of, 233
scope of, 233

AWS security
about, 155
application, 179–181
of AWS API, 34–36
buckets, 62–63
cost of groups, 169

350 Amazon Web Services For Dummies

AWS security (continued)
deperimeterization of, 158–161
design of, 343–344
of Glacier, 79
groups

about, 161–162, 166–169
best practices, 169
cost of, 169
partitioning applications with, 166–168
rules, 162–164
scope of, 168
traffic sources, 164–165

NASDAQ, 170
of objects, 62–63
paartitioning applications, 166–168
scope of groups, 168
of tape archiving, 78
trust boundary, 156–158
Virtual Private Cloud (VPC)

about, 170–171
access to other services from, 178
ACLs (Access Control Lists), 177–178
communication from instances, 174–175
cost of, 179
Elastic Network Interface, 178
how it works, 172–174
Internet gateway, 175–176
NAT servers, 176–177
routing tables, 175
scope of, 179
subnets, 174
using, 179

of VLANS, 139
AZs (availability zones), 69–70, 72–73, 192

• B •
Backupify, 96
best practices, security group, 169
BI-DW, 234
big data, 55
bit-mapped database, 237
Bitnami, 292–303
buckets

about, 45–46
creating, 47–48

defined, 61
loading data into, 48–51
security of, 62–63

bundle instance, 122–123
business philosophy, of Amazon, 10–12

• C •
caching, 203
capacity, excess, 29
career growth, 337
CDN (content delivery network), 196
Cheat Sheet (website), 3
checksum, 36
choosing

AWS services, 207
management services, 276–277
storage services, 96–99

CLI/SDK, 33
cloud computing

about, 1
AWS as leading service provider, 334–335
characteristics of, 8–9
drawbacks of VLANS for, 138
functionality of, 9
private compared with public, 10

CloudFormation
about, 257–259
cost of, 265
using, 259–265

CloudFront
about, 196–197
cost of, 199
scope of, 199
using, 198

CloudSearch
about, 212–214
cost of, 214–215
resources, 214
scope of, 214

CloudWatch
about, 242–244
for automated monitoring, 342
cost of, 244
example, 244–247

Cloudyn, 281–285, 288

351351 Index

Cluster Compute instance type, 110
Cluster GPU instance type, 111
commodity, defined, 15
complaints, 230
completely flat networking, 140
computing hardware, 157
Configure, as step in OpsWorks lifecycle, 267
consistency, of DynamoDB, 90
consolidated billing, as feature of IAM

(Identity and Access Management), 189
content delivery network (CDN), 196
content protocols, 197
convenience, of Glacier, 79
core services, additional

about, 183–185
choosing, 207
CloudFront, 196–199
Elastic Load Balancer (ELB), 190–193
ElastiCache, 202–205
Identity and Access Management (IAM),

188–190
integrating into your application, 205–206
lock-in, 207–208
Relational Database Service (RDS), 200–202
Route 53, 193–195
whether to use, 185–187

cost
about, 279
of Auto Scaling, 250
AWS (Amazon Web Services), 115
as challenge for DW, 238
of CloudFormation, 265
of CloudFront, 199
of CloudSearch, 214–215
of CloudWatch, 244
complication of, 280
cost effectiveness, 336
data transfer, 67
of Direct Connect, 147
of disk archiving, 79
of DynamoDB, 90–91
of EBS (Elastic Block Storage), 73–75
EC2 (Elastic Compute Cloud), 113–121
of Elastic Beanstalk, 254
Elastic IP address, 150
of Elastic Transcoder, 218–219

of ElastiCache, 205
of ELB (Elastic Load Balancer), 191, 193
of EMR (Elastic MapReduce), 236
of Glacier, 79, 82–85
high-performance AWS networking, 149
IAM (Identity and Access Management),

190
managing, 287–288
of OpsWorks, 269
of RDS (Relational Database Service), 202
as reason for large-scale storage, 57
of Redshift, 240
of Route 53, 195
of S3 (Simple Storage Service), 66, 67
of security groups, 169
of SES (Simple Email Service), 231
of SNS (Simple Notification Service), 227
of SQS (Simple Queue Service), 222
of SWF (Simple Workflow Service), 233
of tape archiving, 78
tracking, 281–285
utilization tracking, 281–285
of VPC (Virtual Private Cloud), 179

Create Buckets button, 45
creating

account, 290
Amazon Machine Image (AMI), 316–318
buckets, 47–48
EBS-backed images, 121–122
EC2 images, 121–124
Elastic Load Balancer, 323–328
RDS service, 304–313
S3-backed images, 122–124
S3-backed Linux images, 123

• D •
data

big, 55
encryption of, 180
loading into S3 buckets, 48–51

data at rest, 345
data transfer pricing, 67
data volume, as challenge for DW, 237
data warehouse (DW), 237
database dump, 305

352 Amazon Web Services For Dummies

database schema, 87
data-link layer (TCP/IP network), 136
decider element (SWF), 232
DELETE, 30
deperimeterization, of security, 158–161
Deploy, as step in OpsWorks lifecycle, 267
deployment options, EC2, 113–121
deprecated, 31
deregistration, 190, 191, 192
description, in CloudFormation, 258
design and philosophy

about, 7
AWS compared with other cloud

providers, 22–24
AWS infrastructure, 14–18
business philosophy, 10–14
cloud computing, 8–10
ecosystem, 18–20
hardware, 15–16
IaaS (Infrastructure as a Service), 8–10
network effects benefit, 20–22
PaaS (Platform as a Service), 8–10
private compared with public cloud

computing, 10
SaaS (Software as a Service), 8–10
scale of AWS (Amazon Web Services),

12–14
shadow IT, 23
software, 16–18

designing
for portability, 208
principles of, 339–346

DevOps, 265
differentiated application functionality, 186
Direct Connect, 146–147
disk archiving, 78–79
distributed key-value storage, 57, 58–60
DNS (Domain Name Server), 193
DNS lookup, 194
domain name assignment, 192
Domain Name Server (DNS), 193
“down and off” application management

strategy, 287
Dropbox, 60
Dummies (website), 4
durability, of Glacier, 79
DW (data warehouse), 237

dynamic content, 197
dynamic languages, 252
DynamoDB

about, 56, 85–86
availability, 90
characteristics of, 87–88
cost of, 90–91
example, 91–95
key-value compared with relational

databases, 86
metrics, 243
read consistency of, 90
scope, 90
selecting, 97
using, 88–89

• E •
EBS (Elastic Block Storage)

about, 56
cost of, 73–75
EBS-backed images, 107–108, 121–122
example, 75–77
image rights, 105
metrics, 243
performance, 71
reliability of, 69
scope of, 69–70
selecting, 97
snapshots, 72–73
uses of, 69–70

EC2 (Elastic Compute Cloud)
about, 11, 101–102
cost of, 113–121
creating new images, 121–124
deployment options, 113–121
EBS-backed images, 107–108
example, 124–133
image sizes, 111–112
images, 104–106, 111–112
instance types, 109–111
metrics, 243
S3-backed images, 106–107
scope of, 112–113
uniqueness of, 103–104

ecosystem, 18–20, 332–333

353353 Index

edge locations, 198
efficiency, 345–346
Elastic Beanstalk

about, 251–253
cost of, 254
example, 254–257
using, 253–254

Elastic Block Storage (EBS)
about, 56
cost of, 73–75
example, 75–77
metrics, 243
performance, 71
reliability of, 69
scope of, 69–70
selecting, 97
snapshots, 72–73
uses of, 69–70

Elastic Compute Cloud (EC2)
about, 11, 101–102
cost of, 113–121
creating new images, 121–124
deployment options, 113–121
EBS-backed images, 107–108
example, 124–133
image sizes, 111–112
images, 104–106, 111–112
instance types, 109–111
metrics, 243
S3-backed images, 106–107
scope of, 112–113
uniqueness of, 103–104

Elastic IP address
about, 149–150
cost of, 150
scope of, 151

Elastic Load Balancer (ELB)
about, 184, 190–191
cost, 193
creating, 323–328
functionality of, 191–193
metrics, 243
scope of, 193

Elastic MapReduce (EMR)
about, 233–236
cost of, 236
scope of, 236

Elastic Network Interfaces, 178
Elastic Transcoder

about, 215–218
cost of, 218–219
scope of, 218

ElastiCache
about, 202–204
cost of, 205
metrics, 243
scope of, 205
using, 205

elasticity
as benefit of ELB (Elastic Load Balancer),

191
as characteristic of cloud computing, 8
defined, 190

ELB (Elastic Load Balancer)
about, 184, 190–191
cost, 193
creating, 323–328
functionality of, 191–193
metrics, 243
scope of, 193

EMR (Elastic MapReduce)
about, 233–236
cost of, 236
scope of, 236

enabling access on security group, 291
encapsulation, 26
encryption, 180, 192, 344–345
enterprise, 196
Equinix, 115
eventual consistency, 90
“Everything fails all the time,” 339
example application

about, 289–290
assembling an, 290–318
creating account, 290
creating Elastic Load Balancer, 323–328
enabling access on security group, 291
geographical redundancy, 318–328
launching WordPress Amazon Machine

Image (AMI), 291–303
locating WordPress Amazon Machine

Image (AMI), 291–303
vertically partitioning WordPress

application, 303–315

354 Amazon Web Services For Dummies

examples
Auto Scaling, 250–251
CloudWatch, 244–247
DynamoDB, 91–95
Elastic Beanstalk, 254–257
Elastic Block Storage (EBS), 75–77
Elastic Compute Cloud (EC2), 124–133
Glacier, 83–85
OpsWorks, 269–276
Simple Storage Service (S3), 65–66

excess capacity, 29
Extensible Markup Language (XML), 30
extraregional network traffic, 144

• F •
families, instances as, 110
FIFO (first-in, first-out), 220–221
financial gouging, 208
fine-grained access controls, 62
first-in, first-out (FIFO), 220–221
flat networking, 140
flat storage system, 51
flexibility

of schema, 87
of software infrastructure, 17

format, in CloudFormation, 258
FQDN (fully qualified domain name),

193–194
free text, 213
fully qualified domain name (FQDN),

193–194
functionality

of cloud computing, 9
differentiated application, 186
of ELB (Elastic Load Balancer), 191–193
expanding with additional services, 185,

187
of IAM, 189

• G •
geographic distribution, 340–341
geographical redundancy, 318–328
GET, 30

Glacier
about, 56, 78–80
cost of, 79, 82–85
example, 83–85
scope of, 81
selecting, 97
using, 80–81

global uses, 334
gold image, 104
Golden, Bernard (author)

contact information for, 4, 184, 292
Virtualization For Dummies, 1, 14, 102

gouging, financial, 208
groups. See security

• H •
Hadoop, 234–235
Hamilton, James (blogger), 16
hardware, 15–16, 157
High CPU instance type, 110
High I/O instance type, 110
High Memory instance type, 110
high-performance AWS networking, 148–149
high-performance instances, 203
horizontally partitioning

about, 319
RDS database, 319–322

horizontally scaled, 257
hosted zone, 193–194
HTTP traffic, 166
HTTP verb, 30
Hudl, 199–200
hypervisor, 156, 157

• I •
IaaS (Infrastructure as a Service), 9
IAM (Identity and Access Management)

about, 188–189
cost of, 190
functionality of, 189
using, 190

ICMP (Internet Control Message Protocol),
162

355355 Index

icons, explained, 3
Identity and Access Management (IAM)

about, 188–189
cost of, 190
functionality of, 189
using, 190

IDS/IPS (Intrusion Detection Software/
Intrusion Protection Software), 159–160

images
32-bit images, 105
64-bit images, 105
about, 104–106
EBS-backed, 107–108, 121–122
EC2, 121–124
gold, 104
S3-backed, 106–107, 122–124
sizes in EC2, 111–112

inbound traffic, 161
inconvenience, of tape archiving, 78
infrastructure

about, 14
hardware, 15–16
software strategy, 16–18

Infrastructure as a Service (IaaS), 1, 9
innovation

of AWS (Amazon Web Services), 335–336
as benefit of web services, 28

instance health monitoring, 192
instance IP address communication,

152–154
instance metadata, 151–152
instances

defined, 266
High CPU instance type, 110
High I/O instance type, 110
High Memory instance type, 110
high-performance, 203
memory of, 109
network connectivity of, 109
on-demand, 113–114
reserved, 113, 115–117
types, 109–111

‘Instance-store images’ rights, 105
instance-stored images, 122

integrating
AWS services into your application,

205–206
services, 186

interface, defined, 26
Internet Control Message Protocol

(ICMP), 162
Internet gateway, 175–176
interpreted languages, 252
interregional network traffic, 144
intraregional network traffic, 144
Intrusion Detection Software/Intrusion

Protection Software (IDS/IPS), 159–160
IP address mapping, 145–146
IP addressing, 140–144
IT agility, 331–332

• J •
JavaScript Object Notation (JSON), 31
Jericho Forum, 159
joins, 59, 86
JSON (JavaScript Object Notation), 31

• K •
key pair, 129
key-value storage

about, 57, 58–60
compared with relational databases, 86
defined, 61

• L •
latency, 20
latency-based routing, 195
launch configuration, 248
launch time, 107
launching

WordPress Amazon Machine Image
(AMI), 291–303

WordPress application tier instance,
322–323

layer, defined, 266

356 Amazon Web Services For Dummies

LiveCD, 104
load balancing. See Elastic Load Balancer

(ELB)
loading data into buckets, 48–51
locating WordPress Amazon Machine

Image (AMI), 291–303
location independence, 8
lock-in, 183, 186–187, 207–208
logging

content, 197
defined, 266

• M •
Management Console (AWS)

about, 33, 37–38, 52
accessing first services, 45–48
loading data into S3 buckets, 48–51
S3 URL naming conventions, 51
for service management, 211
setting up account, 38–44

management services
about, 241–242
Auto Scaling

about, 247–249
cost of, 250
example, 250–251
using, 249–250

AWS Management Console for, 211
choosing, 276–277
CloudFormation

about, 257–259
cost of, 265
using, 259–265

CloudWatch
about, 242–244
cost of, 244
example, 244–247

Elastic Beanstalk
about, 251–253
cost of, 254
example, 254–257
using, 253–254

OpsWorks
about, 265–267
cost of, 269

example, 269–276
scope of, 269
using, 268

managing
applications, 343
costs, 287–288
S3 objects, 62
video conversions, 215–219

manifest file, 106
mappings, in CloudFormation, 259
Marketplace (Amazon), 20
Medcommons, 60
memory, of instances, 109
metrics, 243, 244
Micro instance type, 110
mobile computing, 28
modifying WordPress application, 313–315
monitoring, 266, 341–342
MySQL, 201

• N •
naming conventions, for URLs, 51
NAS (network-attached storage), 57
NASDAQ, 170
NAT (network address translation),

172, 176–177
National Institute of Standards and

Technology (NIST), 8, 10
Netflix, 34, 60
network access, as characteristic of cloud

computing, 8
Network Access Control Lists (ACLs),

177–178
network address translation (NAT),

172, 176–177
network connectivity, of instances, 109
network effects, 20–22
network interface card (NIC), 109
network layer (TCP/IP network), 136
network traffic

access, 161–162
choices for, 144
encrypting, 345

network-attached storage (NAS), 57
network-based storage, 71

357357 Index

networking
about, 135–137
Amazon alternative to VLANs, 139–140
Direct Connect, 146–147
Elastic IP addresses, 149–151
high-performance, 148–149
instance IP address communication,

152–154
instance metadata, 151–152
IP address mapping, 145–146
IP addressing, 140–144
Reddit OpenClass, 145
security, 137–139
virtual LANs, 137–139

NIC (network interface card), 109
niche market support, as benefit of web

services, 28
NIST (National Institute of Standards and

Technology), 8, 10
NoSQL databases, 200

• O •
OAI (Origin Access Identity), 197
objects

managing, 62
security of, 62–63
storing, 57, 58

on-demand instance, 113–114
on-demand self-service, as characteristic of

cloud computing, 8
operation as a service, of software

infrastructure, 17
OpsWorks

about, 265–268
cost of, 269
example, 269–276
scope of, 269
terminology, 266
using, 268

Oracle, 201
Origin Access Identity (OAI), 197
outputs, in CloudFormation, 259
‘Owned by me’ rights, 104

• P •
PaaS (Platform as a Service), 9, 184–185,

206
parameters, in CloudFormation, 258
partitioning applications, 166–169
payload, 30
PBS, 215
performance

in DynamoDB, 87
of EBS (Elastic Load Balancer), 71

philosophy and design
about, 7
AWS compared with other cloud

providers, 22–24
AWS infrastructure, 14–18
business philosophy, 10–14
cloud computing, 8–10
ecosystem, 18–20
hardware, 15–16
IaaS (Infrastructure as a Service), 8–10
network effects benefit, 20–22
PaaS (Platform as a Service), 8–10
private compared with public cloud

computing, 10
SaaS (Software as a Service), 8–10
scale of AWS (Amazon Web Services),

12–14
shadow IT, 23
software, 16–18

physical facility, 157
physical layer (TCP/IP network), 136
Pinterest, 119, 286
planning, as challenge for DW, 238
platform, of images, 106
Platform as a Service (PaaS),

9, 184–185, 206
platform services

about, 211–212
CloudSearch

about, 212–215
cost of, 214–215
resources, 214
scope of, 214

358 Amazon Web Services For Dummies

platform services (continued)
Elastic MapReduce (EMR)

about, 233–236
cost of, 236
scope of, 236

Elastic Transcoder
about, 215–218
cost of, 218–219
scope of, 218

Redshift
about, 237–239
cost of, 240
scope of, 240

Simple Email Service (SES)
about, 228–230
cost of, 231
scope of, 230

Simple Notification Service (SNS)
about, 223–226
cost of, 227
scope of, 227

Simple Queue Service (SQS)
about, 219–222
cost of, 222
scope of, 222
using, 223

Simple Workflow Service
about, 231–233
cost of, 233
scope of, 233

plumbing, 33
portability, designing for, 208
POST, 30
pricing

about, 279
of Auto Scaling, 250
AWS (Amazon Web Services), 115
as challenge for DW, 238
of CloudFormation, 265
of CloudFront, 199
of CloudSearch, 214–215
of CloudWatch, 244
complication of, 280
cost effectiveness, 336
data transfer, 67

of Direct Connect, 147
of disk archiving, 79
of DynamoDB, 90–91
of EBS (Elastic Block Storage), 73–75
EC2 (Elastic Compute Cloud), 113–121
of Elastic Beanstalk, 254
Elastic IP address, 150
of Elastic Transcoder, 218–219
of ElastiCache, 205
of ELB (Elastic Load Balancer), 191, 193
of EMR (Elastic MapReduce), 236
of Glacier, 79, 82–85
high-performance AWS networking, 149
IAM (Identity and Access Management),

190
managing, 287–288
of OpsWorks, 269
of RDS (Relational Database Service), 202
as reason for large-scale storage, 57
of Redshift, 240
of Route 53, 195
of S3 (Simple Storage Service), 66, 67
of security groups, 169
of SES (Simple Email Service), 231
of SNS (Simple Notification Service), 227
of SQS (Simple Queue Service), 222
of SWF (Simple Workflow Service), 233
of tape archiving, 78
tracking, 281–285
utilization tracking, 281–285
of VPC (Virtual Private Cloud), 179

private cloud computing, compared with
public cloud computing, 10

‘Private images’ rights, 105
private subnet, VPC with, 172
processing power, of instances, 109
protocol-compliant, 204
protocols, content, 197
provisioned IOPS, 71, 108
proxies, 33
public cloud computing, compared with

private cloud computing, 10
‘Public images’ rights, 105
public subnet, VPC with, 172
PUT, 30

359359 Index

• Q •
quiescent, 103

• R •
RDBMS (relational database management

system), 58–59
RDS (Relational Database Service)

about, 200–201
cost of, 202
scope of, 202
using, 201

RDS database
creating service, 304–313
horizontally partitioning, 319–322
metrics, 243

Read Replica instance, 321
Reddit OpenClass, 145
Redshift

about, 237–239
cost of, 240
scope of, 240

reduced redundancy, 67
redundancy, 340
regionally scoped, 218
registering

about, 190
as benefit of ELB, 191, 192
S3-backed images, 123

relational database, compared with key-
value, 86

relational database management system
(RDBMS), 58–59

Relational Database Service (RDS)
about, 200–201
cost of, 202
images, 304–313
scope of, 202
using, 201

reliability
of disk archiving, 79
of EBS (Elastic Block Storage), 69
of tape archiving, 78

Remember icon, 3
Representational State Transfer (REST),

30–31
reserved instance, 113, 115–117
resilience, of software infrastructure, 17–18
resource controls, as feature of IAM

(Identity and Access Management), 189
resource creation, as feature of IAM

(Identity and Access Management), 189
resource management, as challenge for DW

(data warehouse), 237
resource pooling, as characteristic of

cloud computing, 8
resource sharing, as feature of IAM (Identity

and Access Management), 189
resources

in CloudFormation, 259
CloudSearch, 214

REST (Representational State Transfer),
30–31

revenue sources, as benefit of web
services, 28

rogue IT, 332
root device, 106, 107
Route 53

about, 146, 193–195
cost of, 195
scope of, 195
using, 195

routing tables, 175
rules, of security groups, 162–164

• S •
SaaS (Software as a Service), 9, 96, 156
SAN (storage-area networks), 57
scalability

achieving with additional services, 186
of applications, 287
as benefit of ELB, 191
of Glacier, 79
as reason for large-scale storage, 57

scaling plan, 249
Schmidt, Eric (Google chairman), 233

360 Amazon Web Services For Dummies

scope
of CloudFront, 199
of CloudSearch, 214
of DynamoDB, 90
of EBS (Elastic Block Storage), 69–70
of EC2 (Elastic Compute Cloud), 112–113
of Elastic IP address, 151
of Elastic Transcoder, 218
of ElastiCache, 205
of ELB (Elastic Load Balancer), 193
of EMR (Elastic MapReduce), 236
of Glacier, 81
of OpsWorks, 269
of RDS (Relational Database Service), 202
of Redshift, 240
of Route 53, 195
of S3 (Simple Storage Service), 64–65
of security groups, 168
of SES (Simple Email Service), 230
of SNS (Simple Notification Service), 227
of SQS (Simple Queue Service), 222
of SWF (Simple Workflow Service), 233
of VPC (Virtual Private Cloud), 179

SDF (Search Data Format), 213
searching, with CloudSearch, 212–214
Secure Socket Layer (SSL) technology,

192, 345
security

about, 155
application, 179–181
of AWS API, 34–36
buckets, 62–63
cost of groups, 169
deperimeterization of, 158–161
design of, 343–344
of Glacier, 79
groups

about, 161–162, 166–169
best practices, 169
cost of, 169
partitioning applications with, 166–168
rules, 162–164
scope of, 168
traffic sources, 164–165

NASDAQ, 170
of objects, 62–63

paartitioning applications, 166–168
scope of groups, 168
of tape archiving, 78
trust boundary, 156–158
Virtual Private Cloud (VPC)

about, 170–171
access to other services from, 178
ACLs (Access Control Lists), 177–178
communication from instances, 174–175
cost of, 179
Elastic Network Interface, 178
how it works, 172–174
Internet gateway, 175–176
NAT servers, 176–177
routing tables, 175
scope of, 179
subnets, 174
using, 179

of VLANS, 139
security group, enabling access on, 291
security keys, 180
selecting

AWS services, 207
management services, 276–277
storage services, 96–99

server pool, 204
service, measured, 9
services, additional

about, 183–185
choosing, 207
CloudFront

about, 196–197
cost of, 199
scope of, 199
using, 198

cost of, 195
Elastic Load Balancer (ELB)

about, 190–191
cost of, 193
functionality, 191–193
scope of, 193

ElastiCache
about, 202–204
cost of, 205
scope of, 205
using, 205

361361 Index

Identity and Access Management (IAM)
about, 188–189
cost of, 190
functionality, 189
using, 190

integrating into your application, 205–206
lock-in, 207–208
Relational Database Service (RDS)

about, 200–201
cost of, 202
scope of, 202
using, 201

Route 53
about, 193–195
scope of, 195
using, 195

whether to use, 185–187
SES (Simple Email Service)

about, 228–230
cost of, 231
scope of, 230

setup
AWS account, 38–44
as step in OpsWorks lifecycle, 267

setup, storage
about, 55–56, 67–69
Amazon options, 56–60
archival, 78
Backupify, 96
distributed key-value storage, 58–60
DynamoDB

about, 85–86
availability of, 90
characteristics of, 87–88
cost of, 90–91
example, 91–95
key-value compared with relational

databases, 86
read consistency, 90
scope of, 90
using, 88–89

Elastic Block Storage (EBS)
about, 67–69
cost of, 73–75
example, 75–77
performance, 71

reliability, 69
scope of, 69–70
snapshots, 72–73
uses for, 70

Glacier
about, 78–80
cost of, 82–85
scope of, 81
using, 80–81

of instance, 109
key-value, 57, 58–60, 61, 86
network-based, 71
object, 57, 58
object storage, 58
options for

about, 56–58
distributed key-value storage, 58–60
object storage, 58

selecting services, 96–99
selecting storage systems, 96–99
in Simple Storage Service (S3) buckets

about, 60–62
bucket security, 62–63
cost of, 67
example, 65–66
object management, 62
object security, 62–63
scope and availability, 64–65
uses of, 63–64

shadow IT, 23, 332
Silicon Valley Education Foundation

(SVEF), 44–45
Simple Email Service (SES)

about, 228–230
cost of, 231
scope of, 230

Simple Mail Transfer Protocol (SMTP),
228–229

Simple Notification Service (SNS)
about, 223–226
for automated monitoring, 342
cost of, 227
metrics, 243
scope of, 227

Simple Object Access Protocol (SOAP),
30–31

362 Amazon Web Services For Dummies

Simple Queue Service (SQS)
about, 11, 178, 211, 219–222
cost of, 222
metrics, 243
scope of, 222
using, 223

Simple Storage Service (S3)
about, 10–11, 56, 60–62
availability, 64–65
bucket and object security, 62–63
cost of, 66, 67
example, 65–66
object management, 62
scope, 64–65
selecting, 96
URL naming conventions, 51
uses for, 63–64

Simple Workflow Service (SWF)
about, 231–233
cost of, 233
scope of, 233

simplicity, of IT operations, 333–334
simplifying application development, 185
64-bit images, 105
slash (/), 51
SMTP (Simple Mail Transfer Protocol),

228–229
snapshots

cost of, 74
in EBS (Elastic Block Storage), 72–73

SNS (Simple Notification Service)
about, 223–226
for automated monitoring, 342
cost of, 227
metrics, 243
scope of, 227

SOAP (Simple Object Access Protocol),
30–31

SOASTA (website), 288
software

infrastructure, 158
strategy, 16–18

Software as a Service (SaaS), 9, 96, 156
solid-state drives, 87

speed
of disk archiving, 79
of Glacier, 79–80
as reason for large-scale storage, 57
of tape archiving, 78
of time to market, 185–186

spot instances, 284
spot-priced instance, 113, 117–119
SQL Server, 201
SQS (Simple Queue Service)

about, 11, 178, 211, 219–222
cost of, 222
metrics, 243
scope of, 222
using, 223

SSL (Secure Socket Layer) technology, 345
stack, defined, 266
Standard instance type, 110
static content, 197
S3 (Simple Storage Service)

about, 10–11, 56, 60–62
availability, 64–65
bucket and object security, 62–63
cost of, 66, 67
example, 65–66
object management, 62
scope, 64–65
selecting, 96
URL naming conventions, 51
uses for, 63–64

S3-backed images, 106–107, 122–124
S3-backed Linux images, 123
storage

about, 55–56, 67–69
archival, 78
DynamoDB

about, 85–86
availability of, 90
characteristics of, 87–88
cost of, 90–91
example, 91–95
key-value compared with relational

databases, 86
read consistency, 90

363363 Index

scope of, 90
using, 88–89

Elastic Block Storage (EBS)
about, 67–69
cost of, 73–75
example, 75–77
performance, 71
reliability, 69
scope of, 69–70
snapshots, 72–73
uses for, 70

Glacier
about, 78–80
cost of, 82–85
scope of, 81
using, 80–81

of instance, 109
key-value, 57, 58–60, 61, 86
network-based, 71
object, 57, 58
options for

about, 56–58
distributed key-value storage, 58–60
object storage, 58

selecting services, 96–99
in Simple Storage Service (S3) buckets

about, 60–62
bucket security, 62–63
cost of, 67
example, 65–66
object management, 62
object security, 62–63
scope and availability, 64–65
uses of, 63–64

storage-area networks (SAN), 57
stripe, defined, 68–69
subnets

communication from instances within,
174–175

VPC, 174
SVEF (Silicon Valley Education

Foundation), 44–45

SWF (Simple Workflow Service)
about, 231–233
cost of, 233
scope of, 233

switches, 137
synchronous, 219

• T •
tape archiving, 78
tasks element (SWF), 232
TCO (total cost of ownership), 280
TCP (Transmission Control Protocol), 161
TCP/IP network standard, 136
technical debt, 346
technological advances, 336–337
Tecnical Stuff icon, 3
third-party tools, 19, 33
32-bit images, 105
tier-based design, 345–346
Tip icon, 3
total cost of ownership (TCO), 280
tracking

costs, 281–285
utilization, 281–285

traffic port, 162
traffic protocol, 161–162
traffic sources, 162, 164–165
transcoding, 34, 216
Transmission Control Protocol (TCP), 161
trust boundaries, 156–158
types, instances as, 110

• U •
UDP (User Datagram Program), 161
update functionality, as benefit of file

storage, 58
URL naming conventions, 51
User Datagram Program (UDP), 161
user identities, centralized control of, 189
user management, as feature of IAM, 189
utilization, 116, 281–285, 342

364 Amazon Web Services For Dummies

• V •
vertically partitioning WordPress

application, 303–315
video conversions, managing, 215–219
virtual LANS (VLANS)

about, 137–138
Amazon alternative to, 139–140
security of, 139

Virtual Private Cloud (VPC)
about, 109, 170–171, 344
cost of, 179
how it works, 172–178
scope, 179
using, 179

virtual router, 175
virtualization, 16–17, 102, 103, 106. See also

Elastic Compute Cloud (EC2)
Virtualization For Dummies (Golden),

1, 14, 102
visibility of images, 106
visibility time-out, 221
VLANS (virtual LANS)

about, 137–138
Amazon alternative to, 139–140
security of, 139

Vogels, Werner (chief technology officer),
339

volumes, in EBS, 68
VPC (Virtual Private Cloud)

about, 109, 170–171, 344
cost of, 179
how it works, 172–178
scope, 179
using, 179

• W •
Warning! icon, 3
web objects, defined, 61
web services

benefits of, 27–28
environment, 26

websites
AWS (Amazon Web Services), 12
Cheat Sheet, 3
Cloudyn, 288
Dummies, 4
Hamilton, James (blogger), 16
National Institute of Standards and

Technology (NIST), 10
S3 pricing, 67
SOASTA, 288

Wooga, 276
WordPress Amazon Machine Image (AMI),

locating and launching, 291–303
WordPress application

creating AMI from, 316–318
launching tier instance, 322–323
modifying, 313–315
vertically partitioning, 303–315

workflow element, 232

• X •
XML (Extensible Markup Language), 30

• Z •
zero-day dangers, 159

About the Author
Bernard Golden has been named one of the ten most influential persons in
cloud computing by Wired.com and is a recognized visionary in the field. He
serves as Senior Director, Cloud Computing Enterprise Solutions, for Dell
Enstratius, a leading cloud management software company. Before joining
Dell Enstratius, Bernard founded and led HyperStratus, a global cloud com-
puting consultancy serving customers like Korea Telecom, BMC, Pepsi, and
Unilever.

Bernard also serves as the cloud computing advisor for CIO Magazine; his
blog has been named to over a dozen “best of cloud computing” lists and is
read by tens of thousands of persons each month. He is a highly regarded
speaker, and has keynoted cloud conferences around the world.

Bernard is the author or co-author of three previous books on virtualization
and cloud computing: Virtualization For Dummies, 2007 (highest-selling book
on the topic ever published), Creating the Infrastructure for Cloud Computing,
2011, Intel Press (co-author), and Cloud Computing: Assessing the Risks, 2012,
IT Governance Publishing (co-author).

Dedication
To my family: Alison, Sebastian, and Oliver. You are each inspiring stars to
me. Thank you for letting me be part of the Golden constellation.

Acknowledgments
Writing this book has been a real journey. And just like every journey, it’s had
exciting parts as well as times of work and toil. Fortunately, I’ve been accom-
panied on my journey by a group of talented, helpful, and friendly compan-
ions. I’d like to thank them here.

First and foremost, I’d like to thank Kyle Looper and Kelly Trent. Kyle is the
Acquisitions Editor who took this project on; Kelly is a Marketing Manager
for the For Dummies line. When we first discussed Amazon Web Services
For Dummies, Kyle and Kelly got excited about its potential and carried the
project forward to their colleagues. The result of their enthusiasm is now in
your hands.

Two other For Dummies folks who contributed enormously to the book’s
final form are the Project Editor, Paul Levesque, and the Copy Editor,
Becky Whitney.

To all of the For Dummies people, many thanks for helping bring the book
together.

Of course, many other people contributed to the book. Jorge Noa, a longtime
friend and colleague, worked with me in a consulting firm that I founded and
shared his learning about AWS — and made vivid to me just how disruptive
an offering Amazon had put together. Adrian Cockcroft and his colleagues at
Netflix continue to advance the frontier of AWS usage and quite generously
share their insights and best practices with the industry.

Two people made significant contributions to the technical content of the
book. Jeremy Edberg served as Technical Editor and was extremely helpful
in pointing out the nuances of AWS and how they affect applications. Jeremy
is heavily involved with AWS in his day-to-day work at Netflix, so he has first-
hand knowledge of the details and complexities of AWS. Jeff Barr, who is one
of Amazon’s AWS Evangelists, also reviewed the book’s content. Between
them, these two helped improve the book immeasurably.

Chapter 11 addresses the increasingly challenging need to monitor and
manage AWS usage and costs. One of the leading companies in the space,
Cloudyn, generously offered to share findings they generated by monitoring
over 400 different corporate AWS accounts. I’d like to thank Cloudyn’s CEO,
Sharon Wagner, and his colleagues Vitaly Taylor, Zev Schonberg, Michael
Centrella, and Billy Cina.

Erica Brescia of Bitnami was very helpful in making her company’s service
and expertise available to me. A Bitnami AMI is used as the basis for the
book’s extended hands-on example that makes up Chapter 12l; having the
AMI to work with made creating the exercise much, much easier.

Finally, I’d like to thank my colleagues and friends at Enstratius. Inspired by
the potential of cloud computing, experienced with the needs of the enter-
prise market, and optimistic about the potential for a product to help the
latter more effectively consume the former, they founded a cloud manage-
ment software company. I am fortunate that they invited me along for the
ride, and I can say the journey has been more exciting and rewarding than
promised.

To all of the people who helped me create Amazon Web Services For
Dummies, I say thanks!

Publisher’s Acknowledgments

Acquisitions Editor: Kyle Looper
Senior Project Editor: Paul Levesque
Copy Editor: Becky Whitney
Technical Editor: Jeremy Edberg
Editorial Assistant: Annie Sullivan
Sr. Editorial Assistant: Cherie Case

Project Coordinator: Katherine Crocker
Cover Image: ©iStockphoto.com/scanrail

http://www.dummies.com/go/mobile
http://www.dummies.com/go/iphone/apps

	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Using This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book

	Part I: Getting Started with AWS
	Chapter 1: Amazon Web Services Philosophy and Design
	Cloud Computing Defined
	Understanding the Amazon Business Philosophy
	The AWS Infrastructure
	The AWS Ecosystem
	Counting Up the Network Effects Benefit
	AWS versus Other Cloud Providers
	Getting Ready for the 21st Century

	Chapter 2: Introducing the AWS API
	APIs: Understanding the Basics
	Benefiting from Web Services
	An Overview of the AWS API
	AWS API Security

	Chapter 3: Introducing the AWS Management Console
	Setting Up Your Amazon Web Services Account
	Accessing Your First AWS Service
	Loading Data into S3 Buckets
	S3 URL Naming Conventions
	Last Words on the AWS Management Console

	Part II: Diving into AWS Offerings
	Chapter 4: Setting Up AWS Storage
	Differentiating the Amazon Storage Options
	Storing Items in the Simple Storage Service (S3) Bucket
	Managing Volumes of Information with Elastic Block Storage (EBS)
	Managing Archive Material with the Glacier Storage Service
	Scaling Key-Value Data with DynamoDB
	Selecting an AWS Storage Service

	Chapter 5: Stretching Out with Elastic Compute Cloud
	Introducing EC2
	Seeing EC2’s Unique Nature
	Working with an EC2 Example

	Chapter 6: AWS Networking
	Brushing Up on Networking Basics
	AWS Network IP Addressing
	AWS IP Address Mapping
	AWS Direct Connect
	High-Performance AWS Networking
	AWS Elastic IP Addresses
	AWS Instance Metadata
	Instance IP Address Communication

	Chapter 7: AWS Security
	Clouds Can Have Boundaries, Too
	The Deperimeterization of Security
	AWS Security Groups
	Using Security Groups to Partition Applications
	Security Group Best Practices
	AWS Virtual Private Cloud (VPC)
	AWS Application Security

	Chapter 8: Additional Core AWS Services
	Understanding the Other AWS Services
	CloudFront
	Relational Database Service (RDS)
	ElastiCache
	Integrating Additional AWS Services into Your Application
	Choosing the Right Additional AWS Service Integration Approach
	Dealing with AWS Lock-in

	Part III: Using AWS
	Chapter 9: AWS Platform Services
	Searching with CloudSearch
	Managing Video Conversions with Elastic Transcoder
	Simple Queue Service
	Simple Notification Service
	Simple E-Mail Service
	Simple Workflow Service
	Dealing with Big Data with the Help of Elastic MapReduce
	Redshift

	Chapter 10: AWS Management Services
	Managing Your AWS Applications
	Which AWS Management Service Should I Use?

	Chapter 11: Managing AWS Costs
	AWS Costs — It’s Complicated
	Taking Advantage of Cost and Utilization Tracking
	Managing Your AWS Costs

	Chapter 12: Bringing It All Together: An AWS Application
	Putting the Pieces Together
	Improving Application Robustness with Geographical Redundancy

	Part IV: The Part of Tens
	Chapter 13: Ten Reasons to Use Amazon Web Services
	AWS Provides IT Agility
	AWS Provides Business Agility
	AWS Offers a Rich Services Ecosystem
	AWS Simplifies IT Operations
	AWS Spans the Globe
	AWS Is the Leading Cloud-Computing Service Provider
	AWS Enables Innovation
	AWS Is Cost Effective
	AWS Aligns Your Organization with the Future of Technology
	AWS Is Good for Your Career

	Chapter 14: Ten Design Principles for Cloud Applications
	Everything Fails All the Time
	Redundancy Protects Against Resource Failure
	Geographic Distribution Protects Against Infrastructure Failure
	Monitoring Prevents Problems
	Utilization Review Prevents Waste
	Application Management Automates Administration
	Security Design Prevents Breaches and Data Loss
	Encryption Ensures Privacy
	Tier-Based Design Increases Efficiency
	Good Application Architecture Prevents Technical Debt

	Index
	About the Author

Amazon
Web Services

