


Overcoming IT Complexity
Simplify Operations, Enable Innovation, and

Cultivate Successful Cloud Outcomes

Lee Atchison



Overcoming IT Complexity
by Lee Atchison

Copyright © 2023 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Megan Laddusaw

Development Editor: Gary O’Brien

Production Editor: Beth Kelly

Copyeditor: Rachel Head

Proofreader: Audrey Doyle

Indexer: nSight, Inc.

Interior Designer: Monica Kamsvaag

Cover Designer: Susan Thompson

Illustrator: Kate Dullea

December 2022: First Edition

Revision History for the First Edition

http://oreilly.com/


2022-12-09: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492098492 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Overcoming IT Complexity, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and F5. See our
statement of editorial independence.

978-1-492-09850-8

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492098492
https://oreil.ly/editorial-independence


Dedication
To Beth

My love, my life, my everything



Foreword
I have spent my career developing and operating software and modernizing
product and engineering teams, from startups to large enterprises. I founded
Interland (now Web.com) in my 20s and went on to drive transformation at
scale while leading development and operations at Cox Automotive,
Unqork, and New Relic. I have been a CEO, CTO, and CPO and have
worked to help other enterprises around the globe transform. I have also
been an author and speaker on topics including DevOps, digital
transformation, Agile, Scrum, and Lean Startup. My experience has given
me a unique perspective on how the internet has narrowed competitive
moats and forced every company to learn how to operate like a digital
business—not just say they are one.

It is my pleasure to write this foreword for Lee’s new book, Overcoming IT
Complexity. Like his previous book, Architecting for Scale (O’Reilly), I
believe this will become the reference guide for overcoming the diverse
difficulties companies face—whether they are SaaS, non-SaaS, or non-
technology-focused IT firms. As Lee explains in this book, one of the many
challenges companies face while trying to deliver new features and
functionality in order to stay competitive is quickly accumulating technical
debt. With a cutting-edge approach, including enterprise risk management
and strategies for measuring results, Lee lays out a comprehensive
framework for dealing with that technical debt.

The Growing Complexity of IT Environments
Technology has grown increasingly complex over the years, but the rate of
its evolution has increased dramatically in the last decade. Many factors are
driving this fast evolution:

The rising number of devices connecting to the internet, from laptops
and smartphones to smart home products

The increase in cloud services

https://oreil.ly/architecting-for-scale-2e


The expansion in the number of devices that can be connected to
create a single application

The development of artificial intelligence and machine learning, which
has led to innovative new products that help automate traditional
business processes

The evolution of open source software, which has made it easier for
developers to create innovative new products

The numerous applications and devices employees use across an
organization’s environment generate fragmentation. This fragmentation is a
big challenge for the IT department, and it can be hard to detect because it
may be distributed across various systems your organization uses
(sometimes without employees knowing about it):

Applications can be fragmented across numerous databases, including
cloud databases.

Virtual machines (VMs) are often fragmented across multiple servers.

Physical servers are often fragmented across multiple physical
locations.

Network infrastructure and cloud services can also become
fragmented.

Complexity can increase the time it takes to deliver new IT solutions or roll
out new services. It can also slow down processes such as equipment
procurement and software upgrades. Complexity can be particularly
problematic for business users, who may have limited knowledge of the
technologies used by their organization’s IT department. This can make it
difficult for these users to collaborate with the IT department on projects or
get the kind of support they need when issues arise. It can also make it
difficult for the IT department to keep track of everything being used across
the organization and ensure that it’s all secure.



The complexity of building API-first and embedded SaaS solutions is rising
as new applications are based on open source platforms. Every day,
delivering new value while satisfying customers becomes more difficult.
Even if your IT organization is still struggling to eradicate the Node.js
monolith or is striving to scale to billions of transactions, Lee provides
ideas based on Adaptive Architecture principles and the crucial elements of
flexible infrastructure as code to help you reduce technical debt and IT
complexity.

Ken GavranovicCEO of AGS LLC;Former CEO of Web.com (Interland), GM of Product andEngineering at New Relic,and VP of Digital Systems at COX Automotive



Preface

The complexity of modern IT systems can impact your application’s quality
and security.

It’s that simple.

Business pressures have caused IT organizations to focus on creating new
applications and adding new features and capabilities to existing
applications to meet increasing competitive demands. The result is
insufficient time to work on managing, operating, and maintaining existing
applications and capabilities. Ignoring ongoing issues increases technical
debt, which in turn increases the complexity of modern systems. Increased
system complexity makes adding new features and capabilities harder, and
the vicious circle continues.

Addressing the IT complexity dilemma is essential, but it is not easy. In this
book, we begin by examining this dilemma and how it impacts you, your
applications, and your organization. Then we talk about identifying and
measuring complexity in your organization today. How can you measure
complexity without introducing complex measurement systems? Since you
can’t improve a system until you can measure it, this ability is critical to
managing IT complexity.

Next, we examine solutions for reducing IT complexity and the cognitive
load it induces. We discuss the role of adaptive architectures in modernizing
applications, considering both how they can reduce complexity and the risk
of increased complexity they may carry.

We then explore how knowledge management techniques can assist in
reducing cognitive load and IT complexity, and how your strategy for
investing in your infrastructure impacts complexity.

Finally, I provide some advice on how to begin conversations within your
organization about the impact of IT complexity on your company, your



products, and your applications.

The goal of this book is to give you the tools you need to understand how
IT complexity can negatively impact your company and your applications,
and how you can break the cycle to effectively manage its effect on your
organization.

More Information
This book is just a starting point in your journey to managing your IT
systems and experiences. If you want to learn more, feel free to check out
the other books, articles, courses, and interviews by the author at
leeatchison.com. Also, check out the other great books and online courses
O’Reilly Media offers.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

https://leeatchison.com/
https://oreilly.com/
https://oreilly.com/


O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https://oreil.ly/overcoming-it-complexity.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

Visit https://oreilly.com for more information and news about our books and
courses.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments
While there are more people who helped make this book possible than I
could possibly ever list here, I do want to mention several people who were
particularly helpful to me.

Ken Gavranovic. The word friend is an understatement. My virtual brother
is more descriptive. Ken, always trust the power of monkeys.

https://oreil.ly/overcoming-it-complexity
mailto:bookquestions@oreilly.com
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia


Kurt Kufeld, Greg Hart, Scott Green, Patrick Franklin, Suresh Kumar,
Colin Bodell, Adam Selipsky, and Andy Jassy. You gave me opportunities
at Amazon and AWS I could not have ever imagined.

Bjorn Freeman-Benson, Kevin McGuire, Abner Germanow, Darren
Cunningham, Jay Fry, Bharath Gowda. Each of these people, in their own
way, contributed significantly to my growing career at New Relic, and
ultimately to my ability to work as an independent consultant, author,
advisor, and thought leader.

Robson Grieve. Besides giving me huge opportunities at New Relic, he
hired me as a consultant when I first put out my shingle—he was literally
my first customer. He believed in me. In fact, he believed in me twice.

Jennifer Pollock, my longtime O’Reilly acquisitions editor (recently
promoted to senior content director), Megan Laddusaw, my current
O’Reilly acquisitions editor, and Gary O’Brien, my development editor for
this book. Jennifer, congratulations on your promotion—I always love
working with you on projects. Megan, I look forward to many years
working with you. Gary, you’ve been a great partner, helping bring this
book together.

And finally, and perhaps most significantly, I’d like to thank Mark Menger
from F5. Mark spent many hours with me talking through the topics I
discuss in this book. His insights were invaluable. Without him, this book
would not have happened.



Chapter 1. What Is the Modern
IT Complexity Dilemma?

The complexity of modern IT systems supporting modern applications can
impact your customers, your partners, your employees, and the quality and
security of your application. And the simple act of maintaining, growing,
and maturing IT systems inevitably makes them more complex.

The IT complexity dilemma refers to the challenges businesses face when
trying to manage and optimize their IT operations. The increasing
complexity of modern IT systems has made it difficult for businesses to
keep up with technology changes and make necessary updates to their
infrastructure, in turn making it difficult for them to realize their desired
return on their technology investments. Business pressures have caused IT
organizations to focus increasingly on creating new features and focus less
on resolving ongoing problems and upgrading existing architectures. This
has led to a buildup of technical debt, which can have consequences such as
slowed business processes, increased IT costs, and even system failures.
Addressing this complexity dilemma is essential, but it is not easy.

There are several measures that businesses can take to mitigate the effects
of the IT complexity dilemma, including investing in automation
technologies, establishing standard operating procedures, and hiring skilled
IT professionals. By taking these steps, businesses can improve their ability
to manage and optimize their IT operations, minimizing the negative
impacts of complexity.

However, even with these measures in place, businesses will still face
challenges in managing their IT operations due to the growing complexity
of modern IT systems. By attempting to mitigate the effects of this
complexity, businesses can improve their efficiency, security, and
competitiveness in today’s IT environment.



As we will discuss later in this chapter, technical debt is at the core of the
complexity dilemma: indeed, technical debt and complexity go hand in
hand. And as you will see, dealing effectively with technical debt involves
much more than just refactoring code.

Technical debt and
complexity go hand in

hand.

Technical debt is a metric that describes everything that interferes with an
application’s smooth operation and customer experience. In other words, it
is everything that makes the application complex or fragile, thereby
contributing to operational complexity, complicating customer experiences,
or simply making the application more difficult to enhance, expand, and
improve.

But before we can talk about ways to reduce complexity, it’s important to
understand how IT organizations are structured in modern enterprises, and
how the operations and development teams within the IT organization
interact to create a working system.

The Structure of Modern IT Organizations
IT organizations vary considerably in size and shape. A modern IT
organization uses DevOps methodologies. The organization is typically a
relatively flat, matrix-type structure in which teams of developers and
operators work together closely. To keep up with the fast pace of customer
demand and technological change, both teams need to adapt quickly. The
development team needs to be able to build new systems and applications
and repair and upgrade existing systems quickly. The operations team must
be able to not only deploy and manage those systems rapidly but also detect
and resolve problems when they occur. A close working relationship
between development and operations is critical to maintaining this speed.



However, natural separations start taking shape as applications grow in
complexity and the organization grows in size. Traditional divisions
between development and operations begin to formalize, and the space
between the two groups expands.

In the past, a flat management structure has been able to assist the
organization in keeping the communications channels flowing, encouraging
dialog among the development, operations, security, and product leadership
teams. But as the organization grows, keeping the management structure
flat and responsive becomes harder and harder.

Ironically, the biggest
inhibitor to growth is,

in fact, growth.

Management and organizational structures are required to keep the growing
organization operational. Formalized processes help yield consistent results
and plans. Yet, these same structures and processes create a natural
blockage to communication flow. This blockage makes it harder for the
organization to function. Teams split, and organizational distancing limits
cooperation and communication. This limits growth.

Ironically, the biggest inhibitor to growth is, in fact, growth. The
organizational structure gets more complex, and the application gets more
complex.

Since an IT organization is only as good as the management that drives it, it
is essential to have a strong and effective management team in place. This
team is responsible for steering the organization in the right direction,
setting goals and objectives, and ensuring that all aspects are running
smoothly.

The management team must also adapt to changes quickly and respond to
new market demands effectively. They must work across organizational



boundaries, and operate in unison with all product, development,
operational, and support teams.

How the IT organization is structured varies considerably based on the
nature of the business. The type of company (software focused, SaaS
focused, nonsoftware focused, etc.) is the biggest indicator of the structure
of the IT organization.

The Role of Software Development in IT Organizations
Within an IT organization, the structure and responsibility of the
development team is related to the nature of the business and the structure
of the rest of the company. The development team may have a limited role
in managing internal processes and systems, or it may be an integral part of
the company’s core business model. This means there is no one-size-fits-all
organizational structure that defines a modern IT organization.

But we can generalize. For this discussion, we’re going to define three
types of businesses:

1. Nonsoftware-focused IT organizations

2. Non-Software-as-a-Service (SaaS) software-focused IT organizations

3. SaaS-focused IT organizations

In the following sections, we will explore the characteristics of each type of
company and the IT organization, structure that tends to occur in each.

In practice, you will likely find that your circumstances lead to an amalgam
of two or three of these types.

Business type 1: The nonsoftware-focused IT organization
Type 1 is a business with a primary purpose other than producing, selling,
or operating software. This includes nearly all nontechnology-focused
companies, such as banks, restaurants, stores, taxi services, airlines,
railroads, media companies, etc. The mission of a nonsoftware company is
not technology focused. It may use software as a tool internally to manage



sales, marketing, manufacturing, or other business processes, but software
is secondary to its primary business.

As such, there are no large application development teams. There is an IT
organization, and within that are relatively small (compared to the overall
size of the company) development and operations teams, but only a small
portion of the company’s resources are invested in IT systems and
personnel.

Figure 1-1 illustrates this. The company leadership has bigger things to
focus on, leaving IT leadership to manage these small development and
operations teams.



Figure 1-1. A nonsoftware-focused company



For these more traditional nonsoftware-based enterprise companies, the IT
organization has a purely supportive role. It is primarily operations focused,
though it may also have some development capabilities. Tooling and
operational processes are the central areas of concern.

Business type 2: The non-SaaS software IT organization
The primary purpose of the second type of business is creating software that
it sells to other people or companies. It typically does not operate the
software for its customers; instead, the software (which does not require a
significant backend SaaS-like application to function) is operated directly
by the customer.

Examples of this type of software include popular workplace applications
such as Microsoft Word and Adobe Illustrator, as well as games (such as
Angry Birds), music applications, and ebook readers. It may also include
tools like antivirus software, firewalls, and news aggregators.

A non-SaaS software organization has a software- or engineering-focused
mission. These organizations have high-caliber application development
teams, but typically do not have a strong operations team. Because the
software they produce is operated by customers, not by the company itself,
there is no need for a large operational focus.

A generic IT organization provides tools and processes that support the
company as a whole. Part of its role is to provide support for the product
development teams (as well as sales/marketing, etc.), but it does not directly
contribute to product development or operations. Figure 1-2 shows this
structure.



Figure 1-2. A non-SaaS software company

Non-SaaS software companies have a strong focus on application
development teams, but these are not DevOps teams; they are independent
software development teams that produce software that is sold and
delivered to customers. The IT organization is small and supports the



company as a whole, including the development and operation of tools for
internal use; it is separate and isolated from the product development teams.

Business type 3: The SaaS-focused IT organization
The third type of business is a company whose primary purpose is to create
a SaaS application or to operate customer software. This includes business-
to-business (B2B) companies providing services such as inventory
management, financial planning, communications, and sales infrastructure.
Examples of SaaS products and companies include Intuit QuickBooks,
Slack, Shopify, Mailchimp, and Salesforce.

There are also business-to-consumer (B2C) SaaS companies providing
entertainment, retail shopping, and social media services. Examples of B2C
SaaS companies include Amazon (retail), Netflix, Facebook, and Twitter.

A highly functional SaaS organization requires a high-caliber application
development team and a high-caliber operations team. The two teams must
cooperate to succeed. Figure 1-3 shows the typical organizational structure.



Figure 1-3. A SaaS-focused organization

The application development teams in a SaaS company are typically
proportionately large groups that require substantial investments in
engineering and product management. Each team owns a part of the overall
SaaS application and builds, tests, deploys, operates, and maintains only the



services it is responsible for. Operations teams provide a smooth operations
infrastructure that supports the development teams. The enterprise’s focus is
typically primarily on the software development teams. These companies
may have separate IT organizations to support business processes, but the
application development teams are not part of that organization.

In these high-tech, software-driven companies, the application development
teams are a core component of the enterprise. Given its importance, this
group reports high in the company’s organizational hierarchy.

Notice that some companies fit into multiple categories. For instance,
Microsoft offers SaaS services (Office 365) and non-SaaS software
(Microsoft Word and Halo). Amazon offers B2C services (Amazon retail)
and B2B services (AWS), along with non-SaaS services (Kindle readers).
Additionally, a company like Charles Schwab may offer investment
software as a service, yet also focus on general financial services and
investments. These enterprises may have different divisions that appear to
be separate companies, each structured differently, or they may have a
hybrid structure. Keep in mind that the categories discussed here are
generalizations.

Development and Operations in the IT Organization
Within an IT organization, the development and operations teams are
focused on driving the tooling and resources needed to operate the
company, including building applications necessary for the company to run.
The responsibilities of these teams and the processes they follow depend on
where the company fits within the three types of organizations we just
discussed, as do the types of talent they attract.

Development
There is a direct correlation between the amount of focus your company
places on software development and the availability of high-quality
technical talent and software leadership available to your organization. The
best software developers, architects, and software leaders tend to gravitate



toward the much more lucrative opportunities in SaaS application
development and other software-centric companies.

This means that organizations in which software plays only a secondary
role in the mission find it difficult to attract and retain software talent. Often
this means the organization as a whole suffers. Yes, there are high-quality,
talented developers in these organizations, but they are much harder to
locate and hire. This tends to result in there being less innovation and fewer
creative solutions to problems in these types of organizations. Rather than
being state-of-the-art, the software applications created in such
organizations tend to be fairly prosaic, supportive applications.

The caliber of your IT development team is critically important in
determining the sophistication of the applications your organization can
support, and your organization’s ability to respond to the inevitable increase
in complexity that occurs over time.

The result is that organizations in which software is a secondary part of the
business rather than the primary focus tend to be more sensitive to the IT
complexity dilemma.

Operations
Operations teams, on the other hand, tend to attract high-quality talent
based on how central the organization’s operational aspects are to the
business focus. This means SaaS companies, which are highly dependent on
high-quality operations teams, tend to attract higher-quality operational
talent than organizations in which operations are secondary to the goals of
the business.

Less attractive o operational talent are nonsoftware companies that require a
significant internal software infrastructure to keep the organization running
smoothly. This includes organizations such as banks and other financial
firms where the software infrastructure is critically important and must stay
operational.

Even less attractive to operational talent are companies that produce
“boxed” software that is operated on customer computers and systems,



rather than in internal operational environments.

This makes sense. SaaS companies rely heavily on highly performant
operational environments and invest heavily in these areas. This investment,
and the opportunities it produces, attracts top operational engineering talent
to these organizations. Organizations that are less operations focused need
less investment in this area, and hence don’t attract as much interest.

The traditional operational landscape is changing, however. Many
traditional operational capabilities are now handled by outsourced
infrastructure, such as SaaS applications and cloud service providers.
Additionally, newer tooling and capabilities automate a large portion of
basic operational requirements.

Infrastructure as Code (IaC) and Operations as Code (OaC) tools help with
this effort, and strive to make operational setup and basic operational
responsibilities automated and repeatable. This improves overall
operational reliability. Additionally, since scripts and script-like
descriptions drive IaC and OaC, these capabilities encourage code as
documentation and knowledge sharing of the operational environments
involved. Finally, since IaC and OaC generalize the operational aspects of
an application into code-like capabilities, they allow the use of standardized
and well-understood development processes, such as revision management.
Revision management allows tracking and correlating failures to changes,
reducing mistakes, increasing security and traceability, and improving
overall accountability and performance.

The role of DevOps in the modernization of the enterprise
DevOps is a term in wide use in modern organizations. It describes, in part,
the collaboration between development and operations teams within an
organization. The intent of DevOps is to break down the traditional barriers
that exist between these two groups and encourage collaboration and
cooperation, allowing them to work together more effectively and
efficiently. This leads to faster problem solving, increased efficiency and
responsiveness, and overall higher application quality and availability.
DevOps is becoming the norm in modern IT organizations.



In a DevOps organization, individual teams each own some portion of the
application. In modern applications, these components are typically
services. The individual teams are responsible for the development, testing,
deployment, operation, and ongoing support of the services assigned to
their care.

Figure 1-4 shows the organizational structure at a software company that
uses DevOps principles. As such, it describes the same sort of SaaS
company described back in Figure 1-3. The primary difference is that both
the development aspects and most of the operational aspects of ownership
are assigned to the same team under the engineering and product leadership
organization. There is still a very thin operations support organization, but
the job of this organization is not to manage the operations of the
application; rather, its role is to provide tools and assistance to the product
teams that own and operate the individual services.

Merging the responsibility for the development and operations of individual
services into a single organization in this way lowers the communication
barriers that typically existed in the past between the development and
operations teams, improving the organization’s overall performance and
reliability.





Figure 1-4. A DevOps-focused software company

Now that we understand more about how modern IT organizations are
structured, we can talk about the problem complexity poses in these
organizations and how complexity impacts the long-term viability and
success of the organization.

The Advent of Complexity
It’s hard to pinpoint exactly when complexity begins to creep in within a
young IT organization, but it’s usually tied to some decision that is meant to
reduce time to market or cost to market, at the expense of some further
work or cost later on. This kick starts the slow and inexorable growth in
complexity. For larger, more established enterprises, introducing complexity
is typically tied to incorporating technology into the established processes.
In either case, the increase in complexity is linked to an increase in
technical debt.

Technical Debt: The Key to Complexity
In software development, technical debt is the cost of additional rework
caused by choosing an easy, limited, or suboptimal solution now, rather than
using a better approach that would take longer or cost more money to
implement up front.

Ward Cunningham originally coined the term. According to Ward,
“technical debt includes those internal things that you choose not to do now,
but which impede future development if left undone.”

The code development aspect of technical debt only captures a small part of
it. Technical debt applies to all aspects of modern application design,
development, and long-term operation.

For SaaS and other cloud-centric applications, the long-term operational
impact is a significant driver of technical debt. The longer an application
operates, the greater the technical debt, and the greater an application’s



technical debt, the greater the negative impact on the long-term operation of
the service.

When a development team at a SaaS company decides to add a new
capability to an application but takes shortcuts in the architecture to launch
the capability more quickly, it is adding to the technical debt of the
application and the company as a whole. Unless a concerted effort is made
to resolve the technical debt by completing the proper design and
architecture, it will accumulate until it hinders development and operational
processes.

Technical debt is similar to financial debt. In moderation, it can be handled
and the cost can be dealt with. But if technical debt is not repaid, it can
accrue “interest” in the form of additional technical debt—and just as with
financial debt, if you accrue too much interest, you can no longer afford to
repay the debt. Too much technical debt makes the changes necessary to
resolve (or pay back) the technical debt harder and more expensive to
implement.

Let your financial debt grow too large, and you will go broke. Let your
technical debt grow too large, and your application will become
unsupportable, unsustainable, and unmaintainable.

How does technical debt grow?
Technical debt can grow naturally and quietly during the normal product
development process. Every project that contributes to a product also
contributes to its technical debt—even adding a simple feature
enhancement. This is illustrated at the top of Figure 1-5: during normal
product development, work and outputs are added to the product, and some
amount of debt is added to the stack of technical debt.

Sometimes, a project is done in a “quick and dirty” manner, such as when a
new feature is added without proper design in order to get it out the door
quickly. In these cases, the project adds more debt. Sometimes, the project
can even add more technical debt to your application than the amount of



real value it provides. This is the case with the example project shown in
the middle of Figure 1-5.

Figure 1-5. The flow of technical debt during product development



To keep technical debt from growing without bounds, some effort needs to
be added to each project to reduce the technical debt. Keeping your
technical debt at a sustainable level requires constant investment in
reducing the technical debt over time.

This constant flow of increasing and decreasing technical debt is one of the
reasons why it can sneak up on a product. If more debt is regularly added
than is reduced from the backlog, the debt will grow, yet the growth may
not be noticeable. It’s not until the debt has grown to a point where it starts
having a negative impact on your product that you will notice how much
has accumulated. At this point, it may be too large to deal with effectively
and easily.

Each project can either increase or decrease the technical debt within a
system. In a full, high-quality project, the planned work often includes
doing all the work necessary, along with working on reducing some amount
of related technical debt. When the work is completed, the application’s
technical debt is lower than before. This is illustrated in Figure 1-6: the
work completed for the project is larger than the project itself, and the extra
effort is put toward reducing the size of the technical debt. This is a project
that’s dealing with technical debt in a healthy way.



Figure 1-6. A full/complete project has to plan to reduce technical debt

Unfortunately, many projects are much more quick and dirty. They are
designed to only complete as much work as is absolutely necessary, leaving
the rest to be completed later. In fact, a common project management
philosophy involves building a minimum viable product, or MVP—an
approach that essentially dictates that you do as little product work as
possible to get a functional product out the door.

The result is work that is not completed. More often than not, this increases
the overall technical debt of the application. This phenomenon is illustrated
in Figure 1-7. Here, the work completed is only part of that required by the
project, and it is accompanied by an equal amount of work not done. This
additional important work which was not completed ends up increasing the
overall technical debt in the project.



Figure 1-7. A quick and dirty project often increases technical debt

Depending on the types of projects undertaken, the amount of technical
debt associated with a product will vary over time, sometimes decreasing,
sometimes increasing. The more full, high-quality projects that are
completed, the lower the overall technical debt will be. The more quick and
dirty projects that are used to implement functionality, the higher the
resulting technical debt will be.

The negative impact of technical debt
Sometimes, deciding to build a simpler solution now and delaying a longer-
term implementation (as depicted in Figure 1-7) is advantageous. It allows



you to get a solution out to customers earlier, so the company can start
monetizing the change and receive customer input on what they like and do
not like, which can be fed into a later, more ambitious solution. This is
analogous to the idea that borrowing money is advantageous if you use the
money to contribute to a greater cause, such as purchasing a home; paying
some interest on borrowed money is fine, as long as the money you
borrowed is put to good use. Similarly, managing some technical debt is
useful and appropriate as long as the project that generates that debt adds
value to your product and your company. Technical debt, like financial debt,
becomes a problem when left unresolved: it increases in cost and gets
harder to deal with over time.

Continuing with the financial metaphor, technical debt becomes a problem
when it builds up to the point where the cost of managing and servicing the
debt becomes too great and impedes your ability to invest in future projects.
When too many quick and dirty projects rule your project plan, and projects
designed to reduce debt are not staffed in your company, your technical
debt starts to become unmanageable. If this goes on for too long, technical
debt overwhelms the project, as shown in Figure 1-8.



Figure 1-8. Technical debt overwhelming the project

In this scenario, servicing the debt becomes the dominant role of your team,
and you spend little or no time contributing to improving the product. Your
debt is too large to be effectively managed, and the product suffers.



The Organizational Pain of Complexity
Technical debt and complexity go hand in hand. So do complexity and
organizational pain. While technical debt is not a complete picture of
application complexity, the growth of technical debt is tied very closely to
the growth of application complexity.

As your application gets more and more complex, many things happen to it:

It becomes brittle.

A complex application is subject to minor issues quickly escalating into
major problems. While most applications operate in a well of a positive
feedback cycle, a complex application’s operational well turns into a
negative feedback cycle, where it’s difficult to deal with even small
problems. As Figure 1-9 shows, a stable application tends to stay in the
valley between the two hills representing application failure, building
success upon success, while a brittle application is ready to roll off the
top of the hill into failure at the smallest of nudges.





Figure 1-9. Application brittleness leads to instability and failure

Fewer engineers have complete knowledge of the application.

Only the most senior engineers, those who have been working on the
application the longest, have a broad understanding of how the complete
application works. As time goes on, their knowledge becomes diluted: it
may be less accurate, higher level, or more specialized. As an
application grows in complexity, maintaining detailed knowledge of the
application as a whole is no longer possible for single individuals.

The knowledge that engineers do have about the application becomes
obsolete more quickly.

Complex applications change frequently, and engineers’ knowledge
about how the application works quickly becomes outdated.

It gets harder to bring new engineers up to speed.

Complex applications have long learning paths. This is not only because
there is more to learn, but also because the knowledge new engineers
need to become productive is more distributed, and often anecdotal and
out of date.

The net result of these issues is higher organizational pain. This pain
translates into poor-quality changes, less-motivated staff, and, ultimately,
staff turnover. Higher turnover means an additional need to recruit and train
new engineers, which gets harder as the pain increases. Brittleness leads to
lower availability, and customer-visible issues and failures.

Messy desk syndrome
Imagine you have a perfectly clean desk. Now, take a sheet of paper and set
it in the corner. Is your desk messy? No, not yet. Now take 50 other related
sheets of paper and sit them on top of the one sheet in the corner. Is your
desk messy? No, not yet. Now imagine you have more papers, but these
don’t go with the stack in the corner; they are for different projects. So you



put them in different locations on the desk that seem to make sense, just
single sheets in single locations. Then, over time, you put more papers and
documents and books and folders and pictures, one at a time, on the desk. If
you don’t know where something goes, you just put it in a new location.
You’ll figure it out later. Now your desk is messy. In fact, it’s extremely
messy.

This happened because you didn’t have a plan from the beginning, and
decided to just “wing it” along the way. You made your desk messy simply
by using and working on it. The moral of the story? Unless you have a solid
plan for organizing the papers on your desk established at the beginning,
and you stick with it, sooner or later your desk will become messy, one
sheet at a time.

The same thing happens with organizational pain: it grows quickly when
you don’t have an architectural plan from the beginning and you take things
as they come. You “wing it,” metaphorically speaking. The result is that you
add to your technical debt, and hence your organizational pain, simply by
working on and building the application.

Every action you take contributes to that organizational pain, little by little.
Your technical debt grows a bit at a time until it becomes overwhelming.

Let’s change our login process to allow saving login credentials in the
user’s browser.

Let’s add this new feature to that menu.

Users would prefer that this feature works in three steps rather than the
current four steps. Let’s combine two of the steps.

We need to remove the per-session limit on this resource.

We don’t have time to build this full feature now, but we can build this
smaller feature, which will make many customers happier. We can do the
rest later.

Let’s release this feature this way first, and then we can collect input from
customers and modify it to make it more user friendly as we get more input.



Any one of these statements could correspond to a simple set of changes
that makes perfect sense at the time. It might not have any obvious impact
on overall technical debt at all.

But the little changes…and the little debt…and the little impact…they add
up, like the little pieces of paper and other items on your desk. As with the
desk that starts clean and ends up messy, each action you take may,
individually, seem perfectly benign. Those actions may look perfectly
acceptable. But over time, as a whole, they become overwhelming.

ICING THE CAKE
Many IT organizations use the expression “icing the cake.” This is
when you describe the current situation as “everything is OK,” whether
it actually is OK or not.

The slow accrual of technical debt and organizational pain leads to this
process of icing the cake. At the start, all is well and it’s easy to say
“everything is OK,” because it is—or at least it appears to be.

But as time goes on, and technical debt increases, and organizational
pain increases, little by little, things aren’t OK anymore. Still, the
tendency to keep saying “everything is OK” is strong. The organization
keeps icing the cake.

The problem is that a pain-ridden organization working on a debt-
ridden application and still saying that “everything is OK” is simply
failing to notice or accept what’s obvious to every outsider—the pain is
real, and the organization is not OK. Without anyone noticing it, the
icing went bad.

Complexity in an IT Organization



As complexity
increases, the ability of

the organization to
change direction

quickly and respond to
new demands
diminishes.

Complexity grows in IT organizations as well. First, it creeps into your
application. As your application grows more complex, so does the
infrastructure needed to run the application. So your IT operations become
more complex. And your engineering organization becomes more complex.
Thus, managing your IT gets more complex.

What started as a simple change in the needs of your application balloons
into the growth of a complex IT organization.

As complexity increases, the ability of the organization to change direction
quickly and respond to new demands diminishes. A once-agile organization
becomes less agile.

Over time, an agile organization thus evolves into either a rigid organization
—one that fears and rejects change, in an effort to keep the system stable
and supported—or a fragile organization, where every minor change risks
breaking a larger system or process, limiting the ability to adjust and grow.
This is illustrated in Figure 1-10.



Figure 1-10. An agile organization may fail over time by becoming either rigid or fragile

Almost independent of the specific company, complexity and technical debt
correspond to a lowered ability to respond to market and competitive



demands.

Why is this true? There are typically two reasons why application
complexity leads a company to lower agility.

First, when an organization has overly complex applications, changes to
those applications are increasingly likely to cause problems. Small changes
and small adjustments cause large failures and outages to occur. This makes
the organization hesitate. Changes go through additional review cycles,
changes get consolidated, changes that don’t show clear value are discarded
as too dangerous. Rather than having a “Yes, we can try that!” attitude, the
organization adopts a much more conservative view. “No, not unless it’s
absolutely necessary” becomes the more likely position.

This reaction is intended to keep the application from failing. It’s the
company’s response to keeping the application robust—the fewer changes
you make, the safer the application is.

As a result, the application development process slows down considerably.
This makes the application—and the company—significantly less agile than
its competitors.

Second, if the organization doesn’t naturally slow down and continues to
make changes, those changes become increasingly risky. Because of the
application complexity, the organization may make changes without fully
understanding what’s involved in them. This leads to dangerous changes,
and these changes break things. The organization doesn’t slow down and
become conservative, but instead moves forward recklessly. The result?
Application availability suffers and customer issues increase. Technical
debt also increases, feeding into the complexity and creating a vicious
circle. Complexity leads to brittleness which leads to failures which lead to
technical debt which leads to complexity.

IT Death
So technical debt leads to complexity, and complexity leads to
organizational pain. This all ultimately leads to IT death.



But what does IT death look like?

IT death is what happens to an organization when the pain of complexity
sends the organization into a state of ineffectualness. It cannot improve, it
cannot grow, and hence it stagnates. Since its competitors will continue to
grow, an organization’s stagnation ultimately leads to its death.

There are many examples of where this has happened.

Xerox, long the leader in producing photocopiers for large organizations,
suffered from an inability to pivot from copiers to the personal computer
(PC). Despite the fact that the modern PC user interface was originally
conceived at Xerox’s Palo Alto Research Center (PARC), the company was
unable to compete with Microsoft and Apple in developing a PC operating
system. Arguably, without Xerox PARC, there would be no Apple
Macintosh computer, yet Xerox’s inability to pivot kept it from capitalizing
on this innovation.

And it’s not just technology companies that suffer this fate. Firestone, the
tire company, was facing the difficult task of modernizing its tire creation
process in light of radial tire technology created by one of its competitors,
Michelin. Firestone bogged down and could not update its processes to
handle the new technology. Try as it might, it kept making tires that
customers did not want, and its business suffered. Ultimately, Firestone was
absorbed by Bridgestone. This is an example of what Harvard Business
Review calls active inertia.

Many other highly innovative companies have fallen into the trap of IT
death by losing their ability to innovate. Hewlett-Packard, one of the
founding companies of Silicon Valley—the heart of technical innovation
across the world—experienced this problem, falling into a slow death
spiral.

Polaroid suffered a similar fate when it failed to innovate new camera
technology, as did Blockbuster Video, which failed to recognize the
importance of video streaming technology, and the bookstore Borders,
which was overwhelmed by the innovation of upstart Amazon.com.

https://oreil.ly/HUbjr


Technical debt and complexity slow down innovation. They keep
companies from staying competitive, which ultimately results in their
eventual downfall, and potentially even death.

What Makes a Mature IT Organization
A mature IT organization is agile. It can make decisions quickly and easily,
stick by those decisions until organizational needs dictate a change, and
implement them quickly and effectively.

Why is it important for a mature IT organization to be agile? When agility
is hampered, companies fall into two traps that can bring them down:

Lack of competitive offerings

Unsafe security vulnerabilities

Let’s look at each of these more closely.

Competitive offerings
Maintaining competitiveness is critical to a modern application. This is
because the pace of change is accelerating. Technology is advancing
rapidly, and new competitors are constantly emerging. Your competitors are
moving faster than ever before, and if you can’t keep pace with them you
will quickly fall behind and soon become irrelevant. Keeping pace means
moving faster and faster, which means being able to adapt and change as
the situation demands.

Customers are constantly pushing for more features, lower prices, and
better quality. You need to be able to respond to these demands to remain
competitive.

New ideas are the lifeblood of a competitive company. When a new idea
comes up, you need to be able to quickly adjust and adapt to enable the new
idea. This requires agility.

Customers are looking for innovation when it comes to making a buying
decision. Companies that appear innovative are more likely to get the



customer’s business. This means you need to respond to customer requests
and customer needs quickly. Failing to do this will not only cause you to
lose customers, but will also cause you to lose your credibility in the
industry.

Agility is essential to maintaining a thriving business.

Security vulnerabilities
Your competitors aren’t the only ones innovating. Bad actors are innovative
as well.

Never before has the IT infrastructure of our valuable applications been at
such great risk to security vulnerabilities and the actions of bad actors as it
is today. Bad actors are not only growing in numbers; they are growing in
sophistication as well. Bad actors are just as creative at coming up with new
ways to attack your application as your competitors are at coming up with
new ways to attack your business success.

Bad actors are constantly innovating, improving their attack vectors, and
exposing the vulnerabilities of our applications.

As a company and the owner of your application, you must constantly
innovate as well, to keep your applications safe and secure. You have to
constantly strive to keep one step ahead of the bad actors, and this too
requires agility.

Summary
Hence, the IT complexity dilemma. IT agility is critical to building a
successful company, yet that very success itself adds technical debt and
complexity, and this complexity leads to either rigidity or fragility. An
organization that falls prey to either of these will be outpaced by its
competitors in terms of innovation, and ultimately it will die. To be
successful in the long term, a company must manage the IT complexity
dilemma.



Chapter 2. Auditing and
Assessing Your IT Ecosystem

How do you avoid the IT complexity dilemma? First things first: to deal
with complexity in your application or your IT organization, you need to
understand where it comes from.

The first step in understanding complexity is to perform an audit of your
application, your teams, your delivery and operations processes, your IT
organization, and your company as a whole, to determine what parts of your
system contribute to your excess complexity.

Auditing Versus Assessment
Auditing and assessment are two distinct terms that are often used
somewhat interchangeably to describe the process of understanding the
components that make up a complex system, such as an enterprise
application. But what’s the difference between the two?

Auditing is typically defined as the process of creating a controlled
inventory. In this context, the word controlled implies governance. For
example:

A bank can count its money, but it has its records formally reviewed
by an independent agency for accuracy when it undergoes an audit.

A company keeps its own financial records, but if it is about to be
acquired or undergo a merger, its records are audited independently to
ensure they are accurate.

If you live in the United States, you keep track of your personal
finances and you submit records to the Internal Revenue Service every
year to specify how much income tax you owe. Occasionally, the IRS



audits individuals to validate that the information they are providing is
correct and accurate. Other nations have similar processes.

In an IT audit, we are talking about determining, formally or informally, the
components of our applications, the infrastructure they are running on, and
the systems and processes they utilize.

Large enterprises may invest hundreds of thousands of dollars in such an
audit, often hiring an outside auditing firm, and the process might take six
months or more. Alternatively, an architect might create a quick diagram in
Visio, print it out, and put it in a logbook. Both are essentially audits, but
the former is much more formal than the latter.

Assessment is what happens next. Once you know what components make
up your systems and applications, you perform an assessment to understand
how they work together, what each component is used for, why it exists,
how it’s important, and the overall impact it has on the system as a whole.
Often, this is part of the audit, but it doesn’t have to be. Assessing often
implies grading, scoring, or evaluating. For example:

A teacher creates a test as an assessment to see whether their students
understand the material they were taught.

A coach evaluates how an athlete performs to assess how they can
utilize the athlete in a team setting.

A voter assesses the pros and cons of each side of an issue before
casting their vote.

Auditing and assessing are complementary processes that can be employed
together to determine and evaluate the makeup of a large, complex
enterprise application infrastructure.

When applied to IT applications, auditing and assessing are more akin to a
survey. A survey is a measurement tool that provides a view of the structure
and architecture of a system, and that is built and maintained outside the
system. It gives us an indication of how our application, infrastructure,
business, or system operates and how it’s structured.



What Do You Measure?
In business, including application development and IT infrastructure, our
measurements are built around people, processes, and technology:

People

Do we have the right skill sets in the right places to allow our business
to function successfully? Are our employees engaged and satisfied? Are
we utilizing our people most effectively?

Processes

Do we make good and timely decisions using the right data? Are our
business processes efficient and effective? Do we use our time or
resources inappropriately?

Technology

Do we have the right technologies for our business to function
optimally? Are those technologies running in the right infrastructure?
Are we properly utilizing all aspects of our infrastructure? Do we waste
technology we have purchased by not using it effectively? Are we
inefficient because we have not acquired a piece of technology that
could help us?

Determining what to assess is important but highly case dependent.
Focusing on questions like those shown here is a good way to brainstorm
what to measure. This gives you a great perspective on what to look at
when conducting your survey.

Why Do You Measure?



To determine where you
can improve, you must
measure where you are

currently.

You can’t track how your organization progresses in its growth without
understanding the state of the organization and how it’s currently
functioning. To determine where you can improve, you must measure where
you are currently.

Measure-Try-Measure-Refine
Before you make any change to how a system operates, you need to
determine how that change might affect the system. In order to do that, you
need to measure the system’s current state. Then, after making the change,
you can measure again and assess the impact. This allows you to refine
your attempt and measure again. The result is a loop, called the Measure-
Try-Measure-Refine loop, illustrated in Figure 2-1.



Figure 2-1. The Measure-Try-Measure-Refine loop

This is a basic process of cyclic improvement, and it goes by many other
names. It’s very similar to the Plan-Do-Check-Act (PDCA) or Plan-Do-
Study-Act (PDSA) cycle, otherwise known as the Deming cycle.

In this version, we start at the top with the Measure step. We measure our
system to understand its current state before making any changes.

We then move on to the Try step. Here, we attempt a change to see whether
it will positively or negatively impact our system. Does it help us or hurt

https://oreil.ly/L6Z3h


us?

You can’t tell if you’ve
improved unless you
know your situation

before and after every
change you make.

To answer that question, we then do another round of Measure. We measure
our system again and compare the current state with the original state to see
how it has changed. This allows us to determine whether what we tried
improved our situation or made it worse.

We then Refine our attempt to account for the problems or expand on the
benefits. The net result should be that we are in an improved situation.

This leads us back to the top, where the cycle begins all over again:
Measure-Try-Measure-Refine, then repeat. This is the process of continuous
improvement.

The key point is that we must measure before and after we make any
change and determine the difference between the two measurements in
order to evaluate the impact of our attempt. You can’t tell if you’ve
improved unless you know your situation before and after every change you
make.

The Benefits of Measurement
Every change has a cost associated with it. Those costs may be tangible
(engineering costs, testing costs, the operational impact of a change, etc.) or
intangible (e.g., opportunity costs). Sometimes we make a change that
improves our situation, but the cost outweighs the value of the
improvement. We may have made a localized improvement, but overall we
are not better off because the cost was too great. Only by measuring can we



understand the real value of the change we made, as well as the associated
cost.

Another benefit of measurement is that it lets you know when you’re done.
The cycle could go on forever, but sooner or later the improvements you are
able to make will no longer be worth the cost of making them. As Figure 2-
2 illustrates, measurements will tell you when to stop: when you have
reached your goal, or when you have made as many improvements as you
can without incurring unreasonable costs or burdens.

Figure 2-2. Measure to determine when it’s time to stop

In summary, measurement helps us:

Determine our current system’s state and where we are in our process
so we know where to focus our energies to improve.

Analyze our changes to see whether they’ve made things better or
worse, or improved things enough to justify the cost of the change.

Determine when it is time to stop attempting to make improvements.



How Deep Do You Measure?
Earlier I gave the example of a large enterprise spending six months on a
large, formal system audit. This is a form of measurement. It will give a
complete view of the state of the system that is accurate and highly detailed
—but as depicted in Figure 2-3, it will show the system state as it was six
months ago, when the audit started.

Figure 2-3. A formal assessment is inaccurate the moment it’s completed

Such an audit is not of any use to us in managing systemic improvements,
when we are trying to incrementally improve between each measurement
cycle. If we can only make small changes every six months at the end of a



formal audit/measurement cycle, then we can’t make changes very quickly,
and our entire Measure-Try-Measure-Refine process fails. In order to
confront the IT complexity dilemma, we need to break out of these long,
unwieldy, and expensive evaluation cycles. The duration of our Measure-
Try-Measure-Refine loop should be measured in days or hours, not in
months or years.

So, when you create an inventory of your system, when you conduct a
review of your applications, when you measure the current state of your
application and its infrastructure, how deep should you measure the system?

One viewpoint says that you need to have a deep and detailed view into
your application and its infrastructure. You need to know about every CPU,
data memory chip, network segment, cable, application procedure, service,
node, etc. If you don’t know everything, you know nothing. This viewpoint
is what leads to the six-month formal external audits we talked about
previously. Requiring precise measurement of everything means you can’t
possibly know everything you need to know in a timely manner. It can also
lead to knowledge without understanding: by the time you have measured
everything, you have no context for applying the understanding you’ve
gained.



THE PERFECT ANSWER, BUT TOO LATE
I was big into computers as a kid, and living in the Midwest where
storms (thunderstorms, tornados, and snowstorms) were a big deal, this
generated an interest in meteorology. In the 1970s, neither of these
technology fields (computers or meteorology) were very advanced.
Computers were simple and just starting to be understood, and
meteorology was just starting to leverage computers and satellite
technology in a serious way.

Someone who was an expert in meteorology told me, “We now have the
ability to completely understand what the weather will be in any given
location 24 hours in advance.” At the time, this was an amazing thing to
hear. Meteorology wasn’t anywhere near that precise back in those
days, yet this person was saying we could predict the weather!

“But,” the expert went on to say, “the problem is, it’ll take our fastest
computers three days to figure out what tomorrow’s weather will be.”
It’s not very useful to figure out what tomorrow’s weather will be if it
takes three days to figure it out.

This was my first lesson in understanding that too much data can be
worse than not enough data.

Too much data isn’t always helpful, especially if the cost of getting that data
makes the data inherently less useful. If it takes you six months to collect
the data, you can’t use that data to determine what changes you need to
make today to make things better tomorrow.

Instead, you will need to compromise. You’ll need to collect some subset of
the data, with the expectation that the subset you collect gives you the
insight you need to extrapolate the rest of the data. Figure 2-4 illustrates
this.



Figure 2-4. Rather than doing a full assessment, you can do a partial assessment and extrapolate the
results

But what data do you need? Let’s assume you have a large system that is
running many large applications and you want to do an inventory that lets
you know how many infrastructure components are needed by each
application. You are doing this so you can compare these numbers to the
amount of inventory you actually have on hand and understand whether you
have excess capacity or are running your services too lean. Taking a
complete inventory would be too expensive and take too long—but how can
you determine what you have without doing a full inventory of the entire
system? Let’s look at some possibilities.

Option 1: Look at only some attributes of the inventory (such as compute)
and ignore others (such as networking or storage).



One option is to look at only a subset of your infrastructure. For example,
you might look only at the CPUs. How many CPUs do you have? How
powerful are they? How much raw computation power does that represent?
You can then determine how much computation power you have assigned to
each of the parts of each of your applications.

In focusing only on raw computation power, you’re ignoring other
important aspects of the infrastructure an application requires, such as
memory, storage, and network resources. The extrapolation you make is
that if one application has twice the compute resources as another, you can
assume it also has twice the networking, memory, and storage resources.

However, this assumption is rarely accurate. Just because an application has
twice as many CPUs assigned to it as another, or has CPUs that are twice as
powerful, does not mean that those CPUs have twice as much memory, or
twice as much database storage, or twice as much networking capacity.

Using one type of resource as a proxy for your entire system inventory
leads to inaccurate data and bad expectations.

Option 2: Look at a single application or service in its entirety, and ignore
all other applications/services.

Another approach you can take when creating your inventory is to look at a
subset of your applications or services. For example, you might decide to
investigate a single application in its entirety. You determine how much
computation it requires, and how much memory, storage, networking
capacity, etc. You figure out what services compose this application, and
what external services the application requires to operate. You make a
complete inventory of everything required to run this one particular
application.

Then you make the assumption that all the other applications or services in
your system will have a similar set of requirements, based on some point of
comparison. For example, if your analyzed application needs 25 servers and
another application needs 50 servers, you can assume that the other
application uses twice as much everything as your analyzed application.



This is perhaps a bit more accurate than option 1, but as you can imagine, it
is still inaccurate. How much infrastructure a given application or service
requires does not have much bearing on how much another application or
service requires. Any two applications will likely look very different
internally, and may use a very different mix of support services. You are
still no closer to understanding the complete infrastructure needs for your
entire system.

So, if neither of these options is a very useful model for getting a complete
picture of the inventory needs of your system, how can you do that, short of
performing a full, multimonth audit of your entire infrastructure?

The options considered here attempted to speed up the inventory process by
pulling out a subset of important data from the dataset and extrapolating
from that. But as we saw, this resulted in inaccuracies. Instead, how about
simply spending less time creating the inventory list in the first place?
Rather than trying to accurately and completely create an inventory of a
small section of your infrastructure, you can create a general overview
inventory that may not be very accurate, but will represent your entire
system. I refer to this as an adaptive assessment.

Adaptive Assessment
Let’s accept the fact that this may not initially be a very accurate inventory.
Instead, as time goes on and you adjust your system, you’ll add more data
to your existing (incomplete and inaccurate) inventory, improving it little by
little. That is, with each change, you’ll adapt your inventory, adding more
data to it and making it a slightly more accurate overall assessment of your
system.



In the adaptive
assessment, you are

trading some amount of
inaccuracy for speed.

In other words, you are
exchanging granularity

of assessment for
development speed.

With the adaptive assessment approach, rather than striving for perfection in
complete inventory (which will take too long) or part of the inventory
(which will be unrepresentative), we estimate the inventory of the entire
system. Then, over time, we refine the estimate and make it more and more
accurate.

It’s an iterative approach to inventory assessment. Figure 2-5 illustrates this
process. In the adaptive assessment, you are trading some amount of
inaccuracy for speed. In other words, you are exchanging granularity of
assessment for development speed.



Figure 2-5. An adaptive assessment grows and expands with your infrastructure

Realizing your inventory will be worthless if it takes six months to finish
(because the inventory you have six months from now will not be the same
inventory that you have now), you instead create a shallow assessment of
your inventory and refine it over time. As a result, you will have a much
more relevant and useful inventory for a greater period of time. You will
make your initial, albeit inaccurate, inventory assessment very quickly, then
refine it and add more detail to it as your system changes. Little by little, it
will become more accurate. Because the inventory didn’t take much time to



create in the first place, it will remain a more accurate representation of
your current state than of an outdated historical state.

The Value of an Adaptive Assessment
The true value of an adaptive assessment is time. We will begin to talk
about adaptive organizations in the next chapter, but briefly, an organization
with an adaptive architecture requires decision-making cycles measured in
days or weeks at most. In many cases, the action execution cycles are
measured in minutes or days. Since a formal audit can take weeks or
months to complete, it’s useless to an adaptive organization, and wasteful.
Waiting six months for the results of a formal audit is just not practical, and
even if you could wait that long, the result would be a view of your systems
that is six months out of date and useless. If you make daily decisions and
changes, the assessment will be woefully outdated months before you ever
see it.

An adaptive assessment gives you some actionable information
immediately. Even if you don’t have full access to everything that would be
available in a formal audit, what you do have available to you is available at
the right time. Some data when you actually need it is infinitely better than
complete data when it’s too late to be useful.

Some data when you
actually need it is

infinitely better than
complete data when it’s

too late to be useful.

The key is to keep the end goal in mind. Ultimately you do want to end up
with as accurate an assessment as possible, both in terms of the quality of
the information and the accuracy of the information at the present time (i.e.,
an inventory that represents the current state of the system, not some point-
in-time view of the system in the past).



The question, then, is this: how do you decide what level of granularity you
are willing to sacrifice in your assessment in order to have the data you
need in a timely manner? Put another way, how granular must the data be to
be useful, and when do you need it?

Creating an Adaptive Assessment
We start with this optimistic goal: we want everything.

But we need to temper that goal with a reality check: we are willing to
accept errors in what we collect. We may end up with guesses and estimates
in much of our assessment in order to get our results more quickly.

We will be using the error bar approach to create our adaptive assessment.
This approach results in a complete assessment—a complete inventory of
our system—but that assessment is based on guesses and estimates, which
may be wrong. Hence, they have “error bars.” Our long-term goal is to
revise our estimates as we gain more information to reduce the size of the
error bars, ultimately creating a more accurate assessment, as shown on the
righthand side of Figure 2-5. Our short-term goal is to create a complete
inventory, with errors, quickly. This is opposed to the extrapolation
approach, which strives for a partial inventory quickly, or the formal audit,
which strives for a complete inventory, without errors, after a long time.

A classic error bar approach starts with colloquial knowledge about the
system. “I believe we have 48 network access ports in our primary service
rack.” Close enough; we’ll use that number for our inventory for now. At
some point in the future we can verify the number: if we find it’s 50 instead
of 48, we can adjust our assessment, making it more accurate. But in the
meantime, we have a workable number we can deal with. Knowing that we
have around 48 ports in our rack is infinitely more useful than not having
any idea how many there are and needing to wait several months to have an
accurate count.

Adaptive assessments say, “I value being educated sooner rather than later,
and I understand I will get more educated as time goes on.”



Decisions Based on Adaptive Assessments
We will be using our assessments to make decisions, but it’s important to
understand that those assessments are not absolute. They are estimates, and
will be adjusted and refined over time. Our data—our assessment—is agile.

As a result, the decisions we make using this data need to be agile as well.
We need to be willing to rethink and reimplement past decisions when we
are presented with more accurate and refined data. However, this does not
mean we can flip-flop on decisions routinely.

Decision flexibility is a struggle for many IT organizations. Some
organizations cannot change direction easily, even when faced with clear
and compelling evidence that they are headed in the wrong direction.
Meanwhile, other organizations can’t stay focused on anything and
constantly move back and forth in a series of nondecisions. Neither is a
good place to be.

To use adaptive assessments effectively, you need to be willing and able to
make decisions that stick, but also be willing to rethink those decisions
when and if the refined data you have available suggests a change.

Your data has error bars, so your decisions must have error bars too.
Flexibility is important, while still making actionable decisions.

Your data has error
bars, so your decisions
must have error bars

too.

The most important skill you need as an organization is adaptivity. Your
architectures need to be adaptive, not overly robust. An architecture that is
rigid and resistant to change is not an architecture that is suitable for
adaptive assessment.

Loose Coupling



Many architectural patterns support adaptive assessments, but one of the
most valuable patterns you should embrace in all your architectural
decisions—application, infrastructure, business—is the pattern of loose
coupling.

In a loosely coupled architecture, the connection between any two modules
within the architecture is as loose and flexible as possible. This concept
applies to application architectures (such as service-oriented architectures),
infrastructure architectures (such as cloud-centric architectures), and
business and organizational architectures:

In the case of application architectures, loose coupling means you
must create solid APIs and contractual agreements between software
services that define the expected interactions between the services. The
APIs define and manage inter-service expectations, but they do not put
any requirements on the actual methods, systems, and architectures
used in the internal implementation of the services themselves.

In the case of infrastructure architectures, loose coupling means you
should depend on using infrastructure services, such as cloud-based
services, that have predefined expectations about how they work.
However, the user of these services does not need knowledge of how
the infrastructure service itself is actually constructed or how it
functions.

In the case of organizational architectures, loose coupling means
defining the ownership and responsibilities of individual teams
independently from the ownership and responsibilities of other teams
or the organization as a whole. Teams have clearly defined goals that
are achievable independently, without requiring undue intervention
from neighboring or interfacing teams.

In my book Architecting for Scale (O’Reilly), you can read much more
about loose coupling. The book lays out five tenets for building highly
scalable applications and organizations, several of which describe patterns
that involve loose coupling. Tenet 2 is about loosely coupled applications

https://www.oreilly.com/library/view/architecting-for-scale/9781492057161/


(service-oriented architectures). Tenet 5 is about loosely coupled
infrastructures (cloud-based architectures). Tenet 3 talks about loosely
coupled organizations and processes. And Tenet 4 talks about risk
management, which is an important part of building and using adaptive
architectures.

Examples of Adaptive Assessments
There are many ways to perform adaptive assessments. How do you get
started? Here are a couple of examples that apply to IT infrastructure
assessments.

Example 1: The Brainstorming Adaptive Assessment
An adaptive assessment can start with nothing more than a group
brainstorm aimed at identifying the parts of your infrastructure and how
they work together. The result may not be very accurate at all, but it is still a
useful assessment of your system because it gives you a view of how people
think the system is constructed. As you find mistakes and correct errors,
you’ll grow that understanding and you’ll be able to refine your team’s
internal understanding of how the system actually functions. You should
encourage your team to update the assessment every time they interact with
the system and make changes so that the assessment continues to improve
over time.

Your brainstorming session is an adaptive assessment because it meets the
two core requirements:

Generates results quickly

It generates results at some level of quality very quickly. After the initial
brainstorming meeting, you have an assessment. It may not be accurate
yet, but it’s a start and has immediate value.

Improves over time



The results improve as time goes on. As your team keeps updating the
assessment as they make changes, the assessment keeps improving.

Example 2: The Cloud Tagging Adaptive Assessment
When using cloud architectures, a convenient way to start an assessment of
your operational infrastructure is to virtually tag individual components of
your infrastructure. This is particularly useful in cloud-based systems, as
most cloud providers give you the tools necessary to tag individual
infrastructure components. As you begin tagging infrastructure components
with specific attributes, you’ll start to see how you are utilizing your cloud
infrastructure. You can tag infrastructure components to show which
applications use a specific component, what teams are responsible for
managing it, who is responsible for paying for it, and who to contact to
determine when the component is being used, or whether the component is
still being used at all.

Once you’ve done some tagging of your cloud infrastructure resources, you
can generate reports based on those tags to find out all sorts of useful
things, like who owns which components, what teams use which services,
who uses excessive resources, who has spare resources, and who is running
their resources too hot.

By putting policies into place requiring all new cloud components to be
properly tagged and encouraging teams interacting with existing cloud
components to add tags if they don’t have them yet, you’ll keep improving
your assessment of how your cloud infrastructure is working over time.

Eventually, you may even want to utilize a cloud service that will enforce
tagging rules. Some enterprises set up policies that ensure tagging by
simply systemically deleting resources that are not tagged correctly.
Nothing will encourage a team to make sure their cloud infrastructure
resources are properly tagged more than having a critical infrastructure
component simply disappear from their application because it wasn’t tagged
properly!



Your cloud tagging assessment is an adaptive assessment because it meets
the two core requirements:

Generates results quickly

It generates results at some level of quality very quickly. Simply tagging
a few very visible resources will give you some level of reporting
ability.

Improves over time

The results improve as time goes on. Every time you create a new cloud
resource going forward, make sure to tag it appropriately (software can
actually require this task before it creates the resource). Existing
untagged resources are tagged as they are noticed. Over time, a greater
percentage of resources will be properly tagged.

The Survey Analogy
At the beginning of this chapter, I suggested that surveying is a better
description of what we are doing than auditing or assessing, which are the
traditionally used terms. The process of an adaptive assessment is more
accurately described as a survey from another perspective as well.

Think about using surveys as a way to get information about people.
Politicians conduct surveys all the time. Companies with visible brand
loyalty use surveys to understand the value of their brand. Employers use
surveys too; for example, conducting employee satisfaction surveys to
determine how their employees are doing.

Let’s think about such a survey for a minute. When we conduct an
employee satisfaction survey, we get a list of the percentages of respondents
who gave specific answers to the included questions. That’s all. We then
attempt to deduce whether our employees are happy or not from the



answers. This is an assumption based on the data, not a true and complete
reflection of employee happiness.

As time goes on, we can repeat the survey. We can even fine-tune some of
the questions to get better and more accurate results. By comparing the
results over time, we can get a more accurate picture of whether our
employees are happy or not, as well as whether the things we are doing are
improving employee happiness.

These surveys are non-IT examples of adaptive assessments.

Summary
An adaptive assessment is a fast and effective way to conduct an audit or
assessment of your business, processes, applications, and infrastructure. It
assumes that some data, even if not 100% accurate, is better than no data at
all. A successful adaptive assessment is characterized by (1) generating
quick results and (2) improving the quality of those results over time.



Chapter 3. Moving to an
Adaptive Architecture

One of the greatest advancements that the modern cloud era has brought us
is the development and growth of the adaptive architecture. An adaptive
architecture helps IT organizations build applications and systems that are
more flexible and hence more agile. When used properly, this is the leading
component in decreasing IT infrastructure costs associated with cloud
computing. Finally, and perhaps most importantly, adaptive architectures
are an important tool for reducing IT complexity and hence technical debt.

One of the greatest
tools that the modern
cloud era has brought
us is the development

and growth of the
adaptive architecture.

But what is an adaptive architecture?

Adaptive Architectures
An adaptive architecture is any architecture design that is able to be
changed dynamically and programmatically without the need for physical
intervention or manual operations.

The left side of Figure 3-1 shows a traditional architecture. Human
operators manually interact with the individual infrastructure components—
servers, switches, network cables, and so on—and make the changes
required to adapt to the organization’s evolving needs. If additional server



resources are needed, someone physically goes in and adds a new server to
the rack, wires it up, and gets it up and running. This process could take
days, weeks, or even months in some cases. In contrast, in an adaptive
architecture such as that offered by a cloud computing provider (shown on
the right in Figure 3-1), a software program determines the application’s
needs and dynamically, in real time, changes the IT infrastructure allocated
to that application and adjusts its configuration. This is all done
automatically, without human interference. If a new server is needed, one is
allocated by the cloud service provider and attached automatically at the
correct location within the infrastructure. Modifications that took hours or
days to implement with a traditional architecture take minutes or seconds
with an adaptive architecture. This allows applications’ architectures to be
constantly and creatively modified on the fly to meet their ever-changing
needs.



Figure 3-1. Traditional versus adaptive architecture

If a service is getting additional traffic and needs additional resources to
handle that traffic, those resources can be automatically and dynamically
added as needed, then freed when traffic volume drops. Need to perform a
long, complex operation, such as calculating a monthly report or processing
a new dataset? With an adaptive architecture you can temporarily allocate
the additional resources, configure them as necessary, perform the work,
then release them.

Want to try out a new idea in your running application? Allocate the
resources you need and test it: if it works, you can put the resources into the



IT infrastructure set, and if it doesn’t, you can delete them and they go
away.

Want to see how your new feature will perform under a heavy production
load before launching it in production? Spin up some servers to run the
feature and some servers to generate fake traffic, and give it a try. When
you’re done, simply delete the unneeded resources.

Need to reroute traffic around a compromised system? Launch a
replacement patch and pull the compromised component out of the
infrastructure. Try doing that quickly with a traditional architecture.

Adaptive Architectures in Action
Adaptive architectures give us flexibility and adaptivity. They allow us to
try new ideas easily, add new resources to handle unexpected loads, and
replace broken, failed, or vulnerable components quickly.

How do adaptive architectures fit into the modern application architecture?
There are several places where they can assist.

Autoscaling
The resource needs of most modern online applications are not constant.
Typically, they vary in relationship to usage, whether that’s measured in
terms of the number of simultaneous users, the amount of processing going
on for each user, or the amount of data being handled by each user. In
general, the more an application is being used, the more resources it takes to
operate that application. This is illustrated generically in Figure 3-2.



Figure 3-2. Resource requirements go up as application usage increases

In traditional application architectures, this creates a quandary. Resources
need to be allocated to the application, but how many resources do you
allocate? Given that historically (before the cloud), resource allocation was



expensive and time-consuming, the resource allocations tended to be static.
Because resource usage is dynamic, that resulted in cases where either
excess resource capacity sat idle for long periods of time, or the application
ran out of resources due to insufficient capacity. Figure 3-3 illustrates this.



Figure 3-3. Static resource allocation results in excess capacity or insufficient capacity

If resources are statically allocated, they do not change as application usage
changes. This means either you have idle excess capacity, or you have
insufficient capacity and your application is starved. However, with



adaptive architectures, the level of resources allocated to an application
does not have to be static. It can be dynamic—adaptive—and change based
on the application’s needs. As application usage increases, additional
capacity can be added to meet those needs, and resources can be scaled
back when usage decreases.

This is illustrated in Figure 3-4. Ideally, you always have just a bit more
resources available than the application requires, so you do not have
significant excess capacity or insufficient capacity.

By far the best-known example of adaptive architecture is the autoscaling
architecture. Autoscaling is a cloud mechanism that monitors the resource
requirements of an application and automatically adds or removes resources
to meet those needs. For example, AWS has an Auto Scaling service that
can dynamically change the number of servers in a server pool: it monitors
various metrics to determine whether more or less capacity is required, and
either adds or removes servers to meet the existing needs.



Figure 3-4. Adaptive architectures dynamically change allocated resources based on application
needs

Some cloud-based services handle the allocation automatically behind the
scenes. For example, AWS Elastic Load Balancer will dynamically change



the size and number of servers allocated to a given application to handle the
rate of incoming requests. As the number of requests increases, additional
capacity is automatically added. That capacity is removed when the number
of requests decreases. All of this is done completely transparently to
consumers; it’s handled internally by AWS’s control systems.

Self-Healing
Imagine an application running on a pool of servers. What happens if one of
the servers in the pool begins to fail or becomes damaged? This scenario is
illustrated in Figure 3-5.

In a traditional, noncloud setting, the application will begin to operate
sluggishly or may start failing intermittently. A human will need to get
involved, log in to the failing server, and repair whatever is going wrong
with it. If processes have terminated, they will need to be restarted. If a file
is corrupted, it will have to be repaired. These fixes may be made quickly,
or they may be time-consuming to make. If they’re time-consuming, the
server may be removed from the pool temporarily while the repairs are
performed, causing the application to operate at reduced capacity.



Figure 3-5. A server begins to fail in a server pool for an application

In a cloud-centric application, adaptive architecture technology can be used
to assist with the repair process. If a server begins to go bad, rather than
summoning a human to attempt to repair it, the failing server can be
automatically terminated and removed from the pool. The adaptive
architecture technology will realize that additional resources are needed in
the pool and will spin up a new server and add it to the pool automatically.
Figure 3-6 illustrates this.



Figure 3-6. Adaptive architecture can spin up a replacement server automatically

Rather than engaging a human to attempt to repair the ailing server, the
server is simply abandoned algorithmically, and a replacement server is
automatically put into place.

There are two main advantages to this approach:

A human did not need to respond to the event. The problem was fixed
automatically and dynamically.



Since a human did not have to respond and fix the problem, the issue
was resolved much more quickly, and potentially with less disruption
to the users of the application.

Adaptive architectures can deal effectively with many high-profile and
high-impact failure modes, swapping out failing infrastructure quickly and
efficiently without human intervention.

Infrastructure as Code
On-premises infrastructure is traditionally constructed by racking servers
and other hardware together, connecting cables, and wiring up
communications components.

This is a painstakingly manual process that is not only error-prone, but also
unreproducible and untraceable. It’s unreproducible because of human
involvement. There is no guarantee that one person will connect a computer
in exactly the same manner as someone else does, and the inevitable result
is a mixture of systems that are not consistent. Further, if a mistake is made
and a problem is introduced, often it’s not easy to trace where that problem
was introduced and hence how to solve it.

Adaptive architectures provide solutions to these problems. Since your
infrastructure is constructed programmatically rather than manually in an
adaptive architecture, you can create standard processes and systems to
consistently and repeatedly perform the same connections.

This ability has led to a best practice for infrastructure creation known as
Infrastructure as Code (IaC). IaC is an approach to automation that allows a
description of the desired infrastructure setup to be created in a simple text
document using a standard infrastructure description language. This
document is then fed into an IaC system that issues the appropriate calls to
the cloud and component APIs to construct a real cloud infrastructure that
matches the documented infrastructure. This is illustrated in Figure 3-7.



Figure 3-7. Basic IaC model for infrastructure management

Then, if a change is needed to the infrastructure, you simply make an
adjustment to the document and feed it into the IaC system again, which
will issue the necessary API calls to adjust the infrastructure to match the
updated documentation.

There are many advantages to this model of infrastructure management.
First, it simplifies the design of complex infrastructures and makes the
process more approachable for the average software developer. This allows



the development team to be more heavily involved in the construction and
management of the infrastructure that operates their software, allowing
more consistent and efficient use of hardware resources, and enables better
coordination of operations and development using DevOps principles.

Second, infrastructure documents can be managed just like software code,
by putting the documents into a revision control system such as Git. This
allows infrastructure documentation to go through review and approval
processes, just like the software application itself. In fact, the exact same
processes for software quality control can be used for infrastructure quality
control.

Finally, if an infrastructure change causes a problem in the operating
application, a review of the revision history can be instrumental in
understanding where the problem originated and determining how to
resolve it. This removes the troublesome issue of trying to figure out “what
changed on the server?!?” All changes are explicitly tracked and managed,
and can be reviewed as needed later.

Developing in a Production-Like Environment
Infrastructure as Code also gives you additional benefits. Since the
infrastructure document describes an accurate view of the exact hardware
setup required to build your production infrastructure, that same document
can be used to easily set up auxiliary, nonproduction versions of the
infrastructure. This includes setting up staging and QA environments, and
ensuring they are identical in design to the production infrastructure.

One benefit of this is that the common problem of divergence and
infrastructure drift that often occurs between production and staging/testing
environments is eliminated because all environments are created from the
same source. Additionally, a developer who wants to try out a new design
can easily spin up a production-like environment of their own that allows
them to test their changes safely and in isolation both from production and
from other developers and testers. This is illustrated in Figure 3-8.



Figure 3-8. Production application and equivalent development instances can all be identical and
managed

Many identical copies of the production environment (perhaps identical, or
perhaps scaled down in size but otherwise identical) can be created and
managed easily using adaptive architectures and IaC techniques.



Load Testing
The same IaC techniques can be used with adaptive architectures to create
simulated environments for load testing. Take a look at Figure 3-9.





Figure 3-9. Load testing using simulated users on a copy of production

The top left shows a production application with real users, and at the lower
right is an exact copy of the production setup to work with a simulated user
load. This environment allows you to test various user load scenarios on an
equivalent of the production environment. The testing is independent and
done in complete isolation from the existing production environment, yet it
provides very accurate results because the two environments are virtually
identical.

Adaptive architectures allow setting up many different testing scenarios
without impacting existing production environments.

Cost of Adaptive Architecture in Increased
Complexity
Adaptive architectures are, on the surface, more complex than nonadaptive
architectures. The increased flexibility and agility allows you to be more
flexible and agile. The ability to modify your infrastructure
programmatically means you can make it as complex as you want it to be.
Unless managed appropriately, flexibility breeds complexity.

As we saw in Chapter 1, increased complexity increases technical debt and
decreases the reliability and availability of your application. More
complexity leads to fragility (instability of the application) or rigidity
(resistance to making changes to the application). So, unless properly
managed, adaptive architectures can lead to increased fragility or increased
rigidity; neither is good.

Unless managed
appropriately,

flexibility breeds
complexity.



Adaptive architectures provide you with all the great advantages discussed
previously, but it’s important to be aware of this potential pitfall. How do
you avoid complexity while leveraging the benefits of an adaptive
architecture?

Interestingly, you reduce complexity in adaptive architectures using the
same techniques you use to reduce general software complexity in large
software applications.

You reduce complexity
in adaptive

architectures using the
same techniques you

use to reduce
complexity in large

software applications.

This means leveraging common best practices that help reduce the
cognitive load when dealing with large application systems. Examples of
these include:

Modularization

Breaking software down into smaller modules, such as services and
microservices, is a great way to compartmentalize complexity and,
hence, reduce the amount of complexity you need to keep in mind at
any given point in time. Similar techniques work in adaptive
architectures: modularizing your infrastructure and managing the
modules individually reduces the impact of complexity in your
application infrastructure.

For example, when architecting the frontend load balancer for an
application, you can treat the application architecture itself like a black
box. Similarly, when focusing on creating a dynamic infrastructure for
an application using multiple services, you can treat the database high



availability strategy you require as a black box, ignoring the details until
later.

Loose coupling

Reducing tight dependencies between software services creates
separation that reduces friction in large-scale application development.
Similarly, in adaptive architectures, reducing the coupling between
architectural modules lowers the complexity. By decreasing the required
interaction between infrastructure components, you reduce the
complexity of those components.

For example, the interaction between a frontend request cache and an
application service should be restricted to basic HTTP caching
protocols. There should be no deeper integration between the cache and
the application. While it might seem wise to build a backdoor cache
invalidation system connecting the application to the cache, avoid that
in lieu of the basic cache invalidation commands included in the
standard HTTP protocol.

Reuse

Reusing software components is a classic model to reduce software
system complexity, and the same technique works with adaptive
architectures. By using common, reusable infrastructure modules
repeatedly in different places in your architecture, you can reduce
complexity by increasing modularity and promoting loose coupling.

For example, if every server you deploy has the same basic structure
and components, you’ll have fewer variations to worry about. If each
service is structured identically (or using one of a few different
infrastructure structures), you can reuse the same patterns in multiple
services. Similarly, using one or two standard inter-service
communication models reduces the complexity introduced by each
service picking its own communication protocol. Allowing individual
services to control the software installed and the directory structure of
the underlying servers may ease some tasks for those services, but it



increases the number of moving parts for the architecture as a whole.
Reuse reduces complexity.

Standardization

Restricting choices by standardizing on specific components also
reduces complexity, often improving agility and time to value. For
example, AWS has hundreds of different variations of sizes and shapes
of servers to choose from when creating an adaptive architecture. Any
of those hundreds of variations can be used in the same application.
However, limiting the allowed list of choices to a select few that cover
the needs of your application reduces complexity substantially.

Besides leveraging best practices such as these, there are other strategies
you can employ: encouraging and enforcing consistency, repeatability, and
regularity will help to reduce architectural complexity.

Example: Reducing Complexity with Tiered
Security
Let’s look at an example of managing and reducing complexity in an
adaptive architecture. In this example, we’re going to look at a cloud-based
security model and see how you can use some of the techniques just
described to reduce the complexity in the security setup.

Figure 3-10 shows a simplified security model for an enterprise. This
enterprise has four applications that are spread across four different
geographic sites. Sites 1 and 2 host applications 1, 2, and 3. Site 3 hosts
applications 2, 3, and 4. Site 4 hosts applications 1, 2, and 4.



Figure 3-10. A simplified enterprise-tiered security model

There are security policies and security infrastructure requirements for
every application segment at every site, plus each site has its own security
requirements. This means 16 distinct and dynamically changing security
requirements must be managed. If they are each managed independently,
keeping track of all these requirements will be nearly impossible, especially
as the number of servers, sites, and applications grows. In a reasonably



sized enterprise, there might be tens of thousands of distinct security and
infrastructure requirements for each component in the system.

Obviously, it would be best if all the policies and infrastructure were the
same, so that there is only a single policy to track. Realistically, however,
this isn’t going to be the case; different locales have different security
requirements, as do different applications. The complexity grows
exponentially as the number of sites and applications grows.

The solution is to implement a tiered or hierarchical security model, using
the modularization, loose coupling, and reuse best practices described
earlier. With this model, you have a set of standard, global security policies
and infrastructure requirements that apply to all applications in all locales.
Next, a set of site-wide security policies and infrastructure requirements are
established at the site/locale level. Finally, a set of application-specific
policies are defined at the third level.

General policies and standardized infrastructure requirements are included
at the top (global) policy level. These apply to everything, at all sites. The
site-wide/locale-specific policies only contain policy exceptions, indicating
how they deviate from the global policy. Then, at the application-specific
level, the policy exceptions that apply to a particular application are
defined.

You start by defining your global security policies. The goal is to put as
many requirements as possible into these. Everything that applies company-
wide should be specified once, at the top level—this includes things like
user password requirements, security rules to keep bots at bay, edge firewall
requirements, etc. These policies and requirements are applied universally
across all sites and all applications.

Next, you define your site-wide policies. These should only contain
exceptions to the global policies that apply at a given locale. For example,
sites in the European Union that must follow the EU’s General Data
Protection Regulation (GDPR) requirements would have these exceptions
described in their locale policies, or you might have to define different
policies for sites that are in Azure regions as opposed to AWS regions. The



end result is that you have a set of policies that are, mostly, described and
implemented once (globally), but can be adjusted and modified as needed
for a given locale. These site-wide policies can depend on and thus ignore
certain rules specified in the global policies; for example, they don’t have to
deal with bots because the global tier deals with them.

Finally, application-specific exceptions are described at the application-
specific policy level. These policies might include requirements such as
which network ports the application needs, what type of traffic is expected,
and scaling requirements. Policies in this layer can ignore anything
established by the site-wide and global policies that applies to them, and
only focus on specifying the exceptions that are unique to this application.

As many policy and infrastructure requirements as possible should be
specified at the global level, with fewer and fewer requirements as you
move down the tiers to the finer-grained, application-level policies. These
should specify as few requirements as possible.

The net result is that, rather than tens of thousands of distinct security
policies, you have three tiers, with only the required detailed exceptions at
the lowest level. The vast majority of the requirements are specified once,
at the global level.

The approach described here greatly reduces the complexity of managing a
completely agile security model, by implementing defined processes and
procedures. It uses modularization with the three tiers of control; loose
coupling, since the layers are independent of each other as much as
possible; reuse of higher-level policies to reduce the variations; and overall
a standardized model that impacts how and where changes can be made.

There is nothing magic about this tiered model, but models such as this can
dramatically simplify the development and operation of applications that
employ adaptive architecture techniques.

Often, policies in a model like this are implemented in an out-of-band
management tier that handles the code, configuration management,
infrastructure and policy rules, and analytics in a general fashion, keeping
those requirements global yet safely isolated from the three production tiers.



This tier is independent of the other three and provides management and
control for all the other tiers.

Summary
Adaptive architectures are a fantastic tool to facilitate the creation and
operation of large, modern applications. However, used inappropriately,
adaptive architectures can increase application complexity, leading to
fragility and rigidity in your organization’s thinking, processes, and designs.
Using the same established best practices that have been used reliably in
building large-scale software applications, we can leverage adaptive
architectures yet manage the increased complexity, allowing us to gain the
advantages they offer without the risk.

All of this means more agility, which means you can build more secure
applications while enabling competitive business innovation.



Chapter 4. Managing
Knowledge

Knowledge management is the process of coordinating and managing the
information required to maintain and operate your applications, including
configuration, secrets, and documentation. Effective knowledge
management involves making sure this information is in as uniform and
consistent a format as possible, available as needed to everyone responsible.
Knowledge management is also about reducing the amount of knowledge
individuals need to operate and maintain a system. It helps ensure that
everyone at the organization—from new employees to seasoned
practitioners—is as productive as possible.

Understanding and maintaining complex systems tends to require a
significant diversity of knowledge and expertise. The more complex a
system is, the more knowledge is required to maintain it. Furthermore, the
cost and difficulty of building and maintaining a system are directly
proportional to the knowledge required to build and maintain it. Figure 4-1
shows this relationship.

Generally speaking, the more knowledge a system requires, the harder it is
to maintain that knowledge and the more complex the system is.

Understanding a system whose operation and maintenance require diverse
expertise also involves a high cognitive load. Cognitive load is a measure of
the amount of information someone can hold in their working memory at
one time. The more unique the knowledge requirements are, the more
context you must keep within your mind in order to understand them, and
hence the greater that load. Knowledge management helps reduce cognitive
load, making building and operating the system more efficient.



Figure 4-1. The interrelation between quantity and diversity of knowledge required and system
complexity

Knowledge Variability: Choice Versus
Complexity



A dichotomy exists. The more choices you give your teams in how they can
build, develop, and maintain an application, the more innovative they can
be. This typically results in faster time to market, more competitive
products, and ultimately more satisfied staff.

The very
characteristics that

bring you market value
and success in the short
term result in increased

cognitive load,
technical debt, and

complexity in the long
term.

But this increased diversity introduces complexity, which means a greater
amount of knowledge is required to understand how the system operates.

As a result, the very characteristics that bring you market value and success
in the short term—specifically, innovation and flexibility—result in
increased cognitive load, technical debt, and complexity in the long term.
Figure 4-2 illustrates this.

The more diversity and innovation allowed in the early application
development process, the greater the likelihood of market success and the
more value you bring to the market. But those same qualities also increase
long-term cognitive load and application complexity, adversely impacting
performance and profitability.



Figure 4-2. Innovation brings market value, but also complexity



When innovating and
making short-term
decisions, you must

factor into your
deliberations the long-
term cognitive effects of

those choices.
Innovation at all costs

is a recipe for long-
term disaster, but

managed innovation
can help create a long-

lasting product
offering.

Have you ever decided to implement a quick and dirty feature because you
needed to get it to market quickly, despite the additional complexity and
technical debt it brings to your application in the long term? This is
innovation at work, introducing short-term value at the cost of long-term
complexity.

Effectively managing knowledge is fundamental to reducing complexity in
a system, which is required to reduce cognitive load and ultimately improve
maintainability. Long-term knowledge management is often at odds with
innovation and choice, and the balance must be managed to create both
short-term and long-term value.

The intent here isn’t to say that innovation is bad. On the contrary,
innovation and diversity in thought and process are critical to the success of
an application (and a business). However, it’s important to be aware of the
sometimes-hidden long-term costs and risks associated with this mindset.

That is, when innovating and making short-term decisions, you must factor
into your deliberations the long-term cognitive effects of those choices.



Innovation at all costs is a recipe for long-term disaster, but managed
innovation can help create a long-lasting product offering.

Managing Knowledge Requirements
The goal of knowledge management is to gather together all the available
information about the tools, systems, processes, procedures, and
requirements that are part of the system and that keep it operating
efficiently, without overcorrecting and being overly restrictive, which can
stifle innovation.

How do you control the knowledge that a system requires? Interestingly, by
using the same tools, techniques, and processes you use to manage overall
technical complexity in a system:

Understanding (measuring)

You can’t manage the knowledge requirements of a system until you
understand the breadth and scope of knowledge required to operate it.

Loose coupling

Keeping systems independent from each other—reducing the
dependencies between them—decreases knowledge requirements.
Dependency management, side effects, and unexpected outcomes are all
problems associated with highly dependent systems. Independent
systems avoid these complexities and require less knowledge to operate
than highly interdependent systems do.

Standardization

Using standardized methods, procedures, and processes provides a
structure to create reusable components that can be leveraged in
common ways. Standardization is key to keeping systems simple and
cognitive load low.

Reuse



In standardized systems, the reuse of knowledge, configurations, and
information (and components and infrastructure) is easier to
accomplish. Leveraging commonality in systems and keeping systems
consistent and regular reduces the cognitive load of understanding how
an application functions. The more you make your services and systems
operate similarly to other services and systems, the less variability there
is—that is, the less additional knowledge is needed to use them. This
lowers the cognitive load involved in dealing with complexity.

When managing complex systems, reducing the amount of knowledge
required to operate them and the variability in that knowledge has various
advantages. These include:

Greater productivity

Simpler systems are easier to understand, and hence allow new
employees to become more efficient at using them quickly. This
reduction in time to value boosts productivity.

Increased supportability and uniformity

Simpler systems relying on standardization and reuse have more
supportable components and more uniform adoption of best practices.
Reuse improves resilience and reliability, which improves
supportability. Uniformity reduces complexity.

Centralized Configuration
A common issue with production applications is where to store and manage
the configuration, setup, and other data used to operate the application. This
includes things like database access credentials, third-party service
activation tokens, network router and switch configuration files, firewall
configurations, cache setup parameters, database configuration information,
and server configuration files.



This information is often stored at the point where it’s needed. For example,
as shown in Figure 4-3, network devices (firewalls, switches, routers) store
their configuration information within the devices themselves, the web
server configuration is stored with the web server, and the database
configuration is stored with the database. The credentials required to use
these capabilities are stored in the application that is using the various
devices and services.

Figure 4-3. Configuration throughout an application and its infrastructure



Storing the information needed to set up and manage a service directly with
the consumer of that information may seem like a good model. There are,
however, several problems with this approach:

Security/vulnerability

When you store credentials with the user of those credentials, if the
application becomes compromised, the referring services whose
credentials you are storing also become compromised. This is bad
practice from a security standpoint.

Consistency/reusability

When you store the individual configuration files in the devices
themselves, there is no central knowledge of how the systems are set up
and configured. This means you can’t compare the configurations of, for
example, one network router to another to see how they differ, or update
one to match the other. In turn, this means you can’t easily apply the
best practices used in one configuration to another.

Availability/safety

Storing configuration files in the devices themselves also means there is
no redundancy or backup of that information. If a network switch, for
example, fails and needs to be replaced, how should the new switch be
configured? When configuration files are stored in the devices
themselves, if a device fails (or becomes compromised) and needs to be
removed, the configuration is lost. If a backup is not maintained outside
the device, replacing it involves the additional effort of reconstructing
the requirements for the configuration.

Traceability

If someone changes the configuration of a needed resource, and that
change ends up causing an application outage, without centralized
knowledge it can be difficult to discover what changed recently, which
means it can be difficult to find and repair the damage and mitigate the
downtime. Traceability has long been recognized as valuable in



software code, but it’s equally important in infrastructure configuration
and setup. Traceability isn’t about blaming the person who caused the
problem; it’s about identifying what happened to allow the issue to be
resolved more quickly, and (in the longer term) creating processes and
systems to make sure the same problem doesn’t occur again.

Security, reliability, consistency, and traceability are all impeded when the
configuration information is stored with the resource itself—and as we saw
in Chapter 1, this can have serious consequences.

The harder it is to create, update, manage, verify, or reuse an infrastructure
configuration, the greater the technical debt in your application, and the
greater the overall operational complexity. To combat this problem, a
system for centrally managing and controlling the configurations is
required.

Maintaining a Centralized Single Source of Truth
The best approach to take to control and reduce the complexity associated
with configuration is to maintain the configuration information centrally,
outside the application and infrastructure resources themselves. This model,
which relies on a single source of truth, protects your application’s
configuration and simplifies your problem diagnosis and resolution
processes. Centralization of the information allows reuse and repeatability;
as we have seen, this reduces complexity and improves consistency, which
enhances reliability.

Figure 4-4 illustrates this approach. In centralized configuration
management systems, configurations for all components are stored in a
single, common location. Then, when a change is made to any of those
configurations, the new version is pushed to each and every corresponding
device, updating its internal copy. The authoritative versions of all
configurations related to the system are stored together, off-device, and can
be manipulated as a set. This centralized storage model makes it easy to
track the configurations and any changes made to them. Additionally, all



changes are made in a well-known location that is easier to access than the
remote devices themselves.





Figure 4-4. Centralized configuration management

Centralized source of truth versus single source of truth
Maintaining a single source of truth does not necessarily mean maintaining
a centralized source of truth. The two concepts are different and come with
different advantages and disadvantages:

A centralized source of truth is where all configuration and
management information is maintained in a single, centralized
location.

A single source of truth is where a specific piece or type of
information is maintained in one location only. It can be replicated to
many alternate locations (backups, different locales, etc.) and pushed
to the location where it is consumed (the resource that requires the
configuration), but a single copy is maintained and managed in a
single location, and that is the authoritative version.

To better understand this distinction, take a look at Figure 4-5. With a single
source of truth, information for a given resource is managed in a single
location using a single management tool. Anyone needing to make changes
to the configuration must make them in this one location. After the changes
are made and have gone through any needed approval process, they are
pushed to the resource(s) that require the configuration.



 



Figure 4-5. Multiple single sources of truth are decentralized

A single source of truth has the advantage of consistency and reliability. All
people making changes use a consistent process for making those changes,
and all changes are tracked in a single location. However, different
resources can use different locations to manage their “single source.” As
Figure 4-5 shows, different teams (network teams, application teams,
database teams) can manage their configurations independently and in
different manners, while still benefiting from the advantages of those
configurations coming from a single external source. That is, individual
teams can store configuration files for their applications in different
locations than other teams. Each configuration has a “single source,” yet
there is no centralized management of the configurations.

A centralized source of truth is a step beyond a single source of truth. In a
centralized truth model, all configuration for the entire system is maintained
in a single location using a single configuration tool. This is illustrated in
Figure 4-6.





Figure 4-6. Centralized configuration across teams and resource types

Centralized truth
facilitates the use of

standardized best
practices, reuse

patterns, and layered
configurations in a

more consistent
manner, allowing a

more dramatic
reduction in

application complexity.

Here, the configuration for all resources is managed in one location, and all
teams use the same tool to make all configuration changes for all parts of
the system.

In addition to all the advantages of a single source of truth, a centralized
source of truth also makes it easy to compare configurations to see how
they are different: “Are the security settings of Router 123 different from
those of Router 382? Why?”

Centralized truth facilitates the use of standardized best practices, reuse
patterns, and layered configurations in a more consistent manner, allowing a
more dramatic reduction in application complexity. While accessing a
single configuration source from all parts of the application may not always
be the most convenient solution, using this model more strongly encourages
consistency and reuse than a simple single-source-of-truth model.

Revision management
Once the configuration is centralized, you can use revision control to
manage it. Git, the tool used by software engineers worldwide to manage
software source code, can just as easily be used to maintain configuration



and system files. Doing so gives you all the benefits of revision
management that apply to source code:

Configurations can be backed up and maintained consistently in
multiple redundant locations.

Updated configurations can be compared to previous configurations to
make sure that only the desired changes have been made and no
unnecessary, undesired, or incorrect changes have accidentally been
included.

Configuration changes can be peer reviewed before they are deployed.

Full revision control and approval workflows can be implemented to
ensure that only correct and desired changes occur.

If a decrease in performance or reliability is observed, revision history
allows you to go back and see what changed at the point in time when
the problem occurred, as an aid in diagnosing how to resolve the issue.

With proper processes in place, it becomes difficult for bad actors to
make configuration changes, and when they are made, the changes are
easy to identify and resolve.

Are You in Control?
You might be thinking that this all sounds obvious. Of course you don’t
store configuration information exclusively in the devices themselves. You
keep backups and ensure redundancy, and you use software provided by the
network resource vendors to manage your network resources. This is best
practice, right?

Well, you still might be more exposed than you think. For example, do you
maintain off-site copies and single-source-of-truth versions of the following
configuration files:

Apache configuration files

/etc/hosts files on your Linux servers



/etc/sysconfig/network-scripts/* network scripts on Linux servers

AWS IAM policies for the thousands of AWS components you use

Tuning variables for your cloud-hosted MySQL database

You might be surprised by the breadth, scope, and interdependence of
configuration information your complex application requires.
Understanding where all your configuration requirements exist and how
best to centralize them will require a complete audit and assessment of your
application—the type of audit and assessment we discussed in Chapter 2.
Once you have done this assessment, you’ll understand where your
configuration-based knowledge is stored, and you can create a strategy to
manage it in a centralized single source of truth.

Reuse
Centralized knowledge management facilitates reuse. How so? Suppose all
your configuration files for your applications, devices, services, and
components are in one location. In that case, you can easily leverage
information from one configuration in another, perhaps for a similar device.
Reuse reduces reinvention, making it less likely that multiple distinct
solutions to the same problem are employed. This limits variability in
design and hence decreases the amount of information needed to understand
how the system as a whole is operating, reducing complexity and cognitive
load.

There are multiple patterns for implementing reuse, each with a distinct set
of advantages and disadvantages. I will focus on two of them here.

Pattern 1: Copy/Paste Reuse
With the copy/paste reuse model, a system, infrastructure, or security
engineer or architect looking for a configuration or design pattern to
accomplish a particular task searches through the pool of existing systems
for an implementation of a design pattern that appears to fit their needs.



They copy the design pattern into their own system, make any adjustments
as needed, and they’re done! They’ve leveraged an existing configuration to
create a new configuration, relying on reuse to make sure the new
component is configured as similarly as possible to the existing component.

Advantages: Copy/paste reuse reduces the time it takes to create new
configurations by leveraging known, working configurations. In addition to
reducing time to completion, this approach reduces errors in the initial
implementation by reusing a working implementation.

Disadvantages: Once the configuration has been copied, it no longer tracks
changes in the original configuration. The new configuration and the old
configuration can drift apart over time, and eventually may no longer be
similar. This tends to cause complexity to increase little by little as time
passes.

Pattern 2: Layered/Template Reuse
With the layered reuse model, rather than copying a configuration from one
component to another, you create a shared layer of configuration that is
common between the two. This configuration template is shared by both
components. If a change is later made to that template, it propagates down
and is automatically included in all configurations based on the shared
layer, keeping them consistent.

Advantages: This has all the advantages of the copy/paste reuse model but
eliminates the risk of slow divergence and increasing complexity over time,
keeping the different configurations in sync with each other.

Disadvantages: More work is required both to create the shared
layers/templates and to set up the necessary automation to use them in any
given configuration, including syncing the changes automatically.
Additionally, layered reuse introduces a danger: since a shared template is
used in many places, a change to it for a given purpose may have unknown
and undesired side effects in other places. Change management, change
versioning, version pinning, continuous integration/continuous delivery
(CI/CD) tooling, and change reviews can help mitigate this issue and



ultimately create an environment where there is substantially less
complexity because there is significantly more commonality and reuse
among similar configurations.

Example: Router Configuration Files
A good example of the power of centrally managed configuration and reuse
is the management of network router configurations.

A network router is used to route traffic from one spot in a network to
another. Which traffic it allows to pass through can vary because of built-in
firewalls, security profiles, network shaping, and routing and redirection
rules. Additionally, where traffic is routed may change based on the type of
traffic and the desired destination. Each of these routers has a configuration
that dictates what rules the device must follow in how it routes traffic.
Managing these rules can be extremely complicated, especially in a large
enterprise that may have hundreds, thousands, or even tens of thousands of
routers, switches, and other networking infrastructure components, all
working together to create a safe, functional, secure environment for
applications to operate in.

When a network has only a few of these routers, they can be managed by
simply updating the configuration on the routers themselves. Most low-end
routers even have web-based setup pages that allow an engineer to update
the router’s configuration on the fly; your home network probably has at
least one networking device (perhaps a WiFi router) that offers such a
configuration option.

Figure 4-7 shows an example of a router with an internal configuration.
This router is configured via a web browser or API calls, and as you can
see, network engineers in various locations can update the configuration as
needed.





Figure 4-7. Multiple people using multiple methods to update the router’s configuration

When several people are working independently on the same configuration,
the changes often collide or conflict with one another. One person might
make a change that causes another person’s changes to fail. The result is an
unstable router, which leads to an unstable network. Additionally, if that
router breaks and has to be replaced, the replacement won’t have the same
configuration, and hence all the knowledge and expertise that went into
creating the configuration in the first place will be lost. Furthermore, in an
enterprise setting this router won’t be alone in the network, and it will need
to work with perhaps hundreds or thousands of other routers. Following this
approach, each of these routers will have a distinct and independent
configuration that has been hand-tailored by many different people. As time
goes on, the configurations of all these devices become more and more
customized, more and more specialized. Because they are each unique, the
complexity of the system as a whole is very high—all because of how these
routers’ configuration files are managed.

Now take a look at Figure 4-8. Here, the web page and API calls that were
used to configure the router have been disabled, and configuration via these
means is not allowed. Instead, a copy of the configuration is stored off-
device, in some centralized location. Every engineer who needs to make
changes to the router’s configuration makes their changes to that off-device
copy. Once those changes have been approved, the off-device copy is
pushed or deployed to the router in order to make them go live. The only
allowed way to make a change to the router’s configuration is to modify the
off-device copy, then deploy it to the device, and a history of these changes
can be preserved.

This model has many advantages:

All changes people make are centralized and can be examined by all
interested parties before they are deployed to the router. This reduces
the likelihood that a change made by one engineer will have a negative
or unforeseen effect on the changes made by another engineer.



Each change can be logged in a revision control system so that
changes can be tracked. If a network problem occurs, the history of
modifications can be easily reviewed to try to determine which change
may have caused the problem. The change can even be rolled back if
necessary and the router restored to a previously good state until the
problem can be fully investigated.

Changes can go through a test and review cycle before they are
deployed to the live production router. This may even include pushing
to a staging router to verify the updated configuration works as
expected before deploying it to the production network.

Since all configurations are in a central location, they are available for
inspection and review. This encourages reuse, reducing overall
complexity.

Pushing the changes to production requires some form of CI/CD
pipeline. This means the process of using shared layers and templates
can be automated easily.

If a router fails, it can be replaced with a new one and an up-to-date
configuration file can be pushed to the replacement router instantly,
immediately getting it into the same state as the old router. This
simplifies hardware maintenance operations.



Figure 4-8. In a centralized configuration model, changes are made off-device and pushed to the
device

Using centrally managed configurations reduces the overall complexity in
the system, improving reliability, accountability, network availability, and,
ultimately, application and company success.

Summary
Simplifying knowledge requirements and knowledge management is an
important part of reducing system complexity and cognitive load.



Maintaining centralized configurations is one strategy to improve
knowledge management; in addition to all the benefits just described, it
boosts confidence when making changes and limits the business risk
involved in managing your application.

But knowledge management is about much more than centralizing
configuration files. It’s about providing methods to reduce the amount and
diversity of knowledge about the system that is required to maintain and
operate it, and about promoting reuse, simplification, and standardization,
without jeopardizing the value of moving quickly and encouraging
innovation.

Effectively managing knowledge requires finding the right balance between
agility and uniformity, speed and completeness, complexity and
understandability. Ultimately, knowledge management is about balancing
short-term agility and long-term reliability in a complex system.



Chapter 5. Creating Your
Technology Investment
Framework

As you manage your way through building and operating your IT
infrastructure, you make decisions that impact which areas of your
applications and infrastructure you invest in. The factors that influence your
investment decisions are beyond the scope of this book, but it’s important to
be aware of their effect on the size and complexity of your overall system.

As a company is built, maintained, and grown, all the investments it makes
will fit into a specific framework that will either enable the business or
work against the business. The goal is to focus as much investment—
money and energy—on the things that give the business the return on
investment it requires, and as little as possible on the things that, while they
might be necessary to operate the business, are not strategic to its operation.

Technology Investment Framework
Categories
Technology investments vary depending on the type of organization. From
a framework perspective, the investments will inevitably fall into one of
three categories:

Sustaining

These investments keep your company moving. They include investing
in infrastructure—such as communications technologies (email, phone),
office space, and physical infrastructure—financial management and
control, and human resources.



Disruptive

These investments are designed to build and grow your business. This
might include developing new product ideas, building new features for
existing products, or expanding existing products into new and
interesting markets.

Performance

These investments are designed to make your business more efficient
and productive. This might involve investing in marketing and sales,
making reductions in cost of goods sold (COGS) or infrastructure costs,
and optimizing processes and systems.

Often, companies’ investment priorities shift depending on the
organization’s maturity and the business climate they are facing. In fact, a
successful company understands where it is investing and updates its
investments as necessary as time goes on.

Companies need to put money and effort into all of these categories, but
they should focus on the things of greater importance. For example,
consider your corporate email system. Companies invest in building this
communications channel to facilitate communications among their
employees, and between their employees and customers, partners, and other
third parties. It’s a necessary infrastructure component for a modern
company to have.

But how much should you invest in the email system? Should you hire a
large team of email experts to build the greatest email system ever? Or
should you pay a few dollars per employee and give everyone a Gmail
account? Or should the investment be somewhere in the middle?

To answer that question, I’d suggest simply considering this fundamental
question: are you in the email business?

If your business is not the business of building and operating high-quality
email services, why would you invest heavily in a state-of-the-art email



system? Why not just pay the going rate for an existing email service, such
as Office 365 or Google Corporate Mail, and let that company manage your
email for you?

Just how important is email to you? Is it more important than your product
offering, or a critical component of your product offering? Or is it just a
tool for communicating between people involved in your business?

What is your main
business focus? Your
answer dramatically

impacts how much you
should invest in email
services—or any other

services—for your
company.

For example, are you a retail company like Dollar General that uses email
to send company information to your employees and communicate with
vendors? Or are you an email delivery service company like Mailchimp,
where customers pay you to process their email for them?

In other words, what is your main business focus? Your answer
dramatically impacts how much you should invest in email services—or
any other services—for your company.

Let’s discuss a few specific examples where considering the actual focus of
your business can impact the type of IT investments your company makes.

IT Investment Example: Are You in the
Datacenter Business?
Joe’s Hardware Store is a (fictitious) national chain of hardware stores
famous for their customer service. You can buy a product at any Joe’s



Hardware Store and return it at any other Joe’s nationwide. If one store
doesn’t have a product, they can quickly get it from another store and have
it available for the customer to pick up within 24 hours. Joe’s guarantees
these capabilities by having a single, unified IT backend. This backend
connects all the stores in the Joe’s Hardware network using a common
inventory, order processing, and customer service system. Additionally,
customers can go online to get a copy of a receipt, check the status of a
special order, or check on a pending service order. This is all enabled by the
unified IT backend infrastructure.

Joe’s manages the backend infrastructure via a datacenter located in
downtown Prescott, a small town in western Wisconsin. The company
chose this location because it was the childhood home of the CEO.
However, it’s 50 miles from any major population center, so getting people
to work at the datacenter is difficult. Combined with fluctuating power
availability, weather-related outages, and inaccessibility during major
blizzards, it’s hardly an ideal location for a datacenter, and Joe’s wants to
make a change.

But a change to what? What if it finds a new location for the datacenter, and
moves all the people and equipment there, only to find out that it’s hard to
run a datacenter at any location? That doesn’t seem to make sense.

So Joe’s Hardware asks itself: “Are we in the datacenter business?”

In other words, is operating a datacenter important to the business that Joe’s
Hardware is in—namely, selling hardware—or is it a necessary but
secondary part of doing business as a hardware store? Joe’s decides that,
while having a datacenter is critical to conducting its business in the way it
does, maintaining and operating that datacenter is not mission-critical for
the company’s success. Anyone could operate the datacenter for Joe’s. And
by outsourcing the job of running the datacenter, Joe’s will be able to focus
more on the parts of the business that are mission-critical.



While having a
datacenter is critical,

maintaining and
operating that

datacenter is not
mission-critical.

So Joe’s Hardware Store decides to close the Prescott datacenter and
relocate all the services to a cloud service provider. This lets an expert in
running a datacenter—a cloud service provider—handle the logistics and
issues associated with operating the datacenter, and it lets Joe’s Hardware
deal with what it needs to do: sell hardware.

This story illustrates the importance of focus. By outsourcing the sustaining
parts of its business model (operating the datacenter) to a third party, Joe’s
is able to focus more on the disruptive parts of its business model (selling
hardware and providing the nationwide customer support the company is
famous for). The company will still have to invest in the datacenter via
cloud usage fees, but it doesn’t have to focus on operating the datacenter.
This reduction in cognitive load—and hence, IT complexity—helps Joe’s
Hardware remain competitive in its core, much more strategic initiatives.

Most companies don’t
have to be in the

datacenter business.

Most companies don’t have to be in the datacenter business. For some
companies, though, operating datacenters is core to their business. Take, for
example, Amazon Web Services. AWS has become very proficient at
building and operating datacenters. This is because the company needs to
operate hundreds of thousands of them worldwide in order to manage its
growing cloud service business.



A company’s focus may also change over time. Dropbox is a company that
initially outsourced its datacenter needs to a third party—it was an early
user of Amazon S3, and it used AWS for all its IT needs. But as the
company grew, and its competitive offerings grew to match, Dropbox
discovered that to remain competitive it needed to provide more efficient
data storage optimized for its needs, and hence, it needed to build its own
datacenters. Dropbox now operates much of its infrastructure and data
storage in its own datacenters, rather than using a cloud provider’s generic
storage solution. As the company matured, it discovered that operating a
datacenter was in fact a strategic necessity for it to remain competitive.

The lesson of this example? Focus on the things that are strategically
important to your business, and outsource those things that, while
necessary, are not essential to your business’s success.

IT Investment Example: Should You Be in the
Logistics Business?
Amazon.com is a bookstore. At least that’s what people called it when it
launched in 1994. Even as late as 2005, when I joined Amazon, I remember
a taxi driver asking me if that was “the bookstore up on the hill.”1

Amazon quickly grew into a retail powerhouse, an ecommerce juggernaut.
It sold products of all kinds, then shipped them to customers. For some
time, Amazon was one of the largest users of UPS, FedEx, and the US
Postal Service’s shipping services.

Shipping costs were always a challenge for Amazon. The company worked
hard to keep costs down and negotiated aggressive shipping agreements
with all the major shipping companies.

But then a question came up. Why aren’t we in the logistics and shipping
business ourselves?

At first glance, you might say that Amazon is a retail store and shouldn’t be
involved in shipping—it should outsource that to the people who



understand shipping. Yet, shipping is such a critical part of the business that
outsourcing it would mean outsourcing a significant amount of control over
the business as a whole.

So Amazon decided it needed to get into the logistics business, and built a
giant logistics organization within the company. It bought freight airplanes
and long-haul trucks, invested in growing its number of fulfillment centers,
and eventually invested in a fleet of last-mile delivery vehicles and
infrastructure. Now, many products you buy on Amazon are shipped—at
least partially—through the Amazon logistics system. In some cases, the
products are shipped and delivered all the way to your door by an Amazon
carrier. Amazon is now a major player in shipping logistics, and this has
opened up new avenues of business. It has also allowed the company
greater control over shipping speed, delivery routing, and cost containment.
Amazon is one of the best shipping companies in the world, yet that wasn’t
its initial core business. It made an investment to solve a critical business
problem, and as a result, a new arm of the business was formed.

Amazon even invests extensively in the way logistics are handled. Amazon
Air is starting trials of drone delivery of packages to individuals’ front
doors, dramatically altering the package delivery model. It is disrupting the
logistics business.

Just because a
capability wasn’t
strategic to you

initially, doesn’t mean it
might not be sometime

in the future.

Should Amazon be a logistics company? Most definitely, and it may end up
being one of the best logistics companies around. While perhaps not
obvious at first glance, this is a critical part of the company’s core business:
bringing products purchased on the internet directly to consumers.



The lesson of this example? Sometimes strategic necessity gives rise to new
business opportunities and new opportunities to disrupt the status quo,
leading to more new opportunities. Just because a capability wasn’t
strategic to you initially, doesn’t mean it might not be sometime in the
future.

IT Investment Example: How Can You
Leverage Strength to Transform?
Uber started out as a modern alternative to the traditional paid car service
and taxi service. By leveraging technology, it was able to provide car
services at a rate substantially lower than its competitors, and with a greater
degree of convenience.

This was a good business model, and Uber was an effective disruptor to
those old-school transportation businesses. In fact, it was so successful that
Uber became a generic term for getting a ride from one location to another:
“Let’s grab an Uber” is now more commonly heard than “Let’s grab a taxi.”
Faced with this new competition, traditional car and taxi services struggled
to survive. Many did not, but others did by adopting features of Uber’s
business model. Additionally, newcomers such as Lyft appeared and started
competing with Uber on pricing, causing Uber to have to either adjust its
business model or face being disrupted itself.

Despite these challenges, Uber built a solid business consisting of a huge
worldwide network of independent drivers who owned and operated their
own vehicles. Uber provided the logistics infrastructure that connected
riders to drivers, as well as safety, security, and payment capabilities.

But Uber faced a problem when it came to expansion. You can expand a
business like Uber’s only so much. There are only so many new markets to
enter, and only so many ways that people can use your service to get around
town.



Uber realized that the
network it had

developed might be
useful for another

purpose. It could also
move things from one
location to another

location… And so Uber
Eats was born.

Then Uber realized that the network it had developed might be useful for a
purpose other than driving people to and from various locations. It could
also move things from one location to another location, on demand, quickly
and easily. While this capability could be used for simple package delivery
services, Uber had something bigger in mind. What about food? In a big
city, timely delivery of food for lunches and dinners was always a struggle.
A single restaurant could handle only a certain number of drivers and a
certain number of orders in a very restricted delivery region, and the few
restaurants that banded together and formed larger delivery services didn’t
have a lot of success. Outside of pizza delivery, it was hard to get good,
consistent, reliable delivery of hot food from restaurants to homes and
offices.

With its large worldwide fleet of vehicles and drivers, Uber had an
opportunity to solve this problem. It could use its fleet to pick up food from
restaurants and deliver it to customers, nearly as easily as picking up a rider
and moving them to another location. And so Uber Eats was born. Again,
this model was so successful that other companies started to offer similar
services, and it got a boost when the global pandemic hit: Uber Eats and its
competitors had huge success delivering meals from suddenly-takeout-only
restaurants to suddenly-stuck-at-home diners.

Uber innovated by finding a new business to disrupt—one radically
different from its original business. Before Uber, who would have imagined



that the airport limousine and fast-food delivery businesses had so much in
common?

Shifting Investments
As discussed in Chapter 1, excessive IT complexity can prevent an
organization from shifting from, say, a sustaining or performance
investment toward a disruptive investment due to competitive pressures.
Remember the example of Xerox? Or a company might think it is investing
in disruptive technologies, but find it’s more invested in sustaining—
keeping the wheels turning but not moving forward—as was the case with
Hewlett-Packard. Or it might have successfully invested in disruptive
technologies in the past, but be unable to find solid disruptive options for
future investments and slip into irrelevance, as happened with Polaroid and
Blockbuster Video. It might even simply shift its investments too late to be
effective, losing an insurmountable amount of market share to innovative
competitors, as in the case of Borders.

Whatever your situation, understanding how and where your business is
investing will help you understand its driving force, which will help you
assess your situation and understand the changes required in order to reduce
complexity, increase agility, become more adaptive, and safely manage
information. Based on this, you can determine a strategy to become more
competitive and, hence, successful in your business domain.

In his book Zone to Win (Diversion Books), Geoffrey Moore suggests
segmenting enterprises into four zones to enable them to more easily move
from one business model to another using disruptive innovations. Moore’s
four zones are:

The performance zone

This part of the enterprise focuses on its existing business, optimizing it
and maximizing its return.

The productivity zone



This part of the enterprise comprises the cost centers that enable the
performance zone to succeed. Its focus is on efficiency, effectiveness,
and compliance.

The incubation zone

This part of the enterprise focuses on experimenting to discover
disruptive innovations. It is separate and isolated from all other parts of
the business.

The transformation zone

This part of the enterprise focuses on enabling transformational
initiatives to succeed.

The Zone to Win model describes these four zones and how companies can
shift their focus between them at various points in their development, to
alternatively enable or transform their business in order to stay competitive.

Summary
The investment framework your company uses will either enable the
business or work against it. Your goal is to focus as much investment as
possible on the business enablers, and as little as possible on the things that
are not strategic to the operation of the business. Focusing your technology
investments effectively is imperative: this will help reduce the cognitive
load, technical debt, and business complexity of your applications, which in
turn enables the innovation and agility that are necessary to thrive.

1  The “hill” was Beacon Hill, where the first major Amazon office was located, in the PacMed
building overlooking downtown Seattle.



Chapter 6. Starting the
Conversation

We’ve covered many topics in this book. We started by exploring the IT
complexity dilemma, describing how the decisions IT teams make can
impact the complexity of an application, which in turn can impact the cost
and the organization’s ability to be agile and take advantage of industry
developments.

We then discussed how to assess your organization and your products to
understand what they are composed of and how those parts work together.

Then we looked at how adaptive architectures can give you agility in
making decisions when used appropriately, taking care that they do not
inadvertently add complexity and fragility.

Next, we discussed managing knowledge. How can you organize the
information required to keep a modern application working correctly
without contributing to system complexity or increasing system
vulnerability?

Finally, we talked about innovation and showed how and where your
investments in your organization can affect it. Will an investment positively
disrupt your business? Will it simply enable the business to keep moving
forward? Will it have a positive or negative overall impact?

All of this discussion was centered on one overriding concept: how do you
create and encourage organizational change to improve your application
and your organization? These are the kinds of questions you need to ask:
Can you modify the course of your product or company to enable increased
innovation? Can you drive disruption in your industry as you move
forward? What do you need to do now to prevent your organization from
falling into the trap, as described in Chapter 1, of becoming either fragile or
rigid over time? Figure 6-1 recalls this danger.



Figure 6-1. An agile organization may fail over time by becoming either rigid or fragile

To drive the desired changes in your organization and your product(s), you
must start the conversation about the necessary transformation.

This may seem easier for a CEO, CFO, COO, or other CxO in your
company to do than it is for you. But change does not have to start at the
top. It can start at the bottom or in the middle. In fact, meaningful change,
such as the type that may be required for your organization to take
advantage of many of the concepts in this book, may be harder to drive
from the top down or the bottom up. It may be easier to drive from the
middle out.

Why is that? Because driving the sort of change you need to get the
outcomes you desire for your product offerings requires a few things:

Knowledge and expertise about the products and their position in the
industry. This requires an understanding of both the code and
technology of the products and what the products do for your
customers and the industry at large.



Knowledge and expertise about the customers who are using the
products and/or the prospective customers your company wants to use
your products.

Knowledge and expertise about how the business is currently being
operated and what changes might be needed organizationally.

This is very broad knowledge, and it’s typically the type of knowledge
required by an effective mid-level manager or executive. Any lower in the
organization, and you likely won’t have the business operational
knowledge; any higher in the organization, and you’ll likely lose the
required connection with the product and technology details.

So, as a mid-level manager or executive, you are in fact in the perfect
position to influence the types of changes described in this book.

But how do you begin the conversations? Start with a very high-level audit
of the product and organization—the type of high-level adaptive assessment
described in Chapter 2. Then assess how your organization is operating with
respect to the structures and issues discussed in Chapter 1. How serious a
complexity dilemma might you be facing? Are you deep in complexity or
are you just brushing the surface? Are you already a fragile or rigid
organization, or might that be in your future if you are not careful? Are you
currently facing IT death or can you imagine a day when that might become
a concern?

Document your findings as you go. Then, using this documentation, begin
the conversation both up and down the organization. Moving down through
the organization, focus on the impact of complexity and a lack of
innovation. Talk about the value of adaptive architectures and knowledge
management. Moving up through the organization, focus on the business
costs of IT death, and how the opposing forces of complexity and agility
affect how you can grow the organization. Focus on how these concepts
impact the organization as a whole.

Depending on the size and complexity of your organization, these
conversations may be simple or hard, and they may be well received or fall



on deaf ears. But, sooner or later, they will begin to sink in, whether
because they make sense to the right individuals in the organization or
because some event or situation occurs that forces their recognition. Either
way, this will be the moment when you can push for the changes you see as
necessary to help your organization move forward.

Finally, continue to grow and learn. This book is just a starting point in your
journey. Check out other books, articles, courses, and interviews by the
author at leeatchison.com. Also take a look at the many other great books
and courses offered by O’Reilly Media online, and the books Cracking
Complexity Now by David Komlos and David Benjamin (Nicholas Brealey)
and It’s Not Complicated by Rick Nason (Rotman-UTP).

This is a challenge. It may appear to be an insurmountable challenge, but
remember the techniques discussed in Chapter 2 for conducting an audit.
You don’t have to be perfect to be good. And to be good, you just need to
start.

https://leeatchison.com/


Index

A

adaptive architectures

autoscaling and, Autoscaling-Autoscaling

decision-marking cycles, The Value of an Adaptive Assessment

fragility, Cost of Adaptive Architecture in Increased Complexity

IaC (Infrastructure as Code), Infrastructure as Code-Infrastructure as
Code

importance of, Decisions Based on Adaptive Assessments

load testing and, Load Testing

overview, Adaptive Architectures-Adaptive Architectures

production-like environment, development in, Developing in a
Production-Like Environment

resource allocation, Autoscaling

rigidity, Cost of Adaptive Architecture in Increased Complexity

self-healing and, Self-Healing -Self-Healing

adaptive assessment, Adaptive Assessment

brainstorming, Example 1: The Brainstorming Adaptive Assessment

cloud tagging, Example 2: The Cloud Tagging Adaptive Assessment

creating, Creating an Adaptive Assessment

current state, Adaptive Assessment



decisions and, Decisions Based on Adaptive Assessments-Decisions
Based on Adaptive Assessments

error bar approach, Creating an Adaptive Assessment

estimated inventory, Adaptive Assessment

granularity of assessment, Adaptive Assessment

loose coupling, Loose Coupling-Loose Coupling

value of, The Value of an Adaptive Assessment

application architectures, loose coupling, Loose Coupling

application development teams, SaaS companies, Business type 3: The
SaaS-focused IT organization

architectures

adaptive, overview, Adaptive Architectures-Adaptive Architectures

application architectures, Loose Coupling

autoscaling and, Autoscaling-Autoscaling

IaC (Infrastructure as Code), Infrastructure as Code-Infrastructure as
Code

infrastructure, Loose Coupling

loading testing and, Load Testing

loosely coupled, Loose Coupling

organizational, Loose Coupling

production-like environment, development in, Developing in a
Production-Like Environment

self-healing and, Self-Healing -Self-Healing



assessment, Auditing Versus Assessment

(see also adaptive assessment)

auditing, Auditing Versus Assessment

controlled inventory, Auditing Versus Assessment-Auditing Versus
Assessment

Auto Scaling service (AWS), Autoscaling

autoscaling, adaptive architectures and, Autoscaling-Autoscaling

AWS (Amazon Web Services) Auto Scaling service, Autoscaling

AWS Elastic Load Balancer, resource allocation, Autoscaling

B

B2C (business-to-customer), SaaS companies, Business type 3: The SaaS-
focused IT organization

brainstorming adaptive assessment, Example 1: The Brainstorming
Adaptive Assessment

brittleness, The Organizational Pain of Complexity

C

centralized configuration, knowledge management, Centralized
Configuration-Are You in Control?

cloud tagging adaptive assessment, Example 2: The Cloud Tagging
Adaptive Assessment

cognitive load, Managing Knowledge

reducing, Knowledge Variability: Choice Versus Complexity

competitiveness in modern IT organizations, Competitive offerings



complexity

brittleness, The Organizational Pain of Complexity

choice and, Knowledge Variability: Choice Versus Complexity-
Knowledge Variability: Choice Versus Complexity

engineers' knowledge, The Organizational Pain of Complexity

flexibility and, Cost of Adaptive Architecture in Increased Complexity

in IT organizations, Complexity in an IT Organization-Complexity in
an IT Organization

messy desk syndrome, Messy desk syndrome-Messy desk syndrome

organizational pain and, The Organizational Pain of Complexity-
Messy desk syndrome

technical debt and, Technical Debt: The Key to Complexity-The
Advent of Complexity

tiered security and, Example: Reducing Complexity with Tiered
Security-Example: Reducing Complexity with Tiered Security

configuration, centralized, Centralized Configuration-Are You in Control?

router configuration files, Example: Router Configuration Files-
Example: Router Configuration Files

consistency, centralized configuration and, Centralized Configuration

controlled inventory, Auditing Versus Assessment, Auditing Versus
Assessment

copy/paste reuse model, Pattern 1: Copy/Paste Reuse

credential storage, Centralized Configuration

Cunningham, Ward, Technical Debt: The Key to Complexity



D

decisions, adaptive assessment and, Decisions Based on Adaptive
Assessments-Decisions Based on Adaptive Assessments

Deming cycle, Measure-Try-Measure-Refine

depth of measurement, How Deep Do You Measure?-How Deep Do You
Measure?

development in production-like environment, Developing in a Production-
Like Environment

development team, Development-Development

DevOps, modernization and, The role of DevOps in the modernization of
the enterprise-The role of DevOps in the modernization of the enterprise

disruptive innovations, Shifting Investments

E

error bar approach to adaptive assessment, Creating an Adaptive
Assessment

F

flat management structure, The Structure of Modern IT Organizations

flexibility, complexity and, Cost of Adaptive Architecture in Increased
Complexity

G

GDPR (General Data Protection Regulation), Example: Reducing
Complexity with Tiered Security

granularity of assessment, Adaptive Assessment



growth inhibitors, The Structure of Modern IT Organizations

H

Hewlett-Packard, IT death and, IT Death

hierarchical security model, Example: Reducing Complexity with Tiered
Security

I

IaC (Infrastructure as Code), Infrastructure as Code-Infrastructure as Code

operations teams and, Operations

icing the cake, Messy desk syndrome

infrastructure architectures, loose coupling, Loose Coupling

innovation, knowledge management and, Knowledge Variability: Choice
Versus Complexity

disruptive innovation, Shifting Investments

inventory estimates, adaptive assessment, Adaptive Assessment

IT complexity dilemma, What Is the Modern IT Complexity Dilemma?

IT death, IT Death-IT Death

IT organizations

complexity in, Complexity in an IT Organization-Complexity in an IT
Organization

development team, Development-Development

DevOps, The role of DevOps in the modernization of the enterprise-
The role of DevOps in the modernization of the enterprise

flat management structure, The Structure of Modern IT Organizations



mature, What Makes a Mature IT Organization

competitiveness, Competitive offerings

security vulnerabilities, Security vulnerabilities

operations team, Operations-Operations

software development and, The Role of Software Development in IT
Organizations

non-SaaS organization, Business type 2: The non-SaaS software
IT organization-Business type 2: The non-SaaS software IT
organization

nonsoftware-focused organization, Business type 1: The
nonsoftware-focused IT organization-Business type 1: The
nonsoftware-focused IT organization

SaaS-focused organization, Business type 3: The SaaS-focused IT
organization-Business type 3: The SaaS-focused IT organization

structure, The Structure of Modern IT Organizations-The role of
DevOps in the modernization of the enterprise

K

knowledge management, Managing Knowledge

cognitive load, Managing Knowledge

configuration, centralized, Centralized Configuration-Are You in
Control?

router configuration files example, Example: Router
Configuration Files-Example: Router Configuration Files

innovation and, Knowledge Variability: Choice Versus Complexity



knowledge variability, Knowledge Variability: Choice Versus
Complexity

cognitive load reduction, Knowledge Variability: Choice Versus
Complexity

requirements management, Managing Knowledge Requirements-
Managing Knowledge Requirements

reuse and

copy/paste model, Pattern 1: Copy/Paste Reuse

layered/template model, Pattern 2: Layered/Template Reuse

L

layered/template reuse model, Pattern 2: Layered/Template Reuse

load testing, adaptive architecture and, Load Testing

localized improvement, The Benefits of Measurement

loose coupling, Cost of Adaptive Architecture in Increased Complexity

knowledge requirements, Managing Knowledge Requirements

loosely coupled architecture, Loose Coupling, Loose Coupling

application architectures, Loose Coupling

infrastructure architectures, Loose Coupling

organizational architectures, Loose Coupling

M

Measure-Try-Measure-Refine loop, Measure-Try-Measure-Refine-Why Do
You Measure?

measurement



benefits, The Benefits of Measurement-The Benefits of Measurement

Deming cycle, Measure-Try-Measure-Refine

depth, How Deep Do You Measure?-How Deep Do You Measure?

knowledge requirements, Managing Knowledge Requirements

Measure-Try-Measure-Refine loop, Measure-Try-Measure-Refine-
Why Do You Measure?

PDCA (Plan-Do-Check-Act), Measure-Try-Measure-Refine

PDSA (Plan-Do-Study-Act), Measure-Try-Measure-Refine

people, What Do You Measure?

processes, What Do You Measure?

technology, What Do You Measure?

messy desk syndrome, Messy desk syndrome-Messy desk syndrome

modularization, Cost of Adaptive Architecture in Increased Complexity

tiered security and, Example: Reducing Complexity with Tiered
Security

N

non-SaaS IT organization, Business type 2: The non-SaaS software IT
organization-Business type 2: The non-SaaS software IT organization

nonsoftware-focused IT organization, Business type 1: The nonsoftware-
focused IT organization-Business type 1: The nonsoftware-focused IT
organization

O

OaC (Operations as Code) tools, Operations



operations team, Operations-Operations

organizational architectures, loose coupling, Loose Coupling

organizational change, conversation start, Starting the Conversation-
Starting the Conversation

organizational pain, complexity and, The Organizational Pain of
Complexity-Messy desk syndrome

P

PDCA (Plan-Do-Check-Act), Measure-Try-Measure-Refine

PDSA (Plan-Do-Study-Act), Measure-Try-Measure-Refine

people, measuring, What Do You Measure?

Polaroid, IT death and, IT Death

processes, measuring, What Do You Measure?

productivity, knowledge requirements, Managing Knowledge Requirements

R

redundancy, centralized configuration and, Centralized Configuration

resource allocation, adaptive architectures, Autoscaling

reuse, Cost of Adaptive Architecture in Increased Complexity

copy/paste model, Pattern 1: Copy/Paste Reuse

layered/template model, Pattern 2: Layered/Template Reuse

revision management, centralized configuration, Revision management

router configuration files, Example: Router Configuration Files-Example:
Router Configuration Files



S

SaaS (software-as-a-service)

non-SaaS IT organizations, Business type 2: The non-SaaS software IT
organization-Business type 2: The non-SaaS software IT organization

operations teams, Operations

SaaS-focused organizations, Business type 3: The SaaS-focused IT
organization-Business type 3: The SaaS-focused IT organization

technical debt and, Technical Debt: The Key to Complexity

security

centralized configuration, Centralized Configuration

tiered security, complexity and, Example: Reducing Complexity with
Tiered Security-Example: Reducing Complexity with Tiered Security

vulnerabilities, Security vulnerabilities

self-healing, adaptive architectures and, Self-Healing -Self-Healing

shifting investments, Shifting Investments-Shifting Investments

single source of truth, centralized configuration, Maintaining a Centralized
Single Source of Truth-Revision management

software development, The Role of Software Development in IT
Organizations

non-SaaS organization, Business type 2: The non-SaaS software IT
organization-Business type 2: The non-SaaS software IT organization

nonsoftware-focused organization, Business type 1: The nonsoftware-
focused IT organization-Business type 1: The nonsoftware-focused IT
organization



SaaS-focused organization, Business type 3: The SaaS-focused IT
organization-Business type 3: The SaaS-focused IT organization

standardization, Cost of Adaptive Architecture in Increased Complexity

knowledge requirements, Managing Knowledge Requirements

supportability, knowledge requirements, Managing Knowledge
Requirements

surveys, Auditing Versus Assessment, The Survey Analogy

T

technical debt, What Is the Modern IT Complexity Dilemma?

complexity and , Technical Debt: The Key to Complexity-The Advent
of Complexity

growth, How does technical debt grow?-How does technical debt
grow?

negative aspects, The negative impact of technical debt

repayment, Technical Debt: The Key to Complexity

SaaS and, Technical Debt: The Key to Complexity

technology investment framework

datacenter business example, IT Investment Example: Are You in the
Datacenter Business?-IT Investment Example: Are You in the
Datacenter Business?

disruptive, Technology Investment Framework Categories

logistics business example, IT Investment Example: Should You Be in
the Logistics Business?-IT Investment Example: Should You Be in the
Logistics Business?



performance, Technology Investment Framework Categories

shifting investments, Shifting Investments-Shifting Investments

sustaining, Technology Investment Framework Categories

technology leveraging example, IT Investment Example: How Can
You Leverage Strength to Transform?-IT Investment Example: How
Can You Leverage Strength to Transform?

technology, measuring, What Do You Measure?

tiered security, complexity reduction and, Example: Reducing Complexity
with Tiered Security-Example: Reducing Complexity with Tiered Security

traceability, centralized configuration and, Centralized Configuration

U

understanding, knowledge requirements and, Managing Knowledge
Requirements

uniformity, knowledge requirements, Managing Knowledge Requirements

V

variability, knowledge variability, Knowledge Variability: Choice Versus
Complexity-Knowledge Variability: Choice Versus Complexity

X

Xerox, IT death, IT Death



About the Author
Lee Atchison is a recognized industry thought leader in cloud computing,
and the author of the best-selling book Architecting for Scale (O’Reilly),
currently in its second edition. Lee has 36 years of industry experience,
including eight years at New Relic and seven years at Amazon and AWS,
where he led the creation of the company’s first software download store,
created AWS Elastic Beanstalk, and managed the migration of Amazon’s
retail platform to a new service-based architecture. Lee has consulted with
leading organizations on how to modernize their application architectures
and transform their organizations at scale. Lee is an industry expert and is
widely quoted in publications such as InfoWorld, Diginomica, IT Brief,
Programmable Web, CIO Review, and DZone. He has been a featured
speaker at events across the globe from London to Sydney, Tokyo to Paris,
and all over North America.

https://www.oreilly.com/library/view/architecting-for-scale/9781492057161/


Colophon
The cover image is by Susan Thompson. The cover fonts are Guardian Sans
and Gilroy. The text font is Scala Pro and the heading font is Benton Sans.


	Foreword
	The Growing Complexity of IT Environments

	Preface
	More Information
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. What Is the Modern IT Complexity Dilemma?
	The Structure of Modern IT Organizations
	The Role of Software Development in IT Organizations
	Business type 1: The nonsoftware-focused IT organization
	Business type 2: The non-SaaS software IT organization
	Business type 3: The SaaS-focused IT organization

	Development and Operations in the IT Organization
	Development
	Operations
	The role of DevOps in the modernization of the enterprise


	The Advent of Complexity
	Technical Debt: The Key to Complexity
	How does technical debt grow?
	The negative impact of technical debt

	The Organizational Pain of Complexity
	Messy desk syndrome

	Complexity in an IT Organization
	IT Death
	What Makes a Mature IT Organization
	Competitive offerings
	Security vulnerabilities


	Summary

	2. Auditing and Assessing Your IT Ecosystem
	Auditing Versus Assessment
	What Do You Measure?
	Why Do You Measure?
	Measure-Try-Measure-Refine
	The Benefits of Measurement

	How Deep Do You Measure?
	Adaptive Assessment
	The Value of an Adaptive Assessment
	Creating an Adaptive Assessment
	Decisions Based on Adaptive Assessments
	Loose Coupling

	Examples of Adaptive Assessments
	Example 1: The Brainstorming Adaptive Assessment
	Example 2: The Cloud Tagging Adaptive Assessment

	The Survey Analogy
	Summary

	3. Moving to an Adaptive Architecture
	Adaptive Architectures
	Adaptive Architectures in Action
	Autoscaling
	Self-Healing
	Infrastructure as Code
	Developing in a Production-Like Environment
	Load Testing

	Cost of Adaptive Architecture in Increased Complexity
	Example: Reducing Complexity with Tiered Security
	Summary

	4. Managing Knowledge
	Knowledge Variability: Choice Versus Complexity
	Managing Knowledge Requirements
	Centralized Configuration
	Maintaining a Centralized Single Source of Truth
	Centralized source of truth versus single source of truth
	Revision management

	Are You in Control?

	Reuse
	Pattern 1: Copy/Paste Reuse
	Pattern 2: Layered/Template Reuse

	Example: Router Configuration Files
	Summary

	5. Creating Your Technology Investment Framework
	Technology Investment Framework Categories
	IT Investment Example: Are You in the Datacenter Business?
	IT Investment Example: Should You Be in the Logistics Business?
	IT Investment Example: How Can You Leverage Strength to Transform?
	Shifting Investments
	Summary

	6. Starting the Conversation
	Index

